ИСТЕН И ВИПЭДЕИ ИМДИНЕТОНИИ ВЫНЬТ, ЭТИВОВИТ И ВИВОВИТ

СЕРИЯ 3 00 8 1-8/8 9 ТРУБЫ БЕТОННЫЕ БЕЗНАПОРНЫЕ ДИАМЕТРОМ 100-1000 ММ

МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ ТРУБОЛРОВОДОВ

24048 uenn 1-63

СЕРИЯ 3.008.1-8/89

ТРУБЫ БЕТОННЫЕ БЕЗНАПОРНЫЕ ДИАМЕТРОМ 100-1000 ММ

мятериалы для проектирования трубопроводов

PR3PAROTEHHI

CORRECTORAL CONTRACTOR

'n'/ ' '

ГА ИНЖЕНЕР Я Н МИХЯЙЛОВ ГА ИНЖ ПРОЕКТЯ ЛАНОПИН

HNNHB

Зям директоря В Я Крыло

PUK NABOPAT UNOHCK

внии водгео

3 RM ANDEKTOPR B.C. ANEKCEEB
PHK AREOPRT B.W. POTOBUEB

ЧТВЕРЖДЕНЫ

Глявным Упрявлением
Организации Проектирования
Госстроя СССР N-4/5 - 1129
от 11 08 89

BBecehbi B Ceúcmbue Uncmumymam Cansbadakahannpaekm C al as 89 Npukasam am II ag 89 N 80

© ЦИТП Госетроя СССР, 1989

		2
OBOSHAVEHUE	Наименование	Стр.
3 008 1-8/89-ПЗ	Пояснительная записка	3
- I WH		12
- 2	МАКСИМАЛЬНО ДОПУСТИМАЯ ВЫСОТА ЗАСЫПКИ	16
	над трубой для с 300 при временной	
	HAIPY3KE HT-60	
-3	То же с 300, при НК-80	17
-4	То же 0 400, при 4Г-60	18
-5	TO WE d 400, NOW - HK - 80	19
-6	ТО ЖЕ С 500, ПРИ НГ-60	20
-7	TO WE d 500, NPH HK-80	21
- 8	TO WE 0600, NOW HT-60	22
- 9	То же 0600, при нк-80	23
-10	ТО ЖЕ 0800, ПРИ НГ-60	24
-11	TO WE d800, NPU HK-80	25
-12	TO WE 21000, NPH HT-60	26
-13	TO WE 0 1000, NOW HK-80	27
-14	Спосовы укладки труб и объемы	28
	SEMARHEIX PABOT	
-15	Стыковые соединения трубтипаТБ	33
-16	Стыковые соединения труб типа ТБС и ТБЛС	37
-17	Стыковые соєдинення труб типа ТБФ	38
-18	Стыковые соединения труб типа Т Б ПФ	40

PA3PA6	Воробьева	,301	
PACCHUT	Калугина	Keni	
J ba8Fb	Рипс	Jan	
ГИП	X AMMUH =	- 1/3	7
ATO VAH	PUNATOR	2 7 -27	
Н КОНТР	X MONUH .	2/12	

3.008.1 - 8/89

Зинаж дз до?

ANCTOB СОЮЗВОДОКАНАЛПРОЕКТ

- 1 1. Материалы серии 3.008.-8/89 предназначены для проектирования подземных безнапорных трубопроводов из бетонных труб по ТОСТ 20054-82 и разработаны взамен материалов для проектирования серии 3.008.1-8.
 - 1 2. МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ СОДЕРЖАТ:
 - MORCHUTE ALHAMO BAMUCKY.
 - OCHOBHUE XAPAKTEPHCTUKH BETOHHUX TPYS,
 - ТАБЛИЦЫ МАКСИМАЛЬНО ДОПУСТИМЫХ ГЛУВИН ЗАЛОЖЕНИЯ,
 - ЧЕРТЕЖИ СПОСОБОВ УКЛАДКИ ТРУБ.
 - конструкции стыковых соединений.
- 1.3. В материалах приведены только те требования к производству вемляных работ, которые влияют на напряженное состояние тоуб.
 - 1.4 БЕТОННЫЕ ТРУБЫ НЕ ДОЛЖНЫ ПРИМЕНЯТЬСЯ:
 - B DANOHAX C CENCMUNHOCTHO BONEE ? BANNOB.
 - B BEYHOMEDBANK, TOCCALDYHINX W HABYXAMILINX TOYHTAX,
- на подрабатываетых территориях и участках, подверженных опоханям и карстообадованиям.
- под железными дорогами I,I и II категории общей сети и автодорогами I и II категории.
- 1.5 в водоводдх питьевого водоснавжения рекомендуется применягь трубы со стыком на резиновых кольцах (типы ТБС или ТБПС); при применении других типов труб материалы для задел-ки стыков должны быть разрешены Минздравом СССР.
- 1.6. В трубопроводах дождевой канализации допускается кратковременная (до 4 часов) работа в напорном режиме с давлением до 0,05 МПС над шелыгой трубы.

PASPAB. BAPUNDBA //u/	3.008.1-8/8	39 - ПЗ
PACCHUT. BODOBBEBA Bigod	NOACHUTEVPHOU	P 1 9
HAY.OTA PUNATOB STUDENTAL TO THE PROPERTY OF T	ЗАПИСКА	союз водоканалпроен

2. OCHOBHЫЕ ПОЛОЖЕНИЯ

2.1. Бетонные безнапорные трубы по конструкции стыкового соединения и поперечному сечению разделяются на пять типов:

Тип ТВ - цилиндрические раструбные трубы диаметром 100-1000 мм со стыковыми соединениями, уплотняемыми герметиками или другими материалами,

тип ТБС — цилиндрические раструбные трубы диаметром 400 - 1000mm, стыковые соединения которых уплот няются при помощи резиновых колец,

ТИП ТВПС - ТО ЖЕ С ПОДОШВОЙ ДИАМЕТРОМ 600-1000 ММ.

тип ТБФ - цилиндрические фальцевые трубы диаметром 300 - 800 мм,

тип ТВПФ- то же с подошвой диаметром 1000 мм

- 2.2.Трувы в зависимости от прочности (по несущей спосовности) подразделяются на две труппы: 1 и 2.
 - 1 НОРМАЛЬНОЙ ПРОЧНОСТИ,
 - 2 повышенной прочности.

Прочностные ха; 4 ктеристики труб (контрольные нагрузки "Рк" принимаются в соответствии с ТОСТ 20054-82 по табл. 1 Для соответствующего диаметра и группы прочности и не зависят оттипа ТРУБ.

ТАБЛИЦА 1

Группа прочности труб				מסט	НОСТІ		онны		KTC/II M. B ANSI	
	100	150	200	300	400	500	600	800	1000	
1	1600	1700	1900	2900	3500	3900	4300	5100	5900	
2	*****	_		4000	4800	5500	6200	7600	9000	

2.3. Основные характеристики бетонных труб по ГОСТ 20054-82 даны на док. - ТНИ (при ссылке на документ № серии условно опущен).

3. 008.1-8|89-П3

AUCT 2

N 3A" L'OGHUCE H ALTA IBZAM HMB NO

- 2. 4 Бетонные безнапорные трубы рассчитываются на воздействие внешних нагрузок от :
 - ДАВЛЕНИЯ ГРУНТА,
 - Временной нагрузки на поверхности земли,
 - МАССЫ ТРАНСПОРТИРУЕМОЙ ЖИДКОСТИ,
 - COBCT BEHHON MACCHI TPYB.
- 2.5. На расчетную величину внешней нагрузки на трубы OCHOBHOE BAUSHUE OKASHBART:
 - тлубина заложения до верха труб,
 - ТИП ВРЕМЕННОЙ НАГРУЗКИ НА ПОВЕРХНОСТИ ЗЕМЛИ,
 - ТИП ГРУНТОВ ОСНОВАНИЯ И ЗАСЫПКИ,
 - СПОСОБ ОПИРАНИЯ ТРУБ НА ОСНОВАНИЕ,
 - CTERENS YRAOTHEHUR TPYHTOB BACHIRKU.
- 2.6. Для удовства расчета все виды внешних нагрузок реко-МЕНДИЕТСЯ ЗАМЕНЯТЬ ПРИВЕДЕННЫМИ ЛИНЕЙНЫМИ ВЕРТИКАЛЬНЫМИ НАГРИЗ-КАМИ "р" (рис. 1), приложенными вдоль верхней и нижней образую-ЩИХ ЦИЛИНДРА ТРУБЫ И ЭКВИВАЛЕНТНЫМИ ПО МАКСИМАЛЬНОМУ ИЗГИБАЮ-WEMY MOMENTY DENCTBHIO PARTINECKUX HAPPYSOK. ORDEDENEHHE ROM-

ВЕДЕННЫХ НАГРУЗОК РЕКОМЕНДУЕТСЯ ВЫПОЛНЯТЬ по вып. О СЕРИИ 3.901-1185.

Условия прочности труб определяются формулай:

TAE PK - KOHTPONGHAR HAT PYSKA, YKABAHHAR

B TABANUE 1

2.7. В целях сокращения затрат труда при проектировании, ДЛЯ ТРУБ ДИАМЕТРОМ 300-1000 MM НА ДОК. -2-13 ДАНЫ ТАБЛИЦЫ ДОПУС-TH MIN BUICOT BACHITKH B BABUCHMOCTH OT PABANHHUX YCAOBHU YKAAAKH. ЭТИ ТАВЛИЦЫ ПОСТРОЕНЫ НА ОСНОВАНИИ ФОРМУЛЫ П. 2.6. И ОПРЕДЕЛЕния расчетных приведенных внешних нагрузок и охватывают боль. шинство случаев прокладки безнапорных трубопроводов. Они позтимира выстрои от водината выбирать оптимальный вариант УКЛАДКИ ТРУБ. ПРИ СОСТАВЛЕНИИ ТАБЛИЦ ДАВЛЕНИЕ ГРУНТА И ВРЕ-МЕННОЙ НАГРУЗКИ ОПРЕДЕЛЯЛОСЬ ИЗ УСЛОВИЯ УКЛАДКИ ТРУБ В ТРАН-MERX C OTKOCAMU (PASPABATHIBAEMHIX MEXAHAMAMI) HAN B HACHITH

3. 008.1-8|8g-n3

Укладка труб в узкие траншен снижает расчетные величный внешних нагрузок. В этом случае расчет труб рекомендуется проводить не по таблицам, а в соответствии с указанной формулой

При необходимости укладки безнапорного трубопровода на глубину менее 1 метра или на глубины, большие указанных в таблицах, следует применять железоветонные трубы по гост648 2-88.

2.8. Трубы диаметром 100-200мм допускается укладывать на глубину от 1.0 до 2.5 метров на плоское основание с нормальной степенью уплотнения трунтов засыпки— без расчета в любых трунтах.

2.9. Классификация трунтов.

