Главная // Актуальные документы // Нормы
СПРАВКА
Источник публикации
М.: Госстрой России, ГУП ЦПП, 2000
Примечание к документу
Введен в действие с 1 июля 1981 года.
Название документа
"СН 528-80. Перечень единиц физических величин, подлежащих применению в строительстве"
(утв. Постановлением Госстроя СССР от 17.09.1980 N 147)

"СН 528-80. Перечень единиц физических величин, подлежащих применению в строительстве"
(утв. Постановлением Госстроя СССР от 17.09.1980 N 147)


Содержание


Утверждены
Постановлением Госстроя СССР
от 17 сентября 1980 г. N 147
СТРОИТЕЛЬНЫЕ НОРМЫ
ПЕРЕЧЕНЬ ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН,
ПОДЛЕЖАЩИХ ПРИМЕНЕНИЮ В СТРОИТЕЛЬСТВЕ
СН 528-80
Срок введения в действие
1 июля 1981 года
Перечень единиц физических величин, подлежащих применению в строительстве (СН 528-80), разработан в соответствии с утвержденной Госстандартом Программой внедрения в СССР стандарта СТ СЭВ 1052-78 "Метрология. Единицы физических величин" на основе анализа используемых в нормативных документах по строительству единиц и величин, расчетных формул, терминов и обозначений.
Данный Перечень разработан в соответствии с введенным в качестве государственного стандарта СССР СТ СЭВ 1052-78, который устанавливает обязательное применение в странах - членах СЭВ Международной системы единиц (СИ), и утвержденными Госстандартом Методическими указаниями "Внедрение и применение СТ СЭВ 1052-78 "Метрология. Единицы физических величин" (РД 50-160-79).
Разработан ЦНИИпромзданий Госстроя СССР на основе подготовленных следующими институтами разделов производных единиц:
пространства и времени - ЦНИИпромзданий Госстроя СССР;
строительной механики - ЦНИИСКом им. Кучеренко Госстроя СССР;
гидромеханики и механики грунтов - НИИОСПом им. Герсеванова Госстроя СССР;
электрических и магнитных величин - ВНИПИ Тяжпромэлектропроект им. Ф.Б. Якубовского Минмонтажспецстроя СССР;
строительной теплофизики, акустики и светотехники - НИИСФом Госстроя СССР;
ионизирующих излучений - ЦНИИпромзданий Госстроя СССР.
Редакторы - инженеры В.М. Скубко (Госстрой СССР), В.И. Новаторов (ЦНИИпромзданий Госстроя СССР), кандидаты техн. наук А.А. Бать (ЦНИИСК им. Кучеренко Госстроя СССР), А.В. Вронский (НИИОСП им. Герсеванова Госстроя СССР), инж. И.С. Копытова (ВНИПИ Тяжпромэлектропроект им. Ф.Б. Якубовского Минмонтажспецстроя СССР), кандидаты техн. наук Ю.А. Табунщиков, Н.Н. Киреев, д-р техн. наук Г.Л. Осипов (НИИСФ Госстроя СССР).
Внесены ЦНИИпромзданий Госстроя СССР.
ОБЩИЕ ПОЛОЖЕНИЯ
1. Настоящий Перечень единиц физических величин, подлежащих применению в строительстве, разработан в соответствии с СТ СЭВ 1052-78 "Метрология. Единицы физических величин" и устанавливает необходимые в строительном проектировании и производстве строительно-монтажных работ единицы физических величин (в дальнейшем - единицы), а также наименования и обозначения этих единиц.
Перечень не распространяется на единицы величин, оцениваемых по условным шкалам.
Примечание. Под условными шкалами понимают шкалы величин, связь которых с основными величинами однозначно не установлена (например, шкалы твердости Роквелла и Виккерса, шкалы землетрясений, волнений на море, системы координат цвета, светочувствительности фотоматериалов и др.).
2. Данный Перечень содержит:
установленные СТ СЭВ 1052-78 основные и дополнительные единицы СИ;
производные единицы СИ, имеющие специальные наименования;
определенные на основе практики проектирования и строительства производные единицы, образованные из основных единиц СИ и производных единиц СИ, имеющих специальные наименования;
рекомендуемые кратные и дольные от перечисленных единиц;
допускаемые к применению единицы, не входящие в СИ.
3. Включенные в настоящий Перечень единицы должны применяться в соответствии с СТ СЭВ 1052-78 в нормативной, технической и проектной документации по строительству, а также научно-технической, учебной и справочной литературе.
4. Основные, дополнительные и производные единицы СИ, рекомендуемые кратные и дольные от единиц СИ, а также допускаемые к применению единицы, не входящие в СИ, приведены в табл. 1.
Примечание. Правила образования когерентных производных единиц СИ приведены в приложении к СТ СЭВ 1052-78.
Таблица 1
───────────────────────────────┬────────────────────────────────────────────┬──────────────┬───────────────────────────────────────────────────────
Величина │ Единица СИ │ Обозначение │ Допускаемые к применению единицы, не входящие в СИ
───────────────┬───────────────┼───────┬────────────────────────────────────┤рекомендуемых ├────────┬────────────────┬─────────────────────────────
наименование │ размерность │наиме- │ обозначение │ кратных и │наиме- │ обозначение │ соотношение с единицей СИ
│ │нование│ │ дольных от │нование │ │
│ │ │ │ единиц СИ │ │ │
│ │ ├────────────────┬───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
│ │ │ русское │ международное │ │ │ │
───────────────┴───────────────┴───────┴────────────────┴───────────────────┴──────────────┴────────┴────────────────┴─────────────────────────────
1. Единицы пространства и времени
1.1.1. Геомет- │L │метр │м │m │км, см, мм, │- │- │-
рический размер│ │ │ │ │мкм │ │ │
1.1.2. Расстоя-│ │ │ │ │ │ │ │
ние │ │ │ │ │ │ │ │
1.1.3. Разность│ │ │ │ │ │ │ │
координат │ │ │ │ │ │ │ │
1.1.4. Линейное│ │ │ │ │ │ │ │
перемещение │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
1.2. Площадь │ 2 │квад- │м2 │m2 │км2, см2, мм2 │гектар │га │ 6
│L │ратный │ │ │ │<1> │ │1 га = 10 м2
│ │метр │ │ │ │ │ │
───────────────┴───────────────┴───────┴────────────────┴───────────────────┴──────────────┴────────┴────────────────┴─────────────────────────────
1.3. Объем, │ 3 │куби- │м3 │m3 │см3, мм3 │литр │л │ -3
вместимость │L │ческий │ │ │ │ │ │1 л = 10 м3
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
1.4.1. Плоский │- │радиан │рад │rad │- │градус │...° │ -2
угол │ │ │ │ │ │ │ │1° = 1,745329 x 10 рад
1.4.2. Угловое │ │ │ │ │ │минута │...' │ ' -4
перемещение │ │ │ │ │ │ │ │1 = 2,908882 х 10 рад
│ │ │ │ │ │секунда │...'' │ '' -6
│ │ │ │ │ │ │ │1 = 4,848137 х 10 рад
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
1.5. Телесный │- │стера- │ср │sr │- │- │- │-
угол │ │диан │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
1.6.1. Время │Т │секунда│с │s │- │минута │мин │1 мин = 60 с
1.6.2. Интервал│ │ │ │ │ │час │ч │1 ч = 3600 с
времени │ │ │ │ │ │сутки │сут │1 сут = 86400 с
1.6.3. Период │ │ │ │ │ │неделя │нед │
│ │ │ │ │ │месяц │мес │
│ │ │ │ │ │год │г. │
│ │ │ │ │ │смена │смена │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
1.7. Скорость │ -1 │метр в │м/с │m/s │км/с, см/с, │километр│км/ч │1 м/с = 3,6 км/ч
│LT │секунду│ │ │мм/с │в час │ │1 м/с = 3600 м/ч
│ │ │ │ │ │метр в │м/ч │
│ │ │ │ │ │час │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
1.8. Ускорение │ -2 │метр на│ 2 │ 2 │ 2 │- │- │-
│LT │секунду│м/с │m/s │см/с, │ │ │
│ │в квад-│ │ │ 2 │ │ │
│ │рате │ │ │мм/с │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
1.9. Угловая │ -1 │радиан │рад/с │rad/s │- │градус в│...°/C │-
скорость │T │в се- │ │ │ │секунду │ │
│ │кунду │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
1.10. Угловое │ -2 │радиан │ 2 │ 2 │- │градус │...°/C │-
ускорение │T │на се- │рад/с │rad/s │ │на се- │ │
│ │кунду в│ │ │ │кунду в │ │
│ │квад- │ │ │ │квадрате│ │
│ │рате │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
1.11. Частота │ -1 │герц │Гц │Hz │МГц, кГц │- │- │-
периодического │T │ │ │ │ │ │ │
процесса │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
1.12.1. Частота│ -1 │секунда│ -1 │ -1 │- │оборот в│об/с │ -1
вращения │T │в минус│c │s │ │секунду │ │1 об/с = 1 с
1.12.2. Частота│ │первой │ │ │ │ │ │
дискретных со- │ │степени│ │ │ │оборот в│ │ -1
бытий (ударов, │ │ │ │ │ │минуту │об/мин │1 c = 60 об/мин
импульсов и │ │ │ │ │ │ │ │
т.п.) │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
1.13. Волновое │ -1 │метр в │ -1 │ -1 │- │- │- │-
число │L │минус │м │m │ │ │ │
│ │первой │ │ │ │ │ │
│ │степени│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
1.14. Коэффици-│ -1 │метр в │ -1 │ -1 │- │- │- │-
ент ослабления │L │минус │м │m │ │ │ │
│ │первой │ │ │ │ │ │
│ │степени│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
1.15. Кривизна │ -1 │метр в │ -1 │ -1 │ -1 │- │- │-
│L │минус │м │m │см , │ │ │
│ │первой │ │ │ -1 │ │ │
│ │степени│ │ │мм │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
1.16. Коэффици-│ -1 │секунда│ -1 │ -1 │- │- │- │-
ент затухания │T │в минус│c │s │ │ │ │
│ │первой │ │ │ │ │ │
│ │степени│ │ │ │ │ │
2. Единицы строительной механики, гидромеханики и механики грунтов
2.1. Масса │M │кило- │кг │kg │г, мг, мкг │тонна │т │1 т = 1000 кг
│ │грамм │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.2. Плотность │ -3 │кило- │кг/м3 │kg/m3 │г/м3, │тонна на│т/м3 │1 т/м3 = 1000 кг/м3
<2> (плотность │L M │грамм │ │ │г/см3 │кубичес-│ │
массы) │ │на ку- │ │ │ │кий метр│ │
│ │бичес- │ │ │ │ │ │
│ │кий │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.3. Линейная │ -1 │кило- │кг/м │kg/m │- │тонна на│т/м │1 т/м = 1000 кг/м
плотность │L M │грамм │ │ │ │метр │ │
│ │на метр│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.4. Поверх- │ -2 │кило- │кг/м2 │kg/m2 │- │тонна на│т/м2 │1 т/м2 = 1000 кг/м2
ностная плот- │L M │грамм │ │ │ │квадрат-│ │
ность │ │на │ │ │ │ный метр│ │
│ │квад- │ │ │ │ │ │
│ │ратный │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.5. Радиус │L │метр │м │m │см │- │- │-
инерции попе- │ │ │ │ │ │ │ │
речного сечения│ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.6. Площадь │ 2 │квад- │м2 │m2 │см2 │- │- │-
поперечного │L │ратный │ │ │ │ │ │
сечения │ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.7. Статичес- │ 3 │метр в │м3 │m3 │см3 │- │- │-
кий момент се- │L │треть- │ │ │ │ │ │
чения плоской │ │ей сте-│ │ │ │ │ │
фигуры; момент │ │пени │ │ │ │ │ │
сопротивления │ │ │ │ │ │ │ │
сечения │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.8. Момент │ 4 │метр в │м4 │m4 │см4 │- │- │-
инерции площади│L │четвер-│ │ │ │ │ │
сечения: осе- │ │той │ │ │ │ │ │
вой, полярный, │ │степени│ │ │ │ │ │
секториальный, │ │ │ │ │ │ │ │
центробежный │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.9. Количест- │ -1 │кило- │кг х м/с │kg x m/s │- │тонна- │т х м/с │1 т х м/с = 1000 кг х м/с
во движения │LMT │грамм- │ │ │ │метр в │ │
(импульс) │ │метр в │ │ │ │секунду │ │
│ │секунду│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.10. Момент │ 2 -1 │кило- │кг х м2/с │kg x m2/s │- │тонна- │т х м2/с │1 т х м2/с = 1000 кг х м/с
количества дви-│L MT │грамм- │ │ │ │метр в │ │
жения (момент │ │метр в │ │ │ │квадрате│ │
импульса) │ │квад- │ │ │ │на се- │ │
│ │рате на│ │ │ │кунду │ │
│ │секунду│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.11. Динами- │ 2 │кило- │кг х м2 │kg x m2 │- │тонна- │т х м2 │1 т х м2 = 1000 кг х м2
ческий момент │L M │грамм- │ │ │ │метр в │ │
инерции │ │метр в │ │ │ │квадрате│ │
│ │квад- │ │ │ │ │ │
