ПРАВИЛА
КЛАССИФИКАЦИИ, ПОСТРОЙКИ
И ОБОРУДОВАНИЯ ПЛАВУЧИХ
БУРОВЫХ УСТАНОВОК
И МОРСКИХ СТАЦИОНАРНЫХ
ПЛАТФОРМ

НД № 2-020201-008

Санкт-Петербург
2008
Правила классификации, постройки и оборудования плавучих буровых установок (ПБУ) и морских стационарных платформ (МСП) Российского морского регистра судоходства утверждены в соответствии с действующим положением и вступают в силу с момента опубликования.

Правила устанавливают требования, являющиеся специфическими для ПБУ и МСП, учитывают рекомендации Кодекса ИМО по конструкции и оборудованию ПБУ, принятого Ассамблеей ИМО 19 октября 1989 г. (Резолюция A.649 (16)).

В Правилах учтены унифицированные требования, интерпретации и рекомендации Международной ассоциации классификационных обществ и соответствующие резолюции Международной морской организации.

В текст Правил вошли результаты научно-исследовательских работ, выполненных в 2006-2007 гг.:
1. НИР-2006: «Усовершенствование методологии определения экстремальных и усталостных ветровых нагрузок на морские буровые платформы».
2. НИР-2006: «Разработка предложений для Правил планирования и проведения морских операций».
3. НИР-2006: «Разработка требований РС по выбору якорного снабжения ПБУ и МСП при использовании в составе якорных линий цепей категорий R3, R3S, и R4».
4. НИР-2007: «Совершенствование правил Регистра для ПБУ/МСП в части транспортировки буровых платформ и их элементов при длительных переходах».
5. НИР-2007: «Подготовка второй редакции Правил РС по проведению операций установки МЛСП на месторождение, а также выполнению операций установки крупногабаритных верхних строений на опорную часть».
6. НИР-2007: «Подготовка второй редакции Правил РС по расчету демпфирующих устройств».

Настоящее издание Правил составлено на основе Правил классификации, постройки и оборудования ПБУ и МСП (2006 г.) с учетом Циркулярных писем ГУР №220ц от 01.02.2007 №253ц от 07.06.2007, а также изменений и дополнений, связанных с вступлением в силу стандарта МЭК 60992-501, унифицированных требований МАКО D3 Согт.2 "Основные проектные параметры" и пересмотренных Приложений I, II, IV (нефть, вредные вещества наливом, сточные воды) и Приложения VI (незагрязнение атмосферы) к МАРПОЛ 73/78.
СОДЕРЖАНИЕ

КЛАССИФИКАЦИЯ И ПОСТРОЙКА ПБУ/МСП

ЧАСТЬ I. КЛАССИФИКАЦИЯ

1 Общие положения 14
1.1 Область распространения 14
1.2 Определения и пояснения 14
2 Класс ПБУ/МСП 16
2.1 Общие требования 16
2.2 Символ класса 16
2.3 Значки деления на отсеки 16
2.4 Знак автоматизации 17
2.5 Словесная характеристика 17
2.6 Обозначение района и условий 17
3 Проведение и объем освидетельствований 18
3.1 Виды и периодичность освидетельствований . 18
3.2 Первоначальные освидетельствования 19
3.3 Периодические освидетельствования 22
3.4 Ежегодные освидетельствования 22
3.5 Очередные освидетельствования 31
3.6 Система непрерывного освидетельствования 33
3.7 Освидетельствования для выдачи конвенционных документов . 34
4 Техническая документация 36
4.1 Документация технического проекта в постройке 36
4.2 Документация технического проекта при переоборудовании или восстановлении 38
4.3 Рабочие чертежи для ПБУ/МСП в постройке 38
5 Классификация ПБУ/МСП с классом другого классификационного органа 39

ЧАСТЬ II. КОРПУС

1 Общие положения 40
1.1 Область распространения 40
1.2 Определения и пояснения 40
1.3 Объем технического наблюдения 40
1.4 Конструктивные элементы 41
1.5 Материалы .. 43
1.6 Износ конструктивных элементов 45
1.7 Сварные конструкции и соединения 46

ЧАСТЬ III. УСТРОЙСТВА, ОБОРУДОВАНИЕ И СНАБЖЕНИЕ ПБУ/МСП

1 Общее принципы проектирования конструкций .. 46
2 Общие требования 46
2.1 Общие требования 46
2.2 Внешние условия 46
2.2.3 Расчетные режимы и нагрузки 50
2.4 Критерии прочности 53
3 Специальные вопросы прочности платформ .. 60
3.1 Самоподъемные ПБУ 60
3.2 Полупогружные ПБУ 69
3.3 Морские стационарные платформы 74
3.4 Железобетонные и сталебетонные конструкции МСП 89
3.5 ПБУ на катафосных связях 100
4 Устойчивость СПБУ/МСП на грунте 112
4.1 Общие требования 112
4.2 Устойчивость СПБУ на грунте 113
4.3 Устойчивость МСП на грунте 113
Приложение 1. Характеристики ветро- волновых условий 116
Приложение 2. Требования к расчетным моделям, базирующимся на методе конечных элементов 119

ЧАСТЬ IV. РУЛЕВОЕ УСТРОЙСТВО

1 Общие положения 123
1.1 Область распространения 123
1.2 Определения и пояснения 123
1.3 Объем технического наблюдения 124
2 Рулевое устройство 125
2.1 Общие требования 125
3 Якорное устройство 125
3.1 Общие требования 125
3.2 Характеристика снабжения 126
3.3 Якорь, цепи и тросы для якорей, якорное оборудование и механизмы . 127
4 Системы удержания ПБУ/МСП в точке бурения/позвонирования и их элементы .. 128
4.1 Общие требования 128
4.2 Якорные системы 128
4.3 Конструкция 129
4.4 Оборудование 132
4.5 Якорные линии 133
4.6 Якорь .. 133
4.7 Контроль качества 133
Правила классификации, постройки и оборудования ПБУ/МСП

ЧАСТЬ IV. ОСТОЙЧИВОСТЬ

1 Общие положения .. 141
1.1 Область распространения 141
1.2 Определения и пояснения 141
1.3 Объем технического наблюдения 143
1.4 Общие технические требования 143
1.5 Опыт кренования .. 146
2 Общие требования к остойчивости 148
2.1 Система удержания. Опирание о грунт 148
2.2 Варианты нагрузки ... 148
2.3 Кривые восстанавливающих моментов 149
2.4 Кривые наклоняющих моментов 149
2.5 Расчетные внешние (природные) условия 153
3 Критерии остойчивости 156
3.1 Общие требования ... 156
3.2 Расчетная амплитуда качки 157
3.3 Требования к диаграмме статической остойчивости 157
3.4 Дополнительные требования к остойчивости 157
Приложение 1. Расчет остойчивости объекта 159
Приложение 2. Типовая инструкция по кренованию ПБУ/МСП и их модулей 160
Приложение 3. Методика расчета ветровой нагрузки, действующей на объект при круговом изменении направления ветра 181
Приложение 4. Методика расчета ветрового наклоняющего момента полупогружного и погружного объекта с прямоугольным верхним корпусом 181
Приложение 5. Значения экстремальных скоростей ветра и высот волн, возможных один раз в 50/100 лет 184

ЧАСТЬ V. ДЕЛЕНИЕ НА ОТСЕКИ

1 Общие положения .. 187
1.1 Область распространения 187
1.2 Определения и пояснения 187
1.3 Чертежи и схемы .. 195
2 Понадка и остойчивость поврежденного объекта 189
2.1 Общие требования ... 189
2.2 Размеры и зоны расчетных повреждений 190
2.3 Коэффициенты проницаемости 191
2.4 Число затапливаемых отсеков 191
2.5 Требования к элементам посадки и остойчивости поврежденных объектов 191
2.6 Дополнительные требования к посадке и остойчивости поврежденных полупогружных установок 192
2.7 Условия достаточности плавучести и остойчивости поврежденных модулей МСП 192

ЧАСТЬ VI. ПРОТИВОПОЖАРНАЯ ЗАЩИТА

1 Общие положения .. 194
1.1 Область распространения 194
1.2 Определения и пояснения 194
1.3 Чертежи и схемы .. 195
2 Конструктивная противопожарная защита 196
2.1 Общие требования ... 196
<table>
<thead>
<tr>
<th>Содержание</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Расположение помещений ... 201</td>
</tr>
<tr>
<td>2.3 Средства обеспечения вертолетов .. 201</td>
</tr>
<tr>
<td>2.4 Помещения для производства сварочных работ. Стационарная система для кислорода и ацетилена ... 203</td>
</tr>
<tr>
<td>3 Противопожарное оборудование и системы 203</td>
</tr>
<tr>
<td>3.1 Общие требования ... 203</td>
</tr>
<tr>
<td>3.2 Водопожарная система ... 204</td>
</tr>
<tr>
<td>3.3 Система водяного орошения .. 205</td>
</tr>
<tr>
<td>3.4 Система водяных завес ... 205</td>
</tr>
<tr>
<td>4 Системы пожарной сигнализации .. 206</td>
</tr>
<tr>
<td>4.1 Сигнализация обнаружения пожара 206</td>
</tr>
<tr>
<td>4.2 Ручная пожарная сигнализация .. 206</td>
</tr>
<tr>
<td>4.3 Системы и оборудование для контроля воздушной среды 206</td>
</tr>
<tr>
<td>5 Противопожарное снабжение, запасные части и инструмент 207</td>
</tr>
<tr>
<td>5.1 Общие требования ... 207</td>
</tr>
</tbody>
</table>

ЧАСТЬ VII. МЕХАНИЧЕСКИЕ УСТАНОВКИ И МЕХАНИЗМЫ

1 Общие положения ... 208
1.1 Область распространения .. 208
1.2 Определения и пояснения .. 208
1.3 Объем технического наблюдения .. 208
2 Механические установки .. 209
2.1 Общие требования ... 209
2.2 Условия окружающей среды ... 209
2.3 Расположение механизмов и оборудования 209
2.4 Посты управления ... 210
2.5 Средства связи ... 210
2.6 Машины помещения ... 210
2.7 Вибрация механизмов и оборудования 211
2.8 Холодильные установки ... 211
3 Механизмы ... 211
3.1 Общие требования ... 211
3.2 Двигатели внутреннего сгорания 211
3.3 Газотурбинные двигатели .. 212
3.4 Вспомогательные механизмы ... 212
3.5 Палубные механизмы .. 212
3.6 Механизмы подъема и спуска .. 212
3.7 Приводы гидравлические ... 212
3.8 Передачи, разобщительные и упругие муфты 212

ЧАСТЬ VIII. СИСТЕМЫ И ТРУБОПРОВОДЫ

1 Общие положения ... 213
1.1 Область распространения .. 213
1.2 Определения .. 213
1.3 Объем технического наблюдения .. 213
1.4 Защита и изоляция трубопроводов 213
1.5 Сварка и неразрушающие методы контроля 214
1.6 Механизмы, оборудование и средства автоматизации 214
2 Общие требования к системам трубопроводов 214
2.1 Металлические трубопроводы .. 214
2.2 Трубопроводы из пластмасс ... 214
2.3 Шланги ... 214
2.4 Арматура ... 214
2.5 Прокладка трубопроводов ... 214
2.6 Испытания систем трубопроводов 215
3 Требования к системам трубопроводов в зависимости от их назначения 215
3.1 Системы трубопроводов общего назначения 215
3.2 Системы, обслуживающие энергетическую установку 218
3.3 Системы специальные .. 219

ЧАСТЬ IX. КОТЛЫ, ТЕПЛООБМЕННЫЕ АППАРАТЫ И СОСУДЫ ПОД ДАВЛЕНИЕМ

1 Область распространения .. 221
2 Общие положения ... 221
3 Котлы ... 221
4 Теплообменные аппараты и сосуды под давлением 221

ЧАСТЬ X. ЭЛЕКТРИЧЕСКОЕ ОБОРУДОВАНИЕ

1 Общие положения ... 222
1.1 Область распространения .. 222
1.2 Определения и пояснения .. 222
1.3 Объем технического наблюдения .. 223
1.4 Техническая документация ... 224
2 Общие требования ... 225
2.1 Условия работы ... 225
2.2 Электромагнитная совместимость 227
2.3 Материалы .. 229
2.4 Конструктивные требования и степень защиты электрического оборудования ... 230
2.5 Защитные заземления нетоковедущих металлических частей электрического оборудования ... 232
2.6 Молниезащитные устройства .. 233
2.7 Размещение электрического оборудования 234
2.8 Специальные электрические помещения 235
2.9 Взрывоопасные зоны .. 235
Правила классификации, постройки и оборудования ПБУ МСП

2.10 Отверстия, условия доступа и вентиляции, влияющие на расширение взрывоопасных зон .. 236
2.11 Электрическое оборудование и кабели во взрывоопасных зонах .. 237
2.12 Антистатическое заземление .. 238
3 Основной источник электрической энергии ... 239
3.1 Состав и мощность основного источника электрической энергии ... 239
3.2 Электрические агрегаты .. 239
3.3 Число и мощность трансформаторов .. 240
3.4 Питание от внешнего источника электрической энергии .. 240
3.5 Системы соединений агрегатов основного источника электрической энергии .. 240
3.6 Источники бесперебойного питания (ИБП) .. 241
4 Распределение электрической энергии .. 241
4.1 Системы распределения и допустимые напряжения .. 241
4.2 Питание ответственных устройств ... 242
4.3 Питание электрических и электронных систем автоматизации .. 243
4.4 Питание объединенных пультов управления .. 243
4.5 Распределительные устройства ... 244
5 Электрические приводы механизмов и устройств ... 249
5.1 Общие требования ... 249
5.2 Блокировка работы механизмов ... 249
5.3 Отключающие устройства безопасности ... 249
5.4 Коммутационная и пускорегулирующая аппаратура ... 249
5.5 Электрические приводы насосов ... 250
5.6 Электрические приводы якорных и швартовных механизмов ... 250
5.7 Электрические приводы вентиляторов .. 250
5.8 Электрические приводы спасательных шлюпочных лебедок .. 251
5.9 Электрические приводы водонепроницаемых и противопожарных дверей 251
5.10 Электрические приводы рулевых устройств самоходных ПБУ ... 251
5.11 Электрические приводы топочных устройств котлов и инсинераторов ... 252
6 Освещение ... 253
6.1 Общие требования ... 253
6.2 Питание цепей основного освещения .. 253
6.3 Аварийное освещение ... 254
6.4 Выключатели в целях освещения .. 254
6.5 Светильники ламп накаливания и газоразрядные светильники ... 255
6.6 Штепсельные розетки ... 256
6.7 Освещенность ... 256
6.8 Прожекторы и дуговые лампы ... 256}

7 Внутренняя связь и сигнализация ... 257
7.1 Машинные электрические телеграфы самоходных ПБУ .. 257
7.2 Служебная внутренняя связь ... 258
7.3 Аварийная сигнализация ... 258
7.4 Сигнализация обнаружения пожара ... 260
7.5 Сигнализация предупреждения о пуске системы объемного пожаротушения 261
7.6 Сигнализация закрытия водонепроницаемых и противопожарных дверей 261
7.7 Аварийно-предупредительная сигнализация механической установки в помещениях механизмов .. 261
7.8 Сигнально-отличительные фонари ... 262
7.9 Сигнализация обнаружения взрывоопасных концентраций газов .. 262
7.10 Светодиодные и осветительные средства в вентиляционных шахтах .. 263

8 Устройства электрической защиты ... 264
8.1 Общие требования ... 264
8.2 Защита генераторов ... 264
8.3 Защита электрических двигателей ... 265
8.4 Защита электрооборудования районов аварийных источников электрической энергии 266
8.5 Защита трансформаторов .. 266
8.6 Защита аккумуляторов ... 266
8.7 Защита измерительных приборов и приборов управления и контроля .. 267
8.8 Защита силовых полупроводниковых устройств .. 267
8.9 Устройства защитного отключения (УЗО) ... 267

9 Аварийные электрические установки ... 268
9.1 Общие требования ... 268
9.2 Помещения аварийных источников электрической энергии ... 268
9.3 Аварийные источники электрической энергии .. 269
9.4 Распределение электрической энергии от аварийных источников .. 270
9.5 Пусковые устройства аварийных дизель-генераторов .. 271
9.6 Аварийные посты и система аварийного отключения электрического оборудования 271

10 Электрические машины ... 272
10.1 Общие требования ... 272
10.2 Клеммные коробки, контактные кольца, коллекторы и щетки ... 272
10.3 Подшипники ... 273
10.4 Датчики температуры ... 273
10.5 Генераторы переменного тока .. 273
10.6 Генераторы постоянного тока .. 274
10.7 Электродвигатели .. 274
10.8 Электромагнитные тормоза ... 275
Содержание

11 Трансформаторы .. 275
 11.1 Общие требования 275
 11.2 Перегрузка, изменение напряжения и параллельная работа 275
12 Силовые полупроводниковые устройства . 276
 12.1 Общие требования 276
 12.2 Допустимые параметры искажения напряжения 276
 12.3 Системы управления и сигнализация 276
 12.4 Измерительные приборы 277
13 Аккумуляторы ... 277
 13.1 Общие требования 277
 13.2 Размещение аккумуляторов 277
 13.3 Обогрев ... 278
 13.4 Вентиляция ... 278
 13.5 Зарядка аккумуляторных батарей 278
 13.6 Установка электрического оборудования в аккумуляторных помещениях 278
 13.7 Электростarterный пуск двигателей внутреннего сгорания 279
14 Электрические аппараты и установочная арматура . 279
 14.1 Электрические аппараты 279
 14.2 Установочная арматура 280
15 Электрические нагревательные и отопительные приборы 281
 15.1 Общие требования 281
 15.2 Отопительные приборы 281
 15.3 Нагревательные устройства для нефтепродуктов 282
 15.4 Устройства с применением кабеля нагрева 282
16 Кабели и провода .. 283
 16.1 Общие требования 283
 16.2 Жилья .. 283
 16.3 Изоляционные материалы 283
 16.4 Оболочки .. 284
 16.5 Защитные покрытия 284
 16.6 Маркировка ... 284
 16.7 Монтажные провода 284
 16.8 Кабельная сеть .. 284
17 Гребные электрические установки самоходных ППБп .. 292
 17.1 Область распространения и знак в символе класса 292
 17.2 Определения и пояснения 292
 17.3 Структура ГЭУ .. 293
 17.4 Шинопроводы ГЭУ 295
 17.5 Электромагнитная совместимость (ЭМС) ГЭУ 295
 17.6 Передачи двигатели генераторов ГЭУ 295
 17.7 Генераторы ГЭУ ... 296
 17.8 Распределительные шиты ГЭУ 297
 17.9 Силовые трансформаторы ГЭУ 297
 17.10 Полупроводниковые преобразователи ГЭУ 298
17.11 Фильтрация гармонических составляющих 299
17.12 Гребные электрические двигатели (ГЭД) 299
17.13 Специальные требования к погруженным поворотным гребным электрическим двигателям (ППГЭД) 300
17.14 Системы управления ГЭУ 302
18 Требования к электрическому оборудованию на напряжение свыше 1000 В до 15000 В .. 305
 18.1 Общие требования 305
 18.2 Проектирование системы 305
 18.3 Электрические машины (требования к конструкции) 307
 18.4 Силовые трансформаторы 308
 18.5 Кабели .. 309
 18.6 Распределительные устройства и шиты управления 309
 18.7 Размещение (монтаж) 310
19 Запасные части .. 311
 19.1 Общие требования 311
 19.2 Нормы запасных частей 312
Приложение .. 313

ЧАСТЬ XI. ХОЛОДИЛЬНЫЕ УСТАНОВКИ

1 Общие положения .. 315

ЧАСТЬ XII. МАТЕРИАЛЫ

1 Общие положения .. 316
 1.1 Область распространения 316
 1.2 Определения и пояснения 316
 1.3 Объем технического наблюдения 317
2 Методы испытаний .. 319
 2.1 Общие требования 319
 2.2 Испытания на СТОД 319
 2.3 Испытания падающим грузом для определения температуры нулевой пластичности 321
 2.4 Испытания для определения температуры вязко-хрупкого перехода Ткп 322
3 Выбор материала .. 323
 3.1 Общие требования 323
 3.2 Выбор категории стали 323
4 Прокат для стальных конструкций .. 324
 4.1 Общие требования 324
 4.2 Химический состав 325
 4.3 Механические свойства 326
 4.4 Состояние поставки 326
 4.5 Отбор проб ... 326
4.6 Объем испытаний 327
4.7 Осмотр и маркировка 327
4.8 Документы ... 328
5 Сталь для котлов, теплообменных аппаратов и сосудов, работающих под давлением .. 328
5.1 Общие требования 328
5.2 Испытания ... 328
6 Стальные трубы 329
6.1 Общие требования 329
7 Стальные поковки и отливки 329
7.1 Общие требования 329

ЧАСТЬ XIII. СВАРКА
1 Общие положения 330
1.1 Область распространения 330
1.2 Определения и пояснения 330
1.3 Объем технического наблюдения 330
1.4 Техническая документация 330
2 Технологические требования к процессам изготовления сварных конструкций ПБУ/МСП 331
2.1 Общие требования 331
2.2 Технологические процессы сварки 331
2.3 Производственный персонал. Квалификация сварщиков 332
2.4 Основной материал. Свариваемость 333
2.5 Сварочные материалы 333
2.6 Типы швов сварных соединений. Общие рекомендации .. 336
2.7 Сварка корпусов и оборудования ПБУ/МСП 339
2.8 Особенности сварки конструкций из сталей высокой прочности 347
2.9 Сварка плавающей стали 352
2.10 Сварка конструкций механизмов и механических установок 356
2.11 Сварка навальных котлов и сосудов, работающих под давлением 356
2.12 Сварка трубопроводов 357
2.13 Сварка отливок и поковок 357
2.14 Сварка чугуна 358
2.15 Сварка алюминия и его сплавов 358
2.16 Сварка меди и ее сплавов, тяжелых металлов и других нежелезных материалов 358
3 Контроль сварных соединений 359
3.1 Общие требования 359
3.2 Объем контроля 362
3.3 Оценка качества сварных соединений 365
4 Сварочные материалы 365
4.1 Общие требования 365
4.2 Дополнительные требования к сварочным материалам .. 365

ЧАСТЬ XIV. АВТОМАТИЗАЦИЯ
1 Общие положения 367
1.1 Область распространения 367
1.2 Определения и пояснения 367
1.3 Объем технического наблюдения 367
1.4 Техническая документация 368
2 Конструкция систем автоматизации 369
2.1 Общие требования 369
2.2 Требования к элементам и устройствам 370
2.3 Общие требования к автоматизированным системам управления механизмами и установками 371
2.4 Системы аварийно-предупредительной сигнализации, защиты, индикации и регистрации 372
3 Питание систем автоматизации 375
3.1 Общие требования 375
4 Автоматизированные механизмы и установки 376
4.1 Общие требования 376
4.2 Автоматизированные пропульсивные установки .. 376
4.3 Автоматизированные котельные установки 382
4.4 Автоматизированные электроэнергетические установки 383
4.5 Автоматизированные компрессорные установки 384
4.6 Автоматизированные насосные установки 385
4.7 Автоматизированные осушительные установки 385
4.8 Автоматизированные холодильные установки 385
5 Компьютеры и компьютерные системы автоматизации 386
5.1 Область распространения 386
5.2 Определения и пояснения 386
5.3 Конструкция компьютерных систем контроля и управления 386
5.4 Аппаратное обеспечение (HARDWARE) 387
5.5 Программное обеспечение (SOFTWARE) 387
5.6 Конфигурация компьютерных систем 387
5.7 Интерфейс пользователя 388
5.8 Обучение персонала (тренинг) 390
5.9 Испытания и проверки компьютерных систем 390
6 Установки со знаком автоматизации в символе класса 390
6.1 Общие требования 390
6.2 Устройства на главном посту управления (ГПУ) 391
6.3 Устройства в машинных помещениях 391
Содержание

6.4 Устройства в жилых помещениях механизмов .. 391
6.5 Электроэнергетическая установка ... 392
6.6 Пропульсивные установки .. 392
6.7 Котельная установка ... 392
6.8 Компрессорные установки ... 392
6.9 Насосные установки .. 392
6.10 Осушительные системы .. 392
7 Системы динамического позиционирования ... 393
7.1 Область распространения и знаки в символе класса 393
7.2 Определения и пояснения .. 393
7.3 Объем технического наблюдения .. 394
7.4 Техническая документация ... 394
7.5 Конструкция систем динамического позиционирования, классы 394
7.6 Электроэнергетическая система .. 395
7.7 Система пропульсивных (подруливающих) механизмов 396
7.8 Посты управления .. 396
7.9 Компьютерные системы управления СДП ... 397
7.10 Системы определения местоположения (точки) позиционирования 398
7.11 Датчики параметров воздействия на ПБУ внешних сил 398
7.12 Система аварийно-предупредительной сигнализации (АПС) 398
7.13 Кабельные трассы и трубопроводы механизмов и устройств СДП 399
8 Якорные системы ПБУ .. 400
8.1 Общие требования ... 400
8.2 Системы управления .. 400
8.3 Вспомогательные подруливающие устройства для якорных систем 400
9 Балластные системы полупогруженных и погружных ПБУ 401
9.1 Общие требования ... 401
9.2 Балластные насосы ... 401
9.3 Системы управления и контроля ... 401
9.4 Система внутренней связи ... 402
9.5 Защита против затопления .. 402
10 Устройства подъема и спуска само подъемных ПБУ 402
10.1 Общие требования к устройствам подъема и спуска 402
10.2 Конструкция ... 402
10.3 Удоздерживающие устройства ... 403
10.4 Электродвигатели подъемно-спускового устройства 403
10.5 Системы управления и контроля ... 403

ЧАСТЬ XV. ОЦЕНКА БЕЗОПАСНОСТИ ПБУ/МСП

1 Общие положения ... 404
1.1 Область распространения ... 404
1.2 Определения и пояснения ... 404
1.3 Общие принципы управления безопасностью платформы 405
2 Идентификация рисков .. 406
2.1 Концепция анализа аварийных ситуаций ... 406
2.2 Типы аварийных ситуаций на платформах .. 406
2.3 Методы анализа аварийных ситуаций .. 410
3 Методы количественных оценки риска (QAR) .. 411
3.1 Статистические модели аварийных ситуаций 411
3.2 Оценка индивидуальных и социальных рисков 412
3.3 Рекомендации по оценке риска катастрофы после получения конструкций повреждения ... 412
3.4 Методы экспертных оценок .. 414
4 Управление рисками ... 415
4.1 Выбор контроля рисков .. 415
4.2 Стоимостные оценки, связанные с мероприятием по снижению рисков ... 419
5 Критерии достаточной безопасности платформ .. 420
5.1 Рекомендация для принятия решения по снижению риска аварии 420
5.2 Принцип разумно осуществимого уровня .. 421
5.3 Пренебрежимые и недопустимые уровни риска 422
Приложение 1. Общие рекомендации к составлению и использованию вопросов опросного листа опорно-подъемного устройства самоподъемной буровой установки СПБУ 6500/100 ... 423
Приложение 2. Примеры деревьев событий .. 427
Приложение 3. Примеры деревьев ошибок и неполадок 431
Приложение 4. Построение FV-кривых ... 434
Приложение 5. Форма представления информации о повреждениях конструкций морских платформ, полученных в результате аварий, и инструкция по ее заполнению 435
ЧАСТЬ XVI. МОРСКИЕ ОПЕРАЦИИ

1. Основные принципы, критерии и требования к разработке и проведению морских операций ... 438
 1.1 Область распространения 438
 1.2 Определения и пояснения 438
 1.3 Основные принципы планирования морских операций 439
 1.4 Категории морских операций в зависимости от их продолжительности и погодных условий ... 440
 1.5 Предельные состояния при проведении морских операций 441
 1.6 Естественные условия, прогноз погоды, изыскания 441

2. Требования к плавучести и остойчивости платформ, сооружений и их элементам в процессе морских операций 446
 2.1 Общие требования к плавучести и остойчивости 446
 2.2 Дополнительные требования к плавучести и остойчивости 448

3. Требования к конструкциям, системам и устройствам, обеспечивающим морские операции ... 450
 3.1 Устройства и оборудование 450
 3.2 Конструкции .. 451

ОБОРУДОВАНИЕ ПБУ/МСП

ЧАСТЬ I. СИГНАЛЬНЫЕ СРЕДСТВА

1. Общие положения 454
 1.1 Область распространения 454
 1.2 Определения и пояснения 454

2. Снабжение ПБУ/МСП сигнальными средствами 454

3. Конструкция сигнальных средств 454

4. Установка сигнальных средств 455

ЧАСТЬ II. СПАСАТЕЛЬНЫЕ СРЕДСТВА

1. Общие положения 456
 1.1 Область распространения 456

2. Коллективные спасательные средства 456
 2.1 Снабжение надводных установок 456
 2.2 Снабжение самоподъемных ПБУ, ПБУ со стабилизирующими колоннами и МСП 456
 2.3 Снабжение буровых судов 457
 3. Снабжение дежурными шлюпками 457
 4. Индивидуальные спасательные средства 457
 4.1 Снабжение ПБУ/МСП, надводных установок и буровых судов спасательными жилетами 457
 4.2 Снабжение ПБУ/МСП, надводных установок и буровых судов спасательными кругами 458
 4.3 Снабжение ПБУ/МСП, надводных установок и буровых судов гидротермосвязями 458

5. Обеспечение сбора и посадки людей в спасательные шлюпки, плоты и дежурные шлюпки. Места спуска 458
 6. Установка спасательных шлюпок, плотов и дежурных шлюпок 459
 7. Обеспечение спуска и подъема спасательных шлюпок, спасательных плотов и дежурных шлюпок 460
 8. Линеметальные устройства 461
 9. Радиооборудование для спасательных средств 461

ЧАСТЬ III. РАДИООБОРУДОВАНИЕ

1. Общие положения 462
 1.1 Область распространения 462

2. Комплектация ПБУ/МСП радиооборудованием 462
 2.1 Подразделение ПБУ/МСП на группы 462
 2.2 Состав радиооборудования 462

3. Размещение радиооборудования 463
 4. Антенные устройства 463

ЧАСТЬ IV. НАВИГАЦИОННОЕ ОБОРУДОВАНИЕ

1. Общие положения 464
 1.1 Область распространения 464

2. Состав навигационного оборудования ПБУ/МСП 464
 2.1 Общие требования 464
2.2 Состав навигационного оборудования ПБУ/МСП ... 464
3 Размещение навигационного оборудования .. 465

ЧАСТЬ V. ОБОРУДОВАНИЕ ПО ПРЕДОТВРАЩЕНИЮ ЗАГРЯЗНЕНИЯ
1 Общие положения ... 466
1.1 Область распространения 466
1.2 Определения и пояснения 466
1.3 Техническая документация 466
2 Требования к оборудованию и устройствам по предотвращению загрязнения нефтью 466
2.1 Область распространения 466
2.2 Определения и пояснения 466
2.3 Объем технического наблюдения 467
2.4 Испытания в действии 467
2.5 Общие технические требования 468
2.6 Требования к сепараторам льяльных вод на 15 млн-1 .. 468
2.7 Требования к сигнализаторам на 15 млн-1 .. 469
2.8 Устройство автоматического прекращения сброса ... 470
2.9 Системы перекачки, сдачи и сброса нефтесодержащих смесей 470
2.10 Сборные танки .. 471
2.11 Технологическое оборудование 472
2.12 Защита топливных танков 473
3 Требования к оборудованию и устройствам по предотвращению загрязнения сточными водами 473
3.1 Область распространения 473
3.2 Определения и пояснения 473
3.3 Объем технического наблюдения 473
3.4 Установки для обработки сточных вод и сборные цистерны 474
3.5 Оборудование для удаления сточных вод .. 475
3.6 Контрольно-измерительные устройства 475
4 Требования к оборудованию и устройствам по предотвращению загрязнения мусором ... 476
4.1 Область распространения 476
4.2 Определения и пояснения 476
4.3 Объем технического наблюдения 476
4.4 Оборудование для сбора и обработки мусора и инсинераторы 476
4.5 Размещение оборудования и устройств 477
5 Требования к оборудованию и устройствам судов по предотвращению загрязнения атмосферы ... 478
5.1 Область распространения 478
5.2 Определения и пояснения 478
5.3 Объем технического наблюдения 479
5.4 Требования в отношении контроля за выбросами с ПБУ/МСП 480
5.5 Другие требования 481
КЛАССИФИКАЦИЯ И ПОСТРОЙКА ПЛАВУЧИХ БУРОВЫХ УСТАНОВОК (ПБУ) И МОРСКИХ СТАЦИОНАРНЫХ ПЛАТФОРМ (МСП)
ЧАСТЬ I. КЛАССИФИКАЦИЯ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящих Правил классификации, постройки и оборудования плавучих буровых установок и морских стационарных платформ распространяются на все самоходные и несамоходные плавучие установки, буровые суда и на стальные, железобетонные и композитные морские стационарные платформы, в том числе ледостойкого типа, удерживаемые на грунте гравитационным способом, с помощью свай или комбинированным способом, предназначенные для разведки/добчи подземных ресурсов морского dna или другой деятельности.

1.1.2 Технические требования распространяются на все механизмы, устройства, приборы и оборудование, установленные на ПБУ и МСП, нормальные условия работы которых обеспечивают установленный уровень безопасности установки в целом на всех режимах работы.

1.1.3 Буровое и технологическое (для сбора, переработки и транспортировки продукции скважин) оборудование, а также технические решения, связанные с обеспечением безопасного бурения и эксплуатации скважин, должны соответствовать требованиям государственных органов надзора за безопасностью в нефтяной и газовой промышленности.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

1.2.1 В Правилах ПБУ/МСП приняты следующие определения.

Морская плавучая буровая установка (ПБУ) — судно, способное производить буровые работы и/или осуществлять добычу ресурсов, находящихся под дном моря, например, нефти, газа, серы или соли.

Надводная установка (НУ) — установка, размещенная в корпусе водоизмещаемого типа, как у ПБУ, бурового судна или баржи, не предназначенная для разведки/добчи подземных ресурсов морского dna.

Буровое судно — судно, имеющее буровую установку.

Самоподъемная ПБУ (СПБУ) — ПБУ, поднимаемая в рабочем состоянии над поверхностью моря на колоннах, опирающихся на грунт.

ПБУ со стабилизирующими колоннами — плавучая буровая установка, в которой используется водоизмещение широко расположенных колонн для обеспечения плавучести и стойкости во всех эксплуатационных состояниях (см. определение «Режим эксплуатации»), включая погружение и всплытие. В нижней части колонн могут применяться подводные корпуса или стопы для обеспечения дополнительной плавучести или поверхности, достаточной для удержания установки на морском дне. С целью взаимного соединения колонн, погруженных корпусов или стоп, а также для поддержания платформы могут применяться упрочнители трубчатого сечения или решетчатой конструкции. ПБУ со стабилизирующими колоннами могут быть спроектированы для ведения буровых работ как в состоянии на плаву, так и опираясь на грунт.

Погружная ПБУ — ПБУ со стабилизирующими колоннами, опирающаяся в рабочем состоянии на грунт.

Полупогружная ПБУ (ППБУ) — ПБУ со стабилизирующими колоннами, находящаяся в рабочем состоянии на плаву и удерживаемая в горизонтальной плоскости с помощью якорей, подруливающих устройств или других средств позиционирования.

ПБУ на натяженных связях — ПБУ со значительной избыточной плавучестью в рабочем состоянии, удерживаемая в точке бурения/добчи натянутыми анкерными связями, закрепленными на морском дне.

Морская стационарная платформа (МСП) — морское нефтегазопромысловое сооружение, состоящее из верхнего строения и опорного основания, зафиксированное на все время использования на грунте и являющееся объектом обустройства морских месторождений нефти и газа.

Опорное основание МСП — часть МСП, состоящая из одного или нескольких опорных блоков, на которых в верхней части монтируется верхнее строение МСП.

1 В дальнейшем — Правила ПБУ/МСП.
Часть I. Классификация

Опорный блок (ОБ) — водонепроницаемая конструкция, обеспечивающая плавучесть и устойчивость сооружения, поддержание верхнего строения и устойчивость против внешних воздействий при размещении на грунте дна. Может включать модули, супермодули, понтоны, колонны, фермы и свайные фундаменты.

Верхняя палуба (ВП) — водонепроницаемая конструкция, на которой размещается верхнее строение и от которой измеряется надводный борт.

Опорная палуба (ОП) или опорные балки — конструкции, на которых собирается верхнее строение.

Верхнее строение (ВС) — надстройки, рубки и другие подобные конструкции, используемые для размещения персонала, оборудования, систем и устройств, обеспечивающих функционирование сооружения по его назначению. ВС, как правило, состоит из блок-модулей.

Блок-модуль (БМ) — функционально законченные конструкции ВС, например, энергетический, жилой, технологический и другие БМ.

Модуль — конструкция, как правило, ОБ и/или палубы, представляющая транспортируемую единицу.

Супермодуль (СМ) — два и более модулей, соединенных вместе, как транспортируемая единица.

Транспортируемая единица — сооружение или его часть, которое транспортируют по внутренним водным путям и/или по морю.

Подводный понтон — шлюпочная водонепроницаемая конструкция с отвсными бортами.

Колonna — водонепроницаемая, частично проницаемая или ферменная вертикальная конструкция, воспринимающая внешние нагрузки и вес вышележащих конструкций и оборудования.

Понтон плавучести/стойчивости — водонепроницаемая конструкция, не являющаяся элементом сооружения, временно устанавливаемая на нем или его модуле/CM для обеспечения плавучести и/или стойчивости.

Посадочная площадка — элемент МСП, закрепленный к опорному основанию, предназначенный для посадки людей и швартовки судов.

Комплекс обеспечения вертолетов — элемент ПБУ/МСП, предназначенный для посадки и обслуживания вертолетов.

Зона бурения — часть ПБУ/МСП, в которой находится оборудование, предназначенное для бурения скважин.

Технологическая зона — часть МСП, в которой находится оборудование, предназначенное для выполнения технологических процессов сбора, переработки и транспортировки продукции скважин с МСП.

Жилая зона — часть МСП, предназначенная для размещения обслуживающего персонала.

Зона вспомогательного оборудования — часть МСП, в которой находится вспомогательное оборудование, не связанное непосредственно с бурением и эксплуатацией скважин и не предназначенное для этого.

МСП ледостойкая — установка, способная воспринимать ледовую нагрузку.

МСП гравитационная — морская стационарная платформа гравитационного типа — сооружение, устойчивость на грунте которого обеспечивается в основном за счет собственного веса и веса принимаемого балласта.

МСП свайная — морская стационарная платформа свайного типа — сооружение, устойчивость на грунте которого обеспечивается в основном за счет забитых в грунт свай.

МСП мачтовая — морская глубоководная стационарная платформа, устойчивость которой обеспечивается либо оттяжками, либо соответствующим объемом плавучести.

Глубоководная платформа на колоннах — платформа на колоннах, высотой существенно превосходящих характерный размер поперечного сечения. Она состоит из следующих элементов: колонн (не менее одной), нижнего опорного основания, соприкасающегося с дном акватории, и верхней несущей конструкции.

Мелководная платформа на колоннах — платформа на колоннах высотой, сопоставимой с характерным размером поперечного сечения. Они состоят из тех же элементов, что и глубоководные платформы на колоннах.

Конструкционный остров (кессон) — мелководная платформа на сплошном металлическом основании.

Монопод/монокон — одноопорная мелководная платформа башенного типа с вертикальными или наклонными стенками соответственно.

Глубина моря — расстояние по вертикали, измеренное от дна моря до среднего уровня воды плюс суммарная высота астрономического и штормового прилива.

Клиренс — расстояние по вертикали, измеренное от дна моря до среднего уровня воды плюс суммарная высота астрономического и штормового прилива до низшей части опорной палубы или верхнего строения платформы.

Режим эксплуатации — состояние, при котором ПБУ/МСП может работать или функционировать, находясь на точке бурения/добычи.
или состояние при любом способе ее транспортировки к этой точке. Пребывая в режиме эксплуатации, ПБУ/МСП может находиться в одном из следующих состояний:

рабочее состояние — состояние, в котором находится ПБУ/МСП с целью производства буровых работ или других подобных операций при совместном воздействии внешних факторов и эксплуатационных нагрузок, не выходящих за пределы соответствующих расчетных значений;

состояние штормового отстоя — состояние ПБУ при воздействии на нее максимальных расчетных внешних нагрузок, при котором предполагается прекращение производства буровых работ;

состояние перегона — состояние, связанное с перемещением ПБУ/МСП из одного географического района в другой.

Суда, участвующие в морских операциях:

судно-перевозчик — все суда, непосредственно соприкасающиеся с перевозимым сооружением или его частью, например, баржи; если сооружение или его часть обладают плавучестью, то этот термин означает саму плавучую конструкцию;

транспортная система — судно (суда) — перевозчик и транспортирующее судно (суда), работающие вместе как система, например, буксир с буксируемым канатом и сооружением;

dополнительные требования — не предусмотренные Правилами ПБУ/МСП требования, предъявляемые Российским морским регистром судоходства при осуществлении классификационной деятельности.

2 КЛАСС ПБУ/МСП

2.1 ОБЩИЕ ТРЕБОВАНИЯ

2.1.1 На ПБУ/МСП распространяются требования 2.1 части I «Классификация» Правил классификации и постройки морских судов.

2.2 СИМБОЛ КЛАССА

2.2.1 Присваиваемый Регистром ПБУ/МСП класс состоит из основного символа и дополнительных знаков и словесных характеристик, определяющих конструкцию и назначение судна или плавучего сооружения.

2.2.2 Основной символ присваиваемого Регистром ПБУ/МСП класса состоит из знаков:

КМ®, КМ®, КМ® — для самоходных ПБУ;

КЕ®, КЕ®, КЕ® — для несамоходных ПБУ и МСП с суммарной мощностью первичных двигателей не более 100 кВт.

2.2.3 В зависимости от того, по каким Правилам и под надзором какого классификационного органа построено судно или плавучее сооружение, основной символ класса устанавливается следующим образом:

.1 ПБУ/МСП, построенным по Правилам и под техническим наблюдением Регистра, присваивается класс с основным символом: КМ® или КЕ®;

.2 ПБУ/МСП, которые полностью (либо их корпус, или механическая установка, или механизмы, или оборудование) построены и/или изготовлены по Правилам и под надзором другого признанного Регистром классификационного органа, при их классификации Регистром присваивается класс с основным символом: КМ® или КЕ®;

.3 ПБУ и МСП, которые полностью (либо их корпус, или механическая установка, или механизмы, или оборудование) построены и/или изготовлены без надзора признанного Регистром классификационного органа или вообще без надзора классификационного органа, при их классификации Регистром присваивается класс с основным символом: (КМ)® или (КЕ)®.

2.3 ЗНАКИ ДЕЛЕНИЯ НА ОТСЕКИ

2.3.1 Деление ПБУ на отсеки считается удовлетворительным при выполнении требований части V «Деление на отсеки», к посадке и остойчивости

1 В дальнейшем — Регистр.
Часть I. Классификация

поврежденной ПБУ в случае затопления одного из отсеков при повреждениях, указанных в 3.2 настоящей части. Знак деления на отсеки в этом случае к символу класса не добавляется.

2.3.2 По желанию заказчика ПБУ может получить в символе класса один из знаков: [I] или [II]. В этом случае ПБУ должна удовлетворять также требованиям части V «Деление на отсеки» Правил классификации и постройки морских судов.

2.4 ЗНАК АВТОМАТИЗАЦИИ

2.4.1 Если оборудование автоматизации главной механической и/или электроэнергетической установки ПБУ или МСП соответствует требованиям части XIV «Автоматизация», то к основному символу класса ПБУ/МСП добавляется один из знаков автоматизации, в зависимости от объема автоматизированных функций и особенностей применяемых средств автоматизации, а именно:

AUT1 — объем автоматизированных функций обеспечен традиционными средствами и позволяет эксплуатацию механической (пропульсивной) и/или электроэнергетической установки без постоянного присутствия обслуживающего персонала в машинных помещениях и в центральном посту управления (ЦПУ);

AUT2 — объем автоматизированных функций обеспечен традиционными средствами и позволяет эксплуатацию механической (пропульсивной) и/или электроэнергетической установки одним оператором из центрального поста управления в МО, без постоянного присутствия обслуживающего персонала в машинных помещениях;

AUT1-C или AUT2-C — автоматизированные функции, как указано для знаков автоматизации AUT1 или AUT2 соответственно, реализованы с применением компьютеров или программируемых логических контроллеров, удовлетворяющих соответствующим требованиям разд. 5 части XIV «Автоматизация»;

AUT1-ICS, AUT2-ICS — автоматизированные функции, как указано для знаков автоматизации AUT1 или AUT2 соответственно, реализованы с применением компьютерной интегрированной системы управления и контроля, удовлетворяющей соответствующим требованиям разд. 5 части XIV «Автоматизация». При этом представляется обслуживаемому персоналу электронная информация и функции управления на постах управления реализованы с применением средств единой резервированной информационной сети.

2.5 СЛОВЕСНАЯ ХАРАКТЕРИСТИКА В СИМВОЛЕ КЛАССА

2.5.1 Если ПБУ/МСП имеет конструкцию, в основном аналогичную одной из конструкций, определенных в 1.2 настоящей части, и удовлетворяет соответствующим требованиям Правил ПБУ/МСП, то в зависимости от конструкции ПБУ к символу класса добавляется одна из следующих словесных характеристик:

MODU self-elevating — ПБУ самоподъемная;
MODU semi-submersible — ПБУ полупогружная;
MODU submersible — ПБУ погружная;
MODU tension leg — ПБУ на натяженных связях;
Drilling ship — буровое судно;
Drilling barge — буровая баржа;
FOP gravity — МСП гравитационная;
FOP pile — МСП свайная;
FOP mast — МСП мачтовая;
Ice-resistant — ледостойкая.

Словесная характеристика в символе класса записывается на английском языке. По желанию судовладельца она может записываться на двух языках: английском и русском.

2.5.2 Если конструкция ПБУ/МСП имеет принципиальное отличие от конструкций, определенных в 1.2 настоящей части, то определение его типа и словесной характеристики, добавляемой к символу класса, в каждом отдельном случае является предметом специального рассмотрения Регистром.

2.6 ОБОЗНАЧЕНИЕ РАЙОНА И УСЛОВИЙ ЭКСПЛУАТАЦИИ

2.6.1 Если ПБУ/МСП предназначена для эксплуатации в определенном районе и спроектирована с учетом максимально возможных в данном районе нагрузок в зависимости от ветра, волнения, льда и течения, то эти районы, нагрузки и ледовые усиления указываются в Классификационном свидетельстве.
3 ПРОВЕДЕНИЕ И ОБЪЕМ ОСВИДЕТЕЛЬСТВОВАНИЙ

3.1 ВИДЫ И ПЕРИОДИЧНОСТЬ ОСВИДЕТЕЛЬСТВОВАНИЙ

3.1.1 Первонаучальные освидетельствования. Регистром устанавливаются следующие виды первонаучальных освидетельствований ПБУ/МСП:
- освидетельствования, проводимые при постройке ПБУ/МСП под техническим наблюдением Регистра;
- освидетельствования ПБУ/МСП, построенных под надзором другого классификационного органа или иной компетентной организации.

3.1.2 Периодические освидетельствования.

3.1.2.1 Очередные освидетельствования, проводимые для возобновления класса в каждый 5-летний срок эксплуатации ПБУ/МСП. В отношении начала, подготовки и проведения очередных освидетельствований к ПБУ в полной мере относятся требования 2.4 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации. Для МСП, погруженных ПБУ Регистром, проектантом и судовладельцем на этапе проектирования и постройки разрабатывается Программа освидетельствований, описывающая все действия по освидетельствованиям МСП в течение запланированного срока эксплуатации. Программа должна включать следующие основные части:
- принципиальное описание освидетельствований со ссылкой на соответствующие части Правил;
- продолжительность и методы освидетельствований;
- время и частота освидетельствований;
- процедуры сообщений, накопления данных и регистрации;
- процедуры оценки зафиксированных сообщений;
- процедуры модернизации.

3.1.2.2 Ежегодные освидетельствования, проводимые каждый календарный год в пределах ± 3 мес от предписываемой даты очередного освидетельствования.

3.1.2.3 Доковые освидетельствования ПБУ должны проводиться при очередных освидетельствованиях. Кроме того оно может быть необходимо после аварий и в особых случаях как внеочередное освидетельствование.

3.1.3 Внеочередные освидетельствования. Внеочередные освидетельствования ПБУ/МСП или отдельных их элементов производятся во всех других случаях кроме первонаучального и периодических освидетельствований. Внеочередные освидетельствования производятся для контроля выявленных недостатков или повреждений после аварии, а также в других случаях, описанных в 3 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации.

3.1.4 Специальные освидетельствования. К специфическому разделу освидетельствований для ПБУ/МСП следует отнести освидетельствования при морских операциях. Это связано с тем, что ПБУ/МСП могут строиться в готовом виде или в виде отдельных элементов (сборочных модулей) за тысячи миль от мест будущей эксплуатации. Процесс транспортировки ПБУ/МСП к месту установки или их отдельных элементов, монтаж на месте установки, перехода или перемещения на новое место эксплуатации, определение безопасных условий выполнения этих операций, описан в части XVI «Морские операции». При морских операциях проектантом, строителем объекта, судовладельцем выполняются и согласовываются с классификационным обществом специальные программы освидетельствования, в которых должны быть отражены следующие моменты:
- сборка буровой платформы на плаву на верфи-строителе;
часть I. Классификация

19

представление мест установки;
доставка отдельных элементов или буровой платформы в собранном виде к месту установки (эксплуатации);
установка объекта на месте эксплуатации;
съемка с места эксплуатации;
переход (или перестановка) к новому месту эксплуатации (в установленном или в неустановленном районе плавания).

3.2 ПЕРВОНАЧАЛЬНЫЕ ОСВИДЕТЕЛЬСТВОВАНИЯ И ОСВИДЕТЕЛЬСТВОВАНИЯ, ПРОВОДИМЫЕ ПРИ ПОСТРОЙКЕ

3.2.1 К первоначальному освидетельствованию для принятия ПБУ/МСП под техническое наблюдение Регистра предъявляются ПБУ/МСП, построенные без технического наблюдения Регистра или органа, уполномоченного Регистром к замещению, или имеющие класс другого классификационного органа или иной компетентной организации. К первоначальному освидетельствованию предъявляются также ПБУ/МСП, ранее имевшие класс Регистра, но утратившие его по разным причинам.

3.2.2 Первоналичное освидетельствование ПБУ/МСП заключается в детальном осмотре, проверках, испытаниях и замерах, объем которых устанавливается в зависимости от возраста ПБУ/МСП, их технического состояния, наличия технической документации и документов признанных компетентных органов надзора. К первоначальному освидетельствованию предъявляются также ПБУ/МСП, ранее имевшие класс Регистра, но утратившие его по разным причинам.

3.2.3 При наличии Классификационного свидетельства признанного классификационного органа объем первоначального освидетельствования может быть уменьшен до объема промежуточного освидетельствования в соответствующей части II «Корпус».

3.2.4 При первоначальном освидетельствовании ПБУ/МСП должно быть проверено соответствие их корпусов, судовых устройств, оборудования и снабжения, механической установки и систем, электрического оборудования требованиям Правил ПБУ/МСП.

3.2.5 При первоначальном освидетельствовании корпуса ПБУ/МСП должно быть проверено соответствие его требованиям части II «Корпус» в отношении выбора материала, сварных соединений и обеспечения прочности в зависимости от района эксплуатации и всех эксплуатационных состояний, оговоренных в Инструкции по эксплуатации ПБУ/МСП.

При техническом освидетельствовании корпуса должны быть проверены величины износа конструктивных элементов, наличие повреждений, качество сварных соединений и обеспечение непроницаемости.

3.2.6 Владельцы ПБУ/МСП при первоначальном освидетельствовании корпуса ПБУ/МСП должны представить Регистру техническую документацию в объеме, необходимом для проверки выполнения требований части II «Корпус», а также документы классификационных и других компетентных органов надзора, заводские сертификаты и т. п.

Перечень технической документации представляется владельцем ПБУ/МСП Регистру при первоначальном освидетельствовании.

3.2.7 Оценка прочности конструкций корпуса ПБУ осуществляется:

у буровых судов — сравнением требуемых по части II «Корпус» размеров связей с размерами по чертежам с учетом обеспечения прочности связей от усилий, возникающих вследствие бурения, постановки на якоря и других операций. При необходимости может быть потребован сравнительный расчет момента сопротивления поперечного сечения корпуса бурового судна и площади поперечного сечения верхней палубы;

у самоподъемных, полупогружных и погруженных ПБУ/МСП — проверкой соответствия расчетов прочности конструкций корпуса ПБУ/МСП требованиям части II «Корпус».

При наличии класса признанного классификационного органа оценка прочности может ограничиваться выборочным примером, проверкой отдельных основных связей корпуса ПБУ, исходя из степени эквивалентности правил классификационного органа и правил Регистра.

Если по результатам освидетельствования установлено наличие значительного износа, инспектор должен потребовать проведения замеров остаточных толщин конструктивных элементов корпуса ПБУ для сравнения допустимых износов.
При первоначальном освидетельствовании ПБУ/МСП должно быть проверено соответствие требованиям Правил ПБУ/МСП состава объектов судовых устройств, оборудования и снабжения, их комплектности, конструкции, расположения и установки, а также регламентированных характеристик (мощности, производительности, скорости и т.д.).

Устройства, оборудование и снабжение буровых судов в полной мере должны удовлетворять требованиям части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов и специально оговоренным требованиям Правил ПБУ/МСП.

Выполнение требований Правил классификации и постройки морских судов и Правил ПБУ/МСП, а также надлежащее техническое состояние закрытий отверстий, рулевого, якорного, швартовного и буксирного устройств, устройств для подъема и спуска корпуса СПБУ, устройств для подъема и спуска погружных насосов забортной воды, средств защиты экипажа, помещений ПБУ/МСП и аварийного снабжения удостоверяются при первоначальном освидетельствовании. Должно быть проверено выполнение требований в отношении конструкции мачт и стоячего такелажа и обеспечения их прочности.

Обеспечение непотопляемости ПБУ во всех ее эксплуатационных состояниях на плаву проверяется при первоначальном освидетельствовании по результатам расчетов в соответствии с требованиями части V «Деление на отсеки».

Информация об аварийной остойчивости и посадке должна отражать все случаи состояния ПБУ, требуемые частью V «Деление на отсеки».

При первоначальном освидетельствовании самоподъемных и погружных ПБУ Регистру должны быть представлены расчеты устойчивости элементов корпусных конструкций ПБУ в рабочем состоянии.

Для обеспечения противопожарной защиты ПБУ/МСП при первоначальном освидетельствовании ПБУ/МСП проверяется выполнение требований Правил ПБУ/МСП для предусмотренного назначения объектов с учетом их конструкции и размеров в отношении:
- расположения и оборудования помещений, станции пожаротушения и пожарных постов;
- обеспечения безопасной эвакуации людей из жилых и служебных помещений;
- разделение корпусов жилых помещений (жилых модулей) на главные противопожарные вертикальные зоны и защиты помещений внутри противопожарных зон;
- применения соответствующих огнестойких и огнезадерживающих конструкций и закрытий отверстий в них;
- установки самозакрывающихся противопожарных дверей, их систем дистанционного управления и автоматики;
- закрытия помещений с избыточным давлением воздуха;
- закрытий дверей, шахт, вентиляционных каналов, колцевых пространств дымовых труб, световых люков и других отверстий машинных и насосных помещений и их приводов, а также заделки пространств за подволном панелями и зашивками;
- обеспечения обязательного состава активных средств борьбы с пожаром;
- технических характеристик и расположения механизмов систем, материала и конструкции трубопроводов, их соединений и арматуры, прокладки и крепления трубопроводов;
- для ПБУ/МСП, работающих при отрицательных температурах, наличие изоляции или средств, обеспечивающих незамерзание участков водоопожарной магистрали на открытых палубах;
- приводов дистанционного управления клапанами и механизмами систем;
- системы водозабора от погружных насосов забортной воды;
- комплектности противопожарного снабжения, запасных частей и инструментов;
- сигнализации обнаружения пожара и сигнализации предупреждения;
- контрольно-измерительных приборов;
- наличия выведенных в ЦПП, рулевой рубке и на видных местах в коридорах и вестибюлях планов размещения на судне постов управления, разделения судна на отсеки, систем пожаротушения и пожарной сигнализации, средств доступа в отсеки и путей эвакуации;
- наличия свидетельств и/или результатов анализов применяемых огнетушащих составов (пенообразователей и других составов) и их количества согласно проектным расчетам.

При первоначальном освидетельствовании механических установок и механизмов, а также котлов, теплообменных аппаратов и сосудов под давлением должно выполняться следующее.

Для обеспечения противопожарной защиты ПБУ/МСП при первоначальном освидетельствовании ПБУ/МСП проверяется выполнение требований Правил ПБУ/МСП для предусмотренного назначения объектов с учетом их конструкции и размеров в отношении:
- расположения и оборудования помещений, станции пожаротушения и пожарных постов;
- обеспечения безопасной эвакуации людей из жилых и служебных помещений;
- разделение корпусов жилых помещений (жилых модулей) на главные противопожарные вертикальные зоны и защиты помещений внутри противопожарных зон;
- применения соответствующих огнестойких и огнезадерживающих конструкций и закрытий отверстий в них;
- установки самозакрывающихся противопожарных дверей, их систем дистанционного управления и автоматики;
- закрытия помещений с избыточным давлением воздуха;
- закрытий дверей, шахт, вентиляционных каналов, колцевых пространств дымовых труб, световых люков и других отверстий машинных и насосных помещений и их приводов, а также заделки пространств за подволном панелями и зашивками;
- обеспечения обязательного состава активных средств борьбы с пожаром;
- технических характеристик и расположения механизмов систем, материала и конструкции трубопроводов, их соединений и арматуры, прокладки и крепления трубопроводов;
- для ПБУ/МСП, работающих при отрицательных температурах, наличие изоляции или средств, обеспечивающих незамерзание участков водоопожарной магистрали на открытых палубах;
- приводов дистанционного управления клапанами и механизмами систем;
- системы водозабора от погружных насосов забортной воды;
- комплектности противопожарного снабжения, запасных частей и инструментов;
- сигнализации обнаружения пожара и сигнализации предупреждения;
- контрольно-измерительных приборов;
- наличия выведенных в ЦПП, рулевой рубке и на видных местах в коридорах и вестибюлях планов размещения на судне постов управления, разделения судна на отсеки, систем пожаротушения и пожарной сигнализации, средств доступа в отсеки и путей эвакуации;
- наличия свидетельств и/или результатов анализов применяемых огнетушащих составов (пенообразователей и других составов) и их количества согласно проектным расчетам.

При первоначальном освидетельствовании механических установок и механизмов, а также котлов, теплообменных аппаратов и сосудов под давлением должно выполняться следующее.

Для обеспечения противопожарной защиты ПБУ/МСП при первоначальном освидетельствовании ПБУ/МСП проверяется выполнение требований Правил ПБУ/МСП для предусмотренного назначения объектов с учетом их конструкции и размеров в отношении:
К разделу вспомогательных механизмов относятся:
- погружные насосы забортной воды;
- механизмы подъема и спуска корпуса СПБУ;
- механизмы подъема и спуска погружных насосов забортной воды;
- вентиляторы закрытых помещений с избыточным давлением воздуха.

3.2.15.2 При первоначальном освидетельствовании техническому наблюдению Регистра подлежат теплообменные аппараты для бурового оборудования. При периодических освидетельствованиях этих аппаратов может применяться система надзора компетентных органов, определенная владельцем.

Воздухоохранители, воздухосборники в составе бурового оборудования должны предъявляться Регистру также после существенного ремонта или замен.

3.2.16 При первоначальном освидетельствовании систем автоматизированного и автоматического управления должно обеспечиваться следующее.

3.2.16.1 При первоначальном освидетельствовании систем автоматизированного и автоматического управления ПБУ/МСП в полной мере применяются положения 1.2.7 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации.

3.2.16.2 На всех ПБУ, независимо от наличия знака автоматизации, должны быть проверены:
- системы стабилизации ПБУ на месте стоянки;
- системы дистанционного управления подъемом и спуском корпуса ПБУ;
- системы дистанционного управления насосами и клапанами балласта осушительной системы (кроме СПБУ);
- системы защиты и АПС (контроля положения корпуса ПБУ в рабочем состоянии, контроля воздушной среды и вентиляции закрытых помещений с избыточным давлением воздуха).

3.2.17 При первоначальном освидетельствовании систем и трубопроводов должно выполняться следующее.

3.2.17.1 При первоначальном освидетельствовании ПБУ/МСП проверяется соответствие состава систем и трубопроводов техническому проекту и рабочей документации, а также систем и трубопроводов механической установки с арматурой и контрольно-измерительными приборами, их конструкции, расположения и установки требованиям Правил ПБУ/МСП. При этом освидетельствовании определяется техническое состояние систем и трубопроводов.

3.2.17.2 Все требования 3.2.17.1 относятся также к: гидравлическим приводам механизмов подъема и спуска корпуса ПБУ;
- гидравлическим приводам подъема и спуска колонн погружных насосов забортной воды;
- системе снабжения забортной водой СПБУ;
- манифольдам бурового раствора, тампонажного раствора и системе пневмотранспорта порошкообразных материалов;
- системе вентиляции закрытых помещений с избыточным давлением воздуха.

3.2.18 При первоначальном освидетельствовании электрического оборудования должно выполняться следующее.

3.2.18.1 При первоначальном освидетельствовании проверяется соответствие состава электрического оборудования ПБУ/МСП, его конструкции, расположения, установки, технических характеристик требованиям Правил ПБУ/МСП и определяется техническое состояние оборудования.

3.2.18.2 Электрическое оборудование бурового назначения техническому наблюдению Регистра не подлежит за исключением:
- электрического оборудования во взрывоопасных помещениях и пространствах;
- подключаемых кабелей;
- средств защиты, изоляции и заземляющих устройств.

Однако Регистр должен предъявить необходимые требования к любому электрическому оборудованию, если при освидетельствовании обнаружено, что действие или техническое состояние этого электрического оборудования может оказывать влияние на нормальную работу или привести к выходу из строя регламентированного электрического оборудования, а также представляет опасность для человеческой жизни или может служить причиной возникновения пожара или взрыва.

3.2.19 При постройке ПБУ/МСП подвергается освидетельствованию в объеме, предписанном Правилами ПБУ/МСП и Руководством по техническому наблюдению за постройкой ПБУ и МСП и изготовлением материалов и изделий, техническим проектом и рабочей документацией.

3.2.19.2 Датой освидетельствования ПБУ/МСП по окончании постройки является дата фактического завершения освидетельствования и выдача на ПБУ/МСП Классификационного свидетельства и судовых документов.

