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Расчеты и испытания на прочность* Р 50-&4-Ъ9-бН
Метод и программа расчете на ЭЗД 
устойчивости оболочек сложной 
формы

ОКСТУ -4103 Разработаны и введены впе^ьыь-

Настоящие рекомендации (Р) равработаны в соответствии 
с Программой работ по стандартизации в области надежности, 
прочности, износостойкости, эксплуатации и ремонта т е ш к и  
на 1986-1990 гг .

Предназначены для численного исследования устойчивости 
и напряженно-деформированного состояния элементов оболочеч­
ных конструкций сложной формы, в том числе составных, с р аз­
рывными геометрическими параметрами, ребристых, с отверстия­
ми и вырезами, ограниченными координатными линиями, взаимо­
действующих с упругой средой. Учитываются физическая и гео­
метрическая нелинейности* Рекомендуемая методика разработана 
впервые и реализована в пакете прикладных программ "МККРИС".

Р могут применяться для расчетов при проектировании 
оболочечных конструкций изделий машиностроения и строитель­
ства, отвечающих современным требованиям надежности и обес- 
печения материалоемкости.
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Be ацение

Предлагаемые рекомендации распространяются на ме­

тоды, алгоритмы и программы расчета на ЭВМ в двумерной постанов­

ке напряженно-деформированного состояния и устойчивости оболочек 

сложной формы* Г разработаны для применения в расчетной практи­

ке при проектировании оболочечных конструкций машиностроения, от- 

вочаююих современным требованиям надежности и снижения материало*- 

емкости.

Рекомендуемая методика численного исследования устойчивости 

оболочек базируется на применении новой охемы метода конечных раз­

ностей -  метода криволинейных сеток [1 ,2 ,6 -в ] .  Одно из основных 

преимуществ МКС по сравнению со многими другими методами дискре- 

тизапии состоит в улучшении скорости сходимости решений за счет 

исключения отрицательного эффекта жестких смешений. Кроме того, 

поставная оболочечная конструкция может рассматриваться целиком, 

без разделения ее на отдельные элементы, в связи с чем исключа­

ется необходимость введения дополнительных уравнений, описывающих 

условия сопряжения элементов.При этом на границах расчетного 

Фрагмента отсутствуют законтурные узлы, разностные соотношения 

остаются справедливыми и в местах излома срединной поверхности 

оболочки.

В качестве исходных при построении методики приняты уравнения 

классической теории тонких оболочек в инвариантной форме [ 2 1 ] с 

учетом геометрической нелинейности и пластичности материала. Гео­

метрическая нелинейность уравнений обусловлена учетом изменения 

кривизны срединной поверхности в процессе нагружения и изменением 

ориентации векторов внутренних усилий и внешнего воздействия от­

носительно системы координат, связанной со срединной повархностьг 

нелеформчрованной ободочки, а также учетом квадратичного члена в 

выражениях компонент трнэога мембранных деформаций. Учет пластин-
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нооти материала основан на использований соотношений теории ма­

лых упруго-пластических деформаций *,деформационная теория) [л * ].

С помощью метода продолжения по параметру в сочетании с методом 

Ньютона-Канторовича решение нелинейной задачи сводиться к решению 

последовательности линеаризованных краевых оадач[5]. $ля решения 

системы конечноразностных уравнений выбран блочный метод Гаусса,

Рекомендуемая методика реализована в комплексе программ 

"МЕКРИС-2" [в ] ,  являющимся эффективным инструментом исследования 

нелинейного деформирования и устойчивости оболочечных элементов 

машин и конструкций. Объектами исследования могут быть:

1) тонкие оболочки сложной формы, в том числе и составные, с 

постоянной или переменной толщиной. Элементы составной оболочки 

могут иметь произвольную аналитически заданную Форму, стык может 

быть как гладким, так и с изломом поверхности по линии сопряжения;

2) оболочки, подкрепленные ребрами в одном или обоих направле 

ииях. Ребра принимаются в расчет дискретно и могут быть централь­

но расположенными относительно срединной поверхности оболочки, с 

эксцентриситетом или односторонними;

3) оболочки, ослабленные отверстиями или вырезами, контуры 

которых совпадают с координатными линиями на поверхности;

*0 оболочки в упругой среде, моделируемой викклеровским осно­

ванием, с односторонними или двусторонними связями.

Рекомендуемый комплекс программ "МККРИС-2И имеет определенные 

преимущества, к числу которых можно отнести:

-  высокую скорость сходимости численных решений, позволяющую 

в сочетании с быстродействующим алгоритмом решения систеьи урвв~ 

нений значительно сократить время счета и повысить эффективность 

использования РИМ;

- всаможногть раздельного и совместного учета различны*
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торов нелинейности -  конечных углов поворота, изменения формы м 

физических свойств материала оболочки;

-  при реиении задач устойчивости возможность построения тра­

екторий нагружения и нахождения на них предельных точек и точек 

бифуркации, исследования характера перестройки равновесных форм
и анализа закритических состояний;

-  учет симметричности в структуре исследуемой конструкции 
при описании расчетной схемы;

-  возможность варьирования нага разности сетки на отдельных 

участках объекта, что позволяет подвергать детальному анализу на­

иболее напряженные зоны без увеличения числа неизвестных;

-  автоматическое сгущение сетки;

-  проведение вычислений е обычной и удвоенной точностью;
- возможность восстановления и продолжения вычислительного 

процесса в случае сбоя оборудования, а также в случае вынужден­
ного прерывания счета;

-  неэамкнутость по отношению к новым классам реюаемых задач;

-  компактность и простоту задания исходных данных.
Подлинник комплекса программ НМЕК?ИС-2И хранится в Киевском

ордена Трудового Красного Знамени Инженерно-строительном институ­
те и подвергается дальнейшему совершенствованию. Один из 

вариантов сдан в Государственный и Республиканский фонды алго­

ритмов и программ [в ] .

Предназначены для работников научно-исследовательских инсти­

тутов, конструкторских бюро и заводских лабораторий, занимающихся 

расчетами на прочность и устойчивость оболочечных изделий машино­
строения.
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I .  ПРИНЯТЫЕ ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

метод криволинейных сеток; 

напряженио-деформироваиное состояние; 

магнитный диск (том прямого доступа); 

алфавитно-цифровое печатающее устройство*, 

магнитная лента;

модуль упругости материала оболочки; 

модуль сдвига; 

модуль упрочнения; 

коэффициент Пуассона;

коэффициент температурного линейного расширения; 

векартова система координат;

система координат, связанная со срединной поверх­

ностью неинформированной оболочки; 

векторы основного и взаимного локальных базисов; 

символ ковариантного дифференцирования; 

вектор перемещений; 
коварнантные компоненты перемещений; 

контрвариантный вектор внутренних усилий; 

контрвариянт!|ый компоненты внутренних усилий; 

контрвариантный вектор внутренних моментов; 
контрвяриантные компоненты внутренних моментов; 

Фундаментальный определитель поверхности; 

коэффициенты преобразования компонент векторов из 

основного базиса в точке ( ) в компоненты взаим­

ного локального базиса в точке ( /  * о  

ковариантине компоненты дискриминантного тензора
( C7f ”  ^  О у С г* - Су y гг У я )  >
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~ нонтрвариантные компоненты дискриминантного тен- 
зора с С '= - С 9* = о .С ,а^ - С л ,ш 7 /У 5 " ) \

~ компоненты тензора мембранных деформаций; 

g  -  интенсивность деформаций;

£ г -  деформации текучести;

^  -  интенсивность деформаций текучести;

д  -  модуль объемной деформации;

^  -  компоненты тензора нагибных деформаций;

S2 -  вектор углов поворота малой окрестности точки

срединной поверхности оболочки;

-  компоненты вектора углов поворота;

-  контрвариантные компоненты тензора напряжений;

Q t -  интенсивность напряжений;

5 \( -  предел текучести материала;

6 * 7  -  интенсивность напряжений текучести;
т, joiA
А - интегральные характеристики жесткости оболочки

( т - 0,7,5)',

-  интегральные характеристики жесткости ребер

Здесь и ниже латинские индексы принимают вначения 1 ,2 ,9 ;
греческие - Г ,2.
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2. ПОСТАНОВКА ЗАДАЧИ

Рассматривается пространственная тонкостенная конструкция, 

представляющая собой некоторую композицию из произвольно набран­
ных оболочечных Фрагментов.

Предполагается, что на конструкцию действует система произ­
вольных внешних нагрузок и температура.

Задача состоит в определении напряженно-деформированного сос­
тояния, исследовании процесса деформирования и анализе устойчи­

вости рассматриваемой конструкциив геометрически и физически не­
линейной постановке.

2 .1. Геометрически нелинейные соотношения теории тонких оболочек

Исследование процесса деформирования тонких оболочек в преде­
лах конечных деформаций удобно проводить с использованием подхода 
Лагранжа. При этом за систему отсчета принимается декартова систе­
ма координатную, а индивидуализация точек срединной поверхности 
оболочки осуществляется при помощи вектор-функции

5"« Т  С ое', (2.1)

где параметры х 1,х *  определяют неподвижные, в общем случае косо­
угольные, криволинейные координаты, связанные с недеформированной 
срединной поверхностью оболочки (рис. 2 .1 ). Проекции вектор-функ­
ции Т  точек срединной поверхности в пределах элемента оболочки в 
системе отсчета ХУЮ задаются непрерывными однозначными функциями

X -  X С * \  х О  , Y « V C o c \x ’\ Z  = *Z C x\ (2.2) 
Векторы ^  д т

к * (2*3)
направленные по касательным к координатным линиям т \ х *, в вектор 

—
'  7еГ<Ж/ * (2.4)

совпадающий с ортом нормали к срединной поверхности, представляют
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Системы декартовых и криволинейных координат

*г

X  зс 1

Положительные направления внутренних усилий, компонент 
нагрузки и внутренних моментов* действующих н* племент 
срединной поверхности
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codoii основной локальный базио точек срединной поверхности ободоч­

ки.

Коэффициенты#,^ первой квадратичной формы

<#*» a ^ d x ^ d x * . (2 .6 )
определявшие внутреннюю метрику срединной поверхности оболочки и 

представляющие собой дважды коварнанткые компоненты метрического 

тензоре, выражаются зависимостью

= е°сел  * (2 .6)
а фундаментальный определитель метрического тензора имеет вид

а -  # „ # 2г- С # /2) г . (2 ,7)
Векторы взаимного локального базиса криволинейных косоуголь­

ных координат х \ х г связаны с векторами основного локального ба­
зиса соотношениями — _

е  ~ W l~ * 1 <2.в)
Описание деформирования срединной поверхности оболочки осу­

ществляется уравнениями, определяющими вектор перемещения ее то­
чек

(2.9)Г/~ U С х  \  х 2).

При этом уравнение деформированной поверхности принимает ьид

т* = т + й ,  (2.Ю)
а касательные векторы основного локального базиса деформированной 
срединной поверхности определяются выражением

2Г* -  £ К
е *  “  Ж 2 ~ е * * д х *  ■ (2.11)

Компоненты основного метрического тензора деформированной 
срединной поверхности оболочки в соответствии с (2 .6 ) и с учетом 
( 2 . I I )  выражаются соотношением __ _

. (2.12)
Сражения компоне-нт тензора мембранных деформаций получаются 

из соотношения (2 .12) вариацией компонент основного метрического
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тензора
' ОЖ. д]1 \
'* д х * . (2.13)

При деформировании тонких ободочек изменение коэффициентов 

первой квадратичной формы значительно более энергоемко по срав­

нении с изменением коэффициентов второй квадратичной формы, что 

выражается в существенном изменении ориентации локальных базисов 

при незначительном изменении их длин, Исходя из этого, в выраже­

ниях компонент мембранных деформаций дяя их упрочения уместно со­

хранять произведение величин углов поворота, определяющих измене­

ние внешней метрики, и пренебречь произведением величин изменения 

длин базисных векторов, а также произведением величин изменения 

длин базисных векторов на величины углов поворота. В соответствии 

с этим выражение для компонент мембранных деформаций преобразу­
ется к виду

Изменение ориентации элементов срединной поверхности оболоч­

ки в пространстве вследствие ее деформирования описывается векто­
ром углов поворота

где 1Г} и 1/г определяют углы поворота нормали вокруг касательных 

векторов взаимного локального базиса и З*7 соответственно, 

выражает средний угол поворота малой окрестности точки средин­

ной поверхности оболочки вокруг нормали, компоненты дважды

контрвариантного тензора, принимающего в зависимости от сочета­
ния индексов следующие значения

Связь углов поворота нормали с вектором перемещений выражается 

соотношением

= i < и *  + Ъ  и*. >. (2.14)

52 -  ё~л  + . (2.15)

С”=Сгг* о, с ,г=---С” * 1/Уа

iix* (2.16)
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Изменение кривизны оболочки вследствие деформирования опре­

деляется изгибними деформациями

= '  г  д х * е  r* c * r  f x >  е  ’ (2.17)

где Cjtr ~ компоненты дважды ковариантного дискриминантного тензо­
ра» принимающие в зависимости от сочетания индексов следующие 
значения

С „ * С 2г = о  , Сп = -С г1 = У5Г.

Зля приведения трехмерной задачи теории упругости к двухмер­

ным соотношениям теории ооолочек используются гипотеза недеформн- 

руемых нормалей КирхгоФа-Лява и допущение, состоящее в том, что 
нормальными напряжениями в направлении, перпендикулярном к сре­

динной поверхности оболочки, можно пренебречь ввиду их малости 
по сравнению с основными напряжениями.

Компоненты тензоров внутренних тангенциальных усилий и внут­
ренних моментов выражаются через компоненты тензоров мембранных и 

иэгибных деформаций зависимостями, следующими на закона состояния 
линейной теории упругости,при условии равенства нулю напряиений, 

нормальных к срединной поверхности, приведенными в работе [21]: 
Т***  С и )а  « г а я  *  ]  ,

7§pFb~'~'i-/u r c* [ ■>(*<*а ^ + { 7 -  v ) а * г а я ч ] ' (2.IB)
где * а с Учетом пренебрежения влиянием мем­
бранных деформаций на изменение кривизны

^ V « v 3 r > . (2.19)
Условие равенства нулю главного вектора всех сил» действу­

ющих на элемент срединной поверхности оболочки, формулируется в

виде д (У а 'Т ')  дС /аГ Т * ')
(2.20)

где Л  / fkeH , 7"=-- 1 ** -  нонтрвариштше векторы внутренних уси-
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лий с компонентами Т 7* t Т 2* ; -  вектор внешней поверхност­

ной нагрузки.

Условие равенства нулю главного момента всех сил и моментов, 

приложенных к элементу срединной поверхности оболочки, приводит к 

соотношению _
Ш Е Ю .  4 ^ Т ’)  Га+[ё2 * Т г]УдГ^О. (2 .21)

Контрвариантные векторы внутренних усилий можно разложить по век­

торам основного локального базиса деформированной срединной поверх­

ности __
Т * *  7 + (2 .22)

где 7 ~ ^ -  дважды коитрвариантные компоненты тензора внутренних 

усилий, характеризующие мембранные внутренние усилия оболочки;

выражают перерезывающие силы.

Контрвариантные векторы внутренних моментов удобно представ­

лять в виде разложения по векторам взаимного локального базиса не- 

деформированной срединной поверхности

(2 .23)
где компоненты разложения, означающие величины внутренних

моментов, -  дважду коварнантныв компоненты дискриминантного

тензора.

Перерезывающие силы 7 '^  определяются из соотношения (2*21), 

выражающего равенство нулю главного момента всех сил и моментов, 

действующих на элемент оболочки

Вектор внешней нагрузки £ в зависимости от характера нагру­

жения можно раскладывать по базисным векторам как недеформирован- 

ной, так и деформированной поверхностей. Если в процессе деформи­

рования оболочки вектор внешней нагрузки изменяет свое направление, 

как это имеет место в случае гидростатического давления, то его
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следует представлять в. виде разложения по базисным векторам де­

формированной поверхности

(2.25)
Если направление вектора внешней нагрузки не изменяется в процес­

се деформирования, например, в случае действия собственного веса, 

то его удобно представлять в виде разложения по базисным векторам 
исходной поверхности

9 ^ 9 ' ^  ■ (2.26)
На рис.2.2 показаны положительные направления компонент внут­

ренних усилий, моментов и внешней нагрузки, действующих на эле­
мент срединной поверхности оболочки.

Подстановка в физические соотношения (?Д 8 ) мембранных (2 .14) 

и изгибных (2 .19) деформаций, выраженных через компоненты векто­

ра перемещений, приводит к выражению компонент мембранных усилий 

и моментов через составляющие вектора перемещений. Перерезываю­

щие силы Г*'3 определяются через компоненты вектора перемещений 

посредством подстановки в соотношения (2 .24) выражений внутренних 

моментов через компоненты вектора перемещений. Подставив выраже­

ния внутренних усилий в уравнение равновесия и спроектировав его 

на векторы взаимного локального базиса, можно получить систему 

трех скалярных дифференциальных уравнений в перемещениях.

Эта система уравнений совместно с граничными условиями пред­

ставляет собой полную систему разрешающих уравнений. Учет нелиней­

ных зависимостей компонент тензора мембранных деформаций от компо­
нент вектора перемещений вместе с учетом изменения направления 

действия векторов внутренних усилий деформированной поверхности, 

а в случае следящей нагрузки и изменения направления действия век­

тора нагрузки , делает систему разрешающих уравнений нелинейной.
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2 .2 , Учет дискретно расположенных ребер в соотношениях 

теории тонких оболочек

При расчете ребристых оболочек д уравнения равновесия (2.20), 

сформулированные для узлов, через которые проходят ребра, необхо­

димо добавить члены, учитывающие внутренние усилия ребер, а в вы­

ражениях перерезывающих сил (2*24) -  члены, характеризующие внут­
ренние моменты ребер.

Выражения внутренних усилий и моментов ребер получаются 

интегрированием напряжений по высоте ребер. Вследствие одноос­

ного напряженного состояния ребер напряжения в ребрах, ориенти­

рованных вдоль координатных линий ос’ , принимают вид

6р 77«  ££Q ?fQT,& , s a ’7Q12&,2+X'sa ?7a 7$ v1,+vcBa ”a T*jJ72) ;
+ + x * a 77a * 2j J u  + а ?7а  «< £ ,Д (2 .27 )

а для ребер, ориентированных в направлении х,г -  

б % - £ ,  a * f a ” & „ +  a * ^ S u * s c K o ” j u l t *  a “ j u „ > J ;
б р г = £г х»С а” * /„  ■* a nj u t £>], (2.28)

где £ г ,£ г  ~ модули упругости материала ребер первого и второго 
направлений.

Внутренние усилия и моменты в ребрах выражаются соотношениями 

T ,i? = Si а • >{ (о ■*'£,,- а * г£ , ,V y*Ca«' juit* ] ,

■=£■ а "  К  а  (2.29)
Здесь ? -7  -  для ребер первого направления» г - 2  -  второго 

направления; F i и U* -  площади поперечных сечений ребер перво­

го и второго направлений и их собственные осевые моменты инерпии;

(V * эксцентриситеты ребер относительно срединной поверхности 
оболочки.

2*3. Учет влияния температуры

Тля учета температурного воздействия ча напряженно леФорми-
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рованное состояние ребристой оболочки необходимо члены внутрен­

них усилий и моментов, обусловленные температурным воздействием, 

перенести с противоположным знаком в правую часть уравнений рав­

новесия. Решив систему уравнений равновесия с правой частью в ви ~ 

де суммы добавок от внутренних усилий и моментов, можно получить 

температурные деформации и усилия ребристой оболочки.

Выражение для напряжений, учитывающее температурные деформа­

ции, имеет вид:

< 7 - а ^ ^ 7 / ^ /+сСт Q * * C T 0+ осзт7) ( 7,  у ? (2.30)
где ы г  -  коэффициент температурного линейного расширения матери * 

ала; Т0^ ! ос х \ агО- Функция распределения температуры на срединной 

поверхности оболочки ;/7^(х ;хг,х^-функция распределения температу­

ры по толшине•

Выделив из выражения (2 .3 0 ) температурный член и обозначив 

его 6 г *  получим*

Интегрируя по толщине оболочки напряжения (2 .3 1 ) , найдем 

выражения для температурных членов во внутренних усилиях и адомен*
тйу пОпплчки:

Температурные слагаемые в выражениях для напряжений в реб­

рах имеют вид

где б * 1Г ,г.у?г “ тяминрптуриме членм п пираженжиж лпнрчжепии 

ребер первого, и второго направлений соотвптгтвеиио,* # -

коэффициенты температурного линейного ряа*иг*, ния материалов со-

(2 .31)

(2 .32)
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ответствуюших ребер.

Интегрируя по высоте ребер напряжения (2 .3 3 ) , получаем тем­

пературные члены внутренних усилий и моментов ребео
Tpi r - J  # , в £ г а / х * =■- £ / ,  а Тт а ’ « с  т а * с ,  Т , ) ;

/ “"'2; б ^ г С /х'~  сСтга г«СТ0.+ С, Г,');
min

/ ЭС* , /71»>
б ,б £ гx 'c tx »= -л F,*Tla**(e,z,*c,tr1> F ,^d r ,a '<T, ;

ас»/э т, mm

. a  “ Г , . (2 .34)
2 .4 . Учет влияния пластичности материала

При иселеловепии напряженно-деформированного состояния тон- 
«нх оболочек за пределами упругости необходимо знать зависимости 

компонентов напряжений от компонентов деформации, которые 

устанааливаются в теории пластичности.

В основу исследований HJG и устойчивости оболочек за преде­

лом упругости положены соотноиения теории малых упруго-пластичес­

ких деформаций (деформационная теория) [1 4 ]. Основные положения 

этой теории являются обобщением закона Гука для неодноосного на­

пряженного состояния в предположении, что в каждой точке тела 

путь нагружения является прямым. Широкая практика использования 

деФормапионой теории показала, что она дает хорошие результаты и 

для путей нагружения малой кривизны [1 7 ] •

В теории малых упруго-пластических деформаций соотношения 

между напряжениями и деформациями имеют такой же вид, как и в 

упругой стадии, однако величины £< ,, v'*, G0 зависят от деформиро­

ванного состояния в точке и вида Функции e'.-'W Sj). Модуль растя­

жения и коэффициент поперечного сжатия связаны с модулями Gc и 

объемной деформации К формулами
_ &HGc 7 J /r -  PG^ f n QC V

{ < ы  + Щ * c ” э  Tn'+  Gc ‘ (2 ,35)
Модуль объемной деформации Л не зависит от деформированного
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состояния и выражается через модуль упругости £  и коэффициент 

Пуассона v> упруго» стадии деформирования, модуль сдвига G c в де­

формационной теории определяется формулой

Се = I  -$L
4 (2.36)

■ связан с модулем упругости в упруго-пластической стадии дефорьм- 
рования соотношением

г  — £*<? __
с 2 (7 + \0 (2.37)

Будем рассматривать два способа представления зависимости ин­

тенсивности напряжений б, от интенсивности деформаций а , - .

Идеально упруго-пластическое тело (р и с .2 .3 ,а) характеризует 
Формулами

б, При S iT ;
Gi = б г  при <«,■*£,>. (2.38)

Соотношение представляет собой критерий пластичности Ынаеса.
Из соотношений (2 ,38) и (2 .36) следует

Gc =&  при s ,  < S i r  ;

при (2.39)
Упруго-пластическое тело о линейным упрчнением (рис.2 .3 ,6 )

обычно задают соотношениями
&г в ?б(£/ при <§Y ■<£ ($ j у  J

6 , =?G& ;T + JGt C S ,~ S /T ') при <8, * & ir t (2.40)
где G7-  модульупрочнения. ■?£&,>*= б}. При G ,= o  да f a .40) подучаем 

выражения (2 .3 8 ). Иа Формул (2 .40) находим секущие модуль сдвига:

Gс “  G при &,**<£;/• t

G c ~ G  i / F )  "Ри *>*<*"■  (2.41)
В приведенных Формулах сехуций модуль сдвига вычисляется по

значению интенсивности деформаций и зависимости а  С&Д а затем,
используя (2 .3 5 ), определяются секуцие модуль упругости £ с и

коэффициент Пуассона рс •
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Рис. 2.3
диаграммы деформирования материала

а - упруго-пластическое тело; б - упруго-пластическое 
тело' с линейным упрочнением
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Уля построения идеализированных диаграмм деформирования ма­

териала, представленных на рис.2 .3 , используем в качестве базис­

ной диаграмму одноосного растяжения &.м Ле , для второ напряжен­

ного состояния при

г *•' 6Гэс , 6^г “ 6 v* “ 6) i ~ S16 « б , a ~о , ?J f ~ Л*.  ̂£f ,г =z-f9 ̂  ^ ~ а

и £ г г --fib  “ получим:

6 t - б"х ; "  J  &  (2.42)
Последнему выражению в (2 .42 ) можно придать различное формы запи­

си, например:
7- 2 V

' боа

р 1 7 -£>v> 6"-JO
0 ---

PC 7+ Л
... 7 ' ” ■ е (2.43»

Формулы (2 .4 2 ) и (2 .4 3 ) позволяют по диаграмме одноосного 
растяжения построить диаграмму деформирования б\ , При из

вестных значениях предела текучести еу и деформации текучести j§> 

при одноосном растяжении соответствующие им значения интенсивнос­
тей напряжений и деформаций определяем по формулам:

/ -  Р и
6  i г ~  6 г , <Sr- г ~ <о ? -  б'т • ( 2 4 4 )

Если принять условие несжимаемости материала, то диаграммы 

деформирования материала (см .рис.2 .3 )  совпадут с диаграммами од 
ноосного растяжения.

Зависимости между напряжениями и деформациями в оболочке, 

работающей в упруго-пластической стадии, при достигнутой интен­

сивности деформаций <gt Формально сохраняют такой же вид,как и в 
упругой оболочке

V .  -  [ у !  ж  “ -■* ; т й  ° г * °  “ 4 е-ocja, ■ с г л ь )
Здесь модуль упругости и коэффициент Пуассона зави
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сят не только от координат х 1 и х а на поверхности оболочки, но и 

изменяются по толщине оболочки. Их значения определяются по фор­

мулам (2 .35) и диаграмме деформирования материала в зависимости 

от значения интенсивности деформаций <5г* в рассматриваемой точ­
ке тела оболочки.

В тонкой оболочке, для которой справедливы гипотезы Кирхго­

фа -Л ява, деформации ^выражаются через мембранные изгибные

деформации срединной поверхности по формулам:

— £«jb +• 'K'ju-u.jb . (2.46)

Выполнив после подстановки (2 .46) в обобщенный закон Гука (2 .45) 

интегрирование по толщине оболочки, получим выражения для усилий 
и моментов в физически нелинейно-упругой оболочке:

т  -  Л '" 0 -*  + к
(2.47)m

Здесь коэффициенты Л ^ ^ о д ^ п р е в с т а в л я ю т  собой интегральные 

характеристики жесткости оболочки в точке с криволинейными ко­
ординатами ос1, ос1 :

=J  £ l s J b - Q«Aar*> > Qr*a ‘*j)]cx4'nctx) Cm*o,i.£U.2.48)
•  h/2

Уравнения равновесия элемента оболочки, выражения мембран­

ных и изгибных деформаций через перемещения ее срединной поверх­

ности для оболочки, работающей в упруго-пластической стадии,со­
храняют такой же вид, как и для упругой оболочки.

При совместной работе оболочки и ребер в уравнения равнове­

сия, сформулированные для узлов, через которые проходят ребра, 

необходимо добавить члены, характеризующие внутренние усилия ре­

бер, а в выражения поперечных сил -  Члены, характеризующие внут­
ренние моменты ребер. Выражения внутренних усилий и моментов ре­

бер получаем интегрированием по высоте и иирине ребер фунхций.
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описывающих напряжения.

Вследствие одноосного напряженно-деформированного состояния 

ребер принимаем:

I )  напряжения в ребрах, расположенных вдоль координатных ли­

ний ос7 , имеют вид

б ”, 7Q77/C a77£ ,? > zc^Ca7fj u 77 *-ar\ /u, 7 ,

6;* = f c la ”fCQ”s »  х К о г> „  * а ’’- j i  70 ] , (2 .49)

где £ с7 -  секущий модуль упругости материала ребра первого направ­

ления.

Интегрируя выражения напряжений по ширине и высоте се­

чения ребра, получаем выражения усилий и моментов в ребрах перво­
го направления

f p i  -

2) напряжения в ребрах, расположенных вдоль координатных ли­

ний сс? , имеют вид:

б Ц  ---£ с г а г1[ а г,£ г ^ а 21§,г + х Ч ^ , у +  а ” /ц 7^ ]  ,

6 r \ - £ c i  x K a ‘y u , r *■ J  ; (2 .51)
где £c?-  секущий модуль упругости материала ребра второго направ­

ления.

'Интегрируя, как и выше, выражения (2 .5 1 ) , получим выражения 

для внутренних усилий и моментов ребер второго направления:

п г г -  я * * ' * * ^  + & я г *',. * , * 1 м & = ё аг > ъ г к * ^ ^ г> г л . (2 . 5г)

В янреяениях (2 .5 0 ) и (? .* ? )  коэ^ициенты В ^ ы  представ­

ляет ообой интегральные характеристики шесткости ребер, проходя- 

«их череа узел ревностной сетки с координатами ос1, то* •
. _  Л  - Ъ + Р
V"  v  . /  J  ’£c,a,* a r « ( .x V ,r' а,х\ Оъ-цг.-по > * e c ^ Uye**-ftrC 

Р  (2 .53) 1

В
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где 7?( , fit . Ci ~ соответственно ширина, высота сечения ребра 

/ -го направления и его эксцентриситет относительно срединной 

поверхности,

В узлах ревностной сетки, пере» которые проход*? подкрешгя- 

ешиа Ребра, жесткоптные характеристики (? ,4 в )  и (2 .* ? )  суммиру­
ется*
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3 . METOJH И АЛГОРИТМА РЕШЕНИЙ 

э .1 . Метол криволинейных сеток

При использовании метода конечных разностей и метода конеч­

ных элементов для дискретизации дифференциальных соотношений тео­

рии оболочек имеет место неудовлетворительная сходимость решений 

ряда задач упругого деформирования оболочек. По этой причине при 

построении дискретной математической модели континуальной задачи 

приходится вводить неоправданное видом разрешающих функций боль­

шое количество степеней свободы. Это обстоятельство сопряжено со 

значительным расходом ресурсов ЭВМ, что может привести к непрео­
долимым трудностям при решении задач нелинейной устойчивости обо­

лочек в двумерной постановке. Причиной неудовлетворительной сходи­

мости численных решений с использованием метода конечных разностей 

является существенное влияние жестких смещений на погрешность ко- 

нечнораэностной аппроксимации коварнантных производных компонент 

разрешающих вектор-функций. Так, вектор-Функцию ZT, от компо­

нент которой вычисляются ковариантные производные, можно предста­

вить в окрестности точки дискретизации в виде сумш постоянной 

вектор-Фуякции U*  и переменной вектор-Лункции Q*

77- Сг- uiS ’t+uf& 'i . (зл)
Аналитическое выражение ковариантной производной имеет вид

= • (3 -2) 
Ковариантную производную (3 .2 )  компонент вектор-Функпии iT  

выразим в виде суммы ковяриантных производных компонент составля­

ющих вектор-Функпии ?7°и И * . Поскольку значение ковариантной про­

изводной от компонент постоянной составляющей вектор-Функпии сГ°  

равно нулю, значение ковариантной производной компонент 1Т равно 

значению коварнантной производной компонент переменной составдя-
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иней вектор-Функпии £7’". При переходе от аналитического выраже­

ния ковариантной производной (3 ,2 ) к ее юнвчноразностному анало­
гу получаем численное выражение ковариантной производной от ком­

понент постоянной составляющей вектор-Функции U °

< v, u t h4 - 2™,с u;ttt.r  u^.p-c г , г и ^ ы , <3.з>
где д сс1-  длина ячейки разностной сетки в направлении координат­

ной линии оо1 • яри неизменяемости вектор-функция £Г°ее компо­

ненты на криволинейных сетках являются переменными функциями, в 

пилу чего правая часть (3 .3 ) имеет погрешность разностной аппрок­

симации, пропорциональную модулю tT0 . При больших значениях ма- 

лоязменяющихся вектор-функций ZF погрешность разностной аппрок­

симации ковариантной производной компонент постоянной составляю­

щей вектор-функции Z7*в веде (3 ,3) может стать соизмеримой с вычис 
лнемым значением ковариантной производной компонент переменной сос

тавлшцей вектор-функцииЙП этом проявляется отрицательное влияние 
жестких смещений на сходимость численных решений метода конечных 
разностей на криволинейных сетках.

Предложенная Е.А.Гоцуляком модификация метода сеток (метод 

криволинейных сеток), являющаяся обобщением метода конечных раз­

ностей для случая дискретизации векторных дифференциальных соот­

ношений в системе криволинейных координат, полностью исключает 

погрешность аппроксимации ковариантной производной компонент по­
стоянной составляющей вектор-Функции Z7°. Суть ее состоит в сле­
дующем, Для дискретизации дифференциальных соотношения теории уп­

ругих тонких оболочек методом криволинейных сеток используется 

аналитическое выражение ковариантной производной в виде

V* и  к д х +  е *
При конечнорэзностпой аппроксимации (3,4') в точке 

постней аналог ковариантной производной принимает вид

* " ,  » . Ч  •

(. t
*3.4)

Р  гкз-

(3.5*
Значение конечнорязяостного аналога <3,5) корариантиой прочв-
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водной компонент постоянной составляющей вектор-функпии IT*" точно 

равно нулю. Таким образом в методе криволинейных сеток исключается 

погрешность, обусловленная жесткими смещениями.

Исключение погрешности аппроксимации ковариантных производ­

ных компонент постоянных составляющих вектор-функции дифференци­

альных соотношений теории тонких оболочек приводит к существенно­

му улучшению сходимости численных решений метода криволинейных се 

ток в сравнении со сходимостью решений традиционного метода конеч­

ных разностей. Улучшенная сходимость метода криволинейных сеток 

позволяет получать желаемую точность численного решения при умень 

венном количестве степеней свободы, что приводит к более экономно 

му расходованию ресурсов ЭВМ и позволяет эффективно решать задачи 

теории оболочек в двумерной постановке,

З .? . дискретизация дифференциальных соотношений теории

Уля дискретизации континуальной задачи теории оболочек ио • 

пользуем метод криволинейных сеток. На срединной поверхности ь 

оболочки строим координатные линии недеФормированной системы ко­

ординат г , j  . Определяя вектор внутренних усилий на линиях 

между узлами разностной сетки, преобразуем уравнение равновесия 

(2 ,2 0) в узле С / ;^ >  к разностному виду:

В целях улучшения сходимости на геометрически неравномерных 

сетках, а также на линиях стыков сопрягаемых оболочек выполним 

усреднение Функции fct и нагрузки в конечнораэностных ячейках, 

примыкающих к узлу Сi ; j h  В этом случае 0 . 6 )  принимает вид:

тонких осадочек

-  ( / a 7 a t ? (3 .6 )



28

0,5 /С Vdr^a9ij +09 гУ^г*е>.л^-о,5^~^ Ръ\+а9-ш]^( i-o.s tj+o.$ -*5,у~а-а)'1

С 7 '*& )i-o.5//+(rajro.5}j+o.b+ffih09tjt0 t)(Ts*FJtiro.a~(fo)-o.b;y*.Z7

Проецируя конечноразностное векторное уравнение равновесия 

элемента оболочки ГЗЛ) с центром в узле d i p  на векторы взаим­

ного локального базиса в этом узле, получаем систему трех скаляр­

ных уравнений равновесия:

0 $ [ ш 7*а$’ '45**®/-вSif-as^?rS° l 1 *

* (7&f+as>j+a s* ,] * о, Ŝ s  * »;♦ о,5 ^ Л о . ь , ; ^  ^  s* V,у ■«»./*
(3 .8)

Здесь введены обозначения вля величин, превставляющих собой 

коэффициенты преобразования координат базиса в точке ( t * G ? ; p a s )  

к координатам базиса в точке С * ; р

 ̂»Vj £= "̂Гй. , 2Г
^ e j i a s ^ ' i f t s ^ b v  В « * 0 .5 # /* 0 .в (3 .9)

В уравненияВыражения перерезывающих усилий T ^ S  входящих 

равновесия (3 .8 ) , получаем из (2 .24)

Т £ . ь Г а £ - ^ ^ Q^ - CaM ^ QU S, r

* их м  '% •  - сам * » * / • $ * .* *

••сал/ ' 'W * .  ̂ С ° ' СаМг3),'0а-)-°*а* ^ ? я-

- < Q i f  2 i-V^as i j * 0 . 5  a 2 i > o . s ’ /  ( 3

7i* b ab ~Oi^7os ™ й Т < ° М '')и ь Л.%ы% aV;®-f;i£*

* ( a  ^ s ^ to .5 a /i t%  ofs (oMt 12)f-o5.^ 0.5 Q ^  f jtil °’3*
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-  < а м " \ ,  О са М ' % „  а ? ; : р я ,

+ с а м '% г/„  о;;:-уЛ м - ( & м г% :/ < » ] . <3.  II)

В разностном уравнении равновесия O .R ) мембранные усилия 

Г '*  необходимо определять ь точках между узлами на линиях v; ' , а 

Т г*~ между узлами координатных линий л : г , в соответствии с этим 
для применения соотношений С2ЛР) необходимо иметь все компоненты 

мембранных деформаций между узлами на координатных линиях.

В результате дискретизации дифференциальных соотношений (2.1ч 

получаем разностные выражения компонент тензора мембранных дефор­
маций

(3.12) 

( 3 .13>

£nt*o.9js 0 r f a* b ,.a s i)\ . , ' j - ( a i Q l 'aa.p u) + arfCUtQfUa*),. ,lJtf  ^ 4 4 ,“aSiJ ^

{3>M)

<£*V'QS = й { V*Qkj'C * )i. , t j "  -

' rii <*«

(3 .16)

(3 .17 ;
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Внутренние моменты, входящие в выражения перерезывающих сил 

(2 ,2 4 ), определяются как в узлах, так и в центрах ячеек разност­

ной сетки, поэтому для применения зависимостей (2 .18) необходимо 

иметь компоненты тензора изгибных деформаций в узлах и центрах 

разностной сетки, дискретные выражения которых имеют вид:

« v .4  *

< W  < 'A . r ( ^ . 4 U 4  < Ц Щ ) ;  (3.181

''го  1, (3,19)

ч . „  C L :, < й ,  ^

Ж  Щ . а%, О 71-/ -Г -Ь -у -Л  0 * и  .r‘*o.Bif V у р  иг °7\-as;j +

Щ  A , /(US Qi t J ^  ф  г аг / ^ а я +

Уа s^>j-os °г»,^оь ( j tp  t& h j ’as Q7i,j?ab] , (3.20)

/ ^ . < > „ , 0 ,  -  / г *  ю ^ . С г + Х и ^ * * ' c s ?

' ( у с Г ^ ’.ГОъ ° п \у о { 'и-С ^ и ') ,,,у ,о ^  °п*7-,).аъ 7 , (3.21)

A t  иа>,уоь= ае„0*,3 +

п

(3.22)
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Компоненты вектора углов поворота окрестности оболочки, вхо- 
хвние в дискретные внреления деФормапя* (ЗЛ г)-(З .гэ ), получим 
между увлами на линиях pasноет но* сеткя

(З .г э ) . < З Л 2 )-О Л 7 ), ( г д е ) .  (З .Ю )-(З Л П  В (3 .8 ) поаволяет 
перейтн от рассмотрения дифференциального векторного уравнения 
равновесия к системе алгебраических уравнений в перемещениях. Раз­
решающая система уравнений краевой валами строится последователь- 
инм обхолом узлов сеточной области, наложенной на рассчитываемый 
объект.

Граничные условия

Разностные урявпенин, описывающие равновесие узлов дискрет- 
мой молепи. волжны быть лополиенн условиями на гранимах, В метоле

Послелователъная подстановка соотношений
(3.27)

(Э.27),ГЭ.18)-

(3.24)

(3.25)

(3.26)

4-С»
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криволинейных сеток реализованы граничные условия свободного крал, 

подвижного и неподвижного шарнирного опирают, скользяще! и жест­

ко! заделки, симметрии и косо! симметрии поля перемещении.

Приведем граничные условия для контурных лини! сеточно! об­

ласти ( Lf * L « , j) * /  * Jn ) .

Для свободного края, расположенного вдоль линия спра­

ведливы соотношения

На свободном крае вдоль линии L*im  в приведенных выражениях 

меняются индексы I/ на ст  , if - 0 5 на im  +0.5 и i,+Ot на .

Для свободного края, расположенного вдоль линии у # 

справедливы аналогичные равенства

На свободном крае по линии в приведенных выражениях меня-

Программная реализация условий свободного края осуществляется 

посредством исключения из разностного уравнения ( З .в  ) той его 

чисти, которая по условиям данного края равна нулю, что приводит 

к исключению неизвестных в законтурных узлах сетки на стадии фор­

мирования системы разрешающих уравнена!, В основу физической интер­

претации граничных условий свободного края может быть положено то 
обстоятельство, что в местах отсутствия материала оболочки стсутст-

ются индексы / ,  на ;г , - ОS  на / 7 + 0 5  нас/Л, 0.5  .



33

вует и воздействие внутренних усилий. В случае ортогональной рав­

номерной сетки предельный переход г описанных соотношениях при­

водит к классическому виду граничных условий свободного края

j *
Г * ',

т 'г - м  "  -О  ;
7'-”  -  T £i - -4К- At" "О. d r 2

В увле (t<,//), расположенном на пересечении двух контурных линий 

с условиями свободного края, ив разностного уравнения исключаются 

две группы членов, равные нулю согласно приведенным соотношениям. 

Таким образом шаблон коэффициентов усекается с двух сторон, что 

приводит к исключению неизвестных во всех законтурных узлах. Ана­

логичная операция исключения производится н в трех остальных углах

(О ,//? ) ,  ( ^ , / i г ) ,  ( ) .

Различные варианты шарнирного опирания и защемления реализу­

ются посредством замены одного или нескольких приведенных выше 

соотношений на одно или нескольких соответствующих кинематических 

условий вида ( О ч }. . ^ О  f S  - A c : );

х е  ■* п ш

справедливых для линии ( - w  . Для контурной линии у  анало­

гичная замена производится с использованием равенств

( и, ) ( - О  ( S - S .  2 , 3  J ;

Ш & '  • * « & * ,  ■ г Ъ ^ е . - г . щ

В контурной линии , расположенной на плоскости симметрии, 

исключение неизвестных, определяющих перемещения в законтурных 

узлах, осуществляется с помощью равенств

l t d . X.J (и*),-

(“ ' I , * . , /'Л'-- )
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В случав косой симметрии используются равенства

3.4. Построение реиения Йадач о нелинейном деформировании 

и устойчивости оболочек

Задачи о нелинейном деформировании механических систем под­

даются аналитическим методам решения лишь в простейших случаях. 

Поэтому при решении нелннейннх вадач теории ободочек, описываемых 

дифференциальными уравнениями с частными про наводными и переменны­

ми коэффициентами, возникает необходимость в привлечении числен­

ных методов*

Для реиения систем нелинейных дифференциальных уравнений при­

менен метод дифференцирования по параметру с коррекцией невязкой 

метода Ньютона [ 5], суть которого состоят в том, что нелинейное 

функциональное уравнение порядка k

описывающее равновесное состояние оболочки, дополняется уравнение*

описывающий величину выбранного ведущего параметра, что приводит 

к функционально^ уравнению

Это уравнение можно приближенно записать в виде разложения в ряд 

Тейлора с сохранением двух его членов

г ( х ) - о , х  -[х,, : .,л „,р ]т, (3.28)

(3.29)

Отсюда получается выражение приращения вскторш неизвестных на
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ваге приращения ведущего параметра

/ 4  Х 7 е„  - / < р с  х ) ] , 9 [ л л й+ , е « л .  e - f o o c z y j %]  9 ( 3 . 3 d

где последние два члена в Фигурных скобках представляют собой на­

копленную невязку метода Ньютона от предыдущих шагов приращения 

ведущего параметра.

Такой подход позволяет реализовать на ЭЕМ пошаговый процесс, 

сводящий решение нелинейной краевой задачи к последовательности 

решений линеаризованных краевых задач, заменяющих проиедуры постро­

ения операторов f  ЯР* ^ X  ) / 3  7*

Перепишем соотношение (3 ,3 1 )  в виде

[  <р' с X )/3 Гл X*,, -- л л 9„ £ *■ Л. t f  - L '«°i x .>/, , (3.32)
которое представляет собой линеаризованное в окрестности состояния

уравнение равновесия, составленное с учетом накопленных в оболочке 
*

мембранных усилий /Х ^ и  углов поворота у * -

Поскольку нелинейные уравнения теории оболочек сФормулирове - 

ны в исходной недеформированной метрике, линеаризацию соотношений 

(2Л *0 , (3 .8 )  производим с учетом изменения векторов локального 

базиса.

Учитывая спенитику деформирования тонких оболочек, про и м  я ют у 

вся а существенном изменении ориентации базисных векторов при ясзнл 

читальном изменении их длин, представим выражения векторов дефор­

мированной поверхности в виде

“  «г» - /  5 1 ' ) .  ( з . :к))

Р соответствии с предположением о неизменяемости в процессе 

деформирования модулей базисных векторов выражения приращений век 

торов основного локального базиса будут иметь вид

Л Р,

Л е а < э .:н '

^  - Л <Гг -  • х/\ <Г4  л » Л  е *  > гг, t-f : <3 . ыИЛИ
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Исходя из ураэнений равновесия (3*8) и вводя в рассмотрение 
Vi,я базисных векторов ГЭ.Э5) и накопленных усилий ,

линеаризованные уравнения равновесия тонкой оболочки

'*(* 5,j+az +1/а»*ч 7 ^ ) [ т  > 7 - г

' Г у ; ^ ^ ) 1 ав.г (Уо~аа; :  

хС( ^ ' r + 7  l?t Т г \г,еь '

/ V ;  > У а ^ 77)[ТаЪ-

- г$ ^ ) J g . В5 +

f }а У е‘ +i № -  У*ъЯ.03> ,-05 Ш  =0. (з.зб)
где 2 ,з  определяет номер уравнения. '

Пренебрегая членами, содержащими накопленные значения пере­
вес 3ре выдающих сил /  , как это принято в теории устойчивости тонких

оболочек.представим линеаризованные уравнения равновесия в оконча­
тельном виде__

j j {( V t̂+o5,f+as i ^Ь о ^^о .ь )!~ Т  Q - 8 3  Ъ*о.ъ-,}~

< Ж о ^ ,о 1 <  ^ 7 7 ) 7 Т  %  - f  к ъ  ■ е~]Ы ч  +

м  №t.a»,jH>.s+VQ<-+3;j.o!, ) [ Т ^  - Г М1£-%  7 ,.;405-

1 r.r~' -7 г r~> *__  '*
■ £ U ^ ea + р7М ’ г ^ Г Л в5 1 (Го,

1 *е( l  a ^ o .s  * i  *Pt 7 /.аз;^*а ]  0 • (3.37)

В уравнении (3 .3 7 ) члены, определяющие внешнее воздействие, 

сформулированы для нагрузки, которая в процессе деформирования не 

меняет своего направления. В случаях, когда в процессе изменения 

формы оболочки нагрузка изменяет ориентацию, как при действии гид-
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ростатического давлении, грузовые члены уравнений равновесия но­

сят нелинейный характер, Для такой следящей нагрузки линеаризован 

ные уравнения равновесия должны быть дополнены членами, получен­
ными линеаризацией нелинейной нагрузки

i f  -

'  №  (З .эв !
Линеаризованные выражения мембранных деформаций (2.14) имеют

вид

^  2 (д$ + (3 .39)

В соотновениях (3.36), (3.39) звездочками обозначены значения 

накопленных величин в окрестности линеаризованного состояния, со­

ответствующие переменю^ без звездочек обозначают приращение этих 

величин.

Используя (3.37), (3.38), (3.39), (3,10), (3.II), (2.19),

0 . 1 2 )  - 0 . 2 3 ) ,  0 . 2 А ) - 0 . 2 7 ) , 0 . в )  в процедуре 0 . 3 1 ) ,  получи» 

последовательность линеаризованных разрешающих уравнений напряжен­

но -деформированного состояния оболочек, коэффициенты которых на 

к Н  шаге алгоритма (3,32) вычисляются с использованием харак­

теристик состоянии предыдущего ^ - г о  вага.

При построении линеаризованных систем раэрелаюиих уравнений 

на каждом ваге алгоритма (3,31) производится последовательное Фор­

мирование конечноразностного шаблона коэффициентов при неизвест­

ных в каждом узле сеточной области, связанной со срединной поверх­

ностью оболочки. Для этого во всех узлах формируются массивы шаб­

лонов жесткостей оболочки и ребер, температур, компонент векторов 

локальных базисов и корней квадратных из фундаментальных опреде­

лителей поверхности. После Формирования ваблона конечноразностных 

коэффициентов производится их рассылка в коэффициенты матрицы рад. 

решающих уравнений. По мере Формирования блок-строки матрицы про-



38

исходит ее преобразование методом Гаусса, что позволяет хранить 

в оперативной памяти лишь те блоки, которые участвуют в преобразо­

ваниях. Остальные блоки хранятся в файле прямого доступа на МД. 

Алгоритм построения матрицы разрешающих уравнений учитывает ее 

ленточную структуру, что позволяет избежать лишних арифметических 

операций в методе Гаусса с нулевыми блоками матрицы и сократить 

время счета. При переходе от шага к шагу алгоритма (3 .3 1 ) матрица 

системы линеаризованных разрешающих уравнений и ее определитель 

претерпевают изменении. Смена знака определителя свидетельствует 

о наличии на кривой нагружения особой точки в интервале параметра 

нагружения, ограниченного его значениями, соответствующими преды­

дущим двум шагам нагружения. Коли смена знака определителя сопро­

вождается сменой знака параметра нагрузки или перемещений, то осо­

бая точка является предельной; если смены знака параметра нагруз­

ки или перемещений не наблюдается, то особая точка является бифур­

кационной. Вблизи особой точки происходит постепенное вырождение 

матрицы разрешающих уравнений. Для регуляризации задачи и получе­

ния возможности продолженгя решения в закритичеекой области про­

изводится перестройка системы уравнений посредством смены ведуще­

го параметра нагружения. Для построения ответвляющегося (бифурка­

ционного) решения необходимо как можно ближе подойти к точке би- 

1 'Уркаиии с уменьшенным шагом нагружения и на шаге, предшествующем 

смене знака определителя, зад ап  оболочке такие перемещения, кото­

рые бы привели к ветвлению решения в точке бифуркации.

Решение упруго-пластических и ачастических задач сопряжено 
со значительными трудностями, и многие задачи расчетов за предела­

ми упругости до сих пор не имеют решении. Поз тому в теории пластич­
ности еще в большей степени, чем в теории упругости, имеют значе­

ние приближенные метогы решения, Г[и этом стремятся построить та-
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кой алгоритм, чтобы до минимума сократить выполнение большего 

числа операций при численном интегрировании по толшине оболочки 

в выражениях Обычно предпочтение отдается различным гпо-

собам линеаризации, позволявшим уменьшить количество вычислений 

и свести нелинейную задачу к последовательности линейных, методом 

упругих решений, дополнительных нагрузок и переменных параметров 

упругости и другим разновидностям метода Ньютона.

Идея решения Физически нелинейных задач механики твердого де­

формируемого тела в виде последовательности решений линейно-упру­

гих задач с некоторыми дополнительными условиями принадлежит 

А.А.Ильюшину, Им был предложен процесс последовательных прибли­

жений с дополнительными объемными и поверхностными нагрузками, 

позволяющими создать равные деформации в упругом и упруго-плас­

тическом телах. Ртот итерационный процесс решения называется ме­

тодом упругих решений (МУТ)* Позже И.А.Биргер предложил еще два 

варианта итерационного пропесса, основой которого на шаге нагру­

жения является линейно-упругая задача либо с переменными параметр 

рами упругости, либо с дополнительными деформациями.

При разработке программы по расчету оболочек с учетом упру­

го-пластических свойств материала в геометрически линейной и в 

геометрически нелинейной постановках использовано сочетание на 

каждом тяга нагружения метода переменных параметров упругости и 

метола дополнительных нагрузок А,А.Ильюшина.

Па * -ом шаге нагружения принимаются переменные параметры 
упругости и дополнительные нагрузки, обусловленные накопленным 

уровнем деформаций в обаяочко, решается упругая палача, в пя- 

нультатг чп о определяются усилия, моменты и деформации t  -го 

\\0 пгт ролгчинчм В каждой точке раз ноет ной ге?*и 
г' W r  <кв и ггчи точка у По толщине ободочки под^читыв^ятся ии-
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тенсивности деФормаиий В координатах б\ - £>* диаграмм дефор­

мирования (с м .р и с . 2 , Э) для каждой рассматриваемой точки тела обо­

лочки определяется величина G равная отношению интенсивности 

напряжений 6 ^  соответствующей интенсивности деформаций 

~ всличиие Gc определяем также параметры Г ^ иvO f С
Пекущие параметры £ (^ , будут различными не только на

поверхности оболочки«но и по толщине оболочки. На основе вычис­

ленных упругих констант £ -г о  вага нагружения по (2 .4 8 )  и С2 . 5 Э) 

вычисляем интегральные жесткостине характеристики A 'W*A и F  ,JM’* 

для решения задачи на г *> О ваге нагружения. яалее при сост£тгленв^ 

системы разрешающих уравнений вычисляются дополнительные паг-^эки, 

которые будут приложены при решении упругой задачи в аС к + О  sar© 

нагружения, и решается упругая линейная задача нтого шага нагру­
жения.

Расчет продолжается до достижения заданного уровня нагружения 

или до потери несущей способности оболочки, для тонких оболочек 

возможна потеря устойчивости до появления развитых пластических 

зон в оболочке. При реализации шагового процесса необходимо пер­

вый таг рнбрать таким, чтобы максимальные напряжения в оболочке 

достигли предела текучести, а все последующие ваги нагружения выб­

рать минимальными.
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4. СЛИПАНИЕ ПРОГРАММ*

4,1 , Общие сведения, функциональное назначение и 
используемые технические средстве

Символическое обозначение программы -"MFKPMO-Z?", наименование 

комплекс программ по расчету напряженно-деформироваиного состояния 

и устойчивости оболочек сложной формы, функционирует в виде библиотек 

исходных модулей SYS2. Г.МКС'2, загрузочных модулей $YS2. 7./ИКС с 
и набора тестовых примеров расчета SYS2. Т. 7 'f$T  с библиотеч ­

ной организацией.

Комплекс программ "MFKPHC-?” предназначен для решения на ?Ш 

в двумерной постановке статических задач определения Н&С  и ис­

следования устойчивости ребристых оболочек сложной формы, ослаблен­

ных отверстиями или вырезами, п учетом геометрической и Физической 

нелинейностей. Срединная поверхность оболочки может быть составле­

на иэ ряда аналитических поверхностей. Стык может быть как гладким, 

так и с изломом поверхности по линии сопряжения. Ребра принимаются

в расчет дискретно и могут быть центральными или эксцентричными 
относительно срединной поверхности оболочки, з также прерывистыми 

или непрерывными. На границах расчетного фрагмента возможно з а ­

дание произвольной комбинации различных граничных условий,

Решение задач можно получать при произвольиих статических с и ­

ловых воздействиях и произвольных температурных воздействияхзада­

ваемых в виде двух независимых Функций: распределения температуры 
в срединной поверхности и перепада температуры по толшине оболочки, 

(■бпаоть применения комплекса ограничивается классом тонких 
пластинок и оболочек. Сочленение Фрагментов составные оболочек до- 

пуг тимо ю 11 ЬКГ) по Координатным ЛИНИЯМ, контуры отверстий и вы гг* 30  в 

должен сорпадам, г, координатными линиями на поверхности оболочки.
Ot f анв toioci на объемы ргпреуцу задач дикт у м т я , как правило, рг-
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' уроами ЭВМ.

В состав комплекса входят:

■" программа по решению задач о НДС и устойчивости оболочек

гом геометрической нелинейности. Она позволяет определять об- 

"и * -.«ирчшенно-деФормированное состояние, исследовать характер пе- 

> относки равновесных Форм рассматриваемых систем, строить траек- 

?оггг,1 нагружения, находить на них предельные точки и точки биФур- 

кнптии, анализировать закритические состояния. Включает также воз­

можность анализа /УДС ® геометрически линейной постановке (первый 

шаг решения нелинейной задачи);

-  программа по решению задач упруго-пластического деформиро­

вания оболочек. Она позволяет исследовать процесс деформирования 

оболочек с учетом соотношений теории малых упруго-пластических 

деформаций.

В качестве языков программирования при написании программ 

использованы Ф0РТРАН-1У и АССЕМБЛЕР. На языке АССЕМБЛЕР реализова­

ны модули, определяющие быстродействие вычислительного процесса. 

Использование алгоритмического языка ФОРТРАН-ГУ делает программи­

рование эффективным и многосторонним, что позволяет пользователю 

легко пополнить подпрограммы вновь разработанными блоками.

Функционирование комплекса ИМЕКРИС-2И базируется на ЗИМ се ­

рии ЕС с объемом оперативной памяти не менее 512 Кбайт под управ­

лением ОТ ЕС версии 6 Л .  При этом запросы программ на оперативную 

память в зависимости от объема решаемых задач составляют от 2 0 0  

до X) Кбайт. Программный комплекс состоит из 6  тысяч операто­

ров. При эксплуатации программ комплекса используется Файл прямо­

го доступа F Т 0 8 Г 0 0  7 на MJ, размер которого определяется объемом 

решаемой задачи.

Р качестве устройства ввода информации могут использоваться
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перФокарточные устройства ввода, М7 или Mil,устройства вывода -  

АТ1ПУ, MJ или МЛ. 7 ля транспортировки программ применяется магнит­

ная лента. Копирование библиотечных наборов осуществляется утили­

той IEH M 0VE  операционной системы ОП F 0.

Эксплуатация комплекса программ "МРЖРИС-2И не требует специ­

альной подготовки системных программистов и обслуживающего персо­

нала ЭВМ, так как использует стандартное системное математическое 

обеспечение ОП FH, Основной режим работы -  пакетный.

Высокий уровень автоматизации всех этапов вычислительного про 

цесса и компактность задания исходной информации позволяют специ­

алистам в области прочностных расчетов конструкций освоить работу 

с комплексом в минимальные сроки без изучения теоретических основ 

метода. Их подготовка может производиться в процессе передачи и 

освоения комплекса.

Основные характеристики

. Краткая характеристика используемых методов и сведения 

об их эффективности

Методы решения задач о ТТРС и устойчивости оболочек, описанные 

в разделе 3, позволили разработать вычислительный алгоритм, пригод 

ный для исследования широкого круга задач теории оболочек в геомет 

рически и Физически нелинейных постановках, реализованный в комп­

лексе "MFKPnr-.?", Используемый метод дискретизации разрешающих со­

отношений теории оболочек ГМКГ) обладает высокой скоростью сходи­

мости благодаря полному исключению погрешности аппроксимации Функ 

пий жестких смешений. Для решения систем алгебраических уравнений, 

являющихся дискретным математическим аналогом континуальных задач, 

игиользуется блочный метод Гауссе, учитывающий ленточную структу­

ру матрицы решаемой •'истомы уравнений. Рримененкый для решения яе-
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линейных задач метод продолжения по параметру с пошаговой коррек­

цией решения методом Ньютона при относительно небольших затратах 

машинного времени позволяет не только строить траектории нагруже­

ния и находить на них особые точки, но и исследовать эакритичес- 

кое поведение оболочки с достаточной для инженерной практики точ­

ностью.

Эффективность метода криволинейных сеток иллюстрируется не 

решении тестовых задач, приведенных в приложении I .

4 .2 .? ,  Временные характеристики.

Для решения задачи о напряженно-деформированном состоянии 

оболочки на ЭВМ № -1050 необходимо при разностной сетке 9 x 9  

узлов -  4 мин. и сетке 13 х 13 -  7 мин* Время, необходимое для 

решении геометрически нелинейной задачи устойчивости, например 

при сетке 9 x 9  узлов и 1 0  шагах вычислительного процесса, соста­

вит 4? минуты. О увеличением или уменьшением количества шагов 

время счета соответственно увеличивается или уменьшается пропор­

ционально количеству шагов.

При исследовании упруго-пластического деформирования оболо­

чек временное характеристики одного шага вычислительного процесса 

на ЭВМ КГ-Г050 следующие: для сетки 9 x 9  узлов -  5 мин., для сет­

ки П  х ТЗ узлов -  8  минут.

Следует отметить, что при одинаковом общем количестве узлов 

разностной сетки и прочих равных условиях меньше машинного вре­

мени необходимо для расчета оболочки, имеющей минимальное число 

узлов в направлении координатной линии х \

4 .? ,Э , Средства контроля правильности выполнения программы.

Правильность работы алгоритмов программ комплекса проверяет­

ся путем решения контрольного примера, описанного в приложении I .
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Контроль за работой прогрзмм в процессе решения задачи (проверка 

некоторых вводимых величин, опенка качества решения системы урав­

нений) осуществляется с помощь» информационных и диагностических 

сообщений.

Предусмотрены средства восстановления и продолжения вычисли­

тельного процесса» которые могут оказаться полезными в (.летующих 

ситуациях:

-  время решения задачи достаточно велико, и существует о п а с ­

ность сбоев ЭВМ;

-  выделяемое время меньше требуемого, и задача может быть ре 

шена только в несколько приемов;

* частичное изменение исходных данных (например, параметров 

нагружения), позволяющее продолжить счет с определенного места.

Тиш хранения промежуточных и окончательных результатов реше 

шенин задачи используется Файл прямого доступа F T  И 8 орга­

низованный на МЛ,

4 .? .4 ,  Иллюстрация возможностей.

Возможности комплекса программ "МРНРИП-;?* иллюстрируются при 

мерами расчета, приведенными в приложении

4 .3 . Описание логической структуры

Весь программный комплекс условно можно разбить на несколько 

Функциональных блоков: блок управления решением задачи о нелиней­

ном деформировании и устойчивости; блок решения системы линемриио 

ванных алгебраических уравнений равновесия; блок построения консч 

норязностного шаблона коэффициентов при неизвестных; блок постро­

ения массивов проекций векторов локальных базисов и шаблонов жест- 

костных характеристик оболочки и ребер.
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4 .3 .1 , Глок управления решением залечи

Клок управления решением задачи (р и с .4 Л 3 включает головную 

программу MAIN,  которая вызывает подпрограмму WWOIJ для ввода и 

распечатки исходных и преобразованных данных задачи. После этого 

вызывается управляющая подпрограмма NELJJР 7 (при решении задачи 

в упругой постановке) или NF N U P Q  (при решении задачи в упруго- 

пластической постановке).

Р числе Нормальных параметров управляющих подпрограмм име­

ются имена подпрограмм, осуществляющих: выбор оператора левой час­

ти ( Оп ЕRLE  -  в упругой постановке, O P E R L N  -  в упруго­

пластической постановке); решение алгебраических систем уравнений 

по блочной схеме Гаусса ( Q M G W P  -  при использовании одинарно* 

точности для обменов с MJ, D B M S W P  -  при использовании двойной 

точности); Формирование блоков системы уравнений ( fl,ws -  при 

Нормировании блоков с элементами одинарной точности и ли ! 7©М 8  -  

при Формировании с двойной точностью); формирование компонентов 

вектора нагрузки ( O P E R P  -  имя подпрограммы для конкретного 

вида нагружения); Формирование проекций касательных векторов ос­

новного локального базиса поверхности точек сеточного шаблона 

( G€OA( -  имя подпрограммы для конкретного вида поверхности или 

подпрограмма SOS1AV для составных оболочек). Имена подпрограмм, 

выступающих в качестве Фактических параметров при обращении к 

управляющим подпрограммам ;V f/ l /P jw iv i/ / fU /P 2 f должны быть задек­

ларированы внешними оператором /X  TERNAL в головной программе МА 

Здесь же оператором DEFINE Р Н Е  декларируются параметры Файл 

прямого доступа frP, который предназначен для обменов промежуточ­

ными результатами преобразования исходной матрицы в прямом холе 

блочного метода Гаусса и для хранения результатов счета необходи­

мого числа последних шагов решения алгоритма дифференцирования по



Рис. 4.1
Ьлок-схема управления решением задачи о нелинейном деформировании и устойчивости оболочек



48
параметру с целью сохранения возможности возобновления счета с лю­

бого из них. При обменах с файлом прямого доступа информация пере­

дается в бесформатном виде» размер записи составляет 900 слов по 

4 байта при использовании подпрограммы BM GW P  или 1800 слов при 

использовании D 6M G W P  . Общий размер файла прямого доступа, вы­

раженный числом записей, состоит из: числа записей M 8L0K% необхо­

димых для обменов в алгоритме Гаусса; числа записей /6 Z 2 , необ­

ходимых для хранения результатов счета требуемого числа шагов ре­

шения задачи нелинейного деформирования или устойчивости. Значение 

MBL0K зависит от размеров сеточной области МО , VO , количества 

правых частей KOIPCH и числа МВ листов памяти оперативного 

запоминающего устройства, выделенных задаче, и вычисляется в опера­

торах
K F I N  I S  ~  < МО * N 0  я K O L F O B - 7 } /9 0 +  7 

IF 1  /V /S ■= K F I N J S + K O I F>CH /90 + 7  

M 8LOK -  ССС 4 »  МО * 9>* K O L F O B ~ 7 ')/6 0 +  7 *■

+ C IF IN IS +  K F 7 N 1 S J )»  K F J N T S -  M B , 
где KOiFDB -  количество разрешающих функций в узле. Значение K Z 2 

зависит от параметра , определяхнцего число шагов решения, ко­

торые необходимо сохранить для возможности возобновления счета с 

любого из них, и от размеров сеточной областиhW %NO :

K Z P  = М Н Р *  СС 7 9 *  М О "  Л/0 + 6 У 9 0 0 +  Р ' )

Таким образом, размер файла прямого доступа, выраженный числом за­

писей по 900 или 1800 слов, равняется 

^ A f / З Г В Р  + K Z 2  %
п\е Ш$Т£Р- номер записи файла прямого доступа, начиняя с которой 

осуществляется запись сохраняемых результатов сч ет  У 1*’̂  тагов

аычиелилпмюго процесса ( \(147 h Р  МВ  / О ч ).
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В целях экономии оперативной памяти для загрузки прс#*раммного 

комплекса в программе A/47N следует позаботиться о размерностях 

ш с с в в о в Р Ш Г  И8  COMMON!sut F j  , SX из COMMON / 8 X / . O Y.ll 

MS CDM i'/DN/ с о ъ и /  и MMX из COMMON/Rti! .

Размерность массивов §Х и RM X  должна равняться наименьшему 

числу, кратному 900 и большему> чем A'OSX'-А/гА^Х- 2 МО N 0  * 6 .

При А'РМ Х  ^  2700 необходимо размерность массива А *\!Х  задать 
равной F M X (270Q ).

Размерность массива P 2JEF  определяется аналогично, но долж­

на быть при решении задач в упругой постановке больше A П О £ А ~  

*М0М0Ю, при решении задач в упруго-пластической постановке - 

больше A P B f F  -  МО N О 73 ,

Первая размерность массива DZU должна равняться размеру за ­

писи файла прямого доступа 900 или 1600, а вторая размерность 

значению КОЪ , задаваемому в исходных данных параметром Л /#  .

Заданные в головной программе размерности перечисленных м ас­

сивов присваиваются соответственно параметрам Л7?6\У, ЛТ^Л / X , A H i t t  

и к OZ  из COMMON /О З т / , служащими для получения информацион­

ных сообщений.

Размерность двумерного массива (2$т&*ъ COMMONM&A'J равна 

30 х 78, При использовании подпрограммы DBAtti данный массив наос*' 

димо декларировать с двойной точностью, а при использовании 

этой декларации производить не следует.

Управляющие подпрограммы N f L V P I  ( N E L U P 2 ) (см.рис. 

4 .1 )  имеют Формальные параметры, которыми служат имена подпрограмм, 

определяющих конфигурацию программного комплекса. Они были рассмот 

рени выше. Режимы работы управляющих подпрограмм определяются на 

уровне задания исходных данных переменными:

-  N8LG1N  -  номер шага, с которого начинается (возобновляв
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ется) счет;

-  N E N D  -  номер шага, которым счет оканчивается (прерыва­
ется );

-  NEL -  логическая переменная, при истинном значении кото­

рой решается задача с учетом изменения Формы срединной поверхности 

оболочки в процессе деформирования, в противном случае учет изме­
нения Формы производиться не будет;

- N E L B E F  -  логическая переменная, при истинном значении 

которой задача решается с учетом нелинейной связи компонентов тен­

зора мембранных деформаций и компонентов вектора перемещений, при 

её ложном значении реализуется линейная зависимость;

-  [ME T W  -  логическая переменная, при истинном значении ко­

торой автоматически производится перевод на ответвляющееся решение 
при смене знака определителя;

-  N \N W  ~ переменная, определяющая номер компонента вектора 

перемещений, служащей ведущим параметром ответвляющегося решения;

- 1 W W  I JW W - переменные, определяющие целочисленные коор­

динаты узла ведущего параметра ответвляющегося решения;

-  D W W  -  значение приращения ведущего параметра ответвляюще­

гося решения;

- / / W  -  переменная, определяющая номер компоненты вектора пе­

ремещения или нагрузки, выбранной в качестве ведущего параметра ос­

новной ветви решения;

> JW  -  переменные, определяющие целочисленные координа­

ты узла ведущего параметра основной ветви решения;

-  D W  - значение приращения ведущего параметра перемещения 

основной ветви решения;

-  Л Р  -  значение приращения ведущего параметра нагрузки ос­

новной ветви решения;
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-  ML S T £ P ~  номер записи в файле прямого доступа, начиная 

с которой осуществляется запись и хранение результатов последних 

AWmaroB решения.

В процессе решения анализируется обусловленность матрицы и 

знакопостоянство её определителя. Смена знака определителя свиде­

тельствует о наличии особой точки на кривой нагружения в окрест­

ности рассматриваемого состояния. Ясли при этом W £ T W = ,T P U E . 9 

то осуществляется возврат к предыдущему шагу и смена ведущего па­

раметра, т .е .  автоматически реализуется переход на ответвляющееся 

решение.

После завершения каждого шага нагружения в зависимости от 

значений элементов массива IF P U L T  , задаваемых в исходных дан­

ных, печатаются поля накопленных Физических значений перемещений, 

внутренних усилий и моментов, координат узлов сеточной области, на­

копленных мембранных деформаций и узлов поворота и напряжений. Кро­

ме того печатается номер шага вычислительного процесса, значение 

определителя и его десятичного порядка, значения переменных /VIV , 

/IV  ,D W  , UW  , При M L S T E P  > 0  производится запись в файл 

прямого доступа значений накопленных перемещений, номера шага, на­

копленной нагрузки, 7 IV , 0W  , NW  , JJW , знака определителя, а 

также накопленных значений деформаций и углов поворота.

Я том случае, когда ведущим параметром выбрана одна из компо­

нент вектора перемещений, по найденным значениям этих компонент 

определяются координаты узла с максимальным значением выбранной 

компоненты, которые присваиваются переменным I W ,  С7W , определя­

ющим на следующих шагах нагружения узел ведущего параметра.

*. Клок решения системы линеаризованных 

уравнений равно веси/»

Г >04 р^щпуия гинемы линеаризованных урзвигти  тяйчорс' ия
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(рис, 4 ,2 )  состоит из подпрограммы BMG W P  CD6MG yvP)> 

реализующей алгоритм компактной схемы блочного метода Гаусса* к 

BM S(D BM ^ ) , управлявшей Формированием блоков исходной матрицы 

размерностью 30 х 30. Уостоинстда блочного метода Гаусса при ре­
шении задач теории оболочек:

-  возможность решения задачи при однократном порождении ис­

ходной матрицы без необходимости её хранения;

-  соответствие блочного строения матрицы системы уравнений 

листовой структуре данных Файла прямого доступа, упрощающее орга­

низацию обмена информацией с Му;

-  возможность решения с несколькими правыми частями* соответ­

ствующими различным вариантам эагружения оболочки (при решении 

задач о НуС в линейной постановке);

-  возможность параллельного вычисления определителя исходной 
матрицы.

Преобразование исходной матрицы А по компактной схеме Гаусса 

равносильно разложению её на сомножители С и В:

Ckl - A*l - X С*м в ML С Дс * о.М* 7
Вы - c ;l с - i;1 скм в mi ) ( ^  *-*>.

М* т
Здесь блоки Ач , CVL > представляют собой квадратные субматри­

цы из К-ой блок-строки и L -того блок-столбиа матриц А* С и В. Фик­

сированный порядок КТГ*30 субматриц связан с размером записи Файла 

прямого доступа ЗО2 ,

Матрицы-помножители С и В имеют соответственно верхнюю и 

нижнюю треугольную структуру. Уиагонэль матрицы В составляется из 

единичных блоков /3*м . Такой вид матриц Г и В позволяет вычислять 

определитель d o t //А //  перемножением определителей диагональных 

субматриц Смг* •
Уля алгоритмов, требующих многократного решения систем
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O t n a n  П.ПГ'ОрИТМП П ри  п р я м о м  ГОТТО MOTOJl'l
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уравнений с одинаковой матрицей А, хранение нижней треугольной 

матрицы 0  выполняется по условию NO T. $ T A T i K .

Неруду о возможностьс обработки матриц общего лида в подпро­

граммах заложен алгоритм, учитывающий эффективное преобразование 

малозаполнеиных матриц и матриц ленточной структуры. Это достига­

ется введением индикаторной матрицы, идентифицируемой массивом 1М£  

с поразрядным хранением информации.

Подпрограммы 6MGWP и XJBMGWP используются при решении 

линейных и нелинейных задач устойчивости методом дифференцирования 

по параметру. При шаговом алгоритме этого метода на каждом шаге 

решается задача в прирашениях, при этом к числу неизвестных добав­

ляется параметр однопараметрической нагрузки, а правой частью сис­

темы уравнений является вектор невязки. Решение линеаризованной за­

дачи методом Гаусса в окрестности особой точки, в которой матрица 

становится близкой к вырожденной, оказывается малоэффективным. По­

этому вблизи особых точек производится регуляризация матрицы урав­

нений посредством введения дополнительного неизвестного и нового 

дополнительного уравнения, уополнительное уравнение, вводимое при 

регуляризации, представляет собой уравнение задания приращения од­

ной из компонент вектора перемещений узла, в котором эта компонен­

та имеет максимальное значение. При этом матрица перестает быть вы 

рожденной, но ее главный минор, являющийся определителем нерегуля- 

рнзованной матрицы, по-прежнему остается нулевым, что не позволяет 

использовать метод Гаусса, уля устранения равенства* нулю главного 
минога регуляризованной матрицы производится перестановка местами 

строки введенного уравнения и строки уравнения лля перемещения, ко 

торое выбрано новым редушим параметром при регуляризации.

Подпрограммы /-М/6WP и ЛВМЪХМО вызывают ^лед/гщие под-
ПРОГРАММЫ;
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-О в м в  С дополнительным входом OBML , осуществляет обмен 
информацией с МД;

- A IM  осуществляет поразрядный обмен с M03Y;

-  D8M EW1 с дополнительным входом О ВМ Е№  р осуществляет 

обмен информацией с мд;

-В М §  или DBMS осуществляет построение блоков исходной ма­
трицы;

-PB1NBL осуществляет отладочную печать блоков исходной и 

преобразованной матрицы;

-MULTBM  осуществляет умножение двух блоков с вычитанием 
их произведения;

-M UL1BP  осуществляет умножение двух блоков со сложением 
их произведения;

-MATIND обращает блок матрицы.

Результатом работы подпрограмм BltG W P  iaJJBMGWP являются 

векторы решений, которые блоками по 30 неизвестных хранятся на Мд 

на местах последних блоков преобразованной матрицы.

При построении блоков исходной матрицы подпрограммами flAJS и 

DBMS вызывается подпрограмма OPfPLS или O P fP iN  , которая в з а ­

висимости от кода оператора узла разностной сетки и от его гранич­

ных условий осуществляет вызов подпрограммы построения конечнораа 

ноотного шаблона коэффициентов ОРРРС1 или ОРРРСН при наличии 

зон пластических деформаций, и подпрограммы вычисления коэффициен­

тов однопараметрической нагрузки.

Посредством обращения к подпрограмме VdOUtiJj осуществляет 

ся исключение неизвестных в законтурных узлах за плоскостями сим­

метрии и косой симметрии.
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4 ,3 ,3 .  Елок построения разностного шаблона коэффициентов 

при неизвестных

Елок построения разностного шаблона коэффициентов при неиз­

вестных (рис, 4 ,3 )  состоит из ряда подпрограмм, моделирующих ос­

новные этапы вывода разрешающих уравнений теории оболочек, осу­

ществляя последовательное накопление значений элементов массива 

конечноразностных коэффициентов Ж 75>')в COMMON/QKOE?!•

Построение скалярных уравнений равновесия моделирует под­

программа QP£RC1 или DPFPCNпри наличии зон пластических деформа­

ций, вызывая подпрограммы NF L T R T  или NFLTFN при упруго-плас­

тической работе материала оболочки, N T F T S , QOUNVE. Она накап­

ливает значения разностных коэффициентов £/С75), полученных от вкла­

да каждого из усилий, с последующим умножением их на множители, с 

которыми эти у с и л и я  входят в каждое из трех уравнений равновесия. 

Коэффициенты, п которыми входят усилия в уравнения равнове­

сия, определяются на основе элементов массивов ЕОъЭв') и S 6 M С9,9) 

из COMMON/М Е Т Р /  , заполняемых подпрограммой GFOM7 , Элемен­

ты массива §QA представляют собой значения квадратных корней из 

Фундаментальных определителей поверхности в узлах вспомогательно­

го сеточного Шаблона 9 x 9  (рис, 4 .4 ) ,  Массив Е(№58) можно пред­

ставить в виде , N , I P ,  J P )  9 где К- 1 ,2 ,3  -  номер компоненты 

векторов локальных базисов в декартовой системе координат; /V » I ,

2 , . . , 6  -  номер вектора локального базиса ( 1 , 2 , 3  -  соответствуют 

трем векторам основного базиса, а 4 ,5 ,6  -  векторам взаимного ба­

зиса) ; 1Рщ З Р  -  номера узлов вспомогательного сеточного шаблона 

9 х 9, в которых определены локальные базисы.

Принадлежность узла, хля которого строится шаблон коэффици­

ентов, к контурным или предконтурным узлам свободного или шарнирно 

опертого края определяется значениями элементов массива логических
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Рис. 4.3
Схема блока построенил шаблона конечноразностных 
коэффициентов линеаризованных уравнений равновесия

Вспомогательный сеточный 
шаблон 9x9 для узла (i ; j )

Шаблон логических переменных, 
определяющих наличие материала 
в ячейках шаблона ЬхЬ узла ( i ; J )
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переменных УС4, из COMMON/В Е С А / , полученными в результате 

работы подпрограммы анализа поля признаков А Р Р 7  . Истинные зна­

чения элементов этого массива свидетельствуют о наличии соответ­

ствующей ячейки (рис. **,!>), а ложные -  о её отсутствии. При отсут­

ствии двух смежных ячеек, на общей линии которых определено неко­

торое усилие или угол поворота, вызов подпрограммы накопления ко­

эффициентов шаблона от выражения этого усилия или угла поворота не 

осуществляется.

Подпрограммы NELTRt 9 NEL TEN,  выполняющие накопление 

значений коэффициентов разностного шаблона при неизвестных лине­

аризованных уравнений равновесия в приращениях от внутренних уси­

лий, состоят из самостоятельных блоков, каждый из которых реали­

зует подключение в уравнения равновесия выражения соответствующей 

компоненты тензора внутренних усилий Т ы г . Обращение 

к этим блокам осуществляется по именам дополнительных входов ENTRY. 

г Уединение самостоятельных блоков в одну подпрограмму обусловле- 

п общностью их декларативных операторов и функционального назна- 

4 v ни я, Количество этих блоков в подпрограмме NELTRT  равно шес­

ти: ENTRY Т77 реализует подключение выражения компоненты '*

E N T R y  Т72 -  компоненты Tgt7̂  ; E N T R Y  Т22 -  компоненты Tt/ J tots ; 

E N T R Y  Г27 -  компоненты Т}У^9Л ; ENTRY T7N -  компоненты Ты *,#  ; 
E N T R Y  T 2N -  компоненты .

Р подпрограмме NEt TEN аналогичные Функции реализуют бло­

ки ENTRY N17, ENTRY N12 r E N T R Y  № 2  ,

e n t r y  N27, E n t r y  q j n  , e n t r y  q s n

Клоки подпрограммы NELTRT п р о и зво д я т подстановку в линеари­

зованные уравнения равновесия в приращениях Физических соотношений 

теории оболочек для мембранных усилий и соотношений между перере-
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эывающими силами и внутренними моментами, подпрограммы NEI TFN  -  

постановку в уравнения равновесия в зависимости от достигнутых зна­

чений интенсивности деформаций физических соотношений теории оболо­

чек, либо упругого деФормировзния, либо упруго-пластической работы 

материала.

По элементам логического массива VCV') анализируется положе­

ние точки определения усилия относительно свободного или шарнирно 

опертого края. Коли точка находится на свободном или шарнирно опер­

том крае, в расчет принимается половинная жесткость, если Нет, то 

полная жесткость оболочки.

Признаком наличия ребра в точке определения внутренних усилий 

служит ненулевое значение соответствующего элемента массивов 

жесткостей на сжатие £ F  7 и EF2 для ребер направления ос1 и эс1  соот­

ветственно.

При работе подпрограммы NFLTFN осуществляется обращение к 

подпрограмме R I N K ? , в которой происходит вычисление максимального 

значения интенсивности деФормапий El М в рассматриваемой точке се­

точной области. ?сли это значение не превышает заданной интенсив­

ности деформаций пластичности f f  Pi .  , то происходит передача управ­

ления к построению шаблона коэффициентов соответствующих усилий 

по Физическим соотношениям упругого деформирования.

При достижении максимального значения интенсивности деформа­

ций F I M  на данном шаге нагружения значения f J P L  в подпрограмме 

P IN K '?  вычисляются интегральные жесткостнне характеристики обо­

лочки путем интегрирования по толщине оболочки семиточечной Форму­

лой ffbuTOHa-Koteca и заполняют массивы #есткостных характеристик 

R 'I0 (  9) , Р  7 /( Я') , R 't  в COMMQN/RIF4/. Для точек сеточной облас­

ти, находящихся в унруго-штастической области при F JM  > t ] P i. 

шаблон коэффициентов строится с использованием выражений для уги-
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лийауже содержащих интегральные характеристики жесткостей оболоч­

ки с учетом развития зон пластичности.

При Функционировании полпрограмм NFLTRT,NFLTFN осущест­

вляется обращение к блокам подпрограмм NEPSS t NELMUS , NELMRt  

или NELMF N при наличии зон пластических деформаций, работа кото­

рых заключается в накоплении коэффициентов разностного шаблона от 

выражений мембранных и изгнбных деформаций и выражений внутренних 

моментов соответственно*

В блоках подпрограмм NELTPT t NELTEN используются для пост­

роения коэффициентов масгивы шаблонов геометрических характеристик 

оболочки, ребер и шаблонов температур.

Массив из CDMMON/FHj , заполняемый подпрограммой GEOM1,

содержит значения мембранных жесткостей оболочки в различных точ­

ках сеточного шаблона 5 х 5* На рис* *1 . 6 , а приведены точки сеточ­

ного шаблона с элементами массива FH  # в которых содержатся зна­

чения мембранных жесткостей оболочек в этих точках*

Массивы ЕF K^\FFQ(F\CF1 CFtKU) из COMMONlREB}% заполняе­

мые подпрограммой RFBRA 9 содержат значения жесткостей на сжа­

тие-растяжение и эксцентриситетов ребер первого и второго направ­

лений в точках определения соответствующих усилий. На рис. 4 .6 ,6  

приведены точки сеточного шаблона и элементы массивов F F J  vtFFP 9 

в которых содержатся значения жесткостей ребер в этих точках. На 

рис* 4 .6 ,в внесены точки о соответствующими элементами массивов 

значений эксцентриситетов 0  7 и С2 ребер первого и второго на­

правлений.

Через CDMMOtffTFMP}* подпрограммы NFLTRT 4NELTFN  из под­

программы TF M R R  передаются переменные ALFAT, А1ГА11 %А1ЕА7 2  , 

определяющие значения коэффициентов температурного расширения ма­

териала ободочки и ребер р направлении тх; 1 и тр’ соответственно,
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н также массивы шаблонов компонент температур 1 0 Т Н А \ W/PAb), 

Ы ( КЧ)%! ?Т'>(ч'\ элементы которых содержат компоненты температуры 
точек неточного шаблона^* к t  * как показано на рис.* ,7.

Накопление температурного член* уравнение равновесия произ­

водится в переменной R T  , занимающей место 77-го коя*'!'и мне «та 

массива шаблона коэффициентов.
Подпрограммы VflMRT, NFLMFNt осуществляющие накопление зна ­

чений коэффициентов разностного шаблона при неизвестных линеаризо­

ванных уравнений равновесия в приращениях от вирэиений внутренних 

моментов, состоят из самостоятельных блоков, каждый из которых 

реализует подключение выражения соответствующей компоненты тензора 

внутренних моментов Л /*йСс*,/а-£2)при определении перерезывающих сил 

Обращение к этим блокам производится по именам дополнительных 

входов /Л  ?ГУ \ Объединение блоков в одну подпрограмму обусловлено 

общностью их декларативных операторов и Функционального назначе­
ния.

Каждый из блоков со своим дополнительным входом осуществляет 

следующую Функцию: f/FTRY ^ m x n F S T R f Ш?^ реализует подключение 
выражения компоненты в выращен ив т п ; M VA’YA'W w* Ш Ш Ш

компоненты A,f / j  я выражении Г** ; f / J J P Y  № 2  или f N T R J7 /2 r? -  ком­

поненты в выражении /'** ; ENTRY М??Ншл% ENTRY У??N  -компо­
ненты . tvn в выражении Т7Ь;ЕМТЕУ А/ХРили fNTRY И1< - ком­

поненты V '/* в выражении / ;з ; ENTRY М27 7 - ком­

поненты Д /”  в выражении /  ** ; fN7f ?y  Мр-ГШи EN TRY Н Ш  ком­
поненты \ \ \ \ t р ол и <\f!l«4 t9 t  в выражениях Т п  и /  71 .

* зависимости от положения ючки относительно свободного или 
шарнирно опертого края Физические соотношения, реализуемые блока­
ми подпрограмм tW11 I , (kill. A 7/ ,Vf либо вообще не реализуются, «то 
сридртялъгтвует о нулевом значении момента на краю, либо реализуют-
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сн с половинной жесткостью. Так, например, выражения М 11 и М 12 на 

левом и правом свободных краях равны нулю, а И 17 и М™ здесь 

включаются с половинной жесткостью. Положение точки определения мо­

ментов относительно свободного или шарнирно опертого краев анали­

зируется по значениям элементов логического массива V O ) из COMMON 

/d tC A j f заполняемого при работе подпрограммы анализа поля призна­
ков АРР1 ,

В случае ребристой оболочки моменты подсчитываются с учвтом 

жесткостей ребер. Наличие ребра в точке определения соответствую­

щих моментов характеризуется ненулевым значением жесткости масси­

вов жесткостей на сжатие F F 7 и /Т ^ д л я  ребер первого и второго на­
правлений.

При работе подпрограммы N F L M F M  в различных точках сеточного 

шаблона происходит обращение к подпрограмме RJ 7 , вычисляющей 

в этих точках максимальное значение интенсивности деформаций FJM . 

При И М  ^ tJPL происходит передача управления на Формирование 

коэффициентов при неизвестных при использовании физических урав­

нений упругой задачи, Коли F I  подпрограмме R 1 N K 7  для

данной точки сеточной области путем интегрирования по формуле Нью- 

тона-Котеса для 7 точек по толщине оболочки вычисляются жесткост- 

ные характеристики оболочки в упруго-пластической стадии и запол­

няются массивы Р 2 0 (9 \Р ~ 1 К ГД  2СУ)в GOMMONlRIfty которые исполь­

зуются затем для формирования коэффициентов при неизвестных от 

внутренних моментов для точек поверхности оболочки, находящихся 

в упруго-пластической зоне.

При работе подпрограмм Л 77MPJ%SFLM ~N осуществляется так­

же обращение к дополнительным входам подпрограмм Л UMUS  и А Т ^З З  , 

работа которых заключается в накоплении коэффициентов разностного 

шаблона от выражений иэгибннх и мембранных деформаций соответствен­
но.
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В блоках подпрограммNELM&T M L M fN  используются для 

построения коэффициентов при значениях иэгибных и мембранных де­

формаций массивы геометрических характеристик оболочки и ребер, а 

такие массивы температур.

Мае сив £3 ( 2 , 0  из COMAfON/EHj % заполняемый подпрограммой 

GEDM7 , содержит значения иэгибных жесткостей оболочки в различных 

точках сеточного шаблона 5 х 5. На рис. 4 .8 ,а приведены точки се­

точного шаблона и соответствующие им элементы массива Е З  , в 

которых содержатся значения иэгибных жесткостей оболочки в этих 

точках.

Массивы E 3 J t t \ E J 2 ( b ) , € 3 7 и С 3 2 (Ь )  из COMMON/Р Е В / , 

заполняемые подпрограммой РЕБРА , содержат значения иэгибных жест­

костей и эксцентриситетов ребер первого и второго направлений. На 

рис. 4 .8 ,б приведены точки сеточного шаблона и соответствующие им 

элементы массивов £ 3 7  и £ 3 2  , в которых содержатся значения из- 

гибных жесткостей ребер в этих точках. На рис. 4 .8 ,в помещены 

точки сеточного шаблона и соответствующие им элементы массивов 

эксцентриситетов С37  и С3 2 ,

Через COMMON/ТЕМР/ъъ подпрограммы ТЕМРЕ передаются пере— 

м ен н ы еЛ ^Г  ,ALFAT7, ALFAT2% определяющие значения коэффициентов 

температурного расширения материала оболочки и ребер соответствен­

но, а также массивы шаблонов компонентов температуры 10МК^\ 7и м  я»,) 

T W элементы которых содержат значения температуры в 

точках сеточного шаблона в соответствии с рис. 4 .7 .

Накопление температурного члена производится в переменной V /, 

занимающей место 77-го коэффициента массива шаблона коэффициентов.

Подпрограмма осуществляющая накопление коэффициентов

разностного шаблона при неизвестных линеаризованных уравнений рав­

новесия в приращениях от выражений мембранных деформаций, состоит
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из самостоятельных блоков, каждый из которых реализует подключение 

выражения соответствующей компоненты тензора мембранных деформаций 

в выражениях внутренних усилий и моментов. Обращение к этим блокам 

осуществляется по именам дополнительных входов в подпрограмму 

/V fP S S  : EN TRY  £Л37?осуществляет подключение выражения компоненты 

[PS11N- компоненты 5 , 7 ,^ ±ct5 ./7V 7"  ̂Y BPSS 2 Q -  компо­

ненты & eti;jt*tf£N TRY EPS22H- компонентыйг2 *±0^ ;  EN TRY E P ^  12 

компоненты &ezi±Qsql E P T R Y  BPS21- компоненты *

Если логические переменные NEL и N ELBE Г из COMMON /N E Q  

имеют истинные значения, то блоками подпрограммы реализуются не­

линейные выражения для мембранных деформаций, если хотя бы одна из 

этих переменных имеет ложное значение, то реализуются линейные вы­
ражения.

При работе блоков E P S72  и EP S27 осуществляется обращение к 

подпрограмме £ 7 2 ,  которая реализует выражение ■ цент­

рах ячеек, примыкающих к точкам определения g n it^  и Бло­

ки Е Р 9 7 2 иEPS27 реализуют выражения e niteLS;j и п о с р е д с т в о м  
усреднения значений

Посредством анализа элементов логического массива УС4,4) из 

СОММОЛ//ВЕСА/ исключаются значения коэффициентов разностного шаблона 

при неизвестных законтурных узлов.

7 ля построения коэффициентов разностного шаблона используются 

значения элементов массива ££7958) из COMMON/М Е Т Р / , Формируемого 
подпрограммой G fD A f7 .

Накопление значении коэффициентов разностного шаблона осущест­

вляется в элементах массивов U передаваемых че­

рез COMMOA'/QKOfF/.

Подпрограмма //£ IM U 3  , выполняющая накопление коэффициен­

тов разностного шаблона при неизвестных линеаризованных уравнений



6 в

равновесия от выражений компонент иэгибных деформаций, состоит из 

самостоятельных блоков, Каждый из которых реализует подключение 

выражения соответствующей компоненты тензора нзгибных деформаций 

в выражениях внутренних усилий и моментов. Обращение к этим блокад 

осуществляется по именам дополнительных входов: fS /T P Y  MU17 
производит подключение выражения компоненты/ / „ , v  9EMTPYMU77N -  

к о м п о н е н т ы -  к о м п о н е н т ы . EHTRY 

MU2QM -  компонеиты//*г,*чв>^ в ; ^ Г ^ Ш / А -  компоненты//,/#^; 
E7/TPY M U 72N- компоненты//,,,*^

При работе подпрограммы NEWU3 осуществляется обращение к 

дополнительным входам подпрограммы f lT E T 9 , работа которых заклю­

чается в накоплении коэффициентов разностного -шаблона от выражений 
компонент тензора углов поворота.

Посредством анализа элементов логического массива V O ,* )  из 
C0lfH077/BEC7j исключаются значения коэффициентов разностного табло» 

при неизвестных законтурных узлов.

Уля построения общих множителей при коэффициентах разностного 

шаблона от выражений изгибных деФормаиий используются массивы 

f W S B ') ,  BOA Cff, 9) из СОНМОМ/M E TR/ , Формируемые в подпрограмме 
СЕОМ  7 .

Подпрограмма NT£TB% осуществляющая накопление коэффициентов 

разностного шаблона при неизвестных линеаризованных уравнений рав­
новесия от выражений углов поворота нормали, состоит из самостоя­
тельных блоков, каждый из которых реализует подключение выражения 

соответствующего угла поворота. Обращение к этим блокам производит­

ся по имена* дополнительных входов:£/VTPY Т£Т7 реализует под­
ключение выражения?Л, ; EKTRY 7Г77А7-выражения Ц , у, * 0 9 , 
,f V 'A ?Y /?T 2- внрпжония xrt i . t tM ; f N T F Y  T F T 2 N  - внрчжрния

liooppjif'TBoM чнчлпза злрмрнтов логического мчг.сивз 4 , 0  из.
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C0MM0N/8ECA /  исключаются значения коэффициентов разностного 

шаблона при неизвестных законтурных узлов.

7 ля построения коэффициентов разностного шаблона используются 

значения элементов массива £(№ 5$) mzCOMMON/METRj , а массивы 

шаблонов значений накопленных мембранных леФормаиий и углов пово­

рота P E P S770JX  R E P SJ2C 5.5), P E P S 2 2 (5 ,5 \  Р Т Е  ТА 7 С 5,
P E P S  7N (? , P E P S  27 С P E P S  2N C 5f Р Т Е  Т ТЫ С 5 , 5 \

Р Т  Е Т  3N C  5  ̂ 5 ) иэ COMMON /Э Т А  B E L /  
при построении невязки.

Накопление значений коэффициентов разностного шаблона осуще- 
ствляетпя в элементахмассиров V  7 С5, ф9Ц8Сб,$),У/($$иэ COAfMON/QKOEFl

Полпрограмма Е 72 выполняет накопление коэффициентов раз­

ностного шаблона при неизвестных линеаризованных уравнений равно­
весия от выражений слриговнх мембранных дсФормаций в центре ячей­
ки.

7 ля построения коэффициентов разностного шаблона использует­

ся значения элементов массива E (W $)из common  /МЕТР/ , заполняемых 

в подпрограмме GEOM7 .

Накопление значений коэффициентов разностного шаблона осуше- 

ствляется в элементах массивов.

4 .3 .4 , Рлок построения шаблонов геометрических параметров 
и жесткостных характеристик

Рлок построения массива компонент векторов локальных базисов, 

массива корней квадратных из Фундаментального определителя, масси­

вов жесткостей оболочки и ребер включает подпрограммы QEOM 7, / / / Э, 
РЕВ РА и подпрограммы для конкретного вида поверхностной или пол- 

программу B O S T A V  для гогтавннх поверхностей.

Подпрограмма QEOM7 реализует построение массивов /  С7 W А) 

и 0Q4(4,Tvib COMMON/ifEfPj , заполнение nr-f схемных X, V , У и**
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C O M M O N / X Y Z j  координат узлов неточной области, заполнение мас­

сивов жесткостей оболочки />/С?,40на растяжение (сжатие), £ д С 2 ,  *)- 

на ивгиб из C O M M O N  / £ н /  .

Структуру массива £C7^5g) удобно представить для четырехмер­
ного м а с с и в а 9,9) , Значения первого индекса определяют номе­

ра трех проекций базисного вектора на оси декартовой системы коор­

динат ос. , у , z  . Значения второго индекса определяют номера I ,

2 . . . 6  векторов локальных базисов поверхности в узлах сеточного шаб­

лона 9 x 9  &, , &г > соответственно. Значения
третьего и четвертого индексов определяют целочисленные координаты 
узлов вспомогательного сеточного шаблона 9 x 9 ,  для которых вычис­
ляются компоненты баэисных векторов.

Массив Зб?АС9,9') в своих элементах содержит значения корня 

квадратного из фундаментального определителя поверхности, узла се­
точного шаблона 9 x 9 ,

Формальными при обращении к подпрограмме GEOM7 являются 
следующие параметры:

-  QFOM -  имя подпрограммы геометрии, которая обеспечивает 

построение массивов X  7t X 2  , ХЗ  ,  Y 7 ,  Y 2 ,  Y 3  из COMMON /ВА 2 /  S> 
(задается в головной программе);

-  ITCH ,ОТСН -  координаты узла сеточной области объекта в 
направлении х 1 и х г соответственно;

- МО  , N0  -  количество разностных узлов на рассчитывае­
мом Фрагменте в направлении ос’ , ос* соответственно.

Вызов подпрограммы G60M1 осуществляется: а) при построении 
матрицы разрешающих уравнений из подпрограммы OPCPLF wmOP£NLN'f 

из подпрограммы MfLUPlwnNELUPQw^ подготовке к печати резуль­
татов счета.

порашемие к подпрограмме ОЕОМ7 я гызнраюших подпрограммах
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производится в циклах, релизующих обход поточной области по уз­

лам сначала в направлении ос1, затем в направлении х 2 . Поэтому 

при построении массивов £  и в узлах, для которых IT C H  *  7, 

используется часть элементов этих массивов, определенных для пре­

дыдущего узла. Для Формирования недостающей части массивов £  и 

SQA реализуется усеченный цикл по номерам узлов сеточного шаблона 

9 х 9 во втором направлении с обращением к подпрограмме, имя кото­

рой передано через Формальный параметр GFOM, В узлах с номером 

ITCH-7  в направлении х 1 эти массивы строятся заново полностью 

посредством обхода всех узлов сеточного шаблона 9 x 9 .

Исходными данными для построения массивов £  и dQA служат 

переменные ост, э с ? , х з ,  у 7 , уг , у з  из CQM M ONjBMltf, форми­

руемые подпрограммой 9EQM. Эти массивы представляют собой значе­

ния проекций касательных векторов основного локального базиса точ­

ки на оси глобальной декартовой системы координат.

В подпрограмме 7 вызывают с я подпрограммы ВН J  и E IB & A  9

осуществляющие заполнение массивов жесткостных характеристик се­

чений оболочки и ребер.

Если рассчитываемый объект представляет собой оболочку, сре­

динная поверхность которой является гладкой аналитической поверх­

ностью, то следует подключить только ту подпрограмму, которая 

предназначена для построения касательных векторов основного локаль­

ного базиса этой аналитической поверхности. В тех случаях, когда 

рассчитываемый объект представляет собой оболочку, срединная по­

верхность которой составлена из различных аналитических поверх­

ностей, необходимо подключить подпрограмму SOSTA V  • которая осу­

ществляет построение шаблона проекций касательных векторов основно­

го базиса для составных поверхностей.

Составной оболочкой в смысле работы QOSTAV считается оболочка,
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на отдельных участках которой» ограниченных координатными линия­

ми, имеют место различия поверхностей, и (или) физических пара­

метров материала и (или) шага разностной сетки. При этом в исход­

ных данных переменной КОЕ О присваивается число» равное количеству 

таких участков,® для каждого из них задаются: в массиве k OO&GC§1(S) 

иъСОММОМ/KOQRQ] исходные координаты левого верхнего, правого ниж­

него узлов участка и номер подпрограммы геометрии в таблице 

в массиве fP A R  (7 ,2 5 ) из CDMMONlFPhRj — Физические пара­

метры материала и толщина оболочки; в массивеGPAR(l9,25) из COMMON 

/ GPA/? /  — Физические пределы изменения координат ос1 и

ос2, константы параметрических уравнений поверхности, угла поворо­

та и координаты начала декартовой системы координат, в которой 

сформулированы параметрические уравнения поверхности, относитель­

на глобальной декартовой системы координат.

Заказанные в подпрограмме S0STAV  вторые размерности массивов 

a JPG,FPAP ,GPARb равные 25, обеспечивают работу с составными 

оболочками, количество участков которых меньше или равно 25. Ксли 

необходимо рассчитывать оболочку с большим числом участков, необ­

ходимо привести в соответствие количество участков с вторыми раз­

мерностями перечисленных массивов не только в подпрограмме SDSTAVt 

но и в подпрограмме W W QD  , где эти массивы заполняются посредст­

вом считывания исходных данных задачи.

Формальными при вызове подпрограммы SOSTAV  являются следу­

ющие параметры:

-  IT C H  ,Э Т С Н -  целочисленные координаты узла сеточной об­

ласти, который служит центром вспомогательного сеточного шабло­
на 9 х 9;

, А/О -  переменные, значения которых определяют раз­

меры сеточной области;
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-  М  , N  -  целочисленные к о о р д и н а т ы  узлов вспомогательно­

го сеточного шаблона 9 x 9 ,  для которых строится основной локаль­
ный базис.

ПодпрограммаS0BTK7 в зависимости от принадлежности уала вспо­

могательного сеточного шаблона, для которого строится ооповной ло­

кальный базис, к той или другой ловерхности; вызывает соответству­

ющую этой поверхности подпрограмму. Если узел вспомогательного се­

точного шаблона лежит на стыке двух или четырех участков, то 
и этом узле строится усредненный базис.

Если в исходных данных, при описании участков сеточной облас 

ти допущена ошибка, в результате которой какая-либо точка оказалась 

неописанной, подпрограммой печатается с о о б щ е н и е н е  определена 

геометрия точки ITCH РЭТСН %М %Н " . При этом задание снимает* 
сн.

При обращении к подпрограммам, реализующим конкретные виды 

аналитических поверхностей, в подпрограмму SOSTAV посредством СОШОы 

/6 A Z IS /  передаются массивы шаблонов проекций касательных векто­

ров основного локального базиса в декартовой системе координат, в 

которой сформулированы уравнения поверхности. С использованием вин­

чений углов поворота эти проекции пересчитываются для глобальной 

декартовой системы координат, после чего массивы и вCQMMQM/DAZtS! 

заполняются переопределенными проекциями, и в таком виде попадают 

в подпрограмму QFOM7 в качестве исходных данных для построения 

массива проекций всех векторов как основного, так и взаимного ба­

зисов узлов вспомогательного сеточного шаблона 9 x 9 ,

Таблица подпрограмм поверхностей конкретного вида (табл .4 Л )  

в подпрограмме SOSTAV реализуется вычисляемым оператором GOTO , 

который в зависимости от значения A/GfО отсылает на метку операто­

ра вызова соответствующей номеру NGE0 подпрограммы. Эта таблица
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Табли ца 4 .1



7 5

П р о д о л ж е н и е  т а б л .  4 . 1
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Продолжение та б л . 4 .1



7 7



7 8

Продолжение табл. 4Л



79

при необходимости может меняться и дополняться.

4 .3 ,4 .I .  Общие положения составлении подпрограмм, описыва­

ющих поверхности конкретного вида.

Подпрограммы, опноывающие различные поверхности, осуществля­

ют построение массивов касательных векторов основного локального 

базиса в узлах вспомогательного сеточного иаблона 9 x 9  для кон­

кретного вида поверхности. В комплексе НМЕКРИС!-2И имеется ряд под­

программ (см .табл.4Л ) ,  подключение которых обеспечивает решение 

задачи для поверхности соответствующего вида. Если возникает не­

обходимость в описании поверхности, для которой нет соответствую­

щей подпрограммы, то её надо составить, пользуясь описанными ниже 
рекомендациями.

Радиус-вектор любой поверхности имеет вид:

г  -  + ,

где Гт$ -  орты декартовой системы координат;Х«ХСос1, х гД2 -К (и.^

Y - Y C x \ o c a> -  параметрические уравнения поверхности.

Касательные векторы основного локального базиса получаются

дифференцированием радиус-вектора по целочисленным координатам се­
точной области:

а- OUT. £ з?У - й Е  л  й  дУ  . _
d f  ~  д х Л д ь  ~  д х ' " 1

з:«= й 2 .=  i i„  _____________ __  c t e L  f j  г г  + & I  H x r  * . й !  r i  XT
* d j  d x *  d j  d x ' ° l d x ' d ' k *  d x ' ^  d x ' ^ 1^ '  

где i tJ -  целочисленные координаты сеточной области; d,*di(o£\
c/t= a iC x O  - физические значения изменения параметров х 1 и х 1  меж­
ду соседними узлами разностной сетки.

Формальными при обращении к подпрограммам, описывающим поверх 

ности, являются следующие параметры:

•‘ITCH шдТСН - целочисленные координаты узла сеточной облас­
ти;
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“ Л1 i N  -  координаты узлов вспомогательного сеточного шаб­

лона 9 х 9 с центром в узле IT C H t dTC H  ;

-Л /О  , N О -  размеры сеточной области.

7ля их работы из подпрограммы WWQB тъЪОЪГРНчвъвъСОММОЫ/ОЕРАЦ 

передаются 7 величин, необходимых для построения касательных бази­

сов векторов, первые 4 из которых X IN ,Х  7К  ,X P/V ,X 2K  представ­

ляют начальные и конечные значения параметров X*1 и ос* , остальные 

3 используются произвольно для передачи значений констант, необхо­

димых для построения параметрических уравнений.

Идентификаторами величин изменения параметров х 1 и х г меж­

ду узлами разностной сетки d 7 и d z служат переменные 27, и В 2 , 

которые всегда вычисляются операторами:

.27, = С с с 7 / г - о с 7 Л / 5  /(М О  - 7);
Z 7 2 ^ C x 2 / v - x  Q N V C N O - f ) .

Значения параметров Х ’ и х г в узлах сеточного вспомогательно­

го шаблона 9 х 9 с координатами М  , N  идентифицируются переменны­

ми R1  и AR2  , которые вычисляются операторами:

С I T C H -  7 i - 0 .5 *  C M - S b + V l l N

A R 2 = Z ) 2 * O T C H -  1*  0 . 5  * СМ -5У> + » 2 N ,
В элемента массивов X I  . Y 7 , 2 . 7  , Х 2 . 4 2 , 7 . 2  о индексами

М и а/  засылаются значения компонент касательных векторов ос­

новного локального базиса в узлах шаблона с координатами <M,N) ,
д у  d z  d X  d y  d Z  * 1, - ^ r  • соответственно. Эти массивы переда­

ются через C oJtM O Sy^B A Zl^/ в вызывающую программу.

На средней линии вспомогательного шаблона при N  *5 подсчи­

тываются координаты узлов, лежащих на этой линии, которые записыва­

ются в массивы Х М  ,У  М  , Z М  , передаваемые через COMMON /Х У  1 /  

в вызывающие программы для подсчета координат центра шаблона.
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4 .3 .4 .2 .  Общие положения составления подпрограмм, заполня­

ющих массивы жесткостей оболочки.

Комплекс "МККРИС-2" может быть использован для решения за ­

дач теории оболочек как с постоянной толщиной, так и с переменной. 

При решении задач для оболочек постоянной толщины используется 

подпрограмма FHO , загрузочный модуль которой подключается автома­

тически при разрешении внешних ссылок на шаге редактирования свя­

зей. Для расчета оболочки переменной толщины пользователю "МККРИС- 

2м, необходимо составить подпрограмму с тем не именем F H J t кото­

рая бы обеспечивала построение массивов шаблонов жесткостей £ Н  и

оболочки с переменной толщиной, и ввести её во входной поток 

■ага FO&Tпроцедуры FORTGCLQ,

Подпрограмма FHD должна иметь следующие Формальные парамет­
ры;

-1ГС Н  ,ЗТСН -  целочисленные координаты узла сеточной облас­
ти, для которого строится шаблон жесткостей;

-М О  , N 0  -  размеры сеточной области.

В подпрограмме должны быть определены значения модуля упру­

гости и коэффициента Пуассона, которые можно передать через COMMON 

I F I I P M Z I  .

Значения элементов шаблонов жесткостей нужно передавать 
через С О М м ON/LH/*

На рис.4 .6 ,а и 4 .Р ,а  показаны схемы соответствия элементов 

шаблонов мембранных ж естко стей ^ // и изгибных жесткостей Е 0  точ­

кам сеточного шаблона 5 x 5  узла С г , / ) *  В подпрограмме иденти­

фикаторы ITCH  и J  ТС И соответствуют целочисленным координатам узла 

сеточной области i  и J. .
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4 .3 .4 ,3 .  Общие положения составления подпрограмм, заполня­

ющих массивы жесткостей ребер.

Комплекс программ "МЕКРИС-г" может быть использован для ис­

следования напряженно-деформированного состояния и устойчивости 

оболочек, подкрепленных набором ребер, расположенных как в направ­

лении ос1 , так и в направлении X 2 . 7ля расчета оболочек с реб­

рами постоянного сечения имеется п о д п р о г р а м м а к о т о р а я  для 

таких ребер строит массивы шаблонов жесткостей ВF1 , f f P  t E d l  , 

f 0 9  и массивы шаблонов эксцентриситетов С П  ,СЭ7 , CF9  ,

СО 9  , элементы которых содержат соответственно жесткости на рас­

тяжение-сжатие! изгибные жесткости и значения эксцентриситетов ре­

бер! расположенных в направлении х 1и о с г , для точек сеточного 

шаблона 5 x 5  узла с координатами С I TCH,  дТ С Н \ На рис.4.6 и рис. 

4.6 приведены схемы соответствия элементов массивов жесткостей и 

эксцентриситетов ребер точкам сеточного шаблона 5 x 5 .

При необходимости расчета оболочек с ребрами переменного се­

чения пользователю "MFKPHC-J?" необходимо написать подпрограмму 

P S 3 P A  , которая обеспечивала бы построение массивов жесткостей 

и эксцентриситетов для таких ребер и ввести её во входной набор 

шага FO&T процедуры FORTGCLG  ,

Подпрограмма F E B R A  должна иметь следующие Формальные па­

раметры:

- IT C H  , дТСН  -  целочисленные координаты узла сеточной об­

ласти, для которого строятся шаблоны жесткостей и эксцентриситетов 

p ed e i;

-  МО , НО -  размеры сеточной области.

Массивы жесткостей и эксцентриситетов необходимо передавать 

через общую область /R E B jb  виде

COMMON/REB/ER7. E F K k \  E Jl(k),6S№ , &1Ш , CFJCQ), C J K ty iP F
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нрт\нмя«\ЕЯ2№ч\пт№2Цхь\т£№ь\<ж(Ф,нРР2и),нржь)
H M F e < . 4 \ H i m c 4 ) .

через которую передаются переменные и массивы в следующей последо­

вательности:

-  £Р7  -  модуль упругости материала ребра направления э с 1 ;

-  £ /7 0 4 0  -  массив элементов шаблона жесткостей ребра направ­

ления ос1 на растяжение-сжатие;

-  G S7 С4 ) -  массив элементов шаблона жесткостей ребра направ­

ления х 1 на сдвиг;

-  G I 7 (4 ) -  массив элементов шаблона жесткостей ребра направ­

ления х 1 на кручение;

- C FH 4 )  -  массив элементов шаблона эксцентриситетов ребра 

направления х 7 в точках определения, совпадающих с точками опре­

деления элементов £ /7 ( 4 ) ;

-C G 7C 4) -  массив элементов шаблона вксиентриситетов ребра 

направления х 7 в точках определения, совпадающих с точками опре­

деления элементов £\77С4);

-H P F K b )-  массив элементов шаблона максимальных значений 

крайних волокон ребер направления ос’ в точках определения, сов­

падающих с точками определения элементов массива £ / 7 ( 4 ) ;

~ P P J K 4 )-  массив элементов шаблона максимальных значений ос* 

крайних волокон ребер направления ос7 в точках определения, совпа­

дающих с точками определения элементов массива £ Э 7С 4) ;

~НМР7(Ц)- массив элементов шаблона минимальных значений 

крайних волокон ребер направления х 7 в точках определения, совпа­

дающих о точками определения элементов массива £ / 7 ( 4 )  ;

-Н М д7(*д- массив элементов шаблона минимальных значений х 7 

крайних волокон ребер направления х 7 в точках определения, совпа­

дающих п точками определения элементов массива £**77 С 4) ;
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-E P Q  -  модуль упругости материале ребер направления ос* ;

-Е Е 2(Л ) -  массив элементов шаблона жесткостей ребра направ­

ления х г на растяжение-сжатие;

~ G S 2 С<0- массив элементов шаблона жесткостей ребра неправ 
ления х *  на сдвиг;

-  G I2 ( 4 ) -  массив элементов шаблона жесткостей ребра направ­
ления х *  на кручение;

-С/с?С40 - массив элементов шаблона эксцентриситетов ребра 

направления х 1 с точками, совпадавшими с точками определения эле­
ментов ЕЕ2СЧ)\

-  С 72CV) -  массив элементов шаблона эксцентриситетов ребра 

направления ос* в  тоннах, совпадавших с тоннами определения эле­
ментов EDQ С 40;

-НРЕЖЦ}- массив элементов шаблона максимальных значений х  

крайних волокон ребер направления х 8 в точках определения, совпа­

дающих с точками определения элементов массива

-Н РЭЯ& У  массив элементов шаблона максмальных значений х ’ 

крайних волокон ребер направления х 2 в точках определения, совпа­

дающих с точками определения элементов массива E J Q  ;

-Н М Р 2(ьу  массив элементов шаблона минимальных значений сс4 

крайних волокон ребер направления х 1 в точках определения, совпа­

дающих о точками определения элементов массива EE2C W  ;

-H M 'JS  -  массив элементов шаблона минимальных значений х а 

крайних волокон ребер направления х 2 в точках определения, совпа­
дающих с точками определения элементов массива £ D 2 < 4 \

* 0 . 5 ,  Общие положения составления подпрограмм, определя­
ющих внешние воздействия

Я комплексе программ "М ^гил-й" имеется ряд подпрограмм
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(табЛ .4,2 ) , подключение каждой из которых в программу обеспечивает 

ревение задачи от нагрузки соответствующего вида. Цели возникает 

необходимость решения задачи при силовом воздействии, для которого 

еше нет соответствующей подпрограммы, вычисляющей коэффициенты мат­

рицы от нагрузки, то надо написать такую подпрограмму, дав ей уни­

кальное имя, пользуясь описанными ниже рекомендациями.

Формальные параметры подпрограммы в порядке их следования в 
операторе Stf6*W77N£: следующие:

АРР  -  не используется;

GfOM - имя подпрограммы геометрии;

ITCH , JTCH -  целочисленные координаты узла сеточной облас­
ти, для которого строится разностное уравнение;

МО , N О -  размеры сеточной области;

QM  -  массив элементов разностного шаблона, дополненный ко­

эффициентами от нагрузки и невяэки;МЗ/¥-лервая размерность массиваQN;
KOLFQB -  количество разрешающих Функций в узле разностной сет­

ки.

Массив QN  в подпрограмме должен декларироваться с двойной 

точностью.
Через общую область/и/Я / в подпрограмму должны передаваться 

параметры нагружения: N W t l W  t dW t l]W  t U P  , SDP . Поскольку под­

программа строится с таким расчетом, чтобы она была пригодна для 

продолжения решения как по параметру нагрузки, приращение которого 
равно UP , так и по параметру перемещения с приращением D YJ , «

комплекс НМГКРИС-?Н введен признак, в соответствии с которым ггри 
J1W /  0 продолжение решения осуществляется по параметру перг мще ­

ния, а при 7 W »  0 - по пзрметру нагрузки. При продолжении рг чмНИц 

по параметру перемещения/7И'п»ремеиные Л/Р/, Л  у  , VW  определит 

ИОМ«р компоненты яркторз неррмспечия, РМбпПИЧоЛ рея’/'ИМ HflfaMripoM,
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Таблица 4.2

n/п
Имя

подпрограмм
Вид воздействия

I .

О Р Р Р Р 1

Нагружение в виде смещения края, для которого 
ITCH вдоль координаты х 1 на величину D U 7 , 

задаваемув в исходных данных параметром DF* .

2.

О Р Р Р Р S
Нагружение в виде смещения края, для которого 

йТСНш I , вдоль координаты ос2 на величину D U S, 
задаваемую в исходных данных параметром D P  .

Э,

О РРРР У

Нагружение сосредоточенной силой в узле 
С77Г//-ЛУ#772^М!)направленвой вдоль вектора 

основного локального базиса в этой точке*

4.

о р р р р  ч

Нагружение распределенным по крав ITCH «I 
усилием, направленным вдоль х 1 . Физическое 
значение которого задается в исходных данных 
параметром D P  .

5.
ОРРРР 5

Нагружение равномерным нормальным давлением, 
Физическое эначенне которого ведается в ис­
ходных данных параметром П Р  .

6.

О Р Р Р Р 6

Нагружение собственным весом, действуощим 
>доль оси X декартовых координат, физическое 
значение которого задается в исходных данных 
параметром Q P  %

7.
ОРРРР 7

Нагружение неравномерным нормальным давлени­
ем.

O PPPPG S Воздействие гидростатическим давлением.
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и целочисленные координаты узла приложения ведущего параметра в 

направлении х 1 и х г . При продолжении решения по параметру нагруз­

ки 2JP переменные N W , 1W  могут применяться программис­

том по собственному усмотрению* В переменной §VP  накапливается 

значение параметра нагрузки, используемое при подсчете коэффициен­

тов невязки QmO&'WRX где Л/2/Р- номер уравнения.
При построении в уравнениях равновесия коэффициентов от наг­

рузки производится усреднение значений векторов нагрузки, опреде­

ленных в центрах ячеек, прилегающих к узлу, равновесие которого 

рассматривается. Поэтому через общую облаеть/Л/AGPl в подпрограмму 

должен передаваться массив /К б, £Д З), элементы которого представ­

ляют собой четверть произведений величины квадратного корня из 

фундаментального определителя поверхности на коэффициенты преобра­
зования единичных компонентов векторов нагрузки, определенных в 
центрах ячеек сеточного шаблона 5 x 5 ,  при сведении их к центру 
шаблона для каждого из трех уравнений равновесия. Первые два ин­

декса массива Р  определяют номера левого верхнего узла ячейки 

в сеточном шаблоне 5 х 5, в центре которой обозначены компоненты 

вектора нагрузки; третий индекс ознамает номер уравнения, для 

которого вычисляется коэффициент от нагрузки; четвертый индекс 

определяет номер контравариаитной компоненты вектора нагрузки.

7ля того, чтобы не производить вычислений коэффициентов мат­
рицы от нагрузки в тех уравнениях, где неизвестные заданы, для каж­
дого уравнения необходимо произвести анализ закреплений. Информа­
цию для этого анализа содержит первый разряд элементов маосива 

AWI/AKS)иэCOMWN/PP/, индекс которого определяет номер уравнения. 

Если первый разряд соответствующего элемента равен нулю, то постро­

ение коэффициента нагрузки и невязки производить не следует. Этот 

анализ производится в цикле, осуществляющем обход по индексу номе-
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ра уравнения оператором
j f w q z k k o d u p  ( а / u p ), 7 0 ). л ? .  0 )  go.  т о - /? ,

где NUP - индекс номера уравнения; п  - метка оператораCOH77NUE, 
являющегося последним оператором цикла.

Гели приращение вектора внешней нагрузки принять в виде

где А ,  , А г ,А$ служат Функциями от зс1 , ос2 , то группа опера­
торов, вычисляющих коэффициенты нагрузки и невязки, будет иметь 
вид:

u u c j u u  П О  т п г N U R* 7%Э

l-j t—t lj i-j t-j СА/02? C/O?Z7i//?C,VC/*0f 701fQ.0)GO rO m M

UUUt и  U U SO и 7П-1 lj 7 = «?, J
и  и  и и ч  и  DO и  7T}1 u  J  J
1-4UU и  LJU A f?l ....... .
и  и  и  и  и и А # 2 ~ ........
и  и  и  и  и  и  А  С 7 ) ̂ .......
ju u  U UU А СР ........

u u u u u u ^ f  .........
u u u u u u  Z/0 ы  ТП-\ 4-i 7,J
u u u u  77?,ы<ЭЛ/С?
u u u u u u ^  СР6, - tf/V C?S, NVfPXSDP+UFb* QN С??, /Л/Я?)

lj и  t-j и  тт? 2  ы c o n t i n u e *
Здесь в правой части операторов AR1 н AR2 должны быть выра­

жения, определяющие значения координат ос1 и х? центра ячейки с левым 
верхним узлом, имеющим координаты в сеточном шаблоне 5 х 5 Cl9 I s); в 
правой части операторов, заполняющих элементы массива А  , -

выражения Функций А , , А* , Аа от координат х 1 и X*.
Уля идентификации подпрограмм на листинге выдачи прогреты
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целесообразно включать в подпрограмму информационную печать,

содержал^*) имя подпрограммы и лид вектора нагрузки, кото­

рый она реализует* Для того, чтобы такая печать производилась лишь 

раз, при первом входе л подпрограмму, оператором ЛАТА присваи­

вается некоторое значение переменной HVH ; печать следует осущест­

влять по условию, когда HVH будет равно числу, присвоенному в DATA 

После печати переменной NVH присвоить вначение, отличное от пер­

воначального. При последующих входах в подпрограмму, условие,по 
которому осуществляется печать, выполняться не будет.

4 .3 .6 . Общие положения составления подпрограмм, ваполняющих 
массивы температуры

Комплеко программ ММЕКРИС«-2И может использоваться для иссле­
дования напряженно-деформированного состояния и устойчивости обо­
лочек, подверженных тепловому воздействию. Для решения таких задач 
пользователю программы необходимо составить подпрограмму ГСМ РЕ * 
которая бы обеспечивала построение массивов шаблонов температуры 
для теплового воздействия с конкретным распределением £<»>*,*зо и 

по сеточной области, и ввести ее во входной набор шага 
FO&T процедуры FOPTGCLC. В противном случае автоматически 
подключается подпрограмма ТЕМ РЕ % осуществляющая обнуление масси­
вов шаблонов температур.

Подпрограмма ТЕМРЕ должна иметь в качестве формальных пара­
метры ITCH и ITCH , которые определяют целочисленные координаты 
узла, являющегося центром сеточного шаблона 3 x 3 .

Результатом работы пользовательской подпрограммы ТЕМРЕ дол­

жны стать заполненные массивы шаблонов температуры Т071Од,70Т&(Н') 
T0M K*i\W M 2W i J7T K *i) J1T2CH) , 77Л/7С4) , Т 7 М 2 » \  для элемен­

тов которых на рис.4.7 приведены схемы соответствия точек их опре­

деления в сеточном шаблоне 3 x 3 .  Передача массивов шаблонов тем-



гюратур должна осуществляться через общую облаеть iTCMPj в виде 
COMMON/TfMP/ALFAT, ALFAT7, ALFAT2 , Т 0 Т 7 ( Ъ \  Т 0 Т 2 С Ф ,

Г 0 М 7 С 4 ) ,  Т 0 М 2 С Ф , 7777С*), T7T2CV), Т 7 М 7 Ш , Т 7 М 2 С Ь \  
гдв  AIFAT , А 1 С А Т 7 , А ^ А Т 2 ^ о о о т в е т с г ъ е н н о  коэффициенты темпера­
турного линейного расширения материалов оболочки и ребер направле­
ния х т и х г .

4.4. Исходные данные

Подготовка, комплекса НМЕКРИС-2М к расчету заключается: в сос­
тавлении головной программы; в подготовке исходной информации; 
в Формировании стартового пакета.

4.4.1, Головная программа определяет вариант расчета, конфи­
гурацию используемой программы и требуеше ресурсы оперативной па­
мяти ЭВМ* Она имеет следующую структуру: 
D E F IN E  F I L E  в  С К м , [ % % ] , U , l )

EXTERNAL
h

O P E P L E
O P f R L N

]  [ b m g w p  1
i j ' l l

la w s  7 s  o s m
, ,  v и ли  ИЫЯ

D B M G W R ' i B B M S y  подпрог-» 
J t  J раммы,

c r - m o w / с о г и / o z u <  /
описываю­
щей пове­
рхность

имя подп­
рограммы» 
определяю­
щей внешн­
ее воздей­

ствие

и  M M O N / S D E F / P D E F  C/V3 > / S X / s x  C N t ' )  
D O U B L E  P P E C m O H  Q S T P  
C O M M O N  / Q S T P /  Q S T P  Q 3 0 ,  PS)
C O M M O N  / O S T /  A O S X .  N  P D E  T ,  K O Z  . N R  M X  
C O M M O N  / Р 8 /  X  C 3 0 0  ) , P M X .  C N  <,)
K D Z  =  N ,
K O S X  = N g
KPDEE* N s
K P M X  = N q  
CALL \N N O D

S T O P
E N D

имя nopfifx>~[eMGWP 1 JflMS I %пя$ияаЛ

внешнее 
воедействие

мы, опи­
сывающей 
поверх­
ность
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Рекомендации по составлению головной программы «приведены в 

пункте 4 . ЭЛ.

4 .4 .2 .  Исходная информация, необходимая для работы программ 

комплекса, подразделяется на числовые входные данные и данные, за­

даваемые с помощью подпрограмм. К данным второго типа относятся 

массивы жесткостей оболочки и ребер, массивы касательных векторов 

основного локального базиса в узлах сеточного шаблона, величины 

температурных воздействий и компоненты внешней нагрузки, описанные 

в пунктах 4 .3 .4  -  4 .3 ,6 .

Содержание и структура числовых входных данных описывается 

на примере подготовки информации для составной оболочки, изображен­

ной на рис.4 .9  [7] ,  состоящей из 12 цилиндрических секций. Система 

координат XYZ является глобальной, система координат мест­

ной для цилиндрических секций. Исходя из симметрии объекта, в ка­

честве расчетного Фрагмента принимается часть цилиндрической секции, 

ограниченная плоскостями симметрии XOY ,Х„0 z ,  и плоскостью косо­

го среза (см ,ри с,4 .9 , в ) . На расчетный фрагмент накладывается сетка 

9 х 37 узлов (9 узлов в направлении координатной линии х 1 , 37 -  

в направлении линии зс? ) .  С целью наложения неравномерной сетки в 

направлении координатной линии зсг рассчитываемый Фрагмент разбива­

ется на два элемента (1 ,Т Т ), На первый элемент в направлении оса 

накладывается 12 разностных делений (О* э с Ч % ) ,  на второй -  24 

деления ) .  Так как в местах стыка цилиндрических секций

поверхность оболочки терпит разрыв, для определения компонент ло­

кального базиса за контуром расчетного Фрагмента дополнительно не­

обходимо задать участок, состоящий также из двух элементов ( ТП, Т? ) .

Геометрические и Физические параметры оболочки соответстр*чгно 

рчвин: модуль упругости кг/см ? ; копФТ'иииеит Пуапсоич v  -

0 ,3 ; толщина h  »- 0,07 гм; радиус цилиндрической секции * ?' м;
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радиус тороидальной оболочки Р  * 55 см. ?ля рассчитываемого фраг­

мента зс!меняется от 0 дотг/Г2 рад, ос:5 -  от 0 д о #  рад.

Последовательность составления пакета числовых входных дан­

ных г

-  на первой перфокарте по Формату 715 задаются параметры МО, 

NQ J<OLFOB, KOLPCH*MSGU ,/VSGU , W ff lA  M, где МО -  число уз­
лов на рассчитываемом фрагменте в направлении координаты ос*1 ; N0  - 

то же в направлении ос* \FOLFOB -  количество разрешающих Функций; 

KOLPCH- количество правых частей в матрице разрешающих уравнений; 

MSGV -  параметр автоматического сгущения сетки в направлении ко­

ординаты осЯ ; NSQU -  то же в направлении х а ;]ND2AM- характе­

ризует замкнутость рассматриваемого фрагмента.

Область задаваемых значений: МО , МО -  целые положительные 
числа *  b\KOLFOB- принимается равным 3\KOLPCH -  для задач ЩЮ 

и устойчивости принимается равным 3;MQGUtNSGU -  целые положитель­

ные числа (npHA/SGUnVSGC^paBHHx 0 или I , сгущение сетки не проис­

ходит); I N D I A  М - для замкнутого расчетного фрагмента принимается 

равным I ,  для незамкнутого -  0.

Пример задания этих параметров применительно к рассматривае­

мой задаче (с учетом сгущения сетки):

t-J  L ./ L. I L J  9  U  U  U  U  £  1-4 L J L j  t-J  5  i-J  L -l L j L4 fd  \

- вторая перфокарта содержит параметр , служащий призна­

ком для продолжения счета в случае вынужденного прерывания на эта­
пе прямого хода метода Га/сса ( подсчета определителей и миноров 

блок-строк м а т р и ц ) . К  (К -  1 , 2 , 7 ; . , . ,  N ,  где М -  общее чис­

ло миноров блок-отрок матриц) -  решение задачи может быть продолже­
но о указанного значения минора блок-строкиматриин. При К > л/ ре­

шение задачи начинается с подсчета первого минора,

вводится по Формату 15;
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-  третья перфокарта содержит величины АВ/С/?1Тш O T K R I T % 

служащие критериями контроля абсолютной и относительной погрешнос­

тей преобразования исходной матрицы по схеме Гаусса, а также пере­

менную R K &  , задающую значение отношения а п /У а п при ко­

тором возможно пренебрежение косоугольностью разностной сетки. В 

большинстве задач А 8К & 1Т  и O T K R IT  принимаются равными соответ­

ственно 10^ и %RKRm  ГО'5 .

Формат задания -357(7 .3 ;

-  в четвертой перфокарте по формату 915 задаются переменные 
MB , M l  , IN D O U B  , N B M G  2  , где М В  -  характеризует количест­
во записей (по 900 слов каждая) оперативного запоминающего устрой­
ства, выделяемых для записи промежуточных результатов в процессе 
решений задачи; ML -  определяет число записей ( по 900 или 1800 
слов каждая) памяти внешнего запоминающего устройства (магнитный 
диск). выделявших для хранения промежуточных результатов счета; 
1NDCW&- обусловливает точность (обычная или двойная), с которой 
выполняются обмены с внешней памятью; А/бЛ/C Z - определяет кратност 
записи миноров блок-строк матриц на М2. Значение переменной МВ дол 
жно соответствовать значению второй размерности массива O ZU  , дек 
ларируемого оператором COMMOMjtfflf/ъ головной подпрограмме M A IN  . 

Минимально допустимое значение для МВ равно 2. Значение, присваи- 
мое переменной 14L , должно равняться количеству записей ( второй 
параметр) в операторе DEFINE FILE, задаваемому в головной подпрог­
рамме. Нулевое значение TN ffiU B  характеризует обычную, единичное 
значение - двойную точность обменов с внешней памятью. При
запись миноров блок-строк матриц на МД не производится, а параметр 
ffX принимается равным I;

- с пятой по восьмую перфокарты задают значения элементам
гн’к’гитч' р M R F I управляющих печатью блоков сострят-
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ственно исходной и преобразованной матриц. Первый и второй элемен­

ты каждого из массивов определяют номера строки и столбца первого, 

а третий и четвертый элементы -  последнего блока части матрицы, вы 

водимой на печать. Если номер строки или столбца первого блока боль 

ое номеров соответственно строки и столбца последнего блока, то пе 
чать отсутствует.

Формат задания -  2Г5;

-  в девятой перфокарте задается значение параметру L1TR , оп­

ределяющему число строк в поле признаков, т .е .  число перфокарт, не­

обходимых для его описания. Формат задания параметра L T T R  -  15;

-  очередные несколько перфокарт ( число их равно LITR ) описы­
вают поле признаков (кодовый массив IITREG<79 LJTR) , содержащее 

информацию о граничных условиях узлов сеточной области. Отрока в 

поле признаков задается по формату 413, 316, первое и третье чис­

ла характеризуют номера начального и конечного узлов в направлении 

координатной линии х 1 , второе и четвертое -  номера начального и 

конечного узлов в направлении координатной линии о с9 участка сеточ­

ной области, характеризующегося одинаковыми признаками. Последую­

щие три числа соответственно для функций ££ , UQ и Ut  задают ин 

формацию о кинематических и статических условиях узлов этого участ­
ка.

При составлении доля признаков следует различать два случая;
а) первый соответствует рассмотрению сеточной области с гра­

ничными условиями типа жесткого защемления, плоскости симметрии 
или косой симметрии и их комбинаций;

б) второй случай -  рассмотрению сеточной области с граничными 

условиями типа свободного края, шарнирного опирания или скользяше- 
го шарнирного опирания и их комбинаций.

Правила задания информации об узлах в первом случае несколь-
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Таблица 4.3
Кодирование участков сеточной области с граничными 
условиями типа свободного края

*
п/п

Вид границы сеточной 
области

Значения кодов в узлах, отмечен- 
них звездочками

и , и л

9
ш

I__ 1

I

А

г.НИМЯМк
я м й м »

t f f i r n
( H E L . J

so
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ко отличаются от аналогичных правил во втором случае,

В первом случае каждый узел сетки характеризуется следующими 
признаками;

-  местоположением ( угловой, контурный, внутренний );

-  ориентацией для контурных рядов ( верхний, правый, нижний, 
левый ) ;

-  условием закрепления для контурных рядов ( защемление, сим­
метрия или косая симметрия ) ;

-  типом используемого оператора.

Эта информация для каждой из Функций кодируется иестиразрядным 

десятичным числом. Первые два разряда определяют, является ли дан­

ная функция известной или ее необходимо определить ( задают тип опе­
ратора ) ,  третий разряд -  условие закрепления узла, расположенного 
в верхнем или никнем контурном ряде, четвертый разряд -  

принадлежность узла верхнему или нижнему контурному ряду, В пятом 

и шестом разрядах кодового числа соответственно записывается усло­

вии закрепления узла, расположенного в левом или правом контурном 

ряда, и определяется принадлежность его левому или правому контур­
ному ряду.

Значения кодов, определяющих ориентацию контурных узлов, при­
няты следующие: 5 -  верхний, б -  нижний, 7 -  левый, 0 -  правый 

контурный узел. Коды 1 ,2  характеризуют условия закрепления кон­

турных узлов: I  -  плоскость симметрии или защемление , 2  -  косая 
симметрия.

для определения типа оператора используются коды 0 0  и 0 1 , где 

00 означает, что Функция в данном узле известна, 01 -  

что Функция в этом узле является неизвестной и ее необходимо 

определить.
Во втором случае при кодировании сеточной области с граничны-
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ми условиями типа свободного края, шарнирного опирания или сколь­

зящего шарнирного опирания каждый узел сетки характеризуется сле­

дующими признаками:

-  местоположением С угловой, контурный, внутренний);

-  ориентацией (угловой -  верхний левый, верхний правый, ниж­

ний правый, нижний левый; контурный -  верхний, правый, нижний, ле­

вый);

-  видом угла сеточной области (входной, выходной);

-  наличием материала в ячейке сетки (верхней правой, верхней 

левой, нижней правой, нижней левой);

-  типом используемого оператора.

Описанная информация кодируется в кодовых числах первой и 

второй функций шестираэрядным десятичным числом (таб л .4 .3 ) .  Первые 

два разряда каждого из кодовых чисел задают условие, которое отра­

жает, является данная функция известной или ее необходимо опре­

делить, т .е .  задают тип оператора. Коды, выражающие тип исполь­

зуемого оператора,аналогичны кодам первого случая: код 0 0  означает, 

что функция известна в данном узле, ОГ - то, что Функция неиз­

вестна и подлежит определению.

В кодовом числе первой Функции значение третьего и четвертого 

разрядов, равное 50, характеризует принадлежность узла к верхнему 

краю и отсутствие ледой верхней ячейки, а равное 60 -  принадлеж­

ность узла к нижнему краю и отсутствие левой нижней ячейки. Значе­

ние пятого и шестого разрядов, равное 70, характеризует принадлеж­

ность узла левому краю и отсутствие левой верхней ячейки, равное 

РО -  принадлежность увла к правому краг и отсутствие правой верхней 
ячейки,

Р кодовом числе второй Функции значение третьего и четвертого 

разрядов, равное 50, выражает принадлежность узла верхнему
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краю и отсутствие правой верхней ячейки, а равное 60 -  принадлеж­

ность узла нижнему краю и отсутствие правой нижней ячейки. Значе­

ние пятого и шестого разрядов, равное 70, характеризует принадлеж­

ность узла левому краю и отсутствие левой нижней ячейки, а равное 

СО -  принадлежность узла правому краю и отсутствие правой нижней 

ячейки.

В кодовом числе третьей функции первые два разряда, как

и в кодовых числах первой и второй Функций, отражают тип ис­

пользуемого оператора. Последующие разряды кодового числа определя­

ют, является угол поворота в контурном узле сеточной области извест­

ным (нулевое значение разрядов) или неизвестным: значение третьего 

и четвертого разрядов, равное 50, характеризует принадлежность дан­

ного узла к верхнему краю, а равное 60 -  принадлежность узла к ниж­

нему краю. Значение пятого и шестого разрядов, равное 70, означает, 

что угол поворота является неизвестным в узле, принадлежащем лево­

му краю, а равное 60 -  угол поворота будет неизвестным в уз­

ле, принадлежащем правому краю сеточной области.

При кодировке сеточной области необходимо соблюдать следующую 

очередность. В первую очередь описываются угловые точки области. 

Затем наносят узлы контурных линий, включая угловые. Завер­

шается кодирование описанием узлов исключенных подобластей в ре­

зультате наличия вырезов и внутренних узлов сеточной области, вклю­

чая углы контурных линий.. Следует отметить, что при повторном опи­

сании одних и тех же узлов преимуществом обладает первое, т .е .  дан­

ным узлам присваиваются коды по первому описанию.

Тт  рассматриваемой оболочки (см ,ри с.4 .9 ,в) с учетом сгущения 

^етки поле признаков имеет вид:

*-/ I / < 7  *-J Р

Ij Lt 7 7 U  и  7 ? 7 $ г (Г 0 Г '5 ? Р (У 77?
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^ l. ,7  7815700875 700875707

u u J u 7 ^ u u 5 u  7 5 8 7 6 7 0 0 8 7 6 7 Я  & 8 7 6 7 0 1

<-j 7 ^  7 3 un-j 7 cj 7 3 ? 7 6 7 0 0 ? 7 6 7 0 & ? 7 6 7 0 7
u  u  7 w  u 7  L-t i—/ $ t—i 7 t-j t_t §70 7t—)L j$700t-jL j § 7 0 7
l̂ u  §  u, l- ,1 t-,^ ,5*-'7387000№ 70007870007  
u u 7  ш 1 Ъ ^и § ы 7 Ъ  uj^  6 7 0 7 ^ ,^  6 1 0 0 и  и  8707  

i~/ t~j 7 uj lj 7 uf 7 i_j  7 ^ 7 7 0 0 0 0 7 7 0 0 0 7 7 7 0 0 0 7
*~i t~* 7 l~J L-J 7 t-J UJ 6 LJ 73 Utu i-J L-J LJ 7 L-J U LJUU 7 L4L i и  и  LJ 1 у

-  после строк поля признаков на (fl + 1 )-й  перфокарте

( гг ш 9 + L1TR) по формату 15эадается переменная KGE0 , опреде­

ляющая число элементов, образующих составную оболочку;

-  следующие несколько групп перфокарт (по четыре каждая) опи­

сывают геометрические и физические параметры элементов, число кото­
рых задается переменной KGEQ . Каждая из групп описывает информа­

цию об элементе:

а) первая перфокарта -  массив КО , определяющий для каждого 

из элементов начальный и конечный номера узлов в направлениях коор­

динатной линии ос1(первый и третий элементы массива) и координатной 

линии х г(второй и четвертый элементы массива), а также код соответ­

ствующей поверхности. Код принимается равным номеру вызываемого в 

подпрограмме QQSfAVсоответствующего модуля, вычисляющего геометри­

ческие характеристики данной поверхности. При этом в головной под­

программе должен присутствовать оператор Е У  Т Е  P fc * A b  
и при обращении к управляющей подпрограмма в качестве Формального 

параметра должно быть указано имя 90S7A V . Пересчет первых четырех 

параметров массива КО с учетом сгущения сетки выполняется автома­

тически, При hGEO ш ! (рассматривается простая оболочка) код по­

верхности (пятый параметр массива КО ) можно не задавать, /ля это­

го случая вид поверхности расгмптрипаемой оболочки определяется мс-
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гулем, описанным в головной подпрограмме, посредством оператора 

fX TFR N A L. Формат задания параметров массива КОС5>~ 515 ;

(5) вторая перфокарта определяет значения массива / 7 2 РАРСс^ 

элементы которого в порядке следования характеризуют модуль упру­

гости материала C F ) ,  толщину СЛ) , коэффициент Пуассона C v) # 

предел текучести материала С6 V-). коэффициент температурного линей­
ного расширения (о О  , интенсивность деформаций пластичности СФ О  

и степень упрочнения материала, которая принимается равной утро­

енному значению модуля сдвига С О  в зоне упрочнения.

Описанные величины вводятся по Формату 7 E I0 .4 ;

в) третья перфокарта описывает значения величин геометричес­

ких параметров элемента оболочки, содержание я последовательность 

задания которых определяют в COMMON/СЕРА Р /  соответствующей 

подпрограммы, вычисляющей Ьроекции векторов основного локального 

базиса поверхности оболочки, уанные величины вводятся по формату 

7 E I M ;

г) четвертая перфокарта задает значения вести параметрам, 

определяющим положение местной декартовой системы координат рас­

сматриваемого элемента (в  местной декартовой системе координат 

описывается поверхность элемента) относительно общей для состав­

ной оболочки декартовой системы координат. Первые три параметра 

отражают соответственно координаты X , V  , Z  начала местной 

системы координат в общей системе координат. Последующие три па­
раметра задают эйлеровы углы поворота местной системы координат 

относительно общей: первый параметр характеризует угол поворота 

в радианах относительно оси X , второй -  угол поворота относител 

но оси Y  , третий -  угол поворота относительно оси Z  * Угол 

является положительным, если его вектор совпадает о направлением 

оси, вокруг которой проводится вращение. Эти данные вводятся по 

формату 6EI0.4. Образец задания описанной входной инфор-
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мании для рассматриваемой составной тороидальной оболочки (см. 
рис,4 ,9 ,в) следующий:
i-j и  Uj *7 U u  W и  7 U  L~J t-J i-j 5 L-J i-J L-i LJ $ LJ i-i Lj 7
^  2Я00Е Ы 0 7 . __ t ____,, 0 ?0 0 E ^J d0 u  3 0 0 0 E ^  0 0
UJ. 0 0 0 0 E ^ 0 0 ^ %Q£7S£ lj00 ^ .0№ 0£ ^ 00u 15П Е и8Ь Ъ Ш иМ иР Ш Ш  
^ .0 0 0 0 E u 0 0 iJ0000Eu00LJ.WQ0Ei.iWu Ш № Ж . Ш и Ш  >РШЕ^ 0 0  
L~tLJLJu7uUL-tU$UJLj U u 5 t j U U  l_,lJ U LJ 7 
^ M 00E^B?Ljt0 ?0BE lj0 0 ^ 3 0 0 & E uj0 8  
U-I.0000E ^ 0 0 uj 2678E t j  ~
^ 0000Fu00u .0000Fu00 ̂
LJLJLJU 17 t-JLJUl u 7 и  LJ и  LJ 9 uJ U LJ LJ 5  w LJ ULJ 7 
lj.B000Elj 07 ̂  0700E lj0 0  и . 3000E  и  0 0  „  r  _
->QS18Eu00^0000Eui 0 0 ut 000&lj0 0 ^E ? 7 £ lj07uM 00E 
u j.0 0 m E ^0 0 u j. 0 0 0 0 E ^0 j0 u 0 0 0 0 f^0 0 ^. 0{J00E u00u,00ti0tu00- ?6<8t№
L-JLJUL-J ^ U U U L V ^ u U U u P u t J W  73 LJ LJ L j  7
2 0 0 0 0 ?LJ. 0 F 0 0 6  ^  0 0 u l000E ^  00

-  , 2 6 7 8 E ^ 0 0 u .  0 0 0 0 ^ 0 0 ^ 7 5 7 7 Еи07и?1ЧБЕи 0 1 и М 0 0 Е ^ % ^ Ш ,Ж 1  
lj . № 0 0 E^ 0 0 cj.0000Elj00u.0000E j 0000Eu00u>0000EuP0~, 26 !8 fi j Й

“ по Армату на следующих двух перфокартах С(п+4пт+2Уш 
и 0 7 * 3} -й, гле/?7»Л*(?50) вводятся параметры, определяющие

начальныйQ/6EGJN^ и конечный ГNEND) номера шагов вычислительно­

го процесса. Параметр /У£/£ 7 //принимается равным I  или задается 

равным последующему номеру шага в случае, если результаты преды­
дущего шага считываются из файла прямого доступа;

- ( л + 4 т + ^  -я перфокарта описывает данные Ш В Т Е Р  , N H &  , 

v j a ML&TEP определяет начальный номер записи результатов решения, 
с которой начинается запись в файл прямого доступа, N H R -  число 

шагов, результаты которых будут подряд записываться в файл на маг­

нитный диск. При КИЪТЕРш 0 запись результатов решения в файл не 
производится.

Формат задания -  215;

-  в (л  + Ьтп+$7) -Я перфокарте вводятся переменные WETW%NWVy 
JWW , JIVW tD)N)N , используемые при построении ответвляющего­
ся решения. Здесь логическая переменная W£TW служит признаком для 

анализа знака определителя системы разрешающих уравнений и ветвлении
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решения;/>/WW ,1W W  и JW W  характеризуют ведущий параметр переме­

щения -  соответственно номер компоненты перемещения (17л , илиИ^) 

и координаты узла (7W W  tDWW)  сеточной области, в котором задает­

ся значение этого перемещения;U W W  -  задает величину приращения 

ведущего параметра.

Область значений; логической переменной WFTW присваивается 

TfcUE.vm.FALSE.*  Если W 5TW -.TRUE. , то при решении задачи ав­

томатически производится анализ знака определителя и при его сме­

не -  переход на ответвляющуюся ветвь решения. При WFTW^.FALSE. -  

анализ знака определителя не производится, ответвляющееся решение 

не строится;A/WW  принимается равным Г, 2 или У (A/H/W обычно 

задается равным 3, так как для тонких оболочек перемещение 1 Д  явля­

ется основным по отношению к U , и U2 ) ; / lV W f0 M V - могут принимать 

значения соответственно от I  до МО и от I  до A/0;7}W W обычно при­

нимается равным 1/4 +* 1/6 толщины оболочки.
Описанные данные вводятся по формату/, 5, 315, Е Ю . 4;

" ъ С п + Ь т + б )  -*й перфокарте по Формату I7 I I  задается мас- 

срв IF P V L  ГС 7?*) , управляющий печатью полей перемещений, усилий,

1 1  Шитов, деформаций, напряжений и координат X  , Y  , Z  узлов 

Iм ностной сетки. Каждому элементу массива 7 F R  присваивается I  или 

0 : I -  включить печать, 0  -  выключить печать.

Печати тех или иных полей напряженно-деформированного состо­

яния поставлены в соответствие следующие элементы массива 1FPULT *.
U7. V t , 17, -  I .  2 . э элементы; Tra» -  10, I I  элементы;

7̂7 * ^72 Р ^*2 -  *». 5. 6 элементы; X . Y . Z -  12, 13, 14 эле­
M??f Mfi > Мгг

СОt>1 9 элементы; менты.

Шестнадцатый элемент массива 1FPULT управляет печатью полей 

напряжений б 71 , бп , б хг , семнадцатый -  объединенной печатью по­

лей деформаций и углов поворота нормали &„  , <§,* , £>гг , Ц  ,

Уг # * <Sf? # &12 , i f ?  * V ?  .7FPULTC7?') не используется;
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■ (п + ^77?г 7 )  -я перТюкарта вводится по Формату 2 L 5 и за ­

лает значения логическим переменным N E L , N E L D E E  . При решении 

геометрически нелинейной задачи A/ fL ~.J 'R UE.  , при решении линей­

ной задачи А/£7.в  F A L S E

Если N E L D E F - T R U E  , то задача решается с учетом нелиней­

ных соотношений между компонентами тензора мембранных деформаций 

и вектора перемещений, если NELBEF-,  FALSE.. то соответствующие 
соотношения линейны;

- следующие две перфокарты задают значения параметрам VV , 

2?P((7it9m +8) -я  пер^юкарта) и переменным AW , JW  , JW  t Nk?EQR 

((n + frn+g')  -я перфокарта) , rfle27W , N W  , 7VV MOW характеризу­

ют ведущий параметр при построении основного решения и имеют назна­

чения, аналогичные параметрам U W W N W W  ,/VVW  , J W W i  D P  

определяет величину приращения нагрузки для случая, когда ведущим 

параметром является нагрузка; N&EQ& -  задает суммарное число

ребер.

Область значений: параметр N)N  принимается равным I , 2 или 3  

(обычно принимается равным 3 ); /IV  -  может принимать значения от 1 

до МО, J W  -  от I до N O  ;JJW  обычно задается равным 1/5 ч* I/h>  

толщины оболочки;A/RfBP  принимается равным числу ребер, а в случае 
их отсутствия -  равным £5.

При задании параметруD P  ненулевого значения, DW  , N W  ,

I W  t dW  принимаются равными нулю и наоборот: при D P  • Д й . / М 1, 

AW A t .
Формат чтения -  2E I0 .4 /4 I5 ;

-  следующая группа перФокартСот (.п+Цгп+70) -й до(/7 *4 7 7 ?/>0 -и, 

где 2 ) задает геометрические параметры ребер, общее

число которых определяется перемен ной N t f f B R .  Содержание и струк­

тура входных данных о ребрах описывается на примере подготовки ын-
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Формации для фрагмента составной тороидальной оболочки (см .рис.

4 .9 ,в ) ,  подкрепленного одним ребром в направлении координатной 

линии осг (ребро проходит по узлам сетки с координатами ITCH ж 5,

Л  СИ » от Г до 37, где/7£7У -  номер узла в направлении х^ .Э Т С Н - 

в направлении х * )  и нерегулярной системой из шести ребер в направ­

лении координатной линии ОСVребра проходят по узлам сетки с коор­

динатами:

первое - ITC H  -  5, дТСН « от I до 37; 

второе - IT C H  * 8 , / 7 С / /  « от I до 9;

третье -ITCH * 13, ITCH » от I до 9;

четвертое - IT C H « ? 0 , ITCH  -  от I  до 9 ; 

пятое - IT C H  ш ITCH •  от I  до 9;

шестое - ITCH  -  Э1,7ГС/У « от I до 93

Фрагмент ребристой оболочки показан на рис.4 .1 0 , где приняты 

следующие обозначения: Ft , -  площади поперечных сечений; С \  ,

( \  -  расстояния от центров тяжести поперечных сечений ребер до сре­

динной поверхности оболочки; t \ , t д -  максимальные расстояния до 

крайних волокон ребер; ciL -  минимальные расстояния до крайних 

подокон ребер. Числовые значения описанных параметров, а также 

собственные осевые моменты инерции Т) для рассматрива­
емых ребер приведены в таблице 4 .4 , Модуль упругости материала 

ребер(6 Р) принят равным 19,8 МН/см2 . При решении задач упруго­

пластического деформирования оболочек дополнительно задастся пре­

дел текучести материала ребер (S7G M T ) ,  интенсивность деформаций 

пластичности ( f P S T )  и степень упрочнения материала ( TALF ) ,  ко­

торая принимается равной утроенному значению модуля сдвига в зоне 

упрочнения.

Каждая из перфокарт группы ( от (п + ^т  + 70) -й ц о (п *  Цт+К'РЪ') 

огигнвает информацию об одном ребре:
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п -  схема расположения pertpp; б, в -  геометрические
параметры ребер

Таблица 4,4
от

I T C H
от

ОТ ClY
90

. ITCH
90

7 T C H F 1 c e ol
/ 5 /  j £ 37 3,0 *G_ / , 0 3 5 2 f i 3 3 0 0 3 5
г 1 $ 9 S 0.6 0,0 5 0 , 5 1 5 u 03 s 0 , - 35
3 1 5 9 a ' o s 0 05̂ 0 6 3 5 f tC>3£ с : з б
4 1 9 73 йк3 0 05 0 555 f, C 3.5 C ' * s

i : o 9 P9 0,6 CCS 0 F t  5 Г 03 5 r  *n *
i 9 P S ” 6 fj C 5 г П 4 T‘2 ^ V < 1 f>
4t у Q r t c t OC5 0  5 7' 4 C J/ , ?/
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а) массив KORC4,NPEB&X определяющий начальный и конечный 

номер* уялов в направлениях координатной линии Л* ( первый и третий 

Элементы массива) и координатной линии 0 С#(второй и четвертый »ле- 

менты массива);

б) массив ОРЕВ07*NREB#i элементы которого в порядке сле­

дования характеризуют модуль упругости материала ( f P ) ,  предел

текучести материала ( S I G M T  ) ,  интенсивность деформаций пластич­

ности ( Е Р В Т ) ,  степень упрочнения материала ( T A L F ) ,  площадь по­
перечного сечения ( Г ) ,  собственный момент инерции ( а ) ,  координа­

ту центра тяжести поперечного сечения ребра в локальной системе ко­
ординат срединной поверхности оболочки (С ) ,  максимальную (8  ) и 

минимальную Сd ) координаты крайних волокон поперечного сечения, 

Фиктивную плошадь поперечного сечения при сдвиге ( § R )  и фиктивный 
момент инерции поперечного сечения при кручении ( P i P ) .  Положитель­

ные значения координат 0 , 8  и d  совпадают с направлением линии ос* 

Описанные величины вводятся по Формату *15, « F IM /7 F I0 .* , 

Образец задания описанной входной информации для рассматрива­
емой ребристой оболочки (ем .рис.*Л 0 ) следующий:

l_ j и  l~J 5" IJ u  U  U  ^UL) U U  t LJ LJ 79 Q 0E * 0 P
u  . 3 # 0 0 E  * 07^  700018+ 07  . 7015 Et 0 7 ^ . 20358 + 07^ . 035ЯЕ+00
t I t.t LJ LJ 7 l-J l-J LJ 5 LJ *-.< i_J LJ Q u  !j  U U 5 LJ , 7 Q80E + 0 ?

i_j 6 0 0 0  E + 0 0  0 5 0 0 E  + 0 0 t _ , .  S 3  5 0 *  00u-703S0E* 01 lj.035000#
11111.1 L.r 7 t~i и* t~* ujS  u u  i_t u.i 9  (j  u  u  & lj 7980E + 07

, ,. V i0 0 f  * 0 0 ^ . 0 5 0 0 E +  0 0 lj . 5  35 0E+ 0 0 lj, 7035E *07^03303*00

t j  i t  l J I t  7 U  U L.J 13 L, ut i j u  9 и  lj u  73 l j . 79806*• 0 7

U, 6 0 0 0 E + 0 0 lj # 5 0 0 f + 0 0 t^  5550E*0 0 и .7 0 3 5 Е + 0 7 ^  0 $ 5 0 i'* 0 0

ijL.Jl J U  7 L/LJtJ £ 0  t.J LJ U  L-v 9 LJ l~J t-J 3 0  7 98  0 f ‘ + 0 ?

{ t. 60О0П .001 / ■ 05006 + 001J. 53 50E * 001. ' 70557 

i  ( i  :  r j  и  7  t . / 1. ;  l j  3  5  l j  t . j  / t i .i 9  f -■ и  i  t ^  l  ^ 8 ( 7  7  * 0 P
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и ,  6 0 0 0 £ + 0 0 i - , . 0 9 0 0 £ + 0 0 u .  5390E + 00L J. 7 0 1 5£+0 7 ^ .0 3 5 0£+0L 

irj и  и  1_/ 7 u u i i - i 3 7 i ~ i u t ~ i i ~ i  9 ‘̂ i —i t - j 3 7 t _ j . 7  9 £ 0 Е  ■* 0 ?  

i_ , . b 0 0 0 £  + 0 0 i_ j. 0 * 0 0 E +  00i~>- 5 3 5 0 E  t  0 0 l.j .70 $ $ *  0 7 u .0350£*30

При /Y R £ 8 R - 0 входная информация о petfpax не задается. 

Описанные в этом пункте входные данные задается посредством 

операторов READ в подпрограмме IVYVGZJh могут вводиться с перфокарт 

во входном потоке задания, либо назначением на шаге GO вводного 

Файла на библиотечный раздел, в котором они записаны.

<М .Э. Стартовый пакет для расчета на ЗЯМ Формируется на язы­

ке управления заданиями с использованием процедуры f'OPTGCtfXFORTHClО 

или AOWCYG). При этом во входной поток шага FORT необходимо по­

местить головную программу, а на шаге LKFB набор данных 8 YSIh+OD 

дополняется библиотечным набором S Y S  2,  L. M K O Q  , включающим 

загрузочные модули с неразрешенными ссылками подпрограмм комплекса 

НМГКРИС-?И. Во входной поток шага GO подается числовая исходная 

информация и описывается Файл прямого доступа Г Т 0  В F  ft) I :
/ /  GO, /ГОвГОО 1 u2)IVj1]SN -  имя наЬора, UM  7- SYSZ7A, V  / ь'Р- GVf W, KFEf-b, 

/tuVOL ~SFR~имя m o m , DCS-CR£CFM*FB,OSORG-IJA, BL KS22t~ Щ о о }9

/ / lj s p a c e  * (  f c so o  1
v (7200}

Получаемые результаты

входны е  данные, получаемые в результате работы программ коми» 

лексп# подразделяются на две группы. К пергой группе относится за­

даваемая с номошью перфокарт исходная информация о задаче, второй - 

результаты решения задачи. Почать выходных данных осуществляется 

по группам в перечисленной последовательности.

f и  памятка исходной информации о задаче и результатов г с пре­

образования ск-ущпствластен операторами / ‘,г7 / /т в подпрограмме р/.уо//
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В последовательности, аналогичной их заданию, осуществляется печать 

числовых данных. Дополнительно приводится распечатка кодового мас­

сива LlTR fG tполе признаков) и массивов КО, КОР* сформированных для 

конкретной постановки с учетом заданных, параметров сгу­

щения разностной сетки MSGU, NSGU,  а также информационных со­

общений. Формат печати данных аналогичен Формату их ввода.

Печать результатов решения задачи осуществляет подпрограмма 

NELUP7 (для задач НТО* и устойчивости оболочек с учетом геомет­

рической нелинейности) или NELUPQ(для задач упруго-пластического 

деформирования оболочек).

Управление печатью производится в соответствии с массивом 

1FPULT(.]?\ каждому элементу которого при задании входных данных 

присваивается значение I  или 0 .

Под заголовком НОМЕР СТРОКИ ОПРЕДЕЛИТЕЛЬ МИНОР на печать 

выдаются номера блок-строк матрицы коэффициентов разрешающих урав­

нений и значения соответствующих миноров.

Затем следует печать заданных (в случав присвоения соответству 

юшему элементу массива IFPVLT  значения Т) компонент напряженно- 

деФормированного состояния. Результаты печатаются в табличной Фор­

ме, т .е .  для каждого уэЛа или между узлами сеточной области. Таб­

личные значения выдаются на печать в виде целых чисел, для которых 
указывается один общий десятичный порядок.

Под заголовками ПГТТМЕШШЯ V I , ПЕРЕМЕЩЕНИЯ V 2  , ПЕРЕМЕЩЕ­

НИЯ U 3  печатаются узловые Физические значения соответственно пе­

ремещений 1Г7  , Uz и 17$. Под нвзванием ТГЭДИЯ 777  * УСИЛИЯ Т 7 2  , 

У'ЭДИЯ T2S  печатаются поля мембранных усилий ТС7Ъ , Т '( ” > и 7 .

Pwuwcmre я*8 ч«чи* лля Г ° 1>и7 (” >гнлаптся на начать мн*,у углами 
на ипорш ннтт* линии < с \  д а ч /« О -  мяиду yam m  на х , .

Пол мгшгогками У'’ГОИЯМ П ,  У<ЩИЧЛ//р, УНЮТ1' Ш Р  початагт- 

сч голч иггчШчих .И ' ,  i f  Jn «рутищргп М'п'1 момаитор. Ричичкмсио
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значения внутренних моментов печатаются а узлах сеточной облас­
ти.

Под заголовками УСИЛИЯ TIN* УСИЛИЯГ2//печатаются поля пере­

резывающих сил ( Т ( п  ̂ Физические значения Т^/5)выдаются
яа печать между уздами на линии ас7, а между уздами линиих!

Координаты узлов разностной сетки относительно основной де­

картовой системы координат X ,V  , Z  печатается соответственно 

ПОД заголовками КООРДИНАТЫ УЗЛОВ X , КООРДИНАТЫ УЗЛОВ Y и КООРДИ­
НАТЫ УЗЛОВ Z  .

Под заголовками НОРМАЛЬНЫЕ НАПРЯ1ЕНИЯ G7P,  НОРМАЛЬНЫЕ НА- 

ПРЯДЕНИЯ G7M, НОРМАЛЬНЫЕ НАПРЯЖЕНИЯ G2P. НОРМАЛЬНЫЕ НА ПРЯДЕНИЯ G2M 
иа печать выдается физические эначеиия напряжений б 0̂ ,  e r i71\  

в с1*>, б ! гх\

Под заголовками КАСАТЕЛЬНЫЕ НАПРЯЖЕНИЯ GKP , КАСАТЕЛЬНЫЕ 
НАПРЯЖЕНИЯ GKM на печать выдается физические значения напряжений

а (1г\  б (: г\
Для узлов сеточной области оболочки значения нормальных и ка 

сательных напряжений подсчитываются по формулам:

- о к ) / л X е м } ; * /л* ,•
С е- -  о . $ с T f f £ as * > /л ~ е и  *

* a  s  с r t i & t  * х  ff и  у » / н у

В узлах, совпадающих с ребрами, значения нормальных напря­
жений в крайних волокнах поперечных сечений ребер рассчитывают 

по Формулам:

(б - ? ' j s fr,[(& C  м), *ав, j * ® О rt i -ев; j »-7 »

C6 t^ ' \ >j e f jea/ ’С<8 гча«,7 *вв+<в ^ О / ^
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( 6  c2 ^ ')  i;j '/'У€̂ сгаЗ|*.| Q ttJ ,

где <?> o '  -  максимальные и минимальные координаты крайних воло­

кон поперечных сечений ребер; £ Pf , £ р ,  -  модули упругости ребер 

первого и второго направлений.

Под заголовками ИНТЕНСИВНОСТЬ НАПРЯЖЕНИЙ G /P  и ИНТЕНСИВНОСТЬ 

НАПРЯЖЕНИЯ GIM  на печать выдаются значения интенсивности напря­

жений на лицевых поверхностях оболочки.

Значения интенсивности напряжений подсчитываются по формуле

6 ,  ~  C6 V 1

где Тх  и /^-инварианты тензора напряжений

Тх (6 )= 4 ° < * 6 «а  ; 7 > С б )«  6^ 6 * *  •

Поля деформаций и углов поворота нормали & П9 £ и  , <g»2 * ТГ7  , 

Щ . <5?, , & *7 , f г г 2  печатаются без заголовков в не­

численной последовательности. Физические значения для & 19, <ST l , 

/S'? . гтС и с£?а выдаются на печать между узлами на линии о с \  для 

&/т. < 5 jM <S,a , zr4  и ХГ7 -  между узлами на линии ос2.

После перечисленных выше компонент напряженно-деформированно­

го состояния печатаются номер шага вычислительного процесса (ШАГ), 

накопленная величина нагрузки (НАКОПЛЕННАЯ НАГРУЗКА), величина при­

ращения ведущего параметра нагрузки £7Р(ПРИРАШЕНИЕ НАГРУЗКИ), зна­

чение мантиссы определителя системы разрешающих уравнений (27£T£Rfa 

и его десятичный порядок ( Г £ £  \  номер ведущего параметра переме­

щения (A W ) и координаты узла, в котором задается знжчение этого 

перемещения ( J W  9O W  ) ,  а также величина приращения ведущего 
параметра перемещения ( 17VV).
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П Р И Л О Ж Е Н И Й

Приложение I

ПРИМЕРЫ РЕШЕНИЙ ТЕСТ ОШ X SAJA4

Правомерность использования и надежность новых численных ме­

тодов обычно демонстрируются на тестовых задачах, для которых в ли­

тературе имеются точные решения или экспериментальные данные. Важ­

ным показателем эффективности любого численного метода является ско* 
рость сходимости численного решения к точному при увеличении числа 

степеней свободы дискретной модели рассматриваемой задачи.

Для проверки эффективности рекомендуемого комплекса программ 

"МЕКРИС-2", базирующегося на методе криволинейных сеток, выбраны три 
тестовые задачи, в которых отрицательное влияние жестких смешений 

на сходимость вычислений является заметным. Четвертый пример, опи­

санный в данном приложении, предназначен для контроля работоспособ­
ности комплекса программ.

I .  Деформирование свободной цилиндрической 

оболочки под действием двух диаметрально 

направленных сил
Рассмотрена задача о деформировании свободной цилиндрической 

оболочки (р и с Л ,а ) , нагруженной двумя диаметрально противоположно 
направленными самоуравновепенными сосредоточенными силами р. Так 

как торцевые края оболочки свободны и нагрузка не имеет осевой сим­
метрии, то её деформации сводятся, в основном, к изгибу, о учетом 

этой особенности в работе f 19] с удовлетворительной
точностью аналитически определена величина укорочения диаметра, 

вдоль которого действуют сосредоточенные силы. Решение этой задачи 

методом конечных элементов, как показано в работах [l% lH , ? 0  J ,
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Расчетные схемы оболочек к тестовым задачам,

а -  свободная цилиндрическая оболочка, нагруженная 
сосредоточенными силами; б -  цилиндрическая оболочка 
с прямоугольными отверстиями

Таблица I
Значения прогибов цилиндрической оболочки в точках 
приложения сосредоточенных сил

Число 
разност­
ных деле­
ний на 
1 / 8  обо­
лочки

Метод конечных элементов

МКСБилинейные
кубические

1 2 0 ]

То же, плюс 
жесткие сме­
щения [15]

Трехмерные по­
лилинейные КЭ 
(моментная 
схема) [18]

К -  во 
ур-ний

Сме­
щение

К-во
ур-ний

Сме­
щение

К-во
ур-ний

Сме­
щение

К-во
ур-ний

Т е ­
чение

х4 150 0 , 6 150 2 , 8 6 150 2,61 60 г, 9 8

4x8 270 I *41 270 2 , 8 8 270 2 , 8 8 116 г, 95
8 x8 486 1,46 486 2,89 466 2,90 2 2 2 ?,94



оказалось весьма чувствительным к отрицательном; влиянию жестких 

смещений. Авторами этих работ для проверки эффективности метода 

приведены результаты исследования сходимости численных решений с 

различными типами интерполирующих полиномов.

При расчете методом криволинейных сеток, как и в работах [16 

IP , 2 0  J , рассмотрена оболочка, длина которой L * 0,263 м, ради­

ус кривизны R  ■ 0,126 м, толщина h  « 0,00238 м. Модуль упругости 

материала оболочки f  « 72 ГПа, коэффициент Пуассона V * 0,3126 . 

Величина сосредоточенных сил Р * 4 ,43 кИ. При таких параметрах 

оболочки и нагрузки значение прогиба в точках приложения сил, по- 

лученное п о  метолике [ 1 9 ]  , с о с т а в л я е т  0 , 0 2 8  м.

Елагодаря симметрии напряженно-деФормированного состояния 

относительно плоскостей, проходящих через линию действия сил в 

продольном направлении и в поперечном направлении, а также плос- 

Кости, проходящей через ось оболочки, нормалью к которой является 

линия действия сил, для расчета выделен Фрагмент, представляющий 

собой восьмую часть оболочки. Координата х 1 на поверхности ориен­

тирована в продольном направлении, х *  -  в окружном направлении.

На границах ос1 * £ /? , х г * 0 , х г ^% /2  приняты условия симметрии 

вектора перемещений; на Гранине ос1 *■ 0 -  условия свободного края.

В табл. Т приведены значения прогиба в точке приложения сил, 

полученные методом криволинейных сеток с различной густотой раз­

ностной сетки и, для сравнения, результаты, найденные методом ко­

нечных элементов в работ; [ 15, ТВ, Г?п] . Сравнение приведен

ннх результатов свидетельствует о высокой скорости сходимости МКС 
и его достаточной точности.
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2 . №  цилиндрической оболочки с 

прямоугольными отверстиями

Рассмотрено напряженно-деформированное состояние цилиндричес­

кой оболочки с четырьмя большими прямоугольными отверстиями С см, 

рис. Г ,б ) при осевом сжатии. Исследована сходимость численного ре­

шения метода криволинейных сеток. Результаты сопоставлены с решени­

ями [то] # [ и ]  , полученными «по методу конечных разностей без уче­

та жестких смешений и по методу конечных элементов с различными ти­

пами аппроксимирующих полиномов,

В работе [ ю ]  отмечено, что решение задачи, достигнутое на о с т  

ве соотношений теории пологих оболочек с использованием метода ко­

нечных разностей, имеет неудовлетворительную сходимость. Там же 

приведено решение этой задачи, базирующееся на технической теории 

оболочек и применении метода конечных элементов. Матрица жесткости 

конечных элементов получена с использованием двух типов полиномов, 

аппроксимирующих компоненты вектора перемещений с 24-мя неопреде­

ленными параметрами, что соответствует 6 -ти обобщенным неизвестным 

в узле . Показано, что при использовании полиномов первого типа, со­

ставленных без учета жестких смешений, сходимость численного реше­

ния не достигалась. В полиномах второго типа, в отличие от первого, 

использованы Функции Формы цилиндрической поверхности элемента, что 

позволило избавиться от отрицательного влияния жестких смещений. 

Использование таких полиномов в расчетах с различной густотой сетки, 

хотя и не привело к достижению сходимости численного решения при 

сетке х 5, т , е . при 504 неизвестных, однако выявило тенденцию 

асимптотического сближения результатов по мере увеличения количест­

ва неизвестных, Полученные при этом ценные обнаружили концентрацию 

напряжении в углу отверстия, В роботе [ i f ]  эта же задача решенз ме­

тодом конечных элементов с использованием полиномов, учитывающих



жесткие смещения, на основе разрешающих соотношений теории оболочек 
В.Я.Новожилова. Показано, что в этом случае сходимость численного 
решения достигнута при сетке ГГ х Гб (*£2 неизвестных).

7ля сравнения с результатами приведенных выше работ рассчитана 
оболочка высотой//* 28 см, радиусомА>- Т2,5 см, толщиной h  « 
0,02РГ25 см, длиной выреза в окружном направлении £  * ТЛ^см и в осе­
вом направлении -  t y * I? см, т .е . при значениях отношений *
П,0022*3,/ / / р  в 2,24, t 7fy*  3/7, ^ г/ н  -#/*», принятых в работах [lO , 
ТТ] . Коэффициент Пуассона материала оболочки принят равным 0,3.
Наличие плоскостей симметрии оболочки позволило выделить для рас­

чета Фрагмент, представляющий собой 1/8 часть в окружном и 1/2 часть 
в осевом направлении. На контурах, принадлежащих плоскостям симмет­
рии, приняты условия симметрии вектора перемещений. На торцевом кон­
туре заданы условия подвижного в осевом направлении шарнирного опи­
рали* и учтено действие осевой нагрузки интенсивностью £  . На кон­
турах отверстия приняты условия свободного края.

Г целью исследования сходимости результатов, полученных мето­
дом криволинейных сеток, проведены расчеты при различной густоте раз­
ностной сетки, нанесенной на Фрагмент оболочки. В табл. 2 приведены 
значения относительных прогибов i/3-U af /C ^  70^) и относительных 
осевых внутренних усилий характерных точек обо­
лочки, обозначенных на рис. 1,6 буквами А , В , С , D , Е , Здесь 
же лля сравнения представлены результаты расчетов, полученных мето­
дом конечных элементов [lO, ТТJ и методом конечных разностей [ ТО] .

Анализ результатов позволяет сделать вывод, что сходимость ре­
шения по методу криволинейных сеток достигнута при менее густой сет­
ке по сравнению со случаем применения метода конечных элементов с 
использованием илилучшей апирокгимпнии. Количественное par вожде­
ние роз УД ЬТ 4 7 OF МОЖНО ОбтЧс ПИТЬ бг>ЛгО ДИГКрГ'ТНОЙ Мо Д'ЛЬН



Таблица 2
Результаты расчета цилиндрической оболочки с четырьмя прямоугольными отверстиями

{Сетка (К-во , Перемещения в точках Усилия -W M L  T™ £ 'Л ̂  "Агтз* s точкахвариант расчета
ур-ний А В c д E A В C __ д _ я

'ZQ без учета f 4x5 104 -0,464 0,140 0,359 0,468 0,447 0 -1,476 -0,560 -1,361 -0,555
жестких смещений (1 2 x5 ! 300 -1,988 0,656 1,226 1,577 1,461 0 -3 ,736 0,015 -3,222 0,054t Tfn , -V/ 24x5 594 | -3,973 1,528 1,738 2,829 2,119 0 -8 ,046 -0,409 -5,577 0,595

-КЗ с учетом ; 4x5 1 104 -3,112 0,710 1,917 1,446 2,361 0 -2,861 0,299 -2,794 0,783
жестких смещений '12x5 j 300 -7,405 3,555 1,434 5,614 1,779 0 -6 ,592 0,484 -5,320 0,7641- * w j ?4х5 S 594

*
-3,325 4,167 1,313 6,822 1,638 0 -10,320 0,479 -7,497 0,745

То гр 11 , 11x16 1 422 -9,021 4 , I I I 2,189 7,006 2,844 0 -6,256 0,548 -4,965 0,922

К ? без учета i 
жестких смещений(Е2х16

* Т 1 i

1
i 307
t

*- 1 

-5,640

1“

2,197 2,093 4,097
i
2,571 0

i
-5 ,457 0,605 -4,737 0,864

6уГ
1
. : i 2 -9,866 4,980 1,455 7,941 2 , 0 1 1 0 -5 ,146 0,355 -4,288 0,705

;igx7 | 214 -1 1 , 1 2 2 5,457 1,951 9,436 2,607 0 -7 ,416 0,517 -5,250 0,965
i 18x14 

J -----------------

| 671
.j________ i

-11,108
i---------- 1

5,449 2 , 1 1 0 ,9,488
_______________ j

2,798
u_______

0 -6 ,352 0,588 -5,286 0,995
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метола конечных элементов ло сравнение с моделью метода кривоеиньи 

них сеток. Неудовлетворительные результаты метода конечных разнос­

тей, приведенные в работе [ ю ]  , можно объяснить как непригоднос-т ью 

теории пологих оболочек для решения такой задачи, так и плохой 
сходимостью традиционного метода конечных разностей.

3. Устойчивость бесконечной цилиндрической 

оболочки при действии внешнего равномер­

но распределенного давления 

Среди задач устойчивости оболочек наиболее изучены 

задачи устойчивости цилиндрических оболочек. Задача об устой 

чивогти бесконечной круговой цилиндрической оболочки при действии 

внешнего равномерно распределенного давления, благодаря однородное 

ти напряженно-деформированного состояния в до- и иослекритическом 

состоянии в направлении образующей, сводится к задаче устойчивости 

кольца, имеющей аналитическое решение, хорошо согласующееся с экс­

периментальными данными,

где ^  -  значение интенсивности внешнего давления, п  -  количество 

волн Функции прогиба в послекритическом состоянии, £  -  модуль упру 

гости материала, D -  осевой момент инерции поперечного сечения,

R  -  радиус оболочки.

При использовании различных численных методов для определения 

величины критического равномерно распределенного внешнего давления 

на кольцо отмечается низкая сходимость результатов, обусловленная 

погрешностью аппроксимации функций жестких смещений. Как показано 

в работе [9 ]  , относительная погрешность критической величины равно 

мерного внешнего давления для кольна, полученной обычным методом 

конечных разностей, выражается соотношением

(7?г ~ h  *
г0 0 %  ,Ч
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где тп -  количество разностных делений в окружном направлении.

Из приведенной формулы видно, что при увеличении количества раз­

ностных делений погрешность убывает, но скорость убывания зависит 

от квадрата отношения радиуса оболочки к ее толщине.

При помощи комплекса программ "ШКРИС-21* решена задача устой­

чивости кольца с отношением R/fa * 100. При этом для определения 

минимальной критической нагрузки, соответствующей количеству волн 

функции прогиба в закритическом состоянии п  * 2 , в качестве рас­

четного Фрагмента в осевом направлении выделена часть цилиндричес­

кой поверхности, ширина которой выбиралась из условия равенства сто­

рон разностных ячеек, зависящая от количества разностных делении 

в окружном направлении. В этом направлении размер расчетного 

фрагмента составил четверть окружности. На всех границах фрагмента 

приняты условия симметрии вектора перемещений. Задача решена с на­

ложением разностных сеток 4 х 4, 4 х 8 , 4 х I? , 4 х 16.

Результаты исследования сходимости численного решения приве­

д ем  в табл. 3 в виде значений относительных погрешностей числен- 

m го определения величины критического давления при различной гус­

тоте разностной сетки.

Таблица 3

Гетка 4 X 4 U 8 4  х 1 2 4 х 1 6

Погрешность, % 5,78 1,39 0 , 6 Г 0,36

Из таблицы видно, что величина погрешности определения кри­

тического давления по мере сгущения разностной сетки в окружном 

направлении достаточно хорошо следует квадратичной зависимости от 

величи *н конечно-разностного деления.
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4. Устойчивость цилиндрической 

панели в упруго-пластической 

области деградирования

На основе метода криволинейных сеток и теории малых упруго­

пластических деформаций с учетом сжимаемости материала выполнено 

исследование устойчивости при внешнем равномерном давлении прямо­

угольной в плане цилиндрической панели (рис. 2 , а ) .  Граничные усло­

вия панели соответствуют шарнирно-неподвижному закреплению кромок,

Данная задача была рассмотрена в работе [Гб] , где для ее ре 

пения использованы нелинейные дифференциальные уравнения изгиба по­

логих оболочек в смешанной Форме и применен метод конечных разнос­

тей (вследствие симметрии поверхности и внешней нагрузки рассматри­

валась четверть панели и наносилась сетка 10 х 10 узлов), В основу 

алгоритма решения нелинейных разностных уравнений, учитывающих ге­

ометрическую и физическую нелинейность, положен общий метод итерации, 

разработанный авторами работы [ 1 6  J .

Геометрические характеристики панели при расчете приняты сле­

дующими: размеры в плане 2 а х 2 в * 0,4 х 0 , 2  м; толщина h  т 0 , 0 1  м; 

радиус кривизны ^ 3 -  0,25 ы. При наше размеры соответствуют параметру 

пологости к  -  Гб ^16 ] *

Материал панели подчиняется диаграмме деформирования с линей­

ным законом упрочнения и имеет следующие характеристики; модуль упру 

гости Е -  Г96 ГПа; коэффициент Пуассона V » 0 ,3 ; интенсивность де­

формаций текучести <SiT * *>.28 * Ю“Э; модуль сдвига при упрочнении 
G 7 ш 14,8 ГПа.

На рис. 2 , 6  приведены полученные в [ 16 J кривые зависимостей 

"нагрузка-прогиб". Штриховая кривая соответствует нелинейному упру­

гому решению, упруго-пластическое деформирование показано штриховой 

кривой с крестиками. Верхняя критическая нагрузка упруго-пластическо■
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а -  общий вцц; б -  кривые зависимостей прогиба 
в центре панели от равномерно распределенной нагрузки
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го решений в 1 , 8  раза меньше, чем для упругого решения.

Решение упругой и упруго-пластической задач устойчивости tm- 

линдрической панели по методу криволинейных сеток выполнено при 
разностной сетке 13 х 13 узлов. Полученные зависимости нагрузки 

от прогиба в центре панели представлены на рис. 2 , 6 , где упругое 

решение показано сплошной линией, упруго-пластическое -  сплошной 
линией с крестиками.

Анализ показывает, что значения верхних критических нагрузок 

упругого и упруго-пластического решений практически совпадают с 

полученными в работе [Гб] • Расхождение в значениях нижних крити­

ческих нагрузок обусловлено тем, что в [ I 6 J использованы упрощен­
ные разрешающие уравнения теории пологих оболочек, не учитывающие 

всех нелинейных факторов исходных геометричеоки-келинейных уравне­
ний теории оболочек. Кроме того, в смешанной форме уравнений, ис­

пользованных в [Тб] , нельзя точно удовлетворить граничным услови­

ям шарнирного опирания. Равенство нулю сдвигающих усилий выполняет^ 
ся здесь в интегральном смысле, на что указывает автор работы [3 ] . 

Оти обстоятельства приводят к тому, что оболочка оказывается более 
жесткой.



Приложение g

ПРИМЕРЫ РАСЧЕТА СОСТАВНЫХ ОБОЛОЧЕК

В данном приложении приводятся примеры расчета, иллюстрирую­

щие возможности предлагаемой методики и комплекса программ "МЕК- 

РИС-2" применительно к расчету на устойчивость оболочечных конст­

рукций сложной формы.

I .  Упруго-пластическое деформирование горизонтального 
цилиндрического сосуда

В различных отраслях промышленности для хранения жидкости ши­

роко применяются тонкостенные горизонтальные сосуды, опирающиеся на 

две седловины. При этом вблизи опор в сосуде возникают высокие ок­

ружные напряжения, которые значительны в двух зонах, а именно, в 

верхней зоне контакта с седловиной, известной под наименованием рог. 

и в крайней нижней части, надире, при неприкрепленной седловине. 

Указанные напряжения в ряде случаев определяют конструкцию сосуда 

вблизи опор, а наличие сжатой зоны при неприкрепленной седловине 

не исключает возможности существования в этой зоне местного выпучи­
вания,

С применением комплекса программ "МЕКРИС-2" в геометрически 

и физически нелинейной постановке выполнен расчет горизонтального 

цилиндрического сосуда с эллипсоидальными крышками, опирающегося на 

пару одинаковых жестких седловин, которые не сварены с сосудом и 

расположены на удалении от его концов (рис. 1 , а ) .  Исследовано нап­

ряженно-деформированное состояние и неустойчивое поведение сосуда 

вблизи опор, наполненного жидкостью, но не подвергаемого пригрузкой 

внутренним давлением. Значение гравитационной нагрузки на стенку со- 

о у,не от жидкого содержимого определяется гцюиэ ведением ;г Н , где 

> - удельный пес жидкости; /• -  высота ^топса жидкости И)*- ■'«' * 2 

£' радиус цилиндра).
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Рис. I

Упруго-пластический расчет горизонтального 

цилиндрического сосуда

я -  геометрия сосуда; б -  распределение 
тангенциального усилия T f,,,no центру профиля 
седловины сосуда
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Для расчета выбран сосуд со следующими значениями геометричес­

ких параметров (см.рис. I , а ) : 1,3 м; г  ■ 0,65 м; L/ p  * 6,46;

ZR/h ш 325; = 3 ,23; S  * 0 , 2  м; & * 2,44 рад. Жесткость уп­

ругой прокладки между сосудом и опорами варьируется и принимается 

равной К « 10; 5; I ;  0 ,2  кН/см3 . Материал оболочки сосуда -  сталь 

с модулем упругости Е * 206 ГПа, коэффициентом Пуассона v> « 0 ,3  и 

диаграммой деформирования без упрочнения при пределе текучести
о

б 7 -  240 МПа и интенсивности деформаций текучести а»т- Ю"°.
Учитывая, что напряженно-деформированное состояние сосуда при 

действии гравитационной нагрузки от жидкого содержимого обладает 

симметрией относительно плоскостей ХОУ и У02 , для расчета была вы­

делена четвертая часть поверхности сосуда. Координата ос1 на поверх­
ности сосуда ориентирована в окружном направлении, да2  -  в направле­

нии образующей. На границах выделенного для расчета фрагмента при­

няты условия симметрии вектора перемещений.

На расчетный фрагмент была нанесена неравномерная разностная 

сетка с числом делений в направлении координаты х 1 , равным 18, в 

направлении х й, равным 42. При этом фрагмент в окружном направле­

нии разбивался «а 2 участка, в продольном -  на 4 участка, на которые 

накладывалась сетка различной густоты. На участке, включающем опору, 

использованась разностная сетка с ячейками длиной 7 ,8  см и шириной 

0,1396 рад. Дальнейшее сгущение разностной сетки не приводило к по­
вышению точности результатов расчета.

В результате анализа напряженно-деформированного состояния 

сосуда вначале было получено распределение реакций по поверхности 

взаимодействия седловины с сосудом для случая гидравлического испы­

тания (т .е . при заполнении сосуда водой). Значение радиального дав­

ления в надире на линии симметрии профиля седловины хорошо согласу­

ется с приведенным в работе (221 и оказывается на 13 * pfft пш р , 

нем петутниое в предположении равномерного распределения контактно-
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го давления по поверхности взаимодействия седловины и сосуда.

На рис. 1*6 показаны графики распределения окружного мембран­

ного усилия Г*77̂  сплошные линии) по центру профиля седловины при раз­

личной жесткости опоры. Приведенные значения усилия Т С77̂ можно срав­

нить с аналогичными величинами усилий, полученными авторами работы 

[22] с применением программ .SHELL* (рис. 1 ,6 , точки) и ..B O SO P4 ' 

(рис. 1 ,6 , штриховая кривая). Следует отметить, что ”МЕКРИС-2И и 
SHELL прогнозируют несколько более высокие значения надире

( ^  на 5 f  15%), чем соответствующие значения согласно,,^бта^при 

допущении о равномерном распределении контактного давления между со­

судом и опорой. Согласно программам ИМЕКРИС-2И и .SHELL* наибольшие 

7^7> находятся в надире, а при применении равномерно распределенного 
контактного давления согласно ^SOSORk* в 0,8726 рад от надира.

Значения продольного мембранного усилия надире по оси

симметрии профиля седловины, полученные с помощью иМЕКРИС-2", также 

сжимающие, но меньше, чем Т с”\  в 3,1  * 3 ,6  раз .

6 таблице приведены значения нормальныхкачгряжений на линии сим 

метрии профиля седловины в надире и роге. Максимальные значения 

напряжений б ог>, находятся в роге и отличаются от соответствую­

щих значений в надире на 25 + 45%. Напряжения б4”)как в надире, так 

и в роге получены в 1,5 *■ 3 раз больше 6'аг )̂. С увеличением жест­

кости упругой прокладки значения нормальных напряжений уменьшаются.

А,
кН J  Снь

Значения напряжений на линии симметрии 
профиля седловины, кН/см2

в надире в роге

6 0 7 3

6 «г)

° ’ i
10

-8,689 
-8  395 
-7,590 
-6,592

1111

- 1 1 , 4 3

- I I  14 
-10.590 
- 9 ,&49

-6 , У 78 
- 6 ,Зуб 
-5,239 
-3,666



128

Предварительный анализ выпучивания сосуда в зоне опор выполнен 

в геометрически линейной постановке. Было применено распределение 

давления по радиальной поверхности взаимодействия сосуда с опорой, 

полученное при А « I кН/см^, что дало удельный вес выпучивания, 

равный 6 ,33 . Это число означает, что выпучивание произойдет, если 

жидкость в сосуде окажется в 6,33 раз тяжелее воды. При этом было 

обнаружено, что форма выпучивания локализована вблизи опор как про­

дольно, так и по окружности. Для вычисления критического удельного 

веса выпучивания на ЭВМ ЕС-1060 потребовалось около 2 часов процес­

сорного времени.

Определенную таким образом величину критического удельного 

веса можно сравнить с аналогичными значениями 4,25 и 5 ,78 , получен­
ными по программе, AM$7^AN’[ 22] при использовании элементов длиной 

20 см с 0,1745 рад по окружности. Первое значение критического уде­

льного веса найдено для случая распределения давления по радиаль­

ной поверхности взаимодействия сосуда с опорой, прогнозируемого 

"оограммой „SHELL* , упомянутой выше, второе -  при условии равно- 
рного распределения давления по поверхности взаимодействия. Расход 

процессорного времени на ЭВМ УЛХ 782 при вычислениях по „ NAZTRAN  

^оставил около 30 часов.

Расхождение между значениями критического удельного веса, по­

лученными по "МЕКРНС-2И и „ M ST^A N' , вызвано, в основном, несо­

ответствием принятых расчетных моделей, а также вследствие недоста­

точной точности сходимости решений по N A S J ^ A H 9 . При анализе вы­

пучивания по "МЕКРИС-2" рассматривается четверть сосуда, включая и 

фрагмент эллипсоидальной крышки, а при анализе no mNASTRW*b ка­

честве расчетной модели принят цилиндр бесконечной длины на симмет­

рично расположенных седловинных опорах с расстоянием м(жду ними, 

равным половине действительной длины сосуда.
При расчетах было принято, что вблизи седловины сосуд нагружен
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способом, допускающим нестесненные перемещения. Эти несколько нере­

альные граничные условия предполагают наличие прогибов, больших 

толщины оболочки. Однако в действительной конструкции перемещения 

стеснены вследствие сохранения с помощью седловин круглой формы, 
поэтоцу большие прогибы не возникают, и картина выпучивания ограни­

чена.
Анализ устойчивости сосуда, выполненный в геометрически нели­

нейной постановке, позволил получить критический удельный вес вылу* 

чивания, равный 5 ,42, который на 14% меньше результата линейного 

расчета. Однако и это значение критического удельного веса свиде­

тельствует, что определяющим критерием несущей способности для 

рассмотренного сосуда является развитие пластических деформаций.

В результате решения геометрически и физически нелинейной за­

дачи определено значение предельного удельного веса жидкости, рав­

ное j/nf ш 2,58 , где f t -  удельный вес воды. Полученная зависи­

мость относительного удельного веса жадности от относительного про­

гиба в надире на линии симметрии профиля седловины представлена 

на рис. 2 ,а штриховой кривой. Штрихлунктирная линия соответствует 
линейноцу упругому решению, сплошная -  упругому нелинейному дефор­

мированию. Для построения кривой нагружения упруго-пластического 

деформирования сосуда потребовалось около 3 часов процессорного в*е 
мени на ЭВМ ЕС-1060.

На рис. 2 приведены эпюры мембранных усилий Та '\ 7~Cii0 и изги­

бающих моментов М (М\Л 4<га* в наиболее напряженном поперечном сечении, 

принадлежащем плоскости симметрии профиля седловины, при значении

. Здесь линии I соответствуют усилию 7^°  и моменту М (3̂ % ли­

нии 2 - усилию Г к22:> и моменту М {г1\
Таким образом установлено, что несущая способность сосуда ис­

черпывается в результате развития пластических деформаций при зна­

чении удельного веса жидкости, значительно меньшем, чем полученном
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Анализ несущей способности цилиндрического сосуда

а -  графики ва^и-имостей "нагрузка-прогиб"; 
б, в - ларактер распределения усилий T <UftT iiVи моментов 
М(̂ \ м ‘!2,П0 центру профиля седловины сосуда
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при упругом нелинейном решении. В упруго-пластической области рабо- 
тают небольшие участки поверхности сосуда* расположенные в зоне onoj 
За счет пластических деформаций в этих местах существенно возраста­
ют прогибы оболочки.

2. Устойчивость составной тороидальной оболочки 
с ломаной образующей

В геометрически нелинейной постановке исследовано упругое де­
формирование и устойчивость при действии равномерного внешнего дав­
ления составной тороидальной оболочки (рис. 3*а), поверхность кото­
рой набрана из двух цилиндрических* четырех конических фрагментов и 
двух кольцевых пластин [12] . Оболочка в окружном направлении конст­
руктивно разбита на 4 секции* соединенные фланцами.

Учитывая* что напряженно-деформированное состояние оболочки при 
действии равномерно распределенного давления обладает циклической 
сию!етрией и симметрией относительно плоскости центров поперечных 
сечений* для расчета была выделена четверть секции, ограниченной сое­
динительными фланцами. Координата я 1 на поверхности оболочки ориен­
тирована в окружном направлении, ос1 -  в направлении меридиана от 
плоскости симметрии с внутренней стороны к плоскости симметрии с на­
ружной стороны . На границах выделенного для расчета фрагмента при­
няты условия симметрии вактора перемещений.

При расчете были приняты следующие значения геометрических па­
раметров (рис. 3 ,6 ); Р т * 1,25 м ;Р ,«  1*52 м; Р* » 1,92 м; 2,1 
м; а * 1,0964 м; В * 1,72 м; с  « 1,18 м; h  * I см. Материал оболоч­
ки -  сталь с модулем упругости Е * 196 ГПа и коэффициентом Цуассоня 

и * 0*3.
Фланцы, соединяющие секции оболочки* учитывались как односто­

ронне расположенные с внешней стороны ребра толщиной бр ш 3,3 см* 
пмгоюй * 4 см и эксцентриситетом относительно срединной поверх-
мпгтч оболочки {'п* 2,5 см.

Нл пч н^гнчий для рягчгта фрагмент Лила ионогена разностная
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сетка с числом делений в окружном направлении ос1 -  МО * 8 и в нап­
равлении меридиана х* -  N 0 •  24. Величина критического давления 
при расчете с сеткой 8x24 получена в пределах 686 кПа с  ^  784 
кЛа с числом волн формы потери устойчивости в окружном направлении 
внешней цилиндрической поверхности п / 4 « 4  на одной секции» огра­
ниченной соединяющими фланцами. При этом на одну волну функции про­
гиба в окружном направлении приходится 4 разностных интервала.

Для проверки сходимости вычислений был проведен расчет с раз­
ностной сеткой 12x24. Прй этом значение критического давления оказа­
лось в пределах 688 кПа<с qAf> ^  723 кПа. Картина послекритического 
формообразования характеризуется наличием на поверхности внешней ци­
линдрической части п/ 4 * 4 волн в окружном направлении на одной 
секции» что согласуется с результатами расчета при сетке 6x24 и сви­
детельствует о его достоверности.

На рис. 3» в представлены эпюры функции 1 / ^  внутренних нор­
мальных усилий и изгибающих моментов вдоль меридиана посредине сек­

ции при величине внешнего давления 723 кПа. В напряженное состояние 
рассматриваемой оболочки вносят наибольший вклад окружные нормаль­
ные усилия, в распределении которых вдоль меридиана имеют место зо­
ны краевого эффекта в окрестностях линий сопряжения составляющих 
поверхностей.

На рис. 3 ,г  для двух характерных точек, одна из которых нахо­
дится на кольцевой пластине и имеет сеточные координаты ( I ;  13) в 
области 12x24, другая -  на внешней цилиндрической поверхности с се­
точными координатами (6; 25), представлены графики зависимостей 
"нагрузка-прогиб". Несущая способность оболочки определена устойчи­
востью внешнего цилиндрического пояса. Оценку критического давления 
для этого фрагмента можно выполнить по формуле

а 9 / 'V  / .V
/ р у  *>

полученной для шарнирно опертых по торцам цилиндрических оболочек
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[з ]  , При этом эакритическое формообразование характеризуется числом

В0ЛН п « *  14'
В формулах было принято Е -  196 ГПа, Л -  0,01 м, L « а  *

« 1,0964 м, & * £\, * 2,1 м.
По-вкдимоцу, повшение критической нагрузки рассматриваемой 

составной оболочки по сравнению с критической нагрузкой для шарнир­
но опертой цилиндрической оболочки обусловлено, главным образом, на 
личием ребер, которые препятствуют развитию послекритического формо 
образования с количеством волн п  -  14, соответствующим минимальной 
критической нагрузке для ширнирно опертой цилиндрической оболочки 
при действии внешнего равномерного давления»

3. Несущая способность криволинейного участка 
трубопровода за пределом упругости

Наиболее нагруженными элементами в конструкциях трубопроводных 
систем, применяющихся в различных отраслях, являются кривые трубы, 
используемые в местах излома осей трубопроводов и при создании ком­
пенсаторов температурных деформаций, так как в них обычно возникают 

максимальные кэгибавдие моменты» В качестве сопрягающих элементов пе 

ресекающихся цилиндрических труб традиционно используются секторы 
тороидальных оболочек, обеспечивающие снижение жесткости узла сопря­
жения и его гидравлического сопротивления» Анализ напряженно-деформи 
ровянного состояния трубопроводов показывает, что пластические дефор­
мации начинают развиваться прежде всего в сопрягающих элементах кри­
вых груб. Для практики важно знать не только напряженно-деформирован- 
ное состояние криволинейного участка трубопровода, но и при каких 
значениях нагрузки исчерпывается его несущая способность.

Для исследования был выбран криволинейный участок трубопровода, 
предстлпляютоий собой сложную оболочку, состоящую иэ перс/'а кающихся 
П О Д  прямым углом цилиндрически* СОПре*»ИНЧЧ сектором ТО.
Рг щвчсцой 4 fa)i Ча концах кривг шцо^.щп уч* п кп
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Несущая способность криволинейного участка трубопровода
а -  график зависимости нагрузки Р от сближения торнов 
оболочки А ; б, в -  характер распределения усилия и 
момента мс>ъ наиболее напряженном поперечном сечении участка
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трубопровода приложены системы сил, главные векторы которых (Р) 

проходят через центры краевых сечений и взаимно уравновешиваются 

ДРУГ другом. Материал тороидального и цилиндрических элементов -  

сталь с модулем упругости Е » 208 ГПа, коэффициентом Пуассона V *

-  0 ,3  и диаграммой деформирования без упрочнения при текучести
о

6 Т * 240 МПа и интенсивности деформаций текучести <gfr« 10 . Тол-
о

щина цилиндрических элементов /?ч * 6,22x10 м, тороидального эле*
о

мента ?гтш 4,85x10 м. Длина цилиндрических элементов В * 0,96 м. 

Радиусы поперечных сечений тороидальной и цилиндрической секций 

Z T -  0,155 м. Радиус кривизны оси тороидального элементаR  «

■ 0,46 м.

Исходя из симметрии напряженно-деформированного состояния рас­

сматриваемой составной оболочки,в качестве расчетного выбран фраг­
мент, ограниченный плоскостью оси трубы и плоскостью нормального 

поперечного сечения посредине тороидального участка. Система гаус­

совых криволинейных координат на поверхности расчетного фрагмента 
выорана следующим образом: координата ос1 направлена в окружном на­

правлении от внешнего контура к внутреннему; координата х *  направ­
л е н  вдоль трубы от наружного контура к контуру в плоскости симмет- 

ри . На границах фрагмента, принадлежащих плоскости симметрии, при­

няты условия симметрии вектора перемещений, на границах действия 

системы распределенных сил заданы внутренние усилия

7 =  С / ^ / 2 л . ъ  l̂ coq C s tA X
Кроме того, для исключения подвижности расчетного фрагмента вдаль

линии пересечения плоскостей симметрии наложена соответствующая 

связь на точку с нулевой гауссовой кривизной наг контурной линии то­

роидального участка.

В результате решения геометрически и физически нелинейной за­

дачи определена предельная нагрузка Рпр = 187 кН (см.рис. 4 , а ) .  Эта 

нагрузка определялась по зависимости нагрузки Р от сближения торцов 

оболочки Л и получена за 24 шага нагружения при разностной сетке
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12x12. Сходимость упругих решений при различной густоте разностной 
сетки исследована в работе [13]. На рис. 4,6 представлены эпюры 
внутреннего усилия T iZ1L\  а на рис. 4 ,в ** эпюры внутреннего момен­
та наиболее напряженном поперечном сечении, принадлежащем
плоскости симметрии, при значении нагрузки Р * 150 кН. Здесь штри­
ховыми линиями представлены эпюры, соответствующие упругому реше­
нию при различной густоте разностной сетки, а сплошными -  упруго­
пластическому деформированию трубы.

Анализ полученных результатов показывает, что для достижения 
сходимости численного решения достаточно наложения на рассчитывае­
мый фрагмент оболочки разностной сетки 12x12. Точками на рис. 4,6 
обозначены результаты эксперимента [23 ] , выполненного в упругой 
стадии деформирования, при нагрузке Р » 150 кН. Установлено, что в 
упруго-пластической области работают небольшие участки поверхности 
оболочки, расположенные вдоль линий гулевой гауссовой кривизны. За 
счет пластических деформаций в этих местах существенно уменьшаются 
экстремальные значения изгибающих моментов, а прогибы оболочки воз­
растают в 1,8 раза по сравнению с упругим решением.
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