│ │рате │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.12. Грузо- │M │кило- │кг │kg │- │тонна │т │1 т = 1000 кг
подъемность │ │грамм │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.13.1. Сила, │ -2 │ньютон │Н │N │кН, МН, ГН │- │- │-
вес │LMT │ │ │ │ │ │ │
2.13.2. Сосре- │ │ │ │ │ │ │ │
доточенная сила│ │ │ │ │ │ │ │
2.13.3. Грузо- │ │ │ │ │ │ │ │
подъемная сила │ │ │ │ │ │ │ │
2.13.4. Сила │ │ │ │ │ │ │ │
тяжести │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.14.1. Распре-│ -2 │ньютон │Н/м │N/m │кН/м, МН/м │- │- │-
деленная линей-│MT │на метр│ │ │ │ │ │
ная нагрузка │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.14.2. Распре-│ -1 -2 │паскаль│Па │Pa │кПа, МПа │- │- │-
деленная по- │L MT │ │ │ │ │ │ │
верхностная │ │ │ │ │ │ │ │
нагрузка │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.15. Удельный │ -2 -2 │ньютон │Н/м3 │N/m3 │МН/м3, │- │- │-
вес │L MT │на ку- │ │ │кН/м3 │ │ │
│ │бичес- │ │ │ │ │ │
│ │кий │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.16.1. Момент │ 2 -2 │ньютон-│Н х м │N x m │кН х м, │- │- │-
силы │L MT │метр │ │ │Н х см │ │ │
2.16.2. Момент │ │ │ │ │ │ │ │
пары сил │ │ │ │ │ │ │ │
2.16.3. Крутя- │ │ │ │ │ │ │ │
щий момент │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.17. Импульс │ -1 │ньютон-│Н х с │N x s │кН х с │- │- │-
силы │LMT │секунда│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.18. Давление │ -1 -2 │паскаль│Па │Pa │кПа, МПа │- │- │-
│L MT │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.19. Напряже- │ -1 -2 │паскаль│Па │Pa │ГПа, МПа │- │- │-
ние (механичес-│L MT │ │ │ │ │ │ │
кое) │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.20.1. Преде- │ -1 -2 │паскаль│Па │Pa │МПа, кПа │- │- │-
лы текучести, │L MT │ │ │ │ │ │ │
упругости, про-│ │ │ │ │ │ │ │
порциональности│ │ │ │ │ │ │ │
2.20.2. Времен-│ │ │ │ │ │ │ │
ные сопротивле-│ │ │ │ │ │ │ │
ния растяжению,│ │ │ │ │ │ │ │
разрыву, сжатию│ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.21.1. Норма- │ -1 -2 │паскаль│Па │Pa │МПа, кПа │- │- │-
тивные и рас- │L MT │ │ │ │ │ │ │
четные сопро- │ │ │ │ │ │ │ │
тивления рас- │ │ │ │ │ │ │ │
тяжению, сжа- │ │ │ │ │ │ │ │
тию, изгибу, │ │ │ │ │ │ │ │
смятию, срезу │ │ │ │ │ │ │ │
2.21.2. Напря- │ │ │ │ │ │ │ │
жения растяже- │ │ │ │ │ │ │ │
нию, сжатию, │ │ │ │ │ │ │ │
изгибу, смятию,│ │ │ │ │ │ │ │
срезу │ │ │ │ │ │ │ │
2.21.3. Сцеп- │ │ │ │ │ │ │ │
ление │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.22.1. Модуль │ -1 -2 │паскаль│Па │Pa │ГПа, МПа │- │- │-
упругости │L MT │ │ │ │ │ │ │
2.22.2. Модуль │ │ │ │ │ │ │ │
сдвига │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.23. Жесткость│ -2 │пас- │Па х м2 │Pa x m2 │кПа х м2 │- │- │-
при сжатии, │LMT │каль- │ │ │ │ │ │
растяжении, │ │квад- │ │ │ │ │ │
сдвиге │ │ратный │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.24. Жесткость│ 3 -2 │пас- │Па х м4 │Pa x m4 │- │- │- │-
при изгибе, │L MT │каль- │ │ │ │ │ │
кручении │ │метр в │ │ │ │ │ │
│ │четвер-│ │ │ │ │ │
│ │той │ │ │ │ │ │
│ │степени│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.25. Цилиндри-│ 2 -2 │пас- │Па х м3 │Pa x m3 │- │- │- │-
ческая жест- │L MT │каль- │ │ │ │ │ │
кость (оболоч- │ │метр в │ │ │ │ │ │
ки) │ │третьей│ │ │ │ │ │
│ │степени│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.26.1. Коэффи-│ -1 2 │паскаль│ -1 │ -1 │- │- │- │-
циент продоль- │LM T │в минус│Па │Pa │ │ │ │
ного и попе- │ │первой │ │ │ │ │ │
речного растя- │ │степени│ │ │ │ │ │
жения │ │ │ │ │ │ │ │
2.26.2. Модуль │ │ │ │ │ │ │ │
сжимаемости │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.27. Динами- │ -1 -1 │пас- │Па х c │Pa x s │кПа х с │- │- │-
ческая вязкость│L MT │каль- │ │ │ │ │ │
│ │секунда│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.28. Кинемати-│ 2 -1 │квад- │м2/с │m2/s │- │- │- │-
ческая вязкость│L T │ратный │ │ │ │ │ │
│ │метр на│ │ │ │ │ │
│ │секунду│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.29. Коэффи- │ -2 -2 │ньютон │Н/м3 │N/m3 │- │- │- │-
циент постели │L MT │на метр│ │ │ │ │ │
упругого осно- │ │в │ │ │ │ │ │
вания │ │третьей│ │ │ │ │ │
│ │степени│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.30. Жесткость│ -2 │ньютон │Н/м │N/m │- │- │- │-
пружины │МТ │на метр│ │ │ │ │ │
│ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.31. Гибкость │ -1 2 │метр на│м/Н │m/N │- │- │- │-
пружины │М Т │ньютон │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.32.1. Энергия│ 2 -2 │джоуль │Дж │J │кДж │- │- │-
2.32.2. Работа │L MT │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.33. Ударная │ -2 │джоуль │Дж/м2 │J/m2 │МДж/м2, │- │- │-
вязкость │MT │на │ │ │кДж/м2 │ │ │
│ │квад- │ │ │ │ │ │
│ │ратный │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.34. Мощность │ 2 -3 │ватт │Вт │W │МВт, кВт │- │- │-
│L MT │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.35. Поверх- │ -2 │ньютон │Н/м │N/m │- │- │- │-
ностное натя- │MT │на метр│ │ │ │ │ │
жение │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.36. Массовый │ -1 │кило- │кг/с │kg/s │- │кило- │кг/ч │1 кг/с = 3600 кг/ч
расход │MT │грамм в│ │ │ │грамм в │ │
│ │секунду│ │ │ │час │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.37. Объемный │ 3 -1 │куби- │м3/с │m3/s │- │кубичес-│м3/ч │ 3
расход │L T │ческий │ │ │ │кий метр│ │1 м3/с = 3,6 х 10 м3/ч
│ │метр в │ │ │ │в час │ │
│ │секунду│ │ │ │кубичес-│м3/сут │ 5
│ │ │ │ │ │кий метр│ │1 м3/с = 86,4 х 10 м3/сут
│ │ │ │ │ │в сутки │ │
│ │ │ │ │ │литр в │л/с │ 3
│ │ │ │ │ │секунду │ │1 м3/с = 10 л/с
│ │ │ │ │ │ │ │
│ │ │ │ │ │литр в │л/ч │ 6
│ │ │ │ │ │час │ │1 м3/с = 3,6 х 10 л/с
│ │ │ │ │ │ │ │
│ │ │ │ │ │литр в │л/сут │ 6
│ │ │ │ │ │сутки │ │1 м3/с = 86,4 х 10 л/сут
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.38. Линейный │ 2 -1 │квад- │м2/с │m2/s │- │- │- │-
расход │L T │ратный │ │ │ │ │ │
│ │метр в │ │ │ │ │ │
│ │секунду│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.39. Поверх- │ -1 │метр в │м/с │m/s │- │- │- │-
ностный расход │LT │секунду│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.40.1. Массо- │ -2 -1 │кило- │кг/(с х м2) │kg/(s x m2) │- │- │- │-
вая скорость │L MT │грамм в│ │ │ │ │ │
потока │ │секунду│ │ │ │ │ │
2.40.2. Плот- │ │на │ │ │ │ │ │
ность потока │ │квад- │ │ │ │ │ │
жидкости │ │ратный │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.41. Подача │ 3 -1 │куби- │м3/с │m3/s │- │литр в │л/c │ -3
насоса │L T │ческий │ │ │ │секунду │ │1 л/с = 10 м3/с
│ │метр в │ │ │ │ │ │
│ │секунду│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.42. Коэффици-│ -1 │метр в │м/с │m/s │мм/с, мкм/с, │метр в │м/сут │ 3
ент фильтрации │LT │секунду│ │ │пм/с, фм/с │сутки │ │1 м/с = 86,4 х 10 м/сут
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.43. Напор │L │метр │м │m │- │- │- │-
│ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.44. Градиент │ -2 -2 │паскаль│Па/м │Pa/m │МПа/м, кПа/м │- │- │-
давления │L MT │на метр│ │ │ │ │ │
│ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.45.1. Модуль │ -1 │метр в │м/с │m/s │мм3/(м2 х с) │литр на │л/(м2 х с) │ -3
стока │LT │секунду│ │ │ │квадрат-│ │1 л/(м2 х с) = 10 м/с
2.45.2. Интен- │ │ │ │ │ │ный │ │
сивность про- │ │ │ │ │ │метр- │ │
мывки │ │ │ │ │ │секунду │ │ -3
│ │ │ │ │ │литр на │л/(км2 х с) │1 л/(км2 х с) = 10 м/с
│ │ │ │ │ │квад- │ │
│ │ │ │ │ │ратный │ │
│ │ │ │ │ │кило- │ │
│ │ │ │ │ │метр- │ │
│ │ │ │ │ │секунду │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.46. Коэффи- │ 1/2 -1 │метр в │ 1/2 │ 1/2 │- │- │- │-
циент Шези │L Т │степени│м /с │m /s │ │ │ │
│ │1/2 в │ │ │ │ │ │
│ │секунду│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.47. Массовая │ -3 │кило- │кг/м3 │kg/m3 │мг/м3 │грамм на│г/л │1 г/л = 1 кг/м3
концентрация │L M │грамм │ │ │ │литр │ │ -3
(растворимость,│ │на ку- │ │ │ │милли- │мг/л │1мг/л = 10 кг/м3
мутность и │ │бичес- │ │ │ │грамм на│ │
т.п.) │ │кий │ │ │ │литр │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.48. Предел │ -3 │кило- │кг/м3 │kg/m3 │г/м3, мг/м3 │- │- │-
взрываемости │L M │грамм │ │ │ │ │ │
│ │на ку- │ │ │ │ │ │
│ │бичес- │ │ │ │ │ │
│ │кий │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.49. Поверх- │ -2 │кило- │кг/м2 │kg/m2 │г/м2, мг/м2 │- │- │-
ностный расход │L M │грамм │ │ │ │ │ │
материала │ │на │ │ │ │ │ │
покрытия │ │квад- │ │ │ │ │ │
│ │ратный │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.50. Текучесть│ -1 -2 │паскаль│ -1 -1 │ -1 -1 │- │- │- │-
│LM T │в минус│Па х с │Pa x s │ │ │ │
│ │первой │ │ │ │ │ │
│ │степе- │ │ │ │ │ │
│ │ни- │ │ │ │ │ │
│ │секунда│ │ │ │ │ │
│ │в минус│ │ │ │ │ │
│ │первой │ │ │ │ │ │
│ │степени│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
2.51. Колеба- │ -1 │метр в │м/с │m/s │см/c │- │- │-
тельная ско- │LT │секунду│ │ │ │ │ │
рость движения │ │ │ │ │ │ │ │
3. Единицы электрических и магнитных величин
3.1. Сила │I │ампер │A │A │МА, кА, мА, │- │- │-
электрического │ │ │ │ │мкА │ │ │
тока, поток │ │ │ │ │ │ │ │
электрического │ │ │ │ │ │ │ │
заряда │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.2. Количество│TI │кулон │Кл │C │кКл, мКл, │- │- │-
электричества │ │ │ │ │мкКл, пКл │ │ │
(электрический │ │ │ │ │ │ │ │
заряд) │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.3. Плотность │ -2 │ампер │А/м2 │A/m2 │МА/м2, кА/м2, │ампер на│А/мм2 │ 6
электрического │L I │на │ │ │мА/м2, │квад- │ │1 А/мм2 = 10 А/м2
тока │ │квад- │ │ │мкА/м2, А/мм2 │ратный │ │
│ │ратный │ │ │ │милли- │ │
│ │метр │ │ │ │метр │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.4. Линейная │ -1 │ампер │А/м │A/m │МА/м, кА/м, │- │- │-
плотность │L I │на метр│ │ │мА/м, А/см, │ │ │
электрического │ │ │ │ │А/мм │ │ │
тока │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.5.1. Поверх- │ -2 │кулон │Кл/м2 │C/m2 │кКл/м2, │- │- │-
ностная плот- │L I │на │ │ │мКл/м2, │ │ │
ность электри- │ │квад- │ │ │мкКл/м2, │ │ │
ческого заряда │ │ратный │ │ │Кл/см2, │ │ │
3.5.2. Поляри- │ │метр │ │ │Кл/мм2, │ │ │
зованность │ │ │ │ │кКл/см2 │ │ │
3.5.3. Элект- │ │ │ │ │ │ │ │
рическое сме- │ │ │ │ │ │ │ │
щение │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.6. Простран- │ -3 │кулон │Кл/м3 │C/m3 │Кл/мм3, │- │- │-
ственная плот- │L TI │на ку- │ │ │Кл/см3, │ │ │
ность электри- │ │бичес- │ │ │кКл/м3, │ │ │
ческого заряда │ │кий │ │ │мКл/м3, │ │ │
│ │метр │ │ │мкКл/м3 │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.7. Электри- │LTI │кулон- │Кл х м │C x m │мКл х м, │- │- │-
ческий момент │ │метр │ │ │кКл х м │ │ │
диполя │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.8. Поток │TI │кулон │Кл │C │МКл, кКл, мКл │- │- │-
электрического │ │ │ │ │ │ │ │
смещения │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.9.1. Электри-│ 2 -3 -1 │вольт │В │V │ГВ, МВ, кВ, │- │- │-
ческое напря- │L MT I │ │ │ │мВ, мкВ, нВ │ │ │
жение │ │ │ │ │ │ │ │
3.9.2. Элект- │ │ │ │ │ │ │ │
рический по- │ │ │ │ │ │ │ │
тенциал │ │ │ │ │ │ │ │
3.9.3. Разность│ │ │ │ │ │ │ │
электрических │ │ │ │ │ │ │ │
потенциалов │ │ │ │ │ │ │ │
3.9.4. Элект- │ │ │ │ │ │ │ │
родвижущая сила│ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.10. Напря- │ -3 -1 │вольт │В/м │V/m │МВ/м, кВ/м, │- │- │-
женность элект-│LMT I │на метр│ │ │мВ/м, мкВ/м │ │ │
рического поля │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.11.1. Элект- │ 2 -3 -2 │ом │Ом │омега │ГОм, МОм, │- │- │-
рическое сопро-│L MT I │ │ │ │кОм, мОм, │ │ │
тивление │ │ │ │ │мкОм │ │ │
3.11.2. Полное │ │ │ │ │ │ │ │
сопротивление │ │ │ │ │ │ │ │
3.11.3. Модуль │ │ │ │ │ │ │ │
сопротивления │ │ │ │ │ │ │ │
3.11.4. Актив- │ │ │ │ │ │ │ │
ное сопротивле-│ │ │ │ │ │ │ │
ние │ │ │ │ │ │ │ │
3.11.5. Реак- │ │ │ │ │ │ │ │
тивное сопро- │ │ │ │ │ │ │ │
тивление │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.12. Удельное │ 3 -3 -2 │ом-метр│Ом х метр │омега х m │ГОм х м, │- │- │-
электрическое │L MT I │ │ │ │МОм х м, │ │ │
сопротивление │ │ │ │ │кОм х м, │ │ │
│ │ │ │ │мОм х м, │ │ │
│ │ │ │ │мкОм х м, │ │ │
│ │ │ │ │Ом х см, │ │ │
│ │ │ │ │Ом х мм │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.13.1. Элект- │ -2 -1 3 2 │сименс │См │S │МСм, кСм, │- │- │-
рическая прово-│L M T I │ │ │ │мСм, мкСм │ │ │
димость │ │ │ │ │ │ │ │
3.13.2. Полная │ │ │ │ │ │ │ │
проводимость │ │ │ │ │ │ │ │
3.13.3. Модуль │ │ │ │ │ │ │ │
полной проводи-│ │ │ │ │ │ │ │
мости │ │ │ │ │ │ │ │
3.13.4. Актив- │ │ │ │ │ │ │ │
ная проводи- │ │ │ │ │ │ │ │
мость │ │ │ │ │ │ │ │
3.13.5. Реак- │ │ │ │ │ │ │ │
тивная проводи-│ │ │ │ │ │ │ │
мость │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.14. Удельная │ -3 -1 3 2 │сименс │См/м │S/m │МСм/м, кСм/м, │- │- │-
электрическая │L M T I │на метр│ │ │мСм/м, мкСм/м │ │ │
проводимость │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.15. Электри- │ -2 -1 4 2 │фарад │Ф │F │мФ, мкФ, нФ, │- │- │-
ческая емкость │L M T I │ │ │ │пФ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.16.1. Абсо- │ -3 -1 4 2 │фарад │Ф/м │F/m │мФ/м, мкФ/м, │- │- │-
лютная диэлект-│L M T I │на метр│ │ │нФ/м, пФ/м │ │ │
рическая прони-│ │ │ │ │ │ │ │
цаемость │ │ │ │ │ │ │ │
3.16.2. Ди- │ │ │ │ │ │ │ │
электрическая │ │ │ │ │ │ │ │
восприимчивость│ │ │ │ │ │ │ │
3.16.3. Элект- │ │ │ │ │ │ │ │
рическая пос- │ │ │ │ │ │ │ │
тоянная │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.17. Емкость │TI │кулон │Кл │C │- │ампер- │А х ч │1 А х ч = 3,6 кКл
(заряд) аккуму-│ │ │ │ │ │час │ │
ляторной бата- │ │ │ │ │ │ │ │
реи │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.18. Активная │ 2 -3 │ватт │Вт │W │ГВт, МВт, │- │- │-
мощность │L MT │ │ │ │кВт, мВт, │ │ │
│ │ │ │ │мкВт │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.19. Реактив- │ 2 -3 │- │- │- │- │вар <3> │вар │-
ная мощность │L MT │ │ │ │ │мега- │Мвар │
│ │ │ │ │ │вар <3> │ │
│ │ │ │ │ │кило- │квар │
│ │ │ │ │ │вар <3> │ │
│ │ │ │ │ │милли- │мвар │
│ │ │ │ │ │вар <3> │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.20. Полная │ 2 -3 │- │- │- │- │вольт- │В х А │-
мощность │L MT │ │ │ │ │ампер │ │
│ │ │ │ │ │<3> │ │
│ │ │ │ │ │гига- │ГВ х А │
│ │ │ │ │ │вольт- │ │
│ │ │ │ │ │ампер │ │
│ │ │ │ │ │<3> │ │
│ │ │ │ │ │мега- │МВ х А │
│ │ │ │ │ │вольт- │ │
│ │ │ │ │ │ампер │ │
│ │ │ │ │ │<3> │ │
│ │ │ │ │ │кило- │кВ х А │
│ │ │ │ │ │вольт- │ │
│ │ │ │ │ │ампер │ │
│ │ │ │ │ │<3> │ │
│ │ │ │ │ │милли- │мВ х А │
│ │ │ │ │ │вольт- │ │
│ │ │ │ │ │ампер │ │
│ │ │ │ │ │<3> │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.21. Электри- │ 2 -2 │джоуль │Дж │J │- │ватт-час│Вт х ч │1 Вт х ч = 3600 Дж =
ческая энергия │L MT │ │ │ │ │мега- │мВт х ч │3,6 кДж
│ │ │ │ │ │ватт-час│ │ -19
│ │ │ │ │ │кило- │кВт х ч │1 эВ ~= 1,60219 х 10 Дж
│ │ │ │ │ │ватт-час│ │
│ │ │ │ │ │элект- │эВ │
│ │ │ │ │ │рон- │ │
│ │ │ │ │ │вольт │ │
│ │ │ │ │ │<4> │ │
│ │ │ │ │ │мега- │МэВ │
│ │ │ │ │ │элект- │ │
│ │ │ │ │ │рон- │ │
│ │ │ │ │ │вольт │ │
│ │ │ │ │ │<4> │ │
│ │ │ │ │ │кило- │кэВ │
│ │ │ │ │ │элект- │ │
│ │ │ │ │ │рон- │ │
│ │ │ │ │ │вольт │ │
│ │ │ │ │ │<4> │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.22. Электро- │ 2 -2 │джоуль │Дж │J │МДж, кДж, мДж │- │- │-
магнитная │L MT │ │ │ │ │ │ │
энергия │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.23. Магнит- │ 2 -2 -1 │вебер │Вб │Wb │МВб, мкВб │- │- │-
ный поток │L MT I │ │ │ │ │ │ │
│ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.24.1. Маг- │ -2 -1 │тесла │Тл │T │мТл, мкТл │- │- │-
нитная индук- │MT I │ │ │ │ │ │ │
ция │ │ │ │ │ │ │ │
3.24.2. Плот- │ │ │ │ │ │ │ │
ность магнит- │ │ │ │ │ │ │ │
ного потока │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.25.1. Магни- │I │ампер │А │A │мА, кА │- │- │-
тодвижущая сила│ │ │ │ │ │ │ │
3.25.2. Раз- │ │ │ │ │ │ │ │
ность магнит- │ │ │ │ │ │ │ │
ных потенциалов│ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.26. Напря- │ -1 │ампер │А/м │A/m │кА/м, мА/м, │- │- │-
женность маг- │L I │на метр│ │ │мкА/м, А/см, │ │ │
нитного поля │ │ │ │ │А/мм │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.27. Индук- │ 2 -2 -2 │генри │Гн │H │мГн, мкГн │- │- │-
тивность, вза- │L MT I │ │ │ │ │ │ │
имная индук- │ │ │ │ │ │ │ │
тивность │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.28.1. Абсо- │ -2 -2 │генри │Гн/м │H/m │мкГн/м │- │- │-
лютная магнит- │LMT I │на метр│ │ │ │ │ │
ная проницае- │ │ │ │ │ │ │ │
мость │ │ │ │ │ │ │ │
3.28.2. Маг- │ │ │ │ │ │ │ │
нитная посто- │ │ │ │ │ │ │ │
янная │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.29. Магнит- │ 2 -2 -2 │генри │Гн │H │мГн │- │- │-
ная проводи- │L MT I │ │ │ │ │ │ │
мость │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.30. Магнит- │ -2 -1 2 2 │генри в│ -1 │ -1 │ -1 │- │- │-
ное сопротив- │L M T I │минус │Гн │H │мГн │ │ │
ление │ │первой │ │ │ │ │ │
│ │степени│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.31.1. Маг- │ 2 │ампер- │А х м2 │A x m2 │мА х м2, │- │- │-
нитный момент │L I │квад- │ │ │мкА х м2 │ │ │
диполя (ампе- │ │ратный │ │ │ │ │ │
ровский) │ │метр │ │ │ │ │ │
3.31.2. Маг- │ │ │ │ │ │ │ │
нитный момент │ │ │ │ │ │ │ │
электрического │ │ │ │ │ │ │ │
тока │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.32. Магнит- │ 3 -2 -1 │вебер- │Вб х м │Wb x m │кВб х м, │- │- │-
ный момент │L MT I │метр │ │ │мВб х м │ │ │
(кулоновский) │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.33. Намагни- │ -1 │ампер │А/м │A/m │кА/м, мА/м, │- │- │-
ченность │L I │на метр│ │ │А/мм, А/см │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.34. Магнит- │ -2 -1 │тесла │Тл │T │мТл │- │- │-
ная поляриза- │MT I │ │ │ │ │ │ │
ция │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
3.35. Магнит- │ -2 -1 │тесла- │Тл х м │T x m │кТл х м │- │- │-
ный векторный │LMT I │метр │ │ │ │ │ │
потенциал │ │ │ │ │ │ │ │
4. Единицы строительной теплофизики
4.1. Термоди- │Тета │кельвин│К │K │- │- │- │-
намическая │ │ │ │ │ │ │ │
температура │ │ │ │ │ │ │ │
Кельвина │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.2. Темпера- │- │- │- │- │- │градус │°С │По размеру градус Цельсия
тура Цельсия │ │ │ │ │ │Цельсия │ │равен Кельвину
│ │ │ │ │ │ │ │(1 °С = 1 К)
│ │ │ │ │ │ │ │t = T - 273,15 K
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┤
4.3.1. Темпе- │Тета │кельвин│К │K │- │градус │°С │
ратурный ин- │ │ │ │ │ │Цельсия │ │
тервал │ │ │ │ │ │ │ │
4.3.2. Раз- │ │ │ │ │ │ │ │
ность темпера- │ │ │ │ │ │ │ │
тур │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.4. Темпера- │ -1 │кельвин│К/м │K/m │- │градус │°С/м │1 °С/м = 1 К/м
турный гради- │L Тета │на метр│ │ │ │Цельсия │ │
ент │ │ │ │ │ │на метр │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.5. Темпера- │ -1 │кельвин│ -1 │ -1 │- │градус │ -1 │ -1 -1
турный коэффи- │Тета │в минус│К │К │ │Цельсия │°С │1 °С = 1 К
циент: │ │первой │ │ │ │в минус │ │
линейного │ │степени│ │ │ │первой │ │
расширения, │ │ │ │ │ │степени │ │
объемного │ │ │ │ │ │ │ │
расширения │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.6. Количест- │N │моль │моль │mol │кмоль, ммоль, │- │- │-
во вещества │ │ │ │ │мкмоль │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.7. Молярная │ -1 │кило- │кг/моль │kg/mol │г/моль │- │- │-
масса │MN │грамм │ │ │ │ │ │
│ │на моль│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.8. Молярный │ 3 -1 │куби- │м3/моль │m3/mol │дм3/моль, │литр на │л/моль │ -3
объем │L N │ческий │ │ │см3/моль │моль │ │1 л/моль = 10 м3/моль
│ │метр на│ │ │ │ │ │
│ │моль │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.9. Удельная │ -1 │моль на│моль/кг │mol/kg │ммоль/кг │- │- │-
адсорбция │M N │кило- │ │ │ │ │ │
│ │грамм │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.10. Молярная │ -3 │моль на│моль/м3 │mol/m3 │моль/дм3, │моль на │моль/л │ 3
концентрация │L N │куби- │ │ │моль/см3 │литр │ │1 моль/л = 10 моль/м3
│ │ческий │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.11. Скорость │ -3 -1 │моль на│моль/(м3 х с) │mol/(m3 x s) │моль/(см3 х с)│моль на │моль/(л х с) │1 моль/(л х с)=
химической │L T N │куби- │ │ │ │литр в │ │ 3
реакции │ │ческий │ │ │ │секунду │ │= 10 моль/(м3 х с)
│ │метр в │ │ │ │ │ │
│ │секунду│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.12.1. Коли- │ 2 -2 │джоуль │Дж │J │ТДж, ГДж, │- │- │-
чество теплоты │L MT │ │ │ │МДж, кДж, мДж │ │ │
4.12.2. Термо- │ │ │ │ │ │ │ │
динамический │ │ │ │ │ │ │ │
потенциал │ │ │ │ │ │ │ │
(внутренняя │ │ │ │ │ │ │ │
энергия, эн- │ │ │ │ │ │ │ │
тальпия) │ │ │ │ │ │ │ │
4.12.3. Тепло- │ │ │ │ │ │ │ │
та фазового │ │ │ │ │ │ │ │
превращения │ │ │ │ │ │ │ │
4.12.4. Тепло- │ │ │ │ │ │ │ │
та химической │ │ │ │ │ │ │ │
реакции │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.13.1. Удель- │ 2 -2 │джоуль │Дж/кг │J/kg │МДж/кг, │- │- │-
ное количество │L T │на ки- │ │ │кДж/кг │ │ │
теплоты │ │лограмм│ │ │ │ │ │
4.13.2. Удель- │ │ │ │ │ │ │ │
ный термодина- │ │ │ │ │ │ │ │
мический по- │ │ │ │ │ │ │ │
тенциал │ │ │ │ │ │ │ │
4.13.3. Удель- │ │ │ │ │ │ │ │
ная теплота │ │ │ │ │ │ │ │
фазового прев- │ │ │ │ │ │ │ │
ращения │ │ │ │ │ │ │ │
4.13.4. Удель- │ │ │ │ │ │ │ │
ная теплота │ │ │ │ │ │ │ │
химической ре- │ │ │ │ │ │ │ │
акции │ │ │ │ │ │ │ │
4.13.5. Тепло- │ │ │ │ │ │ │ │
та сгорания │ │ │ │ │ │ │ │
топлива │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.14.1. Моляр- │ 2 -2 -1 │джоуль │Дж/моль │J/mol │кДж/моль │- │- │-
ная внутренняя │L MT N │на моль│ │ │ │ │ │
энергия │ │ │ │ │ │ │ │
4.14.2. Моляр- │ │ │ │ │ │ │ │
ная энтальпия │ │ │ │ │ │ │ │
4.14.3. Моляр- │ │ │ │ │ │ │ │
ная теплота │ │ │ │ │ │ │ │
фазового прев- │ │ │ │ │ │ │ │
ращения │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.15.1. Тепло- │ 2 -2 -1 │джоуль │Дж/К │J/K │кДж/К │джоуль │Дж/°С │1 Дж/°С = 1 Дж/К
емкость │L MT Тета │на │ │ │ │на гра- │ │
4.15.2. Энтро- │ │кельвин│ │ │ │дус │ │
пия системы │ │ │ │ │ │Цельсия,│ │
│ │ │ │ │ │кило- │кДж/°С │
│ │ │ │ │ │джоуль │ │
│ │ │ │ │ │на гра- │ │
│ │ │ │ │ │дус │ │
│ │ │ │ │ │Цельсия │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.16.1. Удель- │ 2 -2 -1 │джоуль │Дж/(кг х К) │J/(kg x K) │кДж/(кг х К) │джоуль │Дж/(кг х °С) │1 Дж/(кг х °С) =
ная теплоем- │L T Тета │на │ │ │ │на кило-│ │1 Дж/(кг х К)
кость │ │кило- │ │ │ │грамм- │ │
│ │грамм- │ │ │ │градус │ │