При первоначальном освидетельствовании ПБУ/МСП присваивается регистрационный номер и выдается Свидетельство о годности к плаванию для установок с флагом Российской Федерации.
3.3 ПЕРИОДИЧЕСКИЕ ОСВИДЕТЕЛЬСТВОВАНИЯ

3.3.1 Объем периодических освидетельствований и промежутки времени между ними должны соответствовать указанным в табл. 3.3 в той степени, насколько это применимо к данной ПБУ/МСП. Освидетельствование объектов буровых судов и аналогичных судовыми элементами ПБУ/МСП должно производиться в объеме и в сроки, указанные в табл. 2.1.1 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации.

3.4 ЕЖЕГОДНЫЕ ОСВИДЕТЕЛЬСТВОВАНИЯ

3.4.1 Корпус.
3.4.1.1 Обобщенный объем освидетельствований конструктивных элементов корпуса ПБУ, буровых судов и МСП при ежегодном освидетельствовании приведен в табл. 2.1.1 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации и табл. 3.3 настоящей части.

При этом освидетельствовании обязательному освидетельствованию изнутри подлежат помещения буровых и цементировочных насосов, цистерны химических реагентов для бурового и тампонажного растворов, цистерны для сбора нефти при опробовании скважины, помещения системы очистки бурового раствора и компрессорной станции.

Балластные танки подвергаются внутреннему освидетельствованию ежегодно после второго очередного освидетельствования в случае, если защитные окрасочные покрытия танков не наносились с постройки, а также в случае отсутствия в танках протекторной защиты.

При наличии в балластных танках защитного окрасочного покрытия либо протекторной защиты их освидетельствование изнутри производится при каждом втором ежегодном освидетельствовании после второго очередного.

При каждом третьем ежегодном освидетельствовании осмотру изнутри подлежат цистерны (отсеки) для хранения бурового раствора и шахты для прохода опорных колонн, колонн погружных насосов забортной воды и бурового инструмента с их подкреплениями.

Остальные конструкции корпуса ПБУ, буровых судов и морских стационарных платформ подлежат осмотру (C) только с наружной стороны. Осмотр их изнутри производится по усмотрению инспектора Регистра в случае необходимости.

3.4.1.2 Осмотр (C) опорных колонн СПБУ и стабилизирующих колонн с раскосами и распорами полупогружных и погружных ПБУ производится при каждом втором ежегодном освидетельствовании, совмещаемом с освидетельствованием подводной части ПБУ. При этом освидетельствовании должны быть особо тщательно осмотрены рейки и сварные швы соединения ресс между собой и с опорными колоннами, а также сварные швы раскосов и распоров в местах их соединения со стабилизирующими колоннами.

3.4.1.3 При освидетельствовании подводной части корпуса ПБУ, совмещаемом с ежегодным освидетельствованием, производится наружный осмотр конструкций и подводной части корпуса ПБУ. При этом для возможности освидетельствования конструктивные элементы опорных колонн, обшивка понтонов в местах осмотра, обшивка цистерн опорных колонн, стенки шахт для прохода опорных колонн, обшивка стабилизирующих колонн и их раскосы и распоры, элементы протекторной защиты должны быть очищены от грязи, ржавчины и старой непрочно держащейся краски.

3.4.1.4 При освидетельствовании подводной части СПБУ проверяется корпус установки в поднятном на опорных колоннах над водой состоянии с обеспечением возможности нормального доступа к находящимся над водой конструкциям. Подводная часть опорных колонн освидетельствуется с применением современных технических средств: подводного телевидения, подводной фотосъемки, специального оборудования и инструмента.

Освидетельствование подводной части полупогружных, погружных и буровых судов и МСП производится с применением современных технических средств, указанных выше.

Освидетельствование подводной части буровых судов производится согласно соответствующим требованиям 2.2.2 и табл. 2.1.1 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации.

3.4.2 Устройства, оборудование и снабжение.
3.4.2.1 На закрытия отверстий в корпусе ПБУ/МСП и буровых судов: закрытия горловин и люков на открытых участках палуб, наружные водонепроницаемые двери, иллюминаторы, световые и вентиляционные люки, крышки вентиляционных каналов — в полной мере распространяются положения табл. 2.1.1 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации.
Объем периодических освидетельствований

Условные обозначения:

- **О** — осмотр с обеспечением в случае необходимости доступа, вскрытия или демонтажа;
- **С** — наружный осмотр;
- **М** — замеры износов, зазоров, сопротивления изоляции и т. п.;
- **Н** — испытания давлением (гидравлические, пневматические);
- **Р** — проверка в действиях механизмов, оборудования и устройств, их наружный осмотр;
- **Е** — проверка наличия действующих документов и/или клейм соответствующих компетентных органов о поверке контрольных приборов, если они подлежат таковой.

<table>
<thead>
<tr>
<th>№ п.п.</th>
<th>Объект освидетельствования</th>
<th>Освидетельствование</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-е ежегодное</td>
<td>2-е ежегодное</td>
</tr>
<tr>
<td>1</td>
<td>Корпус 1</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Конструктивные элементы ПБУ, погружных установок и МСП² в подводной части (с наружной стороны):</td>
<td></td>
</tr>
<tr>
<td>.1</td>
<td>опорные колонны</td>
<td>С</td>
</tr>
<tr>
<td>.2</td>
<td>стабилизирующие колонны с раскосами и распорами</td>
<td>С</td>
</tr>
<tr>
<td>.3</td>
<td>башмаки, цистерны опорных колонн</td>
<td>С</td>
</tr>
<tr>
<td>.4</td>
<td>колонны погружных насосов забортной воды</td>
<td>С</td>
</tr>
<tr>
<td>.5</td>
<td>конструкции погружных установок и МСП², постоянно находящиеся в воде</td>
<td>С</td>
</tr>
<tr>
<td>.6</td>
<td>конструкции погружных установок и МСП², находящиеся в зоне переменных ватерлиний, ледовых нагрузок</td>
<td>С</td>
</tr>
<tr>
<td>1.2</td>
<td>Конструктивные элементы ПБУ, погружных установок и МСП² в надводной части (с наружной стороны):</td>
<td></td>
</tr>
<tr>
<td>.1</td>
<td>опорные колонны</td>
<td>С</td>
</tr>
<tr>
<td>.2</td>
<td>стабилизирующие колонны с раскосами и распорами</td>
<td>С</td>
</tr>
</tbody>
</table>
Продолжение табл. 3.3

<table>
<thead>
<tr>
<th>№ п.п</th>
<th>Объект освидетельствования</th>
<th>Освидетельствование</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-е ежегодное</td>
</tr>
<tr>
<td>.3</td>
<td>конструкции погружных ПБУ, МСП в районе швартовок, операций судов обслуживания и снабжения</td>
<td>С</td>
</tr>
<tr>
<td>.4</td>
<td>колонны погружных насосов забортной воды</td>
<td>С</td>
</tr>
<tr>
<td>.5</td>
<td>рабочие платформы погружных и полу-погружных ПБУ, МСП (настил и набор)</td>
<td>С</td>
</tr>
<tr>
<td>.6</td>
<td>шахты для прохода опорных колонн</td>
<td>С</td>
</tr>
<tr>
<td>.7</td>
<td>связи в настил пресиворной площадки (спайдерной палубы) с опорами соединения с корпусом ПБУ, МСП</td>
<td>С</td>
</tr>
<tr>
<td>.8</td>
<td>колонны для передвижения портала буровой вышки</td>
<td>О</td>
</tr>
<tr>
<td>.9</td>
<td>вертолетная площадка и узлы соединения ее с корпусом</td>
<td>С</td>
</tr>
<tr>
<td>.10</td>
<td>фундаменты под буровое оборудование и под гидравлики систем натяжения направляющих канатов и морского стояка</td>
<td>С</td>
</tr>
<tr>
<td>.11</td>
<td>фундаменты под оборудование для подводно-технических работ</td>
<td>С</td>
</tr>
<tr>
<td>.12</td>
<td>фундаменты под механизмы подъема и спуска колонн погружных насосов забортной воды</td>
<td>С</td>
</tr>
<tr>
<td>.13</td>
<td>конструктивные элементы ПБУ, МСП в надводной и подводной частях (с внутренней стороны отдельных элементов или корпуса):</td>
<td>С</td>
</tr>
<tr>
<td>.1</td>
<td>опорные колонны</td>
<td>О</td>
</tr>
<tr>
<td>.2</td>
<td>цистерны опорных колонн</td>
<td>С</td>
</tr>
<tr>
<td>.3</td>
<td>стабилизирующие колонны, отсеки и цистерны стабилизирующих колонн</td>
<td>С</td>
</tr>
<tr>
<td>.4</td>
<td>шахты для прохода опорных колонн, колонн погружных насосов забортной воды и бурового инструмента с их подкреплениями</td>
<td>С</td>
</tr>
<tr>
<td>.5</td>
<td>подкрепления фундаментов под буровое оборудование и под гидравлики систем натяжения направляющих канатов и морского стояка</td>
<td>С</td>
</tr>
<tr>
<td></td>
<td>Подкрепления фундаментов под оборудование для подводно-технических работ</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| .6| Подкрепления фундаментов под механизмы подъема и спуска колонн погружных насосов забортной воды | C | C | О
| .7| Цистерны (отсеки) бурового раствора | C | С | ОН
| .8| Цистерны химических реагентов для бурового и тампонажного растворов | С | С | ОН
| .9| Цистерны для сбора нефти при опробовании скважины | С | С | ОН
| .10| Цистерны для сбора нефти | С | С | ОН
| .11| Помещения бурых и цементировочных насосов | С | С | О
| .12| Помещение системы очистки бурового раствора | С | С | О
| .13| Помещение компрессорной станции | С | С | О
| .14| Устройства, оборудование и снабжение | | | |
| 2.1| Закрытие отверстий: | | | |
| .1| Цистерны опорных колонн | | | |
| .2| Балластных цистерн погружных и полупогружных ПБУ, СПБУ, МСП | | | |
| .3| Цементировки скважин | | | |
| .4| Для прохода кабелей катодной защиты | | | |
| .5| Для осмотра погружных насосов забортной воды | | | |
| 2.2| Системы якорного позиционирования, динамического позиционирования ПБУ | С | С | ОР
| 2.3| Устройства подъема и спуска корпуса СПБУ | С | С | ОР
| 2.4| Фиксирующие устройства СПБУ | С | С | ОР
| 2.5| Устройства подъема и спуска погружных насосов забортной воды | С | С | ОР
| 3.1| Закрытые помещения с избыточным давлением воздуха и закрытия отверстий в них | С | С | ОРН
| 3.2| Система водозабора от системы снабжения ПБУ, МСП забортной водой | P | P | ОР
| 3.3| Системы контроля воздушной среды | P | P | ОР
Часть I. Классификация

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>O</th>
<th>O</th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>OМ³</th>
<th>OМ³</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OH</td>
<td>OH</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OМ³H</td>
<td>OМ³H</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OH</td>
<td>O</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OМ³H</td>
<td>OМ³H</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>O</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OМ³H</td>
<td>OМ³H</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>O</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OМ³H</td>
<td>OМ³H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>OP</th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OP</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OP</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OP</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OP</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OP</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OP</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OP</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>OP</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>OPH</th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>OPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>OP</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>OP</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>OPH</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>OP</td>
<td></td>
</tr>
</tbody>
</table>
Продолжение табл. 3.3

<table>
<thead>
<tr>
<th>№ п.п</th>
<th>Объект освидетельствования</th>
<th>Освидетельствование</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-е ежегодное</td>
</tr>
<tr>
<td>3.4</td>
<td>Оборудование вертолетного комплекса</td>
<td>C</td>
</tr>
<tr>
<td>3.5</td>
<td>Чертежи и схемы</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>Механическая установка</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Погруженное оборудование</td>
<td>P</td>
</tr>
<tr>
<td>4.2</td>
<td>Механизмы подъема и спуска корпуса СПБУ</td>
<td>P7</td>
</tr>
<tr>
<td>4.3</td>
<td>Механизмы подъема и спуска погруженного оборудования</td>
<td>P</td>
</tr>
<tr>
<td>5</td>
<td>Сосуды и аппараты под давлением</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Сосуды под давлением</td>
<td>P</td>
</tr>
<tr>
<td>5.2</td>
<td>Предохранительные клапаны</td>
<td>P</td>
</tr>
<tr>
<td>6</td>
<td>Автоматизация</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Системы (совместно с АПС и защитой):</td>
<td></td>
</tr>
<tr>
<td>6.1.1</td>
<td>контроля положения корпуса СПБУ на опорных колоннах</td>
<td>P</td>
</tr>
<tr>
<td>6.1.2</td>
<td>автоматического и дистанционного управления подъемом и спуском корпуса СПБУ</td>
<td>P7</td>
</tr>
<tr>
<td>6.1.3</td>
<td>автоматизированного (автоматического) управления клапанами и устройствами балластной системы</td>
<td>P</td>
</tr>
<tr>
<td>7</td>
<td>Системы и трубопроводы</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Система гидравлических приводов механизмов подъема и спуска корпуса СПБУ</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7.2</td>
<td>Система гидравлических приводов подъема и спуска колонн погружных насосов забортной воды</td>
<td>Р</td>
</tr>
<tr>
<td>7.3</td>
<td>Система снабжения забортной водой СПБУ</td>
<td>Р</td>
</tr>
<tr>
<td>7.4</td>
<td>Система вентиляции закрытых помещений с избыточным давлением воздуха</td>
<td>Р</td>
</tr>
<tr>
<td>7.5</td>
<td>Система аварийного сброса бурового раствора</td>
<td>О</td>
</tr>
<tr>
<td>7.6</td>
<td>Балластно-осушительная система понтонов полупогружных и погружных ПБУ</td>
<td>Р</td>
</tr>
</tbody>
</table>

8 Электрическое оборудование

8.1 Электрические гребные установки | Р | Р | Р | Р | ОЕМР |

8.2 Электроприводы устройств и механизмов ответственного назначения, а также их контрольная, защитная, пусковая и регулировочная аппаратура:

8.2.1 механизмов подъема и спуска корпуса СПБУ | Р | Р | Р | Р | ОМР |

8.2.2 механизмов подъема и спуска забортного трубопровода и погружных насосов забортной воды | Р | Р | Р | Р | ОМР |

8.2.3 погружных насосов забортной воды | Р | Р | Р | Р | ОМР |

8.2.4 устройств аварийного селективного отключения потребителей | Р | Р | Р | Р | ОМР |

8.3 Кабельная сеть

Защита кабелей (дополнительная) через водонепроницаемые и противопожарные переборки и палубы | С | С | С | С | О |

8.4 Устройства сигнализации:

8.4.1 контроля воздушной среды | Р | Р | Р | Р | ОМР |

8.4.2 контроля предельных параметров механизмов и устройств подъема и спуска корпуса СПБУ | Р | Р | Р | Р | ОМР |

8.4.3 положения дистанционно-управляемых клапанов балластной и осушительной систем | Р | Р | Р | Р | ОМР |

8.4.4 контроля уровня жидкости в отсеках, люльчатых колодцах и т. п. | Р | Р | Р | Р | ОМР |

8.4.5 контроля давления воздуха в системах вентиляции закрытых помещений и оборудования, находящихся под избыточным давлением | Р | Р | Р | Р | ОМР |
					P	P	P	P	P	OP	P	P	P	P	P	OP	
					P	P	P	OP	P	P	P	P	OP	P	P	P	OP
					P	P	P	OP	P	P	P	P	OP	P	P	P	OP
O	O	O	O	O	O	O	O	O	O	O	OP	P	P	P	P	OP	
P	P	P	P	P	OEMP	P	P	P	P	P	P	P	P	P	OEMP		
					P^7	P^7	P^7	OMP	P^7	P^7	P^7	OMP	P^7	P^7	P^7	OMP	
P	P	P	P	P	OMP	P	P	P	P	P	P	P	P	P	OMP		
P	P	P	P	P	OMP	P	P	P	P	P	P	P	P	P	OMP		
C	C	C	C	C	O	C	C	C	C	C	C	O	C	C	C	O	
P	P	P	P	P	OMP	P	P	P	P	P	P	OMP	P	P	P	OMP	
P	P	P	P	P	OMP	P	P	P	P	P	P	OMP	P	P	P	OMP	
P	P	P	P	P	OMP	P	P	P	P	P	P	OMP	P	P	P	OMP	
P	P	P	P	P	OMP	P	P	P	P	P	P	OMP	P	P	P	OMP	
Окончание табл. 3.3

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Объект освидетельствования</th>
<th>Освидетельствование</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-е ежегодное</td>
<td>2-е ежегодное</td>
</tr>
<tr>
<td>6</td>
<td>о неисправностях в системе вентиляции взрывоопасных помещений</td>
<td>Р</td>
</tr>
<tr>
<td>7</td>
<td>контроля уровня воды в цистернах запаса забортной воды</td>
<td>Р</td>
</tr>
<tr>
<td>8</td>
<td>контроля положения корпуса ПБУ</td>
<td>Р</td>
</tr>
</tbody>
</table>

П р и м е ч а н и е. Во время ежегодных освидетельствований производятся измерения сопротивления изоляции кабельной сети и электрических механизмов и устройств ответственного назначения, кабельной сети и электрооборудования, установленного во взрывоопасных помещениях и пространствах. Во время очередных освидетельствований производятся измерения сопротивления изоляции всей кабельной сети и всех стационарно установленных электрических механизмов и устройств.

1 Объем освидетельствования подводной части корпуса, винторулевого устройства буровых судов должен выполняться дважды в течение 5 лет, однако период между доковыми освидетельствованиями не должен превышать 36 месяцев.

2 В обоснованных случаях освидетельствование подводной части СПБУ допускается производить в приводненном на опорных колоннах над водой положении корпуса при условии обеспечения нормального доступа к находящимся над водой конструктивным элементам и при представлении положительных результатов водолазного осмотра находящихся в воде частей опорных колонн.

3 Для морских стационарных платформ периодичность освидетельствований подводной части фиксируется в Программе освидетельствований — см. 3.1.2.1.

4 Освидетельствование нижних участков опорных колонн, находящихся обычно при рабочем состоянии ПБУ в грунте, как правило, должно производиться при доковом освидетельствовании. В обоснованных случаях освидетельствование допускается при положении корпуса ПБУ на плаву.

5 Объем периодических освидетельствований понтонов полупогруженных, самоподъемных и погруженных ПБУ в подводной части с наружной стороны предусмотрен при промежуточном освидетельствовании. Промежуточное освидетельствование может выполняться с помощью водолазного освидетельствования. После первого и второго очередных освидетельствований замена промежуточного освидетельствования на водолазное возможна, если балластные танки окрашены.

6 Замеры остаточной толщины, начиная с третьего очередного освидетельствования, должны производиться при всех очередных освидетельствованиях ПБУ в объеме, определенном инспектором в зависимости от технического состояния.

7 Техническому наблюдению Регистра подлежат только цистерны, встроенные в корпус ПБУ.

8 При ежегодном освидетельствовании проверяется готовность к действию, исправность предохранительных, защитных и блокировочных устройств, систем дистанционного (автоматического) управления и сигнализации. Проверка подъема и спуска ПБУ может не производиться.

9 Проверка наличия документа, выданного компетентным органом, подтверждающего регламентированные характеристики датчиков контроля воздушной среды при очередном освидетельствовании.
3.4.2.2 При ежегодном освидетельствовании наружному осмотру (С) подлежат закрытия таких специфичных для ПБУ отверстий, как: закрытия отверстий для прохода кабелей катодной защиты, закрытия горловин для осмотра погружных насосов забортной воды и закрытия отверстий сброса избыточных вод в цистерне для хранения забортной воды.

3.4.2.3 Рулевое устройство буровых судов и самоходных ПБУ подлежит ежегодному освидетельствованию в объеме, предусмотренном в табл. 2.1.1 и требованиями 2.2.3.1 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации.

3.4.2.4 Якорное устройство ПБУ, МСП, буровых судов (включая систему позиционирования) подлежит ежегодному освидетельствованию в объеме, предусмотренном в табл. 2.1.1 и требованиями 2.2.3.2 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации и табл. 3.3 настоящей части.

3.4.2.5 Швартовное устройство ПБУ/МСП, буровых судов подлежит ежегодному освидетельствованию в объеме, предусмотренном в табл. 2.1.1 и требованиями 2.2.3.3 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации.

3.4.2.6 Буксирное устройство ПБУ, буровых судов подлежит ежегодному освидетельствованию в объеме, предусмотренном в табл. 2.1.1 (пп. 2.5, 2.5.3, 2.5.4) и требованиями 2.2.3.4.1 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации. Устройство для подачи и выбиравания буксирного каната, входящее в состав буксирного устройства ПБУ, должно быть освидетельствовано ежегодно в работе по прямому назначению.

3.4.2.7 Устройство для подъема и спуска корпуса СПБУ подлежит ежегодному освидетельствованию в сборе. Осмотр допускается производить как в походном, так и в рабочем состоянии ПБУ.

3.4.2.8 Устройство для подъема и спуска погружных насосов забортной воды подлежит освидетельствованию в сборе при ежегодном освидетельствовании ПБУ. При этом одно из автономных устройств должно быть предъявлено к осмотру в крайнем верхнем положении.

3.4.2.9 Средства защиты экипажа — переходные мостики и подпалубные переходы, лестничные ограждения на открытых палубах и площадках, фальшборты, а также судовые помещения — посты управления, жилье, служебные помещения, помещения буровых и пемигировочных насосов, коридоры, проходы, двери и трапы подлежат освидетельствованию при ежегодном освидетельствовании ПБУ, буровых судов и МСП.

3.4.2.10 Аварийное снабжение подлежит освидетельствованию при ежегодном освидетельствовании ПБУ, буровых судов и МСП.

3.4.3 Противопожарная защита.

3.4.3.1 Объем и периодичность освидетельствований объектов противопожарной защиты при ежегодных освидетельствованиях ПБУ, буровых судов и МСП определяется в соответствии с разд. 3 табл. 2.1.1 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации.

3.4.3.2 Специфичные для ПБУ объекты противопожарной защиты: закрытые помещения с избыточным давлением воздуха, закрытые помещения с избыточным давлением воздуха и закрытия отверстий в них — подлежат ежегодному освидетельствованию наружному осмотром (С); система водохозяйства от погружных насосов забортной воды при ежегодном освидетельствовании проверяется в действии; система ограждения воздушной среды при ежегодном освидетельствовании проверяется в действии; оборудование вертолетного комплекса проверяется наружным осмотром.

3.4.4 Механические установки.

3.4.4.1 Обобщенный объем освидетельствований механической установки ПБУ, буровых судов и МСП при ежегодном освидетельствовании приведен в табл. 2.1.1 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации и табл. 3.3 настоящей части.

3.4.4.2 При проверке главных двигателей в действиях во время ежегодного освидетельствования ПБУ и буровых судов проверяется годность двигателей к действию, исправность маневровых и пусковых устройств, устройств дистанционного управления, навешенных и приводных механизмов. Вывод главных двигателей на режим по обмоткам, нагрузке или другим параметрам в этом случае может не производиться.

3.4.4.3 Объем освидетельствований валопровода и движителя при ежегодном освидетельствовании приведен в табл. 2.1.1 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации.

3.4.4.4 К вспомогательным механизмам ПБУ, буровых судов, МСП также относятся: погружные насосы забортной воды, механизмы подъема и спуска корпуса ПБУ, механизмы подъема и спуска колонн погружных насосов, вентиляторы закрытых помещений с избыточным давлением воздуха.
Объем ежегодных освидетельствований указанных вспомогательных механизмов приведен в табл. 3.3 настоящей части.

3.4.4.4.1 При ежегодном освидетельствовании механизмов подъема и спуска корпуса ПБУ проверяются в действии насосы переменной производительности, а также действие конечных выключателей путем ручного воздействия. Производится также готовность к действию и исправность предохранительных, защитных и блокировочных устройств, систем дистанционного (автоматизированного) управления и сигнализации.

3.4.4.4.2 При ежегодном освидетельствовании механизмов подъема и спуска колонн погружных насосов забортной воды допускается их проверку в действии без нагрузки, т. е. без подъема и спуска колонн. При этом действие конечных выключателей проверяется путем ручного воздействия.

3.4.4.5 Обобщенный объем ежегодных освидетельствований котлов, теплообменных аппаратов и сосудов под давлением приведен в табл. 2.1.1 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации и табл. 3.3 настоящей части.

3.4.4.6 Объем освидетельствования систем автоматизированного и автоматического управления при ежегодном освидетельствовании ПБУ, буровых судов и морских стационарных платформ приведен в табл. 2.1.1 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации и табл. 3.3 настоящей части.

3.4.4.6.1 При ежегодном освидетельствовании оборудования автоматизации также должна быть произведена проверка:

- системы дистанционного (автоматизированного) управления подъемом и спуском корпуса ПБУ путем имитации, проводимой в соответствии с инструкцией по эксплуатации на подъемное устройство. При этом производится проверка соответствующей сигнализации и индикации на главном пульте управления (ГПУ) ПБУ;

- оборудования дистанционного (автоматизированного) управления насосами и клапанами балластной и осушительной систем путем нескольких пусков из ГПУ ПБУ. Одновременно производится проверка соответствующей сигнализации и индикации;

- систем защиты и аварийно-препедельной сигнализации (АПС) — контроля положения корпуса ПБУ, контроля воздушной среды и вентиляции закрытых помещений с избыточным давлением воздуха путем имитации условий срабатывания задающих приборов.

3.4.4.6.2 На всех ПБУ, независимо от наличия знака автоматизации, должны быть проверены:

- системы дистанционного управления подъемом и спуском корпуса ПБУ;

- системы дистанционного управления насосами и клапанами балластно-осушительной системы (кроме СПБУ);

- системы защиты и АПС (контроля положения корпуса в рабочем состоянии, контроля воздушной среды и вентиляции закрытых помещений с избыточным давлением воздуха);

3.4.4.7 Обобщенный объем освидетельствований систем и трубопроводов при ежегодном освидетельствовании ПБУ, буровых судов и МСП приведен в табл. 2.1.1 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации и табл. 3.3 настоящей части.

3.4.4.8 При ежегодном освидетельствовании систем и трубопроводов проверка в действии систем должна совмещаться с проверкой в действиях обслуживавших их насосов, вентиляторов, гидромоторов, теплообменных аппаратов и сосудов под давлением.

3.4.4.9 Холодильные установки ПБУ подлежат техническому наблюдению как неклассифицированные холодильные установки. Объем ежегодных освидетельствований холодильных установок приведен в табл. 3.3 настоящей части.

3.4.5 Электрическое оборудование.

3.4.5.1 Обобщенный объем ежегодного освидетельствования электрического оборудования ПБУ, буровых судов и морских стационарных платформ приведен в табл. 2.1.1 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации и табл. 3.3 настоящей части.

3.4.5.2 Электрическое оборудование бурового назначения техническому наблюдению Регистра не подлежит, за исключением:

- электрического оборудования во взрывозащищенном исполнении, размещенного в взрывоопасных помещениях и пространствах;

- подключаемых кабелей;

- средств защиты, изоляции и заземляющих устройств.

Указанное электрооборудование подлежит ежегодному освидетельствованию. Необходимые требования должны быть предъявлены, если при освидетельствовании указанного оборудования обнаружено, что действие или техническое состояние этого оборудования представляет опасность для человеческой жизни или может служить причиной возникновения пожара или взрыва.

При ежегодном освидетельствовании указанного оборудования проверяется:
исполнение всего электрического оборудования, размещенного во взрывоопасных зонах (во взрывоопасных помещениях и пространствах должно отсутствовать электрооборудование не-взрывозащищенного исполнения);
содержание всех кабельных трактов, проложенных во взрывоопасных помещениях и пространствах;
содержание кабельных трактов на подвижных конструкциях ПБУ (порталы, вышки, краны и т.д.) и их защитных устройств;
содержание средств защиты и заземляющих устройств электрического оборудования бурового комплекса, в том числе буровой вышки и подмачечного портала;
наличие и состояние заземления манифольдов бурового и тампонажного растворов, а также трубопроводов пневмопротранспорта порошковых материалов и шнекротрансляционной системы.

3.4.5.3 При ежегодном освидетельствовании электрической гребной установки ее проверка в действиях может быть произведена без швартовных и ходовых испытаний. Однако во всех случаях должны быть проверены: возможность управления гребными электрическими двигателями со всех постов управления; пуск и реверс гребных электрических двигателей на минимальной скорости вращения; работа гребной установки на всех предусмотренных схемах режимов; действие блокировок и сигнализации, предусмотренных в схеме электродвижения.

3.4.5.4 При ежегодном освидетельствовании электроприводов механизмов подъема и спуска корпуса ПБУ при нахождении ПБУ на точке бурения проверка в действии приводов может быть произведена путем проверки электрических двигателей на холостом ходу и опробованием схемы управления по всем программам ручным воздействием на конечные выключатели.

3.4.5.5 При ежегодном освидетельствовании электроприводов механизмов подъема и спуска корпуса ПБУ с системой управления электромагнитами гидроподъемников проверке подлежит:
состояние электрических двигателей;
состояние электромагнитных катушек;
состояние коммутационной аппаратуры (выключатели, переключатели, реле и т.д.);
датчиков, конечных выключателей.

3.4.5.6 При ежегодном освидетельствовании сигнализации (о повышении концентрации взрывоопасных газов, о неисправностях в системе подъема и спуска корпуса ПБУ, в системе вентиляции взрывоопасных помещений, контроле уровней жидкости в танках, дымах, контроля давления воздуха продуваемого электрического оборудования) проверяется:
состояние коммутаторов сигнализации, датчиков;
сварочный звук и света у приборов;
всех элементов, входящих в систему сигнализации.

3.5 ОЧЕРЕДНЫЕ ОСВИДЕТЕЛЬСТВОВАНИЯ

3.5.1 При очередном освидетельствовании буровой установки ее корпус, устройства, оборудование и снабжение, механическая установка, электрическое оборудование должны быть проверены в отношении сохранения ими соответствия требованиям правил, регламентированных показателей и технических характеристик, состава, конструкции, расположения и установки объектов технического наблюдения и в отношении их технического состояния.

3.5.2 Объем очередного освидетельствования специфичных для буровых установок объектов технического наблюдения устанавливается Регистром на основании табл. 3.3 настоящей части. Для соответствующего очередного освидетельствования в зависимости от возраста установки и с учетом ее технического состояния.

3.5.3 Предъявление к очередному освидетельствованию включает, как правило, освидетельствование буровой установки в доке.

3.5.4 Определение технического состояния конструктивных элементов корпуса в отношении величин износа, наличия повреждений и обеспечения непроницаемости в необходимых случаях должно дополняться расчетами влияния износа и повреждений на обеспечение общей и местной прочности.

3.5.5 При всех очередных освидетельствованиях конструктивных элементов, специфичных для ПБУ, подлежат детальному осмотру наружу: стабилизирующие колонны с раскосами и распорами; колонны погружных насосов забортной воды; рабочие платформы, порталы погружных колонн; порталы под буровую вышку с узлами крепления «по-походному», связи и настил превенторной площадки (спайдерной палубы) с узлами соединения с корпусом; вертолетная площадка и узлы ее соединения с корпусом;
Правила классификации, постройки и оборудования ПБУ/МСП

фундаменты под буровое оборудование, под лебедки системы натяжения направляющих каналов и морского стояка; фундаменты под оборудование для подводнотехнических работ и под механизмы подъема и спуска колонии погружных насосов забортной воды.

3.5.6 Со второго очередного освидетельствования подлежат детальному осмотру опорные колонны; башмаки опорных колонн; шахты для прохода опорных колонн; полозья для передвижения портала буровой вышки. При первом очередном освидетельствовании производится только внешний осмотр.

3.5.7 При всех очередных освидетельствованиях подлежат детальному осмотру изнутри опорные (цилиндрической формы) и стабилизирующие колонны; шахты опорных колонн, колонии погружных насосов забортной воды и бурового инструмента с их подкреплениями; подкрепления фундаментов под буровое оборудование и под лебедки систем натяжения направляющих каналов и морского стояка; подкрепления фундаментов оборудования для подводнотехнических работ, под механизмы подъема и спуска колонии погружных насосов забортной воды, помещений буровых и цементирующих насосов, системы очистки бурового раствора и компрессорной станции.

3.5.8 При всех очередных освидетельствованиях подлежат детальному осмотру и гидравлическим испытаниям цистерны бурового раствора; химических реагентов для бурового и тампонажного растворов. Для сбора нефти при спуске колонна, которая входит в состав бурового оборудования, подлежит детальному осмотру и гидравлическим испытаниям через 10 лет, а недоступные для полного внутреннего освидетельствования — через 5 лет, вместе с предохранительными клапанами.

3.5.9 Испытания цистерн и отсеков производятся наливом воды на высоту до верха воздушной трубы.

3.5.10 Указанные в 3.5.5 — 3.5.8 конструкции, кроме рабочих платформ, стабилизирующих колонны с раскосами и распорами, фундаментов под буровое оборудование и под лебедки систем натяжения направляющих каналов и морского стояка, должны быть проверены на отсутствие значительных износов, начиная с третьего очередного освидетельствования. Замеры остаточных толщин должны выполняться предприятиями, имеющими Свидетельство о признании. Величины допускаемых износов определяются расчетами проектной организации и согласовываются с Регистром.

3.5.11 При всех очередных освидетельствованиях закрытия отверстий: цистерны опорных колонн; приемки балласта в понтоны, цементирования скважин; для прохода кабелей катодной защиты, для осмотра погружных насосов забортной воды — подлежат детальному осмотру и гидравлическим испытаниям, а закрытия отверстий для сброса избытков морской воды в цистерне морской воды — начиная с третьего очередного освидетельствования.

3.5.12 При всех очередных освидетельствованиях подлежат детальному осмотру и проверке в действии по прямому назначению: устройства подъема и спуска корпуса СПБУ; устройства подъема и спуска погружных насосов забортной воды; фиксирующих устройств СПБУ.

3.5.13 Помещения с избыточным давлением воздуха и закрытия отверстий в них должны быть осмотрены и проверены на способность обеспечивать нужное избыточное давление при каждом очередном освидетельствовании.

3.5.14 Система водозабора от системы снабжения ПБУ забортной водой при каждом очередном освидетельствовании должна быть проверена в действия и осмотрена. Система контроля воздушной среды должна быть осмотрена, проверена в действии и испытана пробным давлением воздуха.

3.5.15 При каждом очередном освидетельствовании подлежат детальному осмотру противопожарное оборудование и снабжение вертолетной площадки.

3.5.16 При каждом очередном освидетельствовании подлежат детальному осмотру и проверке в действии: погружные насосы забортной воды; механизмы подъема и спуска корпуса СПБУ; механизмы подъема и спуска погружных насосов забортной воды.

3.5.17 Сосуды под давлением для систем водоотделения имеют несгораемую крышку, а наружная поверхность их арматуры должна быть покрытая наружным и внутренним освидетельствованно при каждом очередном освидетельствовании, а также гидравлическим испытаниям через 10 лет, а недоступные для полного внутреннего освидетельствования — через 5 лет, вместе с предохранительными клапанами.

3.5.18 Системы контроля положения корпуса СПБУ; автоматического и дистанционного управления подъемом и спуском корпуса СПБУ; автоматизированного управления клапанами и устройствами балластной системы совместно с АПС и защитой должны подвергаться детальному освидетельствованию, а система контроля положения корпуса — через 5 лет, вместе с предохранительными клапанами.

3.5.19 При каждом очередном освидетельствовании должны быть подвергнуты детальному осмотру и проверке в действии системы и трубопроводы: гидравлических приводов механизмов подъема и спуска корпуса СПБУ и колонн погружных насосов забортной воды; систем снабжения забортной водой СПБУ; систем про-
Часть I. Классификация

33
dувания и заполнения водой цистерн опорных колонн; систем вентиляции помещений с избыточным давлением воздуха; систем аварийного сброса бурового раствора.

3.5.20 При каждом очередном освидетельствовании подлежат детальному осмотру, проверке в действии и замерам изоляции: электрическое оборудование механизмов подъема и спуска корпуса СПБУ и погружных насосов забортной воды самих насосов, а также устройств аварийного селективного отключения потребителей.

3.5.21 При каждом очередном освидетельствовании подлежат детальному осмотру, проверке в действии и замерам изоляции устройства сигнализации: контроля воздушной среды, контроля предельных параметров механизмов и устройств подъема и спуска корпуса СПБУ, положения дистанционно управляемых клапанов балластной и осушительной систем, контроля уровня жидкости в отсеках и льяльных колодцах; контроля давления воздуха в системах вентиляции помещений с избыточным давлением, о неисправностях в системе вентиляции взрывоопасных помещений; контроля уровня воды в цистерне запаса забортной воды, контроля положения корпуса ПБУ.

3.6 СИСТЕМА НЕПРЕРЫВНОГО ОСВИДЕТЕЛЬСТВОВАНИЯ

3.6.1 По заявке судовладельца система периодических освидетельствований ПБУ/МСП, находящихся в классе Регистра, может быть дополнена системой непрерывного освидетельствования, предусматривающей перенесение определенных освидетельствований объектов, предписанных при очередном освидетельствовании для возобновления класса на период между очередными освидетельствованиями ПБУ/МСП по заранее разработанному судовладельцем и согласованному с Регистром плану предъявления ПБУ/МСП в установленные сроки.

3.6.2 Система непрерывного освидетельствования применяется (совместно или раздельно) к объектам корпуса ПБУ/МСП за период между очередными освидетельствованиями ПБУ/МСП по заранее разработанному судовладельцем и согласованному с Регистром плану предъявления ПБУ/МСП в установленные сроки.

3.6.3 Система непрерывного освидетельствования не применяется к освидетельствованию ПБУ/МСП в соответствии с международными конвенциями и соглашениями, а также к освидетельствованиям гребных валов и двигателей, паровых котлов, сосудов и аппаратов под давлением, паропроводов и воздухопроводов.

3.6.4 Применение системы непрерывного освидетельствования не изменяет предписанных системой периодических освидетельствований, объема и сроков проведения ежегодных освидетельствований ПБУ/МСП, порядка и срока очередного освидетельствования, а также порядка предъявления ПБУ/МСП к внеочередному освидетельствованию.

3.6.5 Применение к ПБУ/МСП системы непрерывного освидетельствования удостоверяется соответствующей отметкой в Классификационном свидетельстве и приложением к нему Учетного листа-плана, содержащего перечень объектов наблюдения, краткую характеристику освидетельствования и плановые сроки предъявления.

3.6.6 Характер и объем освидетельствований объектов, распределяемых на период между очередными освидетельствованиями, и порядок их проведения должны соответствовать требованиям, предписанным при очередном освидетельствовании для возобновления класса ПБУ/МСП соответственно возрасту.

3.6.7 Период между последовательными освидетельствованиями объекта по системе непрерывного освидетельствования должен превышать срок действия класса.

3.6.8 ПБУ/МСП, к которой применяется система непрерывного освидетельствования, должна предъявляться для освидетельствования соответствующих объектов в установленные Учетным листом-планом сроки. Проведение освидетельствований удостоверяется отметкой в Учетном листе-плане, подтверждающей действия класса, если в Классификационном свидетельстве не сделан отметок противного характера.

3.6.9 Объекты могут быть предъявлены досрочно (но не более чем за три месяца). По согласованию с Регистром освидетельствование может быть отсрочено в пределах срока действия класса на объект, если в Классификационном свидетельстве не сделан отметок противного характера.

3.6.10 Если объект не предъявлен к предписанному освидетельствованию в установленный Учетным листом-планом срок без согласования с Регистром отсрочки освидетельствования, Регистр может применять соответствующие санкции для прекращения эксплуатации этого объекта, вывода ПБУ/МСП из системы непрерывного освидетельствования с соответствующим сокращением срока предъявления к очередному освидетельствованию, приостановления класса.

3.6.11 Некоторые виды освидетельствований объектов по системе непрерывного освидетельствования...
Правила классификации, постройки и оборудования ПБУ/МСП

вования по согласованию с Регистром могут осуществляться старшим механиком ПБУ/МСП и могут быть засчитаны как непрерывное освидетельствование при условии подтверждающего освидетельствования инспектором Регистра.

3.6.12 Завершающим этапом непрерывного освидетельствования является очередное освидетельствование ПБУ/МСП для возобновления класса, проводимое в срок, предписанный по системе периодических освидетельствований. В объем этого освидетельствования не включаются освидетельствования объектов, выполненные ранее по Учетному листу-плану, однако при наличии оснований инспектор может потребовать повторного освидетельствования этих объектов или их частей.

3.6.13 При этом освидетельствовании судовладелец представляет в инспекцию Регистра новый Учетный лист-план на последующий период с учетом сроков фактического предъявления объектов в предшествующем периоде.

3.6.14 Подробности применения системы непрерывного освидетельствования изложены в Инструкции по непрерывному освидетельствованию.

3.7 ОСВИДЕТЕЛЬСТВОВАНИЯ ДЛЯ ВЫДАЧИ КОНВЕНЦИОННЫХ ДОКУМЕНТОВ

3.7.1.1 Так как требования Правил ПБУ/МСП удовлетворяют требованиям указанного Кодекса, то ПБУ/МСП, построенные в соответствии с Правилами ПБУ/МСП и имеющие класс Регистра, могут получить Свидетельство о безопасности плавучей буровой установки при условии выполнения первоначального освидетельствования сроком на 5 лет.

3.7.1.2 В отношении спасательных средств и снабжения ПБУ/МСП должны удовлетворять требованиям СОЛАС-74/78 в том объеме, который включен в указанный Кодекс. Если не оговорено иное, то в терминах по спасательным средствам следует использовать термины, определенные в Пр. III/3 СОЛАС-74/78. Спасательные средства должны быть оценены, испытаны и одобрены, как предусмотрено в Пр. III/4 и III/5 СОЛАС-74/78.

3.7.1.3 Буровые суда, ПБУ/МСП должны быть снабжены на каждом борту огнезащищенными спасательными шлюпками, способными вместить общее число находящихся на борту людей. Помимо этого на каждом судне должен находиться спасательный плот или спасательные плоты, отвечающие требованиям Пр. III/39 или III/40 СОЛАС-74/78, способные быть спущенными с любого борта установки, общей вместимостью, достаточной для размещения общего числа находящихся на борту людей. Если спасательный плот или плоты не могут быть быстро перемещены для спуска на любую сторону установки, общая вместимость имеющихся на каждой стороне установки спасательных плотов должна быть достаточной для размещения общего числа находящихся на борту людей.

3.7.1.4 Для буровых судов, ПБУ/МСП должно выполняться правило установки дополнительного плота в нос или в корму от основных плотов, если последние расположены на расстоянии более 100 м. Для ПБУ/МСП должно выполняться требование размещения спасательных средств с разных сторон или концов установки.

3.7.1.5 На каждой установке должна иметься одна дежурная шлюпка. Спасательная шлюпка может быть принята в качестве дежурной шлюпки при условии, что она отвечает требованиям, предъявляемым к дежурной шлюпке.

3.7.1.6 В отношении установки спасательных шлюпок и плотов; мер, обеспечивающих спуск и подъем спасательных шлюпок и плотов; мер, обеспечивающих сбор и посадку людей в спасательные шлюпки и плоты — требования указанного выше Кодекса повторяют или конкретизируют требования СОЛАС-74/78. Например, для ПБУ/МСП должны быть предусмотрены по меньшей мере две стационарные металлические лестницы или два трапа, простирающиеся от палубы до поверхности воды, находящиеся в удаленных друг от друга местах. Стационарные металлические лестницы или трапы должны быть прочны потому, чтобы позволить всем людям, находящимся на борту, безопасно спуститься до ватерлинии.

3.7.1.7 Требования снабжения ПБУ спасательными кругами, спасательными жилетами, гидрокостюмами конкретизированы указанным выше Кодексом. Достаточное количество спасательных жилетов и гидрокостюмов должно храниться в удобных местах для тех людей, которые заняты в помещениях, где их спасательные жилеты и гидрокостюмы не являются легкодоступными.
3.7.1.8 Требования к радиооборудованию спасательных средств для ПБУ/МСП аналогичны к требованиям для морских судов — три УКВ радиотелефонной аппаратуры и два радиолокационных ответчика должны быть предусмотрены на каждой установке.

3.7.1.9 При освидетельствовании на борту ПБУ и МСП должно иметься 12 парашютных ракет и линеметательные устройства.

3.7.1.10 При освидетельствовании спасательных средств должно быть подтверждено, что все спасательные средства находятся в рабочем состоянии и готовности к немедленному использованию:

- предусмотрены рисунки и инструкции, показывающие назначение органов управления и способы управления ими;
- имеется руководство по техническому обслуживанию спасательных средств;
- имеются запасные части и ремонтные принадлежности;
- проводятся необходимые ежедневные, ежемесячные и другие проверки;
- обслуживание надувных спасательных плотов, гидростатов, надувных дежурных шлюпок проводится в соответствующие сроки.

3.7.2 Надводный борт.

3.7.2.1 На все буровые установки распространяются требования Международной конвенции о грузовой марке 1966 г., включая относящиеся к выдаче свидетельств, и свидетельства должны выдаваться в соответствии с установленным порядком. Минимальный надводный борт установок, который не может быть вычислен обычными методами, установленными этой Конвенцией, должен определяться на основе удовлетворения применимых требований в отношении остойчивости в неповрежденном состоянии, остойчивости в поврежденном состоянии и конструктивных требований, касающихся состояния установок при переходе и выполнении буровых работ во время нахождения на плаву. Надводный борт должен быть не меньше вычисленного на основании положений Конвенции в случаях, когда они применимы.

3.7.2.2 Требования Международной конвенции о грузовой марке 1966 г. в отношении водонепроницаемости палуб, надстроек, палубных рубок, шпигатов приемных и отливных отверстий должны приниматься за основу для всех установок, находящихся на плаву. При освидетельствовании должны быть проверены закрытия всех отверстий, через которые может произойти затопление внутренних объемов: грузовых и сходных люков, воздушных труб, вентиляционных шахт, водонепроницаемых дверей. Окна, бортовые иллюминаторы и иллюминаторы глухого типа или другие подобные отверстия не должны располагаться ниже палубной конструкции установки со стабилизирующими колоннами.

3.7.3 Предотвращение загрязнения моря.

3.7.3.1 На всех типах ПБУ/МСП должны быть выполнены требования Конвенции МАРПОЛ 73/78, предъявляемые к судам, неявляющимся нефтеналивными, вместимостью 400 и более.

3.7.3.2 При выполнении соответствующих требований указанной Конвенции на судно могут быть оформлены Международные свидетельства по предотвращению загрязнения моря нефтью, сточными водами, мусором. При выполнении требований по предотвращению загрязнения воздушной среды на установку может быть оформлено необходимое свидетельство.

3.7.4 Грузоподъемные устройства.

Все грузоподъемные устройства, используемые для перемещения материалов, оборудования или персонала между буровой установкой и обслуживающими судами, должны освидетельствоваться Регистром при постройке и монтаже на буровой установке. После проведения испытаний пробным грузом на грузоподъемное устройство оформляется Свидетельство об испытании со сроком действия на 5 лет при условии его ежегодного подтверждения.
4 ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

4.1 ДОКУМЕНТАЦИЯ ТЕХНИЧЕСКОГО ПРОЕКТА В ПОСТРОЙКЕ

4.1.1 Общие требования.
До начала постройки следует предъявить Регистру на рассмотрение и одобрение техническую документацию, указанную в 4.1.2 — 4.1.11.

4.1.2 Общая часть.
4.1.2.1 Техническая спецификация.
4.1.2.2 Чертежи общего расположения с указанием конфигурации установки.

4.1.3 Документация по корпусу.
4.1.3.1 Предъявляемые чертежи должны точно определять размеры, конструкцию, типы и роды материалов, а также подробности связи и сварки. Там, где это возможно, чертежи должны содержать:
.1 продольные разрезы с размерами;
.2 поперечные разрезы с размерами;
.3 расположение постоянных и переменных масс;
.4 схемы расчетных нагрузок каждой палубы;
.5 палубы, включая палубу для вертолетов;
.6 мидель-шпангоут;
.7 наружную обшивку корпусов;
.8 водоизмещаемые переборки и платформы;
.9 прочностные переборки и платформы;
.10 ограничивающие поверхности цистерн с расположением переливов;
.11 опоры и стрингеры;
.12 раскосы и кронштейны;
.13 несущие опоры;
.14 конструкцию опор в районе подъемного устройства;
.15 стабилизирующие и промежуточные колонны;
.16 корпуса, понтонов, стопы, блоки или донные листы;
.17 надстройки и рубки;
.18 вертольетные площадки;
.19 расположение и детали конструкции водоизмещаемых дверей и люков с указанием высоты комингсов и закрытий;
.20 технологию и детали сварки;
.21 методы неразрушающих испытаний конструкции и расположение узлов, подвергающихся этим испытаниям.
4.1.3.2 Вместе с чертежами необходимо представить следующие данные и вычисления:
.1 анализ прочности узлов для соответствующих состояний нагрузки; .2 равнодействующие сил и моментов от ветра, воды, течений, швартовки и других нагрузок среды, принимаемых во внимание при анализе прочности узлов; .3 влияние обделения на нагрузку конструкции, на остойчивость и поверхность воздействия ветра; .4 рабочие нагрузки, вызываемые буровой вышкой и ее сопутствующими устройствами в поддерживающей конструкции, а также другие существенные нагрузки подобного типа; .5 расчеты, подтверждающие пригодность конструкции и передачи подъемными устройствами сил, возникающих между опорами и корпусом; .6 оценку пригодности буровой установки к противовоздействию опрокидыванию, когда она опирается на морское дно; .7 результаты соответствующих модельных испытаний, которые могут использоваться для обоснования или уточнения расчетов.

4.1.4 Документация по устройствам, оборудованию и снабжению:
.1 схема расположения закрытий отверстий;
.2 общее расположение устройств: якорного, предписываемого Правилами ПБУ/МСП, рулевого, швартовного буровых судов, буксирия, подъема и спуска корпуса СПБУ, подъема и спуска колонн погружных насосов забортной воды, фиксации СПБУ; чертежи руля и баллера;
.3 расчеты устройств: якорного, предписываемого Правилами ПБУ/МСП, рулевого, швартовного буровых судов, буксирия, подъема и спуска корпуса СПБУ, подъема и спуска колонн погружных насосов забортной воды, фиксации СПБУ; расчет прочности закрытий отверстий (для сведения);
.4 программа испытания устройств и оборудования;

4.1.5 Документация по остойчивости:
.1 теоретический чертеж, гидростатические кривые площадей и статических моментов шпангоутов; .2 пантокарены;
.3 водоизмещение и положение центров массы помещений и цистерн;
.4 таблицы поправок, учитывающих влияние свободных поверхностей жидкости на остойчивость; .5 кривая углов заливания установки; .6 информация об остойчивости.

4.1.6 Документация по делению на отсеки:
.1 расчет плавучести после затопления отсека;
.2 расчет остойчивости поврежденной установки после затопления отсека;
.3 устройства для выравнивания крена после аварии вместе с необходимыми расчетами;
.4 информация о непотопляемости вместе с планом водонепроницаемых отсеков, расположением отверстий и типах их закрытий, а также местонахождением устройств для выравнивания.

4.1.7 Расчет надводного борта.

4.1.8 Документация по противопожарной защите:
.1 расположение противопожарных переборок, разделяющих ПБУ/МСП на пожарные зоны, и других огнестойких и огнезадерживающих переборок с указанием дверей, закрытий, проходов, каналов и т. п.;
.2 общий вид ПБУ/МСП с указанием путей эвакуации и аварийных выходов на открытую палубу;
.3 расположение на ПБУ/МСП пожаротушения, центрального и остальных пожарных постов, а также постов управления при отдельных эксплуатационных состояниях;
.4 схемы пожарной сигнализации и контроля воздушной среды;
.5 схемы и расчеты противопожарных систем (насосы, пенноштукатурные установки и т. п.);
.6 подробное описание противопожарной защиты буровой установки с указанием примененных изоляционных и отделочных материалов, мест их применения и степени их горючести;
.7 исчерпывающие данные о степени горючести и пожарной опасности примененных вспомогательных материалов.

4.1.9 Документация по механическим и котельным установкам.

4.1.9.1 При последующем одобрении рабочих чертежей предъявляются:
.1 техническая документация, указанная в 3.2.8.1 части I «Классификация» Правил классификации и постройки морских судов, в той степени, в которой она может быть применена к ПБУ и буровому судну;
.2 чертежи главных постов дистанционного управления подъемом, спуском и фиксацией корпуса СПБУ, принципиальные схемы устройства управления с описанием принципа работы, систем блокировки, защиты и сигнализации;
.3 схема систем управления применяемых движителей;
.4 чертежи и расчеты механизмов подъемного устройства СПБУ;

4.1.9.2 Без последующего одобрения рабочих чертежей представляются:
.1 документация согласно 4.1.9.1 настоящей части;
.2 документация согласно 3.2.8.2 части I «Классификация» Правил классификации и постройки морских судов в той степени, в которой она может быть применена к ПБУ, МСП и буровому судну.

4.1.10 Документация по автоматизации.

4.1.10.1 При последующем одобрении рабочих чертежей представляются:
.1 техническая документация, указанная в 3.2.9.1 части I «Классификация» Правил классификации и постройки морских судов, в той степени, в которой она может быть применена к ПБУ, МСП или буровому судну;
.2 схемы и чертежи систем автоматизации спускоподъемных механизмов СПБУ;
.3 схемы и чертежи систем автоматизации системы погружения и всплытия ППБУ;
.4 схемы и чертежи систем автоматизации погружных насосов и их устройств подъема и спуска, установленных на СПБУ;
.5 схемы и чертежи систем автоматизации башмаков, лебедок и других палубных механизмов;
.6 схемы и чертежи измерительных и регистрирующих устройств осадки, крена, дифферента ПБУ и т. д.;
.7 схемы и чертежи других систем автоматизации механизмов и устройств ответственного назначения по требованию Регистра.

4.1.10.2 Без последующего одобрения рабочих чертежей представляются:
.1 документация согласно 4.1.10.1 настоящей части;
.2 документация согласно 3.2.9.2 части I «Классификация» Правил классификации и постройки морских судов в той степени, в которой она может быть применена к ПБУ, МСП или буровому судну.

4.1.11 Документация по системам и трубопроводам.

4.1.11.1 При последующем одобрении рабочих чертежей представляются:
.1 техническая документация, указанная в 3.2.10.1 части I «Классификация» Правил классификации и постройки морских судов, в той степени, в которой она может быть применена к ПБУ, МСП и буровому судну;
.2 схемы систем гидравлики для привода механизмов и устройств подъема и фиксации корпуса ПБУ;
.3 схема гидравлической системы подъема и спуска колонны погружных насосов;
.4 схема системы снабжения забортной водой СПБУ;
.5 схема систем приема и перекачки топлива для вертолетов;
.6 схемы систем вентиляции с указанием водонепроницаемых и противопожарных переборок, расположения противопожарных заслонок, производительности и кратности вентиляции для
отдельных помещений и помещений взрывоопасных зон, а также давлений в отдельных помещениях этих зон;

.7 расчеты на прочность труб систем гидравлики для привода механизмов и устройств подъема и фиксации корпуса СПБУ;

.8 система аварийного сброса бурового раствора.

4.1.11.2 Без последующего одобрения рабочих чертежей представляются:

.1 документация согласно 4.1.11.1 настоящей части;

.2 документация согласно 3.2.10.2 части I "Классификация" Правил классификации и постройки морских судов в той степени, в какой она может быть применена к ПБУ, МСП и буровому судну;

.3 схемы прокладки систем технологического комплекса.

4.1.11.2 Документация по электрическому оборудованию.

4.1.12.1 При последующем одобрении рабочих чертежей представляются:

.1 техническая документация, указанная в 3.2.11.1 части I "Классификация" Правил классификации и постройки морских судов, в той степени, в которой она может быть применена к ПБУ и буровому судну;

.2 схемы и чертежи электроприводов спуско-подъемного устройства СПБУ;

.3 схемы и чертежи электроприводов системы погружения и всплытия ППБУ;

.4 схемы и чертежи электроприводов погружных насосов и их подъемных устройств СПБУ;

.5 схемы и чертежи систем сигнализации, указанных в разд. 7 части X "Электрическое оборудование" Правил ПБУ/МСП;

.6 план деления установки на взрывоопасные зоны с перечнем электрического и механического оборудования, установленного в каждой зоне (включая технологическое буровое оборудование), с указанием закрытий отдельных помещений;

.7 схемы аварийного селективного отключения электроприводов.

4.1.12.2 Без последующего одобрения рабочих чертежей представляются:

.1 документация согласно 4.1.12.1 настоящей части;

.2 документация согласно 3.2.11.2 части I "Классификация" Правил классификации и постройки морских судов в той степени, в какой она может быть применена к ПБУ, МСП и буровому судну.

4.1.13 Документация по проведению морских операций:

.1 руководство по морским операциям;

.2 макет декларации на проведение морской операции.

4.2 ДОКУМЕНТАЦИЯ ТЕХНИЧЕСКОГО ПРОЕКТА ПРИ ПЕРЕОБОРУДОВАНИИ ИЛИ ВОССТАНОВЛЕНИИ

4.2.1 До начала переоборудования или восстановления буровой установки в Главное управление Регистра следует представить на рассмотрение и одобрение документацию по тем частям корпуса, механизмов и оборудования буровой установки, которые подлежат переоборудованию или восстановлению.

4.2.2 В случае монтажа на буровой установке, находящейся в эксплуатации, новых механизмов или устройств, существенно отличающихся от первоначальных и на которые распространяются требования Правил ПБУ/МСП, необходимо представить Регистру на рассмотрение и одобрение дополнительную техническую документацию новых установок, связанных с этими механизмами или устройствами, в объеме, требуемом для буровой установки в постройке (см. 4.1).

4.3 РАБОЧИЕ ЧЕРТЕЖИ ДЛЯ ПБУ/МСП В ПОСТРОЙКЕ

4.3.1 В случае одобрения технической документации, указанной в 4.1.3, 4.1.4, 4.1.9, 4.1.10 и 4.1.12, в местную инспекцию Регистра следует представить для согласования рабочие чертежи в объеме, согласованном с Регистром в каждом отдельном случае. При этом можно руководствоваться данными, содержащимися в 3.3 части I "Классификация" Правил классификации и постройки морских судов в такой степени, в какой могут они найти применение для данной установки.
5.1 При предъявлении к классификации ПБУ/МСП, имеющей класс другого классификационного органа, необходимо предъявить следующие документы.

5.1.1 Документы классификационного органа, сертификаты, паспорта, чертежи и документы, перечисленные в 3.2.2 части II «Периодичность и объемы освидетельствований» Правил классификационных освидетельствований судов в эксплуатации.

5.1.2 Чертежи опорных стабилизирующих колонн, колонн погружных насосов забортной воды, портала опорных колонн, портала буровой вышки с узлами крепления его «по-походному», шестерен и башмаков опорных колонн, рабочей платформы полупогружной или погружной ПБУ, устройств подъема, спуска корпуса и фиксирующего устройства СПБУ, расположения взрывоопасных зон, с обозначением их категорий, расположения всего электрического оборудования и прокладки кабелей во взрывоопасных помещениях и пространствах, центральных дистанционных постов управления подъемом и спуском корпуса СПБУ.

5.1.3 Информационные материалы по устойчивости ПБУ/МСП на грунте при воздействии ветра, воли, течения, сил веса и плавучести и др.

5.1.4 Принципиальные схемы устройств управления, систем блокировки, защиты и сигнализации электрических приборов механизмов подъема и спуска корпуса СПБУ с указанием их технических характеристик, механизмов подъема и спуска забортного трубопровода и погружных насосов забортной воды, электрических систем дистанционного управления указанными электроприводами, защиты и сигнализации.

5.1.5 Описания принципа работы систем управления, блокировки, защиты и сигнализации устройств дистанционного управления подъемом и спуском корпуса СПБУ.

5.1.6 Инструкция по эксплуатации ПБУ/МСП.

5.1.7 Заключения компетентных органов по пожаро- и взрывобезопасности ПБУ/МСП, связанных с работой бурового оборудования.
ЧАСТЬ II. КОРПУС

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящей части распространяются на:
.1 стальные самоходные и несамоходные ПБУ, типы которых определены в 1.2 части I «Классификация»;
.2 ПБУ на натяжных связях (ПБУНС), типы которых определены в 1.2 части I «Классификация». Предполагается, что корпус ПБУНС выполнен из стали, и для ледостойких ПБУНС может иметь сталебетонный ледовый пояс; натяжные связи изготовлены из стали, фундамент может быть из стали, бетона/железобетона или композитным;
.3 стальные, железобетонные и композитные МСП, в том числе ледостойкие, удерживаемые на грунте гравитационным способом, с помощью свай или комбинированным способом, типы которых определяются в 1.2 части I «Классификация».
1.1.2 Распространение положений настоящей части на типы ПБУ/МСП, не рассматриваемые в 1.2 части I «Классификация», должно производиться по согласованию с Регистром.
1.1.3 В настоящей части сформулированы положения, целью которых является обеспечение прочности элементов корпуса ПБУ/МСП. В случае, если при расчете прочности используются альтернативные подходы, они должны быть согласованы с Регистром. При этом должен быть обеспечен уровень безопасности конструкции, по крайней мере, не ниже чем предусмотрен Правилами ПБУ/МСП.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

1.2.1 Определения и пояснения, относящиеся к общей терминологии Правил ПБУ/МСП, приведены в Общих положениях о классификационной и иной деятельности, в Правилах классификации и постройки морских судов и в части I «Классификация».
1.2.2 В настоящей части приняты следующие определения.
Корпус ПБУ/МСП — все конструктивные элементы ПБУ/МСП, предназначенные для восприятия общих и местных, постоянных и переменных нагрузок. Если корпус ПБУ/МСП состоит из самостоятельных (но обязательно связанных между собой) элементов, таких как: колонны (опорные колонны, стабилизирующие колонны), подводный опорный блок, понтоны, раскосы, верхний корпус (верхняя несущая конструкция), то по отношению к ним применен термин корпусная конструкция.
Верхнее строение — верхняя часть ПБУ/МСП, предназначенная для размещения оборудования и обслуживающего персонала, не участвующая в обеспечении общей прочности корпуса.
Конструктивные элементы — участки листов обшивки, настилов, составной сварной и катаный набор, элементы обшивки и настилов вместе с набором и т. п.
Натяжная связь — система элементов, соединяющая корпус и подводный фундамент с целью закрепления ПБУНС.
Донный фундамент (якорь) — подводный элемент ПБУНС, закрепленный на морском дне.
Морской стойк (райзер) — система трубопроводов и оборудования для связи скважины с платформой и обеспечения подачи добываемого продукта на платформу.

1.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

1.3.1 На корпус (корпусные конструкции) ПБУ/МСП распространяются требования Общих положений о классификационной и иной деятельности и Правил классификации и постройки морских судов.
1.3.2 Техническому наблюдению подлежат следующие конструкции корпуса ПБУ/МСП (в зависимости от типа технического сооружения) в процессе их изготовления:
наружная обшивка и набор — опорных и стабилизирующих колонны, понтоны, подводного опорного блока, раскосов, верхнего корпуса, верхней несущей конструкции и т. п.;
водонепроницаемые переборки и цистерны;
палубы и платформы;
вертлогетные площадки;
Часть II. Корпус

1.3.3 До начала изготовления конструкций, указанных в 1.3.2, должна быть представлена на рассмотрение Регистру техническая документация по корпусу в объеме, предусмотренном в 4.1.3 части I «Классификация». Помимо указанного, должна быть представлена следующая техническая документация:

1. исходные данные — исчерпывающие данные по внешним условиям (ветер, волнение, течение, лед, грунт, сейсмика, температура) для районов эксплуатации ПБУ/МСП, соответствующие требованиям 2.2 настоящей части. Может быть использованы данные, приведенные в приложении 1 к настоящей части или другие сведения по внешним условиям, предварительно согласованные с Регистром;

2. характеристика режимов эксплуатации — данные о режимах эксплуатации ПБУ/МСП в объеме, оговоренном в 2.3 настоящей части. Могут быть рассмотрены дополнительные режимы, отвечающие специфике конкретной ПБУ/МСП;

3. расчеты прочности — выполненные в объеме, необходимом и достаточном для подтверждения прочности корпуса по принятым критериям для режимов эксплуатации ПБУ/МСП, способных вызвать в конструкции опасное состояние. Методы расчета должны быть согласованы с Регистром;

4. инструкция по эксплуатации ПБУ/МСП, содержащая:
 краткое описание ПБУ/МСП;
 перечень режимов эксплуатации ПБУ/МСП;
 допускаемые значения параметров, характеризующих безопасность ПБУ/МСП в данном режиме;
 состояние загрузки ПБУ/МСП в каждом режиме;
 руководство для экипажа по обслуживанию ПБУ/МСП в каждом режиме;
 организационное обеспечение безопасной эксплуатации ПБУ/МСП;
 чертежи с указанием категорий и прочности сталяй, примененных в конструкциях ПБУ/МСП, перечень допустимых методов сварки и сварочных материалов. Если необходимо, дополнительные указания по материалам и сварке, включая возможные ограничения и условия при проведении ремонтных работ либо при переоборудовании.

1.4 КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ

1.4.1 Конструктивные элементы ПБУ/МСП следует классифицировать, в зависимости от уровня напряжений, влияния возможного их повреждения на прочность и надежность технического сооружения, как специальные, основные и второстепенные.

1.4.1.1 Специальные конструктивные элементы — элементы, обеспечивающие общую прочность конструкции и характеризующиеся повышенным уровнем возникающих напряжений от общих и местных нагрузок, в том числе знакопеременных. В большинстве случаев эти связи определяют усталостную прочность корпуса.

1.4.1.2 Основные конструктивные элементы — элементы, обеспечивающие общую прочность конструкции и непроницаемость (если это требуется по условиям эксплуатации), а также те элементы, важность которых обусловлена обеспечением безопасностью обслуживающего персонала.

1.4.1.3 Второстепенные конструктивные элементы — элементы, повреждение которых не оказывает существенного влияния на безопасность технического сооружения.

1.4.2 Конструктивные элементы ППБУ.

1.4.2.1 Специальные:
 - наружная обшивка в местах соединения стабилизирующих колонн с палубами и нижними корпусами;
 - палубный настил, усиленные рамные балки и переборки верхнего корпуса или платформы, которые образуют коробчатые или тавровые несущие конструкции на участках, подверженных значительным сосредоточенным нагрузкам;
 - основные узлы пересечения раскосов и распоров; полупереборки, участки переборок, платформ и набор, воспринимающие значительные сосредоточенные нагрузки в местах пересечения несущих конструктивных элементов;
 - элементы конструкций, предусмотренные для передачи усилий в узлах пересечения или соединения основных несущих конструкций.

1.4.2.2 Основные:
 - наружная обшивка стабилизирующих колонн, верхних и нижних корпусов, раскосов и распоров; полупереборки, усилители, переборки платформ и набор, воспринимающие значительные сосредоточенные нагрузки в местах пересечения несущих конструктивных элементов;
 - элементы конструкций, предназначенные для передачи усилий в узлах пересечения или соединения основных несущих конструкций.

1.4.2.3 Второстепенные:
 - внутренние конструкции, включая переборки и выгородки стабилизирующих колонн и нижних корпусов, набор колонн, раскосов и распоров;
палубы верхней платформы или палубы верхнего корпуса, за исключением районов, в которых элементы являются основными или специальными; стабилизирующие колонны больного диаметра с малым отношением длины к диаметру, за исключением узлов соединения колонны и пересечений.

1.4.3 Конструктивные элементы СПБУ.
1.4.3.1 Специальные:
вертикальные опорные колонны в районе соединения их с опорными башмаками;
узлы пересечения элементов решетчатой опорной колонны с вварными элементами, включая стальные отливки.
1.4.3.2 Основные:
наружная обшивка цилиндрических опорных колонн;
обшивка всех элементов решетчатых опорных колонн;
переборки, палубы, обшивка бортов, днища верхнего строения, которые образуют коробчатые или тавровые несущие конструкции;
конструкции порталов опорных колонн и опорных башмаков, воспринимающие нагрузку от опорных колонн.
1.4.3.3 Второстепенные:
внутренний набор, включая переборки и элементы рамного набора цилиндрических опорных колонн;
внутренние переборки и выгородки, а также элементы набора верхнего строения, за исключением районов, в которых конструктивные элементы являются основными или специальными;
настил палубы, обшивка бортов и днища верхнего строения, за исключением районов, где конструктивные элементы являются основными и специальными.

1.4.4 Конструктивные элементы МСП.
1.4.4.1 Специальные:
конструктивные элементы «юбки» и районов сопряжения «юбки» с днищем МСП;
конструктивные элементы ледового пояса в случае, если МСП является нефтехранилищем;
конструктивные элементы в районах соединения корпусных конструкций, участвующих в обеспечении общей прочности, а также в местах с резким изменением поперечного сечения;
конструкции корпуса многоколонной ПБУНС и донного фундамента, взаимодействующие с натяжными связями;
конструкции корпуса башенноподобной ПБУНС, такие как:
конструктивные элементы ледового пояса в случае, если МСП является нефтехранилищем;
конструктивные элементы в районах соединения корпусных конструкций, участвующих в обеспечении общей прочности, а также в местах с резким изменением поперечного сечения;
конструкции корпуса МСП, воспринимающие значительные сосредоточенные нагрузки.
1.4.4.2 Основные:
конструктивные элементы многоколонной ПБУНС как определено в 1.4.2.2 настоящей части для ППБУ;
конструкции корпуса башенноподобной ПБУНС, такие как:
конструктивные элементы ледового пояса в случае, если МСП является нефтехранилищем;
конструктивные элементы в районах соединения корпусных конструкций, участвующих в обеспечении общей прочности, а также в местах с резким изменением поперечного сечения;
конструктивные элементы донного фундамента, за исключением районов, где элементы являются специальными.
1.4.4.3 Второстепенные:
конструкции корпуса многоколонной ПБУНС как определено в 1.4.2.3 настоящей части для ППБУ;
конструкции корпуса башенноподобной ПБУНС как определено в 1.4.4.3 настоящей части для МСП;
нагрузки, возникающие в результате соединения корпуса с натяжными связями, не могут быть классифицированы как второстепенные конструктивные элементы.
1.4.5 Конструктивные элементы корпуса, донного фундамента и натяжных связей ПБУНС.
1.4.5.1 Специальные:
конструкции корпуса многоколонной ПБУНС как определено в 1.4.2.1 настоящей части для ППБУ;
конструкции корпуса башенноподобной ПБУНС, такие как:
конструктивные элементы ледового пояса в случае, если МСП является нефтехранилищем;
конструктивные элементы в районах соединения корпусных конструкций, участвующих в обеспечении общей прочности, а также в местах с резким изменением поперечного сечения;
наружные обшивки корпусных конструкций;
1.5 МАТЕРИАЛЫ

1.5.1 Стальные конструкции.
1.5.1.1 Для изготовления конструкций ПБУ/МСП должна применяться допущенная Регистром сталь, удовлетворяющая требованиям части XIII «Материалы» Правил классификации и постройки морских судов и части XII «Материалы» Правил ПБУ/МСП.
1.5.1.2 Категория стали для конкретного конструктивного элемента ПБУ/МСП назначается по табл. 1.5.1.2-1 в зависимости от расчетной температуры материала конструкции и ответственности данного элемента согласно требованиям 1.4.

В случаях, не регламентируемых этой таблицей, применение стали возможно по согласованию с Регистром на основании характеристик вязкости и хладостойкости, полученных в результате испытаний по согласованным с Регистром программам (см. 1.3 части XII «Материалы»). Перечень необходимых характеристик, требований к ним и условий выполнения испытаний стали толщиной до 70 мм (включительно) определены в 3.2 части XII «Материалы». В табл. 1.5.1.2-2 приведены виды требуемых испытаний стали в зависимости от условий нагружения конструкции и вида конструктивного элемента.

<table>
<thead>
<tr>
<th>Конструктивные элементы</th>
<th>Категория стали для ПБУ/МСП</th>
<th>Расчетная температура материала конструкции, °С</th>
</tr>
</thead>
<tbody>
<tr>
<td>Второстепенные</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>30 20 10</td>
<td>...</td>
</tr>
<tr>
<td>B</td>
<td>40 30 20</td>
<td>...</td>
</tr>
<tr>
<td>D</td>
<td>50 50 45</td>
<td>...</td>
</tr>
<tr>
<td>E</td>
<td>50 50 50</td>
<td>...</td>
</tr>
<tr>
<td>F</td>
<td>50 50 50</td>
<td>...</td>
</tr>
<tr>
<td>AH</td>
<td>40 30 20</td>
<td>...</td>
</tr>
<tr>
<td>DH</td>
<td>50 50 45</td>
<td>...</td>
</tr>
<tr>
<td>EH</td>
<td>50 50 50</td>
<td>...</td>
</tr>
<tr>
<td>FH</td>
<td>50 50 50</td>
<td>...</td>
</tr>
<tr>
<td>AQ</td>
<td>40 25 10</td>
<td>...</td>
</tr>
<tr>
<td>DQ</td>
<td>50 45 35</td>
<td>...</td>
</tr>
<tr>
<td>EQ</td>
<td>50 50 50</td>
<td>...</td>
</tr>
<tr>
<td>FQ</td>
<td>50 50 45</td>
<td>...</td>
</tr>
<tr>
<td>Основные</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>20 10</td>
<td>...</td>
</tr>
<tr>
<td>B</td>
<td>25 10</td>
<td>...</td>
</tr>
<tr>
<td>D</td>
<td>45 40</td>
<td>...</td>
</tr>
<tr>
<td>E</td>
<td>50 50</td>
<td>...</td>
</tr>
<tr>
<td>F</td>
<td>50 50</td>
<td>...</td>
</tr>
<tr>
<td>AH</td>
<td>35 10</td>
<td>...</td>
</tr>
<tr>
<td>DH</td>
<td>45 40</td>
<td>...</td>
</tr>
<tr>
<td>EH</td>
<td>50 50</td>
<td>...</td>
</tr>
<tr>
<td>FH</td>
<td>50 50</td>
<td>...</td>
</tr>
<tr>
<td>AQ</td>
<td>45 25</td>
<td>...</td>
</tr>
<tr>
<td>DQ</td>
<td>45 35</td>
<td>...</td>
</tr>
<tr>
<td>EQ</td>
<td>50 50</td>
<td>...</td>
</tr>
<tr>
<td>FQ</td>
<td>50 50</td>
<td>...</td>
</tr>
<tr>
<td>Специальные</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>15 10</td>
<td>...</td>
</tr>
<tr>
<td>D</td>
<td>30 20</td>
<td>...</td>
</tr>
<tr>
<td>E</td>
<td>50 45</td>
<td>...</td>
</tr>
<tr>
<td>F</td>
<td>50 50</td>
<td>...</td>
</tr>
<tr>
<td>AH</td>
<td>35 10</td>
<td>...</td>
</tr>
<tr>
<td>DH</td>
<td>30 20</td>
<td>...</td>
</tr>
<tr>
<td>EH</td>
<td>50 45</td>
<td>...</td>
</tr>
<tr>
<td>FH</td>
<td>50 50</td>
<td>...</td>
</tr>
</tbody>
</table>

Таблица 1.5.1.2-1
Правила классификации, постройки и оборудования ПБУ/МСП

1.5.1.3 Расчетная температура материала конструкций определяется экспериментально или расчетом, исходя из принятой минимальной среднесуточной температуры $T_{см}$ (см. 1.2.3 части II «Корпус» Правил классификации и постройки морских судов). Расчетная температура окружающего воздуха — см. 2.2.7. При отсутствии указанных обоснованных расчетных температур материала наружных надводных конструктивных элементов принимается равной температуре окружающего воздуха.

Может быть допущено повышение расчетной температуры, если Регистру будут представлены убедительные доказательства (полученные расчетным или экспериментальным путем) того, что в реальных условиях эксплуатации температура конкретных элементов конструкции ПБУ/МСП не достигает указанной в спецификации минимальной температуры окружающего воздуха.

1.5.1.4 Специальные и основные конструктивные элементы, подвергающиеся значительным нагрузкам в направлении толщины проката, должны изготавливаться из зет-стали в соответствии с требованиями 3.14 части XIII «Материалы» Правил классификации и постройки морских судов и части XII «Материалы» Правил ПБУ/МСП.

1.5.1.5 Расчетный предел текучести материала R_{y} в зависимости от нормативного предела текучести R_{yH} следует определять по табл. 1.5.1.5.
1.5.1.6 Стали обычной, повышенной и высо-
кокой прочности в толщине более 75 мм, а также
стали с $R_{p0.2} > 500$, МПа, могут быть допущены
Регистром к применению после специального
рассмотрения. Расчетный предел текучести для
этих сталей подлежит согласованию с Регистром.

1.5.2 Железобетонные конструкции.
Требования к материалам железобетонных
конструкций содержатся в 3.4.

1.6 ИЗНОС КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ

1.6.1 Размеры конструктивных элементов
ПБУ/МСП следует назначать с учетом надбавки
на коррозионный износ, а обшивки ледового
пояса МЛСП — с учетом запасов на истирание
поверхности льдом.

1.6.2 К толщине конструктивных элементов,
обоснованной расчетами прочности, требуется
надбавка на износ Δx, мм, определяемая по
формуле:

$$\Delta x = kuT^*, \quad (1.6.2)$$

где

- u — расчетная скорость износа, мм/год;
- $T^* = T/2$ — для конструктивных элементов ПБУ и МСП,
 ремонтопригодных в процессе эксплуатации;
- $T^* = T$ для конструктивных элементов МСП,
 ремонтопригодных в течение всего срока
 службы платформы;
- T — расчетный срок эксплуатации ПБУ/МСП, лет;
- k — коэффициент, учитывающий положительное
 влияние защитных мероприятий по уменьшению
 износа ($k < 1$).

1.6.3 Расчетная скорость износа u приня-
мается по данным об износе выбранных сталей
в условиях, соответствующих условиям эксплуа-
тации ПБУ/МСП без учета положительного
влияния защитных мероприятий по уменьшению
износа. За неимением таких данных расчетная
скорость износа может быть назначена с учетом
соответствующих требований Правил классифици-
кации и постройки морских судов. При этом
следует обращать внимание на соответствие
условий работы конструктивных элементов
ПБУ/МСП и элементов, для которых приводятся
dанные в Правилах классификации и постройки
морских судов.

При назначении расчетных скоростей корро-
зии для конструктивных элементов ПИБУ до-
пускается руководствоваться рекомендациями
табл. 1.6.3.

1.6.4 Коэффициент, учитывающий положитель-
ное влияние защитных мероприятий по умень-
шению износа, k, может приниматься меньше
единицы в том случае, если используется

<table>
<thead>
<tr>
<th>Наименование конструктивного элемента</th>
<th>Расчетная скорость коррозии, мм/год</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Раскосы:</td>
<td></td>
</tr>
<tr>
<td>1.1 Горизонтальные поперечные:</td>
<td></td>
</tr>
<tr>
<td>в районе соединения с колоннами и</td>
<td>0,18</td>
</tr>
<tr>
<td>другими раскосами внес района соединения</td>
<td>0,16</td>
</tr>
<tr>
<td>1.2 Горизонтальные диагональные:</td>
<td></td>
</tr>
<tr>
<td>в районе соединения с колоннами и</td>
<td>0,18</td>
</tr>
<tr>
<td>другими раскосами внес района соединения</td>
<td>0,14</td>
</tr>
<tr>
<td>1.3 Наклонные поперечные:</td>
<td></td>
</tr>
<tr>
<td>в районе соединения с колоннами,</td>
<td>0,18</td>
</tr>
<tr>
<td>понтонами, верхним корпусом внес района соединения</td>
<td>0,16</td>
</tr>
<tr>
<td>1.4 Наклонные продольные:</td>
<td></td>
</tr>
<tr>
<td>в районе соединения с колоннами,</td>
<td>0,15</td>
</tr>
<tr>
<td>верхним корпусом внес района соединения</td>
<td>0,14</td>
</tr>
<tr>
<td>2 Колонны:</td>
<td></td>
</tr>
<tr>
<td>в районе соединения с понтонами</td>
<td>0,14</td>
</tr>
<tr>
<td>по уровню переменной ватерлинии надводная часть</td>
<td>0,16</td>
</tr>
<tr>
<td>подводная часть</td>
<td>0,12</td>
</tr>
<tr>
<td>3 Понтонь:</td>
<td></td>
</tr>
<tr>
<td>днище, палуба, борта балластных и</td>
<td>0,16</td>
</tr>
<tr>
<td>топливных отсеков переборки</td>
<td>0,14</td>
</tr>
<tr>
<td>днище, палуба, борта сухих отсеков</td>
<td>0,13</td>
</tr>
<tr>
<td>4 Верхний корпус:</td>
<td></td>
</tr>
<tr>
<td>борта, транцы переборки</td>
<td>0,11</td>
</tr>
<tr>
<td>переборки</td>
<td>0,10</td>
</tr>
<tr>
<td>опорные балки</td>
<td>0,13</td>
</tr>
<tr>
<td>главная палуба</td>
<td>0,10</td>
</tr>
<tr>
<td>открытые участки верхней наутики,</td>
<td>0,13</td>
</tr>
<tr>
<td>подверженные воздействию атмосферных осадков</td>
<td>0,13</td>
</tr>
</tbody>
</table>

Эффективная защита конструктивных элементов
от коррозии или применяются специализированные
покрытия и материалы против истирания поверх-
ности льдом. Коэффициент вводится только для
tех элементов, на которые распространяются за-
щитные мероприятия.

1.6.4.1 Для конструкций ППБУ/МСП, оборудо-
ванных эффективной системой коррозионной за-
щиты, величина коэффициента $k = 0,5$, если защи-
щенная обе поверхности конструктивного элемента и
$k = 0,75$, если защищена одна поверхность констру-
ктивного элемента.

1.6.4.2 Для наружных конструкций ледового
пояса МСП при использовании защитных меро-
приятий по уменьшению износа величина ко-
эффициента $k < 1$ должна быть обоснована и согла-
сована с Регистром.
Правила классификации, постройки и оборудования ПБУ/МСП

1.6.5 Минимальная надбавка на коррозию \(\Delta s = 1,0 \text{ мм} \).

1.7 СВАРНЫЕ КОНСТРУКЦИИ И СОЕДИНЕНИЯ

1.7.1 Сварные соединения конструкций ПБУ и МСП должны удовлетворять требованиям частей II «Корпус» и XIV «Сварка» Правил классификации и постройки морских судов и части XIII «Сварка» Правил ПБУ/МСП в отношении сварных соединений и конструкций, сварочных материалов, методов сварки и контроля качества сварных соединений.

1.7.2 Сварные соединения специальных конструкций, в которых могут возникнуть чрезмерные напряжения в направлении толщины проката, должны выполняться таким образом, чтобы исключить или уменьшить возможность слоистого разрыва.

1.7.3 Размеры швов устанавливаются по одобренным национальным стандартам или технической документации.

2 ОБЩИЕ ПРИНЦИПЫ ПРОЕКТИРОВАНИЯ КОНСТРУКЦИЙ

2.1 ОБЩИЕ ТРЕБОВАНИЯ

2.1.1 Конструкция ПБУ/МСП должна быть такой, чтобы ее прочность (применительно к внешним условиям районов эксплуатации) в течение всего срока службы удовлетворяла принятым критериям в следующих расчетных режимах: транспортировки; установки на точку; рабочем; выживания или экстремального нагружения; снятия с точки.

Кроме того, если это необходимо по условиям строительства конструкции, должна быть проверена прочность конструкции или отдельных ее элементов в процессе изготовления.

Конкретизация расчетных режимов применительно к типу ПБУ/МСП производится в разд. 3 настоящей части.

2.1.2 Проектирование ПБУ/МСП должно осуществляться с учетом требований безопасной эксплуатации, включая требования к экологической безопасности, в течение всего срока службы сооружения, а также обеспечения удобства ведения работ по освидетельствованию/осмотру и текущему ремонту конструкций.

2.1.3 ПБУ/МСП рекомендуется оборудовать контрольно-измерительной аппаратурой для наблюдения за состоянием корпусных конструкций сооружения с целью оценки их надежности, своевременного выявления дефектов и повышения уровня безопасности.

2.1.4 Расчеты прочности должны выполняться применительно ко всем конструктивным элементам ПБУ/МСП: специальным, основным и второстепенным.

2.2 ВНЕШНИЕ УСЛОВИЯ

2.2.1 Общие требования.

2.2.1.1 В характеристику внешних условий района эксплуатации (моря или морей, района или части района моря) включаются сведения об окружающей среде, оказывающей влияние на надежность ПБУ/МСП (ветер, волнение, течение, лед, грунт, сейсмическое воздействие, температура воздуха и др.).

2.2.1.2 Описание внешних условий должно отвечать реальной природе ветров и волнобразования, течений и ледовых образований и базироваться на сведениях вероятностно-статистического характера.
2.2.1.3 Основные параметры внешних условий, назначаемые в зависимости от заданного района эксплуатации, подлежат согласованию с Регистром.

Сведения о характеристиках ветроволновых условий отдельных морей приведены в Приложении 1 к настоящей части.

2.2.1.4 Если условия эксплуатации ПБУ/МСП ограничены перечнем морей, районов или частей районов морей, сезонами или допускаемыми величинами характеристик внешних условий, то перечень морей, границ районов или частей районов, сезоны и допускаемые величины характеристик внешних условий для соответствующих режимов эксплуатации указываются в Инструкции по эксплуатации ПБУ/МСП.

2.2 Ветер.

2.2.2.1 В качестве характеристик ветра рассматриваются: средняя скорость ветра на высоте анемометра (z = 10 м), закон изменения средней скорости ветра по высоте, параметры порывистости ветра, спектральные свойства пульсаций ветра.

Основной информацией являются скорости ветра \bar{w} с десятиминутным осреднением на высоте анемометра (z = 10 м), именуемые эталонными, и их повторяемости в рассматриваемом районе за длительный период времени, не менее 20 лет.

2.2.2.2 Экстремальные значения средних скоростей ветра определяются по данным многолетних наблюдений как наиболее вероятные величины за 100 лет, однако они не должны приниматься менее 25,8 м/с.

2.2.2.3 Связь между максимальной W_{max} и средней w скоростями задается с помощью коэффициента порывистости G:

$$W_{\text{max}} = Gw; G = 1 + \gamma \sigma_w,$$

где γ — числовой коэффициент (см. табл. 2.2.2.3);
σ_w — стандартное отклонение скоростей ветра;

$G = K_h r / \sigma_w$, где $K_h r$ — коэффициент изменчивости скорости ветра (см. 2.2.2.4)

$\sigma_w = \sigma_w / w$.

2.2.2.4 При описании порывистости ветра рекомендуется использовать спектр продольных пульсаций Давенпорта:

$$S(f) = \frac{4K_h r^3 w_0^3 \tau^2}{f(1 + n^2)^4/3},$$

где $n = 1200 / w_0$, f — частота, Гц;
w_0 — средняя скорость ветра при часовом осреднении, м/с; переходные коэффициенты между различными интервалами осреднения следует определять по графику на рис. 2.2.2.4;
$K_h r$ — коэффициент лобового сопротивления подстилающей поверхности, см. табл. 2.2.2.4;

![График переходных коэффициентов v_j/v_{00}](image)

Таблица 2.2.2.4-1

<table>
<thead>
<tr>
<th>w_0, м/с</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_h r$ 10</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Профиль скоростей ветра по высоте с учетом времени осреднения определяется по формуле:

$$w = w_0 [1 + \ln(t/10)]^{1/4} (10/t)^{1/20},$$

где t — время осреднения, мин, и по табл. 2.2.2.4-2.

Таблица 2.2.2.4-2

<table>
<thead>
<tr>
<th>z, м</th>
<th>3 с</th>
<th>5 с</th>
<th>15 с</th>
<th>1 мин</th>
<th>10 мин</th>
<th>60 мин</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.936</td>
<td>0.910</td>
<td>0.856</td>
<td>0.786</td>
<td>0.671</td>
<td>0.581</td>
</tr>
<tr>
<td>5.0</td>
<td>1.166</td>
<td>1.140</td>
<td>1.085</td>
<td>1.016</td>
<td>0.901</td>
<td>0.811</td>
</tr>
<tr>
<td>10.0</td>
<td>1.265</td>
<td>1.239</td>
<td>1.184</td>
<td>1.115</td>
<td>1.000</td>
<td>0.910</td>
</tr>
<tr>
<td>20.0</td>
<td>1.364</td>
<td>1.338</td>
<td>1.283</td>
<td>1.214</td>
<td>1.099</td>
<td>1.009</td>
</tr>
<tr>
<td>30.0</td>
<td>1.422</td>
<td>1.396</td>
<td>1.341</td>
<td>1.272</td>
<td>1.157</td>
<td>1.067</td>
</tr>
<tr>
<td>40.0</td>
<td>1.463</td>
<td>1.437</td>
<td>1.382</td>
<td>1.313</td>
<td>1.198</td>
<td>1.108</td>
</tr>
<tr>
<td>50.0</td>
<td>1.495</td>
<td>1.469</td>
<td>1.414</td>
<td>1.345</td>
<td>1.230</td>
<td>1.140</td>
</tr>
<tr>
<td>100.0</td>
<td>1.594</td>
<td>1.568</td>
<td>1.531</td>
<td>1.444</td>
<td>1.329</td>
<td>1.239</td>
</tr>
</tbody>
</table>

Максимальная скорость определяется при осреднении за n секунд. Рекомендуется $n = 3$ с.

2.2.2.4 При описании порывистости ветра рекомендуется использовать спектр продольных пульсаций Давенпорта.
2.2.2.5 Закон изменения эталонных скоростей ветра по высоте:

для открытых участков моря —

\[w_z = w_{10}[1 + \ln(z/10)^{1/7}] \]
(2.2.2.5-1)

для прибрежных зон —

\[w_z = w_{10}[1 + \ln(z/10)^{1/3}] \]
(2.2.2.5-2)

где \(z \) — высота над уровнем моря, м, \(10 \leq z \leq 100 \).

2.2.3 Волнение.

2.2.3.1 В качестве параметров, характеризующих свойства волнения, принимаются: высота волны 3-процентной обеспеченности, индивидуальная высота волны повторяемости раз в 100 лет, средний период волнения, средняя частота волны, спектральная плотность волнения, средняя длина волны, совместная повторяемость высот и периодов волн.

2.2.3.2 Совместная повторяемость высот и периодов волн определяется по данным специализированных организаций для данного района эксплуатации.

2.2.3.3 В условиях мелководья следует использовать соотношения между средним периодом, средней длиной волны и средней частотой:

\[\bar{H} = K_{gh} \sqrt{KH}, \]
(2.2.3.3-1)

\[\bar{\tau} = 2\pi/\bar{H}, \]
(2.2.3.3-2)

где \(K \) — волновое число, \(K = 2\pi/\bar{H}; \)

\(\bar{H} \) — средняя длина волны, м;

\(KH \) — глубина акватории, м.

2.2.3.4 Экстремальные значения высот волн определяются как наиболее вероятные величины за 100 лет \(h_{100} \). При отсутствии информации об их величинах \(h_{100} \) могут быть определены по формуле:

\[h_{100} = 0.38\delta_{h_{3\%}}H, \]
(2.2.3.4)

где \(\delta_{h_{3\%}} = \sqrt{\sum pA_k}; \)

\(p_k \) — повторяемость волнового режима, характеризующего волновую форму стольбиц \(\Sigma_k \) таблицы совместной повторяемости высот и периодов волн;

\(n = T/\bar{\tau}; \)

\(T \) — принятый во внимание период времени (\(T = 100 \) лет);

\(\bar{\tau} \) — средний период волнения за этот период,

\(\bar{\tau} = \frac{\Delta}{p_{\delta_{h_{3\%}}}}; \)

\(p \) — значение стольбиц \(\Sigma \) таблицы совместной повторяемости высот и периодов волн.

2.2.3.5 При оценках экстремальных величин могут использоваться две концепции:

основанная на долговременных распределениях;

"наиболее тяжелого режима".

Замкнутая система оценок предполагает следующую взаимосвязь волновых характеристик для этих концепций:

\[h_0 = 1.94\delta_{h_{3\%}}; \]
(2.2.3.5-1)

\[\delta_{h_{3\%}} = 2.94\delta_{h_{3\%}} - 18.8, \]
(2.2.3.5-2)

где \(\delta_{h_{3\%}} \) — высота волны, м, 3-процентной обеспеченности стационарного режима, на котором наиболее вероятно реализуется экстремальная величина на данной обеспеченности;

\[\delta_{h_{3\%}} \] — высота волны, м, 3-процентной обеспеченности с повторяемостью 0 раз в 100 лет.

2.2.3.6 В качестве расчетного спектра волнения рекомендуется принимать спектр JONSWAP

\[S_A(\omega) = S_{PM} e^{\exp\left[-(\alpha_0 - \omega_0^2)/2\gamma_0^2\right]}, \]
(2.2.3.6-1)

где \(S_{PM} \) — спектр Пирсона-Московица, определяемый по формуле:

\[S_{PM} = 10^{-2}H_0^2(\omega_0/\omega)^{-5}\exp\left[-0.44(\omega/\omega_0)^{-4}\right]; \]
(2.2.3.6-2)

\(\omega = 2\pi/\bar{H} \) — средняя частота волн;

\(\omega_0 \) — частота максимума спектра;

\(\gamma \) — отношение максимумов \(S \) и \(S_{PM} \) среднего значения \(\gamma = 3.3; \)

\(\alpha = \alpha_0 = 0.07 \) для \(\omega < \omega_0; \)

\(\alpha = \alpha_0 = 0.09 \) для \(\omega > \omega_0; \)

2.2.4 Течение.

2.2.4.1 При рассмотрении параметров течения в заданном районе следует учитывать такие факторы как его природа (приливное и ветровое), распределение на глубине, постоянство во времени.

При отсутствии сведений о профиле течения в рассматриваемом районе эксплуатации рекомендуется использовать среднестатистические данные, характеризуемые выражением:

\[u = u_c [(H_0 - z)/H_0]^{1/3} + u_v [(H_0 - z)/H_0], \]
(2.2.4.1)

где \(u_c \) — общая скорость течения на расстоянии \(z \) от поверхности;

\(u_v \) — скорость приливного течения на уровне спокойной воды \(H_0; \)

\(u_v \) — скорость ветрового течения на уровне \(H_0; \)

2.2.4.2 При рассмотрении влияния течения на параметры внешних нагрузок на МСП/ПБУ следует учитывать явление взаимодействия течений с волнами. В поле нерегулярных волн это приводит к модификации волнового спектра:

\[S_h(\omega) = \frac{4S_h(\omega)}{[1 + (1 + 4\omega_0/\omega)^{1/3}][1 + (1 + 4\omega_0/\omega)^{1/3} + (1 + 4\omega_0/\omega)^{1/3}]} \]
(2.2.4.2)

где \(S_h(\omega) \) — спектр поверхностного волнения;

\(u_v > 0 \) — совпадение направлений волн и течения;

\(u_v < 0 \) — противоположные направления волн и течения.

2.2.5 Лед.

2.2.5.1 В качестве параметров, характеризующих физико-механические свойства льда, рассматриваются: плотность, соленость, пределы прочности льда на сжатие, изгиб, растяжение, модуль упругости, вязкость разрушения, фрикционные свойства льда.
2.2.5.2 Пределы прочности льда на сжатие и изгиб зависят от температуры, солености, скорости приложения нагрузки, условий деформирования. Пределы прочности льда определяются применительно к конкретному месторождению.

Пределы прочности льда на сжатие и изгиб являются случайными величинами. В качестве расчетных величин пределов прочности льда на сжатие и изгиб следует использовать средние величины с повторяемостью 1 раз в 100 лет, которые должны определяться применительно к конкретному району моря по специальной методике, согласованной с Регистром.

При отсутствии данных в качестве минимальных значений на сжатие и изгиб могут быть рекомендованы следующие:

$$\sigma_c = 1,4 \text{ МПа},$$
$$\sigma_f = 0,7 \text{ МПа}.$$

2.2.5.3 В качестве параметров, характеризующих геометрические свойства льдов, рассматриваются: толщина ровного льда, толщина наслонённого льда, толщина консолидированного слоя тороса сжатия, высота паруса тороса и глубина киля тороса, протяженность тороса.

2.2.5.4 Толщина ровного льда является функцией морозодней и определяется как величина однопроцентной обеспеченности. Толщина наслонённого льда является основой для определения клиренса верхнего строения.

2.2.5.5 Геометрические параметры торосов сжатия (толщина наслонённого слоя, высота паруса, глубина киля) определяются на уровне однопроцентной обеспеченности.

2.2.5.6 Скорости дрейфа льда являются исходной информацией для оценок скорости деформации и оценок ледовых сил при удаврной взаимодействии ледовых образований с платформой («жёсткий сценарий»).

2.2.5.7 Толщины ровного (наслонённого) льда и пределы прочности льда рассматриваются как статистически независимые величины, что характерно для однолетних льдов.

2.2.6 Грунт.

2.2.6.1 Для района установки СПБУ/МСП необходимо располагать инженерно-геологическим разрезом основания с указанием мощности пластов по глубине и информацией по нормативным и расчетным значениям физико-механических свойств основания.

2.2.6.2 В качестве параметров, характеризующих грунт, рассматриваются: вид грунта (песок, глина, ил и др.), вес грунта в воде, модуль деформации (статической и динамической), коэффициент Пуассона, величина сцепления, угол внутреннего трения грунта, C_f — недренажированное сопротивление сдвигу, коэффициент консолидации, коэффициент пористости, степень влажности, проницаемость грунта, показатель текучести.

2.2.7 Сейсмическая обстановка.

2.2.7.1 Основной информацией по землетрясениям в сейсмически активном районе является интенсивность сейсмического воздействия, имеющая период повторяемости 1 раз в 100 лет (однопроцентная обеспеченность), Θ_0 и Θ_m — коэффициенты изменчивости в пределах прочности льда σ_c и σ_f. При отсутствии данных рекомендуется принять $\Theta_0=0,50$ и $\Theta_m=0,50$.

При отсутствии каких-либо сведений в качестве минимальных значений σ_c и σ_f могут быть рекомендованы следующие:

$$\sigma_c = 1,4 \text{ МПа},$$
$$\sigma_f = 0,7 \text{ МПа}.$$

2.2.7.2 Данные рекомендации сейсмической активности рекомендуется использовать российскую шкалу, основанную на максимальных ускорениях (см. табл. 2.2.7.2).
50 Правила классификации, постройки и оборудования ПБУ/МСП

Таблица 2.2.7.3

<table>
<thead>
<tr>
<th>Категория грунта по сейсмическим свойствам</th>
<th>Грунты</th>
<th>Расчетная сейсмичность J_{PBU} при исходной сейсмичности района эксплуатации J_{PBU} (баллы)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Скальные грунты всех видов невыветрелые и слабовыветрелые (в том числе многослойные в мерзлом и талом состоянии); крупообломочные грунты плотные из магматических пород, содержащие до 20 % включений глинистого заполнителя; скорость распространения продольных и поперечных волн $V_p > 700$ м/с; соотношение скоростей продольных и поперечных волн $V_p/V_s = 1.7 - 2.2$</td>
<td>6 7 8 9</td>
</tr>
<tr>
<td>II</td>
<td>Скальные грунты, кроме отнесенных к I категории; крупнообломочные грунты, за исключением отнесенных к I категории; пылевато-глинистые грунты с показателем текучести $J_s < 0.5$ при коэффициенте пористости $e < 0.9$ — для глин и суглинков и $e < 0.7$ — для супесь; многослойные грунты пластичные или сыпучие; $V_p/V_s = 2.2 - 3.5$</td>
<td>6 7 8 9</td>
</tr>
<tr>
<td>III</td>
<td>Пески рыхлые независимо от крупности; пески крупные и средней крупности плотные и средней плотности; пески мелкие и пылеватые плотные и средней плотности; пылевато-глинистые грунты с показателем текучести $J_s > 0.5$ при коэффициенте пористости $e > 0.9$ — для глин и суглинков и $e > 0.7$ — для супесь; многослойные грунты и скальные грунты при возможности их оттаивания; иллистые грунты; $V_p < 250$ м/с; $V_p/V_s < 3.5$ — для водонасыщенных грунтов</td>
<td>7 8 9 >9</td>
</tr>
</tbody>
</table>

2.2.8 Температура окружающей среды.

2.2.8.1 Основной информацией о температуре окружающего воздуха являются сведения о самой низкой среднесуточной температуре для района предполагаемой эксплуатации платформы, полученной на основании метеорологических данных по крайней мере за 10 лет, если в настоящей части не оговорено иное.

2.2.8.2 Минимальная расчетная температура для элементов платформ, находящихся во всех режимах эксплуатации под водой, принимается равной температуре воды —2 °C.

2.3 РАСЧЕТНЫЕ РЕЖИМЫ И НАГРУЗКИ

2.3.1 Классификация нагрузок.

2.3.1.1 По своей природе все нагрузки, действующие на конструкцию ПБУ/МСП, подразделяются на две категории:

вызываемые воздействием окружающей среды (волнения, ветра, течения, льда, сейсмоактивности, грунта, температуры и т. п.);

создаваемые весом ПБУ/МСП, а также работой механизмов, устройств, систем и других, связанных с функционированием ПБУ/МСП.

Каждая из этих категорий может включать постоянные и переменные во времени нагрузки; последние по характеру реакции конструкции на внешние воздействия делятся на статические и динамические. По относительным размерам зоны своего влияния каждая из указанных категорий нагрузки подразделяется на глобальные (общие) и локальные (местные).

2.3.1.2 Постоянными статическими являются нагрузки, не изменяющиеся по величине, положению или направлению при изменении внешних условий. Для конструкций, находящихся в состоянии покоя, вес собственно конструкции и всего постоянно закрепленного оборудования, а также силы поддержания, противодавления на подошву платформы (взвешивание), грунтовые нагрузки и вес грунта в объеме, зависящем от схемы взаимодействия платформы и основания, являются по-стоянными статическими нагрузками.

Переменными статическими являются нагрузки, изменяющиеся во времени, по величине и направлению. Однако скорость изменения этих нагрузок настолько мала, что они не оказывают динамического эффекта на конструкцию.

2.3.1.3 Динамическими являются нагрузки, изменяющиеся во времени, по величине и направлению. Однако скорость изменения этих нагрузок настолько мала, что она не оказывает динамического эффекта на конструкцию.
2.3.2 Режим выживания или экстремального нагружения.

2.3.2.1 Нагрузки, которые должны рассматриваться в расчетах прочности конструкций ПБУ/МСП при экстремальном нагружении, включают:
- глобальные и локальные постоянные и переменные экстремальные нагрузки от воздействия окружающей среды;
- глобальные и локальные функциональные нагрузки, соответствующие экстремальному состоянию ПБУ/МСП по условиям безопасности.

2.3.2.2 Для МСП экстремальными ветровыми, волновыми, ледовыми и нагрузками от течения и температуры считаются вероятные из максимальных внешних нагрузок, могущих воздействовать на платформу за 100-летний период. Повторяемость сейсмических нагрузок определяется в зависимости от принятого критерия (см. 3.1.6 и 3.2.2.4).

Для ПБУ экстремальными переменными нагрузками считаются вероятные из возможных максимальных внешних нагрузок, воздействующих на ПБУ за весь период эксплуатации. За расчетные принимаются такие значения переменных нагрузок, вероятность превышения которых в долговременном распределении принимается равной 10\(^{-4}\).

Экстремальными ударными нагрузками на по- перечный горизонтальный раскос ППБУ считаются нагрузки от его ударного взаимодействия с водой при плавании на встречном курсе относительно основной системы волн стационарного режима волнения с наибольшими \(h_{3}\%\) и \(T_{av}\) в долговременном совместном распределении. Наиболее неблагоприятной комбинацией которых в рассматриваемом режиме является

\[
\rho = 9.81 \left(h_0 + h_p \right),
\]

где \(\rho\) — массовая плотность балласта, груза или топлива, t/m\(^3\);
\(h_0\) — вертикальное расстояние от расчетной точки до верхней точки рассматриваемого отсека, м;
\(h_p\) — высота воздушной трубы над верхней точкой отсека, м.

2.3.4 Режим транспортировки.

2.3.4.1 Для режима транспортировки определяются допускаемые условия перехода и отмечаются в Классификационном свидетельстве и Инструкции по эксплуатации; для каждого перегона разрабатывается проект перегона, предлагающий мероприятие по обеспечению выполнимости ограничений по внешним условиям и безопасности ПБУ/МСП в транспортном состоянии. Проект перегона подлежит согласованию с Регистром.

2.3.4.2 Нагрузки, которые должны рассматриваться в расчетах прочности ПБУ/МСП в режиме транспортировки, включают общий и местные постоянные и переменные нагрузки от воздействия окружающей среды и такие функциональные нагрузки, при которых возникают наибольшие напряжения в конструкции в рассматриваемом режиме.

2.3.4.3 В качестве расчетных значений переменных нагрузок принимаются нагрузки с обеспеченностью 5·10\(^{-6}\) в краткосрочном распределении при допустимых параметрах внешних условий, но не более \(h_{3}\% = 7,0\) м.

2.3.4.4 В качестве расчетных значений ударных нагрузок на раскос ППБУ в режиме транспортировки принимаются их значения с обеспеченностью 10\(^{-4}\) в стационарном режиме волнения с допустимыми параметрами внешних условий, но не более \(h_{3}\% = 7,0\) м.

2.3.5 Режимы установки на точку и снятия с точки.

Допускаемые внешние условия устанавливаются проектантом и подлежат согласованию с Регистром. Выполняется расчет прочности конструкции на соответствующие данному режиму нагрузки.

2.3.6 Нагрузка на палубу.

Расчетная нагрузка на палубу должна отражать наиболее неблагоприятную комбинацию функциональных нагрузок, указанных в 2.3.1. В любом случае она не должна приниматься меньше величин, указанных в табл. 2.3.6.

2.3.7 Нагрузка на водонепроницаемые переборки.

Для обшивки и набора водонепроницаемых переборок балластных отсеков, грузовых танков или топливных бункеров расчетный напор, кПа, жидкости определяется зависимостью:

\[
p = 9.81 \rho (h_0 + h_p),
\]

где \(\rho\) — массовая плотность балласта, груза или топлива, t/m\(^3\);
\(h_0\) — вертикальное расстояние от расчетной точки до верхней точки рассматриваемого отсека, м;
\(h_p\) — высота воздушной трубы над верхней точкой отсека, м.
Таблица 2.3.6

<table>
<thead>
<tr>
<th>Назначение помещения/палубы</th>
<th>Интенсивность давления q, кПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>Жилые помещения, прогулочные палубы</td>
<td>4,5</td>
</tr>
<tr>
<td>Рабочие палубы</td>
<td>9,0</td>
</tr>
<tr>
<td>Складские помещения: общего назначения</td>
<td>7,85р/г, но не менее 13,0</td>
</tr>
<tr>
<td>для цемента</td>
<td>9,81 р/г, но не менее 13,5</td>
</tr>
</tbody>
</table>

Примечание: \(h \) — высота укладки груза, м; \(\rho \) — массовая плотность груза, т/м³.

2.3.8 Ветровые нагрузки.

Ветровые нагрузки определяются по формуле:

\[
Q_w = 10^{-3} \rho_i w_{10}^2 \sum S_i K_{1i} K_{2i},
\]

где \(Q_w \) — равнодействующая сила ветра, кН;
\(\rho_i \) — массовая плотность воздуха, кг/м³;
\(w_{10} \) — расчетная скорость ветра на высоте 10 м от уровня тихой воды при десятиминутном осреднении, м/с;
\(S_i \) — площадь парусности \(i \)-го элемента, м²;
\(K_{1i} \) — коэффициент, учитывающий изменение скорости ветра по высоте (см. 2.2.2.5);
\(K_{2i} \) — коэффициент сопротивления формы \(i \)-го элемента (соответствуют табл. 2.4.2.3 части IV «Остойчивость»).

Поскольку некоторые элементы рассматриваемых конструкций могут располагаться на некотором расстоянии друг от друга («прозрачные» конструкции), необходимо учитывать следующее:

если несколько элементов установлены в плоскости, перпендикулярной направлению ветра, как в случае плоских ферм или колонн, следует учитывать коэффициент проницаемости ф. В этом случае ветровая нагрузка определяется по формуле:

\[
Q_{w_i} = Q_w \phi,
\]

где \(\phi \) — коэффициент проницаемости;

если две или более параллельные конструкции, образующие рамы, установлены друг за другом в направлении действия ветра, необходимо учитывать коэффициент экранирования. В этом случае ветровая нагрузка определяется по формуле:

\[
Q_{w_{ii}} = Q_w \eta_i,
\]

где \(\eta_i \) — коэффициент экранирования.

Коэффициент экранирования зависит от коэффициента проницаемости \(\phi \), типа элемента и расстояния между конструкциями.

2.3.9.2 При больших диаметрах преграды \(d \) необходимо учитывать дифференциальные эффекты. В табл. 2.3.9.2 представлены рекомендуемые значения дифференциональных коэффициентов \(K_{di} \) при этом инерционная составляющая прямо пропорциональна \(K_{di} \), а скорость пропорциональна \(K_{di}' \).

Таблица 2.3.9.2

<table>
<thead>
<tr>
<th>Относительный размер преграды d/H</th>
<th>0.05</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.25</th>
<th>0.30</th>
<th>0.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{di})</td>
<td>1,00</td>
<td>0,97</td>
<td>0,93</td>
<td>0,86</td>
<td>0,79</td>
<td>0,70</td>
<td>0,52</td>
</tr>
</tbody>
</table>

2.3.10 Нагрузки от течения.

Возможность совместного воздействия волн и течения следует учитывать в соответствии с указаниями 3.1.5.2.

Нагрузки от воздействия течения на ПБУ/МСП определяются в соответствии с указаниями 3.1.5.1 и 3.3.2.2.

2.3.11 Кombинация внешних нагрузок.

2.3.11.1 При расчете прочности конструкции ПБУ/МСП в рассматриваемых расчетных режимах и оценке устойчивости ПБУ/МСП на грунте следует учитывать наиболее опасные сочетания нагрузок согласно 2.3.1 — 2.3.5.

2.3.11.2 При рассмотрении нагрузок окружающей среды следует учитывать тот факт, что возможно одновременное действие нескольких нагрузок среды.

Вопрос сочетания нагрузок должен решаться в связи с особенностями их статистической природы.

При экстремальном нагружении конструкции в отсутствие вероятностного анализа допускается использовать сочетания глобальных нагрузок согласно табл. 2.3.11.2.

2.3.12 Нагрузки от навалов при швартовке.

Должны быть учтены ударные нагрузки на ПБУ/МСП, возникающие во время швартовки судов обеспечения, а также требования 3.8 части II «Корпус» Правил классификации и постройки морских судов.

2.3.13 Нагрузки при буксировочных операциях.

Нагрузки на отдельные элементы, возникающие при буксировочных операциях ПБУ/МСП, определяются двумя составляющими: постоянной, зависящей от скоростей движения установки относительно воды и ветра; переменной, зависящей от волнения и относительных перемещений буксира и установки, обусловленных качкой на волнении.
Часть II. Корпус

53

Таблица 2.3.11.2

<table>
<thead>
<tr>
<th>Вариант сочетаниялексиметка</th>
<th>Глобальные нагрузки окружающей среды</th>
<th>сопутствующие</th>
<th>ледовая</th>
<th>волновая</th>
<th>ветровая</th>
<th>от течения</th>
<th>сейсмическая</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 экстремальная ледовая</td>
<td>—</td>
<td>—</td>
<td>экстремальная ветровая</td>
<td>—</td>
<td>экстремальная от течения</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2 экстремальная волновая</td>
<td>—</td>
<td>—</td>
<td>экстремальная ветровая</td>
<td>—</td>
<td>экстремальная от течения</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>3 экстремальная сейсмическая</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4 экстремальная сейсмическая</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

При буксировке крупногабаритных элементов ПБУ/МСП необходимо учитывать собственный момент инерции элемента.

2.4 КРИТЕРИИ ПРОЧНОСТИ

2.4.1 Общие требования.

2.4.1.1 Конструкция ПБУ/МСП должна быть спроектирована так, чтобы в течение ее срока службы выполнялось следующее общее требование безопасности:

\[\Phi \leq R \eta, \]

где \(\Phi \) — расчетное значение обобщенного силового воздействия (например, расчетные внутренние усилия, нормальные, касательные или эквивалентные напряжения, расчетные деформации, перемещения, расчетное давление на пластину и т. п.), по которому производится оценка предельного состояния;

\(R \) — расчетное значение обобщенной несущей способности (расчетное сопротивление конструкции), устанавливаемое нормативными документами; это, как правило, расчетный предел текучести материала или предельное давление на элементы, ширина раскрытия трещин в бетоне и т. п.;

\(\eta \) — коэффициент безопасности, который связан со степенью ответственности того или иного элемента конструкции за прочность и надежность сооружения.

2.4.1.2 При выполнении требования (2.4.1.1) практически должны быть исключены следующие виды опасного состояния:

- чрезмерные деформации материала;
- потеря устойчивости формы;
- распространение усталостных трещин;
- хрупкие разрушения.

Соответственно должны выдерживаться критерии предельной прочности, устойчивости и усталостной прочности.

2.4.1.3 Чтобы предотвратить возможность хрупкого разрушения конструкций, материал конструкции, конструктивное оформление узлов и сварки должны удовлетворять требованиям 1.4 и 1.5 настоящей части.

2.4.2 Критерий предельной прочности.

2.4.2.1 Критерий предельной прочности устанавливает требования, направленные на исключение возможности появления опасного состояния, связанного с развитием пластических деформаций и разрушением конструкции ПБУ/МСП в целом, отдельной корпусной конструкции или конструктивного элемента при разовом действии возможных в условиях эксплуатации наиболее неблагоприятных сочетаний нагрузок.

2.4.2.2 Критерий предельной прочности для режима выживания (экстремального воздействия) определяется выражением:

\[\sigma_d \leq \eta \sigma_{td}, \]

где \(\sigma_d \) — расчетные напряжения в конструкции при действии наиболее неблагоприятных сочетаний нагрузок, МПа;

\(\eta \) — коэффициент безопасности (см. 2.4.2.5);

\(\sigma_{td} \) — расчетный предел текучести материала согласно 1.5.1.5, МПа.

2.4.2.3 Расчетные напряжения \(\sigma_d \) в конструктивных элементах в режиме выживания или экстремального нагружения определяются следующим образом:

.1 при определении напряжений в расчетных сечениях балок набора и по середине поля пластины:

\[\sigma_d = \sigma_{t}, \]

где \(\sigma_t = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3r^2}, \)

\(\sigma_x, \sigma_y \) и \(r \) — компоненты напряжений в конструкции в рассмотриваемой точке, каждый из которых учитывает совместное действие глобальных и локальных нагрузок.

.2 при определении напряжений посередине поля пластины:
2.4.2.4 Критерий предельной прочности для режимов рабочего и транспортировки определяется следующими выражениями:

\[
\sigma_x \leq \eta_1 R_d,
\]

\[
\sigma_z \leq \eta_1 R_d,
\]

\[
\tau \leq 0,57 \eta_1 R_d,
\]

\[
\sigma_{pl} \leq \eta_1 R_d,
\]

где \(\sigma_x, \sigma_z \) и \(\tau \) — компоненты напряжений в конструкции в рассматриваемой точке, каждый из которых учитывает совместное действие глобальных и локальных нагрузок; \(\sigma_{pl} \) — максимальные изгибающие напряжения в пластине, определенные на опорном контуре, при действии локальных нагрузок; \(\eta_1 \) — коэффициент безопасности (см. 2.4.2.5); \(R_d \) — расчетный предел текучести материала согласно 1.5.1.5, МПа.

2.4.2.5 Коэффициенты безопасности \(\eta_1 \) по критерию предельной прочности должны быть не более значений, приведенных в табл. 2.4.2.5.

2.4.3 Критерий устойчивости.

2.4.3.1 Критерий устойчивости регламентирует требования к параметрам элементов конструкции ПБУ/МСП, обеспечивающим устойчивое состояние заданной формы. Опасными считаются критические напряжения, соответствующие переходу конструкции из одной формы равновесия в другую.

2.4.3.2 Критерий устойчивости определяется выражением:

\[
\sigma_z \leq \eta_2 \sigma_{cr},
\]

где \(\sigma_z \) — расчетные напряжения в конструктивном элементе для заданного расчетного режима, МПа; \(\sigma_{cr} \) — критические напряжения, МПа; \(\eta_2 \) — коэффициент безопасности.

2.4.3.3 В расчетах устойчивости сжатых и изогнутых цилиндрических оболочек должно приниматься во внимание влияние геометрических несовершенств формы.

2.4.3.4 Гибкость изолированных сжатых элементов \(\lambda \) должна удовлетворять условию:

\[
\lambda = l_c/p \leq \lambda_{max},
\]

где \(l_c \) — эффективная длина стержня, мм; \(p \) — минимальный радиус инерции площади поперечного сечения, мм; \(\lambda_{max} \) — максимальная допускаемая гибкость согласно табл. 2.4.3.4.

<table>
<thead>
<tr>
<th>Нормативный предел текучести материала (R_{th}), МПа</th>
<th>Максимальная допускаемая гибкость (\lambda_{max})</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>130</td>
<td></td>
</tr>
</tbody>
</table>

2.4.3.5 Коэффициент безопасности при проверке устойчивости изолированных сжатых элементов \(\eta_2 \) должен быть не более:

\[
\eta_2 = 0,67, \text{ если } \lambda \geq \lambda_0; \quad \eta_2 = 0,84(1 - 0,2\lambda_0/\lambda_0), \text{ если } \lambda < \lambda_0,
\]

где \(\lambda_0 = \sqrt{2E/R_{th}} \), \(E \) — модуль нормальной упругости материала, МПа; \(R_{th} \) — предел текучести материала, 1.5.1.5, МПа.

2.4.3.6 Коэффициент безопасности \(\eta_2 \) стержней, подверженных совместному осевому сжатию и изгибу, должен удовлетворять следующему условию:

\[
\eta_2/\eta_2 + \sigma_{bend}/[\sigma] \leq 1,
\]

где \(\eta_2 \) — коэффициент безопасности согласно 2.4.3.5; \(\sigma_{bend} \) — действующее напряжение, вызванное изгибоем, МПа; \(\sigma \) — допускаемые напряжения, МПа; \(\sigma_{[\sigma]} \) — т. е. \(\eta_2 R_0 \).
2.4.3.7 Коэффициент безопасности для плоских конструкций, загруженных по кромкам системой усилий, которые могут вызвать потерю устойчивости, должен определяться по формуле:

\[\eta_2 = \sqrt{\sum_{i=1}^{n} \left(\frac{\sigma_i}{\sigma_{cr,i}} \right)^2}, \]

где \(n \) — число простых форм напряжений, с помощью которых может быть представлено действительное напряженное состояние; примерами таких форм являются: сжатие в направлениях \(x, y; \) средние касательные напряжения; \(\sigma_{cr,i} \) — критические напряжения, соответствующие \(i \)-й форме напряжений, МПа.

Коэффициент безопасности должен быть не более

\[\eta_2 = 0,84(1 - 0,2R_{ch}/\sigma_c) + 0,06, \]

где \(\sigma_c \) — эйлерово напряжение, соответствующее минимальному значению всех рассматриваемых эйлеровских напряжений в форме напряженного состояния, МПа.

2.4.3.8 В расчетах устойчивости неподкрепленных (безнаборных) трубчатых элементов взаимосвязь общей и местной потери устойчивости может не учитываться для:

- элементов, подверженных изгибу и сжатию, при \(D/t \leq 0,1E/R_{ch} \), (2.4.3.8-1)
- элементов, подверженных изгибу, сжатию и действию избыточного наружного давления, при \(D/t \leq 0,45\sqrt{E/R_{ch}} \). (2.4.3.8-2)

где \(D \) и \(t \) — соответственно средний диаметр и толщина, мм, стенки трубчатого элемента; \(E \) — см. 24.3.5.5; \(R_{ch} \) — см. 1.5.1.5.

Если приведенные неравенства не выполняются, то в расчетах устойчивости трубчатого элемента следует учитывать взаимовлияние местной и общей потери устойчивости. Применяемые методы расчета должны быть согласованы с Регистром.

2.4.3.9 Регистром может быть рассмотрен вопрос о возможности допущения потери устойчивости пластин горизонтальных настилов в отношении основных и второстепенных конструктивных элементов. В этом случае методы расчета и допускаемые напряжения должны быть обоснованы и согласованы с Регистром.

2.4.4 Критерий усталостной прочности.

2.4.4.1 Критерий усталостной прочности определяет требования, направленные на предотвращение появления в процессе эксплуатации опасных по возможным последствиям усталостных повреждений, обусловленных нестационарным изменением во времени эксплуатационных нагрузок различной интенсивности.

2.4.4.2 Расчет усталостной прочности выполняется для критических узлов, перечень которых согласовывается проектантом с Регистром.

2.4.4.3 Проектирование конструкций платформ допускается вести по критерию «безопасного повреждения», согласно которому реализация усталостного критерия ориентирована на стадию образования макротрецины, а не их развития. Критерий инициирования трещины базируется на гипотезе линейного суммирования повреждений:

\[\sum_{i=1}^{K} \eta_i \leq \eta, \]

где \(\eta_i \) — число циклов нагружений при \(i \)-м уровне нагрузжения; \(N_i \) — число циклов до появления трещины при \(i \)-м уровне нагрузжения; \(K \) — число рассматриваемых уровней нагружения; \(\eta \) — предельно допустимый уровень относительной повреждаемости.

2.4.4.4 Предельно допустимый уровень относительной повреждаемости \(\eta \) зависит от класса конструктивного элемента (см. 1.4), категории узла в пределах класса ответственности, степени доступа для инспекции и ремонта. Класс конструктивного элемента и категория узла устанавливаются проектантом по согласованию с Регистром.

2.4.4.5 Параметр \(\eta \) представляет собой произведение:

\[\eta = \beta_1 \beta_2, \]

значения \(\beta_1 \) и \(\beta_2 \) приведены в табл. 2.4.4.5-1 и 2.4.4.5-2.

Таблица 2.4.4.5-1

<table>
<thead>
<tr>
<th>Класс конструктивного элемента</th>
<th>Категория рассматриваемого узла</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Специальный</td>
<td>0,8</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>Основной</td>
<td>0,9</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Второстепенный</td>
<td>1,0</td>
<td>1,0</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2.4.4.5-2

<table>
<thead>
<tr>
<th>Доступ при проверке и ремонте</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Нет доступа</td>
<td>0,5</td>
<td>0,75</td>
</tr>
<tr>
<td>Плохой доступ</td>
<td>0,75</td>
<td>1,0</td>
</tr>
<tr>
<td>Хороший доступ</td>
<td>1,0</td>
<td></td>
</tr>
</tbody>
</table>

2.4.4.6 Источником циклических нагрузок являются волны, ветер, течение, лед, сейсмика, вибрация механизмов. Исходными данными для каждого вида циклических нагрузок является повторяемость внешних условий (см. 2.2.1 — 2.2.6).

2.4.4.7 Уровень долговечности рекомендуется определять по формуле:
Для СПБУ —

\[T_d = N_y \sigma_{y}^{m} / \left[\sum_{i,j} p_{ij} \Gamma(1 + m/K_i)(1 + \beta_{ij})d_{ij}^{m} \right], \quad (2.4.4.7-1) \]

где \(N_y, \sigma_{y}, m \) — параметры кривой усталости;
\(T_{\epsilon} \) — эффективный период процесса волновых напряжений на \(\eta \)-ом стационарном режиме, характеризующем \(\eta \)-ю высоту волны трехпроцентной обеспеченности, \(\eta \)-м средним периодом волнения,
\(k \) — курсовым углом к волне;
\(p_{ij} \) — повторяемость \(\eta \)-го стационарного режима;
\(k_{ij} \) и \(a_{ij} \) — параметры формы и масштаба соответственно, распределения напряжений (см. 3.1.4.9);
\(\beta_{ij} = a_{ij} / a_{ij} \) — гамма-функция.

В дополнение к формуле (2.4.4.7-1) суммарную усталостную повреждаемость \(D_{z} \) от волнения и ветра для конструкций СПБУ допустимо определять согласно зависимости:

\[D_{z} = D_{\text{wave}} + D_{\text{wind}} + D_{\text{vortex}}, \]

где \(D_{\text{wave}} + D_{\text{wind}} + D_{\text{vortex}} \) — усталостные повреждаемости от волнения, пульсационной составляющей ветровой нагрузки и вихревой составляющей ветровой нагрузки.

Для ППБУ —

\[T_d = N_y \sigma_{y}^{m} / \left[\sum_{i,j} p_{ij} \Gamma(1 + m/K_i)(1 + \beta_{ij})d_{ij}^{m} \right], \quad (2.4.4.7-2) \]

где \(\sigma_{\text{st}} \) — стандартное отклонение процесса напряжений на \(\eta \)-м стационарном режиме волнения.

Усталостную долговечность ПБУ/МСП при волновых, сейсмических и переменных ледовых нагрузках, рекомендуется определять на основе аналитической зависимости:

\[T_d = N_y \sigma_{y}^{m} / \left[\sum_{i,j} p_{ij} \Gamma(1 + m/K_i)(1 + \beta_{ij})d_{ij}^{m} \right], \quad (2.4.4.7-3) \]

где \(T_{\epsilon} \) — эффективный период \(\eta \)-го процесса;
\(a_0 \) и \(K_0 \) — параметры масштаба и формы \(\eta \)-го процесса (см. 3.3.2.1.4, 3.3.2.4.4, 3.3.2.3.3, 3.3.2.3.5);
\(N_y, \sigma_{y}, m \) — параметры кривой усталости, \(\sigma_{y} \) — предел усталости на базе \(N_y \) циклов,
\(m \) — тангенс угла наклона кривой усталости в координатах \(\lg \sigma \) — \(\lg N \).

2.4.4.8 Для предварительных оценок опасности возникновения усталостных повреждений и определения основных размеров связей корпусных конструкций в качестве кривых усталости рекомендуется использовать модифицированные кривые усталости Регистра (рис. 2.4.4.8-1 и 2.4.4.8-2) в соответствии с принятой международной классификацией конструктивных типов узлов и соединений (классы B, C, D, E, F, F2, G, W и T).

2.4.4.9 Кривые усталости относятся к толщинам материала 22 мм для плоских конструкций и 32 мм для трубчатых. Предел усталости для толщин элементов, отличных от базовых, определяется по формуле:

\[\sigma_{y} = \sigma_{y} (t_B / t)^{1/4}, \quad (2.4.4.9) \]

где \(t_B \) — базовая толщина;
\(t \) — истинная толщина.

2.4.4.10 При расчете для основного металла расчетный размах напряжений в кривых усталости на рис. 2.4.4.8-1 и 2.4.4.8-2 может быть уменьшен в зависимости от знака средних напряжений. Редукционный коэффициент \(\mu \), на который должен быть уменьшен размах напряжений, изображен на рис. 2.4.4.10.
2.4.4.11 Уровень долговечности $T_{сер}$ сооружения определяется заказчиком. Уровень расчетной долговечности T_d конструкций должен составлять $T_d \geq 1.1 T_{сер}$.

2.4.4.12 При получении результатов оценок долговечности, выполненных в соответствии с 2.4.4.8 — 2.4.4.10, содетельствующих о возможности возникновения преждевременных усталостных разрушений в сварных соединениях используемых типов конструкций, необходимо проведение более детальных расчетов усталостной прочности сварных соединений по одобренной Регистром методике, учитывающей основные конструктивные и технологические факторы и определяющей работоспособность сварных соединений при усталости. Необходимо также осуществлять выбор конструктивного оформления сварных соединений и узлов корпуса, обеспечивающих требуемую расчетную долговечность, учитывающую применение специальных технологических методов повышения усталостной прочности соединений в соответствии с 2.8.7 части XIII «Сварка».

2.5 ПОЛОЖЕНИЯ ПО РАСЧЕТАМ ПРОЧНОСТИ

2.5.1 Общие требования.
2.5.1.1 Расчеты прочности должны подразделяться на следующие этапы:
определене величин, характеристик и распределения расчетных глобальных и локальных нагрузок, их сочетаний для заданных режимов эксплуатации;
определение напряжений от глобальных и локальных нагрузок, суммирование напряжений;
определение величины расчетных напряжений или определение предельных нагрузок;
сопоставление расчетных величин с требованиями Правил ПБУ/МСП.

Все составные части расчета являются одинаково важными, и к их точности и обоснованности предъявляются одинаковые требования, такие же, как и ко всему расчету в целом.

2.5.1.2 Расчеты должны выполняться в соответствии с признанными методами. Там, где это приемлемо, могут использоваться положения Правил классификации и постройки морских судов.

2.5.1.3 Идеализированная конструктивная модель должна отражать особенности конструкции: взаимное расположение и геометрию основных несущих элементов, геометрические характеристики сечений. При этом должно использоваться деление идеализированной модели конструкции на подсистемы различного уровня.

Требования к расчетным моделям приведены в 2.5.2 — 2.5.5 настоящего раздела и Приложении 2 к настоящей части.

2.5.1.4 При расчете конструктивных элементов, находящихся в условиях многокомпонентно-
Правила классификации, постройки и оборудования ПБУ/МСП

gо напряженно-деформированного состояния, допускается не учитывать те компоненты напряжений, величина которых меньше 10 % расчетного предела текучести материала.

2.5.1.5 Дополнительные положения по расчетам прочности, касающиеся ПБУ/МСП конкретного типа, содержатся в соответствующих пунктах разд. 3.

2.5.2 Определение общих напряжений.

2.5.2.1 Для определения общих напряжений (или напряжений от глобальных нагрузок), которые связаны с общими деформациями конструкции, должны быть разработаны модели конструкции ПБУ/МСП, учитывающие ее макрособенности. Как правило, расчет напряженно-деформированного состояния конструкции выполняется на основе единой расчетной схемы, т. е. рекомендуется рассматривать конструкцию в целом.

Использование упрощенных расчетных схем (для частей конструкции) допускается в том случае, если обоснован их применение.

В любом случае модель должна быть подробной настолько, что это необходимо для определения общих напряжений.

2.5.2.2 Расчет напряженно-деформированного состояния конструкции ПБУ/МСП в целом рекомендуется выполнять по методу конечных элементов на базе стержневой, пластинчатой или пластинчато-стержневой идеализаций.

2.5.3 Расчет балочных систем.

2.5.3.1 В общем случае расчет балочных систем (перекрытий, рам) или отдельных элементов систем должен выполняться на основе расчетной схемы, учитывающей взаимовлияние смежных конструктивных элементов.

Для расчета перекрытий могут быть использованы стержневая (балочная), пластинчатая или пластинчато-стержневая модели. Использование упрощенных расчетных схем возможно в случае их обоснованности.

2.5.3.2 Моменты сопротивления и моменты инерции балок на балок при выполнении расчетов должны определяться с учетом присоединенного пояска, толщина которого принимается равной его средней толщины в рассматриваемом поперечном сечении балки.

Ширина присоединенного пояска \(b_n \) балок основного набора принимается равной меньшей из величин, определяемых по формулам:

\[
\begin{align*}
\frac{l}{16} & , \\
0,5(b_1 + b_2) & ,
\end{align*}
\]

где \(l \) — пролет рассматриваемой балки набора между ее опорами, м;

\(b_1, b_2 \) — отстояния рассматриваемой балки набора от ближайших балок того же направления, расположенных по обе стороны от нее, м.

Ширина присоединенного пояска балок рамного набора определяется по формуле:

\[
\begin{align*}
0,5b & , \\
kb & ,
\end{align*}
\]

где \(k \) — коэффициент, определяемый по табл. 2.5.3.2 в зависимости от \(l/b \) приведенной длины пролета балки \(l_{pb} \) и числа балок \(n \), поддерживаемых рассматриваемой балкой рамного набора.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(l_{pb}/b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,18, 0,62, 0,79, 0,88, 0,95, 0,99, 0,98, 0,97, 0,98</td>
</tr>
<tr>
<td>2</td>
<td>0,21, 0,40, 0,53, 0,64, 0,72, 0,78, 0,80</td>
</tr>
<tr>
<td>3</td>
<td>0,21, 0,40, 0,53, 0,64, 0,72, 0,78, 0,80</td>
</tr>
<tr>
<td>4</td>
<td>0,21, 0,40, 0,53, 0,64, 0,72, 0,78, 0,80</td>
</tr>
<tr>
<td>5</td>
<td>0,21, 0,40, 0,53, 0,64, 0,72, 0,78, 0,80</td>
</tr>
<tr>
<td>6</td>
<td>0,21, 0,40, 0,53, 0,64, 0,72, 0,78, 0,80</td>
</tr>
<tr>
<td>7 и более</td>
<td>0,21, 0,40, 0,53, 0,64, 0,72, 0,78, 0,80</td>
</tr>
</tbody>
</table>

П р и м е ч а н и е: Для промежуточных значений \(l_{pb}/b \) и \(n \) коэффициент \(k \) определяется линейной интерполяцией.

Для свободно опертых по концам рамных балок приведенная длина пролета \(l_{pb} \) равна длине \(l \), для жестко заделанных балок \(l_{pb} = 0,6l \). Условия опирания концов балок рамного набора (жесткая заделка, свободная опора) определяются исходя
из общенженерных принципов с учетом реальной конструкции (наличие книц, приварка стенок, поясков и т. п.), и характеризуются наличием или отсутствием действия изгибающего момента в опорном сечении балки.

2.5.3.3 Площадь поперечного сечения балки основного или рамного набора, воспринимающая осевые усилия, должна определяться с учетом присоединенного пояска, ширина которого равна полусумме отстояний рассматриваемой балки набора от ближайших балок того же направления, расположенных по обе стороны от нее.

2.5.3.4 Площадь поперечного сечения стенки рамного набора должна определяться с учетом наличия вырезов в расчетном сечении (сечение нетто).

2.5.3 В качестве расчетных должны рассчитываться, как правило, сечения, где максимальные нормальные, касательные напряжения или их комбинация. В этих сечениях должно быть выполнено суммирование напряжений от общих и местных нагрузок с целью удовлетворения критериев прочности (2.4.2.3.1) и (2.4.2.4.1).

2.5.4 Расчет пластин.
Расчет пластин обшивки (настила) производится в предположении их жесткой заделки на опорном контуре. Расчетная нагрузка принимается, как правило, равномерно распределенной по полю пластины.

На основании этого расчета определяются изгибающие нормальные напряжения по середине полуплоскости, которые суммируются с общими напряжениями в конструкции с целью удовлетворения критериев прочности (2.4.2.3.1) и (2.4.2.4.1).

2.5.5 Устойчивость конструктивных элементов.
2.5.5.1 Расчеты устойчивости выполняются с целью удовлетворения критериев 2.4.3. В расчетах устойчивости конструктивных элементов рекомендуется использовать расчетные схемы, учитывающие взаимовлияние смежных конструктивных элементов. В противном случае конструктивный элемент (балка набора, элемент балки, пластина и т. п.) должен рассматриваться как свободно опертый по контуру.

2.5.5.2 При определении величины критических напряжений следует учитывать отсутствие закон Гука. В этом случае критические нормальные напряжения определяются по формулам:

\[\sigma_{cr} = \sigma_e \text{ при } \sigma_e \leq 0,6 \sigma_{Rd}; \]
\[\sigma_{cr} = R_{Rd}(1,113 - 0,32 \frac{R_{Rd}}{\sigma_e}) \text{ при } 0,6 \sigma_{Rd} < \sigma_e < 2,4 \sigma_{Rd}; \]

где \[\sigma_e = \text{ эйлерово нормальное напряжение, МПа.} \]

При определении величины касательных напряжений следует учитывать, что предел текучести стали по касательным напряжениям \(\tau = 0,57 \sigma_{Rd} \).

2.5.5.3 В случае, если конструктивные элементы подвержены осевому сжатию или совместному действию сжатия и изгиба, то они должны отвечать следующему требованию:

\[\frac{\sigma_{ub}}{\sigma_{ub}^*} + \frac{\sigma_{ab}}{\sigma_{ab}^*} \leq 1,0 \]

где \[\sigma_{ub} = \text{ расчетное осевое сжимающее напряжение, МПа;} \]
\[\sigma_{ab} = \text{ расчетное сжимающее напряжение при изгибе, МПа;} \]
\[\sigma_{ub}^* = \sigma_{ub}^* \text{ или } \sigma_{ab}^* \text{ для изгибающего напряжения МПа;} \]
\[\sigma_{ab}^* = \eta R_{Rd} \text{ для осевого напряжения при изгибе МПа;} \]
\[\sigma_{cr} = \text{ критическое напряжение при потере устойчивости;} \]
\[\sigma_{cr} = \frac{\eta \sigma_{cr}}{\lambda \sigma_{cr}}(1 - 0,13 \lambda \sigma_{cr}), \lambda < \lambda_0; \]
\[\sigma_{cr} = \frac{\eta \sigma_{cr}}{\lambda \sigma_{cr}} 0,87, \lambda \geq \lambda_0; \]
\[\sigma_{cr}^* = \text{ не должна превышать } \sigma_{ab}^*; \]
\[\eta = 0,6 \text{ для статических нагрузках;} \]
\[\eta = 0,8 \text{ для совместных нагрузок;} \]
\[\lambda = \frac{\lambda}{\rho}; \]
\[\lambda_0 = \frac{\lambda_0}{\rho}; \]
\[\sigma_{cr} = \frac{\lambda_0}{\rho}; \]
\[\sigma_{cr} = \text{ критическое напряжение сжатого стержня в пластической стадии, МПа;} \]
\[\sigma_{cr} = \text{ критическое напряжение сжатого стержня до предела упругости, МПа;} \]
\[l_0 = \text{ эффективная длина стержня, мм, согласно (2.4.3.4);} \]
\[\rho = \text{ минимальный радиус инерции площади поперечного сечения, мм;} \]
\[E = \text{ модуль нормальной упругости материала, МПа;} \]
\[\sigma_{cr} = \text{ минимальный предел текучести материала при растяжении, МПа.} \]

2.5.5.4 Обеспечение местной устойчивости элементов балки набора (стенки, свободного пояска), установка местных подкреплений должна производиться в соответствии с Правилами классификации и постройки морских судов.

2.5.6 Расчет прочности вертолетной площадки.

2.5.6.1 Нагрузки.
Размеры связей вертолетной площадки и поддерживающих ее опорных конструкций должны определяться при допускаемых напряжениях согласно 2.5.6.2 настоящей части на основании следующих расчетных нагрузок:

равномерно распределенной по всей площади вертолетной площадки — не менее 2 кН/м²;

ударной, вследствие посадки вертолета, — не менее 75 % максимального взлетного веса вертолета, которая прикладывается на каждое из двух пятен касания колес вертолета площадью 0,3 × 0,3 м². Если в качестве вертолетной площадки используется верхняя палуба обитаемой надстройки или рубки, указанная нагрузка должна быть увеличена на 15 %;

от размещения вертолетов. Если в процессе эксплуатации ПБУ/МСП предусматривается пос-
Правила классификации, постройки и оборудования ПБУ/МСП

точное размещение вертолетов на вертолетной площадке, то нагрузка определяется как максимальная, рекомендованная поставщиком колесная нагрузка, умноженная для ПБУ на коэффициент динамичности, обусловленный качкой данной установки.

В дополнение к указанному должна быть учтена равномерно распределенная нагрузка не менее 0,5 кН/м² в случае наличия снежного покрова или льда.

2.5.6.2 Допускаемые напряжения.
Допускаемые напряжения для связей вертолетной площадки в зависимости от рассматриваемой нагрузки назначаются в соответствии с указаниями табл. 2.5.6.2.

<table>
<thead>
<tr>
<th>Нагрузка</th>
<th>Допускаемые напряжения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Настиль</td>
<td>0,6Рₚ</td>
</tr>
<tr>
<td>Подпалубные балки</td>
<td>0,6Рₚ</td>
</tr>
<tr>
<td>Рамные связи, опоры и т. д.</td>
<td>0,6Рₚ</td>
</tr>
<tr>
<td>Равномерно распределенная</td>
<td>1</td>
</tr>
<tr>
<td>Ударная от посадки вертолета</td>
<td>1,0Рₚ</td>
</tr>
<tr>
<td>От размещения вертолетов</td>
<td>0,9Рₚ</td>
</tr>
<tr>
<td></td>
<td>0,8Рₚ</td>
</tr>
</tbody>
</table>

1 Назначается по согласованию с Регистром в зависимости от принятого метода анализа работы пластины.
2 Для элементов, подверженных осевому сжатию, предел текучести или критические напряжения должны рассматриваться в качестве допускаемых в зависимости от того, что меньше.

3 СПЕЦИАЛЬНЫЕ ВОПРОСЫ ПРОЧНОСТИ ПЛАТФОРМ

3.1 САМОПОДЪЕМНЫЕ ПБУ

3.1.1 Общие требования.
3.1.1.1 Прочность конструкции СПБУ в соответствии с критериями 2.4 должна проверяться для пяти расчетных режимов: выживания; рабочего; транспортировки; установки на точку; снятия с точки.
Коэффициенты безопасности и критерии прочности для режимов установки на точку и снятия с точки (задавливание и выдергивание опорных колонн) должны приниматься, как для режима выживания.

3.1.1.2 СПБУ должна иметь клиренс, м, не менее:

hₖ ≥ 0,6h₅₀ + Δ₅₀ + 1,50, (3.1.1.2)

где h₅₀ — экстремальная высота волны (1 раз в 50 лет) для данного района моря, м; Δ₅₀ — экстремальный (1 раз в 50 лет) прилив в данной акватории, м.

3.1.1.3 Требуемая высота расположения Hₜₕ₅₀, м, вертолетной площадки СПБУ над ватерлиней спокойной воды, когда ПБУ подготовлена к состоянию перехода продолжительностью сутки и более, определяется по формуле:

Hₜₕ₅₀ = 1,8/10⁻³q²⁵₅ + 3(x/q)² + 2(h₅₀/12 - 1) + 1,2(τ - 1)⁰²⁷, (3.1.1.3)

где q = ηΔ; Δ — объемное водоизмещение ПБУ в состоянии перехода, м³;

x — отстояние наиболее удаленной кромки вертолетной площадки от положения центра тяжести ПБУ по длине корпуса, м;

h₅₀ — высота волны с повторяемостью 1 раз в 50 лет, м;

τ — продолжительность перехода, сутки, но не более четырех.

3.1.1.4 Ветровые, волновые и сейсмические нагрузки должны определяться для наиболее неблагоприятного угла распространения волн и угла атаки ветра.

3.1.1.5 При выполнении динамических расчетов прочности СПБУ низшая собственная частота (с⁻¹) изгибных колебаний определяется по формуле:

p = \frac{12nₖEₖ(1 - Gₚ/nₖPₖ)g}{(4 - 3x)(Gₚ + 0,5nₖGₖ)} \etaₖ, (3.1.1.5)

где nₖ — число опорных колонн; Eₖ — модуль упругости материала колонны, кПа; Jₖ — приведенный момент инерции площади сечения опорной колонны относительно главной центральной оси (см. 3.1.2.3), м⁴; Gₕ — масса понтона, кН; Gₖ — масса одной опорной колонны, кН; Pₖ = \frac{e²Eₖ}{4(3x + 1)} — эйлерова нагрузка на опорную колонну в составе пространственной рамы, кН; g = ускорение свободного падения, м/с²; t — расчетная длина опорной колонны, равная отстоянию пяты опорной колонны до середины расстояния между горизонтальными упорами в понтоне, м; ηₖ — коэффициент опорной пары, см. 3.1.2.2; ηₖ — поправочный коэффициент влияния закрепления опорных колонн в понтоне, см. 3.1.2.4.

3.1.2 Расчетная конструктивная схема СПБУ.
3.1.2.1 При оценке напряженного состояния используются идеализации конструкций на нескольких уровнях (см. рис. 3.1.2.1):
конструктивная рама («суперэлемент»); расчетный район опорной колонны.
3.1.2.2 Взаимодействие опорных колонн с грунтом оценивается коэффициентом опорной пары \(\varphi \), характеризующим степень заделки опорных колонн по отношению к повороту их в грунте. При изгибе колонн по низкочастотной форме значение зависит от параметров колонн установки и грунта согласно формуле:

\[
\varphi = \frac{1}{1 + AEJ_k/l},
\]

где \(A \) — коэффициент пропорциональности между опорным моментом и углом поворота опорной пяты 3.1.2.5;

\(E, l, J_k \) — см. 3.1.1.5.

3.1.2.3 Момент инерции площади решетчатой опорной колонны \(J_k \) соотносится с моментом инерции идеального профиля всех продольных элементов, входящих в состав колонны, как:

\[
J_k = J_u/\mu,
\]

где \(J_u \) — момент инерции идеального профиля, \(m^4 \);

\(\mu \) — приведенная жесткостная характеристика, зависящая от типа конструктивного модуля, геометрических характеристик его элементов и относительной длины опорной колонны.

3.1.2.4 Поправочный коэффициент \(\eta \) зависит от расстояния \(d, m \), между нижним и верхним горизонтальными упорами, от соотношения изгибной и свдиговой жесткости опорной колонны (В — ширина опорной колонны, \(m \)), от степени заделки опорных колонн в грунте \(\varphi \) (см. рис. 3.1.2.4).

В случае нестандартной установки механизма подъема (например, без амортизаторов) допустимо представить в Регистр для согласования специальный расчет района расположения опорной колонны в портале с корректировкой частот колебаний и перераспределением нагрузок между механизмами и опорами.

3.1.2.5 Коэффициенты податливости \(A \) определяются по формулам:
Правила классификации, постройки и оборудования ПБУ/МСП

при вертикальных колебаниях —

\[A = \frac{(1 - v)}{4Gr_0} \]

(3.1.2.5-1)

при горизонтальных колебаниях —

\[A = \frac{(2 - v)}{8Gr_0} \]

(3.1.2.5-2)

при вращательных колебаниях —

\[A = \frac{3(1 - v)}{8Gr_0} \]

(3.1.2.5-3)

при крутильных колебаниях —

\[A = \frac{3}{16Gr_0} \]

(3.1.2.5-4)

где \(G \) — модуль сдвига грунта, МПа; \(v \) — коэффициент Пуассона; \(r_0 \) — радиус основания, м.

Если основание прямоугольное со сторонами \(B \times L \), то вводится эквивалентный радиус

\[r_0 = \sqrt{\frac{BL}{\pi}} \] — для вертикальных и горизонтальных колебаний;

\[r_0 = \sqrt{\frac{B(L^2 + L^2)}{\pi}} \] — для вращательных колебаний вокруг горизонтальной оси;

\[r_0 = \sqrt{\frac{B(L^2 + L^2)}{\pi}} \] — для крутильных колебаний.

Для опор с заглублением, слой скольжения которых расположен на глубине, коэффициент податливости при вращательных колебаниях определяется по формуле:

\[A = \frac{3(1 - v)}{16Gr_0^3} \]

(3.1.2.5-5)

3.1.2.6 Наиболее нагруженным районом опорной колонны является область, расположенная в пределах между верхней и нижней направляющими, там, где нагрузки с колонн передаются на корпус.

Изгибающий момент в этом районе формируется частично горизонтальными усилиями от направляющих и частично вертикальными усилиями от механизма подъема. Относительный вклад вертикальных \((M_v) \) и горизонтальных \((M_h) \) усилий определяется параметром \(\beta \):

\[\beta = \frac{M_v}{M_v + M_h}. \]

(3.1.2.6-1)

При анализе общей прочности корпуса обычно можно принимать бесконечно большой по сравнению с жесткостью колонны. Опорный механизм представляет собой пружину вращения с вращательной жесткостью \(K_w \). В этом случае параметр \(\beta \) следует определять по формуле:

\[\beta = \frac{1}{1 + \Delta_\Sigma \frac{G F_2}{K_w}}, \]

(3.1.2.6-2)

где \(G \) — модуль сдвига материала колонны; \(F_2 \) — сдвиговая площадь колонны, м²; \(\Delta_\Sigma \) — расстояние между верхней и нижней направляющими, м;

\[K_w = \frac{1}{2} M_p, \]

(3.1.2.6-3)

где \(K = \frac{1}{K_{\text{bend}}} + \frac{1}{K_{\text{shear}}}, \)

\(K_{\text{bend}} \) — изгибающая жесткость колонны; \(K_{\text{shear}} \) — сдвиговая жесткость колонны.

3.1.3 Ветровые нагрузки.

3.1.3.1 Ветровые нагрузки определяются по формулам (2.3.8).

3.1.3.2 Динамичность приложения ветровых нагрузок рекомендуется учитывать, начиная с периода собственных изгибающих колебаний первого тона \(t = 130/\omega_1, \) с.

В этом случае используется коэффициент \(Kw \) динамичности, согласно рис. 3.1.3.2, на котором

\[\omega_1 = \frac{v_{\text{max}}}{\rho}; \]

(3.1.3.2)

где \(v_{\text{max}} = 4 \times 10^{-4} \omega_1 \) — модальная частота спектральной плотности ветра; \(\rho \) — частота собственных изгибающих колебаний СПБУ; \(\delta_{\text{w}}/\pi \) — относительный декrement колебаний СПБУ.

Рис. 3.1.3.2 Коэффициент динамичности ветровых нагрузок

3.1.3.3 При учете пульсационной составляющей ветровых нагрузок несинхронность их действия оценивается коэффициентом \(\eta \).

Коэффициент несинхронности ветровых нагрузок \(\eta \) определяется по следующей формуле:

\[\eta = \frac{\sum_i K_i K_{\text{w}i} S_i}{\sum_i K_i K_{\text{w}i} S_i}, \]

(3.1.3.3)

где \(r_i \) — коэффициенты корреляции между ветровыми давлениями на конструкции

а) на отдельные по ширине и высоте установки;

б) установленные вдоль направления действия ветра.

В первом приближении обобщенный коэффициент неоднородности ветровых давлений принимается как \(\eta = 0.8 \).

3.1.3.4 На каждом стационарном режиме определяются значения внутренних усилий статических воздействий ветра:

для четырехшпиндельной СПБУ —

\[M_w = 0.09Q_{\text{w}1}(2-x), \] — изгибающий момент;
\[T_w = 0.18Q_w \quad \text{— перерезывающая сила; \quad (3.1.3.4-1)} \]
\[N_w = 0.18Q_w \frac{l}{L} (2 - x) \quad \text{— осевая сила; \quad (3.1.3.4-2)} \]

для трехопорной СПБУ —
\[M_w = 0.165Q_w \frac{l}{L} (2 - x) \quad \text{— изгибающий момент; \quad (3.1.3.4-3)} \]
\[T_w = 0.33Q_w \quad \text{— перерезывающая сила; \quad (3.1.3.4-4)} \]
\[N_w = 0.58Q_w \frac{l}{L} (2 - x) \quad \text{— осевая сила, \quad \text{где}} \]

где \(Q_w \) — значение \(Q_w \) при \(\omega_0 = \omega_0 \) см. формулы (2.3.8);
\(L \) — расстояние в свету между опорными колоннами, см. рис. 3.1.2.1.

3.1.3.5 На каждом стационарном режиме определяются стандартные отклонения составляющих внутренних усилий ветровых пульсаций:

для четырехопорной СПБУ —
\[\sigma_M = 0.18Q_w \eta (2 - x) \delta_w K_w, \quad (3.1.3.5-1) \]
\[\sigma_N = 0.36Q_w \eta \frac{l}{L} (2 - x) \delta_w K_w, \quad (3.1.3.5-2) \]

для трехопорной СПБУ —
\[\sigma_M = 0.33Q_w \eta (2 - x) \delta_w K_w, \]
\[\sigma_N = 0.66Q_w \eta \frac{l}{L} (2 - x) \delta_w K_w, \]

где \(\eta \) — коэффициент измеряемости ветровых пульсаций, равный 2.45/\(\eta \);
\(K_w \) — коэффициент лобового сопротивления подстилающей поверхности, см. табл. 2.2.2.4.

3.1.3.6 Параметр масштаба \(a_w \) внутренних усилий от воздействия ветра оценивается как:
\[a_w = 0.85\sigma_w. \quad (3.1.3.6) \]

3.1.4 Волновые нагрузки.

3.1.4.1 Волновые нагрузки на элементы опорных колонн СПБУ определяются в соответствии с 2.3.9.1. Значения коэффициентов инерционного \(C_{ia} \) и скоростного \(C_{sr} \) сопротивления для сечений круглой и прямоугольной форм должны быть не менее указанных на рис. 3.1.4.1. При наличии рейки коэффициент сопротивления \(C_{drag} \) рекомендуется определять по формуле:
\[C_{drag} = C_{sr} + 4 \frac{a + b/2}{D}, \quad (3.1.4.1) \]

где \(D \) — диаметр цилиндра;
\(a \) — высота основания зуба;
\(b \) — высота зуба рейки.

Для более сложных форм расчетные значения коэффициентов \(C_{ia} \) и \(C_{sr} \) подлежат специальному согласованию с Регистром.

3.1.4.2 При расчете волновых нагрузок должно быть учтено влияние обрастания конструкций, проявляющееся в увеличении приведенных размеров сечений и коэффициентов \(C_{ia} \) и \(C_{sr} \).

3.1.4.3 Динамичность приложения волновых нагрузок оценивается с помощью графиков, изображенных на рис. 3.1.4.3. Здесь \(\omega \) — средний период поверхностного волнения, \(\rho \) — частота собственных изгибных колебаний, \(\delta \) — относительный декремент колебаний.

3.1.4.4 Гидродинамические нагрузки на модуль опорной колонны, состоящий из набора вертикальных, горизонтальных и наклонных связей, определяются поэлементным суммированием гидродинамических нагрузок с учетом расположения связей в пространстве, что равносильно введению коэффициентов влияния на волновую нагрузку горизонтальных и наклонных связей \(\mu_{ia} \) и \(\mu_{ia} \):
\[\mu_{ia} = 1 + \frac{\sum_{i=1}^{n} n_i d_i / C_{ia} (\theta_i) \cos^2 \theta_i}{n_i d_i / \Delta C_{ia}}, \quad (3.1.4.4-1) \]
\[\mu_{ia} = 1 + \frac{\sum_{i=1}^{n} n_i d_i / C_{ia} (\theta_i) \cos^2 \theta_i}{n_i d_i / \Delta C_{ia}}, \quad (3.1.4.4-2) \]

где \(d_3 \) — поперечный размер вертикальной рейки, м;
\(n_i \) — общее число горизонтальных и наклонных связей;
\(a_i, b_i \) — соответственно диаметр и длина наклонных и горизонтальных связей, м;
\(\Delta z \) — высота модуля, м;
\(\theta_i \) — угол, образованный наклонной связью с плоскостью, перпендикулярной направлению распространения волны;
\(C_{ia}^0, C_{ia}^n \) — коэффициенты скоростного и инерционного сопротивления вертикальных связей (несущих реек);
\(C_{sr}, C_{sr}^n \) — коэффициенты скоростного и инерционного сопротивления наклонных и горизонтальных связей.

Значения \(C_{ia}^0, C_{ia}^n, \mu_{ia}, \mu_{ia} \) должны определяться для расчетного курсового угла \(\theta_d \) согласно (3.1.4.6).

3.1.4.5 Допускается пренебрегать в расчетах волновой нагрузки:
Правила классификации, постройки и оборудования ПБУ/МСП

инерционным компонентом, если

\[h_3 \geq 8,5d_B C_{ew}^B \cdot \frac{\Omega_{cr}}{C_{ew} H_B H_M}, \]

(3.1.4.5-1)

скатным компонентом, если

\[h_3 \leq 2,1d_B C_{ew}^B \cdot \frac{\Omega_{cr}}{C_{ew} H_B H_M}, \]

(3.1.4.5-2)

где \(\Omega_{cr} \) — значения ординат формы колебаний опорных колонн СПБУ на уровне аппликаты равнодействующих волновых давлений, соответствующих инерционной и скатной составляющим:

\[
\begin{align*}
\Omega_{cr} &= \hat{u} + \hat{u} + H_t(1 - \phi), \\
\hat{u} &= \frac{6(z - \omega)}{4 - 3x} z \left(\frac{z}{t} \right)^2 - \frac{2}{4 - 3x} \left(\frac{z}{t} \right)^4, \\
\omega &= \text{расстояние от опорной пяты до уровня спокойной воды}, \\
\phi &= \text{средняя частота поверхностного волнения}, \\
H_t &= \text{расстояние от опорной колонны до уровня спокойной воды, м.}
\end{align*}
\]

3.1.4.6 Напряженное состояние конструкций СПБУ оценивается для наиболее неблагоприятных курсовых углов, называемых в дальнейшем расчетными. Расчетные курсовые углы \(\theta_d \) определяются по следующим формулам:

для четырехопорной СПБУ

\[\theta_d = \frac{\pi}{4} (2i - 1), \quad i = 1, 2, 3, 4, \]

(3.1.4.6-1)

для трехопорной СПБУ

\[\theta_d = \frac{\pi}{3} (2i - 1), \quad i = 1, 2, 3, \]

(3.1.4.6-2)

где \(i \) — номер направления.

3.1.4.7 Значения стандартов скоростных составляющих волновых нагрузок для расчетных курсовых углов определяются согласно зависимостям:

для четырехопорной установки

\[\sigma_M = 0,35 \hat{u} (2 - \omega)^4, \]

(3.1.4.7-1)

\[\sigma_N = 0,70 \hat{u} (2 - \omega)^4, \]

(3.1.4.7-2)

для трехопорной установки

\[\sigma_M = 0,5 \hat{u} (2 - \omega)^4, \]

(3.1.4.7-3)

\[\sigma_N = 0,70 \hat{u} (2 - \omega)^4, \]

(3.1.4.7-4)

где \(\hat{u} \) — число вертикальных связей,

\(\kappa \) — коэффициент динамичности волновых нагрузок, определяемый по рис. 3.1.4.3.

\(\gamma_4 \) и \(\gamma_3 \) — коэффициенты влияния расстояния между опорными колоннами на волновую нагрузку

\[\gamma_4 = \frac{1}{2} \left(1 + \cos \left(\frac{\pi L_4}{h_4} \right) \right), \]

(3.1.4.8)

\[\gamma_3 = \frac{1}{2} \left(1 + \cos \left(\frac{\pi L_3}{h_3} \right) \right), \]

(3.1.4.9)

\[L_4 = \sqrt{3} L_n, \]

(3.1.4.10)

\[L_3 = (\sqrt{3}) L. \]

3.1.4.8 Статистические характеристики внутренних усилий в конструкциях опорных колонн, отвечающие инерционной составляющей волновой нагрузки для курсовых углов, указанных в 3.1.4.6, определяются по формулам (3.1.4.7-1) и (3.1.4.7-2) с заменой в них \(\hat{u} \) на \(\hat{u} \), \(\sigma_M^\text{u} \) на \(\sigma_M^\text{v} \)

\[\sigma_M^\text{v} = 18,7 \cdot 10^{-6} m_k C_{ew}^B \mu_{n} h_t, \]

(3.1.4.8)

где \(S \) — площадь контура сечения вертикальной связи, \(m^2 \).
3.1.4.9 В зависимости от величины соотношения

\[\frac{\sigma_{\text{in}}}{\sigma_{\text{cr}}} = \frac{6.2 \sqrt{S \mu_{\text{in}} C_{\text{in}}^n}}{h_{\text{in}} \mu_{\text{cr}} C_{\text{cr}}^n} \]

(3.1.4.9-1)

по графикам рис. 3.1.4.9, а и б определяются параметры распределения статических внутренних усилий \(a_{in} \) и \(k_0 \) от воздействия волн на каждом стационарном режиме. Параметр \(\sigma_{Q_x} \) на графике 3.1.4.9 определяется по графику 3.1.4.13.

3.1.4.10 На каждом стационарном режиме определяются значения внутренних усилий с учетом статических воздействий ветра и веса понтона, сил от течения, которые добавляются к полученным в 3.1.4.10 величинам:

\[M_x = M_c + M_p + M_n + M_i; \]
\[T_x = T_c + T_n + T_i; \]
\[N_x = N_c + N_p + N_i + N_n, \]

(3.1.4.10-1)

(3.1.4.10-2)

(3.1.4.10-3)

где \(M_p \) и \(N_p \) — соответственно изгибающие моменты и осевые силы от веса понтона;
\(M_i, T_i, N_i \) — см. 3.1.3.4; \(M_c, T_c, N_c \) — см. 3.1.5.

3.1.4.11 На каждом стационарном режиме определяются значения внутренних усилий с учетом статических воздействий ветра и веса понтона, сил от течения, которые добавляются к полученным в 3.1.4.10 величинам:

\[M_x = M_c + M_p + M_n + M_i; \]
\[T_x = T_c + T_n + T_i; \]
\[N_x = N_c + N_p + N_i + N_n, \]

(3.1.4.11-1)

(3.1.4.11-2)

(3.1.4.11-3)

где \(M_p \) и \(N_p \) — соответственно изгибающие моменты и осевые силы от веса понтона;
\(M_i, T_i, N_i \) — см. 3.1.4.10; \(M_c, T_c, N_c \) — см. 3.1.4.10; \(M_e, T_e, N_e \) — см. 3.1.5.

3.1.4.12 Наибольшее из значений величин, определенных в 3.1.4.11, является расчетным.

3.1.4.13 В условиях мелководья стандартное отклонение для инерционной составляющей волновой нагрузки \(\sigma_{Q_x}^m \) на одну опорную колонну определяется по формуле:

\[\sigma_{Q_x}^m = 18.7 \cdot 10^{-2} \mu_{\text{in}} C_{\text{in}}^n \mu_{\text{cr}} S \bar{h} k \]

(3.1.4.13)

где \(k = \frac{2 - k_0}{1 + (1 - \nu) \gamma}, \]
\(a_o = a_{in} \sqrt{(2 - k_0)}; \]
\(\nu = \frac{\omega}{\sigma_{\text{cr}}}. \]

3.1.4.13 В условиях мелководья стандартное отклонение для инерционной составляющей волновой нагрузки \(\sigma_{Q_x}^m \) на одну опорную колонну определяется по формуле:

\[\sigma_{Q_x}^m = 18.7 \cdot 10^{-2} \mu_{\text{in}} C_{\text{in}}^n \mu_{\text{cr}} S \bar{h} k H, \]

(3.1.4.13)

где \(k = \frac{2 - k_0}{1 + (1 - \nu) \gamma}; \)
стандартное отклонение скоростной составляющей волновой нагрузки \(\sigma_{Q_x}^n \) на одну опорную колонну определяется согласно графику рис. 3.1.4.13-1.

Рис. 3.1.4.13-1 Зависимость \(\sigma_{Q_x}^n / \bar{h} C_{\text{in}}^n \) от параметра

\[\phi = H \sigma_{\text{cr}} / g. \]
Аппликаты приложения равнодействующих \(Q_{sr} \) и \(Q_{in} \) (отсчитываются от уровня воды) определяются по рис. 3.1.4.13-2 и 3.1.4.13-3 соответственно.

\[
Z_{Q_{sr}}/H = \frac{Q_{sr}}{H \sqrt{g}}
\]
\[
Z_{Q_{in}}/H = \frac{Q_{in}}{H \sqrt{g}}
\]

Рис. 3.1.4.13-2 Зависимость \(Z_{Q_{sr}}/H \) от параметра \(\Phi = \frac{H \sqrt{g}}{R} \)

Рис. 3.1.4.13-3 Зависимость \(Z_{Q_{in}}/H \) от параметра \(\Phi = \frac{H \sqrt{g}}{R} \)

3.1.5 Нагрузки от течения.
3.1.5.1 В произвольном поперечном сечении опорной колонны внутренние усилия от постоянной составляющей течения равны:

для трехопорной СПБУ (\(\varphi = 60^\circ \)) —

\[
M_c = (\sqrt{2} Q_c u_c l/4)(2 \pi - \varphi);
\]

\[
N_c = (2 Q_c u_c l/L)(2 - \pi);
\]

\[
T_c = Q_c u_c
\]

где \(Q_c = pC_{pd}H_{pd}\sqrt{g}/2; \)

\(H_{pd} \) — глубина акватории, м;

\(u_c \) — скорость течения, м/с;

\(\pi \) — значение параметра \(\pi \) (см. 3.1.4.5) в сечении \(H/2 \).

3.1.5.2 При совместном действии волнения и течения допустима аппроксимация:

\[
Q_{sr} = Q_{sr} + 2\sqrt{Q_{sr}Q_c} + Q_c,
\]

где \(Q_{sr} \) — скоростная составляющая волновой нагрузки, определяемая следующим образом:

\[
Q_{sr} = a_v(l_{max})/K,
\]

где \(a_v \) и \(K \) — параметры масштаба и формы распределения Вейбулла, определяемые по графикам рис. 3.1.4.9.

3.1.6 Сейсмические нагрузки.
3.1.6.1 В ряде районов сейсмические нагрузки на СПБУ могут быть соизмеримы с волновыми. Интегральное сейсмическое воздействие на СПБУ определяется по формуле:

\[
Q = M_{po}P_{so}a_{max},
\]

где \(M_{po} \) — приведенная масса понтона;

\(a_{max} \) — максимальное значение амплитуды ускорений;

\(P_{so} \) — обобщенный коэффициент динамичности по рис. 3.1.6.1.

Рис. 3.1.6.1 Обобщенный коэффициент динамичности:

\(\pi = 0 \) — низшая частота горизонтальных колебаний

3.1.6.2 Пределная нагрузка \(Q^{lim}_{lim} \), которую может выдержать СПБУ, определяется по формуле:

\[
Q^{lim}_{lim} = hQ_{mod} (1 + \frac{l}{d} \frac{2 - \varphi}{2}),
\]

где \(h \) — число опорных колонн;

\(Q_{mod} \) — предельная нагрузка на модуль опорной колонны, определяется на основе рассмотрения кинематического состояния модуля. Для типовой решетки СПБУ с K-образными узлами.
\[Q_{\text{mod}} = 2.32 R_d \pi D_p t_p, \]

\[R_d \] — расчетный предел текучести материала диагональных раскосов, МПа;

\[D_p \text{ и } t_p \] — соответственно диаметр и толщина диагональных раскосов, м;

\[l \] — длина опорной колонны, м;

\[d \] — расстояние между верхним и нижним упорами, м;

\[e \] — коэффициент опорной пары (см. 3.1.2.2).

3.1.6.3 Коэффициент запаса при сейсмических нагрузках:

для землетрясений 1 раз в 100 лет —

\[K_a = \frac{Q_{\text{mod}}}{Q_{\text{t}}/Q_{\text{r}}} \geq 1.25; \quad (3.1.6.3-1); \]

для землетрясений 1 раз в 500 лет —

\[K_a = \frac{Q_{\text{mod}}}{Q_{\text{r}}/Q_{\text{l}}} \geq 1. \quad (3.1.6.3-2). \]

3.1.7 Задавливание и выдергивание опорных колонн.

3.1.7.1 В процессе задавливания опорных колонн и выдергивания из грунта в конструкции СПБУ могут возникнуть значительные усилия. В связи с этим должен быть выполнен расчет прочности опорных колонн и понтона. Задачами расчета являются:

определение из условий прочности колонн допустимых уровней контролируемых параметров (углов крена и дифферента);

проверка прочности конструкций при опиравии его на диагонально расположенные опоры в случае четырехопорной СПБУ или при расчете на собственный вес с учетом принятого балласта в отсеки понтона в случае трехопорной СПБУ.

3.1.7.2 Допустимые значения углов крена и дифферента определяются из условия, что в процессе выдергивания колонны в наиболее напряженных точках конструкции действующие напряжения не должны превосходить допускаемые значения.

При составлении условий прочности должны рассматриваться наиболее опасные положения точек приложения реакций понтона по высоте модуля опорной колонны и наиболее напряженные районы конструкции. К ним относятся опорные сечения горизонтальных стоек и раскосов, середина пролета вертикальной стойки опорной колонны.

3.1.7.3 Усилия взаимодействия колонны и понтона должны определяться из условий совместности перемещений понтона и опорных колонн и выражаться через узлы крена и дифферента, а также через вертикальное осевое усилие.

При определении неизвестных усилий должны учитываться силы тяжести и координаты точки приложения равнодействующей сил тяжести, силы плавучести и форма корпуса в подводной части, силы и моменты, возникающие в опорной части колонны в результате взаимодействия с грунтом.

3.1.7.4 Исходя из условий прочности определяется область допустимых значений углов крена и дифферента и осевого усилия. Эти характеристики должны рассматриваться как исходные данные для разработки инструкции по эксплуатации.

3.1.7.5 Допустимые значения углов крена и дифферента при заданной величине осевого усилия должны определяться по способу, изложенному в 3.1.8.3, полагая силы плавучести равными нулю, а знак усилия — обратным знаку сил при выдергивании.

3.1.8 Напряженное состояние опорных колонн.

3.1.8.1 Задачей расчета прочности опорных колонн является определение напряженного состояния конструкции в рабочем состоянии и в процессе выдергивания их в корпусе СПБУ и в районе их закрепления в грунте.

Конструкция колонны должна быть выполнена из металла, который обеспечивает необходимую прочность при максимальных силах, возникающих в процессе эксплуатации. Расчет напряженного состояния конструкции опорных колонн следует проводить с помощью методов, дающих возможность учета особенностей напряженного состояния в элементах колонны, например, с помощью метода конечных элементов. Конструкции понтона и портала допустимо принимать абсолютно жесткими.

3.1.8.2 Районом закрепления опорной колонны в корпусе следует считать ее часть, ограниченную снизу поперечным сечением, находящимся на расстоянии 0,5 пролета между верхними и нижними упорами, а сверху — поперечным сечением, отстоящим от верхних упоров на 0,25d вверх от верхней точки соприкосновения с верхним упором, или концевым сечением опорной колонны (см. рис. 3.1.2.1).

3.1.8.3 В качестве силовых граничных условий в нижнем сечении рассматриваемого района опорной колонны должны быть приняты значения интегральных сил и моментов, определенных на основании упрощенной модели СПБУ (см. рис. 3.1.2.1). При задании ограничения на вертикальные перемещения в нижнем сечении отрезка колонны в число силовых граничных условий следует включать вертикальные усилия, передаваемые механизмом подъема на колонну. Величина и схема приложения этих усилий зависит от конструкции конкретного механизма подъема, способа крепления его к корпусу СПБУ и возможной задаваемой неравномерности распределения этих усилий, связанной с обеспечением условия прочности зуба.

3.1.8.4 В результате расчета идеализированной конструкции опорной колонны, закрепленной в корпусе понтона, определяются значения перемещений и внутренних усилий в узлах стержневой системы, а также величины реакций и распределение напряжений в элементах конструкции.

Расчет напряжений для элементов наиболее напряженных модулей должен быть выполнен в...
трех поперечных сечениях по их высоте: в середине пролета и в опорных сечениях.

3.1.8.5 Районом закрепления опорной колонны в грунте следует считать отрезок ее, ограниченный сверху поперечным сечением, находящимся на расстоянии 0,5d от линии сопряжения колонны с опорным башмаком.

Для моделирования башмака колонны или другой подобной конструкции, являющейся частью нижнего конца опорной колонны, следует использовать идеализацию, позволяющую получить плоское напряженное состояние в элементах этой конструкции. Силовые граничные условия задаются на верхнем конце рассматриваемого отрезка опорной колонны, аналогично 3.1.2.1. В результате расчета должны быть получены значения внутренних усилий и перемещений, а также распределение напряжений.

3.1.8.6 В случае невозможности выполнения положений 3.1.8.2 — 3.1.8.5 в силу принципиальных отличий от изложенной расчетной схемы допускается представлять в Регистр для согласования расчетную схему СП БУ, конкретно учитывающую конструктивные особенности установки.

3.1.9 Нагрузки на колонны СПБУ при транспортировке.

В условиях транспортировки опорные колонны поднятые вверх, чаще всего полностью. Комбинация инерционных нагрузок при бортовой и килевой качке совместно с ветровым воздействием вызывает большие изгибающие моменты и осевые силы в колоннах, а также большие реактивные усилия в портале и конструкциях корпуса.

Параметры качки могут быть получены либо по результатам модельных испытаний либо расчетом. К результатам расчетов параметров качки следует относиться с большой осторожностью из-за наличия ряда нетрадиционных особенностей понтонов СПБУ, обусловливающих появление ряда нелинейностей.

При расчете нагрузок в условиях перехода должны быть учтены:

инерционные силы, соответствующие спецификационной амплитуде бортовой или килевой качки с собственным периодом платформы;

статические силы, соответствующие максимальному наклонению колонн во время бортовой или килевой качки;

ветровые силы, отвечающие спецификации.

Эффект вертикальной качки, сноса и рыскания допускается учитывать введением поправочного коэффициента γ=1,2.

Допускается, что бортовую или килевую качку можно описать с помощью зависимости:

\[\theta = \theta_0 \sin \frac{2\pi t}{T_0} \]

где \(t \) — время, с;

\(T_0 \) — собственный период бортовой или килевой качки;

\(\theta_0 \) — амплитуда бортовой или килевой качки, град.

При этом, что центр колебаний расположен в плоскости ватерлинии. Ускорение сосредоточенной массы, расположенной на расстоянии \(t \), м от центра колебаний, в м/с² определяется как:

\[a = -\left(2\pi/T_0\right)^2 \theta_0 \sin \frac{2\pi t}{T_0} \]

Амплитудные значения усилий на единицу длины опорной колонны определяются координатой \(z \):

поперечные усилия —

\[F_{TS} = m(z)g \sin \theta_0 \] — статическое усилие;

\[F_{TD} = m(z)\theta_0 \] — инерционное усилие;

ветровые усилия —

\[F_W = \frac{1}{2} \rho C_D W(z) \cos \theta_0 \] — ветровое усилие;

продольные силы —

\[F_{LS} = m(z)g \cos \theta_0 \] — статическое усилие;

\[F_{LD} = m(z)\theta_0 \] — инерционное усилие,

где \(m(z) \) — единичная масса;

\(W(z) \) — скорость ветра на уровне \(z \);

\(g \) — ускорение силы тяжести;

\(\theta_0 = 2\pi/T_0 \) — собственная амплитуда бортовой или килевой качки.

При приведении усилий к равнодействующим величинам следует учитывать собственный момент инерции рассматриваемой конструкции, например, при сведении участка колонны длиной \(l \) и погонной равномерной массой \(m \) собственный момент инерции \(M_j \) равен:

\[M_j = \frac{m l^3}{12} \]

Собственный период качки (бортовой или килевой) допустимо определять по формуле:

\[T_0 = 2\pi\sqrt{(r_0 - \rho_0)/gGM} \]

где \(r_0 \) — радиус качки по отношеню к оси, расположенной в плоскости ватерлинии, м;

\(\rho_0 \) — расстояние по вертикали между водной поверхностью и истинной осью вращения при бортовой и килевой качке, м;

\(GM \) — поперечная или продольная метацентрическая высота, м.

Расстояние \(a_0 \) в первом приближении может быть взято между поверхностью воды и центром тяжести.

Радиус инерции \(r_0 \) может быть определен как:

\[r_0 = \sqrt{m/M_m} \]

где \(M_m = I_m + I_H + I_L \) — момент инерции масс по отношению к бортовой и килевой качке;

\(m \) — число колонн;

\(I_L \) — момент инерции масс колонны;

\(I_H \) — момент инерции масс корпуса;

\(I_{sh} \) — присоединенная масса момента инерции;

\(M_L \) — масса одной колонны;

\(M_H \) — масса корпуса.
3.1.10 Удар колонны о грунт при установке СПБУ на точку.

При установке и снятии с грунта опорная колонна может быть подвержена удару о грунт, вызванному качкой при установке на волнении.

Сила удара, вызванная качкой, может быть рассчитана с помощью упрощенного метода, основного на следующих допущениях:
- грунт касается только одна колонна;
- нижний конец колонны немедленно останавливается при касании колонной грунта;
- грунт бесконечной жесткости.

Энергия вращения установки поглощается конструкцией колонны, что дает силу удара

\[P = \frac{2\pi \theta_0}{T_0} \sqrt{K m}, \]

где
- \(K m \) — момент инерции массы установки по отношению к бортовой или килевой качке;
- \(\theta_0 \) — амплитуда качки;
- \(K \) — общая поперечная жесткость колонны.

Результат будет зависеть от интенсивности волновых условий и глубины акватории.

Максимально допустимая величина ударного воздействия может быть определена исходя из критерия прочности. Максимально допустимая амплитуда бортовой и килевой качки во время постановки и снятия с грунта:

\[[\theta_0] = \frac{TP_{\text{макс}}}{2\pi \sqrt{K m}}, \]

3.1.11 Прочность опорных колонн СПБУ при ледовых воздействиях.

Как правило, СПБУ не предназначены для работы во льдах. Тем не менее, возникающая необходимость продления срока эксплуатации СПБУ при наличии льда приводит к проблемам обеспечения безопасности при увеличении времени на бурение.

Для решения поставленной задачи должна быть определена сила взаимодействия ледяного поля со стороны массы установки в виде \(m \), движущегося со скоростью \(u_o \) с конструкциями СПБУ. При этом должна быть учтена податливость опор сооружения.

Нагрузки от движущихся ледяных полей должны приниматься наименьшей из двух нагрузок: при установке ледяного поля и прорезании ледяного поля.

3.1.12 Вихревые нагрузки.

Вихревые нагрузки определяются для «прозрачных» конструкций применительно к критическим скоростям ветра, определяемым по формуле:

в направлении вдоль ветрового потока:

\[(w_{cr})_x = \frac{d}{(T_b) Sh}, \]

(3.1.12-1)

Значение числа Струхаля определяется формой поперечного сечения конструкции, углом набегающего потока и безразмерным числом Рейнольдса:

\[Re = \frac{d \bar{V}}{v}, \]

где \(v \) — коэффициент кинематической вязкости воздуха.

Зависимость \(Sh = Sh(x) \) для конкретного объекта нетрадиционной формы надёжнее всего определять экспериментально на модели. При отсутствии экспериментальных данных рекомендуется прибегнуть к экспертным оценкам. В первом приближении можно использовать следующую формулу:

\[C_x Sh = 0.26(1 - e^{-2.38c_x}), \]

где \(C_x \) — коэффициент лобового сопротивления рассматриваемой конструкции.

3.2 ПОЛУПОГРУЖНЫЕ ПБУ

3.2.1 Общие требования.

3.2.1.1 Прочность конструкции ППБУ в соответствии с положениями 2.4 должна проверяться для трех различных режимов:
- выживания;
- рабочего;
- транспортировки
в соответствии с критериями 2.4.

Общие указания о назначении нагрузок в каждом из этих режимов приведены в 2.3.

3.2.1.2 ППБУ в режиме выживания должна иметь клиренс \(h_c \), м, определяемый как:

\[h_c \geq 0.6h_{50} + 0.5, \]

(3.2.1.2)

где \(h_{50} \) — экстремальная высота, м, волны (1 раз в 50 лет) для данных районов эксплуатации ППБУ.

3.2.1.3 Для оценки по критерию усталостной прочности должен использоваться весь спектр долговременного распределения \(P(h_3, T()) \) данного или наиболее тяжелого по волновым условиям района и весь период эксплуатации ППБУ.

3.2.1.4 Волновая нагрузка представляет собой систему взаимно уравновешенных поверхностных гидродинамических нагрузок и объемных инерционных нагрузок собственных масс установки, возникающих при качке ППБУ на волнении.

Для определения нагрузок может использоваться линейная теория качок на волнении.

3.2.1.5 При расчете прочности корпуса ППБУ следует руководствоваться положениями 2.5, а также нижеприведенными указаниями.
3.2.1.6 Повреждение любой из основных связей корпуса или раскоса не должно приводить к разрушению корпуса ППБУ. Регистром могут быть потребованы расчеты, подтверждающие, что в условиях воздействия внешних нагрузок, соответствующих наибольшим в течение одного года для данного района эксплуатации, прочность корпуса с поврежденным основным элементом или раскосом будет обеспечена.

3.2.1.7 Непроницаемые погружные или полупогружные элементы конструкции корпуса (отсеки) должны быть оборудованы средствами обнаружения нарушения непроницаемости.

3.2.2 Общие нагрузки.

3.2.2.1 Общие нагрузки на корпус установки в условиях волнения могут быть определены одобренным Регистром расчетным методом, учитывающим качку ППБУ и случайный характер волнения, или экспериментальным методом, основанным на специальных моделных испытаниях, обеспечивающих надежность и адекватность результатов натурным данным.

3.2.2.2 Общие волновые нагрузки могут быть представлены в виде распределенных нагрузок и в виде расчетных значений интегральных характеристик составляющих нагрузки с указанием способов определения соответствующих им распределенных нагрузок и расчетных композиций нагрузок для каждого расчетного режима эксплуатации для определения суммарных напряжений.

Распределенные нагрузки, определяемые обычно применительно к идеализации корпуса ППБУ, используемой в расчетах качки, для расчета напряженно-деформированного состояния конструкций корпуса следует преобразовать с учетом принятой идеализации и применяемой реализации метода конечных элементов.

3.2.2.3 В качестве интегральных характеристик, в общем случае, следует рассматривать четыре составляющие волновой нагрузки: \(Q_1 \) — симметричную, \(Q_2 \) — кососимметричную, \(Q_3 \) — крутящий в диаметральной плоскости ППБУ момент и \(Q_4 \) — перерезывающую силу на четверти длины установки в долговременном распределении режимов волнения или их дисперсии на стационарном режиме.

3.2.2.3.1 Интегральная характеристика симметричной горизонтальной составляющей нагрузки:
\[Q_1^* = \frac{1}{L} \int (q_1' - q_1^*) dx = -Q_1 \]
(3.2.2.3.1-1)

Соответствующая горизонтальная распределенная нагрузка, т/м:
\[q_1' = \frac{Q_1}{L} \text{ и } q_1^* = \frac{Q_1}{L} = -Q_1 \]
(3.2.2.3.1-2)

приложена в плоскости ватерлинии в транспортном режиме и в плоскости палубы понтона в режимах рабочем и выживании.

3.2.2.3.2 Интегральная характеристика несимметричной составляющей:
\[Q_2^* = \frac{1}{L} \int (q_2' - q_2^*) dx = -Q_2 \]
(3.2.2.3.2-1)

Соответствующая распределенная нагрузка представлена в каждом сечении понтона распределенными вертикальной силой \(q_1 \), т/м, и моментом \(M \), тм:
\[q_2' = Q_2^* = \frac{Q_2}{L} \text{ и } q_2^* = \frac{Q_2}{L} = -Q_2 \]
(3.2.2.3.2-2)

и приложенными \(q_2 \) — в диаметральной плоскости понтона, \(M_2 \) — действуют относительно линии пересечения диаметральной плоскости понтона и ватерлинии в транспортном режиме и диаметральной плоскости и плоскости палубы понтона в режимах рабочем и выживании.

3.2.2.3.3 Интегральная характеристика крутящей (в диаметральной плоскости ППБУ) составляющей:
\[Q_3^* = \frac{1}{L} \int x(q_3' - q_3^*) dx = -Q_3 \]
(3.2.2.3.3-1)

Соответствующие вертикальные распределенные силы, т/м:
\[q_3' = \frac{12Q_3}{L^3} x \text{ и } q_3^* = \frac{-12Q_3}{L^3} x \]
(3.2.2.3.3-2)

приложены в диаметральной плоскости понтона.

3.2.2.3.4 Интегральная характеристика симметричной вертикальной составляющей:
\[Q_4^* = \frac{1}{L} \int (q_4' - q_4^*) dx = Q_4 \]
(3.2.2.3.4-1)

Соответствующие вертикальные распределенные силы, т/м:
\[q_4' = q_4^* = (2\pi Q_4/L) \cos(2\pi x/L) \]
(3.2.2.3.4-2)

приложены в диаметральной плоскости понтона.

В зависимости, приведенных в 3.2.2.3.1 — 3.2.2.3.4, обозначены:
\[q_1', q_1^*, M' \text{ и } q_2, q_2^*. \]
(3.2.2.3.4-3)

Данные составляющие справедливы для ППБУ классического типа, которая состоит из двух понтона, 4 — 8 стабилизирующих колонн, верхнего корпуса и, как правило, раскосов.

1 Данные составляющие справедливы для ППБУ классического типа, которая состоит из двух понтона, 4 — 8 стабилизирующих колонн, верхнего корпуса и, как правило, раскосов.
части II. Корпус

3.2.2.4 Напряжения, определенные по расчетным величинам интегральных характеристик составляющих нагрузки, имеют обеспеченность этих характеристик. Для определения расчетных суммарных напряжений следует использовать композиции составляющих нагрузки, приведенные в табл. 3.2.2.4.

Для напряжений, определяемых по распределенным нагрузкам, следует рассчитать их долговременное распределение или дисперсии напряжений на стационарном режиме волнения, позволяющие определить величины напряжений такой же обеспеченности, которая регламентируется в 2.3 для волновых условий в расчетных режимах эксплуатации ППБУ.

3.2.2.6 Гидродинамические нагрузки на раскосы определяются в соответствии с 2.3.9.

Расчетные значения коэффициента присоединенных масс C_m определяются по методике, одобренной Регистром. Расчетные значения коэффициента сопротивления C_w должны быть не менее указанных на рис. 3.1.4.1.

3.2.2.7 Допускается не учитывать в расчетах скоростную составляющую нагрузки, если:

$$h_{3y} \leq \pi D C_{\infty}/C_w,$$

где h_{3y} — высота волны трёхпроцентной обеспеченности; $C_{\infty} = 1 + C_m$.

3.2.3 Местные нагрузки.

3.2.3.1 Местные нагрузки определяют интенсивность поперечной нагрузки на надводную часть конструкции, ребра жесткости, перекрытия понтонов, швиков, восстанавливающих, гидродинамических и инерционных собственных масс сил и моментов, а из главные вектор в момент равны нулю;

3.2.3.2 Суммарная местная нагрузка включает постоянную и переменную составляющие.

3.2.3.3 Постоянная нагрузка определяется разностью наружного (по отношению к отсеку) и внутреннего давлений. Постоянная нагрузка определяется поперечными и килевыми качками ППБУ на встречном курсовом угле относительно волны в режимах транспортировки понтонов.

Расчетной величиной является самое неблагоприятное значение этой разницы. Если внутреннее давление создается расходуемым грузом или балластом, при определении расчетной местной нагрузки оно должно приниматься равным нулю.

3.2.3.4 Переменные местные давления, кПа, определяются по следующему формулам:

на погруженную часть конструкции —

$$p = g \frac{h_{3y}}{2} e^{-k z},$$

(3.2.3.4-1)

на надводную часть конструкции —

$$p = g \left(\frac{h_{3y} - z_1}{2} \right),$$

(3.2.3.4-2)

где $R = h_{3y} > 2b_1, \text{м};$

$z_1 = \text{высота волны 3-процентной обеспеченности волнового режима, имеющего в долговременном распределении для данного района эксплуатации обеспеченность } P(h_{3y}, T_s) \approx 10^{-2},$ м;

$c = \text{коэффициент, учитывающий дифракцию волн и неравномерность волн давлений по контуру погруженного элемента}, c = 1,5;

k = 4\pi^{1/2} g T_s^{-1};$

$T_s = \text{средний период режима волны обеспеченностью } 10^{-2},$ с;

$z = \text{заглубление точки под свободной поверхностью воды погруженной части конструкции},$ м;

$z_1 = \text{высота волны надводной части конструкции},$ м;

$g = \text{ускорение свободного падения, } m/s^2;$$p = \text{плотность морской воды, } t/m^3.$

3.2.3.5 Ударные нагрузки на раскос.

3.2.3.5.1 Расчетная скорость v_0 относительно движения носового поперечного горизонтального раскоса при условии входа раскоса в воду (амплитуда R_0 относительного перемещения $R = 2b_1, \text{где } b_1 = \text{отстояние нижней кромки раскоса от поверхности воды})$ определяется выражением:

$$v_0^2 = 2D (4ln10 - 2b_1^2/D_0),$$

(3.2.3.5.1)

где D, и D_0 — дисперсии скорости и перемещений относительно движения раскоса.

Дисперсии D и D_0 должны определяться с учетом волнового движения воды и вертикальной и килевой качки ППБУ на встречном курсовом угле относительно волны в режимах транспортировки.

Таблица 3.2.2.4

<table>
<thead>
<tr>
<th>Режим эксплуатации ППБУ</th>
<th>Расчетное волнение</th>
<th>Положение ППБУ на волнении</th>
<th>Расчетная композиция нагрузок</th>
</tr>
</thead>
<tbody>
<tr>
<td>Транспортировки</td>
<td>$h_{max} \leq h_{3y} \leq h_{per}$</td>
<td>на прямом курсе ($\phi = 0$ или 180^0)</td>
<td>$Q_6; 0,3Q_3; 0,3Q_2$ и $0,3Q_1$</td>
</tr>
<tr>
<td>Рабочий и выживания</td>
<td>$T_e = T_{e_0}$</td>
<td>на косом курсе</td>
<td>$Q_6; 0,3Q_3; 0,3Q_2$ и $0,3Q_1$</td>
</tr>
<tr>
<td></td>
<td>T_e в соответствии с долговременным распределением при заданном для режима диапазоне h_{3y}</td>
<td>лагом к волне</td>
<td>$Q_6; 0,3Q_3; 0,3Q_2$ и $0,3Q_1$</td>
</tr>
</tbody>
</table>

$^1_{h_{per}} = \text{допустимая высота волны 3-процентной обеспеченности для данного режима эксплуатации;}$

$^2_{T_{e_0}} = \text{средняя величина среднего периода стационарных режимов волнения с } h_{3y} = h_{per};$

$^3_{h_{max}} = \text{называющая высота волны 2-процентной обеспеченности для режима выживания (для рабочего режима } h_{max} = 0).$
Правила классификации, постройки и оборудования ПБУ/МСП

тировки и выживания (2.3.2.2 и 2.3.4.4) с помощью методов, согласованных Регистром.

3.2.3.5.2 Расчетная распределенная ударная нагрузка, t/m, определяется:

\[q_{ym} = 1,47 r^p D, \]

где \(D \) — диаметр раскоса, м.

3.2.3.5.3 Наибольшая расчетная амплитуда перемещения \(z_0 \) среднего сечения раскоса в процессе упругих колебаний и соответствующие напряжения \(\sigma_y \) определяются по формулам:

\[z_0 = \frac{F_{red}}{K_{red}} \left\{ 2 a_1 + (1 + a_1^2) \omega_0 t \right\}, \]

где \(\frac{F_{red}}{K_{red}} = 2,37 a_1 \) — частота первого тона упругих колебаний раскоса.

\[\sigma_y = \left(\frac{ED}{2} \right) z_0 f(t), \]

где \(a_1 = \frac{T}{0,145D^2} \) — частота первого тона упругих колебаний раскоса.

\[F_{red} = \int \left[g_{red} + F_r f_1 \right] dv \]

3.2.3.5.4 Напряжения \(\sigma_y \) следует учитывать при определении суммарных напряжений в раскосе, вызванных местными и общими нагрузками в режимах транспортировки и выживания.

3.2.4 Определение напряженно-деформированного состояния.

3.2.4.1 Конструкция платформы считается линейной системой. Поэтому напряжения в конструкции могут быть получены в результате наложения результатов воздействия отдельных составляющих нагрузок.

3.2.4.2 Для расчета напряженно-деформированного состояния конструкции ППБУ в целом рекомендуется использовать метод конечных элементов. При этом могут быть применены следующие трехмерные модели: стержневая, пластинчатая, пластинчато-стержневая.

Стержневую модель целесообразно использовать на ранних стадиях проектирования. Пластинчатую и пластинчато-стержневую модели целесообразно использовать на завершающих стадиях проектирования. Последняя подразумевает идеализацию в виде стержневых конечных элементов либо только раскосов, либо раскосов, стабилизирующих колонны и понтоны.

3.2.4.3 При расчете напряженно-деформированного состояния конструкции ППБУ в целом на базе стержневой модели должно быть выполнено следующее:

1. Должны использоваться стержневые конечные элементы.
2. Геометрические характеристики поперечных сечений элементов, аппроксимирующих понтоны, стабилизирующие колонны и раскосы, должны определяться из условия, что продольные связи, включающие обшивку, продольные ребра жесткости и другие продольные элементы, участвуют в работе конструкции полной площадью.
3. Геометрические характеристики поперечных сечений элементов, аппроксимирующих конструкцию верхнего корпуса, должны определяться в соответствии с положениями 3.2.4.4.
4. В местах соединения элементов с большими размерами поперечных сечений (например, соединение стабилизирующей колонны с понтоном или раскосом (рис. 3.2.4.3.4) и т. п. должны вводиться «абсолютно жесткие» конечные элементы, либо следует использовать стержневые конечные элементы с жесткими окончаниями.

Рис. 3.2.4.3.4

«Абсолютно жесткие» конечные элементы:
1, 3 — стержневые конечные элементы; 2 — «абсолютно жесткие» конечные элементы; 4, 6 — стабилизирующая колонна; 5 — понтон; 7 — раскос
3.2.4.4 Положения по определению геометрических характеристик поперечных сечений элементов, аппроксимирующих конструкцию верхнего корпуса, предусматривают следующее.

3.2.4.4.1 Конструкция верхнего корпуса (рис. 3.2.4.4.1-1) может быть представлена в виде системы стержневых элементов (рис. 3.2.4.4.1-2), которые обладают свойствами реальной конструкции. Геометрическими характеристиками поперечных сечений стержневых элементов являются:

\[J_x \] — момент инерции площади поперечного сечения элемента относительно горизонтальной оси;
\[J_z \] — момент инерции площади поперечного сечения элемента относительно вертикальной оси;
\[J_T \] — момент инерции площади поперечного сечения элемента на кручение;
\[F_x \] — площадь поперечного сечения элемента, воспринимающая сдвиг в горизонтальном направлении;
\[F_z \] — площадь поперечного сечения элемента, воспринимающая сдвиг в вертикальном направлении;
\[F_{t-com} \] — площадь поперечного сечения элемента на растижение-сжатие.

3.2.4.4.2 Момент инерции \(J_x \) определяется высотой стенки и шириной присоединенного пояска \(a_x \), которая зависит от длины пролета элемента \(b \) и формы деформации конструкции. Должны рассматриваться все продольные связи, прилегающие к элементу.

Длина пролета \(b \) для поперечных элементов принимается равной ширине верхнего корпуса, если отсутствуют промежуточные опоры в виде раскосов, либо равной половине ширины верхнего корпуса, если имеются промежуточные опоры в виде раскосов. Длина пролета \(b, \text{м} \), для продольных элементов принимается равной расстоянию между осями стабилизирующих колонн по длине.

Различаются следующие формы деформации конструкции: симметричный изгиб и кососимметричный изгиб. При симметричном изгибе ширина присоединенного пояска элементов принимается равной меньшей из величин, определяемых по формулам:

\[a_x = \frac{1}{3} b; \quad (3.2.4.4.2-1) \]
\[a_x = 0.5(a_1 + a_2). \quad (3.2.4.4.2-2) \]

При кососимметричном изгибе ширина присоединенного пояска элементов принимается равной меньшей из величин, определяемых по формулам:

\[a_x = \frac{1}{6} b; \quad (3.2.4.4.2-3) \]
\[a_x = 0.5(a_1 + a_2), \quad (3.2.4.4.2-4) \]

где \(a_1, a_2 \) — отстояние рассматриваемого элемента от ближайших элементов того же направления, \(b, \text{м} \), расположенных по обе стороны от рассматриваемого.

3.2.4.4.3 Момент инерции \(J_z, \text{м}^4 \), определяется по формуле:

\[J_z = (ta_c^3/12)(1/n_c), \quad (3.2.4.4.3-1) \]

где \(t \) — суммарная расчетная толщина настилов палуб, \(\text{м} \);
Правила классификации, постройки и оборудования ПБУ/МСП

3.2.4.4.4 При вычислении момента инерции J_T верхнего корпуса следует рассматривать в каждом продольном или поперечном сечении как замкнутую систему (системы), ограниченную по контуру настилами палуб и обшивкой бортов (транцев, переборок).

Момент инерции J_T, m^4, определяется по формуле:

$$ J_T = \left(4S^2\left[\frac{d_1/t_1}{\tau}\right]\right)^{1/2} $$

где S — площадь замкнутого контура, образуемого настилами палуб и обшивкой бортов (транцев, переборок), рассматриваемой замкнутой системы, $м^2$;

d_1 и t_1 — элемент длины периметра контура и толщина стенки его в рассматриваемой точке периметра, $м$;

τ — количество поперечных элементов, входящих в замкнутую систему при вычислении J_T для поперечных элементов, либо количество продольных элементов, входящих в замкнутую систему при вычислении J_T для продольных элементов.

Скачки изгибающих моментов в местах пересечения продольного и поперечного набора верхнего корпуса, обусловленные приведенным выше способом задания J_T, должны быть сглажены посредством осреднения значений изгибающих моментов.

3.2.4.4.5 Площадь поперечного сечения F_x, если не доказано того, что сдвигом можно пренебречь ($F_x \rightarrow \infty$), определяется по формуле:

$$ F_x = 0.5(a_1 + a_2)t, $$

где a_1, a_2 — см. 3.2.4.4.2,

t — см. 3.2.4.4.3.

3.2.4.4.6 Площадь поперечного сечения F_z, $м$, если не доказано того, что сдвигом можно пренебречь ($F_z \rightarrow \infty$), определяется по формуле:

$$ F_z = h t_0, $$

где h — высота поперечного сечения элемента, $м$;

t_0 — расчетная толщина стенки элемента, $м$.

3.2.4.4.7 Площадь поперечного сечения F_{com} определяется высотой стенки и шириной присоединенного пояска a_{com}. Должны рассматриваться все продольные связи, прилегающие к элементу.

Ширина присоединенного пояска определяется по формуле:

$$ a_{com} = 0.5(a_1 + a_2), $$

где a_1, a_2 — см. 3.2.4.4.2.

3.2.4.5 В соответствии с 2.4.3.9 настоящей части может допускаться потеря устойчивости пластин основных и второстепенных конструктивных элементов только для палубных настилов верхнего корпуса. В этом случае расчеты должны выполняться с учетом редуцирования гибких связей (пластин) под действием расчетных сжимающих напряжений.

3.3 МОРСКИЕ СТАЦИОНАРНЫЕ ПЛАТФОРМЫ

3.3.1 Общие требования.

3.3.1.1 Прочность конструкции МСП должна проверяться в соответствии с критериями прочности, указанными в 2.4 для расчетных режимов, указанных в 2.1.1.

Дополнительно для конструкций ледового пояса в режиме экстремального нагружения должны быть удовлетворены критерии 3.3.3 настоящего раздела. В этом случае критерий 2.4.2.3.2 для пластин наружной обшивки ледового пояса должен быть удовлетворен только для местных гидростатических и волновых нагрузок (а также им сопутствующих), которые могут быть определяющими лишь в случае, если локальные ледовые давления сосуществуют с другими местными нагрузками.

Коэффициенты безопасности и критерии прочности для режимов установки на точку и снятия с точки должны приниматься, как для режима транспортировки. Исходя из этих требований, должны быть уточнены допускаемые внешние условия для режимов установки на точку и снятия с точки.

Режим снятия с точки с позиций обеспечения прочности следует обязательно рассматривать для МСП, которые в течение срока службы могут неоднократно менять районы эксплуатации. Для МСП, эксплуатация которых предполагается только на одной точке в течение всего срока службы, режим снятия с точки является предметом специального рассмотрения Регистром.

3.3.1.2 Клиренс верхнего строения платформы h_{ct}, $м$, должен быть не менее большей из величин, определяемых из экстремальных воздействий волнения и льда: из условий волнения:

$$ h_{ct} = \Delta_{100} + 1.2(D/L_{100})^{1/4} h_{100} + 1.5, $$

где Δ_{100} — аддитивная грузовая величина на 100%; D — длина в воде; L_{100} — длина корпуса на 100%; h_{100} — высота волны на 100%.
где A_{100} — максимальная амплитуда изменения уровня моря, возможная 1 раз в 100 лет, м; h_{100} — высота волны, возможная 1 раз в 100 лет, м; λ_{100} — длина волны, возможная 1 раз в 100 лет, м; D — диаметр цилиндрической опоры или поперечный размер конусной опоры на уровне ватерлинии, м; из условий льда — $h_{\omega} = 4h_{\omega100} + A_{100} + 0.5$ (3.3.1.2-2) где $h_{\omega100}$ — толщина нанесенного льда, возможная 1 раз в 100 лет, м.

При наличии конструктивных особенностей в виде наделок, вставок и т. п. величина клиренса из условий льда $h_{\omega} = 4h_{\omega100} + A_{100} + 0.5$ (3.3.1.2-2) где $h_{\omega100}$ — толщина нанесенного льда, возможная 1 раз в 100 лет, м.

При наличии конструктивных особенностей в виде наделок, вставок и т. п. величина клиренса из условий льда определяется экспериментально.

3.3.1.3 В условиях мелководья может наблюдаться явление захлестывания (заплеска). Его интенсивность в настоящее время надежно определяется только экспериментальным путем, и его определение необходимо при оценке величины клиренса.

3.3.1.4 При расчете прочности корпуса МСП следует руководствоваться положениями 2.5, а также положениями 3.3.4 настоящего раздела.

3.3.2 Нагрузки.

3.3.2.1 Волновые нагрузки.

3.3.2.1.1 Волновые нагрузки на платформу и ее элементы определяются на основании уравнения Морисона (см. 2.3.9 и 2.3.9.2).

3.3.2.1.2 Для МСП при $D > h_{100}/\pi$ следует рассмотривать только одну составляющую — инерционную. Тогда для определения скоростей и ускорений частиц воды допустимо использовать линейную теорию волн малой амплитуды.

МСП могут представлять собой сочетание различных архитектурных форм. В качестве базовых элементов чаще всего служат цилиндрические и конические конструкции. Применительно к этим элементам в 3.3.2.1.3 — 3.3.2.1.7 приводятся параметры волновых нагрузок.

3.3.2.1.3 Для конструкций, имеющих чисто цилиндрическую конфигурацию, стандартное отклонение горизонтальной составляющей волновой нагрузки, МН, допустимо определять по формуле: $\sigma_Q = 3 \cdot 10^{-3} \gamma (h_3)_{max} D^2 K_t h K_H$, (3.3.2.1.3-1) а стандартное отклонение горизонтальной составляющей волновой нагрузки на коническую опору на конусную опору по формуле: $\sigma_Q = 3 \cdot 10^{-3} \gamma (h_3)_{max} D^2 K_t h K_H \times$ $\times \{1 - \frac{4}{KD_{tg}} (KH - 1/KH + 1/sh K_H) + \frac{4}{(KD_{tg})^2} \times$ $\times \{2 + (KH^2) - 2KH/\theta K_H\}, (3.3.2.1.3-2)$

где γ — удельный вес воды, т/м3; $(h_3)_{max}$ — высота волны трехпроцентной обеспеченности, м (см. 2.2.2.5);

D — диаметр цилиндрической опоры или поперечный размер конусной опоры на уровне дна, м;

$K_t = 2\pi/\sqrt{\lambda}$ — волновое число;

λ — средняя длина волны, м;

K_H — дифракционная поправка (см. 2.3.9.2; диаметр D в данном случае относится к диаметру на уровне ватерлинии);

α — угол наклона конуса к горизонту (при $\alpha = 90^\circ$ опора становится вертикальной); H — глубина акватории, м.

3.3.2.1.4 Координата приложения горизонтальной составляющей волновой нагрузки на цилиндрическую опору, отсчитываемая от уровня дна, определяется по формуле: $Z_Q = \frac{1}{KH} \left(1 - \frac{\theta K_H}{KH} \right) / \theta K_H$. (3.3.2.1.4)

3.3.2.1.5 Вертикальная сила от воздействия волн зависит от проницаемости основания, связанной с видом грунта. При отсутствии проницаемости вертикальную силу можно не учитывать. В случае каменной или крупногалечниковой постели вертикальную силу следует учитывать, в том числе при определении дополнительного опрокидывающего момента (см. 3.3.2.1.7).

3.3.2.1.6 Расчетное значение горизонтальной составляющей волновой нагрузки на платформу на наиболее тяжелом режиме допустимо определять с помощью зависимости: $Q = \sigma_Q \sqrt{2 \lambda p N}$, (3.3.2.1.6) где σ_Q — стандартное отклонение, определяемое согласно 3.3.2.1.3;

λ — повторяемость экстремального режима, определяемая по статистическим данным для заданного района эксплуатации, характеризуемого величиной $(h_3)_{max}$ (см. 2.2.3.5); N — объем выборки, отвечающий всему сроку эксплуатации (с учетом ледового периода).

3.3.2.1.7 Расчетное значение общего опрокидывающего момента от воздействия волн на вертикальную цилиндрическую платформу, стоящую на проницаемом дне, следует определять по формуле: $M_{cp} = \sqrt{(QZ_Q)^2 + M_V}$, (3.3.2.1.7-1) где Q — см. 3.3.2.1.6; Z_Q — координата приложения нагрузки на цилиндрическую опору, м; M_V — дополнительный опрокидывающий момент от вертикальных волновых движений, определяется как $M_V = \sigma_M \sqrt{2 \lambda p N}$; (3.3.2.1.7-2) σ_M — стандартное отклонение дополнительного опрокидывающего момента, определяется как: $\sigma_M = h_{h3} D^3 \Psi_\lambda$, (3.3.2.1.7-3) Ψ_λ — коэффициент дополнительного опрокидывающего момента от воздействия волн на дио образований с учетом проницаемости основания, определяемый по рис. 3.3.2.1.7.

3.3.2.1.8 Расчетная волновая нагрузка на мно-гоопорную конструкцию определяется как сумма
Правила классификации, постройки и оборудования ПБУ/МСП

3.3.2.1.7 Значение параметра \(\psi_n \) дополнительного опрокидывающего момента

![Рис. 3.3.2.1.7 Значение параметра \(\psi_n \) дополнительного опрокидывающего момента](image)

волновых нагрузок на опоры и нагрузки на подводный понтон:

1. Волновая нагрузка на опоры определяется по формуле:

\[
Q = n Q_{o} \sqrt{2 \ln(p N)}, \quad (3.3.2.1.8.1)
\]

где
- \(n \) — число опор;
- \(\sigma_Q \) — стандартное отклонение, определяемое согласно 3.3.2.1.3;
- \(\gamma_n \) — коэффициент влияния расстояния \(L \) между \(n \) опорами на волновую нагрузку и соответствует куро- форму \(\psi_n \), определяемому как:

\[
\psi_n = \frac{\pi}{n} (2i - 1), \quad i = 1, 2, \ldots, n,
\]

\[
\gamma_n = \sqrt{\frac{1}{2} \ln \left(1 + \frac{\omega^2 L_n}{g}\right)};
\]

\[
L_n = \begin{cases}
L_4 = \frac{\sqrt{2} L}{n} \\
L_5 = \frac{\sqrt{3} L}{n}
\end{cases}
\]

где
- \(p \) — повторяемость экстремального режима;
- \(N \) — объем выборки, \(N = 10^8 \);

2. Нагрузка на подводный понтон определяется по формуле:

\[
Q = (\gamma h n/2) D^2 (s h K_y/c h K_f) \beta, \quad (3.3.2.1.8.2)
\]

где
- \(\gamma \) — удельный вес воды, \(t/м^3 \);
- \(h \) — расчетная высота волны (1%-ной обеспеченности), \(m \);
- \(D \) — приведенный диаметр понтонов, \(m \);
- \(D = \sqrt[4]{S/\pi} \), где \(S \) — площадь понтонов в плане, \(m^2 \);
- \(d \) — высота понтонов, \(m \);
- \(H \) — глубина акватории, \(m \);
- \(\lambda \) — принятая в расчет длина волны (1%-ной обеспеченности), \(m \);
- \(\beta \) — коэффициент, зависящий от отношения \(D/\lambda \) (см. рис. 3.3.2.1.8.2).

3.3.2.1.9 При отличии архитектурного облика МСП от рассмотренных форм необходимо использовать адекватные расчетные методы; в случае необходимости следует использовать экспериментальные методы исследования.

3.3.2.1.10 Максимальное значение локального волнового давления, действующего на перекрытие в целом и отдельные его элементы в открытой акватории для района переменных ватерлиний (по 8 м вверх и вниз от конструктивной ватерлинии), следует принимать в соответствии с табл. 3.3.2.1.10; для конструкций, расположенных выше района переменных ватерлиний и ниже высоты клиренса из условий волнения, расчетное давление составляет 0.05 МПа, а для вышерасположенных конструкций продолжающих наружный борт — не менее 0.02 МПа.

<table>
<thead>
<tr>
<th>Положение поверхности</th>
<th>Давление, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>При эксплуатации МСП</td>
<td>Транспортировка МСП в целом или отдельных блоков</td>
</tr>
<tr>
<td>Вертикальная</td>
<td>0,15</td>
</tr>
<tr>
<td>Отклонение от вертикали более 30°</td>
<td>0,10</td>
</tr>
</tbody>
</table>

1. Данные приведены без учета съема, при учете съема они должны быть увеличены.

3.3.2.2 Ветровые нагрузки и нагрузки от течения.

3.3.2.2.1 Ветровые нагрузки определяются по формулам (2.3.8).

3.3.2.2.2 Нагрузки от течения формируются с учетом суммирования скоростей течения \(v_c \), \(m/c \), и орбитальной скоростей частиц воды в волне \(v_c \), \(m/c \).

Волновые давления на цилиндрический элемент в этом случае определяются как:

\[
q = (\rho C_v d/2)(v + v_c) + v_c. \quad (3.3.2.2.2-1)
\]

Составляющая нагрузка, определяющаяся по формуле:
\[Q = (\rho C_{sr} d^2) v^2 H_0, \]
(3.3.2.2.2-2)
где \(\rho \) — массовая плотность воды, \(\text{т/м}^3 \); \(C_{sr} \) — коэффициент скоростного сопротивления преграды; \(d \) — диаметр преграды, м; \(H_0 \) — глубина акватории, м.

3.3.2.2.3 При оценках волновых нагрузок с помощью спектральных преобразований следует учитывать трансформацию спектра с учетом течения (см. 2.2.4.2). В качестве основы для расчета сил скоростной природы на цилиндрическую опору рекомендуется использовать выражение:

\[Q = (\rho C_{sr} d^2) \left\{ v^2 c H_0 + \sqrt{8/\pi} (1 + v^2/c^2) \right\} \left(\frac{g}{\omega^2 + \omega_0^2} \right)^3, \]
(3.3.2.2.3)
где \(g \) — ускорение свободного падения, \(\text{м/с}^2 \); \(v_0 \) — амплитуда орбитальной скорости частиц воды поверхностной волны, \(\text{м/с} \); \(\sigma_n \) — средняя частота волнения, \(\text{с}^{-1} \); \(\omega \) — частота волнения, \(\text{с}^{-1} \).

3.3.2.3 Ледовые нагрузки.

3.3.2.3.1 Ледовые нагрузки делятся на глобальные и локальные. Глобальные нагрузки делятся на горизонтальные и вертикальные. Глобальные нагрузки состоят из постоянной и переменной частей. Глобальные нагрузки могут быть статическими и динамическими.

3.3.2.3.2 Глобальные нагрузки определяются от ровного льда, наслоенного льда и торосов. Определение глобальных нагрузок является основой экстремальных и усталостных оценок.

3.3.2.3.3 Глобальная нагрузка, МН, от ровного или наслоенного льда на опору цилиндрической формы определяется по формуле:

\[F_{hor} = a \alpha \left[1 + (0.75K - 0.1) \delta \right] \left(\frac{h}{D} \right)^{1/2} \sigma_\sigma, \]
(3.3.2.3.3-1)
где \(a \) — параметр масштаба распределения толщины льда, \(\text{м} \); \(D \) — диаметр преграды, м; \(\sigma_\sigma \) — среднее значение и коэффициент вариации предела прочности льда на сжатие, как определено в 2.2.5, с учетом рекомендаций настоящего пункта, МПа; \(h \) — толщина ровного или наслоенного льда, м; \(D \) — диаметр преграды, м; \(\alpha \) — коэффициент, зависящий от отношения \(a/D \) (см. рис. 3.3.2.3.3-1).

Значение прочности льда \(\sigma_\sigma \) рекомендуется определять в зависимости от скорости деформации \(\varepsilon \) и степени стесненности деформации. Скорость деформации определяется из условия:

\(\varepsilon = v/4D \) при \(D/h < 30 \) и \(\varepsilon = v/2D \) при \(D/h > 40 \),
(3.3.2.3.3-2)
где \(\varepsilon \) — определяется линейной интерполяцией при \(30 < D/h < 40 \); \(v \) — скорость дрейфа, \(\text{м/с} \).

Расчетное значение скорости дрейфа \(v \) выбирается наиболее вероятным для принятой толщины и прочности льда. При отсутствии сведений о наиболее вероятной скорости дрейфа для принятой толщины и прочности льда, параметр \(K_{fr} \) принимается равным 1.

3.3.2.3.4 Глобальная нагрузка на опору цилиндрической формы от торосов определяется по формуле:

\[F_{bor} = F_{hor} K_{bor}, \]
(3.3.2.3.4)
где \(F_{bor} \) — см. 3.3.2.3.3; \(K_{bor} \) — коэффициент торосистости, зависящий от отношения:

\(x = h_{cons}/h_{ref} \) (см. рис. 3.3.2.3.4); \(h_{cons} \) — толщина консолидированного слоя, м; \(h_{ref} \) — толщина насленноного льда, м.
Правила классификации, постройки и оборудования ПБУ/МСП

3.3.2.3.5 Горизонтальная составляющая глобальной нагрузки, МН, от ровного или наслоненного льда на опору конической формы определяется по формуле:

\[F_{\text{hor}} = F_1 + F_2, \tag{3.3.2.3.5-1} \]

где

\[F_1 = 7,4 \cdot 10^{-4} \frac{h_0}{D} \left[\left(0,75 K - 0,1 \right) \theta \right] \left(\ln \left[1 + \frac{h_0}{D} \left(\theta \right) \right] \right) \left(\theta \beta \right), \tag{3.3.2.3.5-2} \]

\[F_2 = 7,4 \cdot 10^{-4} \frac{h_0}{D} \left[\left(0,75 K - 0,1 \right) \theta \right] \left(\ln \left[1 + \frac{h_0}{D} \left(\theta \right) \right] \right) \left(\theta \beta \right), \tag{3.3.2.3.5-3} \]

\[\theta = \text{параметр, зависящий от отношения параметра распределения толщины льда } a_0 \text{ к диаметру (см. рис. 3.3.2.3.5-1)}; \]

\[K = \text{параметр формы распределения ледовых нагрузок, зависящий от отношения } a_0/D \text{ (см. рис. 3.3.2.3.5-2)}; \]

\[\bar{\sigma} \text{ и } \theta \text{ — среднее значение и коэффициент изменчивости предела прочности льда на изгиб, как определено в 2.2.5, МПа} \]

3.3.2.3.6 Вертикальная составляющая глобальной ледовой нагрузки от ровного или наслоненного льда на опору конической формы определяется по формуле:

\[F_{\text{vert}} = \frac{F_1 + F_2}{\tan (\beta + \arctg f)}, \tag{3.3.2.3.6} \]

где \(F_1 \) и \(F_2 \) — см. 3.3.2.3.5.

3.3.2.3.7 Горизонтальная составляющая глобальной нагрузки, МН, от тороса на опору конической формы определяется по формуле:

\[F_{\text{hor}} = (F_1 + F_2)K_h, \tag{3.3.2.3.7} \]

где \(K_h \) — коэффициент торосистости, зависящий от отношения \(a = h_0/h_{ref} \) и угла \(\beta \) (см. рис. 3.3.2.3.7).

3.3.2.3.8 Вертикальная составляющая глобальной нагрузки, МН, от тороса на опору конической формы определяется по формуле:

\[F_{\text{vert}} = (F_1 + F_2)K_h/\tan (\beta + \arctg f). \tag{3.3.2.3.8} \]
Часть II. Корпус

79

3.3.2.3.9 Расчетное значение горизонтальной ледовой нагрузки, МН, на многоопорную конструкцию определяется независимо от формы опор для ледового сценария, соответствующего забиванию льда между опорами, по формуле:

\[F_{hor} = B h^0.8 K_h \]
(3.3.2.3.9)

где \(B \) — максимальная ширина преграды, создаваемая опорами, м;
\(h \) — расчетное значение толщины наслоенного льда, м;
\(K_h \) — коэффициент торосистости, определяемый по графику на рис. 3.3.2.3.4.

3.3.2.3.10 Протяженность ледового пояса \(l \), м, должна быть не менее:

\[l = \Delta_{100} + 2\alpha h_{cons} 100 \]
(3.3.2.3.10)

где \(\Delta_{100} \) — максимальный размах изменения уровня моря относительно среднего уровня, м, возможный 1 раз в 100 лет;
\(\alpha \) — коэффициент запаса, \(\alpha = 1,1 \);
\(h_{cons} \) — толщина консолидированного слоя тороса, возможная 1 раз в 100 лет (в отсутствие торосов толщиной ровного или наслоенного льда), м.

Величина \(l \) откладывается симметрично относительно среднего уровня воды вверх и вниз.

3.3.2.3.11 Локальные ледовые, МПа, давления на конструкции в районе ледового пояса конической преграды определяются по формуле:

\[p = \sigma_c (1 + 2\beta/2A) \sqrt{\beta/8.5} \]
(3.3.2.3.11)

\(18^\circ < \beta < 72^\circ \),

где \(\sigma_c \) — среднее значение предела прочности льда на сжатие, МПа;
\(A \) — площадь контакта, м²;
\(\beta \) — угол наклона образующей конуса к горизонту, град.

При \(\beta < 18^\circ \) давление \(p \) определяется как при \(18^\circ \); при \(\beta > 72^\circ \) давление \(p \) определяется как при 72°. При \(\beta > 18 \) МПа давление \(p \) принимается равным 18 МПа.

Локальные ледовые давления на конструкции в районе ледового пояса вертикальной преграды определяются по вышеприведенной формуле, в которой следуют опустить сомножитель \(\sqrt{\beta/8.5} \).

3.3.2.3.12 Локальные ледовые давления на конструкции в районах выше и ниже ледового пояса (см. 3.3.2.3.11) определяются как часть давлений на конструкции ледового пояса.

Локальные ледовые давления на конструкции ниже ледового пояса протяженностью 0,5м \(h_{conel} \) определяются в соответствии с зависимостью \(p_h = p/4 \), но не меньше 2 МПа, где \(p \) соответствует 3.3.2.3.11. Величина ледовых давлений ниже указанных зон (если такое возможно) должна определяться с учетом особенностей ледовой обстановки района эксплуатации.

Локальные ледовые давления на конструкции выше ледового пояса протяженностью \(h_{conel} \) определяются в соответствии с зависимостью \(p_h = p/4 \), но не меньше 1.5 МПа, где \(p \) соответствует 3.3.2.3.11.

3.3.2.3.13 Значения ледовых нагрузок могут быть уточнены на основе данных натурных наблюдений или лабораторных исследований, а также на основе использования специальных методик, согласованных с Регистром.

3.3.2.4 Сейсмические воздействия.

3.3.2.4.1 Эксплуатация МСП в сейсмически активных районах сопряжена с действием на их конструкции значительных по величине нагрузок, могущих привести к весьма неблагоприятным последствиям. В ряде районов сейсмическое воздействие может стать расчетным случаем нагружения, определяющим конструктивные решения МСП.

МСП должны проектироваться и эксплуатироваться так, чтобы:

под воздействием проектного землетрясения (ПЗ) не создавалась угроза безопасности людей, загрязнения среды продуктами нефтегазодобычи и сохранялась ремонтопригодность сооружения и оборудования; при этом в МСП допускается появление повреждений, не нарушающих нормальную эксплуатацию сооружения;

под воздействием максимального расчетного землетрясения (МРЗ) не произошло опрокидывания МСП и катастрофического загрязнения водной среды; при этом допускаются иные повреждения, нарушающие нормальную эксплуатацию сооружения.

Сейсмостойкость обеспечивается: выбором благоприятной в сейсмическом отношении площадки строительства, конструктивно-планировочной схемы и материалов, применением специальных конструктивных мероприятий, соответствующим расчетом конструкций, качественно выполнен-
ния строительно-монтажных работ, включением в проекты МСП специального раздела о проведении в процессе эксплуатации сооружения слежения за землетрясениями.

3.3.2.4.2 При проектировании конструкций следует учитывать, что сейсмические силы могут иметь любое направление в пространстве, в том числе горизонтальное и вертикальное.

3.3.2.4.3 В расчетах сейсмостойкости МСП должны учитываться следующие сейсмические нагрузки:

распределенные по объему сооружения и его основания инерционные силы, возникающие при сейсмических сотрясениях сооружения;

распределенное по поверхности соприкосновения сооружения с водой гидродинамическое давление на сооружение, вызванное инерционным влиянием колеблющейся вместе с сооружением части жидкости;

гидродинамическое давление, вызванное возникающими при землетрясении волнами цунами.

3.3.2.4.4 При расчете сейсмостойкости оборудования и сооружений, размещенных в надводной части МСП, сейсмические воздействия задаются ускорениями, передаваемыми на эти сооружения и оборудование со стороны несущих конструкций корпуса МСП. При этом должны учитываться особенности динамического взаимодействия рассматриваемых объектов и сооружений.

3.3.2.4.5 МСП рассчитываются на сейсмические воздействия уровней ПЗ и МРЗ методами динамической теории сейсмостойкости (ДТ).

На предварительных стадиях проектирования допускается использование линейно-спектральной теории сейсмостойкости (ЛСТ).

3.3.2.4.6 Расчеты сооружений по ДТ на ПЗ выполняются с применением линейного временного динамического анализа, при котором материалы сооружения и грунты основания принимаются линейно-упругими, а геометрическая и конструктивная нелинейность в поведении системы сооружение — основание отсутствуют.

Линейный временной динамический анализ выполняется либо методом, основанным на разложении решения в ряд по формам собственных колебаний сооружения, либо методом, основанном на пошаговом интегрировании систем дифференциальных уравнений.

3.3.2.4.7 Расчеты сооружений по ДТ на МРЗ выполняются с использованием любых способов временного динамического анализа (как правило, нелинейных, основанных на методе пошагового интегрирования).

Нелинейный динамический анализ осуществляется по специальным методикам и программам, согласованным с Регистром.

Расчеты сооружений по ДТ на МРЗ с применением линейного динамического анализа выполняются аналогично расчетам сооружений по ДТ на ПЗ.

3.3.2.4.8 Расчеты МСП по ДТ должны выполняться на расчетные акселерограммы, подобраные (из числа инструментальных записей, аналоговых или синтезированных акселерограмм) с такими значениями максимального пикового ускорения a_p в основании, чтобы величины этих ускорений a_{pd} (при расчете на ПЗ) и a_{pmd} (при расчете на МРЗ) имели значения, отвечающие повторяемости 100 и 500 лет соответственно. При этом должны быть выполнены условия:

$$ a_{pd} = k_{pd} g A_{100}, $$

$$ a_{pmd} = k_{pmd} g A_{500}, $$

где k_{pd} — коэффициент, учитывающий вероятность рассматриваемого сейсмособытия за расчетный срок службы МСП для ПЗ, см. табл. 3.3.2.4.8-1;

k_{pmd} — коэффициент, учитывающий вероятность рассматриваемого сейсмособытия за расчетный срок службы МСП для МРЗ, см. табл. 3.3.2.4.8-1;

g — ускорение свободного падения, равное 9,81 м/с²;

A_{100} — выраженная в долях g расчетная амплитуда ускорения основания, значение A_{100} принимается по табл. 3.3.2.4.8-2;

A_{500} — выраженная в долях g расчетная амплитуда ускорения основания, значение A_{500} принимается по табл. 3.3.2.4.8-2.

3.3.2.4.9 Расчеты сейсмостойкости МСП по ЛСТ допускается выполнять путем решения статических задач упругости, когда к сооружениям прикладываются объемные инерционные силы интенсивностью $P(x, \xi)$, соответствующие i-й форме собственных колебаний.

Если в расчете система «сооружение-основание» разбита на отдельные дискретные объемы,
то в качестве инерционных нагрузок используются узловые инерционные силы P_{ik}, действующие на элемент сооружения, отнесенный к узлу k, при i-й форме собственных колебаний. Значения компонент P_{ik}, $j = 1, 2, 3$ узловых сил в этом случае определяется по формулам:

$$P_{ik} = 0.5k_{ik}k_{uj}a_{ik}b_{uj}$$ \(3.3.2.4.9-1\)

$$P_{ik}^{max} = 0.5k_{ik}k_{uj}a_{ik}b_{uj}$$ \(3.3.2.4.9-2\)

где $k_{ik} = $ — коэффициент, учитывающий высоту сооружения; его значения принимаются равными:
1.0 для сооружений высотой 100 м и более;
0.8 для сооружений высотой 60 м и менее;
по интерполяции между значениями 1,0 и 0,8 для сооружений высотой от 60 до 100 м;

$k_{uj} = $ — коэффициент, учитывающий демпфирующие свойства конструкций;
значения коэффициент k_{uj} принимаются равными:
1.0 для металлических сооружений и для бетонных и железобетонных сооружений при расчетной сейсмичности, не превышающей 8 баллов;
0.8 для бетонных и железобетонных сооружений при расчетной сейсмичности свыше 8 баллов;

$m_k = $ — масса элемента сооружения, отнесенного к узлу k (с учетом присоединенной массы воды);

u_{ik} и $u_{ik}^{max} = $ — то же, что в 3.3.2.4.8;

$b_{uj} = $ — коэффициент динамики, соответствующий i-му тону собственных колебаний сооружения;

$\eta_{ik} = $ — коэффициент формы собственных колебаний сооружения по i-й форме колебаний.

3.3.2.4.10 Значение коэффициента формы η_{ik} определяется по формуле:

$$\eta_{ik} = \frac{U_{ik} \sum m_k \cos(\theta_{ik}) \sum U_{ik} \cos(\theta_{ik})}{U_{ik} \sum m_k \cos(\theta_{ik}) \sum U_{ik} \cos(\theta_{ik})} \tag{3.3.2.4.10}$$

где $U_{ik} = $ — проекция по направлению i смещений узла k по i-й форме собственных колебаний сооружения;

$\cos(\theta_{ik}) = $ — косинусы углов между направлением вектора сейсмического воздействия и перемещениями U_{ik};

$m_k = $ — масса элемента сооружения, отнесенного к узлу k (с учетом присоединенной массы воды).

3.3.2.4.11 Значения коэффициента динамики b_{uj} определяются по следующим зависимостям (или по графикам на рис. 3.3.2.4.11):

$$\beta(T) = 1 + \frac{T_i}{T_2} (b_0 - 1) \quad 0 < T_i \leq T_2;$$

$$\beta(T) = b_0, \quad T_2 < T_i \leq T_2;$$

$$\beta(T) = \beta_0 T_2^{0.5} / T_i^{0.5} \quad T_2 < T_i \tag{3.3.2.4.11}$$

где b_0, T_1, T_2 — параметры, значения которых даны в табл. 3.3.2.4.11; T_i — период собственных колебаний платформы, с.

Величина произведения $k_{uj}b_{uj}$ должна составлять не менее 0,80, при этом значение коэффициента k_{uj} определяется в соответствии с 3.3.2.4.9.

3.3.2.4.12 Расчетные значения компонент смещений (деформаций, напряжений или усилий) с учетом всех учитываемых в расчете форм собственных колебаний сооружения следует определять по формуле:

$$W_{ij} = \sqrt{2 W_{ij}^{2}}, \tag{3.3.2.4.12}$$

где $W_{ij} = $ — обобщенное значение компонент расчетных смещений (деформаций, напряжений или усилий), возникающих в рассматриваемых точках или сечениях под влиянием сейсмических воздействий;

$W_{ij}^{2} = $ — обобщенное значение компонент смещений (деформаций, напряжений или усилий), возникающих в рассматриваемых точках или сечениях под влиянием сейсмических нагрузок, соответствующих i-й форме собственных колебаний, $q = $ число учитываемых в расчетах форм собственных колебаний.

3.3.2.4.13 Число форм собственных колебаний, учитываемых в расчетах, выполняемых по ЛСТ, выбирается таким образом, чтобы при возрастании этого числа возможно было пренебречь дальнейшим уточнением результатов расчета.
3.3.2.4.14 В расчетах прочности МСП с учетом сейсмических воздействий во всех случаях контакта боковых поверхностей сооружения с грунтом следует учитывать влияние грунтовых сейсмических сил на величину бокового давления грунта. Грунтовые сейсмические силы при расчете сооружения следует определять из единого динамического расчета системы, включающей сооружение, основание и грунт засыпки.

3.3.2.4.15 При наличии в основании МСП несвязных или слабосвязных грунтов (например, мелкозернистого песка) особое внимание следует уделять оценке возможности разжижения этих грунтов со снижением сопротивления их сдвигу под действием сейсмических нагрузок.

3.3.2.5 Нагрузки от грунта на днище гравитационных платформ.

3.3.2.5.1 Давления по контакту опорной поверхности с грунтовым основанием необходимо знать для использования их в расчетах прочности днищевых конструкций. Указанные контактные давления следует определять с учетом формы подошвы МСП и вида грунта по формулам внецентренного сжатия. В необходимых случаях эти давления определяются по результатам расчетов напряженно-деформированного состояния системы сооружение — грунтовое основание с использованием методов механики сплошной среды.

3.3.2.5.2 Касательные напряжения по поверхности контакта подошвы МСП с грунтовым основанием, обусловленные воздействием вертикальных сил, в расчетах прочности, как правило, не учитываются.

3.3.2.5.3 Наибольшее расчетное давление на днище со стороны грунта в период эксплуатации сооружения определяется умножением среднего расчетного давления на коэффициент неравномерности, зависящий от свойств грунта. Значения коэффициента неравномерности приведены в табл. 3.3.2.5.3 для основных типов грунтов.

<table>
<thead>
<tr>
<th>Тип поверхностного слоя грунта</th>
<th>Значение коэффициента неравномерности</th>
</tr>
</thead>
<tbody>
<tr>
<td>Илы, глины и сулушки текущей и текуче-пластичной консистенции при показателе текучести (t_c > 0.75), песчаные грунты рыхлые</td>
<td>1,2</td>
</tr>
<tr>
<td>Грунты глинистые тучо- и малоопластичные с показателем текучести (0,25 \leq t_c \leq 0,75), песчаные грунты средней плотности и плотные</td>
<td>1,4</td>
</tr>
<tr>
<td>Грунты глинистые полуотверженной и твердой консистенции (t_c < 0,25); песчаные грунты очень плотные; песчано гравелистые; песчано-гравелистые грунты</td>
<td>2,0</td>
</tr>
<tr>
<td>Примечание: Значение коэффициента неравномерности при необходимости уточняются с учетом конкретных проектных условий</td>
<td></td>
</tr>
</tbody>
</table>

3.3.3 Дополнительные критерии прочности для конструкций МСП ледостойкого типа.

3.3.3.1 Критерий предельной прочности для расчета перекрытий наружного борта определяется выражениями:

\[
\sigma \leq R_{el},
\]

\[
\tau \leq 0,57 R_{el},
\]

где \(\sigma \) и \(\tau \) — наибольшие нормальные и касательные напряжения в элементах перекрытий рамных балок при действии локальных ледовых давлений.

3.3.3.2 Критерий предельной прочности для расчета отдельных конструктивных элементов наружного борта (плиты, ребра жесткости) определяется выражением:

\[
P_p \leq P_{ult}/\gamma,
\]

где \(P_p \) — расчетная нагрузка на конструктивный элемент, обусловленная локальными ледовыми давлениями; \(P_{ult} \) — предельная нагрузка на конструктивный элемент; \(\gamma \) — коэффициент запаса по предельной нагрузке, равный: 1,2 — для специальных конструктивных элементов; 1,1 — для основных конструктивных элементов.

3.3.4 Особенности расчета прочности конструкций ледового пояса.

3.3.4.1 При расчете прочности конструкции на действие ледовых нагрузок рекомендуется различать следующие этапы нагружения: нагружены отдельные конструктивные элементы — плиты, ребра жесткости; нагружена перекрытия конструкции; нагружена конструкция в целом.

В соответствии с этими этапами конструктивные элементы ледового пояса должны рассчитываться так, как это определено ниже.

3.3.4.2 Если нагружена конструкция в целом, то в качестве расчетных принимаются глобальные ледовые нагрузки, определенные в соответствии с 3.3.2.3. Должны быть рассмотрены все возможные неблагоприятные случаи нагружения. Для оценки прочности конструкции закон распределения глобальной ледовой нагрузки может быть принят равномерным по фронту и по высоте ледового образования (ровного, наслоненного льда или консолидированной части тороса).

Целью расчета является проверка удовлетворения критериям прочности по формулам (2.4.2.3.1) и (2.4.2.3.2). При определении общих и местных напряжений в конструктивных элементах следует руководствоваться положениями 2.5.2, 2.5.3 и 2.5.4.

3.3.4.3 Если нагружены перекрытия конструкции, то в качестве расчетных нагрузок признаются локальные ледовые давления, определенные по 3.3.2.3.11. При этом расчетная площадь
контакта A должна определяться следующим образом:

$$A = \begin{cases} 10 \text{ м}^2, & \text{если } S_{pr} \leq 10 \text{ м}^2, \\ S_{pr}, & \text{если } S_{pr} > 10 \text{ м}^2, \end{cases}$$

где S_{pr} — площадь поверхности перекрытия, ограниченная опорным контуром, м2.

На основании расчета перекрытия выбираются размеры рамных балок, и для них должен быть удовлетворен критерий прочности (3.3.3.1). При определении напряжений следует руководствоваться положениями 2.5.3.

3.3.4.4 Если нагружены отдельные конструктивные элементы — пластины, ребра жесткости, то в качестве расчетных нагрузок принимаются локальные ледовые давления, определенные по 3.3.2.3.11. При этом расчетная площадь контакта A должна определяться следующим образом:

$$A = \begin{cases} 1 \text{ м}^2, & \text{если } S_p \leq 1 \text{ м}^2, \\ S_p, & \text{если } S_p > 1 \text{ м}^2, \end{cases}$$

где S_p — площадь поверхности пластины или площадь загрузки ребра жесткости.

В качестве предельной нагрузки P_{ult} следует рассматривать: $P_{ult} = \text{пределное давление на пластину}$ и $Q_{ult} = \text{пределную нагрузку на ребро жесткости}$.

Предельное давление на пластину P_{ult}, которое является защемленной на опорном контуре и загружена равномерно распределенной нагрузкой по полю пластины, определяется по формуле:

$$P_{ult} = 4R_d(s/a)^2[1+2(a/b)^2],$$

где R_d — расчетный предел текучести материала согласно 1.5.1.5, МПа;

$\displaystyle s$ — расчетная толщина пластины, м;

$\displaystyle a$ — длина меньшей стороны опорного контура пластины, м;

$\displaystyle b$ — длина большей стороны опорного контура пластины, м.

Предельная нагрузка на ребро жесткости Q_{ult}, которое является защемленным по концам и загружено равномерно распределенной нагрузкой, определяется по формуле:

$$Q_{ult} = \frac{16W_{ult}}{l} R_d \bar{Q},$$

где $\bar{Q} \leq 1$ — функциональный коэффициент, учитывающий влияние перерезывающих сил в опорных сечениях:

$$\bar{Q} = \frac{1}{1+5.77\left(W_{ult}(F_{ult}^p)(l-0.5a)\right)},$$

F_{ult} — расчетная площадь поперечного сечения стенки ребра жесткости, м2;

W_{ult} — предельный момент сопротивления поперечного сечения с учетом присоединенного поясков, м3;

$\displaystyle a$ — расстояние между ребрами, м;

$\displaystyle l$ — пролет ребра жесткости между его опорами, м.

Для пластин и ребер жесткости должны быть удовлетворены критерии прочности 3.3.3.

3.3.5 Операции установки МЛСП на месторождение и установки крупногабаритных верхних строений на опорную часть.

3.3.5.1 Основные принципы, критерии и рекомендации к разработке операций установки МЛСП на месторождение и установки крупногабаритных верхних строений на опорную часть.

3.3.5.1.1 Область распространения.

.1 Настоящие требования распространяются на технологоческие морские операции, выполняемые при установке МЛСП и при установке (накатке) крупногабаритных верхних строений на опорную часть.

В рекомендациях определены критерии и технические требования, которые обеспечивают признанный Регистром уровень безопасности выполнения морских операций.

.2 Настоящие рекомендации согласно части XVI «Морские операции» справедливы для конкретного типа конструкции платформы, а именно кессонного типа.

3.3.5.1.2 Определения и пояснения.

МЛСП — морская ледостойкая стационарная платформа, способная воспринимать ледовую нагрузку.

ПБУ — плавучая буровая установка.

Накатка — установка крупногабаритных верхних строений на опорную часть путем перемещения с помощью специальных устройств с плавучего сооружения.

СОВ — система отвода воды.

ОУ — отбойные устройства.

3.3.5.1.3 Основные принципы планирования операций установки:

.1 морские операции по установке МЛСП и накатке верхних строений на МЛСП должны проектироваться и выполняться исходя из условий безопасности в соответствии с положениями настоящих рекомендаций, действующих норм, стандартов и руководящих документов с методами расчета и проектирования;

.2 планирование морских операций должно учитывать возможность возникновения аварийных ситуаций. При возникновении аварийных ситуаций должны быть предусмотрены мероприятия, обеспечивающие устойчивое и контролируемое состояние;

.3 планирование морских операций должно обеспечивать возможность их выполнения в безопасных условиях, либо прекращения операции в случае превышения расчетных параметров внешних условий и возникновение других аварийных ситуаций;

.4 проектирование морских операций должно основываться на хорошо апробированных принципах
и методах. При проектировании морских операций должны анализироваться все возможные случайные ситуации и разрабатываться соответствующие планы мероприятий по принципу «step by step» (пояшагово). Безопасные условия проведения морских операций предусматривают: исключение потерь и возникновения опасности для конструкций платформы, судов и устанавливаемых объектов; исключение угрозы для жизни и здоровья персонала; исключения загрязнения и других экологических нарушений в отношении окружающей среды; 0.5 фактические условия при проведении морских операций должны соответствовать допускаемым условиям, предусмотренным в проекте соответствующих операций; 0.6 положения настоящих рекомендаций могут корректироваться и дополняться по мере накопления опыта проведения морских операций; 0.7 планирование и проектирование морских операций должно основываться на расчетном времени проведения операций согласно 1.4.2 части XVI «Морские операции».

Рассматриваемые условия установки МЛСП на месторождение и накатки крупногабаритных верхних строений на опорную часть относятся к операциям, ограниченным по погодным условиям. Начало этих операций обусловлено наличием допускаемых погодных условий и их благоприятным прогнозом. Учитывая нестабильность гидрометеорологической обстановки и неточность прогнозов погоды, допускаемые критерии погодных условий для фактического начала проведения морской операции должны приниматься меньше расчетных, принятых в проекте. Согласно части XVI «Морские операции» допускаемый для проведения морских операций критерий погодных условий С₀ определяется по формуле:

\[C_0 \leq \alpha C_D, \]

где \(C_D \) — проектные критерии погодных условий; \(\alpha \) — понижающий коэффициент, принимаемый равным 0.8 для скорости ветра; для высоты волны \(\alpha \) принимается в соответствии с табл. 1.4.5 части XVI «Морские операции».

3.3.5.1.4 Ветровые нагрузки.

В качестве внешних нагрузок при установке МЛСП на месторождение и накатке крупногабаритных элементов верхних строений рассматриваются нагрузки: ветровые, от течения, от волнения. 3.3.5.1.4.1 Ветровые нагрузки. Составляющие ветровой нагрузки при установке МЛСП на месторождение и накатке рассчитываются в соответствии с формулами, указанными в Правилах ПБУ/МСП.

3.3.5.1.4.2 Нагрузки от течения. Нагрузки от течения, действующие на подводную часть кессона, определяются по Правилам ПБУ/МСП.

3.3.5.1.4.3 Нагрузки от волнения. Нагрузки от волнения могут быть определены в регулярной и нерегулярной постановках.

При задании регулярного волнения в исходных данных указывается его высота, период и направление распространения волн.

При задании нерегулярного двумерного волнения рекомендуется использовать апробированных на практике спектров JONSWAP, Пирсона-Московица, ТМА.

Расчет волновых нагрузок должен осуществляться на основе известных апробированных методов, учитывающих гидродинамические особенности неподвижного сооружения (кессон) и плавающего объекта (транспортная баржа).

При наличии двух сооружений используемый метод должен позволять выполнение расчета гидродинамических коэффициентов и волновых нагрузок с учетом взаимного влияния объектов. В результате интегрирования давления по поверхности каждого сооружения должны получиться два вектора волновых нагрузок и расширенные матрицы присоединенных масс и коэффициентов волнового сопротивления, включающие взаимные присоединенные массы и коэффициенты сопротивления.

При реализации используемого метода расчета волновых нагрузок целесообразно использование компьютерных программ, позволяющих производить автоматическую разбивку на элементы поверхности сооружений, имеющихся в составе различных геометрических форм (как пересекающиеся свободную поверхность, так и погруженные); вертикальные и наклонные цилиндры; вертикальные конусы, параллелепипеды; тела, которые можно описать с помощью задания горизонтальных сечений на нескольких вертикальных уровнях.

3.3.5.2.1 Установка МЛСП на месторождение.
3.3.5.2.1.1 Установка МЛСП на месторождение является ответственной для морской операции. Перед установкой МЛСП разрабатывается документ «Технический проект установки МЛСП на грунт», включающий в себя морские инженерно-геологические и инженерно-гидрографические изыскания, расчеты статических и динамических нагрузок, посадки платформы, расчеты плавучести и остойчивости, расчет элементов якорной системы.
3.3.5.2.1.2 Установка МЛСП на месторождение должна предшествовать определение естественных условий района установки (включая статистические данные о среднем уровне моря и возможных отклонениях, связанных с приливными явлениями, о скоростях и профилях скоростей течений по глубине).
3.3.5.2.1.3 В технический проект установки МЛСП на грунт должны быть включены сведения о допустимых гидрометеорологических условиях для постановки: максимальная высота волн, скорость ветра, минимальная видимость.
3.3.5.2.1.4 Установка платформы на подготовленное основание в месте добычи включает следующие операции (этапы): установка якорей, якорное раскрепление и позиционирование платформы, погружение платформы и создание прижимного усилия платформы после установки на дно.
3.3.5.2.1.4.1 Установка якорей. Одним из наиболее важных факторов технологии установки платформы является точность определения места постановки и позиционирования платформы в процессе погружения навигационным обеспечением. Система раскрепления и якорное позиционирование платформы должна обеспечивать точность постановки относительно реперной точки в заданных пределах.
Для обеспечения заданной точности системы позиционирования должны быть предварительно определены соответствующие координаты и выставлены метки. Координаты точек установки якорей зависят от принятой схемы якорного раскрепления.
3.3.5.2.1.4.2 Якорное раскрепление и позиционирование платформы. Для удержания МЛСП на месте установки должен использоваться комплект якорей, основным параметром которых являются: число, калибр, длина, держащая сила якорей. Платформа должна быть оснащена буксирно-швартовным устройством, включающим бортовые клюзы, цепные стопора с закладным палом, через которые нагрузка от буксирно-швартовых линий передается на корпус платформы, лебедки для вытягивания и предварительной обтяжки швартовно-якорных линий в процессе позиционирования платформы, цепные ящики для хранения выбранной при обтяжке части цепных линий.
В качестве критерия правильности раскрепления платформы должны рассматриваться критические параметры: горизонтальное смещение платформы, разворот (рысканье) платформы, вертикальное смещение и вертикальная скорость угла характерной точки платформы, коэффициент запаса по динамическому усилию нагруженном конструктивном элементе (не менее 1,6), коэффициент запаса по горизонтальной нагрузке на якорь (не менее 1,3).
Для обеспечения заданной точности установки должна быть разработана система позиционирования платформы с учётом мощностей и тяги буксиров, определено время, необходимое для проведения операции установки, оценен уровень гидрометеоусловий, при которых должна проводиться операция.
3.3.5.2.1.4.3 Погружение платформы и создание прижимного усилия платформы после установки на дно. По способу установки платформы на дно можно рассматривать следующие способы установки: а) «на ровный киль» — погружение платформы без крена и дифферента до касания грунта всей поверхностью днища одновременно; б) «на угол» — погружение платформы до касания грунта углом днища, при заранее созданном крене и дифференте платформы, с последующим прижимом к грунту всей поверхностью днища; в) «на ребро» — погружение платформы до касания грунта ребром днища, при заранее созданном крене или дифференте платформы, с последующим прижимом к грунту всей поверхностью днища.
Соответствующим выбором способа установки на дно с учетом конкретных особенностей обстановки можно достичь требуемого уровня безопасности.
Учитывая сложность вопроса и отсутствие достоверных методик оценки силового воздействия на платформу вблизи грунта и поведения частиц грунта при установке платформы, в ответственных случаях рекомендуется проводить моделирование процесса в опытном бассейне для выбора окончательного варианта установки платформы.
По результатам исследований должны быть разработаны требования к параметрам качки, не приводящим к ударным воздействиям на грунт.
3.3.5.2.1.5 Погружение платформы на дно и ее пригрузка на месторождении производится за счет заполнения водой балластных цистерн и танков-хранилищ нефти платформы. Окончание заполнения следует производить при максимальном уровне прилива.
3.3.5.2.1.6 Основными требованиями к процессу погружения платформы являются:
обещение погружения платформы с необходимой разницей между осадками бортов (превышение со стороны распространения течения и волнения);
минимальная продолжительность погружения; исключение соударений платформы с грунтом в момент их касания с учетом качки платформы при действии ветра и течения; исключение возможности подвижек платформы за счет вытеснения воды из-под днища платформы; исключение повторных отрывов платформы от дна при приливных колебаниях уровня моря; ограничение возможных горизонтальных смещений платформы в процессе погружения в заданных пределах.

Требуемое ограничение возможных горизонтальных смещений и углов рыскания платформы, как отмечалось выше, обеспечивается системой постановки на якоря платформы и буксирным обеспечением.

3.3.5.2.1.7 Требования к системам контроля. Одним из наиболее важных факторов, обеспечивающих надежность, безопасность и точность установки, является контроль и управление процессами ее позиционирования и погружения. К числу контролируемых параметров следует отметить:

- естественные условия в месте установки платформы;
- параметры, характеризующие позиционирование платформы;
- параметры, характеризующие погружение платформы.

Разработка указанных систем контроля должна выполняться специализированными организациями. В качестве контролируемых параметров естественных условий следует рассматривать: скорость и направление ветра; скорость и направление течения на различных глубинах; параметры волн (высота, направление и период); глубину воды; величину колебаний уровня моря. Указанные параметры должны измеряться и регистрироваться непрерывно в течение всего процесса раскрепления, наведения и погружения платформы. Для этого могут использоваться гидро­графические суда с различным океанографическим оборудованием, океанографические буи и оборудование, установленное непосредственно на платформе.

3.3.5.2.1.8 Система контроля позиционирования платформы. Позиционирование платформы должно включать:

- определение местоположения платформы в море;
- определение продольных, поперечных смещений и углов рыскания платформы относительно места установки платформы.

Для определения местоположения в море платформа должна быть оборудована навигационным комплексом, обеспечивающим точность определения местоположения платформы относи-
вением юбки в грунт со скоростью, соответствующей скорости фильтрации, не разрушающей грунт; 2) посадкой платформы на грунт в течение некоторого реального (заданного) отрезка времени при расчетных параметрах СОВ, обеспечивающих отвод избыточных расходов, превышающих предельные неразрушающие фильтрационные расходы из-под краев юбки.

Системы насосов и рукавов должны быть смонтированы до начала операции установки платформы. Система оснащена погружными насосами. Они устанавливаются в трубах СОВ на время проведения операции установки платформы. От каждого насоса к дефлектору протянут гибкий рукав.

Система отвода воды из-под днища кессона должна быть подготовлена к работе в степени, достаточной для обеспечения подачи воды для нужд балластной системы. Насосы должны быть опущены в трубы СОВ ниже уровня воды и надёжно закреплены.

При приеме водяного балласта должны производиться вентиляция и контроль заполнения цистерн и танков-хранилищ.

3.3.5.2.1.12 Требования к процедуре операции установки при подходе, касании и прижатии к грунту для платформ, оснащенных конструкцией юбки. В процессе заглубления платформы реакции грунта (нормальные и касательные) включают в себя нагрузки на подошву и юбку. Эти нагрузки зависят от характеристик грунта, топографии дна, величины заглубления платформы в грунт. В процессе задавливания нагрузки на элементы конструкций платформы, возникающие при балластировке, не должны превышать допустимых значений. Для контроля нагрузок целесообразно использовать систему контроля состояния системы кессон — грунтовое основание.

Для исключения вероятности разрушения структуры поверхности морского dna важно обеспечить однородный посадку платформы на дно. С целью сведения к минимуму возможности неоднородной посадки время балластировки должно быть рассчитано так, чтобы необходимые работы выполнялись в период отлива.

После касания dna платформа должна обладать достаточной устойчивостью на сдвиг под действием внешних нагрузок до её окончательного закрепления в проектном положении. Устойчивость платформы должна исключать отрыв платформы по периметру от dna. Ограниченный отрыв от dna по периметру платформы следует рассматривать как аварийное состояние.

Для обеспечения гарантированного задавливания юбки в грунт должен быть выполнен соответствующий расчет. При погружении необходимо соблюдать симметричность ёмкостей для равномерного давления юбки на грунт. В связи с этим, важным требованием к процессу постановки платформы является её нагружение без существенных кренов и дифференциров.

3.3.5.2.1.13 Вопросы формализованной оценки безопасности. Безопасные условия проведения морских операций предусматривают исключение потерь и возникновения опасности для конструкций платформ, буксиров и других судов, участвующих в операции, исключение угрозы для жизни и здоровья персонала.

Планирование морских операций должно учитывать возможность возникновения аварийных ситуаций. При возникновении аварийной ситуации платформа должна оставаться в устойчивом и контролируемом состоянии.

Планирование морских операций должно обеспечивать возможность их выполнения в безопасных условиях, либо прекращения операции в случае превышения расчетных параметров внешних условий и возникновения аварийных ситуаций.

Планирование морских операций рекомендуется вести с учётом требований, указанных в главе 2.3 «Методы анализа аварийных ситуаций» часть XV «Оценка безопасности ПБУ/МСП», а именно опросные листы, анализ ситуаций «Что, если...» (What if...), изучение аварийных ситуаций (HAZID), анализ дерева событий (Event Tree), анализ дерева ошибок (дерева неполадок) (Fault Tree), изучение работоспособности платформы при аварийных ситуациях (HAZOP), анализ неисправностей и их последствий (FMEA).

После изучения аварийных ситуаций устанавливается приоритетность опасностей, для чего используется матрица рисков, в соответствии с которой все опасности классифицируются по трем уровням: неприемлемый, практически разумный (ALARP) и приемлемый.

При работе с матрицей рисков рекомендуется активно использовать методы экспертных оценок, реализуемых с помощью метода Делфи, коэффициента конкордации, коэффициентов парной корреляции.

3.3.5.2.2 Установка крупногабаритных элементов верхних строений на опорную часть.

3.3.5.2.2.1 Перенос и установка груза (крановый вариант).

Установка крупногабаритных элементов верхних строений на опорное основание платформы можно проводить в положении на плаву и при установке платформы на подготовленное грунтовое основание.
Правила классификации, постройки и оборудования ПБУ/МСП

При проведении установочных операций крупногабаритных элементов верхних строений на опорную часть при проведении операции на плаву следует учитывать вероятность столкновения судна с платформой, которая будет в некоторой степени зависеть от двигателя, управляемости судна и его способности удерживать положение, а также системы якорного раскрепления при использовании плавучего крана.

Для сохранения устойчивого положения и чтобы избежать столкновения при выполнении операции судна должны обладать следующими техническими характеристиками:
- мощность и надежность двигателя;
- судно должно обладать системой динамического управления движением.

Система якорного раскрепления плавучего крана должна обеспечивать удержание плавкрана около платформы, исключив навал при её установке.

Погодные ограничения при проведении операций включают работу в условиях тумана и в ночное время. Риск при работе в ночное время может быть снижен за счет обеспечения соответствующей системы освещения. Работа в условиях тумана потребует использования систем гидролокации, поэтому проводить работы следует только при хорошей видимости.

Краны должны быть снабжены стропами различной длины, грузовыми сетками и специальными устройствами для длинномерных грузов. Грузовые гаки кранов должны опускаться до уровня грунта дна.

При планировании операции следует учитывать ограничения работы кранов по метеоусловиям.

При проведении грузовых операций плавкраном следует: определить расстояния между краном и платформой, исходя из условия нахождения палубы судна на уровне клюзовой точки сооружения; разработать схемы перемещения грузов плавкрана при бесконтактной швартовке плавкрана (вид сверху и сбоку); оценить продолжительность операции; разработать варианты швартовки плавкрана; произвести оценку риска от падающих и раскачивающихся грузов и необходимости наличия защиты от удара.

Меры безопасности при проведении операции должны предусматривать перемещение грузов над морем, минуя технологическую зону. Подъём бурового оборудования должен производиться в контейнерах или на поддонах.

3.3.5.2.2.2 Накатка крупногабаритных элементов верхних строений

3.3.5.2.2.2.1 Расчет нагрузок в якорных и швартовных связях, отбойных и опорных устройствах.

При проведении установки частей конструкции платформы, такими как установка палубных секций, модулей, поддерживающих конструкций и т.п. должны устанавливаться допуски на соединение частей конструкции.

Поскольку накатка верхних строений на кессон предполагает возможность а) постановки на якоря плавучего основания, б) использования швартовных связей, в) установки отбойных устройств, необходимо выполнение соответствующих расчётов.

3.3.5.2.2.2.1.1 Расчет реакций системы постановки на якоря.

Якорные связи могут представлять собой стальные тросы, растительные тросы, цепи или любые их комбинации.

Расчет реакций якорных связей производится квазистатическим методом, при этом должно учитываться положение клюзовой точки сооружения. Кроме того, должны учитываться растяжение связей, наличие массивов и плучостей, установленных на связях и предназначенных для изменения трассы провисания и жесткостных характеристик связей, возможность укладки части связей на дно акватории.

Расчет натяжений рекомендуется производить по компьютерной программе, позволяющей автоматически сообщать о превышении заданных допустимых значений нагрузок. Оценивание возможной возникновения аварийной ситуации.

3.3.5.2.2.2.1.2 Расчет реакций швартовных связей.

Расчет работы швартовных устройств необходим при наличии двух сооружений. Для расчета реакции швартовных связей должны быть заданы координаты центров тяжести сооружений. Натяжения в...
швартовных связях рассчитываются аналогично якорным связям.

3.3.5.2.2.2.1.3 Расчет реакций отбойных устройств. Расчет работы отбойных устройств (ОУ) производится в несколько этапов с использованием операторов геометрических преобразований координат заданных точек двух сооружений (с учетом их поворотов) в расстояние между ними по осьм и обратно.

3.3.5.2.2.2.2 Расчет реакций опорных устройств. Опорные устройства, установленные на кессоне, входят во взаимодействие с консольными устройствами барж, которые за счет создания прижима и наличия сил трения удерживают баржи с верхним строением в процессе выполнения операции накатки. При расчете полной реакции опорного устройства необходимо учитывать силы трения. Силы трения обусловлены прижимной силой, обеспечивающей неподвижное положение барж у кессона в процессе накатки. Эта неподвижность может быть достигнута только тогда, когда силы трения превышают внешние горизонтальные силы.

3.3.5.2.2.2.3 Моделирование поведения системы кессон-верхнее строение-элементы транспортной системы. На первой стадии моделирования поведения системы должны быть решены задачи статики и динамики системы с целью определения начальных условий натяжения. В дальнейшем динамическая задача накатки верхнего строения с баржей на кессон должна решаться с помощью программных комплексов как задача динамики трех объектов.

Для стационарного основания рассчитываются нагрузки от течения и волнения, а также нагрузки, передаваемые отбойными и опорными устройствами. Для барж рассчитываются нагрузки от течения и волнения, а также нагрузки, передаваемые через отбойные и опорные устройства. Для верхнего строения рассчитываются нагрузки от ветра, а также силы реакции оснований.

При проведении операции накатки должен производиться пошаговый мониторинг активной балластировки кессона, расчет которой выполняется на стадии проекта.

Основными требованиями к балластной системе с точки зрения безопасного выполнения операции накатки является обеспечение заданной текущей посадки (при минимальных отклонениях по осадке, крену и дифференту). Достигается это возможностью приема-удаления балласта без ограничений по установлению цистерн, с постоянным контролем состояния каждой цистерны (количество воды, положения клапанов).

Производительность системы должна обеспечивать непрерывное заданного времени проведения этапа морской операции с учётом "погодного окна".

Необходимо предусмотреть управление балластовой платформы для выравнивания её наклонов в допустимых пределах.

Проведение операций должно сопровождаться расчетами устойчивости кессона на грунте, включая расчеты устойчивости на плоский сдвиг по грунту основания, на плоский сдвиг по слою щебня при отсутствии барж, на плоский сдвиг по слою щебня при наличии пристыкованной баржи с верхним строением, на плоский сдвиг по слою щебня при накатке на кессон верхнего строения, на плоский сдвиг вместе со щебнем и песком по кровле суплинка.

Кроме того, должна быть определена необходимость проведения расчета устойчивости кессона по схеме смешанного и глубинного сдвига.

3.4 ЖЕЛЕЗОБЕТОННЫЕ И СТАЛЕБЕТОННЫЕ КОНСТРУКЦИИ МСП

3.4.1 Общие требования.
3.4.1.1 Настоящая глава устанавливает основные требования к проектированию и постройке корпусов МСП, выполненных полностью или частично (в композитном исполнении) из следующих материалов на основе обычного бетона без применения предварительного напряжения: железобетона, состоящего из бетона и металлической стержневой арматуры, размещенной в нем дисперсно в соответствии с расчетными и конструктивными требованиями; сталебетона, состоящего из бетона и металлической листовой арматуры, размещенной на внешних поверхностях конструктивного элемента и присоединенной к бетону с достаточной прочностью и жесткостью в соответствии с расчетными и конструктивными требованиями; сталежелезобетона — материала, занимающего промежуточное положение между первыми двумя, в котором в дополнение к железобетону с одной или обеих внешних поверхностях конструктивного элемента присоединена металлическая листовая арматура с целью повышения герметичности и увеличения несущей способности последнего.

В дальнейшем сталебетонные конструкции с внешним листовым армированием и сталежелезобетонные конструкции в настоящих Правилах называются сталебетонными, в необходимых случаях приведены соответствующие уточнения.

3.4.1.2 Проектирование предварительно напряженных железобетонных и сталебетонных конструкций корпусов МСП может быть выполнено по специализированным нормативным документам, одобренным Регистром, или по согласованию с ним.
3.4.1.3 При проектировании железобетонных, сталебетонных и композитных конструкций корпусов МСП там, где это уместно, могут использоваться положения Правил постройки корпусов морских судов и плавучих сооружений с применением железобетона Регистра.

3.4.2 Нагрузки.

3.4.2.1 Расчетные значения нагрузок на железобетонные, сталебетонные и композитные конструкции корпусов МСП от различных видов воздействий при возможных их сочетаниях определяются в соответствии с указаниями 2.3, 3.3.1 и 3.3.2.

3.4.2.2 Элементы массивных сталебетонных конструкций, у которых внешняя листовая арматура играет роль опалубки, а также сборно-монолитных железобетонных конструкций, должны быть рассчитаны для двух стадий работы конструкций:

- до приобретения свежеуложенным бетоном заданной прочности на стадии строительства сооружения на действие собственного веса этого бетона и других нагрузок, действующих на этой стадии;

- после приобретения бетоном заданной прочности на нагрузки, действующие при эксплуатации.

3.4.3 Основные расчетные требования.

3.4.3.1 Железобетонные и сталебетонные конструкции должны удовлетворять требованиям расчета по несущей способности (предельные состояния первой группы) и по пригодности к нормальной эксплуатации (предельные состояния второй группы). При выполнении требований расчетов по предельным состояниям должны быть практически исключены:

- по предельным состояниям первой группы: хрупкое и вязкое разрушения, потеря устойчивости формы, усталостное разрушение (расчет на выносливость конструкций под действием многократно повторяющихся нагрузок) и т. д.;

- по предельным состояниям второй группы: образование трещин в бетоне трещиностойких конструкций, чрезмерное раскрытие трещин в бетоне конструкций, у которых по условиям эксплуатации образование трещин допустимо, чрезмерные перемещения и т. п.

3.4.3.2 Железобетонные и сталебетонные конструкции должны быть проектированы так, чтобы в течение всего срока службы МСП выполнялось общее требование безопасности, сформулированное в 2.4.1.1, при этом коэффициенты безопасности η должны приниматься по табл. 2.4.2.5, как для критерия прочности (2.4.2.3.1).

3.4.4 Материалы.

3.4.4.1 Бетон и его составляющие.

3.4.4.1.1 Бетон железобетонных и сталебетонных конструкций корпусов МСП должен удовлетворять требованиям государственных стандартов, Правил постройки корпусов морских судов и плавучих сооружений с применением железобетона и настоящего раздела.

3.4.4.1.2 Для железобетонных и сталебетонных конструкций необходимо использовать конструкционные бетоны:

- тяжелый, естественного отверждения или подвергнутый тепловой обработке при атмосферном давлении, средней плотности свыше 2300 до 2500 кг/м³ включительно;

- мелкозернистый, естественного отверждения или подвергнутый тепловой обработке при атмосферном давлении, на песке с модулем крупности свыше 2,0.

Допускается использовать бетоны:

- легкий средней плотности свыше 1800 кг/м³ на плотном мелком заполнителе;

- специальный бетон — напрягающий (по согласованию с Регистром).

3.4.4.1.3 При проектировании составов бетонов и технологических схем его изготовления и укладки следует учитывать специфические особенности, определяющиеся следующими обстоятельствами:

- сложность конфигурации заполняемого объема конструкции;

- производство работ в условиях Северной климатической зоны;

- необходимость бетонирования на плаву;

- укладка бетона без вибрационных воздействий;

- повышенные требования по плотности, морозостойкости и водонепроницаемости в зонах воздействия ледовых и волновых нагрузок.

3.4.4.1.4 Для корпусных конструкций, к которым предъявляются высокие требования по прочности, водонепроницаемости и морозостойкости бетона, например, для наружных конструкций, расположенных в зоне переменной ватерлинии, необходимо предусматривать применение добавок поверхностно-активных веществ и микронаполнителей. Оптимальное содержание добавок и наполнителей следует устанавливать экспериментально при подборе составов бетонов.

3.4.4.1.5 В зависимости от вида, назначения и условий работы для специальных и основных железобетонных и сталебетонных корпусов МСП надлежит применять бетоны следующих классов и марок:

- классов по прочности на сжатие, соответствующих значению гарантированной прочности, МПа, с обеспеченностью 0,95:

 - тяжелый бетон: В30, В35, В40, В45, В50, В55, В60 (допускается при надлежащем обосновании и по согласованию с Регистром использовать бетоны классов по прочности В70 и В80);

 - мелкозернистый бетон: В30, В35, В40;
Част II. Корпус

91 стр.

соответственно с данными табл. 3.4.4.1.5.2.

<table>
<thead>
<tr>
<th>Марка бетона по прочности на сжатие (в МПа)</th>
<th>Марка бетона по водонепроницаемости (коэффициент условий работы)</th>
<th>Марка бетона по морозостойкости (марка по водонепроницаемости)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F100</td>
<td>F100</td>
<td>F150</td>
</tr>
<tr>
<td>F100</td>
<td>F150</td>
<td>F200</td>
</tr>
</tbody>
</table>

Примечания:
1. Эксплуатационные условия характеризуются среднемесячной температурой воздуха и температуры воды, в зависимости от градиента напора, определяемого как отношение максимального напора к толщине конструкции (в метрах), и температуры воды, в соответствии с табл. 3.4.4.1.5.3.

<table>
<thead>
<tr>
<th>Температура воды, °С</th>
<th>Марка бетона по водонепроницаемости при градиентах напора</th>
</tr>
</thead>
<tbody>
<tr>
<td>свыше 5 до 10</td>
<td>F4</td>
</tr>
<tr>
<td>свыше 10 до 20</td>
<td>W6</td>
</tr>
<tr>
<td>свыше 30</td>
<td>W8</td>
</tr>
<tr>
<td>До 10 включительно</td>
<td>W6</td>
</tr>
<tr>
<td>Свыше 10 до 30 вкл.</td>
<td>W8</td>
</tr>
</tbody>
</table>

Примечания:
1. Для конструкций с градиентом напора свыше 30 следует назначать марку бетона по водонепроницаемости W16 и выше.
2. Для наружных конструкций, находящихся в условиях воздействия морской воды, ее брызг, а также в контакте с ледовыми образованиями и участках морского дна марку бетона по водонепроницаемости следует назначать не ниже W8.

3.4.4.1.6 Для вспомогательных корпусных конструкций допускается применение легких бетонов классов по прочности на сжатие: B30, B35 и B40.

3.4.4.1.7 Для массивных корпусных конструкций МСП, например, сталебетонных перекрытий толщиной более 1,0 м при условии, что бетон используется преимущественно в качестве твердого балласта и участвует в восприятии лишь локальных нагрузок, допускается использование тяжелых бетонов более низких классов по прочности на сжатие: B20 и B25.

3.4.4.1.8 При проектировании МСП при специальном обосновании для бетонов могут быть установлены классы по прочности на основе растяжения.

3.4.4.1.9 Мелкозернистый бетон без экспериментального обоснования не допускается применять для конструкций, подвергающихся морозостойкости.

3.4.4.1.10 При проектировании железобетонных и сталебетонных конструкций класс бетона по прочности на сжатие устанавливается в возрасте 28 суток. Во всех случаях внешнее сильное воздействие на бетон допускается лишь при достижении им не менее 70 % прочности принятого класса по прочности.

3.4.4.1.11 Для омоноличивания стыков и узлов элементов сборных конструкций следует применять бетоны классов по прочности и марок по морозостойкости и водонепроницаемости не ниже принятых для стыкуемых элементов.

3.4.4.1.12 При проектировании МСП нормативные сопротивления бетона осевому сжатию для предельных состояний первой группы (по несущей способности) и второго (по эксплуатационной пригодности) следует назначать не ниже принятых для стыкуемых элементов.

3.4.4.1.13 Расчетные сопротивления бетона для предельных состояний первой группы по прочности и устойчивости бетона к сжатию и растяжению, определяемые делением нормативных сопротивлений на соответствующие коэффициенты надежности по бетону при сжатии и растяжению, и начальные модули упругости бетона сглаженное твердение бетона при сжатии и растяжении в зависимости от классов по прочности на сжатие следует принимать по табл. 3.4.4.1.12.

3.4.4.1.14 Для бетонов, подвергающихся постепенному замораживанию и оттаиванию значений начального модуля упругости, указанных в табл. 3.4.4.1.12, следует умножить на коэф-
Правила классификации, постройки и оборудования ПБУ/МСП

Таблица 3.4.4.1.12

<table>
<thead>
<tr>
<th>Проектный класс бетона</th>
<th>Нормативное сопротивление бетона, расчетное сопротивление бетона для предельных состояний второй группы, МПа</th>
<th>Расчетное сопротивление бетона для предельных состояний первой группы, МПа</th>
<th>Начальный модуль упругости бетона при сжатии и растяжении $E_b \cdot 10^{-3}$, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Сжатие осевое (прочность) $R_{05} = R_0$</td>
<td>Растяжение осевое $R_{3} = R_{30}$</td>
<td>Сжатие осевое R_6</td>
</tr>
<tr>
<td>Тяжелый бетон</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>В20</td>
<td>15,0</td>
<td>1,40</td>
<td>11,5</td>
</tr>
<tr>
<td>В30</td>
<td>22,0</td>
<td>1,80</td>
<td>17,0</td>
</tr>
<tr>
<td>В40</td>
<td>29,0</td>
<td>2,10</td>
<td>22,0</td>
</tr>
<tr>
<td>В50</td>
<td>36,0</td>
<td>2,30</td>
<td>27,5</td>
</tr>
<tr>
<td>В60</td>
<td>43,0</td>
<td>2,50</td>
<td>33,0</td>
</tr>
<tr>
<td>Легкий и мелкоэзернистый бетон</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>В30</td>
<td>22,0</td>
<td>1,80</td>
<td>17,0</td>
</tr>
<tr>
<td>В40</td>
<td>29,0</td>
<td>2,10</td>
<td>22,0</td>
</tr>
</tbody>
</table>

1 В числителе — мелкоэзернистый бетон, в знаменателе — легкий бетон.

П р и м е ч а н и е: При использовании промежуточных классов бетона по прочности на сжатие значения характеристик определяются линейной интерполяцией.

Коэффициент условий работы γ_6, принимаемый по табл. 3.4.4.1.13-1.

3.4.4.1.15 При расчете железобетонных и сталебетонных конструкций на выносимость неупругие деформации бетона в статической зоне следует учитывать снижение модуля упругости, принимая коэффициенты приведения стали к бетону по табл. 3.4.4.1.15.

3.4.4.1.16 Коэффициент динамической деформации бетона d_b в расчетах следует принимать $1 \cdot 10^{-5} \cdot C^{-1}$.

3.4.4.1.17 Начальный коэффициент поперечной деформации бетона (коэффициент Пауэсона) μ принимается равным 0,2.

3.4.4.1.18 Модуль сдвига бетона принимается равным 0,4 соответствующих значений начальных модулей упругости бетона, указанных в табл. 3.4.4.1.12.

3.4.4.2 Армatura.

3.4.4.2.1 В качестве ненапрягаемой стержневой и проволочной арматуры следует применять:
1 стержневую классов А-Ш — для продольной и поперечной арматуры;
2 стержневую класса А-I — для поперечной арматуры и продольной, если другие виды арматуры по условиям эксплуатации не могут быть использованы;
3 стержневую класса А-I и арматурную проволоку класса Вр-1 — для продольной и поперечной арматуры.

Арматуру класса А-Ш диаметром 10 — 40 мм в наружных конструкциях при температуре воздуха

Таблица 3.4.4.1.13-1

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Факторы, обусловливающие введение коэффициента условий работы бетона</th>
<th>Коэффициент условий работы бетона</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Многократно повторяющаяся нагрузка</td>
<td>γ_6</td>
</tr>
<tr>
<td>2</td>
<td>Бетонирование в вертикальном положении при высоте слоя бетонирования свыше 1,5 м</td>
<td>γ_{b2}</td>
</tr>
<tr>
<td>3</td>
<td>Попеременное замораживание и оттаивание</td>
<td>γ_{b3}</td>
</tr>
<tr>
<td>4</td>
<td>Бетон в железобетонных конструкциях</td>
<td>γ_{b4}</td>
</tr>
</tbody>
</table>

Примечания:
1. Коэффициенты условий работы по 1, 3 и 4 должны учитываться при определении расчетных сопротивлений R_b и R_{bt}, а по 2 только при определении R_b.
2. Для конструкций, находящихся под действием многократно повторяющейся нагрузки, коэффициент γ_6 учитывается только при расчете на выносливость и по образованию трещин в бетоне.
3. При превышении марки бетона по морозостойкости по сравнению с требуемой согласно табл. 3.4.4.1.5.2 коэффициент γ_6 может быть увеличен на 0,05 соответственно каждой ступени превышения, однако не может быть больше единицы.
4. Коэффициенты условий работы бетона вводятся независимо друг от друга, но при этом их произведение должно быть не менее 0,45.

Таблица 3.4.4.1.13-2

<table>
<thead>
<tr>
<th>Состояние бетона по влажности</th>
<th>Коефициент условий работы бетона при многократно повторяющихся нагрузках и коэффициенте асимметрии цикла ρ, равном</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 — 0,1</td>
<td>0,2</td>
</tr>
<tr>
<td>Естественной влажности</td>
<td>0,75</td>
</tr>
<tr>
<td>Водонасыщенного</td>
<td>0,50</td>
</tr>
</tbody>
</table>

Примечание: Коэффициент асимметрии цикла ρ равен отношению низшего к наибольшему напряжению в бетоне в пределах цикла изменения нагрузки.
Таблица 3.4.4.1.15

<table>
<thead>
<tr>
<th>Класс бетона по прочности на сжатие</th>
<th>В20</th>
<th>В30</th>
<th>В40</th>
<th>В50</th>
<th>В60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Коеффициент приведения (v')</td>
<td>23</td>
<td>18</td>
<td>10</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

ниже минус 40 °C допускается использовать только в вязаных каркасах и сетках (без сварки).

3.4.4.2.2 Для корпусных конструкций МСП, находящихся в суровых и особо суровых климатических условиях эксплуатации (см. 3.4.4.1.5), не допускается применять стержневую арматуру диаметром более 16 мм из полуспокойной стали.

3.4.4.2.3 Нормативные сопротивления стержневой и проволочной арматуры указанных в 3.4.4.2.1 классов и расчетные сопротивления арматуры для предельных состояний первой и второй группы (см. 3.4.3.1), в зависимости от характера нагружения, а также модули упругости и относительные удлинения представлены в табл. 3.4.4.2.3.

3.4.4.2.4 Нормативные и расчетные сопротивления листовой стальной арматуры для сталежелезобетонных и сталебетонных конструкций определяются в соответствии с 1.5.1.5 настоящей части.

3.4.4.2.5 Расчетные сопротивления арматуры сжатию при расчете железобетонных, сталежелезобетонных и сталебетонных конструкций по предельным состояниям первой группы во всех случаях должны приниматься не более \(R_{SC} = 400 \) МПа.

3.4.4.2.6 Расчетные сопротивления арматуры \(R_s, R_{SC} \) и \(R_{SW} \) для предельных состояний второй группы вводятся в расчет с учетом коэффициентов условий работы \(\gamma_s \) и \(\gamma_{SW} \), значения которых приведены в табл. 3.4.4.2.6-1 и 3.4.4.2.6-2.

3.4.5 Требования по конструированию корпусов МСП из композиционных материалов на основе бетона.

3.4.5.1 Размеры сечений железобетонных, сталежелезобетонных и сталебетонных элементов конструкций корпусов МСП следует определять расчетным путем, исходя из условий прочности, трещиностойкости или ограничения раскрытия трещин.

При этом во всех случаях суммарная площадь сечения стержневой и листовой продольной рабочей арматуры должна составлять не менее 0,4 % площади бетонного сечения.

3.4.5.2 Толщину защитного слоя бетона железобетонных конструкций следует принимать не менее:

1.1 на поверхности, находящейся под воздействием воды:
- для рабочей арматуры — 50 мм,
- для распределительной арматуры и хомутов — 30 мм;

1.2 на поверхностях, не находящихся под воздействием морской воды:
- для рабочей арматуры — 30 мм или не менее диаметра стержней;
- для распределительной арматуры и хомутов — 20 мм или не менее диаметра стержней.

3.4.5.3 Диаметр арматуры в бортах, палубах и днище МСП должен быть не менее 12 мм, а во внутренних стеновых элементах — не менее 8 мм.

Таблица 3.4.4.2.3

<table>
<thead>
<tr>
<th>Класс арматуры</th>
<th>Диаметр, мм</th>
<th>Нормативное сопротивление растяжению (предел текучести), МПа</th>
<th>Расчетное сопротивление для предельных состояний первой группы, МПа</th>
<th>Модуль упругости, МПа</th>
<th>Относительное удлинение, %</th>
<th>Испытания на изгиб в холодном состоянии (с — толщина оправки, d — диаметр стержня)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-I</td>
<td>6 : 40</td>
<td>235</td>
<td>225</td>
<td>175</td>
<td>225</td>
<td>2,05 (10^5)</td>
</tr>
<tr>
<td>A-II</td>
<td>6 : 40</td>
<td>295</td>
<td>280</td>
<td>225</td>
<td>280</td>
<td>2,05 (10^5)</td>
</tr>
<tr>
<td>A-II</td>
<td>6 : 40</td>
<td>390</td>
<td>355</td>
<td>285</td>
<td>355</td>
<td>2,00 (10^5)</td>
</tr>
<tr>
<td>A-Ш</td>
<td>6 : 40</td>
<td>390</td>
<td>355</td>
<td>285</td>
<td>355</td>
<td>2,00 (10^5)</td>
</tr>
<tr>
<td>Bр-I</td>
<td>3</td>
<td>410</td>
<td>375</td>
<td>270</td>
<td>375</td>
<td>1,70 (10^5)</td>
</tr>
<tr>
<td>Bр-II</td>
<td>4</td>
<td>405</td>
<td>365</td>
<td>265</td>
<td>365</td>
<td>1,70 (10^5)</td>
</tr>
<tr>
<td>Bр-III</td>
<td>5</td>
<td>395</td>
<td>360</td>
<td>260</td>
<td>360</td>
<td>1,70 (10^5)</td>
</tr>
</tbody>
</table>

\[1\] В сварных каркасах для поперечных стержней (хомутов) из арматуры класса A-Ш, диаметр которых меньше 1/3 диаметра продольных стержней, значения принимаются равными 255 МПа.
Таблица 3.4.4.2.6-1

<table>
<thead>
<tr>
<th>Фактор, обусловливающий введение коэффициента условий работы стержневой арматуры</th>
<th>Коэффициенты условий работы стержневой арматуры уп</th>
</tr>
</thead>
<tbody>
<tr>
<td>Железобетонные элементы</td>
<td>1,05</td>
</tr>
<tr>
<td>Стеллажелезобетонные элементы</td>
<td>1,0</td>
</tr>
<tr>
<td>Многократно повторяющиеся нагрузки при коэффициенте асимметрии цикла ру</td>
<td>0,6</td>
</tr>
<tr>
<td>-1,0 — 0</td>
<td>0,6</td>
</tr>
<tr>
<td>0 — 0,4</td>
<td>0,7</td>
</tr>
<tr>
<td>0,4 — 0,8</td>
<td>0,9</td>
</tr>
<tr>
<td>0,8 — 1,0</td>
<td>1,0</td>
</tr>
</tbody>
</table>

1 При наличии сварных соединений арматуры следующих типов: контактное стыковое без механической зачистки; стыковое, выполненное способом ванной одноэлектродной сварки на стальной подкладке при ее длине 3 и более диаметра наименьшего из стыкуемых стержней; стыковое с парными симметричными накладками.

Примечание. Коэффициент асимметрии цикла равен отношению наименьшего к наибольшему напряжению в арматуре в пределах цикла изменения нагрузки.

Таблица 3.4.4.2.6-2

<table>
<thead>
<tr>
<th>Фактор, обусловливающий введение коэффициента условий работы листовой арматуры</th>
<th>Коэффициенты условий работы листовой арматуры уп</th>
</tr>
</thead>
<tbody>
<tr>
<td>Листовая арматура без специальной обработки поверхности контакта с бетоном и без анкеров</td>
<td>0,5</td>
</tr>
<tr>
<td>Листовая арматура с рифленой поверхностью контакта с бетоном без анкеров</td>
<td>0,7</td>
</tr>
<tr>
<td>Листовая арматура с анкеровкой в бетон по расчету в соответствии с требованиями 3.4.6.5</td>
<td>0,9</td>
</tr>
</tbody>
</table>

3.4.5.4 Минимальная толщина листовой арматуры: для сталележебетонных конструкций — 10 мм, для сталеволетонных конструкций — 15 мм.

3.4.5.5 Толщину железобетонных перекрытий днища и бортов в зоне переменного уровня воды, непосредственного воздействия льда и в подводной части рекомендуется принимать не менее: для корпусов в виде цилиндрической и косынки 0,6 — 0,8 м; для корпусов ячеистой конструкции — 0,4 — 0,5 м.

3.4.5.6 Арматура из стержней для железобетонных и сталележебетонных конструкций должна проектироваться в виде армоферм, армопакетов, сварных каркасов и сеток. Типы армоконструкций должны обеспечивать возможность механизированной подачи бетона, его тщательной проработки или самоуплотнения.

3.4.5.7 Все несущие части корпуса МСП должны проектироваться без резких изменений сечений и искривлений. Площадь сечения арматуры целесообразно изменять за счет уменьшения диаметра стержней без изменения их количества.

В одном сечении конструкции допускается соединять в растянутой зоне не более 30 % стержней, а в сжатой зоне — не более 50 % стержней.

3.4.5.8 При конструировании арматуры следует принять меры для обеспечения надежной анкеровки ее концов. Анкеровку арматуры следует осуществлять при рядах обрываемого стержня к распределительной неравномерной арматуре, либо перепуском стержня от места, где он требуется по расчету, на длину не менее 30 диаметров — для растянутой и не менее 20 диаметров — для сжатой арматуры периодического профиля.

3.4.5.9 Сопряжения под углом плоскостных элементов корпусов МСП необходимо конструировать из условия обеспечения равной или большей прочности соединяющихся элементов.

В железобетонных и сталележебетонных конструкциях в угловых соединениях бортов с палубами встречную арматуру необходимо сваривать или перепускать в одной плите в другую не менее 15 диаметров арматуры. В угловых соединениях бортов и днища необходимо предусматривать угол, где они соприкасаются, не менее 1,5 раза или скатывание углов внутренней или наружной поверхностей узла с установкой дополнительной арматуры вдоль поверхностей скосов.

В тавровых и перекрестных соединениях встречную арматуру необходимо сваривать или перепускать из одной плиты в другую на участках не менее 15 диаметров арматуры по их контуру.

3.4.5.10 В сталележебетонных конструкциях перекрытий корпусов МСП рекомендуется предусматривать опорные скобы, а также проводить сварку элементов, а также применение внешней листовой арматуры с профилированной поверхностью.
3.4.6 Расчет на прочность и выносливость.
3.4.6.1 Основные расчетные положения.
3.4.6.1.1 При выполнении расчетов корпуса МСП внутренние усилия от общих и местных нагрузок, а также от вынужденных перемещений (вследствие изменения температуры, влажности бетона и т. п.), должны определяться на основе требований 2.5.1 и 2.5.2 с учетом неупругого поведения конструкций под нагрузкой, обусловленного трещинообразованием и ползучестью бетона и нелинейной зависимостью между напряжениями и деформациями материалов, по методикам, согласованным с Регистром.

В тех случаях, когда методика расчета с учетом неупругого поведения не разработана или расчет выполняется на промежуточной стадии проектирования платформы, усилия в сечениях следует определять в предположении упрощенной работы конструкций. При этом высота сжатой зоны бетона в них определяется на основе гипотезы шоссейных сечений. В нетрещиноватых конструкциях работа растянутого бетона не учитывается, и форма эпюры напряжений бетона в сжатой зоне сечений принимается треугольной.

3.4.6.1.2 Рассчеты напряженного состояния элементов конструкций при изгибе на основе указанных в 3.4.6.1.1 предпоилок применимы тогда, когда отношение рабочей (эффективной) высоты элемента к расстоянию между точками нулевого изгибающего момента меньше 1/2 или отношение рабочей высоты к пролету меньше 1/3. Если эти отношения больше указанных значений, элементы должны рассчитываться как высокие балки или балки-стенки.

3.4.6.1.3 Геометрические характеристики поперечных сечений элементов определяются для приведенных к одному материалу сечений. Приведенные к бетону или стали площади поперечных сечений определяются по формулам:

\[F_{id} = \frac{\Sigma(F_b + F_s)}{E_b} \]
(3.4.6.1.3-1)

\[F_{id} = \frac{\Sigma(F_s + F_b)}{E_s} \]
(3.4.6.1.3-2)

где \(F_b \) и \(F_s \) — площади поперечных сечений бетона и продольной арматуры рассматриваемого элемента соответственно; \(E_b \) и \(E_s \) — начальные модули упругости бетона и стали.

3.4.6.1.4 Если в составе поперечных сечений рассматриваемой конструкции находится сжатый стальной элемент, который может терять устойчивость, то соответствующая ему площадь сечения должна включаться в приведенную площадь с редукционным коэффициентом (см. 2.5.2).

3.4.6.1.5 При определении главных растягивающих, главных сжимающих и касательных напряжений в бетоне в расчет принимаются...
приведенные к бетону сечения конструкций в предположении упругой работы материалов и с учетом бетона в растянутой зоне.

3.4.6.1.6 При аналитических оценках напряженно-деформированного состояния железобетонных и сталобетонных перекрытий для определения внутренних усилий в сечениях перекрытия рекомендуется использовать расчетную схему пластин с учетом указаний 3.4.6.1.2 — 3.4.6.1.5.

3.4.6.1.7 Расчеты на прочность элементов при действии изгибающего момента и осевой силы следует производить для сечений, нормальных к продольной оси, а также наклонных к оси в наиболее опасных направлениях.

3.4.6.1.8 Предельные усилия сопротивления при изгибе в сечении, нормальном к продольной оси элемента, необходимо определять из следующих предпосылок:

- сопротивление бетона растяжению принимается равным нулю;
- напряжения бетона в сжатой зоне принимаются равными расчетному сопротивлению R_h;
- растягивающие и сжимающие напряжения в арматуре принимаются равными не более расчетных.

3.4.6.1.9 При расчете железобетонных и сталобетонных элементов на кручение, должно соблюдаться условие:

$$M_T < 0.1 R_b b^2 h,$$

где M_T — крутящий момент; b, h — соответственно меньший и больший размеры граней элемента.

При этом значение R_b для бетонов классов выше В30 принимается как для бетона класса В30.

Расчет пространственных железобетонных и сталобетонных конструкций на кручение допускается на промежуточных стадиях проектирования на основе упругой работы конструкции с учетом растянутого бетона, при этом наибольшие касательные напряжения в бетоне должны удовлетворять условию:

$$\tau_{max} \leq 1.86 R_{bon}.$$

где R_{bon} — нормативное сопротивление бетона осевому растяжению.

3.4.6.1.10 При действии значительной сосредоточенной нагрузки на ограниченную площадь элемента должна быть произведена проверка его местной прочности на смятие, продавливание, отрыв и т. п.

3.4.6.2 Расчет прочности элементов в сечениях, нормальных к продольной оси элемента.

3.4.6.2.1 Расчет прочности элементов в сечениях, нормальных к продольной оси элемента, следует производить в соответствии с 3.4.3.2 и 3.4.6.1.8 с соблюдением условия:

$$\xi = x / h_0 < \xi_R,$$

где ξ, x — относительная и абсолютная высота сжатой зоны бетона;
ξ_R — граничная высота сжатой зоны, которую следует принимать по табл. 3.4.6.2.1.

Таблица 3.4.6.2.1

<table>
<thead>
<tr>
<th>Класс арматуры</th>
<th>Границные значения ξ_R при классе бетона</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-I</td>
<td>B20, B25, B30</td>
</tr>
<tr>
<td>A-II, Bp-I, A-III</td>
<td>B35 и выше</td>
</tr>
</tbody>
</table>

Сечения с двойной арматурой (в растянутой и сжатой зонах при изгибе) должны удовлетворять условию:

$$M < R_b S_b,$$

где M — изгибающий момент, действующий в сечении; R_b — расчетное сопротивление бетона сжатию для предельных состояний первой группы; S_b — статический момент всей площади поперечного сечения бетона (за вычетом защитного слоя в растянутой зоне) относительно центра тяжести сечения растянутой арматуры.

3.4.6.2.2 Расчет сечений изгибающихся железобетонных элементов любой симметричной формы следует производить по формулам:

$$\Phi = M; \gamma_b R_b S_b + \gamma_s R_s S_s;$$

$$\gamma_s R_s F_s - \gamma_b R_b F_b;$$

Для прямоугольного симметричного сечения (см. рис. 3.4.6.2.2-1)

$$S_b = bx (h_0 - 0.5x); S_s = F_s (h_0 - a); F_b = bx.$$

Если высота сжатой зоны бетона, определяемая без учета сжатой арматуры, меньше двойной толщины защитного слоя, т. е. меньше $2a$ (см. рис. 3.4.6.2.2-1), сжатую арматуру в расчете можно не учитывать.

![Рис. 3.4.6.2.2-1 Схема усилий в сечении, перпендикулярном к продольной оси изгибающего железобетонного элемента при расчете его прочности](image-url)
Расчет изгибаемых сталежелезобетонных элементов следует производить без учета податливости соединительного шва листовой арматуры с бетоном по формулам (рис. 3.4.6.2.2-2):

\[\Phi = M; \quad R = \gamma_y R_{db} h_0 (h_0 - 0.5x) + \gamma_y R_{aw} F_s (h_0 - a) + \gamma_y R_{aw} F_{sw} (h_0 - 0.5d) + \gamma_y R_{aw} F_{sw} (h_0 - 0.5d) + \gamma_y R_{aw} F_{sw} (h_0 - 0.5d); \]

(3.4.6.2.2-3)

(3.4.6.2.2-4)

Рис. 3.4.6.2.2-2 Схема усилий в сечении, перпендикулярном к продольной оси изгибаемого сталежелезобетонного элемента при расчете его прочности

В случае, если в сечении сталежелезобетонного элемента площадь поперечного сечения сжатой арматуры равна или больше площади поперечного сечения растянутой арматуры, расчетное сопротивление сечения изгибу определяют по формуле:

\[R = (\gamma_y R_{aw} F_s + \gamma_y R_{sw} F_{sw}) (h_0 + 0.5d_s); \]

(3.4.6.2.2-5)

В приведенных формулах:

- \(R \) — расчетное сопротивление сечения изгибу;
- \(S_0 \) и \(S_1 \) — статические моменты площади сечения сжатой зоны бетона и площади сечения сжатой арматуры соответственно относительно центра тяжести растянутой арматуры;
- \(F_s, F_s' \) — площади поперечных сечений растянутой и сжатой стержневой и листовой арматуры соответственно (см. 3.4.4);
- \(\gamma_y, \gamma_y' \) — коэффициенты условий работы бетона, растянутой и сжатой стержневой арматуры соответственно, принимаемые по табл. 3.4.4.1.13-1, 3.4.4.2.6-1 и 3.4.4.2.6-2.

Расчет сталебетонных элементов следует выполнять по формулам (3.4.6.2.2-3) — (3.4.6.2.2-5), приняв \(F_s = F_s' = 0 \).

3.4.6.2.3 Расчет винтовых и винтевых растянутых элементов с поперечным сечением прямоугольной формы, а также расчет элементов с тавровым и двутавровым поперечными сечениями при изгибе, винтевом сжатии и растяжении рекомендуется выполнять по формулам Правил постройки морских железобетонных и сталежелезобетонных и композитных судов и плавучих доков Регистра на основе расчетных характеристик материалов и расчетных коэффициентов, принятых в настоящих Правилах с учетом указаний 3.4.6.2.1 и 3.4.6.2.2.

3.4.6.3 Расчет прочности элементов в сечениях, наклонных к продольной оси элемента, на действие поперечной силы.

3.4.6.3.1 При расчете прочности сечений изгибающихся, винтево сжатых и винтево растянутых элементов на действие поперечной силы должно соблюдаться условие:

\[Q \leq 0.25 \eta \gamma_y R_{db} h_0; \]

(3.4.6.3.1)

где \(b \) — минимальная ширина элемента в сечении;
- \(\eta \) — коэффициент безопасности (см. 2.4.1.1 и 3.4.3.2).

3.4.6.3.2 Расчет сечений элементов может не производиться, если выполняется условие:

\[Q \leq 4 \left(W_5 + 2Z_5 \right) \gamma_y R_{db} h_0; \]

(3.4.6.3.2)

где \(\delta = 2(1 + M/Q_0), \) но не более 1,5 и не менее 0,5;
- \(M, Q \) — усилия в нормальном сечении, проходящем через конец наклонного сечения в сжатой зоне;
- \(\xi \) — относительная высота сжатой зоны, определяемая для изгибаемых элементов —

\[\xi = \mu R_{db}/R_s; \]

для винтево сжатых и винтево растянутых элементов с большим эксцентриситетом, когда \(S_0 > 0.8 S_0 \),

\[\xi = \mu R_{db}/R_s \pm N/b h_0 R_s; \]
- \(\mu \) — коэффициент армирования, определяемый как отношение площади сечения продольной арматуры и винтевой сечения к площади поперечного сечения элемента \(h_0 \).

П р и м е ч а н и е. Знаки «плюс» и «минус» следует принимать соответственно для винтево сжатых и винтево растянутых элементов.

3.4.6.3.3 Для винтево растянутых элементов с малым эксцентриситетом, когда \(S_0 > 0.8 S_0 \), расчет по прочности сечений, наклонных к продольной оси элемента, является обязательным во всех случаях, когда действует поперечная сила.

3.4.6.3.4 Расчет поперечной арматуры в наклонном сечении железобетонного, сталежелезобетонного и сталебетонного элемента (рис. 3.4.6.3.4) следует проводить по следующим формулам:

для изгибающихся, винтево сжатых и винтево растянутых с большим эксцентриситетом элементов —

\[\Phi = Q; \quad R = \Sigma \gamma_y R_{sw} F_{sw} + \Sigma \gamma_y R_{sw} F_{sw}; \]

(3.4.6.3.4-1)

для винтево растянутых элементов с малым эксцентриситетом —

\[\Phi = Q; \quad R = \Sigma \gamma_y R_{sw} F_{sw} + \Sigma \gamma_y R_{sw} F_{sw} + \Sigma \gamma_y R_{sw} F_{sw}; \]

(3.4.6.3.4-2)

где \(\Sigma \gamma_y R_{sw} F_{sw} \) и \(\Sigma \gamma_y R_{sw} F_{sw} \) — суммы усилий во всех поперечных сечениях (хомутах) и поперечных листовых связях в наклонном сечении;

- \(F_{sw}, F_{sw} \) — площади поперечных сечений стержневой и листовой арматуры;
- \(\xi \) — относительная высота сжатой зоны в сечении, определяемая по (3.4.6.3.5).
Правила классификации, постройки и оборудования ПБУ/МСП

3.4.6.3.4 Схема усилий в сечении, которое имеет наклон к продольной оси сталежелезобетонного элемента при расчете его прочности на действие поперечной силы

Рис. 3.4.6.3.4 Схема усилий в сечении, которое имеет наклон к продольной оси сталежелезобетонного элемента при расчете его прочности на действие поперечной силы

\[\begin{align*}
\Sigma(R_{sw} F_{sw} + R_{sw} F_{sw})
\end{align*} \]

где

\[Q \]

— поперечная сила в сечении;

\[S \]

— расстояние между поперечными связями.

Расстояние между поперечными связями (см. рис. 3.4.6.3.4) в случае наклонных стержней между концом предыдущего и началом последующего отгиба, ближайшего к опоре, должно быть не более величины \(T_{max} \), определяемой по формуле:

\[T_{max} = \xi (0,5 + 2z) \eta_{b} R_{sh} b_{h} h_{0} Q_{1} \] (3.4.6.3.6)

где

\[Q_{1} = R \] определяется по формуле (3.4.6.3.4-1).

3.4.6.4 Расчет сталежелезобетонных и сталебетонных конструкций на выносливость.

3.4.6.4.1 Расчеты элементов конструкций на выносливость необходимо производить во всех случаях, когда число циклов изменения нагрузки составляет 2·10^6 и более за весь расчетный период эксплуатации МСП.

3.4.6.4.2 Расчеты элементов конструкций на выносливость следует производить в предположении упругой работы материалов путем сравнения напряжений в крайних фибре бетона и напряжений в растянутой стержневой и листовой арматуре с расчетными сопротивлениями материалов, принятыми с соответствующими коэффициентами условий работы (см. табл. 3.4.4.1.13-1, 3.4.4.2.6-1, 3.4.4.2.6-2).

3.4.6.4.3 В трещиностойких элементах напряжения в крайних фибре бетона, напряжения в стержневой и листовой арматуре определяются по приведенным сечениям (см. 3.4.6.1.3) с учетом работы бетона всего сечения и с учетом указаний 3.4.4.1.15.

В нетрещиностойких элементах геометрические характеристики сечений определяются по приведенным сечениям без учета бетона растянутой зоны и с учетом требований 3.4.4.1.15.

Сжатая арматура на выносливость не рассчитывается.

3.4.6.4.4 В элементах железобетонных и сталебетонных конструкций при расчете на выносливость наклонных сечений главные растягивающие напряжения воспринимаются бетоном, если их величина не превышает \(R_{bt} \), равнодействующая главных растягивающих напряжений должна быть полностью передана на поперечную стержневую и листовую арматуру. При этом напряжения в арматуре не должны превышать соответственно расчетных величин \(R_{sw} \) и \(R_{swt} \).

3.4.6.5 Расчет прочности соединения по контакту листовой стали с бетоном в сталебетонных конструкциях.

3.4.6.5.1 Конструкции соединения листовой стали с бетоном по их контактным поверхностям следует рассчитывать на продольные сдвигающие усилия, возникающие в элементе при изгибе в плоскости изгиба, на продольные сдвигающие усилия, возникающие от температурных воздействий, усадки бетона и т. д., на усилия в поперечном направлении в плоскости изгиба при местном продавливании бетона внешней нагрузкой и др.

3.4.6.5.2 Прочность соединения или связи листовой арматуры с бетоном обеспечивается при соблюдении условия:

\[T \leq mT_{sw} n \] (3.4.6.5.2)

где

\[T \] — суммарное сдвигающее усилие, действующее в плоскости контакта в пределах рассматриваемого участка сталебетонного элемента;

\[m \] — коэффициент неравномерности работы упоров, причем \(m = 0,9 \) — при различной конструкции совместно работающих упоров, \(m = 1,0 \) — при одинаковой конструкции;

\[T_{sw} \] — сдвигающая сила, воспринимаемая одним упором, определяется в соответствии с 3.4.6.5.7 и 3.4.6.5.8;

\[n \] — количество упоров в пределах рассматриваемого участка элемента.
3.4.6.5.3 Продольное сдвигающее усилие при изгибе сталебетонного элемента, действующее на упоры или анкеры в контакте листовой арматуры с бетоном при шаге расположения «i» определяется по формулам:

\[T = QS_{\text{red}}/J_{\text{red}} \enspace (3.4.6.5.3-1) \]

или

\[T = N_{\text{p}(i-1)} - N_{\text{p}(i)} \enspace (3.4.6.5.3-2) \]

где \(Q \) — перерезывающая сила, действующая на рассматриваемом участке элемента между упорами;

\(S_{\text{red}} \) — приведенный статический момент поперечного сечения стального листа относительно нейтральной оси сечения расчетного элемента;

\(J_{\text{red}} \) — приведенный момент инерции поперечного сечения расчетного элемента;

\(N_{\text{p}(i-1)} \) и \(N_{\text{p}(i)} \) — продольные растягивающие усилия в листовой арматуре в поперечных сечениях на границах рассматриваемого участка.

3.4.6.5.4 При проектировании продольной анкеровки по поперечной силе следует обеспечить жесткость и прочность соединения стали с бетоном на опорных и концевых участках изгибаемого элемента, для чего в опорных сечениях должны устанавливаться конструкции типа жестких упоров (см. 3.4.5.12). В неразрезных конструкциях при наличии поперечных диафрагм в плоскостях промежуточных опор достаточно предусмотреть подкрепления их кницами. На концевых участках элементов жесткие упоры рекомендуется располагать по возможности за границами опор. Конструктивное оформление опорных сечений концевых участков должно обеспечивать не только прочность и жесткость поперечных диафрагм, но и вовлекать в работу в опорном сечении внешние стальные листы армирования.

3.4.6.5.5 Расчет прочности конструкций соединения стали с бетоном на опорных участках элемента должен производиться на полное расчетное продольное усилие в листовой стали в плоскости изгиба, передаваемое на бетон, которое определяется по формуле:

\[N_{\text{p}} = R_{\text{u}} F_{\text{sl}} \enspace (3.4.6.5.5) \]

где \(R_{\text{u}} \) — расчетное сопротивление материала листовой стали;

\(F_{\text{sl}} \) — расчетная площадь поперечного сечения листовой стали.

Дополнительно конструкция объединения стали с бетоном на опоре проверяется на сдвигающие усилия, определяемые по формуле (3.4.6.5.3-1).

3.4.6.5.6 Расчеты консольных соединений листовой стали с бетоном следует выполнять:

1. при жестких упорах — полагая прямую гольную эпюру сжимающих напряжений, передаваемых расчетной сжимающей поверхностью упора на бетон;

2. при гибких упорах — исходя из условий смятия бетона под упором с учетом работы упора на изгиб, согласно 3.4.6.5.8;

3. при наклонных анкерах — исходя из условий работы анкера на сочетание растяжения и изгиба со смятием бетона.

3.4.6.5.7 Расчет конструкций соединения на жестких упорах следует выполнять по формулам:

1. по прочности —

\[T_{\text{sup}} \leq 1,6 R_{\text{b}} F_{\text{b,cm}} \enspace (3.4.6.5.7-1) \]

на выносливость —

\[T_{\varepsilon} \leq 1,5 f_{\text{b1}} R_{\text{b}} F_{\text{b,cm}} \enspace (3.4.6.5.7-2) \]

где \(T_{\text{sup}} \), \(T_{\varepsilon} \) — сдвигающие усилия, приходящиеся на один упор, соответственно при расчете по прочности или выносливости;

\(F_{\text{b,cm}} \) — расчетная площадь упора или анкера, расположенного перпендикулярно к сдвигающей силе.

3.4.6.5.8 Расчеты прочности конструкций соединения листовой стали с бетоном на гибких упорах и стержневых анкерах следует выполнять по формулам:

1. для гибких упоров в виде прокатных швеллеров, двутавров, уголков (без подкрепляющих ребер типа книц) —

\[T_{\text{sup}} \leq 0,55 (t_{fr} + 0,5 t_{w}) b_{dz} \sqrt{10 R_{b}} \enspace \text{kN} \enspace (3.4.6.5.8-1) \]

2. для гибких упоров в виде круглых стержней, приваренных торцом к листовой арматуре, при \(2,5 \leq l/d \leq 4,2 \)

\[T_{\text{sup}} \leq 0,24 \sqrt{10 R_{b}} \enspace \text{kN} \enspace (3.4.6.5.8-2) \]

3. для таких же гибких упоров в виде круглых стержней при \(l/d > 4,2 \)

\[T_{\text{sup}} \leq d^{2} \sqrt{10 R_{b}} \enspace \text{kN} \enspace (3.4.6.5.8-3) \]

4. для гибких упоров в виде круглых стержней должно быть, кроме того, выполнено условие:

\[T_{\varepsilon} \leq 0,063 d^{2} m R_{y} \enspace \text{kN} \enspace (3.4.6.5.8-4) \]

В приведенных формулах:

\(t_{fr} \) — сумма радиуса закругления и наибольшей толщины полки прокатного профиля, см;

\(t_{w} \) — толщина стенки прокатного профиля, см;

\(l \) — длина круглого стержня гибкого упора или анкера, см;

\(b_{dz} \) — ширина площади смятия бетона упоров, см;

\(R_{b} \) — расчетная прочность бетона сжатию для предельных состояний первой группы;

\(R_{y} \) — расчетная прочность материала стальной конструкции;

\(m \) — коэффициент условий работы стальной конструкции.

3.4.7 Расчет элементов железобетонных и сталебетонных конструкций по образованию и раскрытию трещин и по деформациям.

3.4.7.1 Расчеты элементов конструкций по образованию и раскрытию трещин в бетоне следует производить:
Правила классификации, постройки и оборудования ПБУ/МСП

при проектировании трещиностойких конструкций;
при проектировании конструкций с ограниченным раскрытием трещин;
при выявлении зон образования трещин для учета снижения жесткостных характеристик элементов при расчетах статически неопределимых стержневых и массивных конструкций.

Условие трещинообразования соответствует знаку равенства, а условие трещиностойкости (недопущения трещин) — знаку неравенства в расчетных формулах, соответствующих структуре условия недопущения предельного состояния 2.4.1.1 и 3.4.3.2:

1. для центрально растянутых элементов —
\[\Phi = N, R = 1,5 R_{bt} F_{red} \]
где \(F_{red} \) — приведенная площадь поперечного сечения элемента;
2. для изгибаемых элементов —
\[\Phi = M, R = 1,75 R_{bt} W_{red} \]
где \(W_{red} \) — приведенный момент сопротивления сечения при изгибе для растянутой грани;
3. для внецентренно сжатых элементов —
\[\Phi = M/W_{red} - N/F_{red}, R = 1,2 R_{bt} \]
4. для внецентренно растянутых элементов —
\[\Phi = M/W_{red} + N/F_{red}, R = 1,2 R_{bt} \]

3.4.7.2 Расчет по образованию трещин, которые имеют наклон к продольной оси элемента, должен производиться по формуле:
\[\Phi = \sigma_{bn}, R = 1,5 R_{bt} \]
где \(\sigma_{bn} \) — главные растягивающие напряжения в бетоне, определяемые в соответствии с требованиями 3.4.6.1.5.

3.4.7.3 Расчеты по образованию трещин при действии многократно повторяющихся нагрузок следует производить, исходя из условия:
\[\Phi = \sigma_{br}, R = \gamma_{bt} R_{bt} \]
где \(\sigma_{br} \) — максимальные нормальные, главные растягивающие напряжения в бетоне; \(\gamma_{bt} \) — коэффициент условий работы бетона при многократно повторяющихся нагрузках.

3.4.7.4 При расчетах по образованию трещин в бетоне наличие арматуры в сжатой зоне сечения допускается не учитывать.

3.4.7.5 В нетрещиностойких элементах железобетонных и сталебетонных конструкций расчет по раскрытию перпендикулярных к продольной оси элемента трещин следует выполнить из условия:
\[\Phi = a_c, R = [a_c] \]

3.4.7.6 Ширина раскрытия трещины \(a_c, мм \), в элементах железобетонных и сталебетонных конструкций следует определять по формуле:
\[a_c = 7C_D \rho_p (4 - 100b) d^{0,5} \]
где \(C_D \) — коэффициент, принимаемый равным: 1,0 при учете временного действия нагрузок; 1,0 при \(F_p/F_c < 2/3 \); 1,3 при \(F_p/F_c \geq 2/3 \); \(F_p, F_c \) — наибольшие обычные усилия (изгибающий момент, продольная сила и т. п.) соответственно от действия полной нагрузки (постоянной, эксплуатационных воздействий и нагрузок внешней среды) и от действия только постоянной и длительной нагрузок; \(\rho_p \) — коэффициент асимметрии цикла; \(\Phi \) — коэффициент, принимаемый равным при арматуре: 1,0 — стержневой периодического профиля, 1,2 — проволочной периодического профиля, 1,4 — гладкой стержневой или листовой; \(\epsilon_{bt} \) — деформация в растянутой арматуре, вычисленная как \(\epsilon_{bt}/E_s \) без учета работы растянутого в сечении бетона; \(\mu \) — коэффициент армирования сечения, \(\mu = F_p/b_h \), но не более 0,02; \(d \) — диаметр арматуры, мм.

Примечания: 1. При расчете элементов с внешней листовой арматурой в формуле (3.4.7.6) вместо \(d \) следует использовать \(d_{r}F_{pl}^{0,5} \), где \(F_{pl} \) — площадь листовой растянутой арматуры, мм², на участке сечения шириной 0,1 м.

2. При расчете внецентренно и центрально растянутых элементов результат расчета по формуле (3.4.7.6) следует увеличить на 20 %.

3.4.7.7 Ширина раскрытия трещин, которые имеют наклон к продольной оси элемента, в районе действия наибольших перерезывающих сил должна регулироваться ограничением уровня максимальных касательных напряжений в бетоне, а именно должно удовлетворяться условие:
\[\tau_{max} \leq 1,86 R_{bt} \]
при этом \(\tau_{max} \) определяется в соответствии с 3.4.6.1.5.

3.4.7.8 Допускаемую ширину раскрытия трещин \([a_c]\) следует принимать из условий эксплуатации сооружения, сведений о коррозионном воздействии окружающей среды, сохранности стержневой и листовой арматуры, влияния процессов замораживания и оттаивания и не более величин, приведенных в табл. 3.4.7.8.

3.5 ПБУ НА НАТЯЖНЫХ СВЯЗЯХ

3.5.1 Общие требования.
3.5.1.1 ПБУ на натяжных связях (ПБУпас) состоит из следующих трех основных компонентов (групп конструкций):
Таблица 3.4.7.8

<table>
<thead>
<tr>
<th>Район корпуса</th>
<th>Допускаемая ширина раскрытия трещины, [мм]</th>
<th>Железобетонные конструкции</th>
<th>Стальбетонные конструкции</th>
</tr>
</thead>
<tbody>
<tr>
<td>Днище и борта в подводной части</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Днище и борта в надводной части</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Палубы и внутренние стены</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

корпуса;
натяжных связей;
донного фундамента (якоря).
При проектировании указанных компонентов и ПБУНС в целом следует использовать приемлемые требования разд. 1 и 2 настоящей части с учетом дополнительных указаний и пояснений, содержащихся в настоящей главе.

3.5.1.2 Прочность конструкции ПБУНС в соответствии с требованиями 3.5.3 должна проверяться для следующих расчетных режимов: экстремального нагружения; рабочего; транспортировки; установки на точку; снятия с точки; замены натяжных связей, если это предусмотрено в процессе эксплуатации.
Режим замены натяжной связи подразумевает, что одна (или более) натяжная связь может сниматься для осмотра, текущего ремонта или замены. Данный режим должен определять, принимая во внимание ожидаемую частоту снятия связи и протяженность времени, в течение которого натяжная связь будет выведена из эксплуатации.

3.5.1.3 ПБУНС должна иметь клиренс h_c, м, не менее большей из величин, определяемых по формулам:

$$ h_c = \Delta_1 + 1,2(D/\lambda_100)^1/4 + \Delta_0 + 1,5 $$

где Δ_0 — максимальная амплитуда изменения уровня моря, возможная 1 раз в 100 лет, включая штормовой нагон, м; λ_100 — соответственно высота и длина волны, возможные 1 раз в 100 лет, м;

3.5.1.4 В дополнение к требованиям 1.3 настоящей части техническому наблюдению в процессе изготовления и установки на точку подлежат следующие конструкции ПБУНС: натяжные связи; донный фундамент.
Применительно к ним справедливы все требования указанного пункта.

3.5.1.5 Если в технических требованиях к проекту оговорено, что натяжные связи подлежат замене в процессе эксплуатации, т. е. их срок службы меньше срока службы ПБУНС, то надбавки на износ для натяжных связей должны определяться, исходя из их собственного фактического срока службы.

3.5.1.6 Требования к материалам стальных конструкций ПБУНС см. в 3.5.5. Требования к материалам железобетонных и композитных конструкций донного фундамента и ледового пояса корпуса ПБУНС должны соответствовать 1.5.2 настоящей части.

3.5.1.7 Требования к натяжным связям, содержащимся в настоящей главе, в основном сформулированы применительно к связям, состоящим из трубчатых стальных элементов. В том случае, если натяжная связь выполнена из троса или цепи, при проектировании следует руководствоваться требованиями части III «Устройства, оборудование и снабжение ПБУ/МСП» и дополнительно требованиями настоящей части в той степени, насколько они приемлемы.

3.5.2 Нагрузки.
3.5.2.1 При определении нагрузок на ПБУНС и отдельные ее компоненты, таких как ветровые, от течения, ледовые, сейсмические, на палубы, при швартовке судов и др., следует руководствоваться требованиями 2.2, 2.3.6 — 2.3.10, 2.3.12, 2.3.13 и 3.3.2 настоящей части. При формировании комбинаций нагрузок рекомендуется принимать во внимание требования 2.3.11. Дополнительные требования по определению нагрузок, которыми также следует руководствоваться, см. в 3.5.2.2 — 3.5.2.6.

3.5.2.2 Непрерывные ветровые нагрузки.
Связь между максимальной w_{max} и средней скоростью w задается с помощью коэффициента порывистости G аналогично 2.2.2.3.
Имея в виду, что силуэт надводной части ПБУНС состоит из протяженных элементов, пульсационную составляющую ветровой нагрузки Q_w следует определять с учетом коэффициентов корреляции пульсаций ветра. Обобщенный коэффициент корреляции f следует принимать равным 0,8.
3.5.2.3 Волновые нагрузки.
Нагрузки от волнения являются одними из самых значимых для ПБУНС не только по интенсивности, но и по частотному составу, поскольку собственные периоды системы «натяжные связи — корпус» зачастую попадают в диапазон периодов энергоспособных волн.
Учитывая нерегулярную природу волновых условий, методология оценок волновых нагрузок должна опираться на статистические подходы.
3.5.2.3.1 При оценке статистических характеристик волновых нагрузок рекомендуется использовать один из двух подходов. Первый связан с представлением периода эксплуатации в виде набора стационарных режимов волнения, для каждого из которых ищется реакция сооружения с последующим суммированием реакций по всем режимам, характеризуемым высотой волны заданной обеспеченности, средним периодом волнения, курсовым углом и повторяемостью.
Другой подход базируется на концепции наиболее тяжелого режима, на котором наиболее вероятно реализуется экстремальная величина реакции (см. 2.2.3.5, 3.1.4.10, 3.1.4.11, 3.1.4.12 настоящей части).
3.5.2.3.2 В качестве базовой зависимости для оценок волновых нагрузок может использоваться уравнение Морисона с учетом дифракционных поправок (см. 2.3.9.1, 2.3.9.2).
При получении вероятностных характеристик волновых нагрузок в случае применения уравнения Морисона следует использовать распределение Вейбулла, параметры которого (масштаба и формы) следует определять на основе графиков и зависимостей, представленных на рис. 3.1.4.9 (см. 3.1.4.9).
3.5.2.3.3 Метод, использующий уравнение Морисона, основан на предположении, что сооружение не вносит искажений в поле скоростей и ускорений движения частиц жидкости в волне, что не позволяет строго учесть эффекты дифракции и гидродинамическое взаимодействие элементов конструкции. Однако этот метод обеспечивает возможность в полной мере использовать различные теории волн, учитывать вязкостные эффекты, конечность амплитуды волны и колебаний сооружения, эффекты, связанные с мелководьем.
Метод целесообразно использовать, когда размеры сооружения или его конструктивных элементов малы настолько, что в волновых нагрузках превалируют вязкостные силы.
3.5.2.5.1 Вихревые искривления и вихревые нагрузки.
Вихревые искривления и вихревые нагрузки, действующие на ПБУНС, вызывают вихревые силы, которые могут приводить к разрушению сооружения. Вихревые нагрузки следует принимать согласно 3.5.2.5.1.
3.5.2.5.2 Вихревые нагрузки на ПБУНС.
Вихревые нагрузки на ПБУНС могут возникать из-за вихревых искривлений и вихревых нагрузок, действующих на конструкции сооружений. Вихревые нагрузки следует принимать согласно 3.5.2.5.2.
3.5.2.5.3 Вихревые нагрузки на ПБУНС с помощью пакета программ ANCORED STRUCTURES, одобренных Регистром.
Сила вихревой природы, благодаря вихревой природе, вызываемой вихрями, вызывает вихревые нагрузки, действующие на сооружения. Вихревые нагрузки следует принимать согласно 3.5.2.5.3.
3.5.2.5.4 Вихревые нагрузки на ПБУНС с помощью пакета программ ANCORED STRUCTURES, одобренных Регистром.
Сила вихревой природы, вызываемая вихревыми искривлениями, вызывает вихревые нагрузки, действующие на сооружения. Вихревые нагрузки следует принимать согласно 3.5.2.5.4.
Часть II. Корпус

где

- число Струхаля;

- скорость потока, м/с;

- характерный поперечный размер (диаметр) конструкции, м;

- угол между осью конструкции и направлением потока.

Частота (3.5.2.5.1) соответствует изменению вихревых сил поперек потока; частота изменения сил вдоль потока в два раза выше частоты, определяемой (3.5.2.5.1).

3.5.2.5.2 В общем случае значение \(Sh \) соответствующее частоте срыва вихрей, определяется в зависимости от числа Рейнольдса \(R_e \). На основании многочисленных экспериментальных исследований для определения частоты возмущающих сил, действующих на плохообтекаемые конструкции, можно использовать следующие зависимости:

\[
Sh = 0.20 \text{ при } R_e \leq 2.5 \times 10^5;
Sh = 0.27 \text{ при } R_e > 2.5 \times 10^5.
\]

3.5.2.5.3 При совпадении частот нестационарных сил с частотами свободных колебаний конструкции возникают резонансные явления с возможной значительной амплитудой колебаний. Вихревая вибрация в общем случае носит гидроупругий характер и должна исследоваться соответствующими методами. Главной особенностью возникающих автоколебаний являются растянутые по скорости зоны резонансных колебаний, что объясняется синхронизацией срывов вихрей автоколебаний.

3.5.2.5.4 Для протяженных конструкций, какими являются натяжные связи, резонансные колебания могут возникать на всех эксплуатационных скоростях потока. На протяженных натяжных связях возникают, как правило, поперечные колебания более интенсивные, чем колебания вдоль потока.

3.5.2.5.6 Динамические аспекты поведения ПБУНС.

3.5.2.6.1 Динамические характеристики ПБУНС являются одними из важнейших при оценке ветроволновых, ледовых, сейсмических воздействий на конструкции, включающих свободные колебания и резонансные колебания, что объясняется синхронизацией срыва вихрей автоколебаний.

3.5.2.6.2 Частота собственных колебаний платформы при \(i \)-й степени свободы определяется по формуле:

\[
p_i = \sqrt{\frac{K_i}{M_i}},
\]

где \(K_i \) и \(M_i \) — соответственно жесткость и масса \(i \)-й степени свободы системы ПБУНС, включающей натяженную связь и массы ПБУНС с присоединенной массой (либо момент инерции масс относительно точки закрепления) при вертикальных колебаниях, кН/м, определяется по формуле:

\[
K_z = \frac{n_{n,i} K_i + \rho g S}{L_R},
\]

где \(S \) — суммарная площадь действующей ватерлинии, м²;

\(\rho \) — массовая плотность воды, кНс²/м⁴;

\(g \) — ускорение силы тяжести, м/с².

3.5.2.6.6 Жесткость системы с наклонными связями при вертикальных колебаниях, кН/м, определяется по формуле:

\[
K_z = n_{n,i} K_i \sin \beta + \rho g S.
\]

3.5.2.6.7 Жесткость системы при вращательных колебаниях, кН/м, определяется по формуле:

\[
K_{zz} = 4K_i a^2 - \gamma R,
\]

где

\(a = \frac{G K_G - \rho g K_B}{K_G + K_B} \) — масса конструкций и интеграл сил поддержания;

\(G \) и \(K_B \) — соответственно отстояние центра тяжести и центра инерции от уровня клюзовых точек, м;

\(\gamma \) — половина расстояния между клюзовыми точками закрепления натяжной связи, м.

3.5.3 Критерии прочности.

3.5.3.1 Общие положения.

3.5.3.1.1 В целом для конструкций ПБУНС справедливы общие требования, содержащиеся в 2.4.1 настоящей части. Дополнительно к перечисленным в 2.4.1.2 опасным состояниям должно быть включено следующее: появление ненатянутого состояния натяженной связи. Соответственно должно выдерживаться критериев обеспечения натяжения связи.

3.5.3.1.2 Угол натяжной связи в верхнем и нижнем соединениях должен выбираться из условия
неповреждаемости связи в районе ее взаимодействия с конструктивными элементами корпуса и якоря с учетом характеристик податливых элементов.

3.5.3.1.3 Критерий устойчивости для конструктивных элементов корпуса и фундамента ПБУНС должен соответствовать требованиям 2.4.3 настоящей части.

3.5.3.2 Критерий предельной прочности.

3.5.3.2.1 Критерий предельной прочности при экстремальном нагружении для корпуса и якоря определяется выражениями (2.4.2.2) с учетом выражений (2.4.2.3.1) и (2.4.2.3.2) настоящей части. При этом коэффициент безопасности n_1 должен определяться согласно 3.5.3.2.4.

3.5.3.2.2 Критерий предельной прочности при экстремальном нагружении для натяжных связей определяется выражениями:

$$T_2 < n_1 A \sigma_0, \quad T_2 \leq n_1 T_b,$$

где T_2 — суммарное расчетное натяжение связи, вызванное всеми возможными расчетными постоянными и переменными нагрузками (компоненты напряжений — укрупненно в 3.5.4), кН;

A — расчетная площадь поперечного сечения связи, м2;

σ_0 — временной сопротивление материала связи, МПа;

T_b — разрывное усилие связи, кН.

3.5.3.2.3 Критерии предельной прочности конструкций ПБУНС для режимов рабочего, транспортировки, постановки на точку и снятия с точки и соответственно коэффициенты безопасности должны соответствовать 2.4.2.4, 2.4.2.5 и 3.3.1.1 настоящей части.

3.5.3.2.4 Коэффициенты безопасности n_1 для критериев 3.5.3.2.1 и 3.5.3.2.2 должны быть не более значений, приведенных в табл. 3.5.3.2.4.

3.5.3.2.5 Критерий предельной прочности для режима замены натяжной связи является предметом специального рассмотрения Регистром в том случае, если допускается замена связи при волнении. В противном случае следует руководствоваться вышеприведенными критериями с учетом того, что действуют только статические нагрузки.

3.5.3.2.6 Дополнительные критерии предельной прочности для конструкций ледового пояса ПБУНС ледостойкого типа должны соответствовать 3.3.3 настоящей части.

3.5.3.3 Критерий усталостной прочности.

3.5.3.3.1 Критерий усталостной прочности должен применяться к конструктивным частям, для которых усталость может являться критической формой разрушения, например, узлы соединения натяжных опор с фундаментом и конструкциями корпуса, равно как и элементы натяжных связей. Перечень узлов согласовывается проектантом с Регистром.

3.5.3.3.2 Проектирование конструкций ПБУНС следует вести по критерiu "безопасного повреждения", согласно которому реализация усталостного критерия ориентирована на стадии образования макротрещин, а не их развития. Характеристики предельно допустимых уровней относительной повреждаемости определены в 2.4.4 настоящей части.

3.5.3.3.3 Источником циклических нагрузок являются волнение, ветер, течение, лед, сейсмика. Исходными данными для каждого вида циклических нагрузок является повторяемость внешних условий.

3.5.3.3.4 При отсутствии необходимой статистической информации по нагрузженности конструкций усталостную долговечность при волновых, сейсмических и переменных ледовых нагрузках рекомендуется определять на базе аналитических зависимостей.

3.5.3.3.5 Влияние высокочастотных составляющих волнового нагружения от "спрингинг" и "рингинг" (см. 3.5.2.4) на уровень усталостной долговечности натянутых связей определяется редукционным коэффициентом γ, зависящим от соотношения стандартных отклонений высокочастотной и низкочастотной составляющих, а также параметра t.

3.5.3.4 Критерий обеспечения натяжения связи.

3.5.3.4.1 Критерий обеспечения натяжения связи устанавливает требования, направленные на

<table>
<thead>
<tr>
<th>Наименование конструкции</th>
<th>Критерий прочности</th>
<th>Конструктивные элементы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Корпус и фундамент вне зоны взаимодействия с натяжными связями</td>
<td>п. 3.5.3.2.1, критерий 2.4.2.3.1</td>
<td>0,75 0,80 0,83</td>
</tr>
<tr>
<td>Корпус и фундамент в зоне взаимодействия с натяжными связями</td>
<td>п. 3.5.3.2.1, критерий 2.4.2.3.2</td>
<td>1,25 1,35 1,45</td>
</tr>
<tr>
<td>Натяжные связи</td>
<td>п. 3.5.3.2.1, критерий 2.4.2.3.1</td>
<td>0,65 0,70 —</td>
</tr>
<tr>
<td></td>
<td>п. 3.5.3.2.1, критерий 2.4.2.3.2</td>
<td>1,20 1,30 —</td>
</tr>
<tr>
<td></td>
<td>п. 3.5.3.2.2</td>
<td>0,55 0,60 —</td>
</tr>
</tbody>
</table>
исключение появления ненатянутого состояния связи, в результате которого связь можно полагать исключенной из работы ПБУНС.

3.5.3.4.2 Данный критерий может быть сформулирован следующим образом:

\[T_{32} \leq \eta_1 T_0, \]
где \(T_{32} \) — расчетное усилие связи, обусловленное расчетными нагрузками, которые приводят к минимизации натяжения связи, исключая предварительное (начальное) натяжение на тихой воде;

\(T_0 \) — предварительное (начальное) натяжение связей на тихой воде;

\(\eta_1 \) — коэффициент безопасности; \(\eta_1 = 0.70 \).

3.5.3.4.3 Натяжные связи.

3.5.4 Особенности расчета прочности и проектирования конструкций.

3.5.4.1 Общие положения.

3.5.4.1.1 Для расчета конструкции ПБУНС в целом справедливы положения, сформулированные в 2.5.1 и 2.5.2 предыдущей части. Дополнительно следует отметить, что важными реакциями ПБУНС являются линейные и угловые перемещения корпуса, а также внутренние осевые усилия в натяжных связях.

3.5.4.1.2 Повреждение любой из натяжных связей не должно вызывать прогрессирующего разрыва других связей или чрезмерных деформаций (повреждений) корпуса или фундамента в местах взаимодействия со связями. Регистром могут быть потребованы расчеты, подтверждающие, что в условиях воздействия внешних нагрузок, соответствующих наибольшим в течение одного года для данного района эксплуатации, прочность конструкции ПБУНС с поврежденной натяжной связью будет обеспечена.

3.5.4.1.3 Проектирование ПБУНС должно вестись таким образом, чтобы перемещение корпуса относительно донного фундамента не приводили к возникновению повреждений в конструкциях и, как следствие, к аварийным ситуациям.

3.5.4.2 Корпус.

3.5.4.2.1 Конкретная методика расчета корпуса ПБУНС должна определяться особенностями конструкции. При расчете прочности корпуса многоколонной ПБУНС возможно применение требований 3.2 настоящей части, относящихся к ППБУ. При расчете прочности корпуса моноблок-подобной ПБУНС возможно применение требований 3.3 настоящей части, относящихся к моно- и параконструкциям.

3.5.4.2.2 Расчет балочных систем, отдельных балок, пластин, расчеты устойчивости конструктивных элементов следует выполнять в соответствии с 2.5.3—2.5.5 настоящей части.

3.5.4.2.3 Конструкция ледового пояса ледостойкой ПБУНС следует рассчитывать в соответствии с требованиями 3.3.4 настоящей части. При этом следует полагать, что ледовые образования не могут касаться районов соединения корпуса с натяжными связями.

3.5.4.2.4 Расчет сталебетонного ледового пояса следует выполнять в соответствии с требованиями 3.4 настоящей части.

3.5.4.3 Натяжные связи.

3.5.4.3.1 Натяжная связь состоит из трех основных частей:

- участка взаимодействия с корпусом;
- участка взаимодействия с фундаментом;
- основной части связи — соединения между указанными элементами.

Участок взаимодействия с корпусом предназначен для выполнения следующих функций: контроль и регулирование требуемого натяжения связи, соединение натяжной связи с корпусом, восприятие поперечных сил и изгибающих моментов. Участок взаимодействия с фундаментом предназначен для выполнения таких функций как: обеспечение конструктивного соединения связи с фундаментом, восприятие поперечных сил и изгибающих моментов.

Особенности работы каждого участка определяют характер напряженно-деформированного состояния и соответствующие подходы к расчету прочности конструкций.

3.5.4.3.2 Натяжение в любой натяжной связи является суммой ряда компонентов, имеющих различную физическую природу, т. е.:

\[T = \sum_{i=1}^{n} T_i, \]

где \(n \) — число принятых во внимание компонентов.

Эти компоненты делятся на две принципиально отличающиеся группы: детерминистические (включая постоянные) и случайные.

3.5.4.3.2.1 Полный состав компонентов натяжения выглядит следующим образом:

детерминистические (или квазидетерминистические) компоненты:

- начальное натяжение при среднем уровне глубины воды;
- натяжение от штормового нагона;
- натяжение в связи с изменением веса балласта, грузов и т. п.;
- натяжение, вызванное опрокидывающим моментом от ветровой нагрузки и течением;
- натяжение, вызванное просадкой из-за статических нагрузок и медленно меняющегося смещения (волной дрейф или постоянная составляющая ледовой нагрузки, ветер, течения);
- натяжение, вызванное просадкой из-за статических нагрузок и медленно меняющегося смещения (волной дрейф или постоянная составляющая ледовой нагрузки, ветер, течения);

случайные компоненты:
Правила классификации, постройки и оборудования ПБУ/МСП

tельно среднего смещения (включает в себя натяжения от горизонтальных усилий, вертикальных усилий, качки (бортовой и килевой), в общем случае от вращательных усилий);

— натяжение, вызванное вертикальной, килевой и бортовой качкой, на собственной частоте колебаний платформы (риннинг и спрингинг, включая возможные подпалубные слеминговые нагрузки).

3.5.4.3.2.2 Стандартное отклонение суммарного натяжения определяется по формуле:

\[\sigma_{\text{кс}}^2 = \sum T_i^2 + 2 \sum \rho_{ij} \sigma_{T_i} \sigma_{T_j}, \]

где \(\sigma_{T_i}, \sigma_{T_j} \) — стандартные отклонения отдельных компонентов, определяемых на основе идей статистической динамики;

\(\rho_{ij} \) — коэффициент корреляции между отдельными компонентами натяжения.

3.5.4.3.2.3 В качестве закона распределения волновых натяжений рекомендуется распределение Вейбулла с параметрами масштаба \(a \) и формы \(K \) (см. 3.1.4.8 и 3.1.4.9 настоящей части).

3.5.4.3.2.4 В качестве закона распределения ледовых натяжений рекомендуется распределение Вейбулла с параметрами масштаба \(a_h \) и формы \(K \), определяемые в зависимости от отношения \(a_h/D \), где \(a_h \) — параметр масштаба распределения толщин льда, \(D \) — диаметр преграды на уровне ватерлинии (см. 3.3.2.3.3 и 3.3.2.3.5 настоящей части).

3.5.4.3.3 Основные этапы процедуры расчетного проектирования натяженных связей, включающие учет критериев предельной и усталостной прочности, а также влияние на связь корпуса и фундамента, могут быть представлены как следующие:

размеры платформы — определение общей конфигурации ПБУНС;

предварительный расчет связи — оценка предварительного натяжения и других входных данных, необходимых для определения размеров ПБУНС;

анализ реакций — установление движений сооружения и максимального и минимального натяжения связи;

горизонтальные реакции связи — вычисление изгибающих моментов в связи и горизонтальных колебаний;

минимальное натяжение — установление минимального допускаемого натяжения натянутой связи;

предварительный анализ напряжений — проверка предварительного уровня максимальных напряжений и усталостной долговечности;

проверка эксплуатационных ограничений — проверка приемлемых смещений сооружения, а также колебаний и перемещений связи;

усталостная долговечность — вычисление усталостной долговечности при воздействии комбинации осевых и изгибающих усилий;

конечная проверка — проверка максимальных напряжений, минимального натяжения, усталостной долговечности и т. п.;

взаимный анализ — определение необходимости проведения анализа взаимных реакций;

модельные испытания (необязательные) — подтверждение колебаний и нагрузок натянутой связи.

3.5.4.4 Донный фундамент.

3.5.4.4.1 Основная функция донного фундамента — захоронение натяженных связей платформ, воспринимающих нагрузок от них и передача последних частично или полностью на грунт основания морского dna.

Основное требование к фундаментным системам — надежно удерживать совместно с натяженными связями плавучее сооружение в заданном месте открытого моря, ограничивая перемещение его в заданных допусках и обеспечивать тем самым нормальные условия эксплуатации. От надежной работы системы удержания зависит сохранность всего сооружения, срыва с места удержания недопустим.

3.5.4.4.2 Для удержания центральных натяженных связей могут использоваться конструкции фундаментов с забивными сваями, а также гравитационного или смешанного типа. Конструкции могут быть выполнены или в виде единой, удерживаемой сваями или массами, или их комбинацией, целой конструкции, к которой крепятся все натяженные связи и райзеры, или в виде системы отдельных, независимых друг от друга фундаментных конструкций для групп или пучков натяженных связей и скважинных труб.

В качестве периферийных фундаментных систем наряду с указанными могут рассматриваться якоря, состоящие из одной или нескольких засасывающих свай, а также якоря типа Stevman или SEPLA.

3.5.4.4.3 Передача нагрузки на грунт может быть достигнута различными способами, например, через натяженные связи, напрямую присоединенные к сваям, через поверхностные, опирающиеся на морское дно опорные плиты (ростверки), которые перераспределяют силы от натяженных связей на сваи и через них на грунт, через поверхностное гравитационное основание.

3.5.4.4.4 Расчеты донных фундаментов должны содержать расчеты деформирования и прочности фундаментной конструкции и расчеты устойчивости и перемещений фундамента на грунте.

При расчете фундаментной конструкции ПБУНС должны быть рассмотрены вопросы, учитывающие особенности и специфику условий работы этих конструкций:

экскентричности нагружения, являющиеся результатом изменения усилий натяжной связи внутри группы;

последствия установки натяжной связи/райзера — возможные подъем (выбирание) и передислокация.
нижних связей/райзер в течение эксплуатационной жизни платформы;
позиционные (установочные) и эксплуатационные (регулировочные) расчетные допуски;
вопросы осмотра и контроля соответствия фундаментов требованиям эксплуатационным качествам.
3.5.4.4.5 Расчет прочности стальных, железобетонных и стале-бетонных конструкций допных фундаментов следует выполнять в соответствии с приемлемыми требованиями, изложенными в 2.5 и 3.4 настоящей части.
3.5.4.4.6 Расчеты устойчивости конструкций следует выполнять в соответствии с приёмлемыми требованиями, изложенными в 2.5 и 3.4 настоящей части.
3.5.4.5 Соединения.
3.5.4.5.1 Соединение корпуса с натяжными связями.
3.5.4.5.1.1 Конструкция соединения корпуса с натяжными связями воспринимает реакцию связи двумя опорными поясами:
верхним поясом, воспринимающим, в основном, силу натяжения связи;
нижним поясом, воспринимающим поперечные реакции, возникающие при горизонтальных смещениях платформы.
3.5.4.5.1.2 Конструкции, подкрепляющие верхний пояс связи, должны быть рассчитаны на действие натяжителя и максимально возможную вертикальную реакцию связи. Для этого необходимо проверить с учетом статики и динамики смещения платформы достаточное сопротивление конструкций:
потере устойчивости и требуемой жесткости;
напряжениям смятия, сдвига и изгиба;
локальным пиковым напряжениям.
3.5.4.5.2 Соединения якоря с натяжными связями.
3.5.4.5.2.1 Конструкция соединения якоря с натяжной связью воспринимает горизонтальные реакции при смещении платформы.
3.5.4.5.3 Соединения элементов натяжной связи.
3.5.4.5.3.1 Основным конструктивным путем при проектировании равнопрочных натяжных связей их соединений является снижение действующих напряжений путем увеличения площади сечения в соединении.
3.5.4.5.3.2 При проектировании соединений натяжной связи в расчетах ее прочности должны быть учтены:
общее натяжение связи в рассматриваемом районе;
локальный изгиб сечения;
локальная концентрация напряжений вследствие особенностей исполнения соединения и/или сварного шва.
3.5.4.5.3.3 Если внутренний объем натяжной связи не является изолированным, то в расчете прочности должно быть дополнительно учтено влияние внешнего давления на напряженное состояние соединения.
3.5.4.5.3.4 Для конструкций соединений и элементов натяжной связи должен быть выполнен проверочный расчет местной прочности на действие реакций, передаваемых с верхних и нижних опорных
Правила классификации, постройки и оборудования ПБУ1МСП

Правила классификации, постройки и оборудования ПБУ1МСП поясов конструкций якоря и корпуса с учетом деформации их податливых элементов.

3.5.4.5.3.5 Если проверка прочности соединений натяжной связи показывает, что прочность и долговечность их не обеспечивает реальный срок службы платформы, то следует повторить указанные расчеты уже с учетом процедуры замены натяжных связей в процессе эксплуатации платформы.

3.5.4.5.4 Конструкции гидродемпфирующих устройств.

3.5.4.5.4.1 Общие положения.

3.5.4.5.4.1.1 Область распространения.

.1 Настоящие положения распространяются на гидродемпфирующие устройства для плавучих сооружений, характеризующихся значительной качкой в эксплуатационных условиях, требующей своего смягчения, в частности, для платформ типа Spar.

3.5.4.5.4.1.2 Определения и пояснения.

3.5.4.5.4.1.2.1 В настоящих рекомендациях приняты следующие определения:

Платформа Spar — платформа, предназначенная преимущественно для больших глубин, корпус которой вытянут по высоте, на натяжных и якорных связях.

Демпфирующие устройства — горизонтальные диски, крепящиеся к корпусу платформы по ее высоте.

Закрылки демпферов — цилиндрические поверхности, установленные вертикально по краям демпфирующего диска.

Высота закрылка — полная высота цилиндрической поверхности, установленные вертикально по краям демпфирующего диска.

Перефо́рация — прорези кольцевидной или круговой форм в демпфирующем диске.

Коэффициент перефо́раций — отношение площади неперфорированной поверхности к общей площади поверхности диска; коэффициент перефороации, равный 1, соответствует неперфорированному диску.

Относительный коэффициент сопротивления диска — коэффициент сопротивления рассматриваемого диска или системы дисков, отнесенный к коэффициенту сопротивления сплошного одночного диска.

3.5.4.5.4.1.3 Конструктивные элементы.

Конструктивные элементы платформ разделяются в зависимости от уровня напряжений, влияния возможного их повреждения на прочность и надежность плавучего сооружения на специальные, основные и второстепенные.

По степени ответственности гидродемпфирующие устройства (диски) следует отнести к категории основных, как элементы, обеспечивающие общую прочность корпуса (при выходе гидродемпфирующих дисков из строя увеличивается качка со всеми вытекающими отсюда последствиями в части снижения уровня общей прочности).

3.5.4.5.4.2 Принципы проектирования гидродемпфирующих устройств.

3.5.4.5.4.2.1 Общие положения.

Конструкции гидродемпфирующих устройств должны быть спроектированы таким образом, чтобы их эксплуатационные параметры удовлетворяли требованиям по умерению качки; их прочность (применительно к внешним условиям районов эксплуатации) в течение всего срока службы удовлетворяла принятым критериям в следующих расчетных режимах: транспортировки, рабочем, выживании или экстремального нагружения.

3.5.4.5.4.2.2 Нагрузки.

При расчете гидродемпфера учитываются нагрузки, возникающие в ветроволновых условиях и от течения.

Нагрузки, которые должны рассматриваться при расчетах прочности конструкций гидродемпфирующих устройств, должны включать в себя: глобальные и локальные гидродинамические нагрузки в условиях экстремального волнения с учетом ветра; гидродинамические циклические нагрузки; нагрузки от течения; высокочастотные нагрузки импульсного или ударного характера (вертикальная вибрация сооружения высокой частоты, вызванная импульсными нагрузками, и вертикальная вибрация сооружения высокой частоты, вызванная циклическими нагрузками от вертикальной, килевой и бортовой качки сооружения, с резонансными или околосрезонансными периодами). Ощутимое присутствие в ряде случаев высокочастотной составляющей заставляет рассматривать этот вопрос с точки зрения ее влияния на усталостную долговечность; вихревые нагрузки; силы вихревой природы, действующие на демпфирующие устройства благодаря течению, определяются в соответствии с учетом анализа условия

\[f = \frac{Sh \nu}{D}, \text{ Гц} \] (3.5.4.5.4.2.2)

где \(Sh \) — число Струхалы, \(\nu \) — скорость потока, м/с, \(D \) — характерный поперечный размер (диаметр) конструкции демпфирующего устройства, \(f \) — частота срыва вихрей.

Частота (3.5.4.5.4.2.2) соответствует изменению вихревых сил поперек потока, частота изменения сил вдоль потока в два раза выше частоты, определяемой (3.5.4.5.4.2.2).

В общем случае значение \(Sh \), соответствующее частоте срыва вихрей, определяется в зависимости от числа Рейнольдса \(Re \).
При совпадении частот нестационарных сил с частотами свободных колебаний сооружения (или отдельных его частей) возникают резонансные явления с возможной значительной амплитудой колебаний. Вихревая вибрация в общем случае носит гидроупругий характер и должна исследоваться соответствующими методами.

3.5.4.5.4.2.3 Критерии прочности.

Конструкция демпфирующих дисков должна быть спроектирована таким образом, чтобы в течение срока службы выполнялось следующее общее требование безопасности

Ф ≤ Rη,

где Ф — расчетное значение обобщенного силового воздействия, по которому производится оценка предельного состояния,

R — расчетное значение обобщенной несущей способности,

η — коэффициент безопасности, который связан со степенью ответственности демпфирующего диска, за прочность и надежность сооружения.

При выполнении требования (3.5.4.5.4.2.3-1) практически должны быть исключены следующие виды опасных состояний:

чрезмерные деформации материала,

потеря устойчивости формы,

распространение усталостных трещин.

Соответственно должны выдерживаться критерии предельной прочности и усталостной прочности, а также устойчивости.

Для элементов конструкции демпфирующих дисков в части прочности и устойчивости справедливы положения, содержащиеся в Правилах ПБУ/МСП.

Критерий предельной прочности для режима выживания (экстремального нагружения) определяется выражением

σd ≤ η1Rd,

где σd — расчетные напряжения в конструкции при действии наиболее неблагоприятных сочетаний нагрузок, МПа,

η1 — коэффициент безопасности; коэффициент безопасности для конструкций демпфирующих устройств принимается равным η1 = 0,8,

Rd — расчетный предел текучести материала.

Критерий устойчивости регламентируется требованием к параметрам элементов конструкции демпферов, обеспечивающих устойчивое состояние заданной формы. Опаянными считаются критические напряжения, соответствующие переходу конструкции из одной формы равновесия в другую.

Критерий устойчивости определяется выражением

σs ≤ η2σr,

где σs — расчетные напряжения в конструкции демпфера для заданного расчетного режима, МПа,

σr — критические напряжения, МПа,

η2 — коэффициент безопасности; коэффициент безопасности должен быть не более η2 = 0,84(1 — 0,2R/σr)^0,06,

где σr — эйлерово напряжение, соответствующее минимальному значению всех рассматриваемых эйлеровых напряжений и форм напряженно состояния, МПа.

Влияние высокочастотных составляющих волнового нагружения от явлений, описанных в разделе 3.5.4.5.2.2, на уровень усталостной долговечности натянутых связей определяется редукционным коэффициентом, зависящим от соотношения стандартных отклонений высокочастотной и низкочастотной составляющих.

3.5.4.5.4.3 Специальные вопросы проектирования конструкций гидродемпфирующих устройств.

3.5.4.5.4.3.1 Определение гидродинамических сил, действующих на систему гидродемпфирующих устройств, в первом приближении может производиться без учета колебаний в горизонтальном направлении, а только в вертикальном вязкой жидкости. На достаточном расстоянии от обтекаемого тела вода может рассматриваться неподвижной относительно дна. На самом демпфере ставятся условия прилипания (т.е. скорость воды совпадает со скоростью демпфера). При этом демпфер может совершать как поступательное движение (стационарное обтекание), так и колебаться (нестационарное обтекание). На входе, выходе и боковой граничес следует задавать скорость равную скорости набегающего потока, что означает пренебрежимо малое влияние демпфера на границе области.

3.5.4.5.4.3.2 При щелевой перфорации задача имеет симметричный характер относительно центральной оси диска, что обусловливает исследование течения в двумерной области.

При моделировании обтекания дискового демпфера перфорированными круглыми или квадратными отверстиями задачу следует рассматривать в трёхмерной постановке.

3.5.4.5.4.3.3 Гидродинамическая нагрузка на гидродемпфирующие устройства имеет два компонента: скоростной (вязкостный) и инерционный.

3.5.4.5.4.3.4 Скоростной компонент гидродинамической нагрузки пропорционален квадрату скорости и коэффициенту скоростного сопротивления Cv:

Fv = Cν(Fν/ν2S)1/2,

где Fv — компонент силы сопротивления диска, V — скорость набегающего потока, S — площадь диска, ρ — массовая плотность воды.

Инерционный компонент гидродинамической нагрузки пропорционален квадрату скорости и коэффициенту скоростного сопротивления Cv:

Cv = — Fv(ρV2S)1/2,

где Ф — компонент силы сопротивления диска,

V — скорость набегающего потока,

S — площадь диска,

ρ — массовая плотность воды.

Инерционная масса определяется по формуле:

ma = Fv/av,

где av — ускорение диска.
3.5.4.5.4.3.5 При оптимизации гидродинамических нагрузок, действующих на гидродемпфирующие устройства, рекомендуется рассмотреть следующие факторы: степень перфорации дисков, форму перфорации, влияние «закрылков», систему демпферов, влияние дна.

3.5.4.4.3.5.1 Степень перфорации. Влияние степени перфорации может быть неоднозначным: при уменьшении коэффициента перфорации коэффициент сопротивления сначала может существенно увеличиваться, а затем плавно падать, присоединенная масса имеет тенденцию быстро уменьшаться. Как правило, наибольший эффект достигается при коэффициенте перфорации 0.9.

При перфорации с помощью отверстий с уменьшением их диаметра динамический коэффициент сопротивления и присоединенная масса слабо растут.

3.5.4.4.3.5.2 Форма перфорации. Перфорация демпфера квадратными и круглыми отверстиями обеспечивает качественно и количественно сходные эффекты, что и перфорация концентрическими щелями. При этом динамический коэффициент повышается в 1,5 — 1,8 раз, а присоединённая масса падает на 20 — 30 % по сравнению с неперфорированным демпфером.

Форма отверстий (круглая или квадратная), которыми производится перфорация демпфера, практически не влияет на его динамические характеристики.

3.5.4.4.3.5.3 Влияние закрылков. Наличие закрылков несколько уменьшает коэффициент сопротивления и увеличивает присоединенную массу. При увеличении высоты закрылок коэффициент сопротивления растет с одновременным увеличением присоединённой массы. Применение закрылок повышает прочностные свойства демпфера. При использовании конусных закрылок динамический коэффициент сопротивления растет с увеличением угла α от 0° (прямые закрылки) до 90° (отсутствие закрылки) почти линейно, а присоединённая масса сначала незначительно растет, а затем падает.

Влияние длины (периода) волны, как правило, несущественно.

3.5.4.4.3.5.4 Ребра жесткости. Использование концентрических рёбер жесткости для повышения прочностных свойств демпфера практически не сказывается на его гидродинамических свойствах.

3.5.4.4.3.5.5 Система демпферов. При увеличении расстояния между соседними дисками системы из трех дисков растут относительный коэффициент сопротивления и безразмерная присоединенная масса.

3.5.4.4.3.5.6 Система перфорированных демпферов. Коэффициенты сопротивления и присоединенная масса системы трех перфорированных демпферов существенно превосходят сопротивление одиночного сплошного демпфера.

3.5.4.4.3.5.7 Влияние дна. При достаточно большом расстоянии между дисками системы из трех дисков близость дна увеличивает относительный коэффициент сопротивления и при практически неизменной безразмерной присоединенной массе.

3.5.4.4.3.6 Введение гидродемпфирующих устройств может существенно изменить присоединенную массу платформы в целом, увеличивая собственный период вертикальных колебаний платформы.

3.5.4.4.3.7 Введение гидродемпфирующих устройств может снизить вертикальную волновую нагрузку на платформу в целом.

3.5.4.4.3.8 Введение системы гидродемпфирующих устройств может в несколько раз снизить амплитуду вертикальных колебаний платформы.

3.5.4.4.3.9 При выполнении расчетов гидродемпфирующих устройств рекомендуется использование модели пористой среды, позволяющей получить результаты, качественно похожие на результаты моделирования реальных отверстий. При этом данные этих расчетов можно рассматривать как асимптотические оценки коэффициентов сопротивления и присоединенной массы в случае «бесконечного числа отверстий бесконечно малого диаметра» при фиксированном коэффициенте перфорации.

3.5.4.5 Особенности расчета конструкций при сейсмических воздействиях.

3.5.4.5.1 При проектировании ПБУНС в сейсмически активных районах должны быть обеспечены прочность и несущая способность якорей, прочность натяжных связей и корпуса ПБУНС с учетом возможности крупномасштабных деформаций морского дна, возможного разжижения грунта, а также «моретрясения», то есть гидроакустического воздействия на конструкции ПБУНС.

3.5.4.5.2 Следует избегать размещения якорей на участках морского дна, где при землетрясении возможны крупномасштабные деформации поверхностного грунта.

3.5.4.5.3 При оценке надежности якорей с учетом сейсмических воздействий должен быть обеспечена как прочность самой конструкции, так и несущая способность подверженных динамическим воздействиям грунтов.

3.5.4.6 Особенности расчета конструкций при сейсмических воздействиях.

3.5.4.6.1 При проектировании ПБУНС в сейсмически активных районах должны быть обеспечены прочность и несущая способность якорей, прочность натяжных связей и корпуса ПБУНС с учетом возможности крупномасштабных деформаций морского дна, возможного разжижения грунта, а также «моретрясения», то есть гидроакустического воздействия на конструкции ПБУНС.

3.5.4.6.2 Следует избегать размещения якорей на участках морского дна, где при землетрясении возможны крупномасштабные деформации поверхности грунта.

Если, тем не менее, якоря размещены на участках дна с большими сейсмическими подвижками, то необходимо выполнять проверку несущей способности якорей с учетом указанных подвижек дна (например, оползней подводных склонов).

3.5.4.6.3 При оценке надежности якорей с учетом сейсмических воздействий должны быть обеспечены как прочность самой конструкции, так и несущая способность подверженных динамическим воздействиям грунтов.

Следует учитывать возможность временного снижения несущей способности якорей вследствие
дynamического разжижения грунта. При этом должны быть определены степень снижения несущей способности, а также сроки восстановления расчетной несущей способности (исходя из времени, требуемого для консолидации грунта). Указанные сроки рекомендуется учитывать при выборе расчетных характеристик грунтов основания применительно к различным сочетаниям нагрузок и воздействий.

3.5.4.6.4 В расчетах напряженного состояния и устойчивости якорей следует учитывать массу якоря, а также присоединенные массы воды и якорных связей.

3.5.4.6.5 Последствия передачи сейсмического воздействия со дна акватории по натяжным связям следует учитывать в тех случаях, когда сейсмические горизонтальные и вертикальные перемещения участков со дна акватории в районе нахождения анкерных опор превышают соответствующие допускаемые смещения ПБУНС от волновых воздействий в режиме бурения. В этих случаях усилия в натяжных связях должны определяться по величинам ожидаемых сейсмических перемещений анкерных опор на дне акватории.

Величины указанных усилий следует использовать для проверки прочности натяжных связей и в расчетах на прочность ПБУНС, в том числе элементов крепления натяжных связей к корпусу и к анкерной опоре.

3.5.4.6.6 В качестве расчетного гидроакустического воздействия на корпус ПБУНС следует учитывать приложенное к днищу ПБУНС гидродинамическое давление, изменяющееся во времени по гармоническому закону с периодом и амплитудным значением , определяемым по формуле:

\[
p_{\text{amp}} = k T_{\text{de}} \exp(0,72 r_{\text{de}}),
\]

где \(k = 0,003, \) МПа=с^-1.

При отсутствии достаточной сейсмологической информации разрешается принимать величину \(T_{\text{de}} \) равной 0,50 с.

3.5.5 Требования к материалам.

3.5.5.1 Общее.

3.5.5.1.1 Материалы, используемые в конструкциях корпуса и якоря ПБУНС вне районов соединения с натяжными связями, должны соответствовать требованиям 1.5.1 настоящей части и части XII «Материалы».

3.5.5.1.2 Данный раздел включает уточненные требования к материалу корпуса и якоря в районах соединений с натяжными связями (в основном, специальные конструктивные элементы), а также требования к материалу натяжных связей, которые следуют рассматривать как дополнение к требованиям, содержащимся в 1.5.1 настоящей части и части XII «Материалы».

3.5.5.1.3 Для всех перечисленных в 3.5.5.1.2 конструкций должно быть оценено сопротивление материалов водородной хрупкости.

3.5.5.2 Корпус.

3.5.5.2.1 Совокупность механических свойств материала конструкций корпуса, взаимодействующих с натяжной связью, натяжителем и податливым элементом, должна быть оценена дополнительно в отношении следующих видов возможного повреждения вследствие локальных контактных напряжений на рабочих поверхностях конструктивных элементов: пластического деформирования, смятия и выдавливания материала; эрозионно-абразивного износа поверхностей контакта; усталостного разрушения по поверхности износа; хрупкого разрушения по поверхности износа и выкрашивания материала по поверхности износа.

3.5.5.2.2 Для конструкций корпуса, воспринимающих реакции натяжной связи, желательно использование стальных материалов в толщинах менее 70 мм с пределом текучести \(\sigma_{0,2} \leq 550 \) ст., МПа.

3.5.5.2.3 Временное сопротивление материала конструкций корпуса \(\sigma_t \), для обеспечения достаточного запаса по прочности и пластичности должно отвечать соотношению \(\sigma_{0,2} \leq 0,85 \sigma_t \).

3.5.5.2.4 Для обеспечения достаточной пластичности специальных конструкций корпуса ПБУНС материал должен иметь остаточное относительное сужение \(Z_2 \) при растяжении в направлении, перпендикулярном плоскости листа: \(Z_2 > 25 \% \). Относительное удлинение \(A_5 \) при испытании образцов должно составлять не менее \(A_5 \geq 18 \% \).

3.5.5.2.5 Контактные рабочие поверхности специальных конструкций корпуса должны быть рассчитаны на смятие и обладать достаточной твердостью, препятствующей абразивному износу поверхностей.

3.5.5.2.6 Принимая во внимание существенные динамические составляющие нагружения, материал специальных конструкций корпуса должен отвечать дополнительным требованиям в отношении следующих характеристик трещиностойкости по согласованию с Регистром: ударная вязкость при температуре испытания; работа у dara:

- при испытании образцов, вырезанных вдоль проката KVL \(\geq 57 \) Дж;
- при испытании образцов, вырезанных поперек проката KVT \(\geq 40 \) Дж;

величина критического раскрытия трещины СТОД должна составлять:

- для основного металла СТОД \(\geq 0,25 \) мм;
- для околовошовной зоны СТОД \(\geq 0,20 \) мм;

указанные величины должны быть получены при температурах, равных температурам испытаний ударной вязкости;
величина температуры нулевой вязкости разрушения для материала конструкций должна составлять менее NDT = — 30 °С.

3.5.5.3 Якорь.
3.5.5.3.1 Механические свойства конструкций якоря, взаимодействующих с натяжными связями, должны быть оценены в отношении видов повреждений, перечисленных в 3.5.5.2.1, а также в отношении:

дополнительного абразивного износа с участием поднятых водой масс донного грунта;
повышенной химической коррозии;
сопротивления коррозионному растрескиванию под напряжением.

3.5.5.3.2 Для специальных конструкций якоря желательно использование стальных материалов в толщинах менее 120 мм и пределом текучести менее σ₀ ≤ 550 МПа с контролем сплошности в толщинах более 70 мм.

3.5.5.3.3 Временное сопротивление материала должно отвечать требованиям 3.5.5.2.3.

3.5.5.3.4 Материал специальных конструкций якоря должен иметь относительное сужение при растяжении в направлении толщины листа Zₛ ≥ 20 %. Относительное сужение A₅ материала, проверенное при вырезке образца из середины по толщине проката должно составить не менее A₅ ≥ 18 %.

3.5.5.3.5 Требования к контактным рабочим поверхностям конструкций якоря должны соответствовать 3.5.5.2.5.

3.5.5.3.6 Характеристики трещиностойкости специальных конструкций якоря должны удовлетворять по согласованию с Регистром 3.5.5.2.6. Образцы для испытаний должны быть вырезаны из подповерхностного слоя материала.

3.5.5.4 Натяжная связь.
3.5.5.4.1 Механические свойства материала натяжной связи должны быть проверены в отношении его сопротивления видам возможного разрушения, соответствующим функциональному назначению участка связи.

3.5.5.4.2 Требования к материалу участка взаимодействия с якорем должны соответствовать требованиям 3.5.5.1 и 3.5.5.3.

3.5.5.4.3 Требования к материалу участка взаимодействия с корпусом должны соответствовать требованиям 3.5.5.1 и 3.5.5.2.

3.5.5.4.4 Требования к материалу средней части натяжной связи должны отвечать требованию 3.5.5.1 и 3.5.5.2.

3.5.5.4.5 Предел текучести σ₀ и предел прочности σᵣ в окружном направлении связи должны отвечать требованиям:

σ₀ ≥ 0,9σ₀;
σᵣ ≥ 0,9σᵣ. (3.5.5.4.5)

3.5.5.4.6 Для соединительной муфты натяжной связи работа у dara должна составлять:
на образцах вдоль проката KV₁ > 68 Дж;
на образцах поперек проката KV₂ > 46 Дж.

Величина критического раскрытия трещины при температуре, равной температуре испытаний ударной вязкости, должна составлять:
для основного металла CTOD ≥ 0,25 мм;
для зоны термического влияния CTOD ≥ 0,18 мм (при наличии сварки).

Температура нулевой вязкости разрушения должна составлять NDT ≥ — 40 °С при толщине стенки менее 40 мм.

3.5.5.4.7 Требования к материалу согласно 3.5.5.4.1 — 3.5.5.4.6 могут быть пересмотрены в сторону их изменения или послабления по специфическому согласованию с Регистром, если проектом предусмотрена технологическая процедура замены натяжных связей и процесс эксплуатации ПБУНС.

4 УСТОЙЧИВОСТЬ СПБУ/МСП НА ГРУНТЕ

4.1 ОБЩИЕ ТРЕБОВАНИЯ

4.1.1 Взаимодействие опорных конструкций СПБУ/МСП с грунтом оказывает существенное влияние на характеристики позиций общей устойчивости сооружений.

4.1.2 Способ удержания МСП на грунте зависит от габаритов сооружения, уровня действующих нагрузок, свойств грунта, динамики внешних воздействий, степени экологической ответственности сооружения. По способу удержания на грунте МСП подразделяются на:

- гравитационные;
- свайные;
- комбинированные (сочетание вариантов гравитационных и свайных).

4.1.3 Способ удержания СПБУ на грунте — гравитационный с задавливанием опорных колонн в грунт.
4.2 УСТОЙЧИВОСТЬ СПБУ НА ГРУНТЕ

4.2.1 Устойчивость против опрокидывания на грунте.
Коэффициент запаса против опрокидывания СПБУ на грунте должен быть не менее:

\[K_{cap} = M_c / M_{sar} > 1.50, \]
(4.2.1-1)
где \(M_c \) — восстанавливающий момент от сил веса СПБУ, кНм;
\(M_{sar} \) — суммарный опрокидывающий момент от экстремального воздействия внешних сил относительно плоскости опирания СПБУ на грунт, кНм.

Должна быть рассмотрена наихудшая комбинация восстанавливающего и опрокидывающего моментов в зависимости от состояния загрузки СПБУ, величины и направления экстремальных внешних воздействий.

При достаточно развитых по площади опорных поверхностях башмаков должно быть учтено наличие опорного момента, т. е. в качестве критериального следует рассматривать условие:

\[M_c / M_{sup} > 1.50, \]
(4.2.1-2)
где \(M_{sup} \) — опорный изгибающий момент со стороны грунта, кНм.

4.2.2 Устойчивость при сдвиге.
Коэффициент запаса против сдвига СПБУ на грунте должен быть не менее:

\[K_{sh} = P_T / f > 1.50, \]
(4.2.2)
где \(P_T \) — весовая нагрузка СПБУ, приходящаяся на одну опорную колонну, с учетом вытесненной воды;
\(f \) — коэффициент трения опорной поверхности о грунт.

Должна быть рассмотрена наихудшая комбинация веса понтона в зависимости от состояния загрузки СПБУ и суммарной сдвиговой силы в зависимости от направления экстремальных внешних воздействий.

4.2.3 Устойчивость при просадке.
Коэффициент запаса при просадке одной из колонн СПБУ в грунт должен быть не менее:

\[N_3 / N > K_{sub}, \]
(4.2.3)
где \(N_3 \) — усилие задавливания;
\(N \) — расчетное значение суммарной осевой силы;
\(K_{sub} = 1.10 \) — для четырехопорных установок;
\(K_{sub} = 1.05 \) — для трехопорных установок.

Должна быть рассмотрена наихудшая ситуация с точки зрения просадки колонны, поскольку именно это условие является наиболее часто критическим. Условие просадки определяет для трехопорных установок необходимое количество балласта и влияет на объем и планировку помещений в понтоне.

4.3 УСТОЙЧИВОСТЬ МСП НА ГРУНТЕ

4.3.1 МСП гравитационного типа.

4.3.1.1 Общие положения.
Конструкция МСП гравитационного типа должна быть спроектированна так, чтобы обеспечивались надлежащие условия установки МСП на заданную точку и были исключены следующие виды предельных состояний:
- потеря несущей способности системы «МСП — основание»;
- опрокидывание МСП;
- чрезмерные смещения МСП (осадки, горизонтальные смещения, углы поворота);
- чрезмерное давление грунта на юбку и внутренние ребра, приводящее к нарушению условий прочности юбки — конструкции МСП».

При проектировании фундамента МСП необходимо также исключить возникновение:
- предельного состояния по условиям разжижения несвязных грунтов при динамических воздействиях;
- значительного размыва морского дна вблизи опор.

Методы расчета устойчивости МСП гравитационного типа на грунте, включая расчетные значения нагрузок, сопротивления и коэффициентов надежности, должны быть согласованы с Регистром. Основные критерии приведены в 4.3.1.2 — 4.3.1.6.

4.3.1.2 Критерий по условиям установки МСП гравитационного типа.

4.3.1.2.1 При установке МСП должна быть гарантирована возможность вдавливания юбки и внутренних ребер в грунт основания на всю их высоту, что обеспечивает надлежащие условия совместной работы МСП с основанием.

4.3.1.2.2 Критерий обеспечения условий установки определяется выражением:

\[N > K N_{ws}, \]
(4.3.1.2.2)
где \(N \) — вертикальная сила, кН, передаваемая от МСП на основание в момент ее установки;
\(N_{ws} \) — сила сопротивления грунта вдавливанию юбки и внутренних ребер, кН, определяемая в зависимости от их периметров, высот и толщин и результатов статического зондирования верхнего слоя грунта основания, в пределах которого вдавливаются юбка и ребра;
\(K \) — нормируемое значение коэффициента запаса, гарантирующее полное задавливание юбочной конструкции в грунт.

Сила \(N_{ws} \) может определяться экспериментально путем вдавливания фрагментов ребристой конструкции в грунт основания.

4.3.1.3 Критерий несущей способности системы «МСП — основание».
Правила классификации, постройки и оборудования ПБУ/МСП

4.3.1.3.1 Критерий несущей способности системы регламентирует требования к соотношению между силовым воздействием (F) и силами сопротивления (R). Критерий несущей способности системы должен соблюдаться при всех возможных схемах достижения предельного равновесия (плюсского и глубинного сдвига при различном потенциально возможном очертании поверхностей сдвига).

4.3.1.3.2 Критерий несущей способности системы «платформа — основание» определяется выражением:

\[R/F \geq k_{s,m} \]
(4.3.1.3.2)

где \(F \) — расчетное значение обобщенного силового воздействия, по которому производится оценка предельного состояния;

\(R \) — расчетное значение обобщенной силы сопротивления (несущей способности), противодействующей действию силы \(F \);

\(k_{s,m} \) — нормируемое значение коэффициента несущей способности.

4.3.1.3.3 Несущая способность системы может также оцениваться по результатам расчетов напряженно-деформированного состояния путем сопоставления действующих на систему эксплуатационных нагрузок и нагрузок, приводящих ее в предельное равновесие с образованием в основании значительных пластических зон.

Оценку общей устойчивости сооружения на грунте при динамических нагрузках рекомендуется выполнять с учетом изменения прочностных свойств грунтов.

4.3.1.4 Критерий предельного эксцентриситета в приложении равнодействующей нагрузок.

4.3.1.4.1 Данный критерий устанавливает требования, направленные на исключение возможности опасного состояния, связанного с опрокидыванием гравитационных МСП при больших эксцентриситетах в приложении нагрузок, обусловленных восприятием зон растягивающих напряжений на контакте подошвы опорного блока с грунтовым основанием.

4.3.1.4.2 Критерий предельного эксцентрикситета определяется выражением:

\[e \leq e_{ult} k_{s,m} \]
(4.3.1.4.2)

где \(e \) — эксцентрикситет приложения равнодействующей всех нагрузок (за исключением бокового давления грунта), м, действующих на МСП;

\(e_{ult} \) — предельно допустимое значение эксцентрикситета равнодействующей нагрузок, м, установленное техническими требованиями проекта, для подошвы фундамента прямоугольной формы допускается принимать \(e_{ult} = B/6 \);

\(B \) — размер опорного блока в направлении приложения сдвигающей нагрузки, м.

4.3.1.5 Критерий предельных смещений.

4.3.1.5.1 Критерий предельных смещений устанавливает требования, направленные на исключение возможности появления опасного состояния, связанного с нарушением условий нормальной эксплуатации платформы.

4.3.1.5.2 Критерий предельных смещений определяется выражением:

\[S \leq S_{ult} \]
(4.3.1.5.2)

где \(S \) — совместная деформация основания и сооружения (осадки, горизонтальные перемещения, крены и др.);

\(S_{ult} \) — предельное значение совместной деформации основания и МСП, устанавливаемое техническими требованиями проекта (при назначении необходимо учитывать возможность нарушения нормальной эксплуатации связанных с сооружением коммуникаций).

4.3.1.6 Критерий величины давления грунта на юбку и внутренние ребра.

4.3.1.6.1 Данный критерий устанавливает требования, направленные на исключение возможности опасных состояний, связанных с нарушением прочности элементов ребристой конструкции, обусловленным давлением грунта.

Критерий должен соблюдатьсь для всех элементов ребристой конструкции и сочетаний нагрузок.

4.3.1.6.2 Критерий предельного давления грунта определяется выражением:

\[P \leq P_{ult} \]
(4.3.1.6.2)

где \(P \) — характерное значение эпюры давления грунта;

\(P_{ult} \) — предельно допустимая величина характерного значения эпюры давления грунта; величина \(P_{ult} \) соответствует предельно допустимым наибольшим напряжениям в юбке, внутренних ребрах и прилегающих районах МСП.

4.3.2 МСП свайного типа.

4.3.2.1 Общие положения.

4.3.2.1.1 Конструкция свайного фундамента МСП должна быть спроектирована таким образом, чтобы исключить возможность возникновения следующих видов предельного состояния:

- потери несущей способности системы «МСП — основание»;
- деформаций всего основания или его отдельных элементов, ведущих к нарушению нормальной эксплуатации сооружения.

При проектировании свайного фундамента МСП необходимо также исключить возникновение предельных состояний по прочности и образованию (раскрытию) трещин для свай и свайных ростверков при действии горизонтальной нагрузки и изгибающего момента;
- предельного состояния по условиям разжижения несвязных грунтов при динамических воздействиях;
- значительного размыва морского дна вблизи опор.

Методы расчета устойчивости МСП свайного типа на грунте, включая расчетные значения
нагрузок, сопротивления и коэффициентов надежности, должны быть согласованы с Регистром. Основные критерии приведены в 4.3.2.2 — 4.3.2.3.

4.3.2.2 Критерий несущей способности свайного основания.

4.3.2.2.1 Критерий по несущей способности грунтов основания для одиночной свая в составе фундамента и вне его имеет вид:

\[N \leq F_d/\gamma \alpha, \]
(4.3.2.2.1)

где \(F_d \) — расчетная несущая способность одиночной сваи, кНм;
\(\gamma \alpha \) — коэффициент надежности, определяемый в зависимости от способа определения несущей способности и от числа сваи в фундаменте;
\(N \) — расчетная нагрузка, кН, передаваемая на сваю (продольное усилие, возникающее в ней от расчетных нагрузок, действующих на фундамент при наиболее невыгодном их сочетании).

4.3.2.2.2 Расчетную нагрузку на сваю следует определять, рассматривая фундамент как рамную конструкцию, воспринимающую вертикальные и горизонтальные нагрузки и изгибающие моменты.

Для фундаментов с вертикальными сваями расчетную нагрузку на сваю допускается определять по формуле:

\[N = N_d n \pm M_{xy} x / \Sigma y_i^2 \pm M_{xy} y / \Sigma x_i^2, \]
(4.3.2.2.2)

где \(N_d \) — расчетная сжимающая сила, кН;
\(M_{xy}, M_x \) — расчетные изгибающие моменты, кНм, относительно главных центральных осей \(x \) и \(y \) плана свай в плоскости подошвы ростверка;
\(n \) — число сваи в фундаменте;
\(x_i, y_i \) — расстояние от главных осей до оси каждой сваи, м;
\(x, y \) — расстояние от главных осей до оси каждой сваи, м, для которой вычисляется расчетная нагрузка.

4.3.2.2.3 Расчетную несущую способность по грунту свайного фундамента в целом допускается определять как сумму несущих способностей независимых одиночных свай, если расстояние между осями свай превышает три диаметра сваи. В других случаях следует учитывать взаимное влияние свай или привести соответствующее обоснование, позволяющее его не учитывать.

4.3.2.3 Критерий предельных деформаций.

4.3.2.3.1 Критерий предельных деформаций устанавливает требования, направленные на исключение возможности появления опасного состояния, связанного с нарушением условий нормальной эксплуатации.

4.3.2.3.2 Критерий предельных деформаций имеет вид:

\[s \leq s_{ult}, \]
(4.3.2.3.2)

где \(s \) — совместная деформация сваи, м, свайного фундамента и сооружения (осадка, перемещение, угол поворота, относительная разность осадок свай, свайных фундаментов и т. п.);
\(s_{ult} \) — предельное значение совместной деформации основания сваи, м, свайного фундамента и сооружения, устанавливаемое проектом и правилами технической эксплуатации оборудования.

4.3.2.3.3 При расчете деформаций свай от действия горизонтальной нагрузки и изгибающего момента допускается применение приемлемых методик расчета для других подобных конструкций, одобренных Регистром. Используемая методика должна отражать нелинейный характер зависимости «нагрузка — перемещение головы сваи».

4.3.2.3.4 Горизонтальную нагрузку, действующую на фундамент с вертикальными сваями одинакового поперечного сечения, допускается принимать равномерно распределенной между всеми сваями.
Приложение 1

Характеристики ветроволновых условий

Значения экстремальных скоростей ветра и высот волн, возможные один раз в 50 лет

<table>
<thead>
<tr>
<th>Море</th>
<th>Средняя скорость ветра (период осреднения 10 мин) $W_{10,min}$ м/с</th>
<th>Высота волны 3-процентной обеспеченности $h_{3%}$ м</th>
</tr>
</thead>
<tbody>
<tr>
<td>Каспийское</td>
<td>45,0</td>
<td>13,0</td>
</tr>
<tr>
<td>Черное</td>
<td>43,0</td>
<td>12,5</td>
</tr>
<tr>
<td>Баренцево</td>
<td>46,0</td>
<td>19,0</td>
</tr>
<tr>
<td>Охотское</td>
<td>48,0</td>
<td>19,0</td>
</tr>
</tbody>
</table>

Таблица 1

Повторяемость высот и периодов волны на Каспийском море, %

<table>
<thead>
<tr>
<th>t, с</th>
<th>$h_{3%}$, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 — 1</td>
<td>7,11</td>
</tr>
<tr>
<td>1 — 2</td>
<td>14,58</td>
</tr>
<tr>
<td>2 — 3</td>
<td>20,21</td>
</tr>
<tr>
<td>3 — 4</td>
<td>2,62, 9,11</td>
</tr>
<tr>
<td>4 — 5</td>
<td>3,33, 6,32</td>
</tr>
<tr>
<td>5 — 6</td>
<td>0,08, 3,17</td>
</tr>
<tr>
<td>6 — 7</td>
<td>0,07, 1,54</td>
</tr>
<tr>
<td>7 — 8</td>
<td>0,05, 1,38</td>
</tr>
<tr>
<td>8 — 9</td>
<td>0,03, 0,97</td>
</tr>
<tr>
<td>9 — 10</td>
<td>0,02, 0,05</td>
</tr>
<tr>
<td>10 — 11</td>
<td>0,009, 0,005</td>
</tr>
<tr>
<td>11 — 12</td>
<td>0,005, 0,005</td>
</tr>
<tr>
<td>12 — 13</td>
<td>0,002, 0,002</td>
</tr>
</tbody>
</table>

Таблица 2

Повторяемость высот волн и скоростей ветра на Каспийском море, %

<table>
<thead>
<tr>
<th>W, м/с</th>
<th>$h_{3%}$, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 — 4</td>
<td>7,34, 6,82</td>
</tr>
<tr>
<td>4 — 6</td>
<td>7,80, 7,76</td>
</tr>
<tr>
<td>6 — 8</td>
<td>6,22, 7,87</td>
</tr>
<tr>
<td>8 — 10</td>
<td>4,32, 7,95</td>
</tr>
<tr>
<td>10 — 12</td>
<td>2,25, 5,88</td>
</tr>
<tr>
<td>12 — 14</td>
<td>1,15, 3,35</td>
</tr>
<tr>
<td>14 — 16</td>
<td>0,88, 3,24</td>
</tr>
<tr>
<td>16 — 18</td>
<td>0,76, 0,26</td>
</tr>
<tr>
<td>18 — 20</td>
<td>0,01, 0,13</td>
</tr>
<tr>
<td>20 — 22</td>
<td>0,008, 0,008</td>
</tr>
<tr>
<td>22 — 24</td>
<td>0,005, 0,005</td>
</tr>
<tr>
<td>24 — 26</td>
<td>0,005, 0,006</td>
</tr>
</tbody>
</table>

Таблица 3
Таблица 4

<table>
<thead>
<tr>
<th>ℎс</th>
<th>ℎ3%</th>
<th>ℎ10%</th>
<th>ℎ12%</th>
<th>ℎ15%</th>
<th>ℎ20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 — 1</td>
<td>2,31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 — 2</td>
<td>12,10</td>
<td>6,45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 — 3</td>
<td>16,45</td>
<td>8,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 — 4</td>
<td>10,14</td>
<td>9,95</td>
<td>8,90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 — 5</td>
<td>6,36</td>
<td>4,34</td>
<td>1,20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 — 6</td>
<td>1,72</td>
<td>0,85</td>
<td>0,33</td>
<td>0,26</td>
<td></td>
</tr>
<tr>
<td>6 — 7</td>
<td>0,94</td>
<td>0,30</td>
<td>0,17</td>
<td>0,14</td>
<td>0,06</td>
</tr>
<tr>
<td>7 — 8</td>
<td>0,80</td>
<td>0,10</td>
<td>0,12</td>
<td>0,11</td>
<td>0,05</td>
</tr>
<tr>
<td>8 — 9</td>
<td>0,49</td>
<td>0,09</td>
<td>0,13</td>
<td>0,10</td>
<td>0,04</td>
</tr>
<tr>
<td>9 — 10</td>
<td>0,24</td>
<td>0,07</td>
<td>0,11</td>
<td>0,08</td>
<td>0,01</td>
</tr>
<tr>
<td>10 — 11</td>
<td>0,11</td>
<td>0,02</td>
<td>0,02</td>
<td>0,01</td>
<td>0,009</td>
</tr>
<tr>
<td>11 — 12</td>
<td>0,06</td>
<td>0,01</td>
<td>0,007</td>
<td>0,008</td>
<td>0,002</td>
</tr>
<tr>
<td>12 — 13</td>
<td>0,004</td>
<td><0,001</td>
<td>0,001</td>
<td>0,005</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Таблица 5

<table>
<thead>
<tr>
<th>ℎс</th>
<th>ℎ3%</th>
<th>ℎ10%</th>
<th>ℎ12%</th>
<th>ℎ15%</th>
<th>ℎ20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 — 4</td>
<td>16,22</td>
<td>2,99</td>
<td>1,45</td>
<td>0,76</td>
<td>0,20</td>
</tr>
<tr>
<td>4 — 6</td>
<td>13,67</td>
<td>6,21</td>
<td>2,94</td>
<td>0,90</td>
<td>0,24</td>
</tr>
<tr>
<td>6 — 8</td>
<td>8,87</td>
<td>6,46</td>
<td>1,72</td>
<td>0,76</td>
<td>0,09</td>
</tr>
<tr>
<td>8 — 10</td>
<td>5,34</td>
<td>5,62</td>
<td>1,45</td>
<td>0,42</td>
<td>0,08</td>
</tr>
<tr>
<td>10 — 12</td>
<td>2,65</td>
<td>3,01</td>
<td>1,05</td>
<td>0,14</td>
<td>0,07</td>
</tr>
<tr>
<td>12 — 14</td>
<td>1,60</td>
<td>1,30</td>
<td>0,93</td>
<td>0,08</td>
<td>0,05</td>
</tr>
<tr>
<td>14 — 16</td>
<td>0,70</td>
<td>0,72</td>
<td>0,45</td>
<td>0,07</td>
<td>0,03</td>
</tr>
<tr>
<td>16 — 18</td>
<td>0,53</td>
<td>0,39</td>
<td>0,34</td>
<td>0,05</td>
<td>0,01</td>
</tr>
<tr>
<td>18 — 20</td>
<td>0,42</td>
<td>0,32</td>
<td>0,08</td>
<td>0,03</td>
<td>0,02</td>
</tr>
<tr>
<td>20 — 22</td>
<td>0,01</td>
<td>0,06</td>
<td>0,07</td>
<td>0,01</td>
<td>0,007</td>
</tr>
<tr>
<td>22 — 24</td>
<td><0,001</td>
<td>0,04</td>
<td>0,05</td>
<td>0,006</td>
<td>0,005</td>
</tr>
<tr>
<td>24 — 26</td>
<td><0,001</td>
<td>0,02</td>
<td>0,03</td>
<td>0,002</td>
<td>0,001</td>
</tr>
<tr>
<td>26 — 28</td>
<td><0,001</td>
<td>0,009</td>
<td>0,01</td>
<td>0,001</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Таблица 6

<table>
<thead>
<tr>
<th>ℎс</th>
<th>ℎ3%</th>
<th>ℎ10%</th>
<th>ℎ12%</th>
<th>ℎ15%</th>
<th>ℎ20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 — 1</td>
<td>0,51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 — 2</td>
<td>1,62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 — 3</td>
<td>3,65</td>
<td>4,22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 — 4</td>
<td>2,75</td>
<td>16,18</td>
<td>8,03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 — 5</td>
<td>1,88</td>
<td>10,92</td>
<td>6,03</td>
<td>2,21</td>
<td></td>
</tr>
<tr>
<td>5 — 6</td>
<td>0,82</td>
<td>3,33</td>
<td>5,86</td>
<td>5,72</td>
<td>3,64</td>
</tr>
<tr>
<td>6 — 7</td>
<td>0,46</td>
<td>1,18</td>
<td>2,98</td>
<td>2,35</td>
<td>2,05</td>
</tr>
<tr>
<td>7 — 8</td>
<td>0,15</td>
<td>0,59</td>
<td>1,73</td>
<td>0,99</td>
<td>0,43</td>
</tr>
<tr>
<td>8 — 9</td>
<td>0,08</td>
<td>0,46</td>
<td>1,02</td>
<td>0,72</td>
<td>0,19</td>
</tr>
<tr>
<td>9 — 10</td>
<td>0,05</td>
<td>0,07</td>
<td>0,78</td>
<td>0,57</td>
<td>0,14</td>
</tr>
<tr>
<td>10 — 11</td>
<td>0,01</td>
<td>0,03</td>
<td>0,44</td>
<td>0,32</td>
<td>0,06</td>
</tr>
<tr>
<td>11 — 12</td>
<td>0,01</td>
<td>0,09</td>
<td>0,12</td>
<td>0,10</td>
<td>0,02</td>
</tr>
<tr>
<td>12 — 13</td>
<td>0,006</td>
<td>0,007</td>
<td>0,007</td>
<td>0,009</td>
<td>0,01</td>
</tr>
<tr>
<td>13 — 14</td>
<td>0,003</td>
<td>0,003</td>
<td>0,008</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>14 — 15</td>
<td>0,001</td>
<td>0,001</td>
<td>0,001</td>
<td>0,004</td>
<td>0,006</td>
</tr>
</tbody>
</table>
Таблица 7

<table>
<thead>
<tr>
<th>W, м/с</th>
<th>h_{rys}, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 — 1</td>
<td>0,15</td>
</tr>
<tr>
<td>1 — 2</td>
<td>0,12</td>
</tr>
<tr>
<td>2 — 3</td>
<td>0,09</td>
</tr>
<tr>
<td>3 — 4</td>
<td>0,06</td>
</tr>
<tr>
<td>4 — 5</td>
<td>0,03</td>
</tr>
<tr>
<td>5 — 6</td>
<td>0,01</td>
</tr>
<tr>
<td>6 — 7</td>
<td>0,005</td>
</tr>
<tr>
<td>7 — 8</td>
<td>0,002</td>
</tr>
<tr>
<td>8 — 9</td>
<td>0,001</td>
</tr>
<tr>
<td>9 — 10</td>
<td>0,001</td>
</tr>
<tr>
<td>10 — 11</td>
<td>0,001</td>
</tr>
<tr>
<td>11 — 12</td>
<td>0,001</td>
</tr>
<tr>
<td>12 — 13</td>
<td>0,001</td>
</tr>
<tr>
<td>13 — 14</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Таблица 8

<table>
<thead>
<tr>
<th>W, м/с</th>
<th>h_{rys}, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 — 1</td>
<td>0,15</td>
</tr>
<tr>
<td>1 — 2</td>
<td>0,12</td>
</tr>
<tr>
<td>2 — 3</td>
<td>0,09</td>
</tr>
<tr>
<td>3 — 4</td>
<td>0,06</td>
</tr>
<tr>
<td>4 — 5</td>
<td>0,03</td>
</tr>
<tr>
<td>5 — 6</td>
<td>0,01</td>
</tr>
<tr>
<td>6 — 7</td>
<td>0,005</td>
</tr>
<tr>
<td>7 — 8</td>
<td>0,002</td>
</tr>
<tr>
<td>8 — 9</td>
<td>0,001</td>
</tr>
<tr>
<td>9 — 10</td>
<td>0,001</td>
</tr>
<tr>
<td>10 — 11</td>
<td>0,001</td>
</tr>
<tr>
<td>11 — 12</td>
<td>0,001</td>
</tr>
<tr>
<td>12 — 13</td>
<td>0,001</td>
</tr>
<tr>
<td>13 — 14</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Таблица 9

<table>
<thead>
<tr>
<th>W, м/с</th>
<th>h_{rys}, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 — 1</td>
<td>0,15</td>
</tr>
<tr>
<td>1 — 2</td>
<td>0,12</td>
</tr>
<tr>
<td>2 — 3</td>
<td>0,09</td>
</tr>
<tr>
<td>3 — 4</td>
<td>0,06</td>
</tr>
<tr>
<td>4 — 5</td>
<td>0,03</td>
</tr>
<tr>
<td>5 — 6</td>
<td>0,01</td>
</tr>
<tr>
<td>6 — 7</td>
<td>0,005</td>
</tr>
<tr>
<td>7 — 8</td>
<td>0,002</td>
</tr>
<tr>
<td>8 — 9</td>
<td>0,001</td>
</tr>
<tr>
<td>9 — 10</td>
<td>0,001</td>
</tr>
<tr>
<td>10 — 11</td>
<td>0,001</td>
</tr>
<tr>
<td>11 — 12</td>
<td>0,001</td>
</tr>
<tr>
<td>12 — 13</td>
<td>0,001</td>
</tr>
<tr>
<td>13 — 14</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Таблица 10

<table>
<thead>
<tr>
<th>W, м/с</th>
<th>h_{rys}, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 — 1</td>
<td>0,15</td>
</tr>
<tr>
<td>1 — 2</td>
<td>0,12</td>
</tr>
<tr>
<td>2 — 3</td>
<td>0,09</td>
</tr>
<tr>
<td>3 — 4</td>
<td>0,06</td>
</tr>
<tr>
<td>4 — 5</td>
<td>0,03</td>
</tr>
<tr>
<td>5 — 6</td>
<td>0,01</td>
</tr>
<tr>
<td>6 — 7</td>
<td>0,005</td>
</tr>
<tr>
<td>7 — 8</td>
<td>0,002</td>
</tr>
<tr>
<td>8 — 9</td>
<td>0,001</td>
</tr>
<tr>
<td>9 — 10</td>
<td>0,001</td>
</tr>
<tr>
<td>10 — 11</td>
<td>0,001</td>
</tr>
<tr>
<td>11 — 12</td>
<td>0,001</td>
</tr>
<tr>
<td>12 — 13</td>
<td>0,001</td>
</tr>
<tr>
<td>13 — 14</td>
<td>0,001</td>
</tr>
</tbody>
</table>
ПРИЛОЖЕНИЕ 2

ТРЕБОВАНИЯ К РАСЧЕТНЫМ МОДЕЛЯМ, БАЗИРУЮЩИМИСЯ НА МЕТОДЕ КОНЕЧНЫХ ЭЛЕМЕНТОВ

1 ОБЩИЕ ТРЕБОВАНИЯ

1.1 В общем случае расчет конструкции методом конечных элементов состоит из следующих этапов:
определение типа и размера задачи;
составление конечно-элементной модели конструкции и граничных условий;
моделирование нагрузок;
оценка корректности модели и выполнение расчета;
представление полученных результатов.
1.2 При моделировании конструкции, граничных условий и нагрузки, в зависимости от целей расчета и типа конструкции, возможны и необходимы определенные допущения и упрощения. Конкретные возможности расчета определяются параметрами программного обеспечения и вычислительной техники, а также предусмотренным размером задачи. По мере накопления информации об особенностях работы конструкции размер задачи может изменяться.

2 ОПРЕДЕЛЕНИЕ ТИПА И РАЗМЕРА РАСЧЕТНОЙ МОДЕЛИ

2.1 Следует определить тип напряженно-деформированного состояния и размер задачи, поскольку от этого зависит моделирование конструкции, граничных условий и нагрузки.
2.2 В конструкциях ПБУ/МСП деформации и напряжения подразделяются на следующие типы в зависимости от внешних нагрузок и условий работы конструкции:
общие деформации и напряжения конструкции ПБУ/МСП;
местные деформации и напряжения конструктивных элементов;
концентрационные напряжения и деформации в локальных зонах конструкции и прерывистых связях.
2.3 Задача расчета и способ моделирования нагрузки должны соответствовать одному из перечисленных выше типов напряженно-деформированного состояния конструкции.
2.4 Размер задачи и тем самым размер расчетной модели определяются выбранными границами модели и необходимыми размерами сетки конечных элементов.
2.5 Характер задачи — линейный или нелинейный — зависит от особенностей конструкции и величины деформаций. Если параметры напряженно-деформированного состояния конструкции определены при регламентируемых расчетных нагрузках, обычно достаточно линейного расчета, особенно в случае толстостенных конструкций. Нелинейные эффекты вызываются свойствами материала, большими деформациями и имеют существенное значение в следующих случаях:
для относительно гибких конструкций с большими деформациями (геометрическая нелинейность);
при исследовании частичного отказа элементов конструкции, например, потеря устойчивости плоских панелей;
если встречаются пластические деформации в областях конструкции (физическая нелинейность).

3 МОДЕЛИРОВАНИЕ КОНСТРУКЦИИ

3.1 Выбор типов расчетных моделей.
3.1.1 В расчетах прочности конструкций ПБУ/МСП рекомендуется применять следующие типы расчетных моделей:
общая модель корпуса ПБУ/МСП;
модель корпусной конструкции или крупной составляющей корпуса;
рамная модель;
локальные модели.
3.1.2 Для всех моделей, кроме общей модели корпуса, следует обеспечить введение граничных условий для корректного удовлетворения условиям взаимодействия с смежными конструкциями. Если есть опасение, что на результатах могут сказаться неблагоприятным образом идеализированные граничные условия, следует увеличить расстояние между границами модели и рассматриваемой областью конструкции.
3.1.3 Общую модель корпуса следует использовать для определения общих напряжений в...
Правила классификации, постройки и оборудования ПБУ/МСП
конструкции ПБУ/МСП. Трехмерное моделирование основных связей корпуса позволяет обеспечить приложение нагрузок в виде, наиболее приближенном к реальному, моделировать с высокой точностью поведение сложных конструкций корпуса.

3.1.4 Модель корпусной конструкции или крупной составляющей корпуса (обычно трехмерная модель) следует использовать для определения общих напряжений в рассматриваемой части корпуса.

3.1.5 Модель перекрытия следует использовать для определения общих или местных напряжений в плоских конструкциях, образованных пластинами обшивки, подкрепленными с одной или с обеих сторон ребрами жесткости и/или стенками (перекрытия типа двойного дна, переборки, палубы), а также для расчета передачи поперечной нагрузки на опорный контур перекрытия и оценки возникающих при этом деформаций и напряжений.

3.1.6 Рамную модель следует использовать при расчете прочности конструкций, деформируемых (главным образом, изгибающихся) в своей плоскости, например, поперечных связей понтона ПБУ, подводного опорного блока МСП и др.

3.1.7 Локальные модели рекомендуется использовать в расчетах прочности отдельных элементов конструкции и для определения концентрационных напряжений в деталях конструкций и прерывистых связей.

3.2 Выбор типа конечных элементов.

3.2.1 Тип конечного элемента, принятый при выполнении расчета прочности каждой конкретной задачи, имеет определяющее значение, поэтому при выборе элемента следует руководствоваться нижеприведенными рекомендациями.

3.2.2 В расчетах прочности конструкций рекомендуется использовать следующие типы элементов:

- стержневые элементы (одномерные элементы с осевой жесткостью, но без изгибной жесткости);
- балочные элементы (одномерные элементы с осевой, сдвиговой, изгибной и крутильной жесткостью);
- элементы плоского напряженного состояния (двумерные элементы с мембранной жесткостью в плоскости пластины, но без изгибной жесткости относительно осей, лежащих в плоскости пластины);
- элементы пластины и оболочки (двумерные элементы с мембранной, изгибной и крутильной жесткостью);
- объемные элементы (трехмерные элементы); грациальные и пружинные элементы.

При использовании элементов различных типов следует уделять внимание совместимости перемещений и возможностям передачи граничных нагрузок и напряжений, особенно при соединении в узлах элементов с изгибной жесткостью и без таковой.

3.2.3 Выбранные типы элементов должны отражать деформации и напряжения для анализируемых случаев нагрузки, а при необходимости, собственные значения или предельные состояния при определении величины предельной нагрузки.

3.2.4 Следует определить, в какой степени в данном конкретном расчете прочности должен рассматриваться изгиб компонентов конструкции. В случаях чисто изгибающего поведения в соответствии с теорией изгиба балок или теорией изгиба пластины, особенно для плоских панелей, ребер жесткости, перекрытий и поперечных рам, подходят балочные элементы и элементы пластины. Если используются элементы плоского напряженного состояния или объемные элементы, то для возможности учета изгиба в плоскости наибольшей жесткости следует выбрать конечные элементы с дополнительными промежуточными узлами или применять более мелкую сетку.

3.2.5 Для трехмерных моделей можно ограничиться элементами плоского напряженного состояния, если определяются только общие деформации и напряжения. В этом случае учитывается только мембранная жесткость моделируемой плоской конструкции.

3.2.6 Второстепенные конструктивные связи, например, подкрепляющие пластину ребра жесткости, учитываются с той или иной степенью условности, которая определяется вкладом этих связей в анализируемое напряженно-деформированное состояние.

3.2.7 Если изгиб в рассматриваемом случае важен, то следует точнее моделировать ее изгибную жесткость (например, стенка моделируется плоскими элементами, а свободный пояс — стержневым или пластинчатым элементом). В некоторых случаях изгибную жесткость следует учитывать дополнительными колонным элементами.

3.2.8 В других случаях ребра жесткости можно учитывать условно в виде дополнительной толщины пластины. Поскольку обобщенная жесткость подкрепленной пластины в зависимости от ориентации подкрепляющих ребер жесткости различна во взаимном ортогональных направлениях, в расчетных моделях это учитывается введением ортогональных свойств пластины приведенной толщины:
\[E_2 = \frac{E_1(F_{pl} + F_{st})}{F_{pl}}; \]

где \(E \) — исходный модуль нормальной упругости материала пластины; \(E_1 \) — модуль упругости в направлении, ортогональном к ориентации ребер жесткости; \(E_2 \) — модуль упругости в направлении, параллельном к ориентации ребер жесткости; \(F_{pl} \) — площадь поперечного сечения пластины; \(F_{st} \) — площадь поперечного сечения ребра жесткости.

3.2.9 В локальных моделях все жесткостные компоненты, в том числе и вторичные, имеют существенное значение, поэтому используются конечные элементы пластины, оболочки и объемные элементы. Исключение могут составлять плоские конструкции, загруженные в плоскости. Например, при анализе концентрационных напряжений на кромках вырезов они моделируются пластинами плоского напряженного состояния.

3.2.10 Для получения информации о деформациях между двумя узлами, например, на свободных кромках пластины, следует вводить стержневые элементы с пренебрежимо малым поперечным сечением. Одноосные напряжения такого элемента показывают напряжения по кромке.

3.3 Разбиение на конечные элементы.

3.3.1 Размер сетки конечных элементов определяется характеристиками конечных элементов и должен выбираться из условия достаточной точности при моделировании:
- жесткостных параметров конструкции;
- типа исследуемых напряжений;
- возможных форм отказа.
При выборе размеров сетки конечных элементов следует руководствоваться нижеприведенными рекомендациями.

3.3.2 При выборе сетки конечных элементов в наибольшей степени должны учитываться геометрия конструкции, расположение и характер нагрузки, размещение опор.

3.3.3 Трехмерные модели конструкции в целом или части конструкции могут иметь достаточно грубую идеализацию, в качестве характерного размера конечного элемента могут приниматься шпаны основных компонентов конструкции. Это допустимо в расчетах общего напряженного состояния при условии, что изгибное поведение основных компонентов конструкции с достаточной точностью отражено выбранным типом конечного элемента. То же относится к моделям перекрытий и моделям для расчета местной прочности ребер жесткости, если ширина элементов в пластинах обшивки равна шпане ребер жесткости или ее половине.

3.3.4 Характеристики элемента и его размеры должны быть выбраны так, чтобы жесткость, результирующие деформации и напряжения корректно отражали поведение конструкции. Для простых конечных элементов отношение размеров сторон элемента, как правило, не должно превышать трех.

3.3.5 При вычислении локальных концентрационных напряжений размер сетки конечных элементов должен изменяться постепенно в соответствии с ожидаемым градиентом напряжений.

3.4 Ввод упрощающих допущений.

3.4.1 Вследствие сложности конструкции ПБУ/МСП при моделировании следует вводить допущения, направленные на упрощения. Упрощения допустимы, если они не приводят к значительным погрешностям в результатах.

3.4.2 Типичным упрощением в расчетах общей прочности является объединение нескольких компонентов конструкции в один. Можно объединять ребра жесткости или балки. Объединенные компоненты должны обладать эквивалентной жесткостью и располагаться в геометрическом центре составляющих компонентов.

3.4.3 Малые компоненты и детали, которые характеризуют жесткость небольших участков, могут вовсе не учитываться при моделировании. Примером таких компонентов и деталей для расчета общей прочности являются малые вырезы, бракеты в рамках, подкрепляющие ребра жесткости, подкрепления, препятствующие потере устойчивости.

3.4.4 Большие вырезы (вырезы для доступа во внутренние помещения, окна и двери) всегда должны учитываться. При грубой сетке конечных элементов такие вырезы учитываются путем уменьшения жесткости за счет уменьшения толщины элементов или за счет уменьшения модуля сдвига и модуля нормальной упругости в продольном и поперечном направлениях.

3.4.5 Плоские элементы должны располагаться в средней поверхности соответствующих компонентов конструкции. Для анализа общей прочности тонкостенных конструкций элементы как приближение могут располагаться по линиям наружной поверхности.

3.4.6 Плоские двумерные элементы в наклонных или искривленных поверхностях должны, как правило, помещаться в геометрическом центре моделируемой области, чтобы с большей точностью отражать общие жесткостные характеристики.

3.5 Граничные условия и закрепления.

3.5.1 Задание граничных условий и закреплений предназначено для:
исключения перемещений и поворотов модели как жесткого целого;
учета в расчетной модели реально существующих опор и закреплений;
учета взаимодействия модели части конструкции по ее границам со смежными частями.

Кинематические граничные условия и закрепления вводятся путем задания предписанных значений по перемещениям и углам поворота в узловых точках расчетной модели. При введении закреплений следует избегать появления в модели несуществующих в реальном поведении конструкции ограничений в перемещениях и углах поворота.

3.5.2 Исключение перемещений и поворотов модели как жесткого тела (программы МКЭ не обеспечивают автоматического исключения таких перемещений) следует проводить с помощью введения опор или закреплений в различных сечениях модели. Реакции в этих опорах и закреплениях, которые отсутствуют в реальных конструкциях, следует сводить к минимуму с помощью нагружения модели самоуравновешенной системой нагрузок. Перемещения и повороты твердого тела можно исключать введением в расчетную модель распределенного упругого основания с помощью пружинных элементов, что, например, может быть реализовано приближенным методом нагружения данной системы.

3.5.3 Реально существующие опоры, которые воспринимают силы и моменты, должны моделироваться с высокой степенью приближения к реальным условиям.

3.5.4 Взаимодействие частей корпусных конструкций со смежными конструкциями по границам модели должно моделироваться с возможно высокой степенью приближения к реальности. Следует учитывать симметрию конструкции и разрабатывать модель только для симметричной ее части. По плоскостям симметрии вводятся условия симметричной или антисимметричной деформации, а нагрузка раскладывается на симметричную и антисимметричную составляющие. Взаимодействие по границе должно учитываться соответствующим заданием напряжений, сил и моментов. Эти величины получаются как результат расчета конструкции по общей модели. Если при подавлении степеней свободы элементы дают дополнительную жесткость, их размеры должны быть выбраны так, чтобы обеспечить жесткость, корректно отражающую реальное поведение.

4 МОДЕЛИРОВАНИЕ НАГРУЗОК

4.1 Нагрузки должны моделироваться с высокой степенью приближения к реальности. При необходимости моделирование конструкции должно быть приспособлено к моделированию нагрузки.

4.2 Распределенные нагрузки в процессе вычислений конвертируются в эквивалентные узловые силы и в узловые моменты в соответствии с используемым типом конечного элемента.

4.3 Если деформации по границе локальной модели получены из расчета по общей модели конструкции с грубой сеткой, то следует использовать соответствующую интерполяцию деформации для промежуточных узлов локальной модели. Кроме того, должны прикладываться соответствующие нагрузки, действующие в пределах локальной области конструкции.

5 ОЦЕНКА ДОСТОВЕРНОСТИ РЕЗУЛЬТАТОВ

5.1 Результаты следует проверить на достоверность. Такая проверка включает:
специальное визуальное представление деформаций для оценки соответствия их распределения приложенным нагрузкам, граничным условиям, опорам и закреплениям;
контроль принадлежности полученных значений деформаций ожидаемому диапазону.

5.2 Следует проверить, соответствуют ли величины сил и моментов на опорах ожидаемым значениям. Для случая самоуравновешенных нагрузок необходимо проверить, достаточно ли малы реактивные усилия, чтобы их можно было пренебречь.

5.3 Для локальных моделей с заданными деформациями на границе, полученными из общей модели конструкции, необходимо проверить взаимное соответствие напряжений вблизи рассматриваемых границ для двух моделей.

5.4 Для нелинейных вычислений необходимо проверить точность решения в нелинейной зоне.
ЧАСТЬ III. УСТРОЙСТВА, ОБОРУДОВАНИЕ И СНАБЖЕНИЕ
ПБУ/МСП

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 На ПБУ и МСП распространяются все требования части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов, если в настоящей части не оговорено иное.

1.1.2 Требования настоящей части не распространяются на следующие устройства и оборудование:

- промышленное оборудование, используемое исключительно для бурения или связанных с ним операций, а также для переработки продуктов добычи;
- швартовное устройство (кроме швартовных устройств буровых судов).

1.1.3 Устройства, оборудование и снабжение буровых судов в полной мере должны удовлетворять требованиям части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов и специально оговоренным требованиям Правил ПБУ/МСП.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

1.2.1 Определения и пояснения, относящиеся к общей терминологии, указаны в Общих положениях о классификационной и иной деятельности, в части I «Классификация» и части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов, а также в части I «Классификация» и части II «Корпус» Правил ПБУ/МСП.

В настоящей части приняты следующие определения.

Объект — ПБУ, МСП, модули МСП и/или какие-либо их элементы.

Длина объекта — длина корпуса, измеренная на уровне ватерлинии, соответствующей максимальной осадке объекта на плаву при транспортировке.

Ширина корпуса объекта — наибольшая теоретическая ширина корпуса, измеренная на середине его длины на уровне или ниже ватерлинии при транспортировке.

Осадка — расстояние, измеренное по вертикали в середине соответствующей длины объекта от верхней кромки горизонтального киля или от точки притыкания внутренней (наружной — для объектов с неметаллической обшивкой) поверхности обшивки к брусковому килю до соответствующей ватерлинии объекта.

Корпус — водоизмещающая конструкция, обеспечивающая плавучесть и остойчивость объекта. Корпус может состоять из одного, двух и более нижних корпусов (понтонов), как правило погруженных в воду, и верхнего корпуса, обычно находящегося над водой.

Верхняя палуба (ВП) — водоизмещающая конструкция, ограничивающая корпус сверху, от которой измеряется надводный борт.

Верхнее строение (ВС) — конструкция, представляющая собой надстройку, рубки и другие подобные сооружения, используемые для размещения персонала, оборудования, устройств и систем, обеспечивающих функционирование объекта по его назначению.

ВС, как правило, состоит из модулей.

Опорный блок (ОБ) — несущая конструкция, обеспечивающая поддержание и устойчивость объекта против внешних воздействий при размещении на грунте. Опорным блоком может служить нижний корпус/корпуса.

Опорная палуба (ОП) — конструкция, на которой устанавливается верхнее строение.

Модуль — конструкция, как правило, корпуса, ОБ, ВС и/или их частей, представляющая транспортную единицу, для которой положение на плаву может рассматриваться как кратковременное и относится к периодам их достройки и/или транспортировки.

Предполагается, что для модуля заведомо исключается возможность воздействия предельных внешних условий.

Водонепроницаемость — способность конструкции предотвращать проникновение воды в любом направлении под воздействием напора воды, на который эта конструкция рассчитана.

Система динамического позиционирования — комплекс, предназначенный для автоматического и дистанционного автоматизированного управления пропульсивными механизмами ПБУ с целью динамического удержания ее над
точкой позиционирования с заданной точностью в условиях воздействия внешних сил.

Пределная линия погружения — ватерлиния, до которой погружается объект при получении им повреждений, регламентируемых частью V «Деление на отсеки».

Отсек — часть внутреннего пространства корпуса, ограниченная наружной обшивкой, водо­непроницаемыми переборками, палубами, плат­формами, стрингерами и флорами.

1.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

1.3.1 Общие положения по техническому наблюдению за устройствами, оборудованием и снабжением изложены в Общих положениях о классификационной и иной деятельности и в части I «Классификация» Правил классификации и постройки морских судов, а также в части I «Классификация» Правил ПБУ/МСП.

1.3.2 Объем технического наблюдения за изделиями, входящими в состав устройств ПБУ/МСП, должен соответствовать перечню изделий, указанному в 1.3 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов, в той степени, в какой это применимо к конкретному типу ПБУ/МСП с учетом приведенных ниже дополнений.

1.3.2.1 Устройства подъема и спуска платформы СПБУ:
 1. плоскости, опоры захватов, корпуса ползунов, направляющие ползунов, винты опорные, гайки опорных винтов, опорные крепления и устройства подъема и спуска корпуса ПБУ, винты и гайки фиксирующих устройств (при наличии последних в проекте), оси крепления подъемных гидроцилиндров;
 2. гидравлические с опорными колоннами/опорами: плоскости, опоры захватов, корпуса ползунов, винты опорные, гайки захватных устройств, винты опорные и гайки, детали крепления (болты, шпильки, гайки);
 3. механические реечные-шестеренчатые: рамы подъемов, винты захватов, винты опорные с гайками, детали крепления (болты, шпильки, гайки);

1.3.2.2 Устройство подъема и спуска колонн погружных насосов забортной воды:
 .1 колонны с направляющими;
 .2 стопоры;
 .3 детали крепления (болты, шпильки, гайки).

1.3.2.3 Фиксирующие устройства СПБУ (при наличии их в проекте):
 .1 гайки; .2 винты и гайки.

1.3.2.4 Закрытие отверстий цементированных скважин для прохода кабелей катодной защиты и для осмотра погружных насосов забортной воды:
 .1 горловины; .2 крышки.

1.3.3 Детали устройств, указанные в 1.3 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов, а также частей XII «Материалы» и XIV «Сварка» Правил классификации и постройки морских судов, а также частей XII «Материалы» и XIII «Сварка» Правил ПБУ/МСП.

1.3.3.1 Плоскости, опоры захватов, корпуса ползунов, направляющие ползунов, винты опорные, гайки опорных винтов, опорные крепления и устройства подъема и спуска корпуса ПБУ, винты и гайки фиксирующих устройств (при наличии последних в проекте), оси крепления подъемных гидроцилиндров;

1.3.3.2 Гидравлические с опорными колоннами/опорами: плоскости, опоры захватов, корпуса ползунов, винты опорные, гайки захватных устройств, винты опорные и гайки, детали крепления (болты, шпильки, гайки);

1.3.3.3 Механические реечные-шестеренчатые: рамы подъемов, винты захватов, винты опорные с гайками, детали крепления (болты, шпильки, гайки);

1.3.3.4 Фиксирующие устройства СПБУ (при наличии их в проекте):

Таблица 1.3.3

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Детали устройств1</th>
<th>Заготовки</th>
<th>Объем испытаний2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Захваты, опоры захватов, корпуса ползунов, направляющие ползунов, винты опорные, гайки опорных винтов, опорные крепления и устройства подъема и спуска корпуса ПБУ</td>
<td>Стальные поковки</td>
<td>3.7</td>
</tr>
<tr>
<td>2</td>
<td>Реечные валы-шестерни, шестерни, валы устройств подъема и спуска корпуса ПБУ</td>
<td>Стальные поковки</td>
<td>3.7</td>
</tr>
<tr>
<td>3</td>
<td>Траверсы крепления гидроцилиндров, корпуса шаровой захватной устройства подъема и спуска корпуса ПБУ</td>
<td>Стальные поковки</td>
<td>3.8</td>
</tr>
<tr>
<td>4</td>
<td>Траверсы подвижные и неподвижные устройств подъема и спуска корпуса ПБУ</td>
<td>Стальной прокат</td>
<td>3.2</td>
</tr>
<tr>
<td>5</td>
<td>Плиты крепления цилиндров устройств подъема и спуска корпуса ПБУ</td>
<td>Стальной листовой прокат</td>
<td>3.2</td>
</tr>
<tr>
<td>6</td>
<td>Рамы и порталы механических подъемников устройств подъема и спуска корпуса ПБУ</td>
<td>Стальной листовой и фасонный прокат</td>
<td>3.2</td>
</tr>
</tbody>
</table>

1 Применение для указанных в табл. 1.3.3 деталей заготовок из других материалов является предметом специального рассмотрения Регистром.
2 Объем испытаний согласно указанным разделам части III «Материалы» Правил классификации и постройки морских судов.
1.3.4 В процессе постройки ПБУ следующие устройства, оборудование и снабжение подлежат техническому наблюдению Регистра согласно требованиям соответствующих глав Правил классификации и постройки морских судов и Правил ПБУ/МСП:

1. рулевое устройство;
2. якорное устройство;
3. буксирное устройство;
4. устройство и закрытие отверстий в корпусе, надстройках и рубках;
5. устройство подъема и спуска корпуса СПБУ;
6. устройство подъема и спуска колонн погружных насосов забортной воды;
7. фиксирующие устройства СПБУ (при наличии их в проекте);
8. мачты и их такелаж;
9. устройство и оборудование помещений;
10. аварийное снабжение;
11. системы удержания ПБУ и их элементы.

1.3.5 В процессе постройки МСП следующие устройства, оборудование и снабжение подлежат техническому наблюдению Регистра согласно требованиям соответствующих глав Правил классификации и постройки морских судов и Правил ПБУ/МСП:

1. системы удержания МСП и их элементы;
2. устройство и закрытие отверстий в корпусе МСП;
3. мачты и их такелаж;
4. устройство и оборудование помещений;
5. аварийное снабжение;
6. причальные и посадочные устройства.

2 РУЛЕВОЕ УСТРОЙСТВО

2.1 ОБЩИЕ ТРЕБОВАНИЯ

2.1.1 Самоходные ПБУ должны иметь надежное рулевое устройство, обеспечивающее их поворотливость и устойчивость на курсе, учитывающее условия эксплуатации ПБУ и отвечающее требованиям разд. 2 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов.

2.1.2 На неподвижные ПБУ Регистр может допустить не устанавливать рулевое устройство, либо ограничиться установкой стабилизаторов, однако это допущение является предметом специального рассмотрения Регистром.

2.1.3 На самоходных ПБУ, оборудованных рулем, должен быть предусмотрен доступ (лазы и проходы), позволяющий определить техническое состояние подшипников рулей и зазоры в них, а также убедиться в том, что все соединения петлей рулей не повреждены и закреплены.

Для обеспечения доступа, если необходимо, должна быть предусмотрена установка настила, закрепленного болтами.

3 ЯКОРНОЕ УСТРОЙСТВО

3.1 ОБЩИЕ ТРЕБОВАНИЯ

3.1.1 На период проведения морских операций (в частности, проведения перегона к точке позиционирования) каждая ПБУ/МСП, как правило, должна иметь якорное устройство, предусмотренное требованиями 3.1 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов, предназначенное для временного удержания ПБУ/МСП в море и обеспечивающее, при необходимости, их отстой в случае возникновения штормовых условий, превышающих допустимые нормы для проведения морских операций.

По согласованию с Регистром, при соответствующем специальном обосновании, допускается не оборудовать ПБУ/МСП якорным устройством. В этом случае для временного удержания ПБУ/МСП могут рассматриваться якорные устройства судов буксирного ордера. При этом Регистру должны быть представлены подробные результаты расчетов и обоснований по обеспечению штормового отстоя.
включающие характеристики судов обеспечения, факторы безопасности, внешние воздействия и нагрузки.

Для ПБУ допускается использование в качестве якорного устройства системы позиционирования.

3.1.2 Для становых якорей ПБУ/МСП, учитывая временный характер работы якорного устройства и глубины на возможных якорных стоянках, допускается иметь в составе якорного устройства стальные и синтетические канаты (тросы).

3.1.3 Необходимость установки стопоров для крепления якорей по-походному является предметом специального рассмотрения Регистром.

3.1.4 Якорное устройство МСП может размещаться на корпусе или на специальных навесных площадках, устанавливаемых на период проведения морских операций. Принимая во внимание временный характер работы якорного устройства, целесообразно предусматривать использование отдельных элементов якорного устройства (механизмов, клюзов, держателей и т. п.) для других целей при эксплуатации МСП (в качестве швартовного и других устройств).

3.1.5 Если предусматривается установка якорного устройства, якорное снабжение ПБУ/МСП должно выбираться по табл. 3.1.3-1 части III устройств, оборудования и снабжения Правил классификации и постройки морских судов, при использовании якорных цепей категорий R3, R3S и R4, по табл. 3.1.5 настоящей части по характеристике снабжения Ne, определенной в соответствии с 3.2 настоящей части, когда полученное значение характеристики снабжения не превышает значений, приведенных в вышеуказанных таблицах.

Если величины характеристики снабжения превышают табличные значения, приведенные в Правилах классификации и постройки морских судов, якорное снабжение ПБУ/МСП должно определяться по формуле:

$$N_e = K_1K_2A^{2/3} + K_3A$$

где

- K_1, K_2, K_3 — коэффициенты, учитывающие форму корпуса, волновое воздействие и ветровые условия якорной стоянки соответственно;
- A — объемное водоизмещение ПБУ/МСП или модулей МСП, принятое при осадке (или до центра знака грузовой марки), м3;
- A — суммарная площадь проекций конструкций, возвышающихся над ватерлинией (проходящей через центр знака грузовой марки), на плоскость, нормальную к горизонтальной проекции якорной линии, м2.

3.2.2 Коэффициенты K_1 должны приниматься равными:
- 1,5 для буровых установок с понтоном прямоугольной формы и МСП/секций МСП; 1,75 для буровых катамаранов и других подобных типов ПБУ.

Коэффициент K_1 также может быть получен из соотношения $R'R$, где R, R' — сопротивления погруженной части обычного судна и буровой установки, МСП/модулей МСП при равных водоизмещениях соответственно.

Коэффициенты K_2 и K_3 при расчетной скорости ветра не более 36 м/сек и расчетной высоте волн 3 %-ной обеспеченности не более 11 м принимаются в соответствии с табл. 3.2.2. При превышении указанных расчетных параметров погодных условий приведенные значения коэффициентов K_2 и K_3 являются предметом специального рассмотрения Регистром.

Таблица 3.2.2

<table>
<thead>
<tr>
<th>ПБУ/МСП</th>
<th>K_2</th>
<th>K_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Находящиеся в открытом море</td>
<td>1,2</td>
<td>2,1</td>
</tr>
<tr>
<td>Находящиеся в закрытом море</td>
<td>1,1</td>
<td>1,8</td>
</tr>
</tbody>
</table>

3.2.3 В обоснованных случаях Регистр может принять другие значения указанных в 3.2.2 коэффициентов, если будет доказано, что предложенные значения соответствуют действительным условиям эксплуатации.

3.2.4 Применение других методов расчета якорного снабжения является предметом специального рассмотрения Регистром.
Регистру в этом случае должны быть представлены подробные данные по конструкции, характеристикам элементов и расположению якорного устройства на ПБУ/МСП, обоснования, методики, результаты расчетов, принятые факторы безопасности, расчетные параметры штормового отстоя, учет дополнительного удержания за счет работы буксирного ордера.

3.3 ЯКОРЯ, ЦЕПИ И ТРОСЫ ДЛЯ ЯКОРЕЙ, ЯКОРНОЕ ОБОРУДОВАНИЕ И МЕХАНИЗМЫ

3.3.1 Якоря, цепи, тросы для якорей и якорное оборудование должны отвечать соответственно требованиям 3.3.2, 3.3.3, 3.4.4 — 3.4.9, 3.4.12, 3.6.1 — 3.6.4 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов.

Допускается применение на ПБУ/МСП якорных цепей с промежуточными смычками непрерывной длины и категории прочности согласно 7.2 части XIII «Материалы» Правил классификации и постройки морских судов.

3.3.2 Допускается замена якорной цепи стальным тросом, кроме якорной смычки и последующего за ней отрезка цепи общих звеньев.

При этом общая длина отрезка якорной цепи должна быть равной расстоянию от якорного механизма до места крепления якоря «по-ходному», но не менее 12,5 м.

Разрывное усилие в целом тросов должно быть не менее разрывной нагрузки соответствующего.
Правила классификации, постройки и оборудования ПБУ/МСП

4 СИСТЕМЫ УДЕРЖАНИЯ ПБУ/МСП
В ТОЧКЕ БУРЕНИЯ/ПОЗИЦИОНИРОВАНИЯ И ИХ ЭЛЕМЕНТЫ

4.1 ОБЩИЕ ТРЕБОВАНИЯ

4.1.1 Требования данного раздела распространяются на пассивные и активные системы удержания, предназначенные для удержания ПБУ/МСП (на плаву) в определенном месте с ограничением смещений в заданных пределах и обеспечением нормальных условий для выполнения технологических процессов и работ на точке (бурение, добыча, загрузка твердым балластом, достройка и т. п.). Требования распространяются на:

.1 якорные системы удержания (позиционирования) ПБУ/МСП на плаву, включающие якоря и гибкие якорные связи;

.2 динамические системы удержания, обеспечивающие позиционирование ПБУ на точке с помощью специально установленных движителей.

4.1.2 Требования данного раздела также относятся к распределенным якорным системам, обеспечивающим удержание мачтовых ПБУ/МСП на натяжных связях на точке с помощью провисающих или натянутых якорных линий.

4.1.3 При разработке якорных систем удержания должны быть учтены в полной мере требования части II «Корпус» и части IV «Остойчивость», на обеспечение которых может оказывать влияние работа системы удержания.

4.2 ЯКОРНЫЕ СИСТЕМЫ

4.2.1 Якорные системы удержания ПБУ/МСП, как правило, включают несколько отдельных якорных устройств, каждое из которых в общем случае состоит из следующих элементов:

.1 комплекса приспособлений, механизмов и устройств на ПБУ/МСП;

.2 якорных линий;

.3 якорных (или анкерных) опор.

Состав и характеристики элементов якорных устройств и якорной системы в целом в каждом случае является предметом специального рассмотрения Регистром.

4.2.2 Регистру должна быть представлена документация, показывающая расположение и содержащая подробное описание якорной системы, включая якоря, соединительные скобы, якорные линии, состоящие из цепи, стального, синтетического или растительного тросов, а также чертежи киновых планок, направляющих устройств, брашпилей, лебедок и любых других элементов якорных систем и их фундаментов.

4.2.3 Регистру дополнительно должны быть представлены:

.1 расчет якорной системы, включая определение числа якорных линий, которые должны использоваться во время эксплуатации
ПБУ/МСП и при аварийной ситуации, массы и типа якоря;
.2 расчет прочности якорной линии на разрыв. Технические условия на материал/материалы якорной линии;
.3 конструкция и расчет якоря и якорной скобы, если они не относятся к ранее одобренному типу;
.4 конструкция стопора якорной линии. Технические условия на материал;
.5 конструкция направляющих устройств якорной линии. Технические условия на материал;
.6 конструкции соединений цепь/трос, если таковые имеются. Тип и конструкция залеки троса и якорной скобы, если таковая имеется. Технические условия на материалы;
.7 фундаменты и подкрепления;
.8 конструкция и расчеты специальных элементов, используемых в составе якорных линий и якорных устройств (плавучестей, грузов, систем защиты от коррозии, амортизирующих вставок и т. п.), если таковые имеются.

4.3 КОНСТРУКЦИЯ

4.3.1 Якорная система должна проектироваться так, чтобы перемещения ПБУ/МСП и возникающие в элементах усилия (напряжения), а также неожиданный выход из строя какой-либо из якорных линий, не приводили к повреждениям корпуса и к последовательному выходу из строя остальных якорных линий.

Якорная система в целом должна обеспечивать удержание ПБУ/МСП в случае обрыва одной (любой или наиболее нагруженной) якорной линии до ее восстановления.

4.3.2 Расположение элементов и устройств на корпусе ПБУ/МСП должно обеспечивать возможность доступа для контроля и ремонта. Для недоступных для осмотра и ремонта устройств должны предусматриваться специальные требования по надежности и продолжительности сроков эксплуатации.

4.3.3 При проектировании якорных систем должны быть определены факторы безопасности для нормального эксплуатационного состояния, состояния вызвавших при экстремальных воздействиях и для состояний при возможных повреждениях ПБУ/МСП.

Критерии факторов безопасности должны устанавливаться в проекте с учетом рекомендаций признанных норм (стандартов) и вероятности возникновения рассматриваемого предельного состояния. Количественные значения критериев безопасности должны определять необходимый запас для исключения опасного (предельного) состояния по предельной и усталостной прочности, устойчивости, жесткости, деформации элементов якорной системы и предельных перемещений, скоростей и ускорений ПБУ/МСП.

4.3.4 При проектировании якорных систем ПБУ/МСП следует учитывать различные расчетные эксплуатационные и экстремальные уровни погодных воздействий:
.1 спокойные погодные условия («окно погоды») — условия, характеризующиеся относительно небольшими внешними воздействиями и позволяющими безопасно выполнять разнообразные технологические операции и работы, включая сложные;
.2 эксплуатационные погодные условия — условия, которые характеризуют частой повторяемостью в период эксплуатации и ограничивают выполнение только отдельных сложных технологических операций и работ;
.3 штормовые погодные условия — условия, которые имеют малую повторяемость в период эксплуатации и являются предельными для якорной системы.

4.3.5 Проектирование якорных систем удержания ПБУ/МСП рекомендуется выполнять в следующей последовательности:
.1 предварительно выбрать размеры и характеристики элементов якорной системы;
.2 определить факторы и критерии безопасности для различных режимов эксплуатации;
Правила классификации, постройки и оборудования ПБУ/МСП

.3 выявить возможные комбинации внешних воздействий и явлений, характерных для заданной точки постановки ПБУ/МСП;

.4 обосновать расчетные уровни погодных воздействий и режимы эксплуатации, исходя из требований надежности удержания ПБУ/МСП, технологических, коммуникационных и других требований и повторяемости внешних воздействий;

.5 определить параметры внешних нагрузок для расчетных режимов;

.6 выполнить расчеты поведения ПБУ/МСП с определением усилий (натяжений, нагрузок) в элементах якорной системы;

.7 сопоставить полученные по расчету величины с критериями безопасности;

.8 при необходимости уточнить характеристики якорной системы.

При выполнении расчетов должны учитываться различные состояния нагрузки ПБУ/МСП, в том числе при затоплении отсека, и разные величины предварительного натяжения якорных линий, так как они существенно влияют на обеспечение эксплуатационных требований по ограничению перемещений.

Расчеты рекомендуется выполнять последовательно на статические нагрузки, динамические воздействия и циклические нагрузки. При необходимости могут быть выполнены расчеты вибраций и динамики якорных линий.

4.3.6 В составе разработанного проекта Регистру должен быть представлен окончательный расчет якорных систем, которые предполагается использовать при эксплуатации ПБУ/МСП с учетом факторов безопасности и естественных условий окружающей среды.

При этом в расчете должны быть учтены следующие факторы:

.1 расчетные условия окружающей среды, такие как волны, ветры, течения, приливы и отливы, глубины;

.2 температуры воздуха и воды;

.3 ледовые условия (если имеют место);

.4 рельеф морского дна;

.5 инженерно-геологические условия дна акватории.

4.3.7 Расчеты якорных систем допускается выполнять с использованием как детерминистического, так и статистического (вероятностного) подхода.

При детерминистическом подходе сначала должны быть установлены параметры расчетных эксплуатационных и экстремальных явлений (см. 4.3.4). Для этих явлений определяются соответствующие величины нагрузок и воздействий, на которые рассчитывается якорная система.

При вероятностном подходе сначала устанавливаются комбинации все возможных погодных условий и явлений. Для всех этих комбинаций выполняются расчеты якорной системы и производится статистический анализ реакций.

Расчеты реакций в якорных связях и перемещений ПБУ/МСП допускается выполнять квазистатическими или динамическими методами. При квазистатическом методе воздействия от ветра, течения и составляющие сил волнового дрейфа рассматриваются как статические силы, а волновые возмущающие силы, вызывающие качку, — как гармонические нагрузки с частотой волны. Методы, как правило, должны учитывать динамический характер воздействий, шесть степеней свободы сооружений, инерционные силы, влияние сил трения и нелинейных эффектов, обусловленных как физической, так и геометрической неллинейностью. Для якорных систем, эксплуатируемых в течение длительного времени, должны выполняться расчеты на циклические нагрузки и проводиться анализ повторяемости с учетом предела выносливости элементов. Для натянутых якорных линий должно быть оценено влияние вибраций, которые могут быть вызваны образующимися в потоке воды вихрями при действии течения и волнения.

По результатам расчетов якорных систем удержания должны быть определены максимальные и минимальные усилия (натяжения) в элементах системы, перемещения, скорости и ускорения ПБУ/МСП при различных внешних воздействиях, а также расчетный срок эксплуатации якорных линий.

4.3.8 Элементы якорной системы должны проектироваться с учетом соответствующих факторов безопасности и с использованием методик, позволяющих выявить экстремальные условия нагрузки для каждого элемента. В частности, для определения максимального натяжения каждой из якорных линий должно быть рассмотрено достаточное число курсовых углов наряду с самыми неблагоприятными сочетаниями ветра, течения и волнения, как правило, действующих в одном направлении.

При рассмотрении определенного места установки ПБУ/МСП должны быть рассмотрены также любые применимые варианты нерегулярного волнения, если оно может привести к повышению нагрузок.

4.3.9 При применении квазистатического метода наибольшее натяжение в каждой якорной линии следует рассчитывать для максимального отклонения от номинального значения каждого из расчетных условий, приведенных в 4.3.10, сочетая с другим указанные ниже статические и динамические характеристики ПБУ/МСП:
.1 среднее устойчивое смещение под действием определенного ветра, течения и сил волнового дрейфа;
.2 наиболее вероятное максимальное движение (амплитуды колебаний) находящейся на якорях ПБУ/МСП под действием волн вследствие волнового возбуждения;
.3 применительно к достаточно большим глубинам в расчете должно быть учтено влияние на якорные линии демпфирующих и инерционных сил;
.4 влияние медленно изменяющегося движения следует учитывать, когда величина такого движения представлена значительной.

4.3.10 При применении квазистатического метода, упомянутого в 4.3.9, следует учитывать минимальные коэффициенты безопасности при наибольшем отклонении ПБУ/МСП от номинальных значений по целому ряду направлений (см. табл. 4.3.10).

<table>
<thead>
<tr>
<th>Расчетное состояние</th>
<th>Коэффициент безопасности (SF) при квазистатическом методе расчета</th>
</tr>
</thead>
<tbody>
<tr>
<td>Эксплуатация</td>
<td>2,7</td>
</tr>
<tr>
<td>Эксплуатация в сильный шторм</td>
<td>1,8</td>
</tr>
<tr>
<td>Эксплуатация при выходе из строя одной якорной линии</td>
<td>1,8</td>
</tr>
<tr>
<td>Эксплуатация в условиях сильного шторма с выходом из строя одной якорной линии</td>
<td>1,25</td>
</tr>
<tr>
<td>SF = РВ/Tₘₚтₚ</td>
<td>1,05</td>
</tr>
</tbody>
</table>

где Tₘₚтₚ — характеристика натяжения якорной линии, равная максимальному значению, полученному при применении динамического метода расчета;
РВ — минимальный расчетный предел прочности якорной линии.

4.3.11 При проведении динамического расчета допускается учитывать минимальные коэффициенты безопасности для наибольшего натяжения в якорных линиях согласно табл. 4.3.11, а также могут учитываться другие коэффициенты безопасности, удовлетворяющие Регистру.

<table>
<thead>
<tr>
<th>Расчетное состояние</th>
<th>Коэффициент безопасности (SF) при динамическом методе расчета</th>
</tr>
</thead>
<tbody>
<tr>
<td>Эксплуатация</td>
<td>2,0</td>
</tr>
<tr>
<td>Эксплуатация в сильный шторм</td>
<td>1,5</td>
</tr>
<tr>
<td>Эксплуатация при выходе из строя одной якорной линии</td>
<td>1,5</td>
</tr>
<tr>
<td>Эксплуатация в условиях сильного шторма с выходом из строя одной якорной линии</td>
<td>1,05</td>
</tr>
</tbody>
</table>

| SF = РВ/Tₘₚтₚ |

где Tₘₚтₚ — характеристика натяжения якорной линии, равная максимальному значению, полученному при применении динамического метода расчета;
РВ — минимальный расчетный предел прочности якорной линии.

Таблица 4.3.10

4.3.12 Как правило, максимальное перемещение под действием волн находящейся на якоре ПБУ/МСП при непрерывном смещении следует определять модельными испытаниями. При рассмотрении ПБУ со стабилизирующими колоннами в анализ якорных систем, обеспечивающих ее удержание в точке бурения, могут быть введены значения Cₛ и Cₜₚ, приведенные в части IV «Остойчивость». Как альтернативу приведенным в вышеуказанной части расчетным методам определения ветровой нагрузки, Регистр может принять во внимание величины ветровых опрокидывающих моментов, полученных путем проведения испытаний модели установки в аэродинамической трубе согласно признанным методикам.

Регистром могут быть приняты аналитические расчеты при условии, что представленный метод расчета основывается на признанной методике, которая подтверждена модельными испытаниями.

4.3.13 Регистром могут быть приняты различные методики расчетов наименьшего натяжения (нагрузок) в элементах якорной линии при условии, что обеспечивается уровень безопасности, требуемый 4.3.9 — 4.3.11.

4.3.14 Полученные при расчете значения максимальных перемещений ПБУ/МСП должны удовлетворять условию:

\[x_{ult}/x \geq k, \]

где xₜₚ — предельные значения перемещений ПБУ/МСП, устанавливаемые в проекте и правилах технической эксплуатации оборудования;
x — максимальные расчетные перемещения для рассматриваемого расчетного режима эксплуатации;
k — коэффициент безопасности, значение которого допускается принимать при квазистатическом методе расчета равным 1,15 и при динамическом методе расчета — равным 1,05.
Правила классификации, постройки и оборудования ПБУ/МСП

4.3.15 Определенный расчетами уровень усталостной долговечности элементов якорных линий должен быть не меньше, чем трехкратный расчетный срок якорной системы. При отсутствии достоверных данных по кривым усталости, невозможности доступа для инспекции и ремонта Регистр может потребовать обеспечения более высокого уровня долговечности.

4.3.16 Держащая сила якоря судового типа для ПБУ/МСП, эксплуатация которых предусматривается на одной точке в течение всего срока службы, должна определяться при расчетных режимах штормового отстоя с коэффициентом безопасности:

1. не менее 1,8 — при применении квазистатического метода;
2. не менее 1,5 — при расчетах динамическим методом для неповрежденного состояния ПБУ/МСП и якорной системы удержания;
3. не менее 1,2 — при применении квазистатического метода и 1,0 — при расчетах динамическим методом для поврежденного состояния ПБУ/МСП или якорной системы.

4.3.17 Для ПБУ/МСП, которые в течение срока службы могут эксплуатироваться на разных точках, а также для якорей несудового типа определение держащей силы и значения коэффициентов безопасности являются предметом специального рассмотрения Регистром.

4.3.18 Регистром специально может быть принят вариант, при котором для удержания ПБУ в точке бурения якорные системы используются одновременно с подруливающими устройствами.

4.4 ОБОРУДОВАНИЕ

4.4.1 Лебедки.

4.4.1.1 Конструкция лебедки должна обеспечивать достаточное динамическое торможение, способное выдерживать нормальные составляющие нагрузки, сообщаемые от якоря, якорной линии и судна для подъема и постановки якорей в процессе постановки якорей, при максимальной расчетной скорости траливания лебедки.

Конструкция крепления лебедки к корпусу должна выдерживать нагрузку, равную пределу прочности якорной линии.

4.4.1.2 Каждая лебедка должна иметь два независимых тормоза с механическим приводом, при этом каждый тормоз должен выдерживать статическую нагрузку от якорной линии, равную, по меньшей мере, 50 % ее предела прочности.

По согласованию с Регистром один из тормозов с механическим приводом может быть заменен ручным тормозом.

4.4.1.3 При потере лебедками мощности должна автоматически включаться система тормозов с механическим приводом, которая должна выдерживать нагрузку, равную 50 % общей статической тормозной мощности лебедки.

4.4.2 Устройства для натяжения якорных линий.

4.4.2.1 Конструкция устройств для натяжения якорных линий должна обеспечивать возможность восприятия расчетных составляющих нагрузок, сообщаемых от якоря и якорной линии.

4.4.2.2 Каждое устройство для натяжения якорных линий должно иметь стопор с приводом, выдерживающий статическую нагрузку от якорной линии, равную не менее 80 % ее предела прочности.

4.4.2.3 Конструкция крепления устройств для натяжения якорных линий к корпусу ПБУ/МСП должна выдерживать нагрузку, равную пределу прочности якорной линии.

4.4.3 Киповье планки и направляющие устройства.

4.4.3.1 Конструкция киповых планок и направляющих устройств должна предотвращать чрезмерные изгибы и износ якорных линий. Крепление их к корпусным конструкциям должно быть достаточно прочным, чтобы выдерживать усилия, возникающие в момент нахождения якорной линии под нагрузкой, равной пределу ее прочности.

4.4.3.2 Направляющие должны быть роликового типа. Ролик направляющей должен быть снабжен новоротным устройством.

4.4.3.3 С направляющего ролика цепь должна идти непосредственно на цепную звездочку лебедки или стопор натяжного устройства без прохода через дополнительную направляющую. Установка дополнительной направляющей является предметом специального рассмотрения Регистром.

4.4.3.4 У направляющих роликов для цепей карманов для звеньев должно быть не менее 5.

У направляющих роликов для стальных тросов отношение диаметра жестоба ролика и номинального диаметра троса должно быть не менее 16.

4.4.3.5 Направляющие для комбинированных тросово-цепных якорных линий являются предметом специального рассмотрения Регистром.

4.4.3.6 При расчете номинальные напряжения в элементах конструкции направляющей не должны превышать 0,9 предела текучести материала при действии на нее разрывной нагрузки якорной линии. Расчет прочности должен вестись для наиболее неблагоприятного направления якорной линии.

В расчете должны учитываться расчетный рабочий диапазон углов поворота ролика в
Часть III. Устройства, оборудование и снабжение ПБУ/МСП

горизонтальной плоскости и расчетный угол схода якорной линии с ролика в вертикальной плоскости.

4.5 ЯКОРНЫЕ ЛИНИИ

4.5.1 Регистр должен убедиться, что по своему типу якорные линии удовлетворяют расчетным параметрам якорной системы.
4.5.2 Должны быть предусмотрены устройства, обеспечивающие отдачу якорных линий при выходе из строя основного источника энергии.
4.5.3 Должны быть предусмотрены средства для измерений натяжения в якорных линиях.
4.5.4 Якорные линии должны иметь достаточную длину, предотвращающую поднятие якоря в экстремальных расчетных случаях, предусмотренных в предполагаемых условиях эксплуатации.
4.5.5 Якорные линии могут представлять собой цепи, стальные, синтетические и растительные трося или их любые комбинации.
4.5.6 Калибры цепей или диаметры трося, используемых в якорной линии, должны соответствовать разрывной нагрузке якорной линии согласно расчетам предельной и усталостной прочности, в которых, при необходимости, должны быть учтены износ и коррозия цепей и трося.
4.5.7 Конструкции соединений различных элементов якорной линии между собой и крепления к другим элементам (якорям и корпусу) должны проектироваться с учетом центровки соединяющихся элементов и с плавными переходами, исключающими концентрацию напряжений.

4.6 ЯКОРЯ

4.6.1 Тип и конструкция якорей должны быть одобрены Регистром.
4.6.2 Как правило, якоря МСП должны быть заглубляемого в грунт, свайного или гравитационного типа.
4.6.3 Якорь и якорная скоба должны выдерживать нагрузку, эквивалентную минимальной разрывной нагрузке самой прочной якорной линии, которая будет использоваться в сочетании с данным якорем.
4.6.4 Все якоря ПБУ/МСП должны быть закреплены таким образом, чтобы они не смещались при перегоне.
4.6.5 После установки на точке якоря должны быть испытаны нагрузкой с целью проверки их держащей способности.
Испытательная нагрузка, как правило, должна соответствовать расчетной нагрузке на якорную линию при максимальных эксплуатационных условиях и прикладываться в течение не менее 5 минут.
Величина испытательной нагрузки должна быть согласована с Регистром.

4.7 КОНТРОЛЬ КАЧЕСТВА

4.7.1 Регистру должно быть представлено описание контроля качества в процессе изготовления конкретных узлов якорной системы. Узлы должны быть спроектированы, изготовлены и испытаны в соответствии с признанными нормативами и стандартами. Оборудование, испытанное таким образом, должно иметь четкую и прочную маркировку клеймом Регистра и поставляться с документами, в которых зафиксированы результаты испытаний.

4.8 ПОСТЫ УПРАВЛЕНИЯ

4.8.1 В обслуживаемых постах управления должны быть предусмотрены указатели натяжения якорной линии, а также указатели силы и направления ветра.
4.8.2 Должны быть обеспечены надежные средства связи между постами, работа на которых необходима для проведения якорных операций.
4.8.3 На посту управления каждой лебедкой должны быть предусмотрены средства контроля натяжения якорных линий и силовой нагрузки лебедки и указатели, показывающие длину вытравленной якорной линии.

4.9 СИСТЕМЫ ДИНАМИЧЕСКОГО ПОЗИЦИОНИРОВАНИЯ ПБУ

4.9.1 Система подруливающих устройств.
4.9.1.1 Система подруливающих устройств должна обеспечивать надлежащую упор в продольном и поперечном направлениях, а также разворачивающий момент для устранения рыскания и управления курсом.
4.9.1.2 Для оборудования системы динамического позиционирования класса 2 и 3, определенных в 7.5 части XIV «Автоматизация», система
134 Правила классификации, постройки и оборудования ПБУ/МСП

подруливающих устройств должна быть соединена с силовой системой таким образом, чтобы требования 4.9.1.1 выполнялись даже в том случае, когда выйдет из строя одна из частей составной силовой системы и соединенные с ней подруливающие устройства.

4.9.1.3 Величина упора, создаваемого подруливающими устройствами, которая используется в анализе последствий отказов, упомянутом в 7.9.4 части XIV «Автоматизация», должна быть откорrigирована с учетом взаимного влияния подруливающих устройств и других факторов, уменьшающих полезный упор.

4.9.1.4 Выход из строя системы подруливающих устройств, включая системы контроля шага, азимута и скорости, не должен вызывать вращение подруливающего устройства или выход его на неконтролируемые максимальные шаг и скорость.

4.9.1.5 Расчетные методики определения упора и разворачивающего момента для устранения рыскания и управления курсом должны быть представлены Регистру.

4.9.1.6 Подруливающие устройства, используемые как единственные средства динамического позиционирования, должны обеспечивать уровень безопасности эквивалентный уровню безопасности, создаваемому якорными системами, и удовлетворяющий Регистр.

5 ПРИЧАЛЬНЫЕ И ПОСАДОЧНЫЕ УСТРОЙСТВА

5.1 МСП, для эксплуатации которой предполагается применение контактного способа швартовки судов обеспечения, должна быть оборудована причальными и посадочными устройствами, предназначенными для обеспечения подхода судов и посадки/высадки людей.

5.2 Регистру должны быть представлены чертежи и документация на причальные и посадочные устройства, показывающие их расположение и содержащие подробное описание устройств.

5.3 При расчете причальных и посадочных устройств необходимо учитывать нагрузки:
 .1 от навала на причальное сооружение о швартованных судов при воздействии ветра, волнения, течения и льда (если таковая имеется);
 .2 от навала судна при его подходе к причальному устройству;
 .3 от натяжения швартовов при воздействии на судно ветра и течения.

5.4 Должно быть учтено наличие экранирующих преград с наветренной стороны ошвартованного судна, если оно может привести к существенное уменьшению ветровых нагрузок на судно.

5.5 Причальные и посадочные устройства должны располагаться не менее чем с двух сторон платформы и возвышаться:
 над наибольшим годовым уровнем моря не менее чем на 1,5 м;
 над уровнем ледового покрова не менее чем на 1 м;
 над вершинами (гребнями) расчетных волн при нахождении людей на площадках устройств не менее чем на 0,5 м.

В отдельных случаях, по согласованию с Регистром, допускается расположение причальных и посадочных устройств только с одной стороны МСП.

5.6 Причальные и посадочные устройства ледостойких МСП должны обеспечивать подход судов и высадку людей в условиях чистой воды и аварийную эвакуацию персонала платформы во всех условиях ее эксплуатации.

5.7 Если не обеспечивается возможность выполнения работ при худших, чем приведены ниже, параметрах погодных условий открытого моря в районе эксплуатации МСП, подтвержденная расчетами, подход, швартовка, стоянка судов, производство с них грузовых операций и пересадка людей должны обеспечиваться при следующих условиях:
 скорость ветра 8 — 10 м/с;
 высота волн 0,75 — 1,25 м (3 балла);
 скорость течения 0,6 узла.

5.8 Причальные и посадочные устройства должны обеспечивать безопасные условия при подходе до 1 узла и выдерживать соответствующие нагрузки от навала судна без повреждения отдельных элементов их конструкции.

При этом в каждом конкретном случае в чертежах необходимо указать максимальное водоизмещение судна, на швартовку которого при условиях, указанных в 5.7, рассчитаны причальные и посадочные устройства.

5.9 На ледостойких МСП должно быть исключено воздействие льда на причальные и посадочные устройства в нерабочем положении.

5.10 Причальные и посадочные устройства должны быть оборудованы системами контроля за условиями стоянки судна и средствами, пре-
дотвращающими повреждения его корпуса при случайных перегрузках.

5.11 Освещенность мест посадки и высадки людей в темное время суток должна быть не менее 30 люкс.

5.12 В случае необходимости причальные и посадочные устройства могут оборудоваться швартовными и отбойными устройствами, предназначенными для стоянки судов обеспечения. При варианте бесконтактной швартовки судов МСП может быть оборудованы только швартовными устройствами для крепления канатов.

5.13 Характеристики и комплектация швартовных и отбойных устройств определяются способами швартовки (контактный, бесконтактный, лагом, кