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Введение

Необходимость разработки настоящих рекомендаций вызвана тем, что в нормативных доку­
ментах по стандартизации, устанавливающих правила проверки опытного распределения с теоре­
тическим, не определены правила применения непараметрических критериев согласия типа Кол­
могорова или типа со2 Мизеса при проверке сложных гипотез. В связи с этим использование таких 
критериев в задачах контроля качества, исследования надежности и в других приложениях зачастую 
некорректно, следствие чего — неверные статистические выводы.

Настоящие рекомендации, с одной стороны, являются практическим руководством, расши­
ряющим благодаря полученным результатом сферу корректного применения критериев согласия 
при проверке сложных гипотез, с другой стороны, содержат новые сведения из рассматриваемого 
раздела математической статистики, предлагают опробованную методику исследования статисти­
ческих закономерностей.
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Р Е К О М Е Н Д А Ц И И  П О  С Т А Н Д А Р Т И З А Ц И И

ПРАВИЛА ПРОВЕРКИ СОГЛАСИЯ ОПЫТНОГО РАСПРЕДЕЛЕНИЯ С ТЕОРЕТИЧЕСКИМ

Ч а с т ь II. Непараметрические критерии

1 Область применения

Настоящие рекомендации, разработанные на основе [1], определяют правила проверки согла­
сия опытного распределения с теоретическим законом распределения непрерывной случайной ве­
личины.

Настоящие рекомендации могут быть использованы при разработке правил и рекомендаций 
по стандартизации, метрологии, сертификации и аккредитации, применяемых Госстандартом Рос­
сии и использующих методы статистического анализа.

Настоящие рекомендации предназначены для использования в качестве руководства по при­
менению непараметрических критериев согласия при статистической обработке результатов наблю­
дений, измерений, контроля, испытаний продукции.

2 Общие положения

2.1 Простые и сложные гипотезы при проверке согласия опытного распределения с теоретиче­
ским

Применяя критерии согласия для проверки соответствия наблюдаемого опытного распределе­
ния теоретическому закону (далее — согласие), следует различать проверку простых и сложных 
гипотез.

Простая проверяемая гипотеза имеет вид # 0 : F(x) = F(x, 0), где F(x, 0) — функция распре­
деления вероятностей, с которой проверяют согласие наблюдаемой выборки, а 0 — известное зна­
чение параметра (скалярного или векторного).

Сложная проверяемая гипотеза имеет вид # 0 : F(x) е {F(x, 0), 0 е 0}, где 0  — область опреде­
ления параметра 0. В этом случае оценку параметра распределения 0 вычисляют по той же самой 
выборке, по которой проверяют согласие. Если оценку 0 вычисляют по другой выборке, то гипоте­

за простая. Далее сложная гипотеза обозначена следующим образом Н0: F(x) = F(x, 0 ), где 9 — 
оценка параметра, вычисляемая по этой же выборке.

В процессе проверки согласия по выборке вычисляют значение S * статистики используемого 
критерия. Затем для того, чтобы сделать вывод о принятии или отклонении гипотезы # 0, необходи­
мо знать условное распределение <7(.У| Н0) статистики .Упри справедливости Н0. И если вероятность
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достаточно большая, по крайней мере P{S > S*} > а, где g(s | # 0) — условная плотность, а а  — 
задаваемый уровень значимости (вероятность ошибки 1-го рода — отклонить справедливую гипотезу 
# 0), то принято считать, что нет оснований для отклонения гипотезы # 0.

Если в процессе анализа выборки рассматривают некоторую альтернативу F(x) = F{(x, 0), 
то с ней связывают условное распределение G (5 | Я,) и вероятность ошибки 2-го рода р (принять 
гипотезу Я0, в то время как верна гипотеза Я,). Задание значения а  для применяемого критерия 
согласия однозначно определяет и значение р:

ос= I g(s\H0)ds,
*̂а (2)

Sa

Р = Ь Ф , ) Л .  О)
о

При этом, чем больше мощность критерия 1 — р, тем лучше он различает соответствующие гипо­
тезы.

2.2 Распределения статистик непараметрических критериев согласия при простых гипотезах
2.2.1 Критерий Колмогорова
В случае простых гипотез предельные распределения статистик рассматриваемых критериев 

согласия Колмогорова, Смирнова, го2 и £22 Мизеса известны и независимы от вида наблюдаемого 
закона распределения и, в частности, от его параметров. Считают, что эти критерии являются 
«свободными от распределения». Это достоинство предопределяет широкое использование данных 
критериев в различных приложениях.

Предельное распределение статистики
D„ = sup | F„ (x) -  F(x, 9 ) |, (4)

W<~

где Fn (x) — эмпирическая функция распределения; F(x, 0) — теоретическая функция распределе­
ния; п — объем выборки, — было получено Колмогоровым в [2]. При п функция распределения
статистики -JnDn сходится равномерно к функции распределения Колмогорова

K (S)=  X (-l)*< r2*V . (5)
А = -~

Наиболее часто в критерии Колмогорова (Колмогорова — Смирнова) используют статистику 
вида [3]

-Г X
S k ~ 6 Jn ’ (6)

Dn = шах (D„ , D~), (7)

D+„ = max -  F(x,, 0)}, (8)

(9)

п — объем выборки; хр х2, . . . , хп — упорядоченные по возрастанию выборочные значения; F(x, 0) 
— функция закона распределения, согласие с которым проверяют. Распределение величины SK при 
простой гипотезе в пределе подчиняется закону Колмогорова с функцией распределения K(S).

Если для вычисленного по выборке значения статистики 5^ выполняется неравенство

P{S>S*K} = 1 -  К {S*K)>a, 
то нет оснований для отклонения гипотезы Н0.
2



2.2.2 Критерий Смирнова 
В критерии Смирнова используют статистику
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К  = sup (F„(x)
М<~

или статистику
D~= - in f  (Fn(x)

W<~

Fix,в)) (Ю)

Fix ,в)), (П)

значения которых вычисляют по эквивалентным соотношениям (8), (9). 
Реально в критерии обычно используют статистику [3]

, (бпр; + о2
т 9и ( 12)

которая при простой гипотезе в пределе подчиняется распределению %2 с числом степеней свобо­
ды, равным 2.

Гипотезу # 0 не отвергают, если для вычисленного по выборке значения статистики

P{Sm>S*m}= J  ^ е x/2dx=e Sm/2>a.
S'm

2.2.3 Критерии со2
В критериях типа to2 расстояние между гипотетическим и истинным распределениями рассмат­

ривают в квадратичной метрике.
Проверяемая гипотеза Н0 имеет вид [3]

Я 0: \{E[Fn (х)] -  F(x)}2 v(F(x))dF(x) = 0 (13)

при альтернативной гипотезе

Н х: ]{E[F„ (х)] -  F(x)}2y(F(x))dF(x) > 0, (14)

где Е [ • ] — оператор математического ожидания; у  (t) — заданная на отрезке 0 < / < 1 неотрицатель­
ная функция, относительно которой предполагают, что у  (t), t vp (t), t2y  (t) интегрируемы на отрез­
ке 0 <t< 1 [4]. Статистику критерия [3] выражают соотношением

со'М Я)] = \{E[Fn (х)] -  F{x)}2y{Fix))dFix)  =

где

£ № ( * , ) ] -
Г=1 '

2i -1b r n F i x , ) ] + J (1 - t ) 2\\f(t)dt,
о (15)

i t
g{t) =  J s \ | / ( . y ) < f c ,  f i {) = $vis)ds. 

о 0

При выборе y ( i ) s  1 для критерия со2 Мизеса получают статистику Крамера — Мизеса — 
Смирнова вида

Sa = = Т2л + ^  ЪГ} ’ (16)

которая при простой гипотезе в пределе подчиняется закону с функцией распределения д1(5), 
имеющей вид [3]

3
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eiOS) =
1 у  Г (у + 1/2) 74771  

725  j Го Г (1 /  2) Г (у +1)
(4 / + 1)2 

165 /_ 1 (4 / + 1)2 
165 -1\_

4

(4 / + 1)2 
165

где /  х (•), 11 (•) — модифицированные функции Бесселя,
"4  4

(17)

М * )=  I
/с = 0 Г (А: + 1)Г(А: + v + 1) г <«>, argz <л. (18)

При выборе (/) = 1// (1 — Г) для критерия Q2 Мизеса статистика приобретает вид (статисти­
ка Андерсона — Дарлинга)

5П =пП2„ = - „ _ 2 i { ^ - l n / ’(x(. ,e )  + [ l - ^ i ) l n ( l - / ’(x/ ,e))}. (19)

В пределе эта статистика подчиняется закону с функцией распределения я2(5), имеющей вид [3]

a2(S) = £  (-1 у
7 = 0

Г ( /  + 1 /2 )  ( 4 /  + 1) i  ( 4 /  + 1)2 л2 
Г (1 /  2) Г (у +1) е х р |  8 5

5
8 (у2 + 1)

(4 / + 1)2 к 2 у 2 
85 dy. (20)

Гипотезы о согласии не отвергают, если выполнены неравенства

Р { 5 И > 5 ; }  = 1 - a l O O x x  И P{Sn >Sl1) = \ -a 2 { S 'a ) > a .
2.3 Непараметрические критерии согласия при сложных гипотезах
2.3.1 Потеря критериями свойства «свободы от распределения»
При проверке сложных гипотез, когда по той же самой выборке оценивают параметры наблю­

даемого закона распределения вероятностей, непараметрические критерии согласия Колмогорова, 
Смирнова, со2 и О? Мизеса теряют свойство «свободы от распределения». В этом случае предельные 
распределения статистик этих критериев будут зависеть от закона, которому подчинена наблюдае­
мая выборка. Более того, распределения статистик непараметрических критериев согласия зависят и 
от используемого метода оценивания параметров. Следует также учитывать, что распределения ста­
тистик существенно зависят от объема выборки.

Игнорирование того, что проверяют сложную гипотезу, неучет различия в сложных гипотезах 
приводят к некорректному применению непараметрических критериев согласия в приложениях и 
как следствие к неверным статистическим выводам. Различия в предельных распределениях тех же 
самых статистик при проверке простых и сложных гипотез настолько существенны, что пренебре­
гать этим абсолютно недопустимо [5] — [7].

Точкой отсчета, с которой были начаты исследования предельных распределений статистик 
непараметрических критериев согласия при сложных гипотезах, послужила работа [8].

Существует ряд подходов к использованию непараметрических критериев согласия в этом слу­
чае.

При достаточно большой выборке ее можно разбить на две части и по одной из них оценивать 
параметры, а по другой проверять согласие. В случае больших объемов выборки такой подход оправ­
дан [9]. Но если объем выборки относительно невелик, то способ разбиения ее на две части будет 
отражаться и на оценках параметров, и на распределениях статистик критериев согласия.

Для случая принадлежности выборки нормальному закону предельные распределения статис­
тики критерия со2 Мизеса при использовании оценок максимального правдоподобия для оценива­
ния одного или обоих параметров закона были исследованы в [10J аналитическими методами.

В некоторых частных случаях проверки сложных гипотез, например при оценивании парамет­
ров распределений экспоненциального, нормального, экстремальных значений, Вейбулла и неко­
торых других законов, таблицы процентных точек для предельных распределений статистик непара­
метрических критериев были получены с использованием методов статистического моделирования 
[1 1 ]-[1 4 ].

В [15] — [19] для статистик типа Колмогорова — Смирнова и некоторых законов, соответству­
ющих гипотезе Я0, получены формулы для приближенного вычисления вероятностей «согласия»
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вида Р {S > 5*}, где S* — вычисленное по выборке значение соответствующей статистики S. Полу­
ченные формулы дают достаточно хорошие приближения при малых значениях соответствующих 
вероятностей.

В [20], [21] в результате компьютерного моделирования распределений статистик непарамет­
рических критериев для ряда законов, соответствующих гипотезе # 0, найдены аналитически про­
стые модели, которые хорошо аппроксимируют предельные распределения статистик непараметри­
ческих критериев согласия в случае проверки сложных гипотез и оценивания по выборке парамет­
ров методом максимального правдоподобия. В [22], [23] методами статистического моделирования 
исследовано влияние на распределения статистик непараметрических критериев согласия при про­
стых и сложных гипотезах объема наблюдаемой выборки и применяемого метода оценивания пара­
метров. В [24] получены аналитически простые модели предельных распределений статистик непара­
метрических критериев для случая, когда при проверке сложных гипотез оценки параметров нахо­
дят в результате минимизации статистики используемого критерия.

Построенные таблицы процентных точек и предельные распределения статистик непарамет­
рических критериев ограничены относительно узким кругом сложных гипотез. Предельные распре­
деления статистик (или процентные точки распределений) при проверке сложных гипотез получе­
ны лишь для порядка 15 законов, в то время как множество вероятностных моделей, используемых 
в приложениях для описания реальных случайных величин, существенно шире.

2.3.2 Методика компьютерного анализа статистических закономерностей
Очевидно, что бесконечное множество случайных величин, с которым приходится сталки­

ваться на практике, не может быть описано ограниченным подмножеством моделей законов рас­
пределений, наиболее часто используемых для описания реальных наблюдений в приложениях. Любой 
исследователь для конкретной наблюдаемой величины может предложить (построить) свою пара­
метрическую модель закона, наиболее адекватно, с его точки зрения, описывающего эту случай­
ную величину. После оценки по данной выборке параметров модели возникает необходимость про­
верки сложной гипотезы об адекватности выборочных наблюдений и построенного закона с ис­
пользованием критериев согласия.

Множество всех сложных гипотез бесконечно и заранее иметь распределения G (5| Н0) для 
любой сложной гипотезы Н0 практически невозможно. Именно поэтому найденные различным об­
разом предельные распределения статистик непараметрических критериев согласия представлены в 
литературных источниках лишь для ограниченного ряда распределений, наиболее часто используе­
мых в приложениях, особенно в задачах контроля качества и исследования надежности. Что же 
делать, если для описания выборки используется закон распределения вероятностей F(x, 0) и
найдена оценка его параметра е , а для проверки сложной гипотезы Н0 : F(x) е {F(x, 0), 0 е 0} 
исследователю неизвестно распределение G (i'l H(j) статистики соответствующего критерия согла­
сия?

Наиболее целесообразно воспользоваться методикой компьютерного анализа статистических 
закономерностей, хорошо зарекомендовавшей себя при моделировании распределений статистик 
критериев [20] — [25].

Для этого следует в соответствии с законом F(x, 0) смоделировать N  выборок того же объема 
п, что и выборка, для которой необходимо проверить гипотезу Н0: F(x) е {F(x, 0), 0 е 0}. Далее для 
каждой из N  выборок вычислить оценки тех же параметров закона, а затем значение статистики S  
соответствующего критерия согласия. В результате будет получена выборка значений статистики 
S lt S2, . . • , SN с законом распределения G (Sn | Я0) для проверяемой гипотезы # (). По этой выборке 
при достаточно большом N  можно построить достаточно гладкую эмпирическую функцию распре­
деления Gn (Sn | Н0), которой можно непосредственно воспользоваться для вывода о том, следует ли 
принимать гипотезу # 0. При необходимости, можно по GN(Sn \ Н0) построить приближенную анали­
тическую модель, аппроксимирующую GN (Sn \ Н0), и тогда уже, опираясь на эту модель, принимать 
решение относительно проверяемой гипотезы.

Как показывает практика, хорошей аналитической моделью для GN (Sn \ Н0) часто оказывается 
один из следующих четырех законов: логарифмически нормальный, гамма-распределение, распреде­
ление Лг-Джонсона или распределение ^/-Джонсона [21], [24]. Во всяком случае, всегда можно, 
опираясь на ограниченное множество законов распределения, построить модель в виде смеси зако­
нов [26], [27].
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Реализация такой процедуры компьютерного анализа распределения статистики не содержит 
ни принципиальных, ни практических трудностей. Уровень вычислительной техники позволяет очень 
быстро получить результаты моделирования, а реализация алгоритма под силу инженеру, владею­
щему навыками программирования.

В то же время такая методика анализа распределений статистик имеет и недостатки, связанные 
с ограниченной точностью построения закона распределения статистики и возможным влиянием 
качества используемого датчика псевдослучайных чисел [28]. Поэтому при ее реализации обязатель­
но следует контролировать качество датчиков, генерирующих числа в соответствии с требуемыми 
законами «наблюдаемых» случайных величин. Современные системы программирования включают 
в себя достаточно хорошие датчики, генерирующие псевдослучайные числа, распределенные по 
равномерному закону. При необходимости построения собственного датчика можно воспользовать­
ся алгоритмами моделирования, изложенными в [29].

Точность построения закона распределения статистики на основании GN ( 5 j  Я0), конечно, 
можно повышать, увеличивая N. По оценкам [20] — [24], отклонения смоделированного распреде­
ления от теоретического при N=  2000 обычно имеют порядок = ± 0,015. Если поставить такую цель, 
то, аппроксимируя эмпирические распределения теоретическими законами и усредняя их по реа­
лизациям (при многократном моделировании), можно, при необходимости, добиться более высо­
кой точности построения закона распределения исследуемой статистики. Опираясь на построенное 
распределение GN (Sn\H0), можно достаточно точно оценить значение Р {S > S’}, но значения 
процентных точек, полученные по GN ( у |Я 0), могут оказаться с существенной погрешностью. На 
практике же, проверяя различные гипотезы, чаще сравнивают полученное значение статистики У 
с соответствующей процентной точкой предельного распределения, что является менее информа­
тивным для принятия решения. Более предпочтительно принимать решение по достигнутому уров­
ню значимости Р {S > У}.

Во всех приводимых далее примерах, иллюстрирующих распределения статистик критериев

Gn (Sn\H,), / = 0,1, в зависимости от различных факторов с применением изложенной методики
число моделируемых выборок У  принимали равным 2000, а их объем п, кроме особо отмеченных 
случаев, равным 1000.

2.3.3 Факторы, влияющие на распределения статистик критериев при проверке сложных гипо­
тез

Распределения статистик непараметрических критериев согласия при проверке сложных гипо­
тез зависят от характера этой сложной гипотезы. На закон распределения статистики G (У Я0) 
влияют следующие факторы, определяющие «сложность» гипотезы:

- вид наблюдаемого закона распределения F{x, 0), соответствующего истинной гипотезе Я();
- тип оцениваемого параметра и число оцениваемых параметров;
- в некоторых ситуациях конкретное значение параметра (например, в случае гамма-распреде­

ления);
- используемый метод оценивания параметров.
При малых объемах выборки п распределение G (Sn | Я0) зависит от п. Однако существенная 

зависимость распределения статистики от п наблюдается только при небольших объемах выборки. 
Уже при п > 15—20 распределение G (Sn | Я0) достаточно близко к предельному G (У Я0) и зависи­
мостью от п можно пренебречь.

В случае задания конкретной альтернативы [конкурирующей гипотезы Я,, которой соответ­
ствует распределение F x(x, 0)], функция распределения статистики G (У Я,) также зависит от всех 
перечисленных факторов. Но в отличие от G (У Я0) распределение статистики G (У Я,) при спра­
ведливой гипотезе Я, очень сильно зависит от объема выборки п. Именно благодаря этому с ростом 
и повышается способность критериев различать гипотезы и возрастает мощность критериев.

2.3.4 Влияние объема выборки на распределения статистик непараметрических критериев при 
простых и сложных гипотезах

В случае проверки простых гипотез предельными распределениями статистик критериев Кол­
могорова и Смирнова можно пользоваться при п > 20 [3]. Исследование методами статистического 
моделирования зависимости распределений статистик всех рассматриваемых здесь непараметричес­
ких критериев от объема выборки при проверке различных как простых, так и сложных гипотез 
показывает, что это справедливо во всех случаях.
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Например, рисунок 1 иллюстрирует, как при увеличении объема выборки (и = 5, 10, 20) 
меняется распределение G (Sn \ Н0) статистики Колмогорова SK в случае проверки простой гипотезы 
о принадлежности выборки нормальному закону. На этом рисунке отражено также предельное рас­
пределение статистики — функция распределения Колмогорова К (S ). Эмпирические распределе­
ния Gn (S j  Hq) при больших п практически сливаются с К  (S ), и на рисунке они не показаны. Как 
видно, при малых п распределение существенно отличается от предельного, но уже при п > 15—20 
ошибка при вычислении вероятности «согласия» Р {S > б*} оказывается достаточно малой.