│ │кельвин│ │ │ │Цельсия │ │
│ │ │ │ │ │кило- │кДж/(кг х °С) │
│ │ │ │ │ │джоуль │ │
│ │ │ │ │ │кило- │ │
│ │ │ │ │ │грамм- │ │
│ │ │ │ │ │градус │ │
│ │ │ │ │ │Цельсия │ │
4.16.2. Удель- │ │ │ │ │ │- │- │-
ная энтропия │ │ │ │ │ │ │ │
4.16.3. Удель- │ │ │ │ │ │ │ │
ная газовая │ │ │ │ │ │ │ │
постоянная │ │ │ │ │ │ │ │
4.16.4. Массо- │ │ │ │ │ │ │ │
вая теплоем- │ │ │ │ │ │ │ │
кость газов │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.17.1. Уни- │ 2 -2 -1 -1│джоуль │Дж/(моль х К) │J/(mol x K) │кДж/(моль х К)│- │- │-
версальная га- │L MT Тета N │на │ │ │ │ │ │
зовая постоян- │ │моль- │ │ │ │ │ │
ная │ │кельвин│ │ │ │ │ │
4.17.2. Моляр- │ │ │ │ │ │ │ │
ная энтропия │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.18. Объемная │ -1 -2 -1 │джоуль │Дж/(м3 х К) │J/(m3 x K) │кДж/(м3 х К) │джоуль │Дж/(м3 х °С) │1 Дж/(м3 х °С) =
теплоемкость │L MT Тета │на ку- │ │ │ │на ку- │ │= 1 Дж/(м3 х К)
газов │ │бичес- │ │ │ │бический│ │
│ │кий │ │ │ │метр- │ │
│ │метр- │ │ │ │градус │ │
│ │кельвин│ │ │ │Цельсия │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.19. Тепловой │ 2 -3 │ватт │Вт │W │МВт, кВт │- │- │-
поток │L MT │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┤ │ │
4.20. Линейная │ -3 │ватт на│Вт/м │W/m │МВт/м, кВт/м │ │ │
плотность теп- │LMT │метр │ │ │ │ │ │
лового потока │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┤ │ │
4.21. Поверх- │ -3 │ватт на│Вт/м2 │W/m2 │МВт/м2, │ │ │
ностная плот- │MT │квад- │ │ │кВт/м2 │ │ │
ность теплово- │ │ратный │ │ │ │ │ │
го потока │ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┤ │ │
4.22. Объемная │ -1 -3 │ватт на│Вт/м3 │W/m3 │МВт/м3, │ │ │
плотность теп- │L MT │куби- │ │ │кВт/м3 │ │ │
лового потока │ │ческий │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.23. Тепло- │ -3 -1 │ватт на│Вт/(м х К) │W/(m x K) │- │ватт на │Вт/(м х °С) │1 Вт/(м х °С) =
проводность │LMT Тета │метр- │ │ │ │метр- │ │= 1 Вт/(м х К)
│ │кельвин│ │ │ │градус │ │
│ │ │ │ │ │Цельсия │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.24. Коэффи- │ -3 -1 │ватт на│Вт/(м2 х К) │W/(m2 x K) │- │ватт на │Вт/(м2 х °С) │1 Вт/(м2 х °С) =
циент теплооб- │MT Тета │квад- │ │ │ │квадрат-│ │= 1 Вт/(м2 х К)
мена (теплоот- │ │ратный │ │ │ │ный │ │
дачи, теплоус- │ │метр- │ │ │ │метр- │ │
воения), коэф- │ │кельвин│ │ │ │градус │ │
фициент тепло- │ │ │ │ │ │Цельсия │ │
передачи │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.25. Темпера- │ 2 -1 │квад- │м2/c │m2/s │- │- │- │-
туропровод- │L T │ратный │ │ │ │ │ │
ность │ │метр на│ │ │ │ │ │
│ │секунду│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.26.1. Сопро- │ -1 3 │квад- │м2 х К/Вт │m2 x K/W │- │квадрат-│м2 х °С/Вт │1 м2 х °С/Вт =
тивление теп- │M T Тета │ратный │ │ │ │ный │ │1 м2 х К/Вт
лопередаче │ │метр- │ │ │ │метр- │ │
4.26.2. Терми- │ │кельвин│ │ │ │градус │ │
ческое сопро- │ │на ватт│ │ │ │Цельсия │ │
тивление │ │ │ │ │ │на ватт │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.27.1. Сопро- │ -1 │квад- │м2 х с х Па/кг │m2 x s x Pa/kg │- │квадрат-│м2 х ч х Па/кг, │1 м2 х ч х Па/кг =
тивление воз- │LT │ратный │ │ │ │ный │ │ 3
духопроницанию │ │метр- │ │ │ │метр- │ │= 3,6 х 10 м2 х с х Па/кг
4.27.2. Сопро- │ │секун- │ │ │ │час- │ │
тивление паро- │ │да-пас-│ │ │ │паскаль │ │
проницанию │ │каль на│ │ │ │на кило-│ │
│ │кило- │ │ │ │грамм │ │
│ │грамм │ │ │ │квадрат-│м2 х ч х Па/мг │1 м2 х ч х Па/мг =
│ │ │ │ │ │ный │ │ 9
│ │ │ │ │ │метр- │ │= 3,6 х 10 м2 х с х Па/кг
│ │ │ │ │ │час-пас-│ │
│ │ │ │ │ │каль на │ │
│ │ │ │ │ │милли- │ │
│ │ │ │ │ │грамм │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.28.1. Коэф- │Т │кило- │кг/(м х с х Па) │kg/(m x s x Pa) │- │кило- │кг/(м х ч х Па),│1 кг/(м х с х Па) =
фициент возду- │ │грамм │ │ │ │грамм на│ │= 3600 кг/(м х ч х Па)
хопроницаемос- │ │на │ │ │ │метр- │ │
ти │ │метр- │ │ │ │час-пас-│ │
4.28.2. Коэф- │ │секун- │ │ │ │каль │ │
фициент паро- │ │да-пас-│ │ │ │милли- │мг/(м х ч х Па) │1 кг/(м х с х Па) =
проницаемости │ │каль │ │ │ │грамм на│ │ 9
│ │ │ │ │ │метр- │ │= 3,6 х 10 кг/(м х ч х Па)
│ │ │ │ │ │час-пас-│ │
│ │ │ │ │ │каль │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.29. Сопро- │ 4/3 -1/3 -1/3 │квад- │ 2/3 │ 2/3 │- │квадрат-│ 2/3 │ 2/3
тивление воз- │L M T │ратный │м2 х с х Па /кг│m2 x s x Pa kg │ │ный │м2 х ч х Па /кг│1 м2 х ч х Па /кг =
духопроницанию │ │метр- │ │ │ │метр- │ │ 3 2/3
окон и фонарей │ │секун- │ │ │ │час-пас-│ │= 3,6 х 10 м2 х с х Па /кг
│ │да-пас-│ │ │ │каль в │ │
│ │каль в │ │ │ │степени │ │
│ │степени│ │ │ │две │ │
│ │две │ │ │ │третьих │ │
│ │третьих│ │ │ │на ки- │ │
│ │на ки- │ │ │ │лограмм │ │
│ │лограмм│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.30. Удельная │ 2 -1 │квад- │м2/кг │m2/kg │- │- │- │-
поверхность │L M │ратный │ │ │ │ │ │
материала │ │метр на│ │ │ │ │ │
│ │кило- │ │ │ │ │ │
│ │грамм │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┤ │ │ │
4.31. Скорость │ -1 │метр в │м/с │m/s │ │ │ │
осаждения │LT │секунду│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┤ │ │ │
4.32. Концент- │ -3 │метр в │ -3 │ -3 │ │ │ │
рация (число │L │минус │м │m │ │ │ │
частиц в еди- │ │третьей│ │ │ │ │ │
нице объема) │ │степени│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.33. Коэффи- │ 2 -1 │квад- │м2/с │m2/s │- │- │- │-
циент диффузии │M T │ратный │ │ │ │ │ │
│ │метр на│ │ │ │ │ │
│ │секунду│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.34.1. Осмо- │ -1 -2 │паскаль│Па │Pa │гПа │- │- │-
тическое дав- │L MT │ │ │ │ │ │ │
ление │ │ │ │ │ │ │ │
4.34.2. Парци- │ │ │ │ │ │ │ │
альное давле- │ │ │ │ │ │ │ │
ние │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.35. Абсолют- │ -3 │кило- │кг/м3 │kg/m3 │мг/м3, г/м3 │- │- │-
ная влажность │ML │грамм │ │ │ │ │ │
│ │на ку- │ │ │ │ │ │
│ │бичес- │ │ │ │ │ │
│ │кий │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.36. Влагосо- │- │- │- │- │г/кг │- │- │-
держание │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.37. Удельная │ 2 -2 │джоуль │Дж/кг │J/kg │- │- │- │-
энтальпия │L T │на ки- │ │ │ │ │ │
│ │лограмм│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
4.38. Плот- │ -3 │ватт на│Вт/м2 │W/m2 │МВт/м2, │- │- │-
ность потока │MT │квад- │ │ │кВт/м2, │ │ │
излучения │ │ратный │ │ │мкВт/м2 │ │ │
│ │метр │ │ │ │ │ │
5. Единицы строительной акустики
5.1 Звуковое │ -1 -2 │паскаль│Па │Pa │мПа, мкПа │- │- │-
давление │L MT │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
5.2. Колеба- │ -2 │метр в │м/c │m/s │- │- │- │-
тельная ско- │LT │секунду│ │ │ │ │ │
рость │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
5.3. Акусти- │ -4 -1 │пас- │Па х с/м3 │Pa x s/m3 │- │- │- │-
ческое сопро- │L MT │каль- │ │ │ │ │ │
тивление │ │секунда│ │ │ │ │ │
│ │на ку- │ │ │ │ │ │
│ │бичес- │ │ │ │ │ │
│ │кий │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
5.4. Удельное │ -2 -1 │пас- │Па х с/м │Pa x s/m │- │- │- │-
акустическое │L MT │каль- │ │ │ │ │ │
сопротивление │ │секунда│ │ │ │ │ │
│ │на метр│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
5.5. Механи- │ -1 │ньютон-│Н х с/м │N x s/m │- │- │- │-
ческое сопро- │MT │секунда│ │ │ │ │ │
тивление │ │на метр│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
5.6. Звуковая │ 2 -2 │джоуль │Дж │J │- │- │- │-
энергия │L MT │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
5.7. Поток │ 2 -3 │ватт │Вт │W │кВт, мВт, │- │- │-
звуковой энер- │L MT │ │ │ │мкВт │ │ │
гии, звуковая │ │ │ │ │ │ │ │
мощность │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
5.8. Интенсив- │ -3 │ватт на│Вт/м2 │W/m2 │мВт/м2, │- │- │-
ность звука │MT │квад- │ │ │мкВт/м2 │ │ │
│ │ратный │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
5.9. Плотность │ -1 -2 │джоуль │Дж/м3 │J/m3 │- │- │- │-
звуковой энер- │L MT │на ку- │ │ │ │ │ │
гии │ │бичес- │ │ │ │ │ │
│ │кий │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
5.10. Эквива- │ 2 │квад- │м2 │m2 │- │- │- │-
лентная пло- │L │ратный │ │ │ │ │ │
щадь звукопог- │ │метр │ │ │ │ │ │
лощения, пос- │ │ │ │ │ │ │ │
тоянная поме- │ │ │ │ │ │ │ │
щения │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
5.11. Время │T │секунда│с │s │- │- │- │-
реверберации │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
5.12. Уровень │- │- │- │- │- │деци- │дБ │-
звуковой мощ- │ │ │ │ │ │бел <5> │ │
ности, уровень │ │ │ │ │ │ │ │
звукового дав- │ │ │ │ │ │ │ │
ления, эквива- │ │ │ │ │ │ │ │
лентный уро- │ │ │ │ │ │ │ │
вень звукового │ │ │ │ │ │ │ │
давления, сни- │ │ │ │ │ │ │ │
жение уровня │ │ │ │ │ │ │ │
звуковой мощ- │ │ │ │ │ │ │ │
ности, сниже- │ │ │ │ │ │ │ │
ние уровня │ │ │ │ │ │ │ │
звукового дав- │ │ │ │ │ │ │ │
ления │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
5.13. Индекс │- │- │- │- │- │деци- │дБ │-
изоляции ог- │ │ │ │ │ │бел <5> │ │
раждающей │ │ │ │ │ │ │ │
конструкции от │ │ │ │ │ │ │ │
воздушного шу- │ │ │ │ │ │ │ │
ма, индекс │ │ │ │ │ │ │ │
приведенного │ │ │ │ │ │ │ │
уровня ударно- │ │ │ │ │ │ │ │
го шума │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
5.14. Уровень │- │- │- │- │- │децибел │дБ │-
звука, эквива- │ │ │ │ │ │ │ │
лентный (по │ │ │ │ │ │ │ │
энергии) уро- │ │ │ │ │ │ │ │
вень звука │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
5.15. Затуха- │- │- │- │- │- │децибел │дБ/м │-
ние звука в │ │ │ │ │ │на метр │ │
атмосфере │ │ │ │ │ │децибел │дБ/км │
│ │ │ │ │ │на кило-│ │
│ │ │ │ │ │метр │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼─────────────────────────────
5.16. Частот- │- │- │- │- │- │октава │- │-
ный интервал │ │ │ │ │ │<5> │ │
│ │ │ │ │ │декада │ │
6. Единицы строительной светотехники
6.1. Энергия │ 2 -2 │джоуль │Дж │J │- │- │- │-
излучения │L MT │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.2. Поток из- │ 2 -3 │ватт │Вт │W │- │- │- │-
лучения (лу- │L MT │ │ │ │ │ │ │
чистый поток) │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.3.1. Энерге- │ -3 │ватт на│Вт/м2 │W/m2 │- │- │- │-
тическая осве- │MT │квад- │ │ │ │ │ │
щенность (об- │ │ратный │ │ │ │ │ │
лученность) │ │метр │ │ │ │ │ │
6.3.2. Энерге- │ │ │ │ │ │ │ │
тическая све- │ │ │ │ │ │ │ │
тимость (из- │ │ │ │ │ │ │ │
лучательность) │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.4. Энергети- │ -2 │джоуль │Дж/м2 │J/m2 │- │- │- │-
ческая экспо- │MT │на │ │ │ │ │ │
зиция (лучис- │ │квад- │ │ │ │ │ │
тая экспози- │ │ратный │ │ │ │ │ │
ция, энерге- │ │метр │ │ │ │ │ │
тическое коли- │ │ │ │ │ │ │ │
чество освеще- │ │ │ │ │ │ │ │
ния) │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.5. Энергети- │ 2 -3 │ватт на│Вт/ср │W/sr │- │- │- │-
ческая сила │L MT │сте- │ │ │ │ │ │
света (сила │ │радиан │ │ │ │ │ │
излучения) │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.6. Энергети- │ -3 │ватт на│Вт/(ср х м2) │W/(sr x m2) │- │- │- │-
ческая яркость │MT │стера- │ │ │ │ │ │
(лучистость) │ │диан- │ │ │ │ │ │
│ │квад- │ │ │ │ │ │
│ │ратный │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.7. Сила света│J │кандела│кд │cd │- │- │- │-
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.8. Световой │J │люмен │лм │lm │- │- │- │-
поток │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.9. Световая │TJ │люмен- │лм х с │lm x s │- │- │- │-
энергия │ │секунда│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.10. Освещен- │ -2 │люкс │лк │lx │- │- │- │-
ность │L J │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.11. Свети- │ -2 │люмен │лм/м2 │lm/m2 │- │- │- │-
мость │L J │на │ │ │ │ │ │
│ │квад- │ │ │ │ │ │
│ │ратный │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.12. Яркость │ -2 │кандела│кд/м2 │cd/m2 │- │- │- │-
│L J │на │ │ │ │ │ │
│ │квад- │ │ │ │ │ │
│ │ратный │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.13. Световая │ -2 │люкс- │лк х с │lx x s │- │- │- │-
экспозиция │L TJ │секунда│ │ │ │ │ │
(количество │ │ │ │ │ │ │ │
освещения) │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.14. Световая │ -2 -1 3 │люмен │лм/Вт │lm/W │- │- │- │-
эффективность │L M T J │на ватт│ │ │ │ │ │
излучения │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.15. Освечи- │TJ │канде- │кд х с │cd x s │- │- │- │-
вание │ │ла- │ │ │ │ │ │
│ │секунда│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.16. Фокусное │L │метр │м │m │- │- │- │-
расстояние │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.17. Оптичес- │ -1 │метр в │ -1 │ -1 │- │диоптрия│дптр │ -1
кая сила │L │минус │м │m │ │ │ │1 дптр = 1 м
│ │первой │ │ │ │ │ │
│ │степени│ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.18. Постоян- │ -3 -4 │ватт на│ 4 │ 4 │- │ватт на │ 4 │ 4
ная Стефана- │MT Тета │квад- │Вт/(м2 х К ) │W/(m2 x K ) │ │квадрат-│Вт/(м2 х °С ) │1 Вт/(м2 х °С ) =
Больцмана │ │ратный │ │ │ │ный │ │ 4
│ │метр- │ │ │ │метр- │ │= 1 Вт/(м2 х К )
│ │кельвин│ │ │ │градус │ │
│ │в чет- │ │ │ │Цельсия │ │
│ │вертой │ │ │ │в чет- │ │
│ │степени│ │ │ │вертой │ │
│ │ │ │ │ │степени │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.19. Первая │ -3 │ватт на│Вт/м2 │W/m2 │- │- │- │-
константа из- │MT │квад- │ │ │ │ │ │
лучения │ │ратный │ │ │ │ │ │
│ │метр │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.20. Вторая │LТета │метр- │м х К │m x K │- │- │- │-
константа │ │кельвин│ │ │ │ │ │
излучения │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.21. Спект- │ -2 │джоуль │Дж/м │J/m │- │- │- │-
ральная плот- │LMT │на метр│ │ │ │ │ │
ность энергии │ │ │ │ │ │ │ │
излучения по │ │ │ │ │ │ │ │
длине волны │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.22. Спект- │ 2 -1 │джоуль │Дж/Гц │J/Hz │- │- │- │-
ральная плот- │L MT │на герц│ │ │ │ │ │
ность энергии │ │ │ │ │ │ │ │
излучения по │ │ │ │ │ │ │ │
частоте │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.23. Спект- │ -1 -3 │ватт на│Вт/м3 │W/m3 │- │- │- │-
ральная излу- │L MT │куби- │ │ │ │ │ │
чательность │ │ческий │ │ │ │ │ │
абсолютно чер- │ │метр │ │ │ │ │ │
ного тела по │ │ │ │ │ │ │ │
длине волны │ │ │ │ │ │ │ │
───────────────┼───────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
6.24. Поверх- │ -3 │ватт на│Вт/м2 │W/m2 │Вт/см2, │- │- │-
ностная плот- │MT │квад- │ │ │ГВт/см2, │ │ │
ность потока │ │ратный │ │ │МВт/см2, │ │ │
излучения (ин- │ │метр │ │ │кВт/см2, │ │ │
тенсивность │ │ │ │ │мкВт/см2 │ │ │
излучения) │ │ │ │ │ │ │ │
7. Единицы ионизирующих излучений
7.1. Экспозици- │ -1 │кулон │Кл/кг │C/kg │ГКл/кг, │- │- │-
онная доза │M TI │на │ │ │МКл/кг, │ │ │
рентгеновского │ │кило- │ │ │кКл/кг, │ │ │
и гамма-излуче- │ │грамм │ │ │мКл/кг, │ │ │
ния (экспозици- │ │ │ │ │мкКл/кг │ │ │
онная доза фо- │ │ │ │ │ │ │ │
тонного излу- │ │ │ │ │ │ │ │
чения) │ │ │ │ │ │ │ │
────────────────┼──────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
7.2. Мощность │ -1 │ампер │А/кг │A/kg │ГА/кг, │- │- │-
экспозиционной │M I │на │ │ │МА/кг, │ │ │
дозы │ │кило- │ │ │кА/кг, │ │ │
│ │грамм │ │ │мА/кг, │ │ │
│ │ │ │ │мкА/кг │ │ │
────────────────┼──────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
7.3.1. Погло- │ 2 -2 │грэй │гр │Gy │МГр, кГр, мГр │- │- │-
щенная доза из- │L T │ │ │ │ │ │ │
лучения (доза │ │ │ │ │ │ │ │
излучения) │ │ │ │ │ │ │ │
7.3.2. Керма │ │ │ │ │ │ │ │
7.3.3. Показа- │ │ │ │ │ │ │ │
тель поглощен- │ │ │ │ │ │ │ │
ной дозы │ │ │ │ │ │ │ │
────────────────┼──────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
7.4.1. Мощность │ 2 -3 │грэй в │Гр/c │Gy/s │МГр/с, │- │- │-
поглощенной до- │L T │секунду│ │ │кГр/с, │ │ │
зы излучения │ │ │ │ │мГр/с │ │ │
7.4.2. Мощность │ │ │ │ │ │ │ │
кермы │ │ │ │ │ │ │ │
────────────────┼──────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
7.5.1. Актив- │ -1 │бекке- │Бк │Bq │ГБк, МБк, кБк │- │- │-
ность нуклида в │T │рель │ │ │ │ │ │
радиоактивном │ │ │ │ │ │ │ │
источнике │ │ │ │ │ │ │ │
7.5.2. Актив- │ │ │ │ │ │ │ │
ность, актив- │ │ │ │ │ │ │ │
ность изотопа │ │ │ │ │ │ │ │
────────────────┼──────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
7.6. Удельная │ -1 -1 │бекке- │Бк/кг │Bq/kg │ГБк/кг, │- │- │-
активность изо- │M T │рель на│ │ │МБк/кг, │ │ │
топа │ │кило- │ │ │кБк/кг │ │ │
│ │грамм │ │ │ │ │ │
────────────────┼──────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
7.7. Концентра- │ -3 -1 │бекке- │Бк/м3 │Bq/m3 │ГБк/м3, │бекке- │Бк/л │ 3
ция радиоактив- │L T │рель на│ │ │МБк/м3, │рель на │ │1 Бк/л = 10 Бк/м3
ного вещества │ │куби- │ │ │кБк/м3 │литр │ │
│ │ческий │ │ │ │ │ │
│ │метр │ │ │ │ │ │
────────────────┼──────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
7.8. Энергия │ 2 -2 │джоуль │Дж │J │ГДж, МДж, │- │- │-
ионизирующего │L MT │ │ │ │кДж, мДж │ │ │
излучения │ │ │ │ │ │ │ │
────────────────┼──────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
7.9. Поток │ 2 -3 │ватт │Вт │W │ГВт, МВт, │- │- │-
энергии ионизи- │L MT │ │ │ │кВт, мВт │ │ │
рующего излуче- │ │ │ │ │ │ │ │
ния │ │ │ │ │ │ │ │
────────────────┼──────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
7.10.1. Эквива- │ 2 -2 │зиверт │Зв │Sv │ГЗв, МЗв, │- │- │-
лентная доза │L T │ │ │ │кЗв, мЗв │ │ │
излучения │ │ │ │ │ │ │ │
7.10.2. Показа- │ │ │ │ │ │ │ │
тель эквива- │ │ │ │ │ │ │ │
лентной дозы │ │ │ │ │ │ │ │
7.10.3. Доза │ │ │ │ │ │ │ │
нейтронов │ │ │ │ │ │ │ │
────────────────┼──────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
7.11. Мощность │ 2 -3 │зиверт │Зв/c │Sv/s │ГЗв/с, │- │- │-
эквивалентной │L T │в │ │ │МЗв/с, │ │ │
дозы излучения │ │секунду│ │ │кЗв/с, │ │ │
│ │ │ │ │мЗв/с │ │ │
────────────────┼──────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
7.12. Поток │ -1 │секунда│ -1 │ -1 │- │- │- │-
ионизирующих │T │в минус│c │s │ │ │ │
частиц │ │первой │ │ │ │ │ │
│ │степени│ │ │ │ │ │
────────────────┼──────────────┼───────┼────────────────┼───────────────────┼──────────────┼────────┼────────────────┼────────────────────────────
7.13. Плотность │ -2 -1 │секунда│ -1 -2 │ -1 -2 │- │- │- │-
потока ионизи- │L T │в минус│c х м │s x m │ │ │ │
рующих частиц │ │первой │ │ │ │ │ │
│ │степе- │ │ │ │ │ │
│ │ни-метр│ │ │ │ │ │
│ │в минус│ │ │ │ │ │
│ │второй │ │ │ │ │ │
│ │степени│ │ │ │ │ │
-------------------------------
<1> Допускается применять в сельском и лесном хозяйстве.
<2> См. Прил. 3.
<3> Применяется в электротехнике.
<4> Применяется в физике.
<5> См. табл. 3.
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
5. Множители и приставки для образования десятичных кратных и дольных единиц, а также их наименования и обозначения приведены в табл. 2.
Таблица 2
───────────────┬────────────────┬─────────────────────────────────
Множитель │ Приставка │ Обозначение приставки
│ ├────────────────┬────────────────
│ │ русское │ международное
───────────────┼────────────────┼────────────────┼────────────────
18 │ │ │
10 │экса │Э │Е
│ │ │
15 │ │ │
10 │пета │П │Р
│ │ │
12 │ │ │
10 │тера │Т │Т
│ │ │
9 │ │ │
10 │гига │Г │G
│ │ │
6 │ │ │
10 │мега │М │М
│ │ │
3 │ │ │
10 │кило │к │k
│ │ │
2 │ │ │
10 │гекто │г │h
│ │ │
1 │ │ │
10 │дека │да │da
│ │ │
-1 │ │ │
10 │деци │д │d
│ │ │
-2 │ │ │
10 │санти │с │с
│ │ │
-3 │ │ │
10 │милли │м │m
│ │ │
-6 │ │ │
10 │микро │мк │мю
│ │ │
-9 │ │ │
10 │нано │н │n
│ │ │
-12 │ │ │
10 │пико │п │p
│ │ │
-15 │ │ │
10 │фемто │ф │f
│ │ │
-18 │ │ │
10 │атто │а │а
Десятичные кратные и дольные единицы подлежат применению в соответствии с изложенными в Прил. 1 правилами их образований и рекомендациями по их применению.
6. В нормативно-технической и проектной документации по строительству следует применять русское обозначение единиц, за исключением документации по сотрудничеству с другими странами.
Во всех видах деятельности и в документации органов СЭВ, а также при договорно-правовых взаимоотношениях между странами - членами СЭВ (включая сопроводительную документацию при товарообмене и маркировку изделий) должны применяться международные обозначения единиц.
Одновременное применение обозначений обоих видов в одном и том же издании не допускается, за исключением публикаций по единицам физических величин.
7. При указании значений величин на щитках или шкалах, помещаемых на изделиях, следует использовать международные обозначения единиц.
8. Относительные и логарифмические единицы, допускаемые к применению наравне с единицами СИ, приведены в табл. 3.
Таблица 3
────────────────┬───────────────────────┬────────────────┬────────
Величина │ Единица │ Определение │Примеча-
├──────────┬────────────┤ │ние
│наимено- │обозначение │ │
│вание ├──────┬─────┤ │
│ │рус- │меж- │ │
│ │ское │дуна-│ │
│ │ │род- │ │
│ │ │ное │ │
────────────────┼──────────┼──────┼─────┼────────────────┼────────
1. Относительная│единица │- │- │1 │-
величина (без- │(число 1) │ │ │ │
размерное отно- │ │ │ │ -2 │
шение физической│процент │% │% │10 │
величины к одно-│ │ │ │ │
именной физичес-│промилле │%о │%о │ -3 │
кой величине, │ │ │ │10 │
принимаемой за │ │ │ │ │
исходную); КПД; │ │ -1 │ │ -6 │
относительное │миллионная│млн │ppm │10 │
удлинение; │доля │ │ │ │
относительная │ │ │ │ │
плотность; │ │ │ │ │
относительные │ │ │ │ │
диэлектрическая │ │ │ │ │
и магнитная │ │ │ │ │
проницаемости; │ │ │ │ │
магнитная │ │ │ │ │
восприимчивость;│ │ │ │ │
массовая доля; │ │ │ │ │
молярная доля и │ │ │ │ │
т.п. │ │ │ │ │
────────────────┼──────────┼──────┼─────┼────────────────┼────────
2. Логарифмичес-│ │ │ │ │
кая величина │ │ │ │ │
(логарифм │ │ │ │ │
безразмерного │ │ │ │ │
отношения │ │ │ │ │
физической │ │ │ │ │
величины к одно-│ │ │ │ │
именной физичес-│ │ │ │ │
кой величине, │ │ │ │ │
принимаемой за │ │ │ │ │
исходную): │ │ │ │ │
а) уровень │бел │Б │В │1 Б = lg(P /P ) │P и P -
звукового давле-│ │ │ │ 2 1 │ 1 2
ния; усиление, │ │ │ │при P = 10 P , │однои-
ослабление и │ │ │ │ 2 1 │менные
т.п. <*> │ │ │ │ │энерге-
│ │ │ │ │тические
│ │ │ │ │величины
│ │ │ │ │(мощнос-
│ │ │ │ │ти,
│ │ │ │ │энергии,
│ │ │ │ │плотнос-
│ │ │ │ │ти энер-
│ │ │ │ │гии и
│ │ │ │ │т.п.).
│ │ │ │ │
│ │ │ │1 Б = 2lg(F /F )│F и F -
│ │ │ │ 2 1 │ 1 2
│ │ │ │ _____│ однои-
│ │ │ │при F = \/10 F │менные
│ │ │ │ 2 1│"сило-
│ │ │ │ │вые" ве-
│ │ │ │ │личины
│ │ │ │ │(напря-
│ │ │ │ │жения,
│ │ │ │ │силы то-
│ │ │ │ │ка, дав-
│ │ │ │ │ления,
│ │ │ │ │напря-
│ │ │ │ │женности
│ │ │ │ │поля и
│ │ │ │ │т.п.)
│децибел │дБ │dB │0,1 Б │-
│ │ │ │ │
б) уровень │фон │фон │phon │1 фон равен │-
громкости │ │ │ │уровню громкости│
│ │ │ │звука, для кото-│
│ │ │ │рого уровень │
│ │ │ │звукового давле-│
│ │ │ │ния равногромко-│
│ │ │ │го с ним звука │
│ │ │ │частотой 1000 Гц│
│ │ │ │равен 1 дБ │
│ │ │ │ │
в) частотный │октава │- │- │1 октава равна │f , f -
интервал │ │ │ │log (f /f ) │ 1 2
│ │ │ │ 2 2 1 │частоты
│ │ │ │при f /f = 2, │
│ │ │ │ 2 1 │
│декада │- │- │1 декада равна │-
│ │ │ │lg(f /f ) │
│ │ │ │ 2 1 │
│ │ │ │при f /f = 10 │
│ │ │ │ 2 1 │
-------------------------------
<*> При необходимости указать исходную величину, ее значение помещают в скобках после обозначения логарифмической величины, например для уровня звукового давления: (re - начальные буквы слова reference, т.е. исходный).
При краткой форме записи значение исходной величины указывают в скобках после значения уровня, например, 20 дБ (re 20 мкПа).
9. Написание наименований и обозначений производных единиц должно производиться согласно правилам, установленным в Прил. 2.
10. Наименования физических величин следует применять в соответствии с рекомендациями, приведенными в Прил. 3.
11. Соотношение единиц, подлежащих изъятию (согласно СТ СЭВ 1052-78), с единицами СИ, а также с допускаемыми к применению единицами, не входящими в СИ, приведено в Прил. 4.
Пересчет значений физических величин из ранее употреблявшихся и подлежащих изъятию единиц в единицы СИ, а также в допускаемые к применению единицы, не входящие в СИ, производится в соответствии с правилами, изложенными в Прил. 5.
Примечание. Определение числовых коэффициентов при переходе в единицам СИ производится в соответствии с прил. 3 к РД-50-160-79.
Приложение 1
ПРАВИЛА ОБРАЗОВАНИЯ И РЕКОМЕНДАЦИИ
ПО ПРИМЕНЕНИЮ ДЕСЯТИЧНЫХ КРАТНЫХ И ДОЛЬНЫХ ЕДИНИЦ,
А ТАКЖЕ ИХ НАИМЕНОВАНИЙ И ОБОЗНАЧЕНИЙ
1. Для образования десятичных кратных и дольных единиц следует применять множители и приставки, приведенные в табл. 2 настоящего Перечня.
2. Выбор десятичной кратной или дольной единицы диктуется прежде всего удобством ее применения.
Из многообразия кратных и дольных единиц, которые могут быть образованы с помощью приставок, выбирается единица, приводящая к числовым значениям величины, приемлемым на практике.
Кратные и дольные единицы рекомендуется выбирать таким образом, чтобы числовые значения величины находились в диапазоне 0,1 - 1000.
Вместе с тем следует сводить к минимуму количество применяемых кратных и дольных единиц, чтобы облегчить выработку привычки к этим единицам, т.е. чтобы выражаемые в них значения величин обладали нужной информативностью и легко воспринимались. В некоторых случаях целесообразно применять одну и ту же кратную или дольную единицу, даже если числовые значения выходят за пределы диапазона 0,1 - 1000, например, в таблицах числовых значений для одной величины или при сопоставлении этих значений в одном тексте.
3. Для снижения вероятности ошибок при расчетах десятичные, кратные и дольные единицы рекомендуется подставлять только в конечный результат, а в процессе вычислений все величины выражать в единицах, заменяя приставку степенями числа 10.
4. Присоединение к наименованию единицы двух приставок или более подряд не допускается.
Например, вместо наименования единицы "микромикрофарад" следует писать "пикофарад".
Примечания. 1. В связи с тем, что наименование основной единицы "килограмм" содержит приставку "кило", для образования кратных и дольных единиц массы используется дольная единица "грамм" (0,001 кг) и приставки надо присоединять к слову "грамм", например, "миллиграмм" вместо "микрокилограмм".
2. Дольную единицу массы "грамм" допускается применять и без приставки.
5. Приставку или ее обозначение следует писать слитно с наименованием единицы, к которой она присоединяется, или соответственно с ее обозначением.
Стандарт не предусматривает возможности исключать последнюю букву приставки при ее слиянии с наименованием единицы. Поэтому сокращение "мегом" следует признать не соответствующим стандарту и оно подлежит замене наименованием "мегаом".
6. Если единица образована как произведение или соотношение единиц, приставку следует присоединять к наименованию первой единицы, входящей в произведение или в отношение. Эти производные единицы следует рассматривать как нечто целое, не подлежащее подразделению на составные части.
Правильно: Неправильно:
килопаскаль-секунда на метр паскаль-килосекунда на метр
(кПа х с/м) (Па х кс/м)
Допускается применять приставку во втором множителе произведения или в знаменателе лишь в обоснованных случаях, когда такие единицы широко распространены и переход к единицам, образованным присоединением приставки к наименованию первой единицы, связан с большими трудностями. Например, к таким единицам относятся: тонна-километр (т х км), ватт на квадратный сантиметр (Вт/см2), вольт на сантиметр (В/см), ампер на квадратный миллиметр (А/мм2). Применение таких единиц допускается лишь в случаях, когда эти единицы глубоко внедрились в практику, широко распространены и затруднительно сразу же изъять их из употребления. В интересах упрощения и унификации единиц следует постепенно переходить к правильно образованным кратным и дольным единицам (например, от ампера на квадратный миллиметр - к мегаамперу на квадратный метр, от киловольта на сантиметр - к мегавольту на метр и т.д.).
7. Наименования кратных и дольных единиц от единицы, возведенной в степень, следует образовывать присоединением приставки к наименованию исходной единицы.
Например, для образования наименования кратной или дольной единицы от единицы площади - квадратного метра, представляющей собой вторую степень единицы длины - метра, приставку следует присоединять к наименованию этой последней единицы: квадратный километр, квадратный сантиметр и т.д.
8. Обозначение кратных и дольных единиц от единицы, возведенной в степень, следует образовывать добавлением соответствующего показателя степени к обозначению кратной или дольной от этой единицы, причем показатель означает возведение в степень кратной или дольной единицы (вместе с приставкой).
Нельзя отождествлять приставку, присоединенную к наименованию единицы и являющуюся грамматической частью нового наименования, с множителем, которому она соответствует, поэтому нельзя трактовать обозначения кратной или дольной единицы как произведение обозначений приставки и единицы.
Примеры:
Приложение 2
ПРАВИЛА НАПИСАНИЯ НАИМЕНОВАНИЙ
И ОБОЗНАЧЕНИЙ ПРОИЗВОДНЫХ ЕДИНИЦ
1. При образовании наименований производных единиц необходимо руководствоваться следующими правилами:
а) наименования единиц, образующих произведения, при написании соединяются дефисом (короткой черточкой, до и после которой не оставляется пробел) по аналогии с наименованиями единиц: ньютон-метр, ампер-квадратный метр, секунда в минус первой степени-метр в минус второй степени;
б) в наименованиях единиц площади и объема применяются прилагательные "квадратный" и "кубический", например, квадратный метр, кубический миллиметр. Эти же прилагательные применяются и в случаях, когда единица площади или объема входит в производную единицу другой величины, например, кубический метр в секунду (единица объемного расхода), кулон на квадратный метр (единица электрического смещения).
Если же вторая или третья степень длины не представляет собой площади или объема, то в наименовании единицы вместо слов "квадратный" или "кубический" должны применяться выражения "в квадрате" или "во второй степени", "в кубе" или в "третьей степени". Например, килограмм-метр в квадрате на секунду (единица момента количества движения), килограмм-метр в квадрате (единица динамического момента инерции), метр в третьей степени (единица момента сопротивления плоской фигуры);
в) наименования единиц, помещаемых в знаменателе, пишутся с предлогом "на" по аналогии с наименованием единиц: ускорения - метр на секунду в квадрате, кинематической вязкости - квадратный метр на секунду, напряженности электрического поля - вольт на метр. Исключение составляют единицы величин, зависящих от времени в первой степени и характеризующих скорость протекания процесса; в этих случаях наименование единицы времени, помещаемой в знаменателе, пишется с предлогом "в" по аналогии с наименованиями единиц: скорости - метр в секунду, угловой скорости - радиан в секунду;
г) при склонении наименований производных единиц, образованных как произведения единиц, изменяется только последнее наименование и относящееся к нему прилагательное "квадратный" или "кубический", например: момент силы равен пяти ньютон-метрам, магнитный момент равен трем ампер-квадратным метрам;
д) при склонении наименований единиц, содержащих знаменатель, изменяется только числитель по правилу, установленному в подпункте "г" настоящего приложения для произведений единиц, например: ускорение, равное пяти метрам на секунду в квадрате; удельная теплоемкость, равная четырем десятым джоуля на килограмм-кельвин.
2. К наименованиям единиц и их обозначениям нельзя добавлять буквы (слова), указывающие на физическую величину или на объект, например: укм (условный квадратный метр), экм (эквивалентный квадратный метр), нм3 или Нм3 (нормальный кубический метр), тут (тонна условного топлива), % массовый (массовый процент), % объемный (объемный процент). Во всех таких случаях определяющие слова следует присоединять к наименованию величины, а единицу обозначать в соответствии со стандартом, например: эквивалентная площадь 10 м2, объем газа (приведенный к нормальным условиям) 100 м3, масса топлива (условного) 1000 т, массовая доля 10%, объемная доля 2% и т.д.
Сказанное относится и к международным обозначениям единиц.
3. Для написания значений величин предусматривается применять обозначения единиц буквами или специальными знаками (...°, ...', ...'', °С), причем устанавливаются два вида буквенных обозначений: международные (с использованием букв латинского или греческого алфавита) и русские (с использованием букв русского алфавита). Обозначения единиц приведены в табл. 1 настоящего Перечня.
Международные и русские обозначения относительных и логарифмических единиц следующие: процент (%), промилле (%о), миллионная доля (ppm, ), бел (В, Б), децибел (dB, дБ), октава (-, окт), декада (-, дек), фон (phon, фон).
4. Обозначения единиц не следует отождествлять с размерностями, под которыми для производных величин понимают произведения степеней размерностей основных величин (см. Прил. 6).
5. Буквенные обозначения единиц должны печататься прямым шрифтом строчными (малыми) буквами, за исключением обозначений единиц, названных в честь ученых. Обозначения этих единиц печатаются с прописной (заглавной) буквы.
Это требование распространяется и на машинописные тексты, в которых (в случае отсутствия пишущих машинок с латинским и греческим шрифтами) международные обозначения единиц вписываются от руки.
Написание обозначений единиц прямым шрифтом позволяет легко отличать их от обозначений физических величин, которые, по международным соглашениям, всегда печатаются наклонным шрифтом (курсивом).
Печатание русских обозначений единиц, названных в честь ученых, с прописной (заглавной) буквы позволяет увеличить число букв, которые можно использовать для обозначений единиц, а в некоторых обозначениях сократить число букв, включенных в обозначение.
6. В обозначениях единиц точка как знак сокращения не ставится, за исключением случаев сокращения слов, которые входят в наименование единицы, но сами не являются наименованиями единицы, например мм рт. ст. (миллиметр ртутного столба).
7. Обозначения единиц следует применять после числовых значений величин и помещать в строку с ними (без переноса на следующую строку).
Между последней цифрой числа и обозначением единицы следует оставлять пробел.
Правильно: Неправильно:
100 кВт 100кВт
80 % 80%
20 °С 20° С; 20°С
Исключения составляют обозначения в виде знака, поднятого над строкой (п. 3 данного приложения), перед которыми пробела не оставляют.
Правильно: Неправильно:
20° 20 °
8. При наличии десятичной дроби в числовом значении величины обозначение единицы следует помещать после всех цифр.
Правильно: Неправильно:
423,06 м; 423 м, 06;
5,758° или 5°45,48', 5°,758 или 5°45', 48, или
или 5°45'28,8'' 5°45'28'', 8
9. При приведении в тексте ряда (группы) числовых значений, выраженных одной и той же единицей физической величины, эту единицу указывают только после последней цифры, например:
5,9; 8,5; 10,0; 12,0 мм;
10х10х50 мм;
20, 50, 100 кг.
10. При интервале числовых значений физической величины ее единицу указывают только после последней цифры, например от 0,5 до 2,0 мм.
11. При приведении значений величин с предельными отклонениями следует заключать числовые значения с предельными отклонениями в скобки, а обозначения единицы помещать после скобок или проставлять обозначения единиц после числового значения величины и после ее предельного отклонения.
Правильно: Неправильно:
(100,0 +/- 0,1) кг 100,0 +/- 0,1 кг
50 г +/- 1 г 50 +/- 1 г
12. Допускается применять обозначения единиц в заголовках граф и в наименованиях строк (боковиках) таблиц, например:
────────────────────────────┬─────────────────────────────────────
Показатель │ Мощность двигателя вентилятора, кВт
├──────────────────┬──────────────────
│ 0,27 │ 0,55
────────────────────────────┼──────────────────┼──────────────────
Подача вентилятора, м3/ч │1000 - 1650 │600
Частота вращения, об/мин │1400 │3000
Масса вентилятора, кг │78 │77
────────────────────────────┴──────────────────┴──────────────────
13. Буквенные обозначения единиц, входящих в произведение, следует отделять точками на средней линии как знаками умножения.
Правильно: Неправильно:
Н·м Нм
А·м2 Ам2
Па·с Пас
Допускается буквенные обозначения единиц, входящих в произведение, отделять пробелами, если это не приводит к недоразумению.
Примечание. В машинописных текстах допускается точку не поднимать.
14. В буквенных обозначениях отношений единиц в качестве знака деления должна применяться только одна косая или горизонтальная черта. Допускается применять обозначения единиц в виде произведения обозначений единиц, возведенных в степени (положительные и отрицательные). При применении косой черты обозначения единиц в числителе и знаменателе следует помещать в строку, произведение обозначений единиц в знаменателе следует заключать в скобки.
Правильно: Неправильно:
-2 -1
Вт·м ·К Вт/м2/К
Вт/(м·К) Вт/м х К
Вт/ Вт
---- ----
м2·К м2
----
К
Примечание. Если для одной из единиц, входящих в отношения, установлено обозначение в виде отрицательной степени (например, , , ), применять косую или горизонтальную черту не допускается.
15. При указании производной единицы, состоящей из двух единиц и более, не допускается комбинировать буквенные обозначения и наименования единиц (для одних единиц приводить обозначения, а для других - наименования).
Правильно: Неправильно:
80 км/ч 80 км/час
80 километров в час 80 км в час
Примечание. Допускается применять сочетания специальных знаков ...°, ...', ...'', °C, % и с буквенными обозначениями единиц, например °/c.
16. Обозначения единиц, совпадающие с наименованиями этих единиц, по падежам и числам изменять не следует, если они помещены после числовых значений, а также в заголовках граф, боковиков таблиц и выводов, в пояснениях обозначений величин к формулам. К таким обозначениям относятся: бар, бэр, вар, моль, рад. Следует писать: 1 моль, 3 моль, 5 моль и т.д.
Исключение составляет обозначение "св. год", которое изменяется следующим образом: 1 св. год; 2, 3 и 4 св. года; 5 св. лет.
Приложение 3
РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ НАИМЕНОВАНИЙ
ФИЗИЧЕСКИХ ВЕЛИЧИН
Наименование физической величины должно точно и однозначно отражать сущность отображаемого им свойства объекта или параметра, явления или процесса.
Для каждой физической величины следует применять одно наименование (термин).
Наименования физических величин надлежит применять с учетом следующих рекомендаций.
1. Понятие "масса" должно применяться во всех случаях, когда имеется в виду свойство тела или вещества, характеризующее их инерционность и способность создавать гравитационное поле (скалярная величина), а понятие "вес" - в случаях, когда имеется в виду сила, возникающая вследствие взаимодействия с гравитационным полем (векторная величина).
Масса не зависит от ускорения свободного падения, а вес пропорционален этому ускорению (равен mg).
Масса выражается в килограммах (граммах, мегаграммах, миллиграммах, тоннах и т.д.) а вес, как любая сила, - в ньютонах (килоньютонах, меганьютонах, деканьютонах и т.д.).
В качестве характеристики материалов, изделий и конструкций в стандартах, в спецификациях и на чертежах должна приводиться их масса, а вес указывается лишь в случаях, когда речь идет о силе воздействия под действием земного притяжения (для объектов, расположенных на Земле).
В заданиях на проектирование строительных конструкций следует указывать массу оборудования, а не его вес.
2. В соответствии с рекомендациями стандарта ИСО 31/III "Механические величины и их единицы" различают три вида плотности: линейную, поверхностную и объемную, которые определяются отношением массы тела соответственно к его длине (например, для проволоки, стержня), к площади поверхности (например, для листовой стали) и к объему.
Понятия "линейная и поверхностная плотности" ранее практически не применялись. Вместо них говорилось о весе одного погонного или одного квадратного метра изделий.
Объемная плотность - наиболее употребительная величина. Чтобы не повторять неоднократно оба слова, входящие в этот термин, принято вместо термина "объемная плотность" использовать сокращенный (усеченный) термин "плотность".
Не следует отождествлять существенно разные понятия "плотность" и "удельный вес".
Величина, равная отношению массы вещества к занимаемому им объему, называется плотностью (а не удельным, объемным или насыпным весом) и выражается в килограммах на кубический метр (кг/м3).
Удельный вес - это отношение веса тела к объему и, следовательно, зависит от ускорения свободного падения. Удельный вес выражается в ньютонах на кубический метр (Н/м3). Удельный вес равен произведению плотности на ускорение свободного падения.
В качестве характеристики материала или вещества должна приводиться плотность - величина постоянная для данного материала или вещества, а не их удельный вес. Например, следует говорить о плотности стали 7850 кг/м3, а не о ее удельном весе.
Ранее для физической величины, представляющей собой отношение веса тела или материала к занимаемому ими объему, употреблялись различные термины в зависимости от того, является данное тело (материал) однородным или неоднородным (пористым). Для однородных материалов (стали, стекла, воды и т.п.) использовался термин "удельный вес", а для неоднородных, пористых и сыпучих материалов (бетона, кирпича, грунта и т.п.) - "объемный вес" (хотя правильнее в этом случае говорить о "среднем удельном весе" материала <*>. В применении двух различных наименований одной и той же физической величины, так же как и терминов "плотность" и "объемная масса", обозначающих отношение массы материала к занимаемому им объему, нет необходимости.
------------------------------
<*> Применительно к грунтам ранее в технической литературе на французском и испанском языках использовался термин "кажущийся удельный вес". В соответствии с рекомендациями Подкомитета по обозначениям, единицам и определениям Международной ассоциации по механике грунтов и фундаментостроению (МАМГИФ, 1977 г.) слово "кажущийся" исключено из наименования этой величины.
Методическими указаниями СЭВ по терминам и определениям в области измерения плотности установлена следующая терминология:
средняя плотность - физическая величина, определяемая отношением массы m тела или вещества ко всему занимаемому ими объему V, включая имеющиеся в них пустоты и поры:
;
истинная плотность - предел отношения массы к объему, когда объем стягивается к точке, в которой определяется плотность тела или вещества (т.е. без учета имеющихся в них пустот и пор):
;
насыпная плотность - отношение массы зернистых материалов, материалов в виде порошка ко всему занимаемому ими объему, включая и пространства между частицами;
нормальная плотность газа - плотность газа в нормальных условиях:
нормальная температура = 273,15 К ( = 0 °С);
нормальное давление = 101,325 кПа;
относительная влажность = 0%.
стандартная плотность газа - плотность газа в стандартных условиях:
стандартная температура = 293,15 К ( = 20 °С);
стандартное давление = 101,325 кПА;
относительная влажность = 0%.
относительная плотность d - отношение плотности тела или вещества к плотности стандартного вещества при определенных физических условиях:
.
Примечание. Относительная плотность - безразмерная величина.
Для пористых и сыпучих тел и материалов следует различать истинную плотность (определяемую без учета имеющихся в них пор и пустот) и среднюю и насыпную плотность (с учетом пор и пустот).
Единый термин "плотность" с необходимыми поясняющими словами рекомендован Подкомитетом по обозначениям, единицам и определениям Международной ассоциации по механике грунтов и фундаментостроению (МАМГИФ) для грунтов.
В соответствии с этими рекомендациями для грунтов следует применять следующие термины:
а) для характеристики грунтов - величин, обозначающих отношение массы грунта к занимаемому им объему (единицы: кг/м3, г/см3, т/м3 и т.п.):
плотность грунта - отношение массы грунта, включая массу воды в его порах, к занимаемому этим грунтом объему;
плотность сухого грунта - отношение массы сухого грунта (исключая массу воды в его порах) к занимаемому этим грунтом объему (включая имеющиеся в этом грунте поры);
плотность частиц грунта - отношение массы сухого грунта (исключая массу воды в его порах) к объему твердой части этого грунта.
Эти величины используются для характеристики физических свойств грунта, а также в динамических расчетах оснований.
Ранее подобные наименования величин практически не применялись.
Для обозначения степени уплотненности грунта, оцениваемой коэффициентом пористости, плотностью сухого грунта и т.д., взамен существующего термина "плотность" рекомендуется применять термин "плотность сложения грунта";
б) для величин, обозначающих отношение веса грунта к занимаемому им объему (единицы: Н/м3, кН/м3, МН/м3 и т.п.);
удельный вес грунта (заменяет применявшийся при расчете термин "объемный вес грунта") - отношение веса грунта, включая вес воды в его порах, к занимаемому этим грунтом объему, включая поры;
удельный вес сухого грунта (заменяет применявшийся при расчете термин "объемный вес скелета") - отношение веса сухого грунта ко всему занимаемому этим грунтом объему;
удельный вес частиц грунта (заменяет применявшийся при расчете термин "удельный вес грунта") - отношение веса сухого грунта к объему твердой части этого грунта.
Удельный вес грунта используется непосредственно в расчетах оснований, в частности при определении природного давления, давления на подпорные стены, несущей способности основания и т.д.
3. Термины "число оборотов", "число оборотов в минуту", "число оборотов в секунду" вообще не следует применять. Для величины, характеризующей скорость изменения угла во времени, причем все положения тела во времени равноценны с точки зрения его использования, следует применять термин "угловая скорость". Если же имеется в виду скорость изменения числа циклов вращения во времени, которые не подразделяются на части, нужно применять термин "частота вращения". Например, при определении крутящего момента на валу вентилятора по передаваемой мощности речь идет об угловой скорости, а при вычислении индикаторной мощности поршневого компрессора по среднему индикаторному давлению - о частоте вращения, поскольку среднее индикаторное давление представляет собой отношение работы за один цикл к площади поршня компрессора и к длине хода. Единицей СИ частоты вращения является секунда в минус первой степени ().
4. Термин "объем" обычно применяют для характеристики пространства, занимаемого телом или веществом. Под вместимостью понимают объем внутреннего пространства сосуда или аппарата. Под объемом сосуда, аппарата понимают объем пространства, ограниченного внешней поверхностью сосуда, аппарата. Например, правильно сказать: в сосуде вместимостью 6,3 м3 находится жидкость объемом 5 м3. Применение термина "емкость" для характеристики внутреннего пространства сосудов и аппаратов не следует рекомендовать.
5. Под физической величиной "напор" следует понимать высоту, на которую жидкость или газ способны подняться под действием статического давления, разности высот и скоростей. Напор - линейная величина, выражаемая в единицах длины. Напор нельзя выражать в единицах давления или в единицах удельной энергии.
Если, например, напор пропорционален квадрату скорости движущегося воздуха (этот напор нередко называют скоростным или скоростной высотой), то его следует выражать (где - ускорение свободного падения), а не как давление.
6. Под физической величиной "грузоподъемность" следует понимать максимальную массу, на подъем и транспортирование которой в данных условиях рассчитано данное устройство - грузоподъемный кран, грузовой автомобиль, железнодорожный вагон, судно.
Грузоподъемность выражается в единицах массы (обычно в тоннах), а не в единицах силы.
Помимо грузоподъемности можно использовать другую физическую величину - подъемную силу, например силу, на которую рассчитывается прочность троса, к которому подвешивается груз. И ее, естественно, следует выражать в единицах силы.
7. Указание на условия измерений должно входить в наименование самой величины, а не в наименование и обозначение единицы. Например: объем, приведенный к нормальным условиям (по ГОСТ 2939-63). Допускается ссылку на условия измерений приводить один раз в начале текста документа; в последующем тексте такую ссылку можно не повторять, если используется одно и то же обозначение данной физической величины: масса условного топлива, избыточное давление.
8. Не следует отождествлять термины "величина", "размер" и "размерность величины" (см. Прил. 6).
Приложение 4
СООТНОШЕНИЕ ЕДИНИЦ, ПОДЛЕЖАЩИХ ИЗЪЯТИЮ, С ЕДИНИЦАМИ СИ,
А ТАКЖЕ С ДОПУСКАЕМЫМИ К ПРИМЕНЕНИЮ ЕДИНИЦАМИ,
НЕ ВХОДЯЩИМИ В СИ
───────────────┬──────────────────────────────────────┬─────────────────────────
Наименование │ Единица │Соотношение с единицей
величины ├─────────────┬────────────────────────┤СИ, а также с допускаемой
│наименование │ обозначение │ к применению единицей,
│ │ │ не входящей в СИ
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Длина │микрон │мк │ -6
│ │ │10 м
├─────────────┼────────────────────────┼─────────────────────────
│ангстрем │° │ -10
│ │А │10 м
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Масса │центнер │ц │100 кг
├─────────────┼────────────────────────┼─────────────────────────
│килограмм-си-│ 2 │9,80665 кг (точно)
│ла-секунда в │кгс х с /м │
│квадрате на │ │
│метр │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Сила │дина │дин │ -5
│ │ │10 Н
├─────────────┼────────────────────────┼─────────────────────────
│килограмм- │кгс │9,80665 Н (точно)
│сила │ │
├─────────────┼────────────────────────┼─────────────────────────
│тонна-сила │тс │9806,65 Н (точно)
├─────────────┼────────────────────────┼─────────────────────────
│стен │сн │ 3
│ │ │10 Н
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Распределенная │килограмм-си-│кгс/м │9,80665 Н/м (точно)
линейная наг- │ла на метр │ │
рузка ├─────────────┼────────────────────────┼─────────────────────────
│тонна-сила на│тс/м │9806,65 Н/м (точно)
│метр │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Распределенная │килограмм-си-│кгс/м2 │9,80665 Па (точно)
поверхностная │ла на квад- │ │
нагрузка │ратный метр │ │
├─────────────┼────────────────────────┼─────────────────────────
│тонна-сила на│тс/м2 │9806,65 Па (точно)
│квадратный │ │
│метр │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Давление, нап- │дина на квад-│дин/см2 │0,1 Па
ряжение (меха- │ратный санти-│ │
ническое) │метр │ │
├─────────────┼────────────────────────┼─────────────────────────
│килограмм- │кгс/м2 │9,80665 Па (точно)
│сила на │ │
│квадратный │ │
│метр │ │
├─────────────┼────────────────────────┼─────────────────────────
│килограмм- │кгс/мм2 │ 6
│сила на │ │9,80665 х 10 Па (точно)
│квадратный │ │
│миллиметр │ │
├─────────────┼────────────────────────┼─────────────────────────
│килограмм-си-│кгс/см2 │98066,5 Па (точно)
│ла на квад- │ │
│ратный санти-│ │
│метр │ │
├─────────────┼────────────────────────┤
│техническая │ат │
│атмосфера │ │
├─────────────┼────────────────────────┼─────────────────────────
│физическая │атм │101325 Па (точно)
│атмосфера │ │
├─────────────┼────────────────────────┼─────────────────────────
│миллиметр во-│мм вод. ст. │9,80665 Па (точно)
│дяного столба│ │
├─────────────┼────────────────────────┼─────────────────────────
│миллиметр │мм рт. ст. │133,322 Па
│ртутного │ │
│столба │ │
├─────────────┼────────────────────────┼─────────────────────────
│пьеза │пз │ 3
│ │ │10 Па
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Нормативные и │килограмм-си-│кгс/см2 │ 4
расчетные соп- │ла на квад- │ │9,80665 х 10 Па (точно)
ротивления рас-│ратный санти-│ │
тяжению, сжа- │метр │ │
тию, изгибу, │ │ │
смятию, срезу; │ │ │
сцепление │ │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Работа, энергия│эрг │эрг │ -7
│ │ │10 Дж
├─────────────┼────────────────────────┼─────────────────────────
│килограмм-си-│кгс х м │9,80665 Дж (точно)
│ла-метр │ │
├─────────────┼────────────────────────┼─────────────────────────
│килоджоуль │кДж │ 3
│(стен-метр) │ │10 Дж
├─────────────┼────────────────────────┼─────────────────────────
│лошадиная │л.с. х ч │ 6
│сила-час │ │2,64780 х 10 Дж
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Мощность │эрг в секунду│эрг/с │ -7
│ │ │10 Вт
├─────────────┼────────────────────────┼─────────────────────────
│килограмм-си-│кгс х м/с │9,80665 Вт (точно)
│ла метр в се-│ │
│кунду │ │
├─────────────┼────────────────────────┼─────────────────────────
│киловатт │кВт │ 3
│(стен-метр в │ │10 Вт
│секунду) │ │
├─────────────┼────────────────────────┼─────────────────────────
│лошадиная │л.с. │735,499 Вт
│сила │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Динамическая │пуаз │П │0,1 Па х с
вязкость ├─────────────┼────────────────────────┼─────────────────────────
│пьеза-секунда│пз х с │ 3
│ │ │10 Па х с
├─────────────┼────────────────────────┼─────────────────────────
│килограмм- │кгс х с/м2 │9,80665 Па х с (точно)
│сила-секунда │ │
│на квадратный│ │
│метр │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Кинематическая │стокс │Ст │ -4
вязкость │ │ │10 м2/с
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Магнитный поток│максвелл │Мкс │ -8
│ │ │10 Вб
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Магнитная ин- │вебер на │Вб/м2 │ 4
дукция │квадратный │ │10 Т
│метр │ │
├─────────────┼────────────────────────┼─────────────────────────
│гаусс │Гс │ -4
│ │ │10 Т
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Напряженность │эрстед │Э │79,5775 А/м
магнитного поля│ │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Магнитодвижущая│гильберт │Гб │0,795775 А
сила │ │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Количество теп-│калория │кал │4,1868 Дж (точно)
лоты, термоди- │(межд.) │ │
намический по- ├─────────────┼────────────────────────┼─────────────────────────
тенциал, тепло-│эрг │эрг │ -7
та фазового │ │ │10 Дж
превращения │ │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Удельное коли- │килокалория │ккал/кг │ 3
чество теплоты,│на килограмм │ │4,1868 х 10 Дж/кг
удельный термо-│ │ │(точно)
динамический │ │ │
потенциал │ │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Теплоемкость │килокалория │ккал/°С │ 3
│на градус │ │4,1868 х 10 Дж/°С
│Цельсия │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Удельная │килокалория │ккал/(кг х °С) │ 3
теплоемкость │на килограмм-│ │4,1868 х 10 Дж/(кг х °С)
│градус Цель- │ │
│сия │ │
├─────────────┼────────────────────────┼─────────────────────────
│калория на │кал/(г х °С) │ 3
│грамм-градус │ │4,1868 х 10 Дж/(кг х °С)
│Цельсия │ │
├─────────────┼────────────────────────┼─────────────────────────
│эрг на грамм-│эрг/(г х °С) │ -4
│градус Цель- │ │10 Дж/(кг х °С)
│сия │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Теплопровод- │килокалория │ккал/(м х ч х °С) │1,163 Вт/(м х °С)
ность │на метр-час- │ │
│градус Цель- │ │
│сия │ │
├─────────────┼────────────────────────┼─────────────────────────
│калория на │кал/(см х с х °С) │ 2
│сантиметр-се-│ │4,1868 х 10 Вт/(м х °С)
│кунду-градус │ │
│Цельсия │ │
├─────────────┼────────────────────────┼─────────────────────────
│эрг на санти-│эрг/(см х с х °С) │ -5
│метр-секунду-│ │10 Вт/(м х °С)
│градус Цель- │ │
│сия │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Коэффициент │килокалория │ккал/(м2 х ч х °С) │1,163 Вт/(м2 х °С)
теплообмена, │на квадратный│ │
теплоотдачи, │метр-час-гра-│ │
теплопередачи │дус Цельсия │ │
├─────────────┼────────────────────────┼─────────────────────────
│калория на │кал/(см2 х с х °С) │ 4
│квадратный │ │4,1868 х 10 Вт/(м2 х °С)
│сантиметр-се-│ │
│кунду-градус │ │
│Цельсия │ │
├─────────────┼────────────────────────┼─────────────────────────
│эрг на квад- │эрг/(см2 х с х °С) │ -3
│ратный санти-│ │10 Вт/(м2 х °С)
│метр-секунду-│ │
│градус Цель- │ │
│сия │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Показатель теп-│килокалория │ккал/(м2 х ч х °С) │1,163 Вт/(м2 х °С)
лоусвоения по- │на квадратный│ │
верхности пола │метр-час-гра-│ │
│дус Цельсия │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Сопротивление │квадратный │м2 х ч х °С/ккал │0,86 м2 х °С/Вт
теплопередаче │метр-час-гра-│ │
│дус Цельсия │ │
│на килокало- │ │
│рию │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Сопротивление │квадратный │м2 х ч х мм рт. ст./г │133,322 м2 х ч х Па/г;
паропроницанию │метр-час-мил-│ │0,133322 м2 х ч х Па/мг
│лиметр ртут- │ │
│ного столба │ │
│на грамм │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Сопротивление │квадратный │м2 х ч х мм вод. ст./кг │9,80665 м2 х ч х Па/кг
воздухопрони- │метр-час-мил-│ │(точно);
цанию │лиметр водя- │ │ -3
│ного столба │ │9,80665 х 10
│на килограмм │ │м2 х ч х Па/г (точно)
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Коэффициент │грамм на │г/(м х ч х мм рт. ст.) │ -3
паропроницае- │метр-час-мил-│ │7,5024 х 10
мости │лиметр ртут- │ │г/(м х ч х Па);
│ного столба │ │7,5024 мг/(м х ч х Па)
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Коэффициент │килограмм на │кг/(м х ч х мм вод. ст.)│0,102 кг/(м х ч х Па);
воздухопрони- │метр-час-мил-│ │102 г/(м х ч х Па)
цаемости │лиметр водя- │ │
│ного столба │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Экспозиционная │рентген │Р │ -4
доза рентгенов-│ │ │2,58 х 10 Кл/кг
ского и гамма- │ │ │(точно);
излучения (экс-│ │ │ 3
позиционная до-│ │ │1 Кл/кг = 3,88 х 10 Р
за фотонного │ │ │
излучения) │ │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Мощность экспо-│рентген в се-│Р/с │ -4
зиционной дозы │кунду │ │2,58 х 10 А/кг (точно);
│ │ │ 3
│ │ │1 А/кг = 3,88 х 10 Р/с
├─────────────┼────────────────────────┼─────────────────────────
│рентген в ми-│Р/мин │ -6
│нуту │ │4,3 х 10 А/кг
├─────────────┼────────────────────────┼─────────────────────────
│рентген в час│Р/ч │ -8
│ │ │7,17 х 10 А/кг
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Поглощенная до-│рад │рад │ -2
за излучения │ │ │10 Гр
(доза излуче- │ │ │
ния) ├─────────────┼────────────────────────┼─────────────────────────
Керма │эрг на грамм │эрг/г │ -4
Показатель по- │ │ │10 Гр
глощенной дозы │ │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Мощность пог- │радиан в │рад/с │ -2
лощенной дозы │секунду │ │10 Гр/с
Мощность кермы │ │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Активность нук-│кюри │Ки │ 10
лида в радиоак-│ │ │3,7 х 10 Бк (точно)
тивном источни-│ │ │
ке │ │ │
Активность ├─────────────┼────────────────────────┼─────────────────────────
Активность изо-│распад в │расп/с │1 Бк
топа │секунду │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Концентрация │кюри на литр │Ки/л │ 10
радиоактивного │ │ │3,7 х 10 Бк/л
вещества │ │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Эквивалентная │бэр │бэр │ -2
доза излучения │ │ │10 Зв
Показатель │ │ │
эквивалентной │ │ │
дозы │ │ │
Доза нейтронов │ │ │
───────────────┼─────────────┼────────────────────────┼─────────────────────────
Мощность экви- │бэр в секунду│бэр/с │ -2
валентной дозы │ │ │10 Зв/с
излучения │ │ │
Приложение 5
ПРАВИЛА ПЕРЕСЧЕТА ЗНАЧЕНИЙ ФИЗИЧЕСКИХ ВЕЛИЧИН
ИЗ РАНЕЕ УПОТРЕБЛЯВШИХСЯ И ПОДЛЕЖАЩИХ ИЗЪЯТИЮ ЕДИНИЦ
В ЕДИНИЦЫ СИ, А ТАКЖЕ В ДОПУСКАЕМЫЕ К ПРИМЕНЕНИЮ ЕДИНИЦЫ,
НЕ ВХОДЯЩИЕ В СИ
Значения физических величин следует пересчитывать таким образом, чтобы была сохранена точность их исходного значения.
С этой целью заданное числовое значение величины в прежних единицах следует умножить на безразмерный переводной коэффициент, затем полученный результат округлить до такого числа значащих цифр, которое обеспечило бы точность, соответствующую точности исходного значения величины.
Например, при переводе значения силы, равного 96,3 тс (три значащие цифры), в значение силы, выраженной в килоньютонах (кН), 96,3 следует умножить на точное значение переводного коэффициента 9,80665 (1 тс = 9,80665 кН). В результате умножения получается 944,380395 кН. Для сохранения прежней точности следует округлить полученный ответ до исходных трех значащих цифр, т.е. вместо 96,3 тс получим 944 кН.
Если пересчет производится путем умножения числового значения на некруглый множитель (например, 9,80665 или 133,322), причем точность множителя заведомо выше требуемой, его можно округлить, оставив в нем, однако, столько цифр, чтобы его округление не повлияло на те значащие цифры результата, которые будут оставлены в нем после округления.
При пересчете необходимо руководствоваться следующими правилами записи и округления чисел, установленными СТ СЭВ 543-77:
1. Необходимо различать значащие и незначащие числа, правильно их записывать и округлять.
2. Значащими цифрами данного числа являются все цифры от первой слева, не равной нулю, до последней записанной цифры справа. При этом нули, следующие из множителя , не учитываются.
Например:
число 12,0 имеет три значащие цифры;
число 30 имеет две значащие цифры;
число имеет три значащие цифры;
число имеет три значащие цифры;
число 0,0056 имеет две значащие цифры.
3. Когда необходимо подчеркнуть, что число является точным, после числа должно быть указано слово "точно" (в скобках) или же последняя значащая цифра должна быть напечатана жирным шрифтом.
Например: 1 кгс = 9,80665 Н (точно) или 1 кгс = 9,80665 Н.
4. Следует различать записи приближенных чисел по количеству значащих цифр.
Например, точность чисел 2,4 и 2,40 различна. Запись 2,4 означает, что верны только цифры целых и десятых; истинное значение числа может быть, например, 2,43 и 2,38. Запись 2,40 означает, что верны и сотые доли числа; истинное число может быть 2,403 и 2,398, но не 2,421 и не 2,382.
Если в числе 4720 верны лишь две цифры, оно должно быть записано или .
5. Число, для которого указывается допускаемое отклонение, должно иметь последнюю значащую цифру того же разряда, что и последняя значащая цифра отклонения.
Правильно: Неправильно:
17,0 +/- 0,2 17 +/- 0,2 или 17,00 +/- 0,2
12,13 +/- 0,17 12,13 +/- 0,2 или 12,1 +/- 0,17
46,40 +/- 0,15 46,4 +/- 0,15 или 46,402 +/- 0,15
6. Числовые значения величин следует указывать в документации с таким числом разрядов, которое необходимо для обеспечения требуемых эксплуатационных свойств и качества продукции.
Запись числовых значений величин до первого, второго, третьего и т.д. десятичного знака для различных типоразмеров, видов, марок продукции одного названия, как правило, должна быть одинаковой.
Например, для ряда нормативных значений поверхностных снеговых нагрузок, выраженных в килопаскалях,
правильно: неправильно:
0,7; 1,0; 1,5; 2,0 0,7; 1; 1,5; 2
При установлении нескольких ступеней (групп) для одного и того же параметра, размера и показателя количество десятичных знаков их числовых значений внутри этой ступени (группы) должно быть одинаковым.
7. Числа округляются до определенного разряда путем отбрасывания значащих цифр справа с возможным изменением цифры этого разряда.
Например, округление числа 132,482 до четырех значащих цифр дает 132,5.
В случае если первая из отбрасываемых цифр (считая слева направо) меньше 5, то последняя сохраняемая цифра не меняется.
Например, округление числа 12,23 до трех значащих цифр дает 12,2.
В случае если первая из отбрасываемых цифр (считая слева направо) равна или больше 5, то последняя сохраняемая цифра увеличивается на единицу.
Например, округление числа 0,145 или 0,147 до двух значащих цифр дает 0,15.
8. Числа следует округлять сразу до желаемого количества значащих цифр, а не по этапам.
Например, число 565,46 округляется до трех значащих цифр - до 565. Округление по этапам привело бы к 565,5 на I этапе и 566 (ошибочно) на II этапе.
Примечание. В тех случаях, когда следует учитывать результаты предыдущих округлений, необходимо поступать следующим образом:
а) если отбрасываемая цифра получилась в результате предыдущего округления в большую сторону, то последняя оставшаяся цифра сохраняется;
б) если отбрасываемая цифра получилась в результате предыдущего округления в меньшую сторону, то последняя оставшаяся цифра увеличивается на единицу (с переходом при необходимости в следующие разряды).
Например, округление до одной значащей цифры числа 0,15, полученного после округления:
числа 0,149 дает 0,1;
числа 0,153 дает 0,2.
9. Целые числа округляются, применяя правила, изложенные в пп. 7 и 8.
Например, округление числа 12456 до двух значащих цифр дает .
Приложение 6
ОСНОВНЫЕ ТЕРМИНЫ МЕТРОЛОГИИ
(СОГЛАСНО ГОСТ 16263-70)
Физическая величина (краткая форма - величина) обозначает свойство, общее в качественном отношении многим физическим объектам (физическим системам, их состояниям и происходящим в них процессам), но индивидуальное в количественном отношении для каждого объекта.
Не следует применять термин "величина" в качестве количественной характеристики свойства, например писать "величина массы", "величина силы", так как эти свойства (масса, сила) сами являются величинами. В этих случаях следует применять термин "размер величины".
Размер физической величины (размер величины) отражает количественное содержание в данном объекте свойства, соответствующего понятию "физическая величина".
Значение физической величины (значение величины) дает оценку физической величины в виде некоторого числа (числовое значение) принятых для нее единиц. Например, 5 кг, 5 - значение массы тела.
Единица физической величины (единица величины) - величина, которой по определению присвоено числовое значение, равное 1.
Этот термин применяется также для обозначения единицы, входящей сомножителем в значение физической величины.
Ранее единицы одной величины различались по своему размеру. Например, 1 пуд = 16,38 кг, 1 фунт = 0,409 кг.
Размерность физической величины (размерность величины) - выражение, отражающее связь с основными величинами системы, в котором коэффициент пропорциональности принят равным 1.
Например, сила в системе величин LMT (длина, масса, время) имеет размерность , т.е. размерность величины представляет собой произведение основных величин, возведенных в соответствующие степени.
Основная физическая величина (основная величина) - физическая величина, входящая в систему и условно принятая в качестве независимой от других величин этой системы.
Например, длина l, масса m, время t - в механике.
Система физических величин (система величин) - совокупность физических величин, связанных между собой зависимостями.
Для обозначения системы величин указывают группу основных величин, которые обозначаются символами их размерностей.
Система единиц физических величин (система единиц) - совокупность основных и производных единиц, относящихся к некоторой системе величин и образованная в соответствии с принятыми принципами.
Например, система единиц СГС, система единиц МКС, СИ - Международная система единиц.
Основная единица физической величины (основная единица) - единица основной физической величины, выбранная произвольно при построении системы единиц.
Производная единица физической величины (производная единица) - единица производной физической величины, образуемой по определяющему эту единицу уравнению из других единиц данной системы единиц.
Когерентная производная единица физической величины (когерентная единица) - производная единица, связанная с другими единицами системы уравнением, в котором числовой коэффициент принят равным 1.
Внесистемная единица физической величины (внесистемная единица) - единица, не входящая ни в одну из систем единиц.
Например, единица мощности - лошадиная сила, единица давления - миллиметр ртутного столба.