Для удобства пользования материалами данной серии тручты основания и грунты засыпки по своим физическим характеристикам, оказывающим влияние на напряженное состояние труб, подразделяются на условные труппы в соответствии с табл. 2 и 3

Таблица 2 Условные труппы грунтов основания

Виды грунтов		Модуль				
	1	ETP MILA	To-1	To-2	To-3	To-4
MECKH TPABEAUCT 612	DPIXVPIE	Erp < 25	+			
KPYTHЫĖ, CPEAHEU	ср платн	25 ETP-40		+		
крупнасти	DVOTAPE	ETP≥40) I	1	+	1
	ДЕФОРМАЦИИ ТО-1 ТО-5 ТО-5 ТО-5 ТО-5 ТО-5 ТО-5 ТО-5 ТО-5				L	
NECKH MENKHE	CP. NAOTH.	204ETP < 33		+		+
,,	DAOTHHE	Erp≥ 33		1	+	<u> </u>
	крупности плотные $EPP \geqslant 40$ + рыхлые $EPP < 20$ + ср. плотн. $20 EPP < 33$ + плотные $EPP \geqslant 33$ + Пески пылеватые $-10 EPP = 18$ +					
HECKN UPIVEBALPIE	ТЕСКИ ТРАВЕЛИСТЫЕ РЫХЛЫЕ ЕГР < 25 + СРИНЬЕ, СРЕДНЕЙ СР ПЛОТН В ЕГР < 25 + СРЕДНЕЙ СР ПЛОТН ЕГР > 40 + СР ПЛОТН ЕГР > 40 + СР ПЛОТН ЕГР > 33 + СР ПЛОТН ЕГР > 33 + СР ПЛОТНЫЕ ЕГР > 34 + СР ПЛОТНЫЕ Е		i !			
			+		1	,
		96ETP<22			·	
Curecu		224ET P<40		•	<u></u>	-
Cyllech		Erp≥40				+
			+		· •	·
CHEAULKU		74ETP417		<u> </u>	 -	
Cylhana			L		 -	- +
			<u> </u>			<u> </u>
			_ +	,	ļ	1
TANK						
I UN M DI	Глины				<u> </u>	+
		Erp>23				+
Скальные грунты				<u> </u>	<u> </u>	+

Условные группы грунтов засыпки

РАНВОЛЭЎ АППУЧТ	Виды грунтов	ПЛОТНОСТЬ ТРУНТА Т/ МЗ
Тз - І	ПЕСКИ ТРАВЕЛИСТЫЕ, КРУПНЫЕ СРЕДНЕЙ КРУПНОСТИ И МЕЛКИЕ	1,7
Гз - П	NECKH HOINEBAT WE	1,7
T3 - II	Супеси, суглинки	1.8
YI - 6T	Глины	1,9

- 2. 10. Способы опирания труб на основание
- 2.10.1. Для укладки бетонных труб типов ТВ; ТВС, ТВ Φ , предусмотрены следующие способы их опирания:
 - HA MADCKOE TPYHTOBOE DCHOBAHUE,
 - НА ГРУНТОВОЕ ОСНОВАНИЕ, СПРОФИЛИРОВАННОЕ ПО ФОРМЕ ТРУБЫ С УГЛОМ ОХВАТА 75° И 90°.
 - HA BET OHHOE OCHOBAHNE C YTAOM DXBATA 120.
- 2.10.2. Укладка Бетониых труб с подошвой типов ТБЛС; ТВПФ производится на плоское основание, а их расчет ведется как для круглых труб, уложенных на трунтовсе основание с углом охвата 90°
 - 2 10.3 Способы опирания труб на основание даны на док. -14
- 2.10.4 Трунтовое основание должно обеспечить плотное прилегание трубопровода по всей его длине. Для раструбных труб под стыками должны устраиваться приямки, размеры которых принимаются по СНиП 3.02 01-87

ДЛЯ ТРУБ ТИПОВ ТВСИ ТВПС ПРИЯМКИ МОГУТ БЫТЬ УМЕНЬШЕНЫ ДО РАЗМЕРОВ ВЫСТУПАЮЩИХ РАСТРУБНЫХ ЧАСТЕЙ ТРУБ. ПОСЛЕ ЗАДЕЛКИ СТЫКОВ ПРИЯМКИ ДОЛЖНЫ БЫТЬ ЗАСЫПАНЫ ПЕСЧАНЫМ ИЛИ СУПЕСЧАНЫМ ГРУНТОМ С ТЩАТЕЛЬНЫМ УПЛОТНЕНИЕМ.

2.10.5. При наличии в основании крупнообломочных и скальных грунтов необходимо под трубами устраивать подушку из песчаных трунтов толщиной не менее 100мм над выступающими неровностями основания. При наличии в основании связанных грунтов (суглинки, тлины) необходимость устройства подушки из песчаного трунта устанавливается проектом трубопровода в зависимости от наличия грунтовых вод и способа производства работ.

3. 008.1 - 8/89 - N3

<u>Лист</u> 5 В скальных и крупнообломочных грунтах допускается использовать для подушки супеси или суглинки при условии их повышенного уплотнения

- 2.10.6. При грунтах основания То-1 с условным расчетным давлением менее 1,5кгс/см² и других слабых грунтах и в сложных гидрогеолотических условиях необходимо применять железобетонные безнапорные трубы по ГОСТ 6482-88 с устройством под ними искусственного основания
 - 2.11. Степень уплотнения грунтов засыпки.
- 2.11. 1. В проекте предусмотрены две степени уплотнения трунтов засыпки: нормальная и повышенная.
- 2.11. 2. Нормальное уплотнение грунта уплотнение грунта засыпки на высоту не менее 200мм над трубой путем послой ного (не волее 200мм) трамбования, обеспечивающего уплотнение грунта с коэффициентом К не менее 0,85 (К- равен отношению проектной плотности скелета трунта к максимальной его плотности, полученной методами, оговариваемыми ГОСТ 22733-77)

Определение плотности скелета уплотненного грунта должно производиться отбором проб с обеих сторон трубопровода через каждые 100м по его длине.

Повышенное уплотнение грунта - уплотнение засыпки на высоту не менее 200мм над трубой путем трамбования, обеспечивающего уплотнение трунта с коэффициентом К не менее 0,93.

2.11.3 При засыпке пазух необходимо уплотнять грунт одновременно с обеих сторон

При укладке труб в траншею уплотнение трунта псоизводят по всей ширине, а при укладке в насыпь - на ширину д8ух диаметров трубопровода с каждой стороны

- 2.11.4. МЕТОДЫ ЗАСЫПКИ ТРУБОПРОВОДА ВЫШЕ 200 мМ НАД НИМ ДОЛЖНЫ ОБЕСПЕЧИВАТЬ БЕЗОПАСНОСТЬ ТРУБ. СТЕПЕНЬ УПЛОТНЕНИЯ ЭТОГО ГРУНТА НЕ ВЛИЯЕТ НА НАПРЯЖЕННОЕ СОСТОЯНИЕ ТРУБОПРОВОДА
- 2 11.5. При укладке труб под автодорогами должна применяться только повышенная степень уплотнения грунтов засыпки.

<u>Лист</u> 6 2.11 6 При обратной засыпке трубопроводов суглинистыми и тлинистыми гручтами обеспечение повышенной степени уплотнения затруднено, поэтому, как вариант, допускается засыпка трубопровода до его оси песчаными грунтами с повышенным уплотнением, выше оси трубопровода до 200мм над трубой - местным грунтом с нормальным уплотнением.

ТАКОЙ СПОСОБ ЗАСЫПКИ ПО СТЕПЕНИ ВЛИЯНИЯ НА НЕСУЩУЮ СПОСОБ-НОСТЬ ТРУБ СООТВЕТСТВУЕТ ЗАСЫПКЕ МЕСТНЫМ ГРУНТОМ С ПОВЫШЕН-НЫМ УПЛОТНЕНИЕМ

- 212. Стыковые соединения труб
- 2.12 1. Конструкции стыковых соединений труб показаны на док. -15 + -18
- 2 12.2 Выбор материала заделки стыковых соединений производится в зависимости от типа труб и степени агрессивности транспортируемой жидкости и грунта
- 2 12 3. В районах с расчетной сейсмичностью ь-? баллоь, должны применяться трубы только типов ТБС иТБПС. В районах с сейсмичностью более? баллов должны применяться трубы по ГОСТ 6482-88
 - З. Примеры расчета по таблицам.

Примеры даны для труб диаметром 800 мм, см таблицу на док -10; -11

Пример і Безнапорный трубопровод № 800 прокладывается в суглинках с модулем деформации Етр=10 МПа, временная нагрузка на поверхности земли - НГ-60.

Выбрать условия укладки бетонных труб 1 труппы прочности при глубине засыпки - 20 м

Решение: По таблицам 2 и 3 данной пояснительной записки определяем, что трунты относятся к условным группам Го-2 и Тз-Ш

По строке Γ 0-2; Γ 3- $\overline{\mathbb{M}}$ в числителе на док -10 определя ем ближайшие допустимые высоты засыпки

2,2м-для впрофилированного трунтового основания с углом охвата 75° и повышенным уплотнением,

3. DD8.1 - 8 89 - N3

лиет 7 2 1м - для спрофилированного трунтового основания с углом охвата 90° и нормальным уплотчением Таким образом, имеется два практически одинаковых по условиям прочности варианта укладки труб Выбор между ними может быть решен по согласованию со строительной организацией

Пример 2. Для условий примера 1 определить максималь-

Решение на док. -10 по строке Γ_0 -2, Γ_3 - Π в числителе определяем, что трубы Γ труппы прочности можно укладывать на тлубину до 3 9 метра (до верха труб) на бетонное основание с угло м охвата 120° и с повышенным уплотнением грунтов засыпки

Пример 3 Безнапорный трубопровод диаметром 800 мм. прокладывается в пылеватых плотных песках Етр=20МПа под автодорогой Шкат с нагрузкой НК-80 Выбрать условия укладки бетонных труб при высоте засыпки 4.0м

РЕШЕНИЕ: ПО ТАБЛИЦАМ 2 и 3 данной пояснительной записки определяем, что трунты относятся к условным группам Γ_0 -2, Γ_3 - Π . По строке Γ_0 -2, Γ_3 - Π на док. -11 определяем, что максимальная тлубина засыпки труб 1 труппы прочности (в числителе) не удовлетворяет заданным условиям

Для труб 2 труппы прочности (там же в знаменителе) определяем, что допустимыми вариантами укладки являются.

- спрофилированное трунтовое основание с углом охвата 75° и повышенным уплотнением грунтов засыпки (4,1м)
- то же с углом охвата 90° и нормальным уплотнением (4,0м)

Учитывая, что при укладке под автодорогами обязательным является применение повышенной степени уплотнения грунтов засыпки, окончательно принимаем первый вариант.