Рисунок 1 — Зависимость от п распределений G (Sn \ Нп) статистики SK Кол­
могорова при простой гипотезе (Н0 — нормальное распределение): п = 5, 10, 

20. К (S) — функция предельного распределения Колмогорова

Рисунок 2 — Зависимость от п распределений G (Sn \ Я0) статистики SK Кол­
могорова при сложной гипотезе (Нп — нормальное распределение, ОМП): 

п = 5, 10, 20, 1000
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Та же самая картина наблюдается в случае проверки сложных гипотез о согласии. На рисунке 2 
при п = 5, 10, 20, 1000 представлены распределения G (Sn | Я0) статистики SK в случае проверки 
аналогичной, но уже сложной, гипотезы о нормальности, когда по выборке вычисляют оценки 
максимального правдоподобия (ОМП) параметров нормального закона.

При малых п наибольшие отклонения от предельных распределений наблюдаются на «хвостах». 
И при простых, и при сложных гипотезах с ростом п распределения G (Sn \ Я0) равномерно сходятся 
к предельному. Но если в случае простых гипотез с ростом п увеличивается вероятность больших 
значений статистик, то в случае сложных возрастают вероятности и больших, и малых значений 
статистик. Последнее замечание справедливо для распределений статистик SK, Sm, Sn.

Рисунок 3 иллюстрирует изменения с ростом п распределений G (*УИ| Я0) статистики Крамера 
— Мизеса — Смирнова при проверке сложной гипотезы о нормальности и использовании при 
оценивании параметров метода максимального правдоподобия. Чтобы подчеркнуть разницу в рас­
пределениях статистик при простых и сложных гипотезах, на указанном рисунке приведены G (Sn | Я0) 
для п = 5, 20, 1000 и о1(5) — предельная функция распределения статистики Sm при проверке 
простой гипотезы.

Рисунок 3 — Зависимость от п распределений G (Sn 1 Я0) статистики Su) Кра­
мера — Мизеса — Смирнова при сложной гипотезе (На — нормальное распре­

деление, ОМП): п = 5, 20, 1000

Таким образом, распределения G (Sn \ Я0) статистик непараметрических критериев при про­
стых и сложных гипотезах с ростом п очень быстро сходятся к предельным, и уже при п > 15—20 
можно, не опасаясь больших ошибок, пользоваться этими предельными законами при анализе 
данных.

Однако последний вывод не означает, что при малых объемах выборок с помощью этих крите­
риев можно успешно различать близкие гипотезы. Для надежного различения близких законов рас­
пределения, в частности с помощью критерия согласия Колмогорова, может потребоваться выбор­
ка достаточно большого объема [30].

2.3.5 Влияние объема выборки на мощность непараметрических критериев при простых и сложных 
гипотезах

Способность различать близкие гипотезы зависит от того, насколько сильно различаются рас­
пределения G (Sn | # 0) и С (Sn \ Я,).

Предложены к рассмотрению две близкие гипотезы: Я0 — нормальное распределение с плот-

^ / ч 1 ] (х-ц)2 |
ностью JoW  = ~^2п ехР 1-  2а2— I и паРаметРами Ц = 0, а = 1; Я, — логистическое с такими же
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2

• О бли­

зости этих законов распределения можно судить по рисунку 4, на котором представлены их функ­
ции распределения. Рисунок 5 иллюстрирует зависимость от п распределений G (Sn | Я,) статистики 
SK Колмогорова при проверке простой (п = 20, 100, 500, 1000), а рисунок 6 — при проверке 
сложной гипотезы Я0 (при использовании ОМП).

параметрами ц =  0, с  — 1 и плотностью f \  (*) = exp j -
п (х -  ц) 1 + e x p i- гс(х-|Д)

Рисунок 4 — Функции распределения нормального и логистического законов

Рисунок 5 — Зависимость от п распределений G (Sn I Я,) статистики SK Кол­
могорова при простой гипотезе (Я0 — нормальное распределение, Я, — логи­

стическое): п = 20, 100, 500, 1000
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На рисунках 7, 8 для сравнения представлены распределения G (Sn | Я ,) статистики Sm при 
проверке простой (рисунок 7) и сложной гипотезы (рисунок 8) для тех же самых альтернатив # 0 и 
Hv Для данной пары альтернатив в случае проверки сложной гипотезы критерий согласия типа со 
Крамера — Мизеса — Смирнова обладает несколько большей мощностью при различении близких 
гипотез, чем критерий типа Колмогорова, а в случае простых — наоборот.

10

Рисунок 7 — Зависимость от я распределений G (5„| Я,) статистики 5’0 Кра­
мера — Мизеса — Смирнова при простой гипотезе (Я0 — нормальное распре­

деление, Я, — логистическое): п = 20, 100, 500, 1000



Р 50.1.037—2002

n
1

0,9

0,8

0.7

0,6

0,5

0,4

0,3

0,2

0,1

0 0,075 0,15 0,225 0,3 0,375 0,45 0,525 0,6

Рисунок 8 — Зависимость от п распределений G (Sn | Я,) статистики Sm Кра­
мера — Мизеса — Смирнова при сложной гипотезе (Н0 — нормальное распре­

деление, Нх — логистическое, ОМП): я = 20, 100, 500, 1000

С точки зрения практического использования критериев важны два момента, которые под­
тверждены результатами исследований и хорошо иллюстрированы рисунками 5—8. Во-первых, оче­
видно, что при малых выборках пытаться различать с помощью непараметрических критериев со­
гласия близкие гипотезы (особенно простые) абсолютно бесполезно. Во-вторых, мощность непара­
метрических критериев при проверке сложных гипотез при тех же объемах выборок п всегда суще­
ственно выше, чем при проверке простых.

При проверке простых гипотез непараметрические критерии типа Колмогорова, Смирнова, 
со2 и Q2 Мизеса уступают по мощности критериям типа х2, особенно, если в последних используется 
асимптотически оптимальное группирование [31] — [34]. Но при проверке сложных гипотез непара­
метрические критерии оказываются более мощными. Для того чтобы воспользоваться их преимуще­
ствами, надо только знать распределение G (5| Н0) при проверяемой сложной гипотезе.

2.3.6 Влияние метода оценивания на распределения статистик непараметрических критериев 
при сложных гипотезах

Распределения статистик критериев согласия существенно зависят от метода оценивания па­
раметров, то есть каждому типу оценок при конкретной сложной проверяемой гипотезе соответ­
ствует свое предельное распределение G (51 # 0) статистики. В данном случае по вполне очевидным 
причинам при проверке сложных гипотез сравним результаты использования ОМП и Л/О-оценок. 
При минимизации некоторого расстояния между эмпирической и теоретической функциями рас­
пределения получаются MD-оценки. Оценки максимального правдоподобия предпочтительны бла­
годаря своим асимптотическим свойствам [35], [36], а в случае Л/О-оценок может минимизировать­
ся значение статистики, используемой в критерии.

ОМП вычисляют в результате максимизации по 0 функции правдоподобия

L(Q) = у П /( * , ,е )  (21)
/=1

или ее логарифма

In L (0) = In у П  In /  (х,, 0). (22)
/ = 1

Чаще всего в случае скалярного параметра ОМП определяют как решение уравнения, а в случае 
векторного параметра — как решение системы уравнений правдоподобия вида

!1
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din 1(0) 
de,

n .d ln /(x .,0 )

h  * /
= 0, / = 1,/n, (23)

где m — размерность вектора параметров 0. В общем случае эта система нелинейна и, за редким 
исключением, решаема только численно.

При практическом использовании критериев необходимо иметь в виду следующее. В данном  
случае, как и в [20] — [24], при построении распределений статистик и исследовании их зависимо­
сти от метода оценивания ОМП вычисляли как решение системы (23). Если использовать грубые 
приближения ОМ П, то это соответственно отражается на распределениях статистик и свойствах 
критериев.

При вычислении A/D-оценок минимизируется соответствующее расстояние между эмпиричес­
ким и теоретическим распределениями. При использовании статистики Колмогорова SK в качестве 
оценки вектора параметров 9 выбирают значения, минимизирующие эту статистику:

0 = arg rmn S  к  (24)

(A/D-оценки SK). Аналогично, при использовании статистики минимизируется по 0 статистика 
S j

0 = arg min .Уш (25)

(А/D -оценки S J .  При использовании статистики Sa —

0 = arg min (26)
0

(A/D-оценки 5"n).
Вид используемой оценки оказывает существенное влияние на распределения статистик кри­

териев согласия. Степень влияния метода оценивания на распределение статистики иллюстрирует 
рисунок 9, на котором показаны полученные в результате моделирования плотности распределения 
g (Sn \H0) статистики критерия типа Колмогорова SK при вычислении оценок параметра сдвига 
нормального распределения тремя различными методами: минимизацией статистики S K, миними­
зацией статистики Sш и методом максимального правдоподобия. Функция плотности распределения 
Колмогорова обозначена на рисунке как k  (S).

2,414 

2,172 

1,931 

1,689 

1,448 

1,207 

0,9654 

0,7241 

0,4827 

0,2414

0

Рисунок 9 — Плотности распределения g (Sn \ Н0) статистики SK при проверке 
сложной гипотезы (//0 — нормальный закон, оценивание сдвига с использо­
ванием 1— A/D-оценок SK; 2 — A/D-оценок 5М; 3 — ОМП). к (5) — плотность 

распределения Колмогорова
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П ри использовании ОМ П  распределения статистик сильно зависят от соответствующ его про­
веряемой гипотезе Я0 закона F  (х, 0). На рисунке 10 приведены эмпирические распределения  
G (Sn | Я 0) статистики Колмогорова S K, когда при проверке слож ной гипотезы два параметра зако­
на, соответствующ его гипотезе Я0, оценивали с использованием метода максимального правдопо­
добия. П ри этом на рисунке показаны распределения статистики G (Sn | Я 0), когда гипотеза Я0 соот­

ветствует законам: нормальному, логистическому, Лапласа с плотностью / (х) = 2^ -е “1х “В|1/е° , рас­

пределению  наименьшего значения с плотностью /  (х ) = exp | - - q- — -  ехр ^ * ~ 9' j j ,  распределе-

0
НИЮ Кош и С ПЛОТНОСТЬЮ / ( х )  = — — 5---- 7------- -77.

«[00 + < *-6 |)2]

Рисунок 10 — Распределения G (Sn | # 0) статистики Колмогорова SK при 
оценивании двух параметров закона, соответствующего гипотезе Я0 (здесь и 
далее: 1 — нормального; 2 — логистического; 3 — Лапласа; 4 — наименьшего 
значения; 5 — Коши), при использовании ОМП. K(S) — функция распределе­

ния Колмогорова

При использовании М Я -оценок, минимизирующ их статистику применяемого критерия с о ­
гласия, влияние закона F  (х, 0), соответствующего проверяемой гипотезе Я0, проявляется менее 
значительно. Н а рисунке 11 показаны распределения G ( S j  Я0) той же статистики S K при проверке 
тех же гипотез, но с использованием М Я -оценок параметров, полученных минимизацией по пара­
метрам статистики SK .

На рисунке 12 приведены распределения статистики iŜ  для аналогичных гипотез Я0 при и с­
пользовании О М П , а на рисунке 13 — при использовании М Я -оценок, минимизирующ их по пара­
метрам статистику Sa.

При использовании М Я -оценок, минимизирующ их по параметрам статистику Sm, эм пиричес­
кие распределения смоделированных распределений G (Sn | Я0) практически совпадают для законов  
нормального, логистического, Лапласа, наименьшего значения, максимального значения с

плотностью  / ( * )  = е^ехр { -  " ехр (~  ^ е Г 1) } ’ распределения Вейбулла с плотностью

13
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Рисунок 11 — Распределения G (Sn \ Н0) статистики Колмогорова SK при 
оценивании двух параметров закона, соответствующего гипотезе Н0, при ис­
пользовании MD-оценок SK. К (S) — функция распределения Колмогорова,

предельная при простой гипотезе

Рисунок 12 — Распределения G (Sn | Н0) статистики Крамера — Мизеса — 
Смирнова при оценивании двух параметров закона, соответствующего гипо­
тезе # 0, при использовании ОМП. al(S) — функция распределения, пре­

дельная при простой гипотезе

14
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Рисунок 13 — Распределения G (Sn | Н0) статистики Sm Крамера — Мизеса — 
Смирнова при оценивании двух параметров закона, соответствующего гипо­

тезе Н0, при A/D-оценках 5^

/ ( * )  =
0О х9° "1

«:*
ехр и хорошо аппроксимируются логарифмически нормальным законом

с плотностью f ( s )  = — 7= е  (ln s ц)2/2°2 и параметрами ц = —3,2702; о  =  0,4719.
SO \  1%

Распределения статистик критериев согласия при использовании A/D-оценок (как и в случае 
использования ОМП) существенно зависят от того, какой параметр оценивали. На рисунке 14 
показаны распределения G (Sn | Н0) статистики Крамера — Мизеса — Смирнова при использова­
нии A/D-оценок 5^ и оценивании масштабного параметра закона, соответствующего гипотезе # 0. На 
рисунке 15 представлены аналогичные распределения статистик, но при оценивании для тех же 
распределений параметра сдвига. Распределения статистик в случае оценивания параметра сдвига 
распределения максимального значения и масштабного параметра распределения Вейбулла совпа­
дают с распределением статистики для распределения минимального значения.

Если обратить внимание на рисунок 16, на котором отображены распределения G (Sn | Я0)

статистики Sa при проверке согласия с распределениями экспоненциальным /  (х) = Qe~x/° . полу-

нормальным / ( х )  = ■ \ t ~ e~x /20 , Рэлея / ( х ) = Л е ' х2/2е2, Максвелла / (х) = ?х, е 202 , моду- 
еу2л е2 ’ J v '  e3v2Tt

ля /и-мерного (т = 5) нормального вектора / ( * )  = 2XW-» -л*/28*
(202)т/2 Г (т/2) при оценивании масш­

табного параметра соответствующего закона с использованием A/D-оценок Sa, то можно заметить, 
что распределения статистик близки к приведенным на рисунке 15. Распределения статистик, пока­
занные на рисунке 16, например, достаточно хорошо аппроксимируются логарифмически нор­
мальным законом с параметрами ц =  —2,8484; с  =  0,5669.

15
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Рисунок 14 -  Распределения G (Sn! Н0) статистики Sm Крамера -  Мизеса -  
Смирнова при оценивании масштабного параметра закона, соответствующе- 
го гипотезе Я0, (6 — максимального значения; 7 — Вейбул'ла, параметр фор­

мы), при использовании Л/Я-оценок Sш

Рисунок 15 — Распределения G (Sn | Я0) статистики 5Ш Крамера — Мизеса — 
Смирнова при оценивании параметра сдвига, соответствующего гипотезе Я0,

при МЯ-оценках 5Ш

16
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Рисунок 16 — Распределения G (Sn | Н0) статистики Sm Крамера — Мизеса —
Смирнова при оценивании масштабного параметра закона, соответствующе­
го гипотезе Н0, (1 — экспоненциального; 2 — полу нормального; 3 — Рэлея;
4 — Максвелла; 5 — модуля 5-мерного нормального вектора), при использо­

вании Л/£>-оценок Sm

Таким образом, применяя непараметрические критерии согласия, следует непременно учиты­
вать используемый метод оценивания. При этом в случае метода максимального правдоподобия 
распределения статистик G (5"| Я0) очень сильно зависят от закона, соответствующего гипотезе Я0. 
Разброс распределений G ( ^ |Я 0) при использовании MD-оценок, минимизирующих статистику 
критерия, зависит от закона F (х, 0), соответствующего гипотезе Я0, в существенно меньшей сте­
пени.

2.3.7 Метод оценивания и мощность непараметрических критериев согласия
При использовании MD-оценок, минимизирующих статистику критерия, эмпирические рас­

пределения G (Sn\H0), соответствующие различным гипотезам Я0, имеют минимальный разброс, 
что означает определенную «свободу от распределения» для рассматриваемых критериев и предпо­
лагает применение MD-оценок при проверке сложных гипотез. Но если исследовать мощность рас­
сматриваемых критериев при различных методах оценивания, то оказывается, что максимальную 
мощность непараметрические критерии при близких альтернативах имеют в случае оценивания па­
раметров методом максимального правдоподобия.

Способность применяемого критерия различать альтернативы Я0 и Я, зависит от его мощнос­
ти 1 — р при заданном уровне значимости а , а именно от того, насколько существенно отличаются 
распределения статистики G (Sn | Я0) и G {Sn | Я,). При одинаковых объемах выборок п отличие 
распределений G (Sn | Я0) и G (Sn ] Я,) в случае использования ОМП более значительно, а следова­
тельно, критерий оказывается более мощным, чем в случае использования MD-оценок.

Например, рисунок 17 иллюстрирует зависимость от п распределений G (Sn | Я ,) статистики SK 
Колмогорова при проверке сложной гипотезы при паре альтернатив Я0 — нормальное распределе­
ние, Я, — логистическое и использовании MD-оценок SK, а рисунок 18 — зависимость от п 
распределений G (Sn\ Н{) статистики Sa Крамера — Мизеса — Смирнова при использовании 
MD-оценок £ш.

Сравнивая рисунок 17 с рисунком 6, а рисунок 18 с рисунком 8, можно убедиться, что в 
случае использования метода максимального правдоподобия мощность критериев типа Колмогоро­
ва и типа со2 Мизеса много выше, чем при использовании соответствующих MD-оценок. Аналогич­
ная картина справедлива и для критерия типа Л2 Мизеса со статистикой Sn Андерсона — Дарлинга.

17
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Рисунок 17 — Зависимость от и распределений G (5И| Я,) статистики ^ К о л ­
могорова при сложной гипотезе (Я0 — нормальное распределение; Я, — логи­

стическое; MD-оценки SK)-. п — 20, 100, 500, 1000

Рисунок 18 — Зависимость от п распределений G (5Я| Я,) статистики .Ую Кра­
мера — Мизеса — Смирнова при сложной гипотезе (Я0 — нормальное распре­

деление; Я, — логистическое; Л/Я-оценки SJ: п = 100, 500, 1000

Для того чтобы сравнить по мощности непараметрические критерии согласия для рассматри­
ваемой пары близких гипотез # 0 и Н } при использовании ОМП, на рисунке 19 приведены распре­
деления G ( £ 1000|Я 0) и G ( S j / f , )  при п = 20, 100, 500, 1000 для статистики SQ Андерсона — 
Дарлинга, а на рисунке 20 — для статистики Sm Смирнова.
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Рисунок 19 — Зависимость от п распределений G (Sn | //,) статистики Sa Ан­
дерсона — Дарлинга при сложной гипотезе (#0 — нормальное распределение; 

#! — логистическое; ОМП): п = 20, 100, 500, 1000

Рисунок 20 — Зависимость от п распределений G(Sn \ #,) статистики Sm Смир­
нова при сложной гипотезе (#0 — нормальное распределение; Я, — логисти­

ческое; ОМП): п — 20, 100, 500, 1000

Анализируя распределения на рисунках 6, 8, 19 и 20 можно заметить, что наиболее мощным 
для данной пары гипотез является критерий Q.2 со статистикой Sa Андерсона — Дарлинга, затем 
критерий ш2 со статистикой Крамера — Мизеса — Смирнова, далее критерий Колмогорова со 
статистикой SK и на последнем месте критерий Смирнова со статистикой Sm. Данное наблюдение о 
порядке предпочтения критериев хорошо согласуется с опытом их применения.
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Почему мощность рассматриваемых критериев при проверке близких гипотез в случае ОМП 
выше, чем при MD-оценках, достаточно логично объясняет следующая версия. Использование 
МД-оценок, минимизирующих статистику критерия, приводит к распределению G (51 Я0) с мень­
шим параметром масштаба (к более крутой функции распределения), чем в случае ОМП. Но с 
другой стороны, Л/Д-оценки в отличие от ОМП являются робастными, они менее чувствительны к 
малым отклонениям выборки от предполагаемого закона распределения. Поэтому функция распре­
деления G (Sn | Я,) оказывается еще более крутой по отношению к аналогичному распределению 
при использовании ОМП.

