Государственное санитарно-эпидемиологическое пормирование Российской Федерации

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАТОРЫ

ОПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ КОЛИЧЕСТВ ПЕСТИЦИДОВ В ПИЩЕВЫХ ПРОДУКТАХ, СЕЛЬСКОХОЗЯЙСТВЕННОМ СЫРЬЕ И ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ

Сборник методических указаний

MYK 4.1.1941-4.1.1954-05

Издание официальное

ББК 51.21 О37

- О37 Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды: Сборник методических указаний.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009—140 с
 - 1. Сборник подготовлен Федеральным научным центром гигиены им. Ф. Ф. Эрисмана (академик РАМН, проф. В. Н. Ракитский, проф. Т. В. Юдина); при участии специалистов Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека. Разработчики методов указаны в каждом из них.
 - 2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека.
 - 3. Утверждены Главным государственным санитарным врачом Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации, академиком РАМН Г. Г. Онищенко.
 - 4. Введены впервые.

ББК 51.21

Формат 60х88/16 Печ. л. 8.75

Тираж 100 экз.

Тиражировано отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс 952-50-89

«УТВЕРЖЛАЮ»

Главный Государственный санитарный врач Российской Федерации,

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и

благополучия человека

_Г.Г. Онищенко 2004 г.

МУК 4.1 /844-03-Дата вводения: /8 (04 - 05

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОПРЕДЕЛЕНИЮ ОСТАТОЧНЫХ КОЛИЧЕСТВ ДИФЛУБЕНЗУРОНА В ЯБЛОКАХ МЕТОДОМ ВЫСОКОЭФФЕКТИВНОЙ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ.

1. Вводная часть

Фирма производитель: ЗАО Фирма «Август». Торговое наименование: Герольд, ВСК Действующее вещество: дифлубензурон.

Структурная формула:

1-(4-хлорфенил)-3-(2,6-дифторбензоил)мочевина (IUPAC).

N-{[(4-хлорфенил)амино]карбонил}-2,6-дифторбензамид (С.А.).

Брутто формула: C₁₄H₉ClF₂N₂O₂.

Мол. масса: 310.7.

Бесцветное кристаллическое вещество (технический - кристаллы от белых до желтых).

Температура плавления: 228°С (техн.: 210-230°С).

Давление паров при 25°C: 1.2×10⁻⁴мПа.

Коэффициент распределения н-октанол/вода: Kow log P = 3,89.

Растворимость (r/π) при 20°C: н-гексан – 0.063, толуол – 0.29, дихлорметан – 1.8, метанол – 1.1, вода – 0.08 мг/л (при pH 7 и 25°C).

Вещество стабильно в кислых средах (20°С, рН 5-7, $DT_{50} > 150$ дней), разлагается в шелочных растворах (при рН 9 DT_{50} 42 дня).

Краткая токсикологическая характеристика: Острая пероральная токсичность (LD₅₀) для мышей и крыс — более 4640 мг/кг; острая дермальная токсичность (LD₅₀) для кроликов — более 2000 мг/кг, для крыс — более 10000 мг/кг; острая ингаляционная токсичность (LC₅₀) для крыс — более 2,88 мг/л. Токсичен для пчел. СК₅₀ для рыб 130 — 150 мг/я ири экспозиции 96

часов.

Мутагенный и онкогенный эффекты при использовании препарата не наблюдались.

Гигиенические нормативы для дифлубензурона в России:

ОДК в почве -0.2 мг/кг; ПДК в воде водоемов -0.01 мг/л; ОБУВ в воздухе рабочей зоны -3.0 мг/м 3 ; МДУ для яблок -0.1 мг/кг.

Область применения препарата: Несистемный регулятор роста насекомых с контактным и кишечным действием. Используется для уничтожения широкого диапазона насекомых-вредителей, питающихся листьями лесных и плодовых деревьев, а также плодами. Эффективен против яблонной плодожорки, листоверток и др.

2. Методика определения дифлубензурона в яблоках методом ВЭЖХ

2.1. Основные положения

2.1.1. Принцип метода

Методика основана на определении дифлубензурона методом ВЭЖХ с использованием УФ детектора после его извлечения из образцов органическим растворителем и очистке путем перераспределения между двуми жидкими фазами, а также на колонке с силикагелем.

2.1.2. Метрологическия характеристика метода

Метрологическая характеристика метода представлена в таблицах 1 и 2.

Метрологическая характеристика метода

Таблица 1

Объект анализа	Предел обнаружени я мг/кг	Диапазон определяемых концентраций мг/кг	Среднее значение определения, % (для каждого объекта n=24)	Относитель- ное стандартное отклонение S, %	Доверительный интервал среднего, n=24, P=0.95
Яблоки	0.01	0.01 - 0.1	89,7	6,24	5,47

Таблица 2

Полнота определения дифлубензурона в яблоках (N=5 для каждой концентрации)

Среда	Внесено,	Найдено, мг/кг	Стандартное отклонение, S±	Полнота определения, %
1	2	3	4	6
Яблоки	0,01	0,00887	7,21·10 ⁻⁴	88,7
MOHOKM	0,02	0,01788	1,15·10-3	89,4
	0,05	0,04475	2,55·10 ⁻³	89,5
	0,1	0,0912	6,91·10 ⁻³	91,2
Среднее	T. 1	* ==		89,7

2.1.3. Избирательность метода.

Присутствие других пестицидов, близких по химическому строению и области применения, определению не мещает.

2.2. Реактивы и материалы.

Ацетон, ч.д.а., ГОСТ 2603-79.

Ацетонитрил для ВЭЖХ, "В-230НМ" или х.ч., ТУ 6-09-3534-87.

Бикарбонат натрия, х.ч., ГОСТ 4201-79.

Бумажные фильтры "красная лента", ТУ 6.091678-86.

Вода бидистиллированная, денонизированная, ГОСТ 6709-79.

Дифлубензурон, аналитический стандарт с содержанием д.в. 99.9%.

Дихлормстан, х.ч., ТУ 2631-019-44493179-98.

Диэтиловый эфир, ч., ОСТ 84-2006-88.

Железо (II) сернокислое, х.ч., ГОСТ 4148-78.

Калий углекислый, х.ч., ГОСТ 4221-76.

Калия перманганат, ГОСТ 20490-75.

Кальция хлорид, х.ч., ГОСТ 4161-77.

Кислота ортофосфорная, имп. (Ferak, Германия) или х.ч., ГОСТ 6552-80.

Кислота серная, х.ч., ГОСТ 4204-77.

Натрий сернокислый безводный, ч., ГОСТ 4166-76, свежепрокаленный.

Натрий хлористый, ч.д.а., ГОСТ 4233-77.

Натрия гидроксид, хч., ГОСТ 4328-77.

н-Гексан, х.ч., ТУ 2631-003-05807999-98, свежеперегнанный.

Подвижная фаза для ВЭЖХ: смесь ацетонитрил – вода (56:44, по объему).

Силикагель для колоночной хроматографии 60 (0.040-0.063 mm) (Мегск, Германия). Стекловата.

Фосфора пентоксид, ч., МРТУ 6-09-5759-69.

Элюент №1 для колоночной кроматографии: смесь гексан — диэтиловый эфир (80:20, по объему).

Элюент №2 для колоночной хроматографии: смесь гексан -- диэтиловый эфир (55:45, по объему).

2.3. Приборы и посуда.

Жидкостный хроматограф "Альянс" фирмы «Waters» с УФ детектором (Waters 2487), снабженный дегазатором, автоматическим пробоотборником и термостатом колонки или аналогичный.

Колонка Symmetry - C18 (250×4.6) мм, зернение 5 мкм (Waters, USA) или аналогичная.

Предколонка Waters Symmetry C-18.

Весы аналитические ВЛА-200, ГОСТ 34104-80Е или аналогичные.

Установка ультразвуковая «Серьга», ТУ 3.836.008.

Гомогенизатор, МРТУ 42-1505-63.

Ротационный испаритель вакуумный ИР-1М, ТУ 25-11-917-74 или аналогичный.

Билистиллятор.

Насос водоструйный, МРТУ 42 861-64.

Колбы плосколонные на плифах КШ500 29/32 ТС, ГОСТ 10384-72.

Колбы круглодонные на шлифах КШ50 29-32 ТС, ГОСТ 10384-72.

Воронки лабораторные В-75-110, ГОСТ 25336-82.

Воронки делительные ВД-3-500, ГОСТ 8613-75.

Цилиндры мерные на 100, 250 и 1000 см³, ГОСТ 1774-74. Колбы мерные на 25, 50, 100 и 1000 см³, ГОСТ 1770-74. Пипетки на 1, 2, 5, 10 см³, ГОСТ 22292-74. Колонки стеклянные (25×1) см.

2.4. Отбор проб.

Отбор проб производится в соответствии с «Унифицированными правилами отбора проб сельскохозяйственной продукции, пищевых продуктов и объектов окружающей среды для определения микроколичеств пестицидов», утвержденными заместителем Главного государственного санитарного врача СССР 21.08.79 г., № 2051-79. Пробы яблок хранятся до анализа в морозильной камере при температуре -18°С, перед проведением анализа пробы гомогенизируют в гомогенизаторе.

2.5. Подготовка к определению.

2.5.1. Подготовка и очистка реактивов и растворителей.

Органические растворители перед началом работы очищают, сушат и перегоняют в соответствии с типовыми методиками. Гексан и хлористый метилен встряхивают с небольшими порциями концентрированной серной кислоты до прекращения окрашивания свежей порции кислоты, затем промывают водой, 2%-ным раствором гидроксида натрия и снова водой, после чего его сущат нап гидроксилом натрия и перегоняют.

Диэтиловый эфир (1 л) предварительно встряхивают с 20 мл свежеприготовленного раствора железного купороса (30 г сульфата железа в 55 мл воды с добавлением 1,5 г концентрированной серной кислоты). Затем диэтиловый эфир последовательно промывают 0,5 % раствором перманганата калия, 5 % раствором гидроксида натрия и водой, после чего сущат над хлористым кальцием и перегоняют.

Ацетон перегоняют над перманганатом калия и поташом (на 1 л ацетона 10 г КМпO₄ и 2 г K_2 CO₃).

Ацетонитрил (х.ч.) сущат над пентоксидом фосфора и перегоняют; отогнанный растворитель повторно перегоняют над углекислым калием.

2.5.2. Кондиционирование колонки.

Перед началом анализа колонку Symmetry-C18 кондиционируют в потоке подвижной фазы (1 мл/мин) до стабилизации нулевой линии в течение 1-2 часов.

2.5.3. Приготовление растворов.

Для приготовления 0.02М раствора ортофосфорной кислоты 2 г 98% (или 2.25 г 87%) кристаллической H₃PO₄ помещают в мерную колбу объемом 1л, растворяют в 600 мл дистиллированной воды и доводят объем до метки дистиллированной водой. Для приготовления 0.1М раствора NaHCO₃ 9.3 г кристаллического бикарбоната натрия помещают в мерную колбу на 1л, растворяют при перемешивании в 600 мл дистиллированной воды и доводят объем раствора до метки. Для получения 60%-го водного ацетона в колбе емкостью 1л смешивают 600 мл ацетона с 400 мл дистиллированной воды, используя мерные цилиндры. Для приготовления подвижной фазы смешивают 560 мл ацетонитрила с 440 мл бидистиллированной воды в колбе на 1000 мл, смесь фильтруют, при необходимости дегазируют. Для приготовления элюента №1 в колбе на 1000 мл смешивают 800 мл н-гексана и 200 мл диэтилового эфира. Для приготовления элюента №2 в колбе на 1000 мл смешивают 550 мл н-гексана и 450 мл диэтилового эфира.

2.5.4. Приготовление стандартного и градуировочных растворов:

Берут точную навеску дифлубензурона (50 мг), переносят в мерную колбу на 50 мл, растворяют навеску в ацетонитриле и доводят до метки (Стандартный раствор с концентрацией 1.0 мг/мл). Градуировочные растворы с концентрациями 0.1, 0.2, 0.5, 1.0 и 2.0 мкг/мл готовят методом последовательного разбавления по объему, используя раствор подвижной фазы (смесь ацетонитрил – бидистиллированная вода (56:44, по объему). Стандартный раствор можно хранить в холодильнике при температуре 0-4°С в течение 1 месяца, градуировочные растворы – в течение суток.

2.5.5. Построение градуировочного графика.

Для постросния градуировочного графика (площадь пика — концентрация дифлубензурона в растворе) в хроматограф вводят по 20 мкл градуировочных растворов (не менее 3-х паралиельных измерений для каждой концентрации, не менее 4-х точек по диапазону измеряемых концентраций), измеряют площади пиков и строят график зависимости среднего значения площади пика от концентрации дифлубензурона в градуировочном растворе (мкг/мл).

2.5.6. Подготовка колонки с силикагелем для очистки экстракта.

В нижнюю часть стехлянной колонки длиной 25 см и внутренним диаметром 1 см помещают тампон из стехловаты, закрывают крап и вносят суспензию 5 г силикагеля в 20 мл смеси гексан — диэтиловый эфир (80:20, по объему). Дают растворителю стечь до всрхнего края сорбента. Колонку последовательно промывают 50 мл смеси гексан — диэтиловый эфир (55:45, по объему) и 30 мл смеси гексан — диэтиловый эфир (80:20, по объему) со скоростью 1—2 капли в секунду, после чего она готова к работе.

Проверка хроматографического поведения дифлубензурона на колонке с силикателем.

В круглодонную колбу емкостью 10 мл отбирают 0,1 мл стандартного раствора дифлубензурона с концентрацией 10 мкг/мл. Отдувают растворитель током теплого воздуха, остаток растворяют в 5 мл элюента №1 и наносят на колонку. Колбу обмывают еще 5 мл элюента №1 и также наносят на колонку. Промывают колонку 60 мл элюента №1, затем 60 мл элюента №2 со скоростью 1-2 капли в секунду. Отбирают фракции по 10 мл каждая, упаривают, остаток растворяют в 2 мл подвижной фазы для ВЭЖХ (п. 2.5.3.) и анализируют на содержание дифлубензурона по п. 2.6.3.

Фракции, содержащие дифлубензурон, объединяют, упаривают досуха, остаток растворяют в 2 мл подвижной фазы для ВЭЖХ и вновь анализируют по п. 2.6.3. Рассчитывают содержание дифлубензурона в элюате, определяя полноту вымывания вешества из колонки и необходимый для очистки экстракта объем элюента.

Примечание: профиль вымывания дифлубензурона может меняться при использовании новой партии сорбента и растворителей

2.5.8. Подготовка приборов и средств измерения.

Установка и подготовка всех приборов и средств измерения проводится в соответствии с требованиями стандартов и технической документации.

2.6. Проведение определения.

2.6.1. Определение дифлубензурона в яблоках.

Навеску, массой 20г гомогенизированных в гомогенизаторе яблок помещают в коническую колбу емкостью 100 мл и экстрагируют дифлубензурон 40 мл 60%-ного водного ацетона на ультразвуковой установке в течение 15 мин. Суспензию фильтруют через бумажный фильтр "красная лента". Экстракцию повторяют дважды порциями по 30 мл. Объединенный экстракт концентрируют на роторном испарителе при температуре 40°С до объема ~50 мл.

Дифлубсизурон переэкстрагируют трижды хлористым метиленом, порциями по 30 мл, встряхивая делительную воронку в течение 2-3 мин. Верхний водный слой отбрасывают. * Объединённый экстракт промывают в делительной воронке дважды 0.1 М раствором бикарбоната натрия порщиями по 30 мл и один раз 50 мл 0.02М раствора ортофосфорной кислоты, встряхивая воронку в течение 2-3 минут (при всех промывках верхний водный слой отбрасывают). Органическую фазу фильтруют через слой безводного сульфата натрия (2 г), осущитель промывают 10-15 мл хдористого метидена. Полученный раствор выпаривают досуха на роторном испарителе при температуре не выше 40°C. Лальнейшую очистку экстракта проводят по пункту 2.6.2.

2.6.2. Очистка на колонке с силикагелем

Остаток в колбе, полученный при упаривании очищенных по п.2.6.1. экстрактов яблок, количественно переносят тремя порциями (по 3 мл) смеси гексан - диэтиловый эфир (80:20, по объему) в кондиционированную хроматографическую колонку (п. 2.5.6.). Промывают колонку 60 мл элюента №1, который отбрасывают. Дифлубензурон элюируют 60 мл элюента №2, собирая элюат в грушевидную колбу емкостью 100 мл. Раствор выпаривают досуха на роторном испарителе при температуре не выше 40°С. Сухой остаток растворяют в 2 мл подвижной фазы для ВЭЖХ и 20 мкл раствора вводят в жидкостный хроматограф.

2.6.3. Условия хроматографирования

Жидкостный хроматограф "Альянс" фирмы «Waters» с УФ детектором (Waters 2487), снабженный дегазатором, автоматическим пробоотборником и термостатом колонки или другой с аналогичными характеристиками.

Колонка Symmetry - C18 (250×4.6) мм, зернение 5 мкм (Waters, USA) или аналогичная.

Температура колонки 30±1°С.

Предколонка Waters Symmetry C-18 для защиты аналитической колонки.

Подвижная фаза: ацетонитрил - вода в соотношении 56:44 (по объему).

Скорость потока элюента: 1 мл/мин.

Рабочая длина волны 260 нм.

Объем вводимой пробы 20 мкл.

Время удерживания дифлубензурона 11.6 ± 0.2 мин.

Линейный диапазон детектирования 0.1 – 2.00 мкг/мл.

2.6.4. Обработка результатов анализа

Количественное определение проводят методом абсолютной калибровки, содержание дифлубензурона в образце яблок (Х, мг/кг) вычисляют по формуле:

$$X = \frac{S_2 \times C \times V}{S_1 \times P}$$

где S_1 - площадь пика дифлубензурона в стандартном растворе, мм²; S_2 – площадь пика дифлубензурона в анализируемой пробе, мм²:

- V объём пробы, подготовленной для хроматографического анализа, мл;
- Р навеска анализируемого образца, г;
- С концентрация стандартного раствора дифлубензурона, мкг/мл.

Содержание остаточных количеств дифлубензурона в анализируемом образце вычисляют как среднее из 3-х параллельных определений.

Образцы, дающие пики большие, чем стандартный раствор дифлубензурона 2 мкг/мл разбавляют:

3. Контроль погрешности измерений.

Оперативный контроль погрешности и воспроизводимости результатов измерения осуществляется в соответствии с рекомендациями МИ 2335-95. ГСИ. Внутренний контроля качества результатов количественного химического анализа.

4. Требования техники безопасности.

При проведении работы необходимо соблюдать требования инструкции «Основные правила безопасной работы в химической лаборатории», общепринятые правила безопасности при работе с органическими растворителями, токсичными веществами, а также инструкции по эксплуатации жидкостного хроматографа и электрооборудования до 400 В.

5. Разработчики.

Цибульская И.А., Юзихин О.С. (ВИЗР, Санкт-Петербург).