- 4. Краткие указания по проектированию строительной части трубопроводов
- 4. 1. На основании данных о районе строительства, инженерно-теологических изысканий, профиля и др должно быть установлено для отдельных участков трубопровода:

3.008.1-8/89- N3

- ТЛУБИНА ЗАЛОЖЕНИЯ;
- ХАРАКТЕРИСТИКИ ТРУНТОВ ОСНОВАНИЯ И ЗАСЫПКИ.
- 4.2. В ЗАВИСИМОСТИ ОТ НАЛИЧИЯ ОСОБЫХ УСЛОВИЙ СТРОИТЕЛЬ-СТВА (СЕЙСМИЧНОСТЬ, НАЛИЧИЕ АГРЕССИВНОЙ СРЕДЫ, СЛАБЫХ РРУН-ТОВ И.Т. П.) С УЧЕТОМ ОБЛАСТИ ПРИМЕНЕНИЯ ТРУВ ПО ГОСТ 20054-82 И УКАЗАНИЙ П.П. 2.12.2, 2.12.3, 2.10.6; РЕШАЕТСЯ ВОПРОС В ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ БЕТОННЫХ ТРУБ И ВЫБ ИРАЕТСЯ ТИП ТРУБ И КОНСТРУКЦИЯ УПЛОТНЕНИЯ СТЫКА.
 - 4.3. По материалам данного выпуска вывирается.
 - группа прочности труб;
 - THE OCHOBAHUS;
 - СТЕПЕНЬ УПЛОТНЕНИЯ ГРУНТОВ ЗАСЫПКИ
- 4.4. ГОСТ 20054-82 предусматривает несколько равнопрочных вариантов толщин стенок и, соответственно, марок БЕТОНА ТРУБ ОДНОЙ ТРУППЫ ПРОЧНОСТИ. ВЫБОР ВАРИАНТА ПРО ИЗВОДИТСЯ ПО СОГЛАШЕНИЮ СО СТРОИТЕЛЬНОЙ ОРГАНИЗАЦИЕЙ
 - 4.5. Маркировка труб принята по ГОСТ 20054-82

B3AM MAB N	
ROA RUCE W AATA	
HB N NOAN	

3. 008.1-8|89-N3

Auct

i		KNACC (MAPKE		РАЗМЕРЫ, ММ							0
Зекиз	ВСКИЗ ТИПОРАЗМЕР		ВИНЭЖЕНИЕ АН ПИПРИЧЕНИЕ В В В В В В В В В В В В В В В В В В В			HA PYЖН ДИ А МЕТР РАСТРУБА		RAHEBADA AHNA	ВАНЛОП АНИЛД	иот от Пирина	0.55EM H0138
		1	2	d	de	di	t	و	٤,	8	м3
	T 5C 40, 15	Bt 16 (P20) Bt 2.0 (P25)* Bt 24 (P30)	Bt 24(P30) Bt 28(P35)	400	550 530 510	700 890 665	75 65 55	1500	1645	-	0.20 0.17 0.15
de l	TEC 50.20	Bt 1.6 (920) Bt 2.0 (925)* Bt 2.4 (930)	B _t 2.0(P25) B _t 28(P35)*	500	820 820 820	845 825 805	85 75 65	20 000	2155	-	0.36 0.31 0.27
<u>+</u>	7 BC 80.20	Bt 54(650) Bt 54(620) Bt 54(620)	Bt 2.4 (230) Bt2.8 (235)*	600	790 770 750	975 950 935	95 85 95	2000	2155	_	0 47 0 42 0 37
ما	T & C 80.20	Bt 1.6 (P20) Bt 2.0 (P25)* Bt 24 (P50)	Bt 24(P30) Bt 3.2(P40)*	800	1040 1010 990	1245 1210 1195	128 105 95	3 000	2165	-	8 F D 8 8 G . D 1 B L
d	TEC 100.20	Bt 16 (P20) Bt 2.0 (P25)* Bt 2.4 (P30) Bt 28 (P35)	BL 24 (P30) BL 3.2 (P40)* —		1290 1250 1250 1210	1525 1480 1465 1445	145 125 115	2000	2175	-	1 20 1 01 0 94 0.86

	ЗАРИПОВА КАЛУГИНА РИПС	161	 3. 008.1 - 8 8	14 I - E	1	
FUN	Хиюпин	1/1/2	 11-	RHAAT3	Лист	AUCTO
	PHANTOB	1 1/2	 Номенклатура труб по	12	_1_	1 4
H.KOHTP.	XVIOUNH	-	FOCT 20054 -82	Союзво	IA NO A	וספוותאו

8 hCh2

		KAACC			1	PASME					() 5 b E M
Эскиз	Типоразмер	ние для группы ние для группы итэриродп		нэч түнд чтэманд	H KKUPP H GT BM A H A		CTEHKY	КАНЕЭЛОП АНИЛД	РАНЛОЛ АНИЛД	ВР) 1000- НУ МИРИ-	BETOHA
		1	2	ď	de	dı	t	9	٤,	В	м3
t St.	TENC 60.20		B _t 24 (P 30) B _t 28(P 35)*	600	790 770 750	975 950 935	95 85 75	2 000	2 155	560 540 520	0.53 047 042
de	75NC 80 20		B _t 2.4 (P30) B _t 32(P40)*	008	1040 1010 990	1245 1210 1195	120 105 35	5000	2 165	730 700 680	88.0 87.0 07.0
0 0 0				1000	1290 1250 1230 1210	1525 1480 1465 1445	145 125 115 105	2000	2175	920 880 860 840	1 35 1 15 1 07 1 09

8 4042

3. 008.1-8/89-1HH

Лист **2**

		KARCE (MAP				A 3 M E			-		0
Эскиз	Типоразмер	для гр прочн	упп ы	Внутрен. Диаметр	Наружн. Диаметр.	НАРУЖН. ДИАМЕТР РЛСТРУБА	Толщина Стенки	АНИЛД	РАНИОЛ Анила	вы ио т от-	BETOH
		1	2	d	de	d,	t	e	₽1	В	M3
1	T5 18.10	B _t 1.6 (P20) B _t 2.4(P30)	_	100	150	240 220	25 20	1000	1050	-	0.012
	T6 45.10	Bt 1.6 (P20) Bt 2.0(P25) Bt 24 (P30)	*****	150	220 210 200	330 310 290	35 30 25	1000	1050	_	0.023 0.019 0.016
	T 6 20.15	Bt 2.0(P25) Bt 24(P30)	=	200	280 270 260	400 380 360	40 35 30	1500	1550	_	0.050 0.043 0.035
tde	TB 30.15	Bt 1.6 (P20) Bt 2.0 (P25)* Bt 2.4 (P30)	Bt 24 (P30) Bt 2.8 (P35)* Bt 3.2 (P40)	300	410 400 39 0	560 540 520	55 50 45	1500	15 80		0.11 0.10 0.08
h	TE 40.15	Bt 1.6(P20) Bt 2.0(P25)* Bt 2.4(P30)	Bt 2.4 (P30) Bt 2.8 (P35) *	400	550 530 510	750 710 670	75 65 55	1500	1600		0.19 0.17 0.13
t	TE 50.20	Bt 1.6 (P20) Bt 2.0 (P25)** Bt 2.4 (P30)	Bt 2.0 (P25) Bt 2.8 (P35)*	500	670 650 630	810 820 830	85 75 65	5000	2100		0.35 0.30 0.26
	T5 6 0.20	Bt 1.6 (P2D) Bt 2.0 (P25)** Bt 2.4 (P30)	B _t 2.8 (P35)*	6 00	790 710 750	1030 990 950	95 85 75	5000	5100		0.41 0.41 0.36
d,	TE 80.20	Bt 1.6 (P20) Bt 2.0 (P25) Bt 2.4 (P30)	Bt 24 (P30) Bt 3.2 (P40)*	800	1040 1010 990	1330 1270 1230	120 105 95	2000	2110	-	0.80 0.68 0.61
 " 	T B 100.20	Bt 1.6 (P20) Bt 2.0 (P25)* Bt 2.4 (P30) Bt 2.8 (P35)	Bt 24(P30) Bt 3.2(P40)	1000	1290 1250 1230 1210	1630 1550 1510 1410	145 125 115 105	2000	2110	_	1.22 1.02 0.92 0.84

24048

5

лист 3

3.008.1-8/89-1HN

			Класс (мар на растя	WELLIE		РАЗ	MEP	b) , 1	чм			DEPEM
	Эскиз Типораз		1 '		Внутрен. Ди аметр	ANAMETP.	НЖИЧАН. ПЕТР	CTEHKH		RAHADA AH VA4	анкакШ -шодоп	PELOHY
			1 Bt 1.6(P20)	2 Bt 2.4 (P 30)	d	de	PACTPY BA	t	e	٤,	B.P.I	M2
	(A)	TB Φ 30.15	Bt 2,0(P25)* Bt 2.4(P30)	Bt2.8(P35)* Bt3.2(P40)	300	410 400 390	_	55 50 45	1500	1525	_	0.092 0.082 0.013
1 y	de	тьф 40.15	Bt 1.5 (P20) Bt 2.0 (P25)* Bt 2.4 (P30)	Bt 24 (P30) Bt 2.8 (P35)*	400	550 530 510		75 65 55	1500	1525	_	0. 17 0. 14 0. 12
-		75¢ 50.20	Bt 1.6(P20) Bt 2.0(P25)** Bt 2.4(P30)	Bt 5.0 (6 32)	500	670 630 630	_	85 75 6 5	2000	2030	_	0.31 0.27 0.23
	ပ ြ	75 Ф 60.20	Bt 1.6(P20) Bt 2.0(P25)* Bt 2.4(P30)	Bt 54 (b30) Bt 58 (b32)*	6 00	790 770 750		95 85 75	5000	2 035	-	0.42 0.37 0.32
A COMMAND A LANGESTING A		75 9 80.20	Bt 1.5 (P20) Bt 2.0(P25)* Bt 2.4(P30)		800	1040 1010 990		120 105 95	2000	2055	_	0.69 0.60 0.54
			Bt 1.6 (P20)	1 -		1290		145			920	1.22
1	t the second	TENФ 100.20	Bt 2.0 (P25)** Bt 2.4 (P30)	B ₊ 3.2(P40)*	1000	1250	_	125	2000	2100	880	0.96
	\		B ₊ 2.8 (P35)			1210		105			840	0.88
	ІБНЫЙ РАЗРЕЗ ТРУБЫ ТБФ											

3.008.1 - 8/89 - 1 HM

***************************************							d. 3	00	HT-60		
ъ. В В В Н И Я	- 80 ×	Cno	C06 0	пирані	ия и с	TENEHD		НЕНИЯ			
Труппы трунтов основания	Труппы трунтов засыпки	п	۸.	٦	5°	9	0°	Б.	1200		
ור – קר טני	T T S	н	Π	н	η	Н	n	Н	n		
	r3-I	3.1 4.9	3.6 5.6	4.8	5.3	4.9	5.6	/=	/_		
r	T3-11	2.9 4.7	34 53	44/	49	47	53	<u> </u>			
ro- I	11 -ET	27/44	32 49	41 61	46	44_	50_	61/_	=		
ļ	L3-IA	24 38	28 4.4	36 5.4	4160	3 9 5 8	44/	55_	61_		
	r ₃₋₁	26 4.2	3048	40 60	46	45/	51/	60_	12/		
7- 0	T3-11	24 40	28 4.5	38 5.7	43	42_	48_	58/_	1/		
To-2	1-3 - III	22 38	26 41	35 53	40 60	40 60	45/	56_	-		
	13-1X	1.9 32	23 37	3248	35 53	3 5 5.2	40 59	50/_	5.7_		
	Γ ₃ -I	21 36	28 41	3.4 5.3	3960	39 59	45	5,9			
L	$II - \mathcal{E}I$	19 34	24 39	32 51	37 5.7	37/55	4.1 63	56	61		
10-5	<u> </u>	17 32	2.2 36	3047	3.5 53	3453	39 59	5.3	5.8		
	¥Σ- ΣΠ	- 27	18 32	2641	3147	31 46	35	46	·		
	L3-1	10 30	2134	2946	34 53	34 53	3959	5.5	61		
To-4	$II \cdot \mathcal{E}^T$	- 28	18 32	27/44	3249	3249	37 56	52	58		
TO-4	L3-11	-26	16 30	26 41	30 49	3047	34 5.2	48_	54		
	T3-IV	722	7-26	2236	26 41	2641	30 47	43	49/		
1	"H"	-		TENEHD	уплатнеі	ния грун	DAE BOT	PIUKN			
2	, п" В чи		шЕННАЯ :-h".1	T R14.N	руБ I т	ь̂λ ши∙⊓ п	O HECV	III E Ķ			
						2 трупп					
РАЗРАВ РАССЧИТ Провер			4	3.	008.	1-8/	89 - 2				
חאק	Хлюпи Филат	H J	-5	MAKCHMA/	16HD - AD	INVETAME	ATS SIG		ANCTOR		
H KOHTP	Хиюпи	H 1	- ·	TPY5 h"	B M. AN	BE OD RHH OD & D R TH BYE	กอน		АНАЛПРОЕ		
	<u> </u>					2404					

HHB Nº NOBA NOANNES H ARTA BEAM HHB Nº

									17
							d 31	00	HK-80
	·			пиран	149 4	CTENE	нь йиν	OTHEHN	Я
61 08 AHM9	150 123 123 123			75		9	00	Б 1	2 0 °
Труппы трунтов основания	Группы грунтов засыпки	п		H	n	н	n	¥	n
FFO		H	n	4.4	5.0	4.8	55/	-/-	-/_
	L ³ ·I	2.8 47	3.4 5.4	41/	4.8	45	51	-/-	-/_
To I	r ₃ -11	2.6 44	31 51	70 (44/	42	48	61/	
	r3- Ⅲ	24/41	2.9 47	39 60	39 60	3657	42	54	61
	T3-14	20 36	24/42	33 5.3	44/	42	49	54	
	L3-I	23 40	28 45	38 60	41/	40	46	5,6	
To·2	I - E 1	20 37	25 43	35 56	70	37/0	42	55	-/
	T3 - M	15 34	23 40	33 52		32	38 58	49	55
	$YI - \mathcal{E}T$	2,9	16 36	29 46	33 52	7 51	42	58	-/
	Γ_3 -1	33	22 39	32 5.1	2.3	34 5.7	39	5.4	61
To-3	T₃-II	31	15 36	30 48	/ 55	70 54	37 58	51	57 /
	T-2-	2,9	33	26 45	\ _ \o	51	70	45	50
	VI ET	724	<u></u>	23 40	45	34	37 50	53	61
	I-57	28	32	27 45	31 50	50	\ \(\frac{1}{2} \ \ \frac{1}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	50	57
To-4	Т-5Т	-/24	28	24 41	2.9 47	29 47	20 07	46	53
1 10-4	T3-11	- 22	2,6	23 39	27 44	4.4	50	40	465
	$VI - \mathcal{E}^{\mathcal{T}}$	15	23	15 34	22 39	22 39	21/45	61	<u> ~</u>

- $oldsymbol{1}_{-}$ "Н" НОРМАЛЬНАЯ СТЕПЕНЬ УПЛОТНЕНИЯ ГРУНТОВ ЗАСЫПКИ,
- "П" повышенная 2 В чистителе "h", м, для труб 1 группы по несущей спосовности, в знаменателе - для 2 группы

PAZPAB PACCYN NPOBEP	5 Sypasa	tion	3.008.1 - 8/89 -	
TNN HAY OTA H KOHTI	XAHORUH PHAATOB	1	МАКСИМАЛЬНО-ДОПУСТИМЫЕ ТПИБИНЫ ЗАПОЖЕННЯ ДО ВЕРХА	P I I COMOSBOJO KAHAANPOEKT

								d 4!	30 H	1 00
[ENEHD	толпу	HEHUS	
	Œ		Cnoc	05 01	ирания		90		Б. 1	200
	108 38 84	Ppynhbi Tpyhtob Sacbin Kh	<u> </u>		75	n	Н	n	Н	<u>n</u>
	Tpynnbi rpyhtoB gehobak	TPYT		n	H	4.6	4.3	4.9	-/-	_/
	, - 6		2,7/	3.1 4.8	4.0 6.0	/	4.1	4.6	5.9	-/_
		$T_3 \cdot I$	4.3	4.0	3.8 5.7	4.3	-	4.4	5.5	-/-
	To-I	L3-II	2.5 4.0	<u> </u>	3.5 5.3	4.0 6.0	3.1	7-	4.9	5.5
		T3-11	2.4 3.8	2.7 4.3	3.1 4.8	3.6 5.3	3.4 5.1	5.0	5.7	/
		T 3- 74	1.7 3.3	2.3 3.8	1/20	4.0 6.0	3.9 5.9	4.5	1	=
		r ₃ -I	2.1 3.6	2.6 4.1	3.5 5.3	3.8 5.7	3.7 5.5	4.2	5.4	6.1
		T3-II	1.9 3.4	2.3 3.8	3.3 5.0	1	71	3.9 5.9	5.0	5.7
	Ta-2	T3- II	1.7 3.2	2.2 3.6	3.1 4.7	5.3	170	35	4.5	5.1
		T3-14	2.7	10	126/11	3.1 4.7	7.0	1 3.2	50	5.9
		Тз -1	15	2.1 3.5	T30/c	3.5 5.2	3.2	3.0	48	5.6.
		r ₃ ·I	3.1	ia -/	108	3.2 4.9	3.1 4.8	3.6 5.5	4.6	5.2
	70-3		2.9	3.4	06	3.0 4.6	2.9 4.5	3.4 5.1		4.7
		T3-11	2.7	3.1	03/0	2.6	2.5 4.0	3.0 4.6	4.1 6.0	
		73-IV	2.3	2.7	1000	29	2.9 4.5	3.4 5.2	4.9	5.5
		T3 - I	2.5	2.9	2.6 4.0	07	07	3.2 4.8	10	5.1
	ro-4	T3-I	2.3	2.7		4.5	4.5	100	1/3	4.8
a	-	T3-1	2.2	2.5	2.2 3.5		2.5 4.0	100	1,	4.2
89		T3 -1V	717	2.2	2.1 3.2	2.2 3.6	2.2 3.6	2.6 4.4	3.8 5,6	
B3AM. HHB. NO		I. "H"	- HUDMA		TENEHE	VUVOTHE	ния грун	ATOB BAC	ыпки,	
A TA	7	" <u>u</u> "	- иовыт <i>Е</i>	нная.						
444	1	2. B 4 cnoc	UCNUTE!	/E - "h"	RAA, M AZTAHAMA	1 I ava 7	אטעערן 5 ביירטיי	•	ЯЩЕЙ	
HHB. N NOBA. NOBINCO N A	PABRAE	BAPHIL								
Noan		. Бурава	1.47		3.0	08.1	- 8/8	39 - 4		
4	THT ATO PAK	Хлюпи			AKCHM A N	- ADF	NCT H M H		HA YACL	AUCTOB
2		Y VIDIN X		r	лувины:	3ANOXEHH	A AO BEPX	A -		
E H			1	8	руб "h" в Ременної	Д КЛД,М 5VQ7АН 1	PRE HL- E	о Сою	находове	ANNUOEKI
				L	-		24048	19		

				d 400 H			HK-80				
						renehb	AUVC				
Труппы грунтов аснования	- 8 X	Cnc	0 803	пирани	1)°	T	Б. 4	20°	
7 4 7 0 4 0 8 4	Tpyanel py HT a 6 3Ac bl N P	п	۸.	75			n	+	Н	η	
T P	7. 7.29.1	н	П	Н	<u>n</u>	H 4.1_/	4.8	6.1		-/	
	T3-I	2.2 4.0	2.8 4.7	3.8 5.9	4.5	3.9	4.5	- 5.	2	-/	
_	T3- II	2.0 3.7	2.5 4.3	3.6 5.6	4.1/-		4.2	5.		-/	
To-1	T3- Ⅲ	1.5 3.5	2.4 4.0	3.3 5.2	3.8 5.9	3.6 5.6	7.5	- 1		5,5	
	T'3- IY	3.0	1.7 3.5	2,8 4.5	3.3 5.2	3.2 4.9		5.6			
	T3-I	3,3	2.2 3.9	3.2 5.1	3.8 5.9	3.7 5.7	4.3	5.		-	
	Тз-П	3.1	1.5 3.6	3.0 4.9	3.5 5.5	3.4 5.4	3.9	.0 5.		5.9	
To -2	T3 · I	_ /	3.3	2.7 4.5	3.3 5.1	3.2 5.0	3.7	.7 4.		5.5	
	T3-IY	2.9		2.3 4.0	2.8 4.5	2.8 4.4	3.2	.1 4.	<u>6_</u>	4.9	
	T3 -I	2.4	2.9	2.7 4.4	3.2 5.1	3.1 5.0	3.6	5.	0_	5.8	
	r ₃ - I	2.8	3.2	10/	2.9 48	2.8 4.7	3.3	3 4.	8/_	5.4	
To-3	Γ3 · I I	2.5	3.0	01 4.8	2.7 4.4	2.6 4.4	20	5.0 4.	5_	5.1	
	T'3- 1Y	2.3	2.8	3.9	2.3 3.9	2.2 3.8	2.7	1.4 3.	9 5.9	4.5	
-		1.6	2.3	3.3	05	2.5 4.3	20	5.0 4.		5.4	
	T3-I	2.1	2.6	2.1 3.7	93/	1 03 /	08	. 4	4/_	5.0	
10-4	T3-II		2.3	3.6	4.1	9.1	0.5	1.6 4.		4.6	
-	T3-III	7-	2.1	3.3	2.1 3.8	3.8	0.0	1 2	<u> </u>	4.1	
	13-IA	/_		2.8	3.3	3,3	<u> </u>	.9 3.		1// -	
1	"H" "П"	- nnaku	11 - 11	CTENEHS							
2	2. B 41	HCVALEVI	E - "h", r	M, AAR TI	PYB 1 TE	уппы п	O HEC	λπΈη	Ä		
	cup	COBHOCT	, B 3H	MEHATEN	RЛД - Э	2 групп	Ы.				
	ЗАРИПО Бурова			2	nna /	- 8	ደባ -	5			
THOREP.	Рипс Хлюпи	En	3				Tr.		ЛИСТ	Auctob	
HAY. OTA	PHAATE	B	2	Максима. Лубины	SANDWEHL	AA DO BED	XA	P		1	
H. KOHTP.	AUMUN	1H problem		TOUR h"	RAA.M B	Q 400 N	PH	оюзв	одока	HAVUDDEK.	
	BPEMEHHOU HATPYSKE HK-80 COHOSBOJJOKAHANTIPOEKT										

инв. И подл. Подпись и дата Взам. инв. No

_								d 5	00	HT	- 60
_						a u cr	ЕПЕНЬ	YNAOT	HEHUS	3	
=	® ₹	5 a =	Cno	C06 0	пирани		91	00	6.	120	0
TPynnbi	трунтав Основания	T pynnbi rpyhto8 3Acbinky	Π	١.		П	Н	П	Н		П
F	d H	F 5 %	Н	n	H	4.0	3.8 5.9	4.3	5.5		-
		T3-I	2.2 3.8	2.6 4.4	3.5 5.5	1	35/	4.1	5.2	5	8.0
i	·	T3-11	2.0 3.6	2.4 4.1	3.2 5.2	35/-	33/	3.9 5.9	4.9	_ 5	5.5
,	1-0	T-2-11	1.8 3.3	2.2 3.8	3.1 4.0	3.5	09 /	133	1/3	< 1ª	4.9
		T3-IV	+	140		4.9	34	130	5.0	- 9	5.7
ſ		T3-I	3.9	24	3.0 4.8	3.3	5.4	36	47]	5.3
1	· -	T3-I	3.1	1.9 3.4	2.7 4.6		2 2 0	1 34	4.5	\exists	5.0
1	r ₀ .2	T3-1	+	100	2.6 4.		9/4	8 / 5	4.0	\exists	4.5
		T3-I	 -	1	3 2.2 3.		_	2 / 4	8 47	6.0	5.3
		T3-I		12	0.5	2 3.0 4.		7	53 4.4		4.9
		T3-I	1	_		0 2.7 4	5 2.7 4	· <u>·</u>	5.0		/-
	ra-3	T3-1		1	- 00	7 2.5 4	2 2.5 4	· · · · · · · · · · · · · · · · · · ·	4.7 4.1	<u> </u>	4.3
		T3-1		:	1.0	3 2.2 3	.7 2.1 3	.7 2.5	4.3 3.6	5.5	4.1
	-	T3-				- 0.5	2.5	2 2.9	4.7 4.2	<u>_</u>	4.8
		r ₃ .]	_+	1		0.7	9 2.3	.9 2.7	4.4 3.9	6.1	4.4
	TO-6	T3-1	 		1.99		. 01	- 105	4.2 3.7	5.7	3.9 6.1
2	1	Γ3.	+		110	110	10	5.2 2.2	3.7 3.3	5.1	3.7 5.7
DON SEE . ENCO	 		<u> </u>			HTONNY C			ЗАСЫПК	 и,	
		1. "F	l" - nos	HWEHHAS	١.						
# #		2. B	HUCANTE	νε - "μ _,	, м, для	R TPYB Ene - Дл	תתעפו 1 מחים 2 במים	יים ואו 191 מים	чЕсущЕ	,и	
X Q	Pagent			74, 63							
HOHIMO!	_	т Бура	BA ju	المندوع	3	800.	. 1 - 8	. 89	Б		
	NPOBE!	Хинопи	IH A	14/	MAKCUM	<u> Д</u>	пустим	JE E	A RHAAT	UCT	ANCTOB
WILL N. WILL	HAY. OT			7.2	ГУДЕННЫ	3A NO X EH B M. A NA	HA AD BE	AXQ			UARROTE
		<u> </u>		+-		IDU HATP	ASKE HL	-60	OHO3R0	AUNA	НАЛПРОЕК
							24048	21			

			- Company	angerzetakking in Angelskop - Angelskop		A STATE OF THE PARTY OF THE PAR	d 50	0	HK - 80		
						LEUEHP	YNADTI	RHHAH			
~ ~ 7	- m =	n 3	осов а	ннадип	9 4 6	a a	0°		120°		
TPYNTIS PPYHTOB JCHOBARU	rpynnei rpyhtog saceinku	П	۸.	75	0		П	Н	n		
TPynns/ TPyhtob gchobahus	3 A A	Н	П	Н	Π	H	4.1/_	5.3	6.0		
	73-I	- 3.4	2.3 4.2	3.2 5.4	3.8 6.1	3.5 5.8	3.8 6.1	5.0	5.7		
7.	73- П	3.2	1.8 3.8	2.9 5.0	3.5 5.7	3.3 5.5	3.5 5.8	4.7	5.3		
I-oT	T3-111	3.0	3.6	2.6 4.7	3.3 5.4	3.1	3.1 5.1	4.1	4.7		
	7'3- IV	2.5	3.2	2.2 4.1	2.7 4.7	4.4	3.7 6.0	4.8	5.6		
	T3-I	2.9	3.5	2.7 4.7	32 5.3	3.2	3.4 5.6	4.5	5.2		
T. D - 5	T3-I	2,6	3.2	2.4 4.4	2.9 5.0	2.8 4.9	3.1 5.2	40	4.8		
	Г3-Ш	2.4	2.9	2.2 4.0	2.7 4.7	4.0	2.8 4.8	30	0 4.3		
	13-IV	2.0	2.5	1.5 3.6	4.1	26	3.1 5.2	44	5.1		
	T5-I	2.3	2.9	2.2 4.0	4.6	123	2.5 4.8	44	4.7		
1 o -3	73-1	2.1	2.6	1.5 3.7	01	21	26	20	4.3		
	Гз-П Гз-1У	1.8	2.4	3.5	4.4	15	22	11	4 3.8 6.1		
	T3-I	-/	2.0	3.0	2.0 3.9	2.0 3.9	25	4.0	4.7		
	r ₃ -1	-/	2.2	+	1.5 3.6	15	03	7.0	1 4.3		
T0-4	r ₃ -11	-/	1.8		3.0	1	121	25	7 3.8 6.0		
	T3-IV		1.5	2.9	1	3.0	1.5 3.6	3.1	3.5 5.6		
	1. "H"		ANNUAD	CTENEHL			HTOB 3A	сыпки,			
	" n "	— U08P	MEHHAQ	_							
	2. В ч спо	NGANTEA CODHOCT	и – "ри	, М, ДЛ АМЕНАТЕЛ	9 TPYB	I rpynn	ы по нес пы.	сущеи			
PA3PAE.	ЗАРИП		7-1 T	AFICAATET							
PACCYUT. NPOBEP	5ypuB	A Juy	"J	3.0	1.80	8 8 -	39 -7				
LNU	Хлюпи		$\frac{2}{2}$				CTAN	ANA VAC	T NUCTOB		
ATO.VAH	ТАЛИФ. Хлюпи	08		Максима Тлубины			PIF E				
n. KUHTP	ANTOIN	Carrie	1-1	ТРУБ "Һ"В ВРЕ МЕННО	RAL.M	d 500 np	N Cour	зводок	(AHANN POEKT		
	24048 22										

							-			22
-			_					d 8	00	HT 60
							DENP	<u> </u>	ЕНИЯ	
Γ	~		Cno	COB 01	пирания			00	B. 1	20°
T PYRIDE	A H M	T pynnbi T pyn Tob BACbinkk	n	۸.	71	50			Н	Π
اهُ	ТРУНТОВ ОСНОВАНИЯ	A CAN	н	n	н	n	H	3.8	5P	5.7
-		7 - 7		2.2 4.0	3.1 5.1	3.6 5.8	3.4 5.5	-	4.7	5.3
	ł	[3-]	(3.3	22	2.9 4.8	3.3 5.4	3.2 5.2	3.6 5.8	/_	
Ti	1 I- 0	I - E	/ 3.3	3.0	07	3.1 5.1	3.0 49	3.4 5.5		5.0 _
		T3- 11	3.1	33	1	2.7 4.6	2.5 4.3	3.0 4.9	3.9 6.1	4.4
L		73- IY	2.6	1.1 3.1	00	31	3.0 5.0	3.5 5.7	4.6	5.2
1		Γ3 -I	2.9	1.6 3.4	4.5	20	2.8 4.7	3.3 5.3	1.2	4.8
-	ا ۔	II - E7	2.7	1.0 31		4.0	00 4.0	1	4.0	4.6
'	o-2	Г3-Ш	2.5	2.9	2.2 4.0		4.4	3.	1	4.1
	r3-1V			1	1.9 3.5	2.3 4.0	3.9	17.0	1.0	4.7
r		r ₃ - I	-24		2.2 3.9	2.6 4.5	2.6 4.4		1/-	/-
		T3-1	+	- 2.6	00	104	2.3 4.1	2.8 4.	3.9	4.4
1	6- o		2.3	+	10	00	2.2 3.9	2.6	4 3.7 5.8	4.1
1		$\frac{r_3 - II}{r_3 - IY}$	2.1	1	10	10	19	02	8 3.2 5.2	3.6 5.8
-		 	1.0	2.1	19 31	00	2.2 3.9	25	38	4.4
l		T3-1	1.9	2.3	3 3.3	3 / 39	10	24	36	41
,	ro -4	T3 - I	1.6	2.		3.6	3.0	20	122	28
4		T3 - 11	1.3	1.9	10 2		3.	1 3.	20	34
		r3 - IV	1/	1.5	2.	5 1.2 2.9	1.2 2.9	1.9 3	4 3.0 4.8	5.4 5.4
		ſ. "H"	- норм	RAHAR	CTENEHЬ	УП ЛОТНЕ	учт кин	HTOB 3A	сыпки,	
\dashv		U.	- no Bh	MEHHAS	ı					
		2. B 4.	NG NHTEN TOOHBOD	Е — "П" В ЗН	, М, ДЛ [,] АМЕНАТЕ!	r - Ava	2 rpyn	пы.	-37-"	
100	A3PA5.									
P	АССЧИТ.	Буравл	110		3.00	18.1 -	8/89	- 8		
_	NU NU	Х МОПИ			Максима	VPHO ~ TO	пустимь		TONA RHA	ANCT OB
′ -	Ач. 0ТД. Контр	OTANAP HUROKK		25	TAY BUHL	HAWANAE	1 009 P	DXA .	020 - 9040	HANNPOEKT
F			37	\dashv	BPEMEHHO	и нагру	SKE HT-	20 Icai	NAMED SEC	ngn

					d 6	סמ	HK-80		
	1	· ·		пиран	18 N C.	TENEHL	τονηχ	RNH3H	
101 A H M	555				5°	g	00	B. 1	200
Тру ппы Трунтов основания	Tpynnbl Tpyn108 3ACbinky		۸.		n	Н	Π	н	n
F - 8	F F 67	H	n	H		3.1 5.4	3.6 6.1	4.8	5.5
	T3-I	3.2	3.8	2.8 4.9	3.1	0.0	34	4.5	5.1
ļ	Γ3-I	3.0	3.5	2.5 4.6	3.1 5.3	26	3.1	4.2	4.8
To -1	r3-11	2.7	3.2	2.3 4.3	2.8 4.9	4.1	5.3	27 -	4.2
	T3-IV	7/23	- 2.8	1.8 3.8	2.4 4.4	2.2 4.1	2,7 4.7	3.7 6.0	/-
ļ.	T3-I		- 3.1	2.2 4.3	2.8 4.9	2.7 4.8	3.2 5.5	4.3	5.0
	73-II	2.5		00	2.5 4.6	2.4 4.5	3.0 5.2	4.0	4.5
To-2	 -	2.3	2.8	15	2.3 4.3	2.2 4.2	2.7 4.8	3.8	4.3
	T3-II	2.1	2.6	3:1		1.6 3.7	2.3 4.2	3.3 5.5	3.8
	73-IV	7_	2.2	32	3.0	0.1	2.17	3.9	4.6
	T3-I	1.8	2.5	3.6	/ 4.2	4.2	4.8	3.7	4.2
	$\mathbb{I}^{-\mathcal{E}}$	-/_	2.2	3.4	19 3.9	1.8 3.9	/4.5	6.1	/_
Ta-3	Г3-II		2.0	3.2	1.6 3.7	1.5 3.6	2.2 4.1	3.4 5.7	3.9
	ין - IV	7/_	-/_	2.7	3.2	3.1	1.6 3.7	3.0 5.0	3.5 5.7
	r ₃ -1	-/	1.6	-3.1	3.6	3.6	22 4.2	3.6 6.0	4.1
	Γ ₃ - I			2.8	- 3.3	3.3	1.6 3.9	3.3 5.6	3.8
To-4	т _з -П		-/	2.6	3.1	3.1	1.5 3.6	3.1 5.3	3.6 5.9
†	r ₃ - IV	-/	<u>/-</u>	2.6	- 2.7	2.7	3.2	2.7 4.6	3.1 5.3
	5 **	/-	/_	/ 2.2	/ 2,1	/ 6.1			

- "Н" НОРМАЛЬНАЯ СТЕПЕНЬ УПЛОТНЕНИЯ ТРУНТОВ ЗАСЫПКИ, "П" ПОВЫШЕННАЯ.
 В ЧИСЛИТЕЛЕ "Н", М, ДЛЯ ТРУБ 1 ГРУППЫ ПО НЕСУЩЕЙ СПОСОБНОСТИ, В ЗНАМЕНАТЕЛЕ ДЛЯ 2 ГРУППЫ.

РАЗРАБ.	ЗАРИПОВА	Pondo -		_		
PACCUNT.	5 Y POBA	Su, w.	3.008.1 - 8/89 -	g		
NPOBE P.	PHIC	point				
ГИП	ХУЮПНН	1/2/2	Максимально-допустимые	CTALHA	NHCT	AHCTOB
. ATO.PA.	PHNATOB '	V	глувины заложения до верха	Р		- 1
POHTP.	Хлюпин	1 375			 	1 A H BBEV
			 BPEMEHHOU HATPYSKE HK-80	Союзв	UZI U KAI	IAANPOEKT
		i	 P. Commission of the Commissio	J		

	24											
_								d 80	00	нт	60	
-						U CT	ENEHP	уплот	HEHUS	1		
;	8 8 E	- 88 E		COB ON	75	0	90	0	Б	. 120	9	
	FPYHTOB DCHOBANA	Fpynnbl Fpy H 1 0 B 3 AC BINKH	п	۸.		n	Н	η	н		Π	
۴	근	_ L ",	Н	П	2.5 / C	3.0 5.2	2.8 5.0	3.3 5.7	4.2		1.9	
		I- &T	3.1	1.3 3.6	97 (3.2	2.6 4.7	3.0 5.3	4.0	- (4.6	
1	To-1	T3-I	2.8	3.3	23 43		24 4.4	2.8 5.0	3.8	-	4.3	7
١	70-1	T_3 - III	2.6	3.1	2.1 4.1	20 7.0	01	2.5 4.4	122	5.6	3.8	\exists
		T3-14	2.2	2.7	1.8 3.6	120-11	25	00	3.9		4.5	7
		$\Gamma_3 \cdot I$	2.5	3.0	2.1 4.0	2.6 4.6	2.2	27 /	3.7	$\overline{}$	4.2	爿
١	-	T_3-II	-/2.3		1.9 3.8	23 4.3	4.2	4.8	34	-	3.9	\dashv
	To-2	Т3-Ш	2.9	-/	1.7 3.5	2.2 4.0	21 3.9	4.5	30	5.8	<u> </u>	ᅴ
		T3-IY	71.7		1.6 3.1	1.8 3.6	1.8 3.5	4.0	3.6	5.1	4.0	5.8
		T3-I	2.1	-/	1.5 3.5	2.1 4.0	2.1 4.0	2.5 4.5		6.0	38	<u>-</u> -
		Тз-П	71.8		140	1.9 3.7	1.8 3.7			5.7		
	To-3	T3-II	1.6	1	3.1	1.7 3.5	1.6 3.4	2.1 3.9		5.3		6.0
		T3-IV	<u> </u>			1.1 3.1	1.1 3.0	1.8 3.9		4.8	3.1	5.3
		T3-I	1_/	1_/	1_/	115	1.5 3.5	2.1 4.0	3.3	5.6	3.7	\leq
		T3-I	1.3	- 1.7	1_/	112	1.2 3.2	1.8 3.	3.0	5.3	3.5	5.9
	Po-4	T3-11		+	1_/	110	10	16	4 3.0	5.0	3.3	5.5
				- 1.5	1_/	1-/	1_/	19	25	4.4	2.9	5.0
		T3-IV		1.0	2.2					١,		
		L,	- 500	РАНОЛАМ В В ННЭ ШИ								
		2 R 41	CAUTE	NE - "h", ти, в зн	M AAR "	TPYE 1 11	אווואן בייאר מאוווא פיי	пы. Пы	цеи			
					AMEHAIE	.Λε ··· μΛπ	~ 1 P3··					
		т. Буров	A /14	1/4	3.	800	1 8	89 -1	0			
	LNU	X AHON	C	W.		<u> Дльно - Д</u> 1		ICT.	A RHAP	HCT	VNC.	rab
		. Фила ⁻ р. Хлюпи	OB	3	LVAPNHP	ACHORAL BANDAE AA.M B	AUN AU BE	AXC:	P		HAARI	DOFKT
				11	BDEWEHH	ATPH HOL	3KE HL	-60 co	Ю380)		ייייעמיי	- 011
	1											

HIB. N TOAM. NOATHCO HAATA BLAM. HIB. NO

									23
_							d 8	00	HK-80
- 66					N CTE	пень у	NAOTHEH	чя	
1 P C C C C C C C C C C C C C C C C C C	202	Cno	COP OU			a	0°	5.1	120°
Трулпы грунтав венования	Группы грунтов засыпки	Π	۸.	75	50				
L TAB	T. Q. A.	н	П	н	П	Н	n	4.1	47
	L-I	72.7	3.3	2.1 4.4	2.7 5.1	2.5 4.8	3.0 5.5	/-	
	T3-II	72.5	- 3.0	15 4.1	24 4.8	2.2 4.5	2.7 5.2	3.8	4.4
To- 1	T3-11			3.8	2.2 4.4	2.0 42	2.5 4.8	3.5	4.3
	T ₃ -IV	2.2	2.8	3.3	- 3.9	-/3.7	2.1 4.3	3.1 5.5	36
	<u> </u>	71.6	2.3	-	2.1 4.4	2.0 4.3	2.6 5.0	3.7	4.2
	T3-I	2.1	2.6	3.8	AE /	1.5 4.0	24	3.4	3.9
To-2	L3-II	1.5	2.3	3.3		<u> </u>	01	32	3.7
	11-E1	/_	2.1	3.1	3.8	3.7	43	2.8	30
	T3-1Y	-/_	1.5	2.8	3.3	3.2	3.8	5.0	3.8
	T3-1	7/_	72.0	32	- 3.8	3.7	2.1 4.3	3.3 5.	9 /-
77- 7	T ₃ -II	7/_	-/1.6	30	3.5	3.4	4.0	3.1 5.	
To-3	Т3-Ш	-/_	-/-	-/2.8	- 3.2	- 3.2	3.7	2.9 5.	2 3.3 5.9
	r_{3} -IV	-/-	-/-	2.3	1	-/2.7	- 3.2	2.3 4.	s 2.9 5.2
	T3-I	-/	-/	72.8		- 32		120	4 3.5
	r _{3-II}			2.4	 	- 2.8		0.77	70
To-4	Г3-Ш	-/		22		2.7	- /	25	30
			-/					21	26
	L3-IA			1.6	2.3	2.3	1/ 28	1	61/ 10

- 1. "H" нормальная степень уплотнения трунтов засыпки, " Π " повышенная.
- "П" повышенная. 2. В числителе - "h", м, для труб 1 группы по несущей способности, в знаменателе - для 2 группы.

i		,					
PA3PAE.	Зарипова	int-	7	•			
PACCYUT.	Бурова	Fry, 1		3.008.1-8/89	- 11		i
NPOBEP.	Punc	Em		5 5 5 7 6 7 6 7	• •		
ГИП	Хлюпин	13.00		Mayana	CTAAHA	AUCT	ANCTO8
HAY.OTA.	Филатов	996		MAKCHMANSHO - LONGETHME	P		1 1
H. KOHTP.	Хлюпин	-		ТЛУБИ НЫ ЗАЛОЖЕНИЯ ДО ВЕРХА ТРУБ "Н" В М ДЛЯ С 800 ПРИ			
	7.5			BPEMEHHON HATPY3KE HK-80	СОЮЗВ	IO XIOK AI	HANTIPOEKT
				TITLE WILL WILL PARE HIVE BU.			

							d 10	00	T 60
							уплотне		
- 87 - 87	-∞ ₹	Cna	0 800	пирания	A H CT			Б. 1	2.D°
11 H TO 18	Ppynnbi rpyhtob sacbinku	п	۸.	าร	0	90			П
Tpynnbi rpyhta8 ocho8ahu9	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	н	Π	н	η	Н	η	H	4.4
	T3-I		-/3.2	2.0 4.3	2.6 4.9	2.4 4.6	3.0 5.3	3.4	4.1
		2.7		1.8 4.0	2.3 4.6	2.2 4.4	2.6 4.9	3.6	
ra-1	T3-II	2.5	2.9	15	22 4.3	2.1 4.1	24 4.6	3.4 5.9	3.9
	T ₃ -11	23	2.7	0.7	1.8 3.8	1.6 3.6	2.2 4.1	3.0 5.2	3.5 5.9
	T3-IV	1.9	2.3	5.5	00 /	01/	2.5 4.8	3.5 6.1	4.0
	T3-I	2.2	2.7	3.7	4.5	1.9 7 0	07	3.3 5.8	3.8
ro-2	T3.1	2.0	2.5	1.3 3.5	3.9	3.8	0.0	3.1 5.4	35 6.1
	T3-11	1.8	2.3	1.1 3.2	3.1	3.0	4.2	0.0	3.1 5.4
	T3-IV	1.3	1.8	2.8	1.4 3.3	3.2	2.2	79.0	3.7
	T3-I	1.7	-/2.2	1.2 3.2	1.7 3.7	1.5 3.6	4.2	5.6	/-
To-3	$II - \varepsilon T$	7(5	2.0	2.9	1.4 3.4	1.4 3.4	1.9 3.9	3.0 5.3	70
10.3	Тз-Ш	1.3	- 1.8	2.7	1.3 3.2	1.3 3.2	1.8 3.6	2.8 5.0	5.6
}	VI-EI	5/1	- 14	- 2.4	2.8	2.7	1.3 3.2	2.4 4.4	2.8 5.0
	T3-1	-/12	-/17	-/2.7	1.2 3.1	1.2	1.8 3.6	2.9 5.2	3.4 5.90
	T3-II	-/-	-/14	7/25	1.0 2.9	1.0 2.9	1.5 3.4	2.7 4.9	3.1 5.6
To-4	T3.II		-/13	- 2.3	- 2.7	- 2.7	1.3 3.2	2.5 4.6	2.9 5.2
	T3-IV	-/	1.0	- 2.1	2.4	- 2.4	1.1 2.8	2.2 4.0	2.6 4.6
	1. "H"							<u> </u>	<u></u>
	"ח"	- повы	шенная.	TENEHL					
1	2. В чі			, M, ANS				ущей	
Passas	ЗАРИПОЕ		·	TO LA PERSON		~ I baili	101.		
PACCHAT	Бурова	.47.0	o,	3.	008.	1 - 8	189 -	12	
THE	Хлюпин		1	Максима л	PHO- POU	Y CT HMH F		AN NHCT	Вотэил
	WHATOR XAMPH		7 اــــــــــــــــــــــــــــــــــــ	ГЛУБИНЫ РУБ "П" В	SANOXEHU	A AO RED	XA P		11
				SPEMEHHO	HATPY3	KE HL. B	о саю	3BOXOKYI	IANTI POEKT

HHB. N DOAN, BOATHCE H ARTA BEAM. HHE. NO

							d 10	000	HK-80
- 8 H	- e 3	Cn	acae	апираз	H R N C	TENEHЬ	דסאחצ	RHHJH	
TPYNINE TPYNINE OCHOBAHUS	Tpynnbi rpyhtob 3Acbinku	n,	١.	75	;°	9.0	0	B. 19	20°
44	T Q E	Τ	Π	н	п	н	Π	н	п
	Г3- I		2.9	-4.0	2.1 4.6	2.0 4.4	2.5 5.1	3.5	4.2
T. 1	T3-II	-2.1	72.6	- 3.7	1.7 4.3	1.6 4.1	2.2 4.9	3.4	3.9
To -1	T-3-II	1.6	2.3	3.5	- 4.0	3.8	2.1 4.4	3.1 5.8	3.6
	L3-IA	-/-	- 1.9	3.0	3.6	3.4	3.9	2.7 5.1	3.1 5.8
	T3-I	=/_	- 2.4	- 3.4	- 4.0	3.9	2.2 4.6	3.2 6.0	3.8
7-0	Τ-εΤ	- /-	- 2.1	- 3.2	- 3.7	3.6	1.8 4.2	3.0 5.6	3.5
Ta - 2	Т-57	-/ -	1.9	3.0	3.5	3.4	3.9	2.8 5.3	3.2 6.0
	T3-IV	7/-	-/-	2.5	3.0	3.9	3.5	2.3 4.6	2.8 5.3
	I- 6 [.] T	=/-	71.5	- 29	- 3.4	- 3.3	- 3.9	2.9 5.5	3.4
To-3	Τ-ε.Τ	=/_	-/-	2.6	- 3.2	3.1	- 3.6	2.6 5.2	3.1 5.9
' ' '	T-3 -III	7/	-/-	2.4	2.9	2.8	3.4	2.4 4.8	2.9 5.5
	T3-IY	-/_	-/-	2.1	2.5	2.4	2.9	2.1 4.4	2.5 4.8
	Γ3'-I	-/-	-/_	-/24	- 2.9	- 2.9	-3.4	2.6 5.0	3.1 5.8
To-4	T3 -1	7/_	-/_	- 2.1	2.6	2.6	3.2	2.4 4.7	2.8 5.4
1 0-4	T3 - II	7/_	-/_	1.9	- 2.4	2.4	2.9	2.2 4.4	2.6 5.0
	T3-IY	24	-/-	-/-	2.1	2.1	2.5	1.7 3.8	2.2 4.4
	1. "H"	- норма	D RAHAN	TEUEHP	YUVOTHE	ния грун	TOB BAC	ыпки,	
1,	ู๊ก" 2. B ч	- LOBPIN	.RAHH34		-	ות הגל ב			
	cnoc	1720H ao:	i, B 3HA	MEHATEN	E - 4V8	2 TPYIII	ibl.	3m c u	
PABPAG. PACCUNT. POBED.	Зарило Бурава Рипс	BA	, - 	3. (1.800	- 8/8	39 - 1	3	

ПИТ

HAY.OTA.

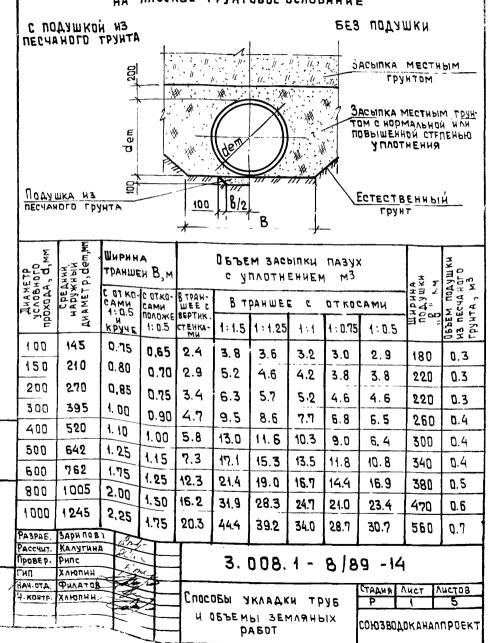
Н. КОНТР.

ХАЮЛИН

ВОТАЛНР

КИПОНАХ

Максимально - допустимые глубины заложения до верха труб "h" в м для d 1000 при временной нагрузке НК-80 AHET


СОЮЗВОДОКАНАЛПРОЕКТ

CTALHA

AuctaB

סני פווחוול

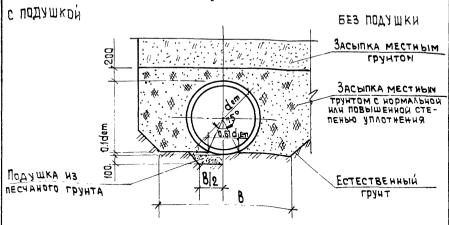
КРУГЛЫЕ ТРУБЫ С УКЛАДКОЙ ма плоское трунтовое основание

24748

29

B3AM: HHB. NO

AATA

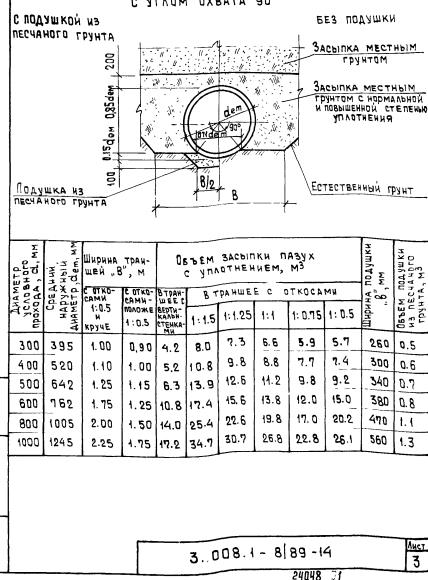

DOADUCE H

ADOD.

7

į

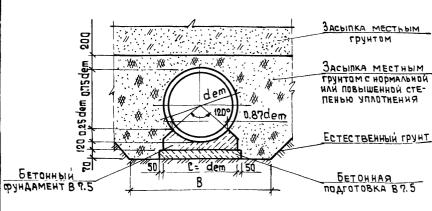
КРУТЛЫЕ ТРУБЫ С УКЛАДКОЙ НА СПРОФИЛИРОВАННОЕ ТРУНТОВОЕ ОСНОВАНИЕ С УГЛОМ ОХВАТА 75°



١	5	Σ										
	THAMETO VENDBHOTO NPOXOGA CLIM	X H blu	Ширина шей "В	TPAH-		ОБЪЕМ ЗАСЫПКИ ПАЗУХ С УПЛОТНЕНИЕМ, МЗ						CHAHOTO
	MAM PONDS POXDG	CPEAHHH HAPY XX HE	C OTKO - CAMH 1:0.5	C OTKO- CAMU NONO -	BTDAH-	TEAH BTPAHWEE & OTKOCAMH						ECU,
	H7F	AH A	KPYYE	X E 1:05	KANSHSI- CTEHKAMU	CREPTH- KANAHH- CTEHKAMA 1:1.5 1:1.25 1:1 1:0.75					инрини с	DEDEM M3 NE(TPYHT
	300	395	1.0	0,90	4.4	8.4	7.6	в.д	6.1	5.9	260	Q. 5
	400	52 <i>0</i>	1.10	1.00	5.4	11. 4	10.3	9.2	8.1	7.7	300	8.0
	500	642	1.25	1.15	6.6	14.8	13.3	11.8	10.3	9.6	340	0.7
	600	762	1.75	1.25	11.2	18.5	16.6	14.8	12.7	15.5	380	۵.٦
	800	1005	2.00	1.50	14.6	27. 2	24.2	21.2	18.1	21.1	470	0.9
	1000	1245	2.25	1.75	18.0	37.4	33.0	587	24.4	27.3	560	1.1
- 1												

3.008. 1 - 8/89-14

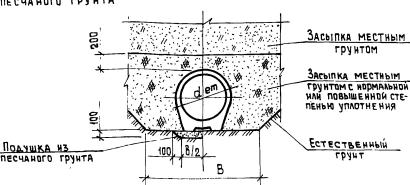
Auct 2


КРУГЛЫЕ ТРУБЫ С УКЛАДКОЙ НА СПРОФИЛИРОВАННОЕ ТРУНТОВОЕ ОСНОВАНИЕ С УГЛОМ ОХВАТА 90°

BRAM. HHB.N

WHB. NONDAN, MOATHUCE H GATA

КРУГЛЫЕ ТРУБЫ С УКЛАДКОЙ НА СПРОФИЛИРОВАННОЕ БЕТОННОЕ ОСНОВАНИЕ С УГЛОМ ОХВАТА 120°

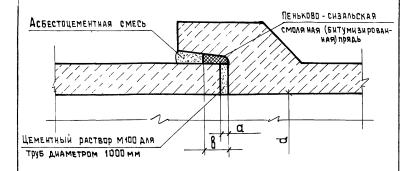


L												
ΣΣ	7.4. 01.4 01.4 01.4	Ширина	TPAH-	0.6		ЗАСЫПН		YZYX		Объем, м ³		
بع ش	СрЕДНИЙ НАРУЖНЫ АИАМЕТР Феш	шĖИ"			с уплотнением, мэ						010 HTA	
AHAN	CPE HAPY	CAMU	COTKO- CAMU	BTPAH-							H W W	
4 á	A A A A	1: 0.5 KPY4E	1:0.5	MEE KANDH. CTEHKA- MU	1:1.5	1:1.25	1:1	1:0.75	1:0.5	DET (БЕТОННОГО Фундамента	
300	395	1.0	0,90	5.6	14.2	12.6	11.0	9.5	8.5	0.35	0.63	
400	520	1.10	1,00	6.6	18.0	16.0	14.0	11.9	10.5	0.44	0.90	
500	642	1. 25	1.15	0.8	22.9	20.0	17.6	15.0	14.0	0,52	1.18	
600	762	1.75	1.25	13.5	27.7	24.4	21.0	17.7	19.2	0.60	1.50	
800	1005	2.00	1.50	17.0	39.0	34.3	29.5	24.6	25.8	85.0	2.22_	
1 000	1245	2.25	1.75	20.7	52.7	46.0	39.0	32.7	33.2	0.94	3.04	

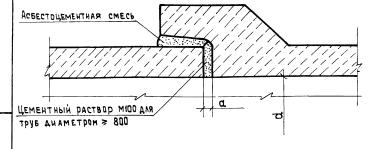
3.008.1 - 8/89 -14

ТРУБЫ С ПОДОШВОЙ

С ПОДУШКОЙ ИЗ ПЕСЧАНОГО ГРУНТА рез податки



AOTO MM	독표회	ИЦИРИ Пашнаст	"В", м	01	Объем засыпки пазух с уплотнением, м ³						nadywku Lahoro Ta. m³
ANAMETP YCAOBHOFO TPOXODA , C. 1	₹	C DTKO- C DMH C D.5	Indian-	BTPAH- WEE C BEDTU- KANH	B 77	1:1.25		1:0.75		Ширина , 0	TECT TECT
600	762	круч <u>е</u> 1,75	1:05	12.3	21.6	19.7	16.9	14.5	17.0	∃ 540	0.6
800	1005	2.00	1.50	16.1	32.3	28, 6	24.9	21.1	23.4	۵00	8.0
1000	1245	2.25	1.75	20.0	44.9	39.5	34.2	28.8	30.6	088	1.0


- 1. Общие требования к устройству основания и характеристики степени уплотнения грунтов засыпки указаны в пояснительной записке.
- 2. Объемы засыпки подсчитаны до высоты 0,2 м над уровнем верха трувы, на 10п.м. трувопровода при минимальной ширине траншеи по СНиП 3.02.01-87.
- 3. В 10СТ 20054-82 предусмотрены для каждого диаметра труб разные толщины стенок. Подсчет объемов засыпки произведен для их среднего значения.

3. 008.1 - 8 89 - 14

Auct 5

В ТРУБОПОВОДЕ ДОЖДЕВОЙ КАНАЛИЗАЦИИ

Общие примечания см. док. 15, 14.

B3AM.K+B. N

HABIN DOAN, INDANACE M DATA


<i>'</i>	Н. Контр.	Хирпин	AJS.		AT ANKT		союзв	ОДОКАН	ANTIPOEKT
/		Филатов	glier	Стыков	ые соедин	RNHA	p	4	4
_	ГИП	Хлюпин	115				CTAAHR	AUCT	NUCTOR
	TPOB.	Рипс	Dic.			-,			
		Калугина	Kry	130	1.80	8/89	- 15		
	PASPAS.	ЗАРИПОВА	Mrs.						

Диаметр	PAZMEP	ы, мм	РАСХОД МАТЕРИАЛОВ НА 10 СТЫКОВ ТРУБ							
трув			8 TPYBOND	HREDX BADBO ENABHAN H	СТВЕННО- АЦИИ	В ТРУБОПРОВОДЕ В ТРУБОПРОВОДЕ				
d, mm			LEMENTHON	NVN UEHP-	שוסת	ACBECTO- LEMENT-	HOTO			
	α	В	CWECH	C WO V & HOŅ C KO Ņ K080 - CH3AVP-	PACTEU	CMECH	M100			
			M ³	пря д и кт	м3	M3	мЗ			
100		25	0,001	1.1		0.002				
150			0,003	2.2		0,005				
. 200		40	0,005	3.2		0,008				
00 E	8-12		0,012	10.0		0,021	_			
400	0-12		0,020	15.4		9,038	_			
500		50	0,028	19.8	_	0,046				
008			0,034	2.2.0	_	0,054				
800	15 10		0,047	33.0	0.033	0.077	0,033			
1000	15-18	55	0,059	40.7	0.052	0,096	0,052			

Общие примечания см. док. 15 л.4.

3.008.1 - 8/89 - 15

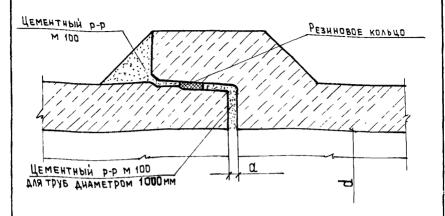
TUBKOE CTHIKOBOE COEAUHEHUE

	Диаметр Труб	PASMED	ы, мм	Расход материалов на 10 стыков труб					
	d, mm	α	в	БЕЛОЙ Пряди	ПОЛИСУЛЬФНД НЫЙ ГЕРМЕТИК	АСБЕСТО – ЦЕМЕНТНОЙ СМЕСИ	ЦЕМЕНТ- НОГО Р-РА М 100		
				Kr	M3	м3	M3		
	100		35	9.8	1 00.0	0.001			
-	150	8 - 12	3 3	0.9	0.002	0, 00 2	_		
1	200		4.0	1.0	0.003	0.004			
١	300		40	1.5	จ. 040	0, 010			
	400			2.7	0. 0 15	0.02	 -		
	500		50	3.7	0, 018	0.025	 —		
	600			3.9	0,021	0.028	<u> </u>		
	008	15 - 18	70	7.6	0,04	0. 028	0.033		
	0001	13-16		9.5	0,05	a. a35	0.052		

Общие примечания см. док. 15, л.4.

3.008.1-8/89-15

COCTABBI TEPMETHKOB


Марка герметика	Составные компоненты	КОЛИЧЕСТВО В ЧАСТЯХ ПО МАССЕ
51-YT-37A no TY 38 405 12 6- -73	Герметизирующая паста У-37а Вулканизирующая паста №17 Дифинилтуанидин (ДФТ)	100 15-17 0.3-1
KB-1 (re-1)	Терметизирующая паста К-1 Вулканизирующая паста В-1	100 9-14

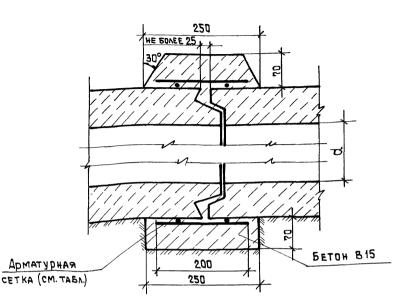
- 1. При грунтах или грунтовых водах, агрессивно действующих на цемент, наружная поверхность асбестоцементного замка покрывается изоляцией, состоящей из грунтовки (30°|0 бытума 6 H-IV и 70°|0 беньина по массе) и изоляционного слоя мастики (70°|0 нефтебитума 6 H-IV и 30°|0 порошко образного асбестового волокна или трепела).
- 2. Терметик 51-УТ-3¶А рекомендуется применять при прокладке трубопроводов под усовершенствованными покрытиями и при необходимости ремонта в труднодоступных для разрытия местах.
- 3. При использовании герметика КБ-1 непосредственно перед началом герметизации стыков в раструбную щель необходимо ввести один виток белой пряди для предохранения герметика от вытекания внутрь трубы.
 - 4. СОСТАВ АСБЕСТОЦЕМЕНТНОЙ СМЕСИ ДЛЯ УСТРОЙСТВА ЗАМКА:
 - ACEECTOBOE BONOKHO HE HUME IV CODTA 30 35 % (0);
 - портланд цемент марки не ниже 400 65 70%
 - BODA (OT MACCH CYXQH CHECH) 10-12 %
- 5. РАБОТЫ ПО ЗАДЕЛКЕ СТЫКОВ ВЕСТИ В СООТВЕТСТВИИ С РЕКОМЕНДАЦИЯМИ ПО ГЕРМЕТИЗАЦИИ СТЫКОВЫХ СОЕДИНЕНИЙ ТРУБОПРОВОДОВ С ПРИМЕНЕНИЕМ ПОЛИСУЛЬФИДНЫХ ГЕРМЕТИКОВ, РАЗРАБОТАННЫМИ ВНИИ ВОДГЕО.

3.008.1 - 8 89 - 15

NHCT

TUBROE CTHIKOBOE COEANHEHUE

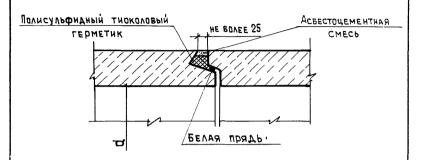
Диаметр трубы, d, мм	Расстояние между торца ми труб СС, мм	Расход ма на 10 сть Цементный р-р м100 м3	COB TPYE		
400	8-12	0,08	87.0		
500		0,13	0.93		
600		0.15	0.1		
00 B	15-18	0.31	1.40		
000t		0.53	1.88		


РЕЗИНОВЫЕ УПЛОТНЯЮЩИЕ КОЛЬЦА ПОСТАВЛЯЮТСЯ В КОМПЛЕКТЕ С ТРУБАМИ.

B3AM.HHB. N

Подлись и дата

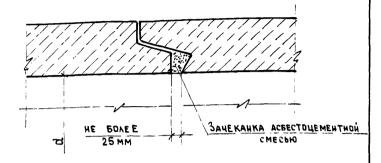
				24048	38		
H-KOHTP	Хинин	75	THIIA TOCK TONG		СОНОЗВ	O <u>T</u> OK	HANTPOEKT
	PHAATOB S	Stan	 СТЫКОВОЕ СОЕДИНЕНИЕ ОПОТ И ОТ Т АПИТ	1730			
THU	XVIDINH	1	 Course COE A MUELLUE	TOVE	RNAATO	ANCT	VACTOR
TPOBEP.	Punc	Din	 3. 33 3. 1	• • • • • • • • • • • • • • • • • • • •			
	KANYTHA	Mum	 3.008.1-	8/89 -	16		
PA3PA6.	Зарипова	my-					


ЖЕСТКОЕ СТЫКОВОЕ СОЕДИНЕНИЕ

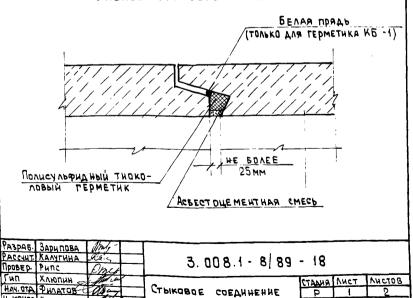
РАСХОД МАТЕРИАЛОВ НА 10 СТЫКОВ ТРУБ			
CETKA APMATYPHAS 100 100 5	6 E T O H B 15		
10 FOCT 8478-81 KT	M3		
8,5	0.22		
10.7	0.28		
13.3	0.35		
16.0	0.40		
19.7	D. 52		
	НА 10 СТЫКОВ Т СЕТКА АРМАТУРНАЯ 100 / 100 / 5 по гост 8478-81 КТ 8.5 10.7 13.3 16.0		

PASPAG.	3APHITOBA KANYI'N NA	MG-2		3.008.4 - 8/89	-17
NPOBER.	Рипс Хлюпин Филатов			типа ТБФ	CTAAHA AHCT AHCTOR
М контр.	MANONAX		\exists	24048 3	COM380IOKAHANNPOEKT

Гивкое стыковое соединение


Диаметр Трубы	РАСХОД МАТЕРИАЛОВ НА 10 стыков труб				
d, mm	кг Пра т и Вечой	ПОЛИСУЛЬ ~ ФИДНОЙ МАСТИКИ» МЗ	АСБЕСТОЦЕМЕНТ~ ной смеси, м3		
300	0.8	a0 a.a	0,002		
400	1.0	0,007	0,002		
500	1.5	0,009	0,002		
600	1.6	110,0	0, 602		
008	1. 8	0,021	0,004		

A. HORAUCE W ARTA BEAM, MIB.N


3.008.1-8|89-17

AHCT 9

WEST KOE STOIKOBOE COEANHEHUE

TUBROE CTHIKOBOE COEDUHEHUE

ТРУБ ТИПА ТВПФ

WHE HE DOAM NOADHED H AATA BEAM HHB. NO

H. KONTA XAHORNH

41

COHO3BOLOKAHANTIPOEKT

Диаметр трубы,	Tun coeAu-	Расход материалов на 10 стыков труб				
мм	нения					
1000	WECT.	-	_	0,028		
	די א 5 א.	2.2	0. 022	0,006		

- 1. При трунтах или трунтовых водах, атрессивно действующих на цемент, наружная поверхность асбестоцементного замка покрывается изоляцией, состоящей из трунтовки (30% битума 6H-IV и 70% вензина по массе) и изоляционного слоя мастики (70% нертебитума БН-IV и 30% порошкообразного асбестового волокна или трепела).
- 2. Перметик 51-УТ-37А рекомендуется применять при прокладке трубопроводов под усовершенствованными покрытиями и при необходимости ремонта в труднодоступных для разрытия местах.
- 3. При использовании терметика КБ-1 непосредственно перед началом герметизации стыков в торец трубы необходимо ввести один виток белой пряди для предохранения терметика от вытекания внутрь Трубы.
- 4. Составы герметиков и асъестоцементной смеси даны на док.~15., л.4.
 - 5. Расход велой пряди определен при плотности 1, 1 т/м3.

3.008.1 -8/89 - 18