2.3.8 Зависимость распределений статистик непараметрических критериев от конкретных зна­
чений параметра

В некоторых случаях предельные распределения G (S  | # 0) рассматриваемых статистик при 
проверке сложных гипотез зависят от конкретных значений параметров распределения, с которым 
проверяют согласие. В частности, распределения G(S | # 0) непараметрических критериев согласия в 
случае проверки согласия с гамма-распределением с плотностью

/Ос) = -г " 1-----хе°4  e~*/9'
0|° Г(0„)

зависят от его параметра формы 0О. Для иллюстрации приведены лишь распределения G (51 # 0) 
статистики Колмогорова SK. На рисунке 21 показаны распределения статистики при оценивании по 
выборке параметра формы, на рисунке 22 — масштабного параметра, на рисунке 23 — двух пара­
метров распределения. На этих рисунках цифрами по порядку помечены функции распределения 
статистики: 1 — при 0О = 0,5; 2 — при 0О = 1,0; 3 — при 0О = 2,0; 4 — при 0О = 3,0; 5 — при 0() = 5,0. 
Для сравнения приведена функция распределения Колмогорова K(S).

С  ростом 0О предельные распределения статистик сходятся к предельным распределениям ста­
тистик для выборок из нормального закона. При значениях 0О > 5 эмпирические распределения 
статистик при оценивании двух параметров практически совпадают и хорошо согласуются с распре­
делением соответствующей статистики для нормального закона.

Общая картина принципиально сохраняется и для распределений других непараметрических 
статистик.

20

Рисунок 21 — Функции распределения статистики SK Колмогорова при вы­
числении ОМП параметра формы гамма-распределения: K (S )—функция рас­

пределения Колмогорова
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Рисунок 22 — Функции распределения статистики SK Колмогорова при вы­
числении ОМП масштабного параметра гамма-распределения. K(S)—функ­

ция распределения Колмогорова

Рисунок 23 — Функции распределения статистики SK Колмогорова при оце­
нивании методом максимального правдоподобия одновременно двух парамет­

ров гамма-распределения. К(S)—функция распределения Колмогорова

2.3.9 Выводы
На основании изложенного выше можно сформулировать следующие выводы и дать рекомен­

дации.
Распределения статистик непараметрических критериев согласия при простых и сложных ги­

потезах с ростом п быстро сходятся к предельным законам. Уже при п > 20, не опасаясь больших 
ошибок, можно пользоваться этими предельными законами для вычисления достигаемого уровня 
значимости Р {S > 5*}.
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В то же время надо иметь в виду, что различать близкие гипотезы (особенно простые) при 
малых выборках с помощью непараметрических критериев согласия невозможно.

Мощность непараметрических критериев при проверке сложных гипотез при тех же объемах 
выборок п всегда существенно выше, чем при проверке простых.

При проверке сложных гипотез распределения статистик G (51 Н0) непараметрических крите­
риев зависят не только от закона распределения F (х, 0), соответствующего гипотезе Нп, числа и 
вида оцениваемых параметров (иногда конкретного значения параметра), но и от используемого 
метода оценивания параметров. Ни в коем случае нельзя, оценивая параметры одним методом, 
использовать (предельный) закон распределения статистики, построенный для другого метода оце­
нивания.

В случае применения MD-оценок, минимизирующих статистику используемого критерия со­
гласия, распределения статистик непараметрических критериев в меньшей степени подвержены 
зависимости от вида F (х, 0), соответствующего гипотезе # 0. Однако наиболее мощными эти крите­
рии оказываются при использовании ОМП.

В случае простых гипотез и при близких альтернативах непараметрические критерии согласия 
уступают по мощности критериям типа у}. В случае проверки сложных гипотез — преимущество за 
непараметрическими критериями согласия. В то же время рекомендуется при проверке гипотез о 
согласии не останавливаться на использовании одного из критериев согласия, так как каждый из 
критериев по-разному улавливает различные отклонения эмпирического распределения от теорети­
ческого.

Изложенная опробованная методика моделирования распределений статистик при коррект­
ном ее применении может быть рекомендована для построения статистических закономерностей в 
ситуации, когда аналитическими методами не удается решить задачу.

Применение при проверке сложных гипотез распределений статистик критериев согласия, 
представленных в настоящих рекомендациях, правомерно при использовании ОМП или MD-оце­
нок соответственно. Некорректно использование оценок по методу моментов (за исключением тех 
ситуаций, когда оценки по методу моментов совпадают с ОМП), использование различных оценок 
по наблюдениям, сгруппированным в интервалы. Некорректно вычисление значений статистик не­
параметрических критериев согласия по группированным наблюдениям.

3 Порядок проверки гипотез о согласии

3.1 Порядок проверки простой гипотезы о согласии
При проверке согласия опытного распределения с теоретическим распределением случайной 

величины ^действуют следующим образом.
а) Формулируют проверяемую гипотезу, выбирая теоретическое распределение случайной 

величины, согласие которого с опытным распределением этой величины следует проверить.
б) Из совокупности отбирают случайную выборку объема и. Полученные результаты наблюде­

ний располагают в порядке их возрастания, так что в распоряжении имеют упорядоченную выборку 
значений

х,<х2<... <хп.
в) В соответствии с выбранным критерием проверки вычисляют значение статистики S  кри­

терия [по формулам (6), (12), (15) или (16)].
г) В соответствии с выбранным критерием проверки вычисляют значение

P{S>S*} = j g(4ffo)rfs = 1 -  (7(5*|#0)где G (51 Н0) — распределение статистики критерия при 
5 *

справедливости гипотезы Н0. Если Р {S > 5*} > а, где а  — задаваемый уровень значимости, то нет 
оснований для отклонения проверяемой гипотезы. В противном случае проверяемую гипотезу Н{) 
отвергают.

Можно вычисленное значение статистики S  сравнить с критическим значением Sa, опреде-
+©о

ляемым из условия а = lg(s\H0)ds. Гипотезу о согласии отвергают, если значение статистики
Sa

попадает в критическую область, т. е. при S* > Sa.
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3.1.1 Критерий Колмогорова при простой гипотезе
Порядок проверки простой гипотезы о согласии опытного распределения с теоретическим — 

в соответствии с 3.1, перечисления а) — г).
В случае выбранного критерия Колмогорова:
а) Значение статистики Колмогорова SK вычисляют по формуле (6) на основании формул

(7) -  (9).
б) Значение вероятности P{S>S*K} = 1 -  К (S*K) вычисляют по функции распределения Кол­

могорова [формула (5)] или берут из таблицы А. 1.
в) Критические значения критерия Sa при заданном а  могут быть взяты из таблицы А.2.
3.1.2 Критерий Смирнова при простой гипотезе
Порядок проверки простой гипотезы о согласии опытного распределения с теоретическим — 

в соответствии с 3.1, перечисления а) — г).
В случае выбранного критерия Смирнова:
а) Значение статистики Смирнова Sm вычисляют по формуле (12) на основании формул

(8) , (9).

б) Значение вероятности />{5'от>5^} = e~s’m/1 вычисляют по функции - распределения (с 
двумя степенями свободы).

в) Гипотезу Н0 не отвергают, если для вычисленного по выборке значения статистики S*m

P{Sm>S'm} = e~s" '2>a.

3.1.3 Критерий со2 Крамера — Мизеса — Смирнова при простой гипотезе
Порядок проверки простой гипотезы о согласии опытного распределения с теоретическим — 

в соответствии с 3.1, перечисленная а) — г).
В случае выбранного критерия Крамера — Мизеса — Смирнова:
а) Значение статистики Крамера — Мизеса — Смирнова вычисляют по формуле (16).
б) Значение вероятности P{Sm >£*} = 1 -  а \ (51*) вычисляют по функции распределения я1(5) 

(17) или берут из таблицы А.З.
в) Критические значения критерия Sa при заданном а могут быть взяты из таблицы А.4.
г) Гипотезу # 0 не отвергают, если для вычисленного по выборке значения статистики 6"*

= 1 -  «1(*У*)>«.

3.1.4 Критерий Q2 Андерсона — Дарлинга при простой гипотезе
Порядок проверки простой гипотезы о согласии опытного распределения с теоретическим — 

в соответствии с 3.1, перечисления а) — г).
В случае выбранного критерия Q2 Андерсона — Дарлинга:
а) Значение статистики Андерсона — Дарлинга Sa вычисляют по формуле (19).
б) Значение вероятности P{SQ>Sa) = 1 -  a2(Sa)>a вычисляют по функции распределения 

a2(S) (20) или берут из таблицы А.5.
в) Критические значения критерия Sa при заданном а могут быть взяты из таблицы А. 6.
г) Гипотезу Н0 не отвергают, если для вычисленного по выборке значения статистики

P{Sa >S'a} = l -a 2 (S 'n)>a.

3.2 Порядок проверки сложной гипотезы
При проверке согласия опытного распределения с теоретическим распределением случайной 

величины Л"действуют следующим образом.
а) Формулируют проверяемую гипотезу, выбирая теоретическое распределение F (х, 0) слу­

чайной величины, согласие которого с опытным распределением этой величины следует проверить. 
Перечень теоретических распределений, для которых возможна проверка сложных гипотез с ис­
пользованием данных рекомендаций, приведен в 3.2.7.
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б) Из совокупности отбирают случайную выборку объема «. Полученные результаты наблюде­
ний располагают в порядке их возрастания, так что в распоряжении имеют упорядоченную выборку 
значений

х] <х2 < ... <хп.
в) По выборке вычисляют оценки параметров распределения F (х, 0), выбранного в соответ­

ствии с перечислением а) [оценки максимального правдоподобия на основании формул (21) — 
(23) или A/D-оценки, минимизирующие статистику критерия на основании, соответственно, фор­
мул (24), (25) или (26)].

г) В соответствии с выбранным критерием проверки вычисляют значение статистики 5* кри­
терия [по формулам (6), (12), (15) или (16)].

д) В соответствии с выбранным критерием проверки, теоретическим распределением F (х, 0), 
оцененным параметром или параметрами, используемым методом оценивания определяют распре­
деление статистики критерия G (5 |Я 0) при справедливости гипотезы Я0.

е) На основании выбранного в соответствии с перечислением д) распределения G (Si Я0) 
вычисляют значение

P{S>S*} = \g{s\HQ)ds = 1 -  <7(5*|Я0)
5 *

ж) Если Р {.У > 5*} > а, где а  — задаваемый уровень значимости, то нет оснований для 
отклонения проверяемой гипотезы. В противном случае проверяемую гипотезу Я0 отвергают. Можно 
вычисленное значение статистики ■S’* сравнить с критическим значением Sa, определяемым из ус-

+  о©

ловия а  = }g (s\H0)ds, Гипотезу о согласии не отвергают, если S* < Sa.
S(X

Если закон распределения, относительно которого проверяют гипотезу о согласии с исполь­
зованием непараметрического критерия, не входит в перечень, приведенный в 3.2.7, то для постро­
ения распределения статистики G (51 Я0), соответствующего проверяемой гипотезе Я0, рекоменду­
ется воспользоваться методикой компьютерного анализа, изложенной в 2.3.2.

3.2.1 Проверка сложной гипотезы о согласии по критерию типа Колмогорова
Порядок проверки сложной гипотезы о согласии опытного распределения с теоретическим по 

критерию типа Колмогорова — в соответствии с 3.2, перечисления а) — ж).
Особенности применения, связанные с указанным видом статистики, следующие.
а) Оценку скалярного или векторного параметра распределения F (х, 0) можно вычислять 

методом максимального правдоподобия на основании формул (21) — (23) или при минимизации 
статистики SK на основании формулы (24).

б) Значение статистики Колмогорова SK (при использовании ОМП) или ее минимума [при 
использовании A/D-оценок — формула (24)] вычисляют по формуле (6) на основании формул
(7) -  (9).

в) Распределение С (5^1 Я0) в случае использования ОМП в соответствии с теоретическим 
распределением F(x, 0), оцененным параметром или параметрами выбирают из таблицы А.7. Кри­
тические значения критерия Sa при заданном а могут быть взяты из таблицы А.8.

г) В случае использования A/D-оценок [формула (26)] распределение G (5^1 Я0) выбирают из 
таблицы А.9, а критические значения критерия Sa могут быть взяты из таблицы АЛО.

д) Гипотезу о согласии не отвергают, если P{S>S*K} = 1 -  <7(5^|я0)> а  (или S*K<Sa ).
3.2.2 Проверка сложной гипотезы о согласии по критерию типа Смирнова
Порядок проверки сложной гипотезы о согласии опытного распределения с теоретическим с 

использованием критерия типа Смирнова — в соответствии с 3.2, перечисления а) — ж). 
Особенности применения критерия типа Смирнова следующие.
а) Оценку скалярного или векторного параметра распределения F (х, 0) вычисляют методом 

максимального правдоподобия [формулы (21) — (23)].
б) Значение статистики Смирнова 5^ вычисляют по формуле (12) на основании формул

(8) , (9).
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в) Распределение G (Sm | Н0) в случае использования ОМП в соответствии с теоретическим 
распределением F(x, 0), оцененным параметром или параметрами выбирают из таблицы А.11. Кри­
тические значения критерия Sa при заданном а  могут быть взяты из таблицы А. 12.

г) Гипотезу о согласии не отвергают, если P{S>S*m} = 1 -  <7(5^,|#0)> а  (или S*m<Sa ).
3.2.3 Проверка сложной гипотезы о согласии по критерию типа со2 Мизеса
Порядок проверки сложной гипотезы о согласии опытного распределения с теоретическим по 

критерию типа со2 Мизеса — в соответствии с 3.2, перечисления а) — ж).
Особенности применения критерия типа ю2 Мизеса следующие.
а) Оценка скалярного или векторного параметра распределения F (х , 0) может быть вычисле­

на методом максимального правдоподобия на основании формул (21) — (23) или при минимиза­
ции статистики на основании формулы (25).

б) Значение статистики Крамера — Мизеса — Смирнова 5^ (при использовании ОМП) или ее 
минимума [при использовании Л//)-оценок формула (25)] вычисляют по формуле (16).

в) Распределение G (5М|Я 0) в случае использования ОМП в соответствии с теоретическим 
распределением F(x, 0), оцененным параметром или параметрами выбирают из таблицы А. 13. Кри­
тические значения критерия Sa при заданном а  могут быть взяты из таблицы А. 14.

г) В случае использования Л/О-оценок [формула (27)] распределение G (5^ | Я0) выбирают из 
таблицы А. 15. Критические значения критерия Sa могут быть взяты из таблицы А. 16.

д) Гипотезу о согласии не отвергают, если / >{5>iS'*} = 1 -  Я (5 * |я 0)> а  (или 5* <Sa ).
3.2.4 Проверка сложной гипотезы о согласии по критерию типа £22 Мизеса
Порядок проверки сложной гипотезы о согласии опытного распределения с теоретическим по 

критерию типа Q2 Мизеса — в соответствии с 3.2, перечисления а) — ж).
Особенности применения указанного критерия следующие.
а) Оценка скалярного или векторного параметра распределения F(x, 0) может быть вычисле­

на методом максимального правдоподобия на основании формул (21) — (23) или при минимиза­
ции статистики Sn на основании формулы (26).

б) Значение статистики Андерсона — Дарлинга Sn (при использовании ОМП) или ее мини­
мума [при использовании М£)-оценок формула (26)] вычисляют по формуле (19).

в) Распределение G (5П|Я 0) в случае использования ОМП в соответствии с теоретическим 
распределением F(x, 0), оцененным параметром или параметрами выбирают из таблицы А. 17. Кри­
тические значения критерия Sa при заданном а могут быть взяты из таблицы А. 18.

г) В случае использования A/D-оценок [формула (28)] распределение G (Sa | Я0) выбирают из 
таблицы А. 19. Критические значения критерия Sa могут быть взяты из таблицы А.20.

д) Гипотезу о согласии не отвергают, если Р{5'>5'о} = 1 -  (?(5п(я0)> а  (или S*a <Sa ).
3.2.5 Проверка сложных гипотез о согласии с гамма-распределением
Порядок проверки сложной гипотезы о согласии опытного распределения с теоретическим 

гамма-распределением — в соответствии с 3.2, перечисления а) — ж).
Особенности применения рассматриваемых критериев заключаются в том, что предельные 

распределения статистик критериев в данном случае зависят от значения параметра формы 0О гам­
ма-распределения (см. таблицу 1). Кроме того, модели распределений статистик при проверке согла­
сия с гамма-распределением построены только для случая использования ОМП и для ограниченно­
го ряда значений параметра формы 0О.

При необходимости проверки гипотезы о согласии для значения параметра 0О, не совпадаю­
щего с представленными в таблицах А.21 — А.28, следует воспользоваться законом распределения 
соответствующей статистики (или процентными точками) при ближайшем к 0О табличном значе­
нии этого параметра. Можно найти искомые приближенные значения вероятности Р {5 > У] (или 
процентных точек) с помощью интерполяции.

3.2.5.1 Проверка сложной гипотезы о согласии с гамма-распределением по критерию типа 
Колмогорова

Общий порядок проверки сложной гипотезы о согласии опытного распределения с теорети­
ческим гамма-распределением — в соответствии с 3.2, перечисления а) — ж).

Особенности применения, связанные с видом статистики, следующие.
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а) Оценку скалярного или векторного параметра гамма-распределения вычисляют методом 
максимального правдоподобия на основании формул (21) — (23).

б) Значение статистики Колмогорова SK вычисляют по формуле (6) на основании формул
(7) -  (9).

в) Распределение G(SK\H0) в соответствии с оцененным параметром или параметрами выби­
рают из таблицы А.21. Критическое значение критерия Sa при заданном а  может быть взято из табли­
цы А.22. Если значение параметра формы 60 не совпадает ни с одним из табличных, искомые значе­
ния р  {£>5^} или квантили Sa определяют интерполяцией.

г) Гипотезу о согласии не отвергают, если = 1 -  G ( ^ |/7 0)> a  (или S*K<Sa ).
3.2.5.2 Проверка сложной гипотезы о согласии с гамма-распределением по критерию типа 

Смирнова
Порядок проверки сложной гипотезы о согласии опытного распределения с теоретическим 

гамма-распределением с использованием критерия типа Смирнова — в соответствии с 3.2, пере­
числения а) — ж).

Особенности применения указанного критерия следующие.
а) Оценку скалярного или векторного параметра гамма-распределения вычисляют методом 

максимального правдоподобия по формулам (21) — (23).
б) Значение статистики Смирнова S  вычисляют по формуле (12) на основании формул

(8) , (9).
в) Распределение G (Sm\H0) в соответствии с оцененным параметром или параметрами выби­

рают из таблицы А.23. Критическое значение критерия Sa при заданном а  может быть взято из табли­
цы А.24. Если значение параметра формы в0 не совпадает ни с одним из табличных, искомые значе­
ния Р {£ >5^,} или критические значения критерия Sa при заданном а  определяют интерполяцией.

г) Гипотезу о согласии не отвергают, если P{S>S'n} = 1 -  G(S*„\H0)>a (или S*,<Sa ).
3.2.5.3 Проверка сложной гипотезы о согласии с гамма-распределением по критерию типа со2 

Мизеса
Порядок проверки сложной гипотезы о согласии опытного распределения с теоретическим 

гамма-распределением по критерию типа со2 Мизеса — в соответствии с 3.2, перечисления а) — ж).
Особенности применения указанного критерия следующие.
а) Оценку скалярного или векторного параметра гамма-распределения вычисляют методом 

максимального правдоподобия на основании формул (21) — (23).
б) Значение статистики Крамера — Мизеса — Смирнова Sa вычисляют по формуле (16) .
в) Распределение G (Sa I # 0) в соответствии с оцененным параметром или параметрами выби­

рают из таблицы А.25. Критическое значение критерия Sa при заданном а  может быть взято из табли­
цы А.26. Если значение параметра формы 0О не совпадает ни с одним из табличных, искомые
значения Р{5>5'*} или критические значения критерия Sn при заданном а  определяют интерполя­
цией.

г) Гипотезу о согласии не отвергают, если P{S>S^} = 1 -  G(S^\H0)>a (или £*<£„).
3.2.5.4 Проверка сложной гипотезы о согласии с гамма-распределением по критерию типа 

Q2 Мизеса
Порядок проверки сложной гипотезы о согласии опытного распределения с теоретическим 

гамма-распределением по критерию типа £22 Мизеса — в соответствии с 3.2, перечисления а) — ж).
Особенности применения указанного критерия следующие.
а) Оценку скалярного или векторного параметра гамма-распределения вычисляют методом 

максимального правдоподобия на основании формул (21) — (23).
б) Значение статистики Андерсона — Дарлинга SQ вычисляют по формуле (19).
в) Распределение G ^ l  # 0) в соответствии с оцененным параметром или параметрами выби­

рают из таблицы А.27. Критическое значение критерия Sa при заданном а  может быть взято из табли­
цы А.28. Если значение параметра формы 0О не совпадает ни с одним из табличных, искомые
значения P{S>Sn) или критические значения критерия Sa при заданном а  определяют интерполя­
цией.
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г) Гипотезу о согласии не отвергают, если / , {5>6'п} = 1 -  G(Sn\H0)>a (или Sn<Sa).
3.2.6 Проверка сложных гипотез о согласии с распределениями Джонсона
Проверку сложных гипотез о согласии опытного распределения с теоретическими распределе­

ниями Джонсона по критериям типа Колмогорова, типа со2 и Q2 Мизеса при использовании метода 
максимального правдоподобия осуществляют в соответствии с 3.2.1, 3.2.3 и 3.2.4 соответственно.

Модели предельных распределений соответствующих статистик выбирают из таблицы А. 29 для 
распределения ^-Джонсона, из таблицы А.30 для распределения SI-Джонсона, из таблицы А.31 
для распределения Зм-Джонсона.

Процентные точки распределений статистики типа Колмогорова представлены в таблице А.32, 
статистики типа со2 Мизеса — в таблице А.ЗЗ, статистики типа Q2 Мизеса — в таблице А.34.

3.2.7 Перечень распределений, для которых регламентирована проверка сложных гипотез с 
использованием настоящих рекомендаций

Настоящие рекомендации определяют порядок проверки сложных гипотез о согласии с зако­
нами распределения, перечень которых приведен в таблице 1.

Т а б л и ц а !

Раслреление случайной 
величины Функция плотности

Экспоненциальное, 
х £ 0

1 р-х/Щ) 
%

Полунормальное, 
х£ 0

2 е- ^ т \

%-j2n

Рэлея, 
х> 0

J L e-x2/2eo
ft2

Максвелла, 
х> 0

2xj_ c -*2/2°l 
00 J 2 k

Лапласа, 
х е (— °о)

JLp-Mil/eo
20„e

Нормальное,
X 6  (—«о, <*>)

( x - 9 | ) 2

1 e 4  
e0 J i k

Логнормальное,
X £ (0, °°)

1 £-(1пл-01)2/2е2
x8n -Jlit

Коши,
X £ (—ев, оо)

e„
я[е£ + (х -е ,)2]

Логистическое,
X £ (— во)

Наибольшего значения,
X £ (—во, оо) e„exp {- e . e „  0}

Наименьшего значения,
X £ (—во, оо) e„exp { e„ ' - “ •>( en')}

Вейбулла,
X Е (0, оо)
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Окончание таблицы 1

Распреление случайной 
величины Функция плотности

Гамма-распределение,
х е (02, со) L _  (х  _  е2)»«-1 <г(х' в2 >/»|

е?° г  (е0)

Sb- Джонсона, 
х е [03, 02, + 03] 6,0,

>/27с(х-03)(02 +03 - х )
ехР 1-  о 0О -  0| In х -0 3

1 ,п 07+03-х

57-Джонсона,
х € (03, -о) л/2тс(х-03)

ехр 0О + 0 , In Х-0,
0,

^«-Джонсона,
X €  [ ----о с , со ]

J2nj(x-Q  3)2 +02
ехр 6« + 0| In j —Q—  +

х -0 3 ^ Ifx-fy , + ,

Список распределений, приведенный в таблице 1, достаточно ограничен. Он включает в себя 
законы распределения, наиболее часто используемые в приложениях в качестве моделей законов 
реальных случайных величин. Более широкий набор параметрических моделей законов распределе­
ний предложен в справочнике [35]. В случае необходимости проверки сложной гипотезы относитель­
но закона, не вошедшего в представленный перечень, для построения распределения статистики 

соответствующего проверяемой гипотезе # 0, рекомендуется воспользоваться методикой 
компьютерного анализа, изложенной в 2.3.2.

3.2.8 Законы распределения, используемые для аппроксимации предельных распределений 
статистик непараметрических критериев при проверке сложных гипотез

Эмпирические законы распределения статистик непараметрических критериев согласия наи­
более хорошо описываются одним из следующих законов распределения: логарифмически нормаль­
ным, гамма-распределением, распределением 57-Джонсона или распределением 57/-Джонсона.

В таблицах приложения А, содержащих рекомендуемые для использования при проверке слож­
ных гипотез распределения G (5'|Я0), через lnA^G,, 0О) обозначено логарифмически нормальное 
распределение с функцией плотности

f i x )  =

-(1пх-9|Г
200

через у (0О, 9,, 02) — гамма-распределение с функцией плотности

/ ( х )  = ------ !-------( х - 0 , ) 00- 1 е -< *-92>/°| ,
е 'пг(0о)

через SI (90, 0р 02, 93) — распределение 67-Джонсона с плотностью

П х )  = ■/2я(х-03)
expi- 9,1 + 9i

-,2

через Su (0О, 0р 02, 03) — распределение &/-Джонсона с плотностью

/(* )  =
>/2яд/(х-03)2 +02

ехр' 0 О + 0 , In
X — 0

0,
1 II X~e3_ I + ]

- \ 2

е,

Таблицы А.7 — А.34 построены в результате применения методики компьютерного анализа 
статистических закономерностей, описанной в 2.3.2.
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Процентные точки, представленные в таблицах, соответствуют построенным моделям распре­
делений статистик. В некоторых частных случаях эти значения уточняли вследствие аппроксимации 
«хвостов» эмпирических распределений, полученных в результате моделирования.

Таблицы А.1 — А.6, используемые при проверке простых гипотез и содержащие значения 
функций распределения классических статистик непараметрических критериев согласия и значения 
процентных точек, заимствованы в [3].

3.2.9 Примеры применения критериев согласия при простых и сложных гипотезах
Пример 1 Проверяют простую гипотезу о принадлежности выборки экспоненциальному зако­

ну. Упорядоченная выборка объемом 100 наблюдений имеет вид:

0,0041 0,0051 0,0058 0,0074 0,0082
0,0110 0,0160 0,0191 0,0263 0,0279
0,0294 0,0323 0,0411 0,0452 0,0688
0,0741 0,0805 0,0809 0,1026 0,1124
0,1220 0,1226 0,1233 0,1317 0,1323
0,1368 0,1379 0,1475 0,1515 0,1598
0,1710 0,1789 0,2010 0,2014 0,2072
0,2102 0,2194 0,2205 0,2297 0,2300
0,2302 0,2373 0,2375 0,2397 0,2415
0,2492 0,2869 0,2908 0,2976 0,3058
0,3060 0,3073 0,3096 0,3278 0,3553
0,3620 0,3679 0,3833 0,3921 0,3985
0,4078 0,4080 0,4119 0,4169 0,4208
0,4568 0,4707 0,4880 0,4942 0,5214
0,5277 0,5878 0,6146 0,6180 0,6263
0,6415 0,6757 0,7156 0,7157 0,7207
0,7351 0,7485 0,7535 0,7541 0,7728
0,8875 0,9021 0,9581 0,9868 1,0440
1,2226 1,2402 1,2641 1,3034 1,3328
1,3553 1,4006 1,5586 1,6296 2,5018

Проверяемая гипотеза имеет вид Н0: f  (х) = -£-е */0° при значении параметра 0О =  0,5.

а) Критерий Колмогорова
В соответствии с 3.1.1 вычисляют значение статистики Колмогорова по формуле (6): 

,5^ =  0,8269. При этом значении статистики вычисляют вероятность P{S>S*K} = 1 -  .К (5*-) =0 ,5011.
б) Критерий Смирнова

В соответствии с 3.1.2 вычисляют значение статистики Смирнова по формуле (12): S*m =  2,7349.

При этом значении статистики вычисляют вероятность = e~s *m/1 =  0,2548.

в) Критерий со2 Мизеса

В соответствии с 3.1.3 вычисляют значение статистики ю2 Мизеса по формуле (16): 5* =  0,1272.

При этом значении статистики вычисляют вероятность 7>{5'со>5'*} = 1 -я 1 (5 * )  =  0,4673.
г) Критерий С1г Мизеса

В соответствии с 3.1.4 вычисляют значение статистики £22 М изеса по формуле (16): S*a = 0,8985.

При таком значении статистики вычисляют вероятность / >{5П> ^ }  = 1 -а 2 (5 'п ) =0 , 4151.
Как видно, при задании уровня значимости а  < 0,2548 (для критерия Смирнова) нет основа­

ний для отклонения проверяемой гипотезы по всем критериям согласия.
Пример 2 Проверяют сложную гипотезу о принадлежности выборки из примера 1 экспоненци-
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альному закону # 0: / ( * )  е х/в°, во е (0> °°)|- Вычисленная по выборке оценка максимального

правдоподобия параметра 0О = 0,4465.
а) Критерий типа Колмогорова
В соответствии с 3.2.1 вычисляют значение статистики типа Колмогорова по формуле (6): 

S k = 0,5188. Из таблицы А.7 находят, что распределение статистики критерия хорошо аппроксими­

руется логарифмически нормальным распределением / (х) = — п = е  <|п* 9|)2/2ео с параметрами
хв(, л/2я

0О = 0,2545; 0, = — 0,3422. При найденном значении статистики по логарифмически нормальному 
закону вычисляют вероятность P{S>S*K) = 0,8914.

б) Критерий типа Смирнова
В соответствии с 3.2.2 вычисляют значение статистики типа Смирнова по формуле (12): 

S*m = 1,0767. Из таблицы А. 11 видно, что распределение статистики критерия аппроксимируется 
логарифмически нормальным распределением с параметрами 0О= 0,6951; 0, = 0,226. При найден­
ном значении статистики вычисляют вероятность P{Sm >5^,} = 0,5866.

в) Критерий типа о>2 Мизеса
В соответствии с 3.2.3 вычисляют значение статистики типа ю2 Мизеса по формуле (16): 

= 0,035. Из таблицы А. 13 видно, что распределение статистики критерия аппроксимируется рас­
пределением Ум-Джонсона с плотностью

/(* )  = в.
Jin tJ(x -  03) 2 + 0 2

ехр- + 0, In X — 0з 
0

Х-03
~®г~

+ 1

2

и параметрами 0О= — 1,8734; 0, = 1,2118; 02 = 0,0223 ; 03 = 0,024. При найденном значении статисти­
ки по распределению ^-Джонсона вычисляют вероятность P{Sa > Sl,}- 0,9027.

г) Критерий типа П2 Мизеса
В соответствии с 3.2.4 вычисляют значение статистики Q2 Мизеса по формуле (16):

Sq — 0,386. Из таблицы А. 17 находят, что распределение статистики критерия аппроксимируется
распределением .5'ц-Джонсона с параметрами 0О= — 2,8653; 0, = 1,422; 02= 0,105; 0, = О,1128. 
При найденном значении статистики по распределению 5ы-Джонсона вычисляют вероятность
Р{5’п >5*}= 0,6808.

По всем критериям согласие выборки с экспоненциальным законом очень хорошее.
Пример 3 Проверяют простую гипотезу о принадлежности выборки нормальному закону. Упо­

рядоченная выборка объемом 100 наблюдений имеет вид:

-0,6679 -0,4652 0,0056 0,0078 0,0167
0,0362 0,1189 0,1556 0,1831 0,2037
0,2829 0,2852 0,3388 0,4264 0,4733
0,4999 0,5093 0,5181 0,5227 0,5281
0,5506 0,5679 0,5849 0,5872 0,6027
0,6052 0,6124 0,6342 0,6616 0,6669
0,6712 0,7245 0,7386 0,7567 0,7992
0,8045 0,8083 0,8151 0,8216 0,8422
0,8472 0,8502 0,8678 0,8699 0,8902
0,8918 0,9037 0,9443 0,9529 0,9535
0,9548 0,9557 0,9632 0,9767 0,9956
0,9992 1,0233 1,0257 1,0574 1,0621
1,0658 1,0706 1,0724 1,1059 1,1172
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1,1447 1,1500 1,1595 1,1836 1,1875
1,1887 1,2143 1,2360 1,2589 1,2754
1,2998 1,3192 1,3288 1,3587 1,3818
1,3998 1,4088 1,4314 1,4337 1,4822
1,4832 1,4958 1,4968 1,5213 1,5249
1,5896 1,6087 1,6425 1,6554 1,6687
1,8223 1,8569 1,8886 2,0460 2,2956

Проверяемая гипотеза имеет вид HQ: /  (х)
еп л/2к

(лг-В|)'

200 при значении параметра в0 = 0,5;

e i =  1-
а) Критерий Колмогорова
В соответствии с 3.1.1 вычисляют значение статистики Колмогорова по формуле (6): 

S*K =  0,7410. При этом значении статистики вычисляют вероятность P{S>S*K} = 1 -  К (S*K) -  0,5741.
б) Критерий Смирнова

В соответствии с 3.1.2 вычисляют значение статистики Смирнова по формуле (12): S*„, -  2,1964.

При этом значении статистики вычисляют вероятность P{Sm >5^,} = e~Sm/2 =  0,3335.
в) Критерий со2 Мизеса

В соответствии с 3.1.3 вычисляют значение статистики со2 Мизеса по формуле (16): 5* = 0,1148.

При этом значении статистики вычисляют вероятность / >{5'(0 >5*} = l - a l ^ * )  = 0,5169.
г) Критерий Q2 Мизеса

В соответствии с 3.1.4 вычисляют значение статистики Q.2 Мизеса по формуле (16): 0,7577.
Полученная при таком значении статистики вероятность равна 0,5126.

Как видно, при задании уровня значимости а  < 0,3335 (для критерия Смирнова) нет основа­
ний для отклонения проверяемой гипотезы по всем критериям согласия.

Пример 4 Проверяют сложную гипотезу о принадлежности выборки из примера 3 нор­

мальному закону распределения. Проверяемая гипотеза имеет вид # 0: / (х) е {— L _ e -(JC-e|) /2й0 (
10„ V2 п

0О е(О,оо),0, е(-«>,оо) | .  Вычисленные по выборке оценки максимального правдоподобия парамет­

ров 0О=  0,4465; 0 ,=  0,9369.
а) Критерий типа Колмогорова
В соответствии с 3.2.1 вычисляют значение статистики типа Колмогорова по формуле (6): 

S*k = 0,5741. Из таблицы А.7 находят, что распределение статистики критерия при вычислении 
оценок максимального правдоподобия двух параметров нормального закона аппроксимируется гам­

ма-распределением / ( х )  = -— !----- (х -0 т )е° _| e“(x_02)/ei с параметрами 0О =  4,9014; 0, =  0,0691;
е 0° г ( 0 о)

02 = 0,2951. При найденном значении статистики по гамма-распределению вычисляют вероятность 

Р {5 > 5 ^ } =  0,6034.
б) Критерий типа Смирнова

В соответствии с 3.2.2 вычисляют значение статистики типа Смирнова по формуле (12): =
= 0,4016. Из таблицы А. И видно, что распределение статистики критерия при вычислении ОМП 
двух параметров нормального закона подчиняется логарифмически нормальному распределению с

11
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параметрами 0О= 0,5436; 0, = 0,1164. При найденном значении статистики вычисляют по логариф­
мически нормальному закону вероятность P{Sm>Sl,} = 0,9708.

в) Критерий типа о 2 Мизеса
В соответствии с 3.2.3 вычисляют значение статистики типа ю2 Мизеса по формуле (16): Л1* =

= 0,0338. Из таблицы А. 13 находят, что распределение статистики критерия при вычислении ОМП 
двух параметров нормального закона подчиняется логарифмически нормальному распределению с 
параметрами 0О = 0,5330; 0, = — 2,9794. При найденном значении статистики вычисляют по лога­
рифмически нормальному закону вероятность />{5’ш>5'*} = 0,7779.

г) Критерий типа Q2 Мизеса
В соответствии с 3.2.4 вычисляют значение статистики Л2 Мизеса по формуле (16): Sq -  0,2394.

Из таблицы А. 17 находят, что распределение статистики критерия подчиняется распределению Su- 
Джонсона с параметрами 0О = — 2,7057; 0, = 1,7154; 02 = 0,1043; 03 = 0,0925. При найденном
значении статистики по распределению бм-Джонсона вычисляют вероятность P{Sa >S^\ = 0,7719.

По всем критериям согласие выборки с нормальным законом очень хорошее.
Пример 5 Проверяют сложную гипотезу о принадлежности выборки двухпараметрическому 

распределению Вейбулла. Упорядоченная выборка объемом 200 наблюдений имеет вид:

0,0999
0,1332
0,1853
0,2244
0,2634
0,2726
0,2858
0,3151
0,3208
0,3398
0,3547
0,3781
0,3988
0,4234
0,4320
0,4739
0,5089
0,5374
0,5716
0,5999
0,6142
0,6354
0,6758
0,7095
0,7479
0,7849
0,8184
0,8295
0,8620
0,9073
0,9589
1,0184
1,1193
1,1485
1,2342

0,1089
0,1356
0,1922
0,2475
0,2642
0,2768
0,2897
0,3151
0,3241
0,3405
0,3548
0,3870
0,4032
0,4236
0,4535
0,4821
0,5106
0,5399
0,5717
0,6010
0,6151
0,6377
0,6853
0,7114
0,7624
0,7915
0,8234
0,8473
0,8706
0,9076
0,9608
1,0287
1,1245
1,1574
1,2618

0,1134
0,1442
0,2071
0,2485
0,2647
0,2796
0,2918
0,3152
0,3305
0,3417
0,3663
0,3918
0,4070
0,4257
0,4599
0,4862
0,5285
0,5505
0,5730
0,6054
0,6252
0,6423
0,6862
0,7140
0,7738
0,8013
0,8250
0,8478
0,8713
0,9128
0,9890
1,0368
1,1245
1,1591
1,2679

0,1160
0,1575
0,2141
0,2551
0,2659
0,2824
0,2957
0,3181
0,3380
0,3441
0,3671
0,3940
0,4110
0,4282
0,4611
0,4885
0,5338
0,5537
0,5821
0,6097
0,6259
0,6520
0,6943
0,7157
0,7748
0,8099
0,8260
0,8480
0,8834
0,9272
0,9922
1,0533
1,1346
1,1669
1,3034

0,1242
0,1819
0,2184
0,2572
0,2668
0,2844
0,3090
0,3187
0,3396
0,3533
0,3734
0,3980
0,4219
0,4305
0,4632
0,4899
0,5361
0,5685
0,5834
0,6120
0,6315
0,6553
0,6987
0,7355
0,7820
0,8111
0,8284
0,8493
0,8846
0,9500
1,0176
1,0538
1,1399
1,1701
1,3503
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1,4257 1,4258 1,4501 1,4617 1,4632
1,4785 1,5091 1,5188 1,5752 1,6154
1,6333 1,6355 1,7139 1,7503 1,7684
1,9291 2,0316 2,0937 2,0948 2,3901
2,5209 2,8097 3,0380 3,0530 6,1251

0  х в ° " 1 г  1

Проверяют Н0: /О О е ]-2—---- ехр{-(* /  0, )0° }, 0О е(О,°°),0, е(0,°°)
е 0

. Вычисленные по выбор­

ке оценки максимального правдоподобия параметров 0О = 1,3734; 0, = 0,8539.
а) Критерий типа Колмогорова 
В соответствии с 3.2.1 вычисляют значение статистики типа Колмогорова по формуле (6):

S*K= 1,2402. Из таблицы А.7 находят, что распределение статистики критерия при вычислении 
оценок максимального правдоподобия двух параметров распределения Вейбулла аппроксимируется 
гамма-распределением с параметрами 0О= 4,9738; 0, = 0,066; 02 = 0,3049. При найденном значении
статистики в соответствии с гамма-распределением вычисляют вероятность P{S>S*K} — 0,00154.
Следовательно, при задании уровня значимости а  > 0,00154 проверяемая гипотеза должна быть 
отклонена.

б) Критерий типа Смирнова
В соответствии с 3.2.2 вычисляют значение статистики типа Смирнова по формуле (12):

S*m = 4,6028. Из таблицы А. 11 находят, что распределение статистики критерия при вычислении
ОМП двух параметров распределения Вейбулла подчиняется логарифмически нормальному распре­
делению с параметрами 0О= 0,1501; 0, = 0,5108. При найденном значении статистики вычисляют в
соответствии с логарифмически нормальным законом вероятность P{Sm>S„} = 0,00352.

в) Критерий типа со2 Мизеса
В соответствии с 3.2.3 вычисляют значение статистики типа со2 Мизеса по формуле (16): 50* =

= 0,347. Из таблицы А.13 находят, что распределение статистики критерия при вычислении ОМП 
двух параметров распределения Вейбулла подчиняется логарифмически нормальному распределе­
нию с параметрами 0О = 0,5379; 0, = — 2,9541. При найденном значении статистики вычисляют в
соответствии с логарифмически нормальным законом вероятность >5*} = 0,00021

г) Критерий типа Q2 Мизеса
В соответствии с 3.2.4 вычисляют значение статистики Q2 Мизеса по формуле (16): Sq = 2,553.

Из таблицы А. 17 находят, что при вычислении ОМП двух параметров распределения Вейбулла 
распределение статистики критерия хорошо аппроксимируется распределением 5и-Джонсона с па­
раметрами 0О= — 2,4622; 0, = 1,6473; 02 = 0,1075 ; 03 = 0,1149. При найденном значении статистики
вычисляют по распределению б'м-Джонсона вероятность P{Sn >Sq} = 0,000066.

Таким образом, по всем критериям выборка плохо согласуется с распределением Вейбулла и 
проверяемая гипотеза должна быть отклонена.

Пример 6 Проверяют сложную гипотезу о принадлежности выборки гамма-распределению с 
параметром формы 0О= 2, параметром сдвига 02 = 0. Упорядоченная выборка объемом 100 наблюде­
ний имеет вид:

0,1006 0,2156 0,2311 0,2925 0,3410
0,3512 0,4028 0,5132 0,5340 0,5409
0,6100 0,6187 0,6204 0,6324 0,6559
0,6743 0,7131 0,7394 0,7779 0,7911
0,7919 0,8068 0,8117 0,8839 0,8996
0,9040 0,9167 0,9210 0,9441 0,9487
1,0274 1,0285 1,0316 1,1102 1,1249
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1,1302 1,1497 1,2345 1,2530 1,2903
1,3136 1,3303 1,3360 1,3405 1,3804
1,4050 1,4117 1,4331 1,4617 1,4991
1,5852 1,6111 1,6175 1,6299 1,6798
1,7159 1,7287 1,7756 1,8505 1,8872
1,8928 1,9605 2,0299 2,1560 2,2548
2,2769 2,2901 2,3020 2,4111 2,4679
2,5302 2,5342 2,6717 2,6789 2,6797
2,8988 2,9230 2,9414 2,9558 3,0030
3,0531 3,1134 3,2002 3,2757 3,3716
3,4342 3,4632 3,5365 3,5753 3,7399
3,9758 4,1776 4,3462 4,3627 4,5000
4,5506 4,7544 4,7859 5,6662 8,2201

Проверяемая гипотеза имеет вид

Я0: f ( x )  е -----1-----( х -е 2)0о -‘ е-(*-°2)/е>, е0 = 2, 0, е(0,~), 02 = 0
[е®° Г (во)

Вычисленная по выборке оценка максимального правдоподобия параметра масштаба в, = 1,02818.
а) Критерий типа Колмогорова
В соответствии с 3.2.5.1 вычисляют значение статистики типа Колмогорова по формуле (6):

S*k = 0,4917. Из таблицы А.21 находят, что распределение статистики критерия при вычислении
ОМП масштабного параметра гамма-распределения подчиняется распределению Л-Джонсона с 
параметрами 0О = — 2,2691; 0, = 2,2383; 02 = 0,2323 ; 03 = 0,3958. При найденном значении статистики
по распределению &/-Джонсона вычисляют вероятность P{S>S^} = 0,9146. Следовательно, согла­
сие очень хорошее и проверяемая гипотеза должна быть принята.

б) Критерий типа Смирнова
В соответствии с 3.2.5.2 вычисляют значение статистики типа Смирнова по формуле (12):

— 0,9419. Из таблицы А.23 находят, что распределение статистики критерия при вычислении
ОМП параметра масштаба гамма-распределения подчиняется распределению Su-Джонсона с пара­
метрами 0О= — 2,5372; 0, = 1,3749; 02 = 0,3464; 03 = 0,2162. При найденном значении статистики по
распределению Л-Джонсона вычисляют вероятность P{Sm>S*m} = 0,6897, значение которой ука­
зывает на хорошее согласие.

в) Критерий типа (о2 Мизеса
В соответствии с 3.2.5.3 вычисляют значение статистики типа со2 Мизеса по формуле (16):

1У*= 0,0475. Из таблицы А.25 находят, что распределение статистики критерия при вычислении
ОМП параметра масштаба гамма-распределения подчиняется распределению Su-Джонсона с пара­
метрами 0О= — 1,6042; 0, = 1,1125; 02 = 0,0027 ; 03 = 0,0281. При найденном значении статистики по
распределению Su-Джонсона вычисляют вероятность P{S<0>Sll} = 0,7498.

г) Критерий типа Q.2 Мизеса
В соответствии с 3.2.5.4 вычисляют значение статистики О2 Мизеса по формуле (16): 

Sq = 0,2675. Из таблицы А.27 находят, что распределение статистики критерия при вычислении 
ОМП параметра масштаба гамма-распределения подчиняется распределению ^и-Джонсона с пара­
метрами 0О= — 2,4667; 0, = 1,418; 02 = 0,1207 ; 03 = 0,1416. При найденном значении статистики по
данному распределению Su-Джонсона вычисляют вероятность P{Sn >Sa\ = 0,8798.

Таким образом, по всем критериям выборка хорошо согласуется с гамма-распределением и 
проверяемая гипотеза должна быть принята.
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Пример 7 Проверяют сложную гипотезу о принадлежности выборки гамма-распределению с 
параметром сдвига 02 = 0. Упорядоченная выборка объемом 100 наблюдений имеет вид:

0,0002 0,0004 0,0009 0,0019 0,0020
0,0025 0,0028 0,0030 0,0031 0,0040
0,0044 0,0054 0,0057 0,0068 0,0076
0,0081 0,0084 0,0090 0,0101 0,0119
0,0130 0,0162 0,0190 0,0201 0,0206
0,0237 0,0293 0,0312 0,0427 0,0431
0,0441 0,0452 0,0481 0,0492 0,0498
0,0517 0,0517 0,0552 0,0558 0,0638
0,0671 0,0714 0,0806 0,0815 0,0965
0,0987 0,1005 0,1055 0,1255 0,1307
0,1312 0,1324 0,1353 0,1411 0,1446
0,1524 0,1594 0,1678 0,1754 0,1767
0,1799 0,1838 0,1994 0,2116 0,2159
0,2162 0,2238 0,2242 0,2329 0,2545
0,2782 0,2900 0,2929 0,2967 0,3006
0,3084 0,3200 0,3262 0,3286 0,3473
0,3488 0,3608 0,3905 0,3961 0,4132
0,4294 0,4385 0,4557 0,4629 0,4699
0,5041 0,5096 0,6121 0,6146 0,6415
0,7359 0,9762 1,1460 1,1494 1,6170

Проверяемая гипотеза имеет вид

Я0: f ( x )  е -----( х -0 2)0о - ' , 0О = е(0,~), 0, е (0,~), 02 = 0 .
[е®° г(е0) J

Вычисленные по выборке ОМП параметров формы и масштаба соответственно равны 0Ц = 0,5812;

0, = 2,7391. В таблицах А.21 — А.28 ближайшее значение параметра формы 0О= 0,5.
а) Критерий типа Колмогорова
В соответствии с 3.2.5.1 вычисляют значение статистики типа Колмогорова по формуле (6):

S*k = 0,6272. Из таблицы А.21 находят, что распределение статистики критерия при вычислении
ОМП параметров формы и масштаба гамма-распределения при 0О = 0,5 подчиняется распределению 
Ум-Джонсона с параметрами 0О = — 2,8715; 0( = 2,5280; 02 = 0,2325 ; 03 = 0,3296. При найденном
значении статистики по данному распределению Ли-Джонсона вычисляют вероятность P{S>S*k ) =

— 0,5699. Так как оценка параметра формы больше 0,5, то при 0О = 0,5812 P{S>S*K} > 0,5699.
Следовательно, проверяемая гипотеза должна быть принята.

б) Критерий типа Смирнова
В соответствии с 3.2.5.2 вычисляют значение статистики типа Смирнова по формуле (12):

S*m = 1,1526. Из таблицы А.23 находят, что распределение статистики критерия при вычислении
ОМП параметров формы и масштаба гамма-распределения при 0О= 0,5 подчиняется распределению 
Ли-Джонсона с параметрами 0О = — 2,4027; 0, = 1,3861; 02 = 0,3389; 03 = 0,2290. При найденном 
значении статистики по данному распределению Ли-Джонсона вычисляют, что вероятность

> 0,5031.
в) Критерий типа ю2 Мизеса
В соответствии с 3.2.5.3 вычисляют значение статистики типа со2 Мизеса по формуле (16): 

Л* = 0,0561. Из таблицы А.25 находят, что распределение статистики критерия при вычислении
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ОМП параметров формы и масштаба гамма-распределения при 60= 0,5 подчиняется распределению 
.Sw-Джонсона с параметрами 0О= — 1,5811; 0, = 1,1193; 02 = 0,0164; 03 = 0,0243. При найденном 
значении статистики по данному распределению Л-Джонсона вычисляют, что вероятность
P{SW>S^} > 0,4985.

г) Критерий типа С12 Мизеса
В соответствии с 3.2.5.4 вычисляют значение статистики Q2 Мизеса по формуле (16):

Sq = 0,3746. Из таблицы А.27 находят, что распределение статистики критерия при вычислении
ОМП параметров формы и масштаба гамма-распределения при 0О= 0,5 подчиняется распределению 
^м-Джонсона с параметрами 0О = — 2,6917; 0, = 1,6334; 02 = 0,0970; 03 = 0,1067. При найденном 
значении статистики по данному распределению &/-Джонсона вычисляют, что вероятность

> 0,4400.
Таким образом, по всем критериям выборка хорошо согласуется с гамма-распределением и 

проверяемая гипотеза должна быть принята.
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ТАБЛИЦЫ

распределений статистик непараметрических критериев согласия 
при простых и сложных гипотезах

Т а б л и ц а  АЛ — Функция распределения статистики Колмогорова К (S) при проверке простой гипотезы

S 0 1 2 3 4 5 6 7 8 9

0,2 0,000000 000000 000000 000000 000000 000000 000000 000000 000001 000004
0,3 0,000009 000021 000046 000091 000171 000303 000511 000826 001285 001929
0,4 0,002808 003972 005476 007377 009730 012589 016005 020022 024682 030017

0,5 0,036055 042814 050306 058534 067497 077183 087577 098656 110394 122760
0,6 0,135718 149229 163255 177752 192677 207987 223637 239582 255780 272188
0,7 0,288765 305471 322265 339114 355981 372833 389640 406372 423002 439505
0,8 0,455858 472039 488028 503809 519365 534682 549745 564545 579071 593315
0,9 0,607269 620928 634285 647337 660081 672515 684836 696445 707941 719126
1,0 0,730000 740566 750825 760781 770436 779794 788860 797637 806130 814343

5,1 0,822282 829951 837356 844502 851395 858040 864443 870610 876546 882258
1,2 0,887750 893030 898102 903973 907648 912134 916435 920557 924506 928288
1,3 0,931908 935371 938682 941847 944871 947758 950514 953144 955651 958041
1,4 0,960318 962487 964551 966515 968383 970159 971846 973448 974969 976413
1,5 0,977782 979080 980310 981475 982579 983623 984610 985544 986427 987261
1,6 0,988048 988791 989492 990154 990777 991364 991917 992438 992928 993389
1,7 0,993823 994230 994612 994972 995309 995625 995922 996200 996460 996704
1,8 0,996932 997146 997346 997533 997707 997870 998023 998165 998297 998421
1,9 0,998536 998644 998744 998837 998924 999004 999079 999149 999213 999273
2,0 0,999329 999381 999429 999473 999514 999553 999588 999620 999651 999679
2,1 0,999705 999728 999750 999771 999790 999807 999823 999837 999851 999863
2,2 0,999874 999886 999895 999904 999912 999920 999927 999933 999939 999944
2,3 0,999949 999954 999958 999961 999965 999968 999971 999974 999976 999978
2,4 0,999980 999982 999984 999985 999987 999988 999989 999990 999991 999992

Т а б л и ц а  А.2 — Процентные точки распределения статистики Колмогорова при проверке простой гипотезы
Функция

распределения
Верхние процентные точки

0,15 0,1 0,05 0,025 0,01

K ( S ) 1,1379 1,2238 1,3581 1,4802 1,6276
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Т а б л и ц а  А.З — Функция распределения статистики со2 Мизеса а\ (S ) при проверке простой гипотезы

5 0 1 2 3 4 5 6 7 8 9

0,0 0,00000 00001 00300 02568 06685 12372 18602 24844 30815 36386
0,1 0,41513 46196 50457 54329 57846 61042 63951 66600 69019 71229
0,2 0,73253 75109 76814 78383 79829 81163 82396 83536 84593 85573
0,3 0,86483 87329 88115 88848 89531 90167 90762 91317 91836 92321
0,4 0,92775 93201 93599 93972 94323 94651 94960 95249 95521 95777
0,5 0,96017 96242 96455 96655 96843 97020 97186 97343 97491 97630
0,6 0,97762 97886 98002 98112 98216 98314 98406 98493 98575 98653
0,7 0,98726 98795 98861 98922 98981 99036 99088 99137 99183 99227
0,8 0,99268 99308 99345 99380 99413 99444 99474 99502 99528 99553
0,9 0,99577 99599 99621 99641 99660 99678 99695 99711 99726 99740
1,0 0,99754 99764 99776 99787 99799 99812 99820 99828 99837 99847

U 0,99856 99862 99869 99876 99883 99890 99895 99900 99905 99910
1,2 0,99916 99919 99923 99927 99931 99935 99938 99941 99944 99947
1,3 0,99950 99953 99955 99957 99959 99962 99964 99965 99967 99969
1,4 0,99971 99972 99973 99975 99976 99978 99978 99979 99980 99980

Т а б л и ц а  А.4 — Процентные точки распределения статистики со2 Мизеса при проверке простой гипотезы

Функция
распределения

Верхние процентные точки
0,15 0,1 0,05 0,025 0,01

а\ (S ) 0,2841 0,3473 0,4614 0,5806 0,7434

Т а б л и ц а А.5 — Функция распределения статистики ii2 Мизеса (Андерсона — Дарлинга) а2 (5) при 
проверке простой гипотезы

S 0 1 2 3 4 5 6 7 8 9

0,0 0,00000 00000 00000 00000 00000 00000 00000 00000 00000 00001
0,1 0,00003 00008 00020 00043 00081 00141 00228 00349 00508 00710
0,2 0,00959 01256 01605 02005 02457 02961 03514 04115 04762 05453
о,з 0,06184 06954 07759 08596 09463 10356 11273 12211 13168 14140
0,4 0,15127 16124 17132 18146 19166 20190 21217 22244 23271 24296
0,5 0,25319 26337 27351 28359 29360 30355 31342 32320 33290 34250
0,6 0,35200 36141 37071 37991 38900 39798 40684 41560 42424 43277
0,7 0,44118 44947 45765 46572 47367 48150 48922 49683 50432 51170
0,8 0,51897 52613 53318 54012 54695 55368 56030 56682 57324 57956

0,9 0,58577 59189 59791 60383 60966 61540 62104 62660 63206 63744

1,0 0,64273 64794 65306 65811 66307 66795 67275 67748 68213 68670

1,1 0,69120 69563 69999 70428 70851 71266 71675 72077 72473 72863

1,2 0,73247 73624 73996 74361 74721 75075 75424 75767 76105 76438

1,3 0,76765 77088 77405 77717 78025 78328 78626 78919 79209 79493
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Окончание таблицы  А .5

5 0 1 2 3 4 5 6 7 8 9

1,4 0,79773 80049 80321 80589 80852 81112 81368 81620 81868 82112
1,5 0,82352 82589 82823 83053 83279 83503 83723 83939 84153 84363
1,6 0,84570 84774 84975 85173 85369 85561 85751 85938 86122 86303
1,7 0,86482 86659 86832 87004 87173 87339 87503 87665 87824 87981
1,8 0,88136 88289 88439 88588 88734 88878 89021 89161 89299 89435
1,9 0,89570 89703 89833 89962 90089 90215 90338 90460 90581 90699
2,0 0,90816 90932 91046 91158 91269 91378 91486 91592 91697 91800
2,1 0,91902 92003 92102 92200 92297 92392 92486 92579 92671 92761
2,2 0,92851 92939 93025 93111 93196 93279 93361 93443 93523 93602
2,3 0,93680 93757 93833 93908 93983 94056 94128 94199 94269 94339
2,4 0,94407 94475 94542 94608 94673 94737 94800 94863 94925 94986
2,5 0,95046 95105 95164 95222 95279 95336 95391 95446 95501 95554
2,6 0,95607 95660 95711 95762 95813 95862 95912 95960 96008 96055
2,7 0,96102 96148 96194 96239 96283 96327 96370 96413 96455 96497
2,8 0,96538 96579 96619 96659 96698 96737 96775 96813 96850 96887
2,9 0,96923 96959 96995 97030 97064 97099 97132 97166 97199 97231
з,о 0,97263 97295 97327 97358 97388 97419 97449 97478 97507 97536
3,1 0,97565 97593 97621 97648 97675 97702 97729 97755 97781 97806
3,2 0,97831 97856 97881 97905 97929 97953 97977 98000 98023 98046
3,3 0,98068 98090 98112 98134 98155 98176 98197 98217 98238 98258
3,4 0,98278 98297 98317 98336 98355 98374 98392 98410 98429 98447
3,5 0,98464 98482 98499 98516 98533 98549 98566 98582 98598 98614
3,6 0,98630 98645 98660 98676 98691 98705 98720 98734 98749 98763
3,7 0,98777 98791 98804 98818 98831 98844 98857 98870 98883 98895
3,8 0,98908 98920 98932 98944 98956 98968 98979 98991 99002 99013
3,9 0,99024 99035 99046 99057 99067 99078 99088 99098 99108 99118
4,0 0,99128 99221 99303 99377 99442 99501 99553 99600 99642 99679
5,0 0,99713 99742 99769 99793 99814 99834 99851 99866 99880 99892
6,0 0,99903 99913 99922 99930 99937 99944 99949 99954 99959 99963
7,0 0,99967 99970 99973 99976 99978 99981 99983 99984 99986 99987
8,0 0,99989 99990 99991 99992 99993 99993 99994 99995 99995 99996
9,0 0,99996 — — - - - - — — —

Т а б л и ц а  А.6 — Процентные точки распределения статистики £22 Мизеса (Андерсона — Дарлинга) при 
проверке простой гипотезы

Функция
распределения

Верхние процентные точки
0,15 0,1 0,05 0,025 0,01

«2 (S) 1,6212 1,9330 2,4924 3,0775 3,8781
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Т а б л и ц а  А.7 — Аппроксимация предельных распределений статистики Колмогорова при использовании 
метода максимального правдоподобия

Распределение случайной 
величины

При оценивании
только масштабного пара­

метра
только параметра сдвига двух параметров

Экспоненциальное In N  (—0,3422; 0,2545) — —

Полунормальное Y (4,1332; 0,1076; 0,3205) — —
Рэлея In TV (—0,3388; 0,2621) — —
Максвелла In N  ( -0 ,3 4 6 1 ;  0,2579) — —
Лапласа у(4 ,0038; 0,1269; 0,3163) Y (4,6474; 0,0870; 0 ,3091) 

In ЛГ ( -0 ,3 6 9 0 ;  0,2499)
Y(4,4525; 0,0761; 0,3252) 
In А/ (—0,4358; 0,2276)

Нормальное Y (4,1492; 0,1259; 0,3142) In N  ( -0 ,4 1 3 8 ;  0,2289) Y (4,9014; 0,0691; 0 ,2951) 
In N  ( -0 ,4 8 2 5 ;  0,2296)

Логнормальное Y (4,3376; 0,1265; 0,2890) Su(—2,0328; 2,3642; 0,2622; 
0,4072)

Su(— 1,8093; 1,9041; 0,1861; 
0,4174)

Коши Su ( - 3 , 3 2 7 8 ;  2 ,2 5 2 9 ;  
0,2185; 0,2858)

Y (4,8247; 0,0874; 0,2935) In N  ( -0 ,5 3 0 2 ;  0,2427)

Логистическое Y (3,5345; 0,1385; 0,339) Su(—2,8534; 3,0657; 0,2872; 
0,3199)

In N  ( -0 ,5 6 1 1 ;  0,2082)

Наибольшего значения Y (3,4689; 0,1384; 0,3543) Y (4,1008; 0,0997; 0 ,3269) Y (4,9738; 0,0660; 0 ,3049)

Наименьшего значения Y(3,4689; 0,1384; 0,3543) Y(4,1008; 0,0997; 0 ,3269) Y (4,9738; 0,0660; 0 ,3049)

Вейбулла Y(3,4689; 0,1384; 0 ,3543)» Y(4,1008; 0,0997; 0 ,3269)2> Y(4,9738; 0,0660; 0,3049)

IJ Оценивали параметр формы распределения Вейбулла.
2) Оценивали параметр масштаба распределения Вейбулла.

Т а б л и ц а  А.8 — Процентные точки распределения статистики Колмогорова при использовании метода 
максимального правдоподобия

Распределение 
случайной величины

Оцениваемый Верхние процентные точки
параметр 0,15 0,1 0,05 0,025 0,01

Экспоненциальное Масштабный 0,9246 0,9841 1,0794 1,1695 1,2838
Полунормальное Масштабный 0,9857 1,0584 1,1752 1,2853 1,4241
Рэлея Масштабный 0,9338 0,9954 1,0944 1,1881 1,3072
Максвелла Масштабный 0,9242 0,9845 1,0812 1,1728 1,2890

Масштабный 1,0800 1,1647 1,3009 1,4296 1,5918
Лапласа Сдвиг 0,9015 0,9612 1,0547 1,1426 1,2538

Два параметра 0,8216 0,8710 0,9497 1,0248 1,1206
Масштабный 1,0951 1,1803 1,3171 1,4462 1,6087

Нормальное Сдвиг 0,8381 0,8865 0,9634 1,0354 1,1260
Два параметра 0,7895 0,8333 0,9042 0,9723 1,0599
Масштабный 1,1037 1,1907 1,3303 1,4618 1,6272

Логнормальное Сдвиг 0,8516 0,9076 1,0006 1,0927 1,2151
Два параметра 0,8113 0,8708 0,9731 1,0782 1,2234
Масштабный 1,0281 1,1169 1,2669 1,4176 1,6209

Коши Сдвиг 0,9096 0,9722 1,0723 1,1663 1,2842
Два параметра 0,7568 0,8032 0,8772 0,9469 1,0350
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Окончание таблицы А.8
Распределение 

случайной величины
Оцениваемый

параметр
Верхние процентные точки

0,15 0,1 0,05 0,025 0,01

Логистическое
Масштабный 1,0895 1,1777 1,3201 1,4552 1,6262
Сдвиг 0,7903 0,8359 0,9096 0,9803 1,0713
Два параметра 0,7080 0,7451 0,8036 0,8581 0,9261

Наибольшего значения
Масштабный 1,0925 1,1800 1,3215 1,4557 1,6257
Сдвиг 0,9391 1,0062 1,1141 1,2159 1,3442
Два параметра 0,7825 0,8304 0,9069 0,9786 1,0684

Наименьшего значения
Масштабный 1,0925 1,1800 1,3215 1,4557 1,6257
Сдвиг 0,9391 1,0062 1,1141 1,2159 1,3442
Два параметра 0,7825 0,8304 0,9069 0,9786 1,0684

Вейбулла
Формы 1,0925 1,1800 1,3215 1,4557 1,6257
Масштаба 0,9391 1,0062 1,1141 1,2159 1,3442
Два параметра 0,7825 0,8304 0,9069 0,9786 1,0684

Т а б л и ц а  А.9 — Аппроксимация предельных распределений минимума статистики Колмогорова (при 
использовании Ш)-оценок, минимизирующих статистику SK)

Распределение случайной 
величины

При оценивании
только масштабного 

параметра
только параметра сдвига двух параметров

Экспоненциальное у(4,4983; 0,0621; 0,2891) — —
Полунормальное 7(4,2884; 0,0705; 0,3072) — —
Рэлея 7(4,8579; 0,0639; 0,2900) — —
Максвелла 7(5,3106; 0,0581; 0,2865) - —
Лапласа 7(3,0431; 0,1355; 0,3182) 7(5,0103; 0,0602; 0,2968) 

In N (—0,5358; 0,2122)
Su(—2,1079; 2,4629; 0,1661; 
0,3340)
In N (-0,6970; 0,1952)

Нормальное 7(3,2458; 0,1343; 0,3072) In N (-0,5469; 0,2152) In TV (—0,7236; 0,1837)

Логнормальное 7(3,2458; 0,1343; 0,3072) In N  (—0,5469; 0,2152) In N (—0,7236; 0,1837)

Коши 7(3,4398; 0,1255; 0,3022) In N  (—0,5182; 0,2268) Su(—1,6929; 2,5234; 0,1892; 
0,3607)
In TV (—0,6946; 0,1938)

Логистическое Su(-2,6522;1,8288; 0,1738; 
0,3384)
7(3,6342; 0,1284; 0,2772)

Su(—3,8497; 3,2770; 0,2136; 
0,2607)
In AT (-0,5511; 0,2045)

In N (-0,7389; 0,1771)
Su(—2,5093; 3,1277; 0,1932; 
0,3041)

Наибольшего значения 7(3,5424; 0,1203; 0,2975) Su(—1,9028; 2,3972; 0,2227; 
0,389)

Su(—1,3144; 2,2480; 0,1616; 
0,3858)
In N (—0,7174; 0,1841)

Наименьшего значения 7(3,5424; 0,1203; 0,2975) Su(—1,9028; 2,3972; 0,2227; 
0,389)

Su(—1,3144; 2,2480; 0,1616; 
0,3858)
In N (—0,7174; 0,1841)

Вейбулла 7(3,5424; 0,1203; 0,2975)'» S u (-1,9028; 2,3972; 0,2227; 
0,389)2>

Su(—1,3144; 2,2480; 0,1616; 
0,3858)
In TV (-0.7174; 0.1841)

11 Оценивали параметр формы распределения Вейбулла.
2> Оценивали параметр масштаба распределения Вейбулла.
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Т а б л и ц а  А. 10 — Процентные точки распределения минимума статистики Колмогорова (при исполь­
зовании Л//)-оценок, минимизирующих статистику SK)

Распределение 
случайной величины

Оцениваемый
параметр

Верхние процентные точки
0,15 0,1 0,05 0,025 0,01

Экспоненциальное Масштабный 0,7016 0,7449 0,8143 0,8796 0,9617
Полунормальное Масштабный 0,7569 0,8052 0,8826 0,9557 1,0476
Рэлея Масштабный 0,7429 0,7888 0,8622 0,9310 1,0174
Максвелла Масштабный 0,7308 0,7740 0,8429 0,9073 0,9879

Лапласа
Масштабный 0,9660 1,0477 1,1803 1,3067 1,4674
Сдвиг 0,7353 0,7791 0,8490 0,9145 0,9967
Два параметра 0,6085 0,6419 0,6970 0,7512 0,8229

Нормальное
Масштабный 0,9847 1,0676 1,2018 1,3295 1,4915
Сдвиг 0,7234 0,7625 0,8245 0,8824 0,9548
Два параметра 0,5867 0,6137 0,6561 0,6952 0,7436

Логнормальное
Масштабный 0,9847 1,0676 1,2018 1,3295 1,4915
Сдвиг 0,7234 0,7625 0,8245 0,8824 0,9548
Два параметра 0,5867 0,6137 0,6561 0,6952 0,7436

Коши
Масштабный 0,9669 1,0460 1,1739 1,2953 1,4491
Сдвиг 0,7534 0,7965 0,8649 0,9290 1,0095
Два параметра 0,6076 0,6391 0,6906 0,7408 0,8067

Логистическое
Масштабный 0,9971 1,0807 1,2336 1,3532 1,4876
Сдвиг 0,7110 0,7496 0,8119 0,8714 0,9477
Два параметра 0,5739 0,5993 0,6392 0,6758 0,7212

Наибольшего значения
Масштабный 0,9505 1,0272 1,1510 1,2684 1,4170
Сдвиг 0,7358 0,7798 0,8528 0,9246 1,0199
Два параметра 0,5874 0,6168 0,6656 0,7138 0,7780

Наименьшего значения
Масштабный 0,9505 1,0272 1,1510 1,2684 1,4170
Сдвиг 0,7358 0,7798 0,8528 0,9246 1,0199
Два параметра 0,5874 0,6168 0,6656 0,7138 0,7780

Вейбулла
Формы 0,9505 1,0272 1,1510 1,2684 1,4170
Масштаба 0,7358 0,7798 0,8528 0,9246 1,0199
Два параметра 0,5874 0,6168 0,6656 0,7138 0,7780

Т а б л и ц а  А. 11— Аппроксимация предельных распределений статистики Смирнова при использовании 
метода максимального правдоподобия

Распределение случайной 
величины

При оценивании
только масштабного пара­

метра
только параметра сдвига двух параметров

Экспоненциальное In N (0,2260; 0,6951) — —
Полунормальное In N (0,2050; 0,7718) — —
Рэлея In N (0,2248; 0,7248) — —
Максвелла In N (0,2462; 0,6779) — —
Лапласа y(0,8539; 1,9952; 0,0000) 7(1,7941; 0,8324; 0,0149) 7(1,7071; 0,7234; 0,0170)
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Окончание таблицы А.11
Распределение случайной 

величины
При оценивании

только масштабного пара­
метра

только параметра сдвига двух параметров

Нормальное у (0,8700; 2,0786; 0,0004) 7(2,6428; 0,5089; 0,2056) 
In N (0,2992; 0,5298)

In N (0,1164; 0,5436)

Логнормальное у(0,8231; 2,1973; 0,0001) Su(—2,5588; 1,6251; 0,4763; 
0,2134)

Su(—2,2909; 1,3491; 0,3115; 
0,3134)

Коши 7(0,8839; 1,7507; 0,0019) 7(1,4108; 1,0209; 0,0004) 7(1,3546; 0,7565; 0,0005)
Логистическое 7(0,8376; 2,1815; 0,0001) Su(-2,9441; 1,7404; 0,3783; 

0,3082)
In N (0,0831; 0,4473)

Наибольшего значения 7(0,8856; 2,0700; 0,0002) In N (0,2414; 0,7017) In N (0,1501; 0,5108)
Наименьшего значения 7(0,8856; 0,4831; 0,0002) In TV (0,2414; 0,7017) In iV (0,1501; 0,5108)
Вейбулла 7(0,8856; 0,4831; 0,0002)') In N (0,2414; 0,7017)2> In TV (0,1501; 0,5108)

0 Оценивали параметр формы распределения Вейбулла.
2) Оценивали параметр масштаба распределения Вейбулла.

Т а б л и ц а  А.12 — Процентные точки распределения статистики Смирнова при использовании метода 
максимального правдоподобия

Распределение 
случайной величины

Оцениваемый Верхние процентные точки
параметр 0,15 0,1 0,05 0.025 0,01

Экспоненциальное Масштабный 2,5765 3,0551 3,9327 4,8958 6,3157
Полунормальное Масштабный 2,7317 3,3006 4,3688 5,5717 7,3926
Рэлея Масштабный 2,6538 3,1698 4,1247 5,1830 6,7594
Максвелла Масштабный 2,5826 3,0495 3,9011 4,8301 6,1918

Масштабный 3,3122 4,0778 5,3989 6,7310 8,5032
Лапласа Сдвиг 2,5343 2,9829 3,8007 4,6556 5,8229

Два параметра 2,1134 2,4340 3,0160 3,6227 4,4495
Масштабный 3,5063 4,3091 5,6929 7,0868 8,9396

Нормальное Сдвиг 2,3656 2,6880 3,2205 3,7406 4,4163
Два параметра 1,9860 2,2855 2,8102 3,3438 4,0581
Масштабный 3,5354 4,3677 5,8074 7,2619 9,1998

Логнормальное Сдвиг 2,3633 2,7212 3,3595 4,0397 5,0141
Два параметра 2,1348 2,5025 3,1850 3,9446 5,0813
Масштабный 2,9947 3,6746 4,8455 6,0239 7,5894

Коши Сдвиг 2,5803 3,0471 3,8305 4,6011 5,6065
Два параметра 1,8488 2,1898 2,7633 3,3284 4,0668
Масштабный 3,5929 4,4877 6,0215 7,2637 8,7397

Логистическое Сдвиг 2,1515 2,4357 2,9366 3,4632 4,2073
Два параметра 1,7275 1,9277 2,2679 2,6112 3,0761
Масштабный 3,5448 4,3493 5,7346 7,1286 8,9804

Наибольшего значения Сдвиг 2,5565 3,0364 3,9180 4,8877 6,3205
Два параметра 1,9729 2,2361 2,692 3,1621 3,8129
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Окончание таблицы А. 12
Распределение 

случайной величины
Оцениваемый

параметр
Верхние процентные точки

0,15 0,1 0,05 0,025 0,01

Наименьшего значения
Масштабный 3,5448 4,3493 5,7346 7,1286 8,9804
Сдвиг 2,5565 3,0364 3,9180 4,8877 6,3205
Два параметра 1,9729 2,2361 2,692 3,1621 3,8129

Вейбулла
Формы 3,5448 4,3493 5,7346 7,1286 8,9804
Масштаба 2,5565 3,0364 3,9180 4,8877 6,3205
Два параметра 1,9729 2,2361 2,692 3,1621 3,8129

Т а б л и ц а  А. 13 — Аппроксимация предельных распределений статистики со2 Мизеса при использовании 
метода максимального правдоподобия

Распределение случайной 
величины

При оценивании
только масштабного пара­

метра
только параметра сдвига двух параметров

Экспоненциальное Su(—1,8734; 1,2118; 0,0223; 
0,0240)

— —

Полунормальное S1 (0,9735; 1,1966; 0,1531; 
0,0116)

— —

Рэлея Su(—1,5302; 1,0371; 0,0202; 
0,0299)

— —

Максвелла Su(—2,0089; 1,2557; 0,0213; 
0,0213)

- —

Лапласа SI(1,0274; 1,0675; 0,2305; 
0,0120)

Su(—2,0821; 1,2979; 0,0196; 
0,0200)

S u (-1,6085; 1,2139; 0,0171; 
0,0247)

Нормальное SI(1,2532; 1,0088; 0,3066; 
0,0130)

In N (-2,7500; 0,5649) In TV (—2,9794; 0,5330)

Логнормальное SI(1,0341; 1,1919; 0,2491; 
0,0035)

In jV (—2,7271; 0,6092) S u (-1,6292; 1,1541; 0,0144; 
0,0234)

Коши SI(1,0341; 1,1137; 0,2313; 
0,0041)

Sl(l, 1230; 1,2964; 0,1383; 
0,0105)

SI(1,2420; 1,2833; 0,1135; 
0,0064)

Логистическое SI(1,0289; 1,0666; 0,2385; 
0,0110)

SI(1,3982; 1,3804; 0,1205; 
0,0102)

In TV (—3,1416; 0,4989)

Наибольшего значения SI (1,0294; 1,0781; 0,2381; 
0,0120)

In TV (—2,5818; 0,6410) In N (-2,9541; 0,5379)

Наименьшего значения SI(1,0294; 1,0781; 0,2381; 
0,0120)

In IV (—2,5818; 0,6410) In N (-2,9541; 0,5379)

Вейбулла SI (1,0294; 1,0781; 0,2381; 
0,0120)»

In TV (—2,5818; 0,6410)2> In A (-2,9541; 0,5379)

11 Оценивали параметр формы распределения Вейбулла.
2) Оценивали параметр масштаба распределения Вейбулла.
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Т а б л и ц а  А. 14 — Процентные точки распределения статистики со2 Мизеса при использовании метода 
максимального правдоподобия

Распределение 
случайной величины

Оцениваемый
параметр

Верхние процентные точки
0,15 0,1 0,05 0,025 0,01

Экспоненциальное Масштабный 0,1461 0,1738 0,2267 0,2872 0,3804
Полунормальное Масштабный 0,1730 0,2097 0,2799 0,3607 0,4858
Рэлея Масштабный 0,1490 0,1812 0,2452 0,3219 0,4458
Максвелла Масштабный 0,1408 0,1669 0,2162 0,2720 0,3573

Лапласа
Масштабный 0,2672 0,3447 0,4572 0,5570 0,6608
Сдвиг 0,1276 0,1504 0,1932 0,2418 0,3173
Два параметра 0,0998 0,1171 0,1504 0,1893 0,2529

Нормальное
Масштабный 0,2470 0,3035 0,4128 0,5397 0,7382
Сдвиг 0,1148 0,1319 0,1619 0,1934 0,2379
Два параметра 0,0883 0,1006 0,1221 0,1445 0,1756

Логнормальное
Масштабный 0,2531 0,3101 0,4193 0,5452 0,7401
Сдвиг 0,1230 0,1428 0,1782 0,2159 0,2699
Два параметра 0,0952 0,1125 0,1458 0,1845 0,2449

Коши

Масштабный 0,2359 0,2929 0,4044 0,5353 0,7422
Сдвиг 0,1399 0,1668 0,2173 0,2743 0,3604
Два параметра 0,1031 0,1235 0,1618 0,2050 0,2706

Логистическое

Масштабный 0,2612 0,3257 0,4368 0,5392 0,7617
Сдвиг 0,1029 0,1209 0,1543 0,1912 0,2462
Два параметра 0,0725 0,0819 0,0982 0,1149 0,1379

Наибольшего значения

Масштабный 0,2628 0,3226 0,4266 0,5461 0,7174
Сдвиг 0,1470 0,1720 0,2171 0,2657 0,3360
Два параметра 0,0910 0,1039 0,1263 0,1496 0,1822

Наименьшего значения

Масштабный 0,2628 0,3226 0,4266 0,5461 0,7174
Сдвиг 0,1470 0,1720 0,2171 0,2657 0,3360
Два параметра 0,0910 0,1039 0,1263 0,1496 0,1822

Вейбулла

Формы 0,2628 0,3226 0,4266 0,5461 0,7174
Масштаба 0,1470 0,1720 0,2171 0,2657 0,3360
Два параметра 0,0910 0,1039 0,1263 0,1496 0,1822

Т а б л и ц а  А. 15 — Аппроксимация предельных распределений минимума статистики со2 Мизеса (при 
использовании MD-оценок, минимизирующих статистику S^)

Распределение случайной 
величины

При оценивании
только масштабного пара­

метра
только параметра сдвига двух параметров

Экспоненциальное Su(—1,9324; 1,1610; 0,0134; 
0,0203)

— —

Полунормальное Su(—1,5024; 1,0991; 0,0173; 
0,0256)

— —

Рэлея Su(—1,4705; 1,1006; 0,0164; 
0,0259)

— —
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Окончание таблицы А. 15
Распределение случайной 

величины
При оценивании

только масштабного пара­
метра

только параметра сдвига двух параметров

Максвелла Su(—1,7706; 1,2978; 0,0188; 
0,0220)

— —

Лапласа Sl(l,0117; 0,9485; 0,2162; 
0,0137)

In N  (-2,8601; 0,5471) In N (-3,2853; 0,4666)

Нормальное Sl(l,0477; 0,9883; 0,2356; 
0,0112)

In N  (-2,8649; 0,5668) In N (-3,2715; 0,4645)

Логнормальное SI(1,0477; 0,9883; 0,2356; 
0,0112)

In N  (-2,8649; 0,5668) In N (-3,2715, 0,4645)

Коши SI(1,2759; 1,0437; 0,2825; 
0,0089)

In N (—2,8577; 0,5739) In N (-3,2603; 0,4874)

Логистическое SI(1,0898; 1,0225; 0,2399; 
0,0096)

In N  (-2,8831; 0,5367) In TV (—3,2915; 0,4592)

Наибольшего значения SI( 1,0771; 1,0388; 0,2065; 
0,0109)

Su(—1,5348; 1,1226; 0,0166; 
0,0252)

Su(—1,5326; 1,4446; 0,0147: 
0,0188)
In N (-3,2627; 0,4680)

Наименьшего значения SI(1,0771; 1,0388; 0,2065; 
0,0109)

S u ( -1,5348; 1,1226; 0,0166; 
0,0252)

S u ( - 1,5326; 1,4446; 0,0147: 
0,0188)
In TV (—3,2677; 0,4680)

Вейбулла SI( 1,0771; 1,0388; 0,2065; 
0,0109)0

S u (-1,5348; 1,1226; 0,0166;
0,0252)2)

S u ( - 1,5326; 1,4446;0,0147: 
0,0188)
In TV (—3,2627; 0,4680)

0 Оценивали параметр формы распределения Вейбулла.
2) Оценивали параметр масштаба распределения Вейбулла.

Т а б л и ц а  А. 16 — Процентные точки распределения минимума статистики со2 Мизеса (при использовании 
MD-оценок, минимизирующих статистику Sb)

Распределение Оцениваемый Верхние процентные точки
случайной величины параметр 0,15 0,1 0,05 0,025 0,01

Экспоненциальное Масштабный 0,1062 0,1266 0,1659 0,2115 0,2826
Полунормальное Масштабный 0,1119 0,1338 0,1767 0,2271 0,3071

Рэлея Масштабный 0,1051 0,1252 0,1645 0,2107 0,2839
Максвелла Масштабный 0,1027 0,1198 0,1520 0,1880 0,2425

Масштабный 0,2471 0,2994 0,4079 0,5035 0,6253
Лапласа Сдвиг 0,1010 0,1154 0,1408 0,1673 0,2045

Два параметра 0,0607 0,0681 0,0806 0,0934 0,1108
Масштабный 0,2558 0,3120 0,4253 0,5524 0,6935

Нормальное Сдвиг 0,1025 0,1178 0,1448 0,1731 0,2130
Два параметра 0,0614 0,0688 0,0815 0,0943 0,1118

Масштабный 0,2558 0,3120 0,4253 0,5524 0,6935
Логнормальное Сдвиг 0,1025 0,1178 0,1448 0,1731 0,2130

Два параметра 0,0614 0,0688 0,0815 0,0943 0,1118
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Окончание таблицы А. 16
Распределение 

случайной величины
Оцениваемый

параметр
Верхние процентные точки

0,15 0,1 0,05 0,025 0,01

Коши
Масштабный 0,2376 0,2950 0,3924 0,5001 0,6886
Сдвиг 0,1040 0,1198 0,1475 0,1768 0,2181
Два параметра 0,0636 0,0717 0,0856 0,0998 0,1193

Логистическое
Масштабный 0,22605 0,3302 0,4450 0,57715 0,6941
Сдвиг 0,0976 0,1113 0,1353 0,1602 0,1950
Два параметра 0,0599 0,0670 0,0792 0,0915 0,1083

Наибольшего значения
Масштабный 0,2095 0,2623 0,3676 0,4940 0,6983
Сдвиг 0,1064 0,1265 0,1657 0,2115 0,2836
Два параметра 0,0611 0,0693 0,0843 0,1006 0,1246

Наименьшего значения Масштабный 0,2095 0,2623 0,3676 0,4940 0,6983
Сдвиг 0,1064 0,1265 0,1657 0,2115 0,2836
Два параметра 0,0611 0,0693 0,0843 0,1006 0,1246

Вейбулла Формы 0,2095 0,2623 0,3676 0,4940 0,6983
Масштаба 0,1064 0,1265 0,1657 0,2115 0,2836
Два параметра 0,0611 0,0693 0,0843 0,1006 0,1246

Т а б л и ц а  А.17 — Аппроксимация предельных распределений статистики Q2 Мизеса при использовании 
метода максимального правдоподобия
Распределение случайной При оценивании

величины только масштабного пара­
метра

только параметра сдвига двух параметров

Экспоненциальное Su(—2,8653; 1,4220; 0,1050; 
0,1128)

— —

Полунормальное Su(—2,5603; 1,3116; 0,1147; 
0,1330)

— —

Рэлея Su(—2,5610; 1,4003; 0,1174; 
0,1337)

— —

Максвелла Su(-2,6064; 1,4426; 0,1190; 
0,1285)

— —

Лапласа SI(0,3224; 1,1638; 0,6852; 
0,1040)

Su(—2,5528; 1,4006; 0,1216; 
0,1358)

Su(—2,8942; 1,4897; 0,0846; 
0,1131)

Нормальное Su(—3,1163; 1,1787; 0,0742; 
0,1200)

Su(—3,1202; 1,5233; 0,0874; 
0,1087)

Su(—2,7057; 1,7154; 0,1043; 
0,0925)

Логнормальное Su(—2,4168; 1,1296; 0,1151; 
0,1560)

In N (-0,8052; 0,5123) Su(—2,3966; 1,5967; 0,1012; 
0,1179)

Коши Su(—2,4935; 1,0789; 0,0923; 
0,1458)

Su(—2,8420; 1,3528; 0,1010; 
0,1221)

Su(—2,3195; 1,1812; 0,0769; 
0,1217)

Логистическое SI(0,3065; 1,1628; 0,7002; 
0,0930)

Su(—3,5408; 1,6041; 0,0773; 
0,0829)

In TV (—1,1452; 0,4426)

Наибольшего значения Su(—2,5427; 1,1057; 0,0960; 
0,1569)

Su(—2,5550; 1,3714; 0,1152; 
0,1289)

Su(—2,4622; 1,6473; 0,1075; 
0,1149)
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Окончание таблицы А.17

Распределение случайной 
величины

При оценивании
только масштабного пара­

метра
только параметра сдвига двух параметров

Наименьшего значения Su(—2,5427; 1,1057; 0,0960; 
0,1569)

Su(—2,5550; 1,3714; 0,1152; 
0,1289)

Su(—2,4622; 1,6473; 0,1075; 
0,1149)

Вейбулла Su(—2,5427; 1,1057; 0,0960; 
0,1569)»

Su(—2,5550; 1,3714; 0,1152; 
0,1289)2>

Su(—2,4622; 1,6473; 0,1075; 
0,1149)

0 Оценивали параметр формы распределения Вейбулла.
2) Оценивали параметр масштаба распределения Вейбулла.

Т а б л и ц а  А. 18 — Процентные точки распределения статистики О2 Мизеса при использовании метода 
максимального правдоподобия

Распределение 
случайной величины

Оцениваемый
параметр

Верхние процентные точки
0,15 0,1 0,05 0,025 0,01

Экспоненциальное Масштабный 0,9256 1,0797 1,3626 1,6736 2,1333
Полунормальное Масштабный 1,0195 1,2030 1,5463 1,9312 2,5117
Рэлея Масштабный 0,8954 1,0427 1,3140 1,6132 2,0569
Максвелла Масштабный 0,8671 1,0055 1,2587 1,5360 1,9442

Лапласа
Масштабный 1,4627 1,7923 2,3158 2,8202 3,5035
Сдвиг 0,9196 1,0712 1,3504 1,6586 2,1165
Два параметра 0,7019 0,8082 1,0015 1,2116 1,5188

Нормальное
Масштабный 1,4126 1,7309 2,2533 2,8654 3,8453
Сдвиг 0,7750 0,8923 1,1045 1,3341 1,6681
Два параметра 0,5486 0,6204 0,7471 0,8806 1,0698

Логнормальное
Масштабный 1,4126 1,7309 2,2533 2,8654 3,8453
Сдвиг 0,7602 0,8619 1,0382 1,2200 1,4719
Два параметра 0,5464 0,6194 0,7498 0,8893 1,0897

Коши
Масштабный 1,3917 1,7432 2,2967 2,866 3,5085
Сдвиг 1,0072 1,1841 1,5125 1,8781 2,4251
Два параметра 0,7783 0,9307 1,2231 1,5606 2,0845

Логистическое
Масштабный 1,4097 1,7755 2,2268 2,8759 3,7694
Сдвиг 0,7512 0,8622 1,0611 1,2741 1,5803
Два параметра 0,5033 0,5610 0,6589 0,7575 0,8909

Наибольшего значения
Масштабный 1,4056 1,7163 2,2631 2,8443 3,6757
Сдвиг 0,9149 1,0703 1,3577 1,6764 2,1514
Два параметра 0,5580 0,6310 0,7608 0,8987 1,0956

Наименьшего значения

Масштабный 1,4056 1,7163 2,2631 2,8443 3,6757
Сдвиг 0,9149 1,0703 1,3577 1,6764 2,1514
Два параметра 0,5580 0,6310 0,7608 0,8987 1,0956

Вейбулла

Формы 1,4056 1,7163 2,2631 2,8443 3,6757

Масштаба 0,9149 1,0703 1,3577 1,6764 2,1514

Два параметра 0,5580 0,6310 0,7608 0,8987 1,0956
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Т а б л и ц а  А.19 — Аппроксимация предельных распределений статистики Q2 Мизеса (при использовании 
Л/7)-оценок, минимизирующих статистику 5^)

Распределение случайной 
величины

При оценивании
только масштабного пара­

метра
только параметра сдвига двух параметров

Экспоненциальное Su(—2,6741, 1,4068, 0,0958, 
0,1230)

— —

Полунормальное Su(—2,6752, 1,3763, 0,0952, 
0,1280)

— —

Рэлея Su(—2,2734, 1,3473, 0,1101, 
0,1496)

— —

Максвелла Su(—2,2759, 1,3988, 0,1171, 
0,1514)

— —

Лапласа Su(—2,3884, 1,0811, 0,0948, 
0,1548)

Su(—2,7267, 1,4972,0,1044, 
0,1239)

Su(—2,4334, 1,6104, 0,0902, 
0,1123)

Нормальное Su(—2,4180, 1,0702, 0,0957, 
0,1464)

Su(—2,7639, 1,5393,0,1102, 
0,1115)

Su(—2,5746, 1,7505, 0,0979, 
0,1043)
In A (—1,1651, 0,4271)

Логнормальное Su(—2,4180, 1,0702, 0,0957, 
0,1464)

Su(—2,7639, 1,5393,0,1102, 
0,1115)

Su(—2,5746, 1,7505,0,0979, 
0,1043)
In N (-1,1651. 0,4271)

Коши Su(—2,5043, 1,1355,0,1035, 
0,1384)

Su(—2,7029,1,5179,0,1188, 
0,1100)

Su(—2,1046, 1,4364,0,0929, 
0,1301)
In TV (—1,1043, 0,4692)

Логистическое SI(0,3223, 1,1159, 0,6836, 
0,0953)
Su(-2,3007, 1,0135, 0,0906, 
0,1593)

Su(—2,6212, 1,4318,0,0932, 
0,1370)

Su(—3,0152, 1,7751,0,0800, 
0,0898)

Наибольшего значения Su(—2,4454, 1,1083, 0,0968, 
0,1459)

Su (-2,6557, 1,4282,0,1024, 
0,1254)

Su(—2,1580, 1,5446,0,0941, 
0,1279)

Наименьшего значения Su(—2,4454, 1,1083, 0,0968, 
0,1459)

Su(—2,6557, 1,4282,0,1024, 
0,1254)

Su(—2,1580, 1,5446,0,0941, 
0,1279)

Вейбулла Su(—2,4454, 1,1083, 0,0968, 
0,1459) '>

Su (-2,6557,1,4282,0,1024, 
0,1254)2>

Su(—2,1580, 1,5446,0,0941, 
0,1279)

'> Оценивали параметр формы распределения Вейбулла 
2) Оценивали параметр масштаба распределения Вейбулла

Т а б л и ц а А 2 0  — Процентные точки распределения минимума статистики О2 Мизеса (при испопьзовании 
AfD-оценок, минимизирующих статистику Sn)

Распределение 
случайной величины

Оцениваемый Верхние процентные точки
параметр 0,15 0,1 0,05 0,025 0,01

Экспоненциальное Масштабный 0,7892 0,9172 1,1527 1,4122 1,7967
Полунормальное Масштабный 0,8308 0,9690 1,2245 1,5075 1,9292
Рэлея Масштабный 0,7871 0,9160 1,1553 1,4218 1,8206
Максвелла Масштабный 0,7710 0,8916 1,1135 1,3582 1,7211

Масштабный 1,3751 1,6440 2,1787 2,6035 3,3197
Лапласа Сдвиг 0,7642 0,8795 1,0888 1,3160 1,6476

Два параметра 0,4960 0,5607 0,6763 0,7996 0,9765
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Окончание таблицы А 20
Распределение 

случайной величины
Оцениваемый

параметр
Верхние процентные точки

0,15 0,1 0,05 0,025 0,01

Нормальное
Масштабный 1,3994 1,7302 2,2526 2,8345 3,5978
Сдвиг 0,7575 0,8705 1,0745 1,2945 1,6137

Два параметра 0,4832 0,5419 0,6451 0,7534 0,9061

Логнормальное
Масштабный 1,3994 1,7302 2,2526 2,8345 3,5978
Сдвиг 0,7575 0,8705 1,0745 1,2945 1,6137

Два параметра 0,4832 0,5419 0,6451 0,7534 0,9061

Коши
Масштабный 1,3487 1,6287 2,0930 2,7014 3,4728
Сдвиг 0,8026 0,9257 1,1483 1,3893 1,7399
Два параметра 0,5386 0,6164 0,7586 0,9142 1,1435

Логистическое
Масштабный 1,3917 1,7101 2,3316 3,0612 4,2139
Сдвиг 0,7329 0,8454 1,0516 1,2778 1,6115
Два параметра 0,4778 0,5363 0,6392 0,7470 0,8986

Наибольшего значения
Масштабный 1,2638 1,5415 2,0840 2,7220 3,7319
Сдвиг 0,8007 0,9285 1,1628 1,4200 1,7997
Два параметра 0,4941 0,5590 0,6757 0,8014 0,9832

Наименьшего значения
Масштабный 1,2638 1,5415 2,0840 2,7220 3,7319
Сдвиг 0,8007 0,9285 1,1628 1,4200 1,7997
Два параметра 0,4941 0,5590 0,6757 0,8014 0,9832

Вейбулла
Формы 1,2638 1,5415 2,0840 2,7220 3,7319
Масштаба 0,8007 0,9285 1,1628 1,4200 1,7997
Два параметра 0,4941 0,5590 0,6757 0,8014 0,9832

Т а б л и ц а А 2 1 — Аппроксимация предельных распределений статистики Колмогорова при использовании 
метода максимального правдоподобия и проверке согласия с гамма-распределением

Значение параметра формы
При оценивании

только масштабного пара­
метра

только параметра формы двух параметров

0,3 Su(—3,1261, 2,4210, 0,2564, 
0,3176)

Su(—2,5800, 2,3573,0,2522, 
0,3652)

Su(-2,4004, 2,2110, 0,2222, 
0,3679)

0,5 Y(3,8019, 0,1122, 0,3426) Su(—2,5116, 2,4317, 0,2624, 
0,3737)

Su(—2,8715, 2,5280, 0,2325, 
0,3296)

1,0 у (4,4861, 0,0961, 0,3093) у(4,4582, 0,0888, 0,3178) Su(—2,4192, 2,2314, 0,2037; 
0,3707)

2,0 Su(—2,2691, 2,2383, 0,2323, 
0,3958)

Su(—3,0644, 2,6833, 0,2531, 
0,3159)

Su(—2,2110, 2,1457, 0,1988. 
0,3872)

3,0 Su(—2,4869, 2,4779, 0,2655, 
0,3742)

Su (-2,5510,2,4430,0,2430, 
0,3640)

Su(—2,1298, 2,1802,0,2103, 
0,3897)

4,0 Su(—2,4229, 2,4457, 0,2627, 
0,3696)

Su(—2,0448, 2,2821,0,2494, 
0,4140)

Su(—2,4946, 2,2762, 0,2023. 
0,3589)

5,0 Su(—2,4152, 2,3901, 0,2475, 
0,3818)

Su(-2,2143, 2,2844, 0,2367, 
0,3932)

Su(—2,0501,2,1119, 0,2016, 
0,3985)
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Т а б л и ц а  А.22 — Процентные точки распределения статистики Колмогорова при использовании метода 
максимального правдоподобия и проверке гипотезы о согласии с гамма-распределением

Значение параметра 
формы

Оцениваемый
параметр

Верхние процентные точки
0,15 0,1 0,05 0,025 0.01

0,3

Масштабный 1,0101 1,0885 1,2196 1,3497 1,5231

Формы 0,9228 0,9895 1,1012 1,2120 1,3602
Два параметра 0,8702 0,9343 1,0424 1,1508 1,2970

0,5

Масштабный 0,9890 1,0625 1,1808 1,2927 1,4341

Формы 0,9076 0,9704 1,0748 1,1780 1,3151

Два параметра 0,8503 0,9081 1,0040 1,0984 1,2233

1,0

Масштабный 0,9461 1,0131 1,1204 1,2214 1,3483
Формы 0,9031 0,9649 1,0638 1,1569 1,2740

Два параметра 0,8283 0,8862 0,9836 1,0813 1,2128

2,0

Масштабный 0,9115 0,9694 1,0620 1,1466 1,2859
Формы 0,8719 0,9301 1,0260 1,1196 1,2425
Два параметра 0,8168 0,8738 0,9703 1,0674 1,1989

3,0
Масштабный 0,8924 0,9527 1,0525 1,1509 1,2812
Формы 0,8636 0,9220 1,0190 1,1148 1,2421
Два параметра 0,8144 0,8704 0,9650 1,0598 1,1879

4,0

Масштабный 0,8781 0,9381 1,0377 1,1361 1,2665
Формы 0,8628 0,9207 1,0174 1,1136 1,2423

Два параметра 0,8146 0,8711 0,9659 1,0606 1,1877

5,0

Масштабный 0,8771 0,9366 1,0357 1,1338 1,2645

Формы 0,8558 0,9143 1,0123 1,1099 1,2408

Два параметра 0,8098 0,8659 0,9608 1,0565 1,1865

Т а б л и ц а  А.23 — Аппроксимация предельных распределений статистики Смирнова при использовании 
метода максимального правдоподобия и проверке согласия с гамма-распределением

Значение параметра 
формы

При оценивании
только масштабного параметра только параметра формы двух параметров

0,3 Su(—3,1901; 1,1381; 0,1399; 
0,0081)

Su(—2,8117; 1,3517; 0,2973; 
0,1474)

Su(—2,4288; 1,2878; 0,2749; 
0,2074)

0,5 Su(-2,8625; 1,1796; 0,2003; 
0,079)

Su(—2,8816; 1,4625; 0,3377; 
0,1280)

Su(—2,4027; 1,3861; 0,3389; 
0,2290)
In TV (—0,1506; 0,6511)

1,0 In N  (0,2062; 0,7337)
Su (-2,5635; 1,2797; 0,2922; 
0,1584)

Su(—2,5861; 1,4818; 0,4130; 
0,174)

Su(—2,2666; 1,3824; 0,3515; 
0,2731)

2,0 Su (-2,5372; 1,3749; 0,3464; 
0,2162)

Su(—2,3222; 1,4442; 0,4335; 
0,2845)

Su(—2,2109; 1,3527; 0,3317; 
0,3149)

з,о Su(—2,3014; 1,3875; 0,3991; 
0,2750)

Su(—2,3895; 1,4817; 0,4344; 
0,2824)

Su(—2,4295; 1,4110; 0,3163; 
0,2784)

4,0 Su(—2,3759; 1,4418; 0,4149; 
0,2480)

Su (-2,2574; 1,4921; 0,4694; 
0,3216)

Su(—2,4153; 1,4306; 0,3318; 
0,2604)

5,0 Su (-2,4574; 1,4599; 0,3976; 
0,2712)

Su(—2,2611; 1,4644; 0,4393; 
0,3231)

Su(—2,1345; 1,3945; 0,3655; 
0,3263)
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Т а б л и ц а  А.24 — Процентные точки распределения статистики Смирнова при использовании метода 
максимального правдоподобия и проверке гипотезы о согласии с гамма-распределением

Значение параметра 
формы

Оцениваемый
параметр

Верхние процентные точки
0,15 0,1 0,05 0,025 0,01

0,3
Масштабный 2,8746 3,5643 4,9025 6,4644 8,9168
Формы 2,7006 3,2114 4,1601 5,2162 6,7967
Два параметра 2,2246 2,6511 3,4520 4,3543 5,7217

0,5
Масштабный 2,8051 3,4363 4,6490 6,0496 8*,2255
Формы 2,5766 3,0273 3,8498 4,7480 6,0664
Два параметра 2,2406 2,6348 3,3620 4,1659 5,3609

1,0

Масштабный 2,6291 3,1471 4,1084 5,1770 6,7737
Формы 2,5364 2,9673 3,7509 4,6036 5,8510
Два параметра 2,1738 2,5483 3,2393 4,0035 5,1400

2,0
Масштабный 2,5334 2,9902 3,8349 4,7709 6,1652
Формы 2,4813 2,8949 3,6506 4,4775 5,6940
Два параметра 2,1292 2,4951 3,1737 3,9281 5,0563

3,0
Масштабный 2,4691 2,8995 3,6930 4,5698 5,8727
Формы 2,4538 2,8516 3,5745 4,3608 5,5106
Два параметра 2,1092 2,4613 3,1083 3,8204 4,8743

4,0
Масштабный 2,4404 2,8534 3,6084 4,4348 5,6514
Формы 2,4299 2,8149 3,5130 4,2708 5,3768
Два параметра 2,0978 2,4463 3,0847 3,7850 4,8178

5,0
Масштабный 2,4296 2,8303 3,5611 4,3589 5,5299
Формы 2,3877 2,7717 3,4709 4,2333 5,3511
Два параметра 2,0833 2,4276 3,0613 3,7602 4,7972

Т а б л и ц а  А.25 — Аппроксимация предельных распределений статистики со2 Мизеса при использовании 
метода максимального правдоподобия и проверке согласия с гамма-распределением

Значение параметра При оценивании
формы только масштабного параметра только параметра формы двух параметров

0,3 Su(— 1,6653; 0,9957; 0,0213; 
0,0286)

Su(—1,4885; 1,0365; 0,0196; 
0,0305)

Su(—1,4703; 1,0481; 0,0167; 
0,0258)

0,5 Su(—2,1013; 1,0964; 0,0172; 
0,0233)

Su(—1,7133; 1,1339; 0,0203; 
0,0267)
In /V (-2,6112; 0,6152)

Su(—1,5811; 1,1193; 0,0164; 
0,0243)
In N (-2,8269; 0,5922)

1,0 Su(—1,8467; 1,0824; 0,0179; 
0,0250)

S u ( -1,5966; 1,0899; 0,0191; 
0,0281)

Su(— 1,5388; 1,0487; 0,0131; 
0,0249)
In N (-2,8658; 0,5850)

2,0 Su(—1,6042; 1,1125; 0,0207; 
0,0281)
In N  (-2,6123; 0,6231)

Su(—1,6693; 1,1076; 0,0181; 
0,0264)
In N  (-2,6844; 0,6119)

S u ( - 1,3082; 1,0059; 0,0146; 
0,0269)

3,0 Su(—2,1337; 1,1654; 0,015; 
0,0217)

Su(—1,5872; 1,0916; 0,0181; 
0,0272)

Su(—1,4044; 1,0562:0,0148; 
0,0261)
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Окончание таблицы А.25

Значение параметра 
формы

При оценивании
только масштабного параметра только параметра формы двух параметров

4,0 Su(—1,5813; 1,1339; 0,0206; 
0,0273)
In N (-2,6668; 0,6097)

Su(—1,5748; 1,1003; 0,0183; 
0,0275)
In TV (—2,6947 ; 0,6012)

Su(—1,4222; 1,0519; 0,0143; 
0,0260)

5,0 Su(—1,6144; 1,1468; 0,0202; 
0,0265)
In N  (-2,6732; 0,6052)

Su(—1,7641; 1,1417; 0,0172; 
0,0238)
In TV (—2,7198; 0,6001)

Su(—1,2912; 1,0213; 0,0144; 
0,0274)

Т а б л и ц а  А.26 — Процентные точки распределения статистики (О2 Мизеса при использовании метода 
максимального правдоподобия и проверке гипотезы о согласии с гамма-распределением

Значение параметра 
формы

Оцениваемый
параметр

Верхние процентные точки
0,15 0,1 0,05 0,025 0,01

0,3

Масштабный 0,1885 0,2335 0,3241 0,4344 0,6151

Формы 0,1416 0,1717 0,2314 0,3031 0,4190

Два параметра 0,1163 0,1405 0,1885 0,2458 0,3381

0,5

Масштабный 0,1733 0,2110 0,2851 0,3724 0,5110

Формы 0,1405 0,1684 0,2224 0,2853 0,3843

Два параметра 0,1085 0,1295 0,1702 0,2179 0,2932

1,0

Масштабный 0,1528 0,1856 0,2499 0,3262 0,4477

Формы 0,1342 0,1613 0,2145 0,2773 0,3771

Два параметра 0,1017 0,1220 0,1623 0,2107 0,2888

2,0

Масштабный 0,1383 0,1658 0,2195 0,2825 0,3821

Формы 0,1297 0,1557 0,2063 0,2658 0,3599

Два параметра 0,1007 0,1209 0,1609 0,2088 0,2859

3,0

Масштабный 0,1351 0,1618 0,2133 0,2730 0,3660

Формы 0,1265 0,1519 0,2015 0,2601 0,3533

Два параметра 0,1000 0,1196 0,1584 0,2047 0,2790

4,0

Масштабный 0,1299 0,1551 0,2039 0,2608 0,3502

Формы 0,1248 0,1495 0,1977 0,2544 0,3444

Два параметра 0,0993 0,1189 0,1576 0,2038 0,2781

5,0

Масштабный 0,1274 0,1519 0,1991 0,2541 0,3400

Формы 0,1230 0,1471 0,1937 0,2479 0,3329

Два параметра 0,0970 0,1162 0,1546 0,2008 0,2759
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Т а б л и ц а  А.27 — Аппроксимация предельных распределений статистики П2 Мизеса при использовании 
метода максимального правдоподобия и проверке согласия с гамма-распределением

Значение параметра формы
При оценивании

только масштабного пара­
метра

только параметра сдвига двух параметров

0,3 Su(—2,4570; 1,2601; 0,1187; 
0,1380)

Su(—2,8799; 1,4942; 0,1088; 
0,1149)

Su(—2,4649; 1,5188; 0,1035; 
0,1141)

0,5 Su(—2,5752; 1,3505; 0,1078; 
0,1355)

Su(—2,6867; 1,4854; 0,1155; 
0,1193)

Su(—2,6917; 1,6334; 0,0970; 
0,1067)

1,0 Su(—2,5752; 1,3505; 0,1078; 
0,1355)

Su(—2,6867; 1,4854; 0,1155; 
0,1193)

Su(—2,6917; 1,6334; 0,0970; 
0,1067)

2,0 Su(—2,4667; 1,4180; 0,1207; 
0,1416)

Su (-2,7782; 1,4780; 0,1041; 
0,1181)

Su(-2,5083; 1,6002; 0,0992; 
0,1150)

3,0 Su(—2,7121; 1,4220; 0,1007; 
0,1321)

Su (-2,6425; 1,4834; 0,1132; 
0,1224)

Su (-2,4614; 1,6592; 0,1106; 
0,1125)

4,0 Su (—2,6722; 1,4316; 0,1036; 
0,1315)

Su(—3,1020; 1,5114; 0,0884; 
0,1041)

Su(—2,9531; 1,7024; 0,0902; 
0,0935)

5,0 Su(—2,7351; 1,4967; 0,1109; 
0,1187)

Su (—2,6935; 1,5149; 0,1123; 
0,1184)

Su(—3,0056; 1,7207; 0,0895; 
0,0912)

Т а б л и ц а  А.28 — Процентные точки распределения статистики £12 Мизеса при использовании метода 
максимального правдоподобия и проверке гипотезы о согласии с гамма-распределением

Значение параметра 
формы

Оцениваемый
параметр

Верхние процентные точки
0,15 0,1 0,05 0,025 0,01

0,3
Масштабный 1,0837 1,2882 1,6743 2,1120 2,7791
Формы 0,8589 0,9929 1,2362 1,5006 1,8867
Два параметра 0,6279 0,7195 0,8852 1,0645 1,3251

0,5
Масштабный 1,0067 1,1869 1,5242 1,9028 2,4744
Формы 0,8501 0,9811 1,2190 1,4777 1,8556
Два параметра 0,5987 0,6822 0,8322 0,9932 1,2257

1,0

Масштабный 0,9134 1,0696 1,3597 1,6825 2,1656
Формы 0,8230 0,9508 1,1832 1,4359 1,8055
Два параметра 0,5771 0,6547 0,7931 0,9405 1,1515

2,0
Масштабный 0,8507 0,9863 1,2352 1,5088 1,9133
Формы 0,8014 0,9259 1,1527 1,3997 1,7613
Два параметра 0,5641 0,6401 0,7760 0,9214 1,1302

з,о
Масштабный 0,8313 0,9641 1,2079 1,4758 1,8716
Формы 0,7935 0,9157 1,1378 1,3795 1,7330
Два параметра 0,5611 0,6345 0,7648 0,9030 1,1001

4,0
Масштабный 0,8185 0,9481 1,1857 1,4464 1,8309
Формы 0,7846 0,9054 1,1243 1,3616 1,7074
Два параметра 0,5590 0,6324 0,7622 0,8993 1,0938

5,0

Масштабный 0,8036 0,9269 1,1508 1,3940 1,7489
Формы 0,7723 0,8887 1,0995 1,3277 1,6598

Два параметра 0,5557 0,6281 0,7558 0,8905 1,0813
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Т а б л и ц а А 2 9  — Модели предельных распределений статистик непараметрических критериев при проверке 
гипотез о согласии с распределением Sb-Джонсона

Оцениваемый
параметр

Распределение статистики
Колмогорова со2 Мизеса £22 Мизеса

0О In А (-0,4138, 0,2289) In А (-2,7500, 0,5649) Su(—2,7925, 1,5513, 0,1138, 
0,1165)

0, In А (-0,2220, 0,3031) S1 (0,9845, 1,1812, 0,2354, 
0,0053)

Su(—3,2608, 1,2469, 0,0836, 
0,0883)

е0. ®i у(5,2261, 0,0663, 0,2886) Su(—2,5137, 1,5524, 0,0159, 
0,0118)

Su(—2,1210, 1,5490, 0,1113, 
0,1325)

Т а б л и ц а А З О  — Модели предельных распределений статистик непараметрических критериев при проверке 
гипотез о согласии с распределением ^/-Джонсона

Оцениваемый
параметр

Распределение статистики
Колмогорова со2 Мизеса £22 Мизеса

eo In A (-0,4138, 0,2289) In A (-2,7500, 0,5649) Su(—2,7925, 1,5513, 0,1138, 
0,1165)

0i In A (-0,2220, 0,3031) SI(0,9845, 1,1812, 0,2354, 
0,0053)

Su(—3,2608, 1,2469, 0,0836, 
0,0883)

02 In A (-0,4138, 0,2289) In A (-2,7500, 0,5649) Su(—2,7925, 1,5513, 0,1138, 
0,1165)

00- 0] 7(5,1416, 0,0672, 0,2886) Su(—1,8744, 1,2526, 0,0142. 
0,0198)

Su(—2,3550, 1,5797, 0,1050, 
0,1179)

0O> ®2 In A (-0,4226, 0,2266) In A (-2,7644, 0,5569) Su(—3,0997, 1,5568, 0,0937, 
0,1023)

0|- ®2 7(5,1416, 0,0672, 0,2886) Su(—1,8744, 1,2526, 0,0142, 
0,0198)

Su(—2,3550, 1,5797, 0,1050, 
0,1179)

0Q- 0|- ®2 In A (-0,4733, 0,2271) In A (-2,9537, 0,5251) Su(—1,9900, 1,5211, 0,1145, 
0,1445)

Т а б л и ц а А 3 1  — Модели предельных распределении статистик непараметрических критериев при проверке 
гипотез о согласии с распределением ^м-Джонсона

Оцениваемый
параметр

Распределение статистики
Колмогорова со2 Мизеса Q2 Мизеса

00 In A (-0,4138, 0,2289) In A (-2,7500, 0,5649) Su(—2,7925, 1,5513, 0,1138, 
0,1165)

0. In A (-0,2220, 0,3031) SI(0,9845, 1,1812, 0,2354, 
0,0053)

Su(—3,2608, 1,2469, 0,0836, 
0,0883)

02 In A (-0,2594, 0,2990) SI ( 1,0352, 1,1218, 0,2284, 
0,0070)

Su(—3,0091, 1,1753, 0,0787, 
0,1050)

03 In A (-0,4316, 0,2341) Su(— 1,7738, 1,2418, 0,0173, 
0,0232)

Su(—2,7823, 1,5327, 0,1140, 
0,1125)

o0> 0| 7(5,2263, 0,0658, 0,2886) Su(—1,7649, 1,2854, 0,0151, 
0,0208)

Su(—2,3262, 1,5422, 0,0964, 
0,1235)

0«. 02 Su(—2,5586, 2,4112, 0,1908, 
0,3411)

In A (-3,1024, 0,5069) Su(—2,1247, 1,4688, 0,0863, 
0,1339)
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Окончание таблицы А.31

Оцениваемый
параметр

Распределение статистики
Колмогорова m2 Мизеса П2 Мизеса

60’ ез Su(—2,3187; 2,2729; 0,1888; 
0,3607)

Su(—1,4187; 1,0120; 0,0117; 
0,0232)

Su(—2,2356; 1,2901; 0,0799; 
0,1327)

0|, 02 In TV (-0,2836; 0,3039) SI(1,0334; 1,1037; 0,2220; 
0,0060)

Su(—3,1039; 1,1372; 0,062; 
0,0950)

0 р  0 J In TV (-0,5199; 0,2184) In TV (—3,0545; 0,5152) SI(0,6951; 1,4454; 0,4295; 
0,0818)

02, ©з Su(—2,5904; 2,5548; 0,1859; 
0,3300)

Su(—1,6883; 1,2861; 0,0121; 
0,0187)

Su(—2,1944; 1,3600; 0,0804; 
0,1262)

е 0 , Su(—2,1848; 2,1100; 0,1651; 
0,3611)

Su(—1,2247; 1,0971; 0,0120; 
0,0228)

Su(—2,2549; 1,4569; 0,0715; 
0,1163)

со
<х>а

го
CD Y (4,8573; 0,0568; 0,2890) In TV (—3,2677; 0,4767) In TV (—1,3166; 0,4065)

®0> ®2> In TV (—0,6615; 0,1929) Y (2,6159; 0,0097; 0,0098) In TV (-1,4121; 0,3753)

0|> ®2> 9 3 In TV (—0,6101; 0,2020) Su(—1,5455; 1,2383; 0,0108; 
0,0186)

Su(—2,2203; 1,3198; 0,0646; 
0,1203)

0 О> ®1> ®2> ®3 In TV (—0,7128; 0,1923) In TV (—3,5836; 0,4154) Y(3,6074; 0,0429; 0,0629)

Т а б л и ц а  А.32 — Процентные точки распределения статистики Колмогорова при использовании метода 
максимального правдоподобия

Распределение 
случайной величины

Оцениваемый
параметр

Верхние процентные точки
0,15 0,1 0,05 0,025 0,01

Sb- Джонсона
00 0,8381 0,8865 0,9634 1,0354 1,1260

е| 1,0965 1,1811 1,3186 1,4507 1,6211

®0» ®1 0,7889 0,8379 0,9161 0,9892 1,0808

SI- Джонсона

ео 0,8381 0,8865 0,9634 1,0354 1,1260

01 1,0965 1,1811 1,3186 1,4507 1,6211

02 0,8381 0,8865 0,9634 1,0354 1,1260

0О> 0) 0,7887 0,8381 0,9168 0,9906 1,0829

0О, 02 0,8288 0,8762 0,9513 1,0218 1,1102

0„02 0,7887 0,8381 0,9168 0,9906 1,0829

0О> 0|> ®2 0,7883 0,8334 0,9051 0,9722 1,0566

5и-Джонсона

0о 0,8381 0,8865 0,9634 1,0354 1,1260

0. 1,0965 1,1811 1,3186 1,4507 1,6211

02 1,0518 1,1318 1,2616 1,3863 1,5468

03 0,8278 0,8767 0,9545 1,0276 1,1196

90. 0| 0,7852 0,8338 0,9113 0,9840 1,0749

0Q, 02 0,7433 0,7907 0,8697 0,9479 1,0520

0Q- ®3 0,7522 0,8015 0,8841 0,9665 1,0771

0р 02 1,0319 1,1117 1,2414 1,3662 1,5271

01, ез 0,7456 0,7866 0,8516 0,9122 0,9882
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Окончание таблицы А. 32

Распределение 
случайной величины

Оцениваемый
параметр

Верхние процентные точки
0,15 0,1 0,05 0,025 0,01

Зи-Джонсона ®2> ез 0,6919 0,7327 0,8000 0,8661 0,9533

0О, 6р 02 0,7231 0,7719 0,8546 0,9381 1,0516

0о> 0|, 03 0,6917 0,7325 0,7977 0,8590 0,9357

0о> 02> ез 0,6303 0,6608 0,7088 0,7532 0,8084

0|, 02, 03 0,6698 0,7038 0,7574 0,8072 0,8692

0О’ 01> 02’ ез 0,5984 0,6273 0,6727 0,7147 0,7669

Т а б л и ц а  А.ЗЗ — Процентные точки распределения статистики со2 Мизеса при использовании метода 
максимального правдоподобия

Распределение 
случайной величины

Оцениваемый
параметр

Верхние процентные точки
0,15 0,1 0,05 0,025 0,01

5£-Джонсона
е0 0,1148 0,1319 0,1619 0,1934 0,2379

е, 0,2513 0,3080 0,4170 0,5429 0,7384

00, 0[ 0,0893 0,1028 0,1271 0,1532 0,1911

^/-Джонсона

во 0,1148 0,1319 0,1619 0,1934 0,2379

в, 0,2513 0,3080 0,4170 0,5429 0,7384

02 0,1148 0,1319 0,1619 0,1934 0,2379

е0> 01 0,0916 0,1074 0,1373 0,1711 0,2227

е0> 02 0,1122 0,1286 0,1575 0,1877 0,2302

0,, 02 0,0916 0,1074 0,1373 0,1711 0,2227

0О, 0|, 02 0,0899 0,1022 0,1237 0,1459 0,1769

Su- Джонсона

во 0,1148 0,1319 0,1619 0,1934 0,2379

в! 0,2513 0,3080 0,4170 0,5429 0,7384

в2 0,2357 0,2915 0,4003 0,5278 0,7290

в3 0,1054 0,1238 0,1584 0,1977 0,2578

0О> 01 0,0867 0,1009 0,1274 0,1573 0,2026

0О, 02 0,0760 0,0861 0,1035 0,1214 0,1461

во-вз 0,0889 0,1071 0,1437 0,1878 0,2598

0|, 02 0,2286 0,2840 0,3923 0,5200 0,7223

0|, 03 0,0804 0,0912 0,1100 0,1294 0,1563

02» 03 0,0683 0,0790 0,0990 0,1216 0,1557

0О’ 0Р 02 0,0692 0,0811 0,1044 0,1318 0,1753

0О, 0,, 03 0,0624 0,0702 0,0834 0,0970 0,1155

0О» 02» е3 0,0507 0,0562 0,0652 0,0739 0,0849

0р 02’ 03 0,0614 0,0710 0,0892 0,1099 0,1415

0О’ 0 | » 02’ 03 0,0427 0,0473 0,0550 0,0627 0,0730
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Т а б л и ц а  А.34 — Процентные точки распределения статистики Q2 Мизеса при использовании метода 
максимального правдоподобия

Распределение 
случайной величины

Оцениваемый
параметр

Верхние процентные точки
0,15 0,1 0,05 0,025 0,01

56-Джонсона
во 0,7832 0,8988 1,1072 1,3317 1,6567

в, 1,3989 1,6841 2,2245 2,8391 3,7791

0,5525 0,6269 0,7605 0,9041 1,1119

57-Джонсона

во 0,7832 0,8988 1,1072 1,3317 1,6567

е ! 1,3989 1,6841 2,2245 2,8391 3,7791

02 0,7832 0,8988 1,1072 1,3317 1,6567

0 Q » 0,5611 0,6374 0,7741 0,9207 1,1318

80, 02 0,7667 0,8810 1,0870 1,3088 1,6298

Op 02 0,5611 0,6374 0,7741 0,9207 1,1318

0,5553 0,6297 0,7638 0,9086 1,1187

Su- Джонсона

во 0,7832 0,8988 1,1072 1,3317 1,6567

в, 1,3989 1,6841 2,2245 2,8391 3,7791

в 2 1,3336 1,6190 2,1680 2,8028 3,7900

вз 0,7963 0,9164 1,1334 1,3677 1,7079

0о> 0,5446 0,6189 0,7527 0,8969 1,1057

0О, 02 0,5001 0,5683 0,6924 0,8274 1,0253

Оо> ез 0,6342 0,7403 0,9395 1,1637 1,5032

е „ е 2 1,2760 1,5604 2,1124 2,7568 3,7689

0,, 03 0,6257 0,7262 0,9104 1,1122 1,4095

02, 03 0,5549 0,6409 0,8003 0,9771 1,2412

0,4549 0,5182 0,6336 0,7595 0,9445

® 0 ’  ®|» 0,4085 0,4513 0,5231 0,5946 0,6901

0 ( р
0,3595 0,3941 0,4517 0,5084 0,5833

0р 02, 03 0,4985 0,5767 0,7226 0,8859 1,1316

0 q » 0 р  0 2 ,  0 3 0,2994 0,3269 0,3713 0,4135 0,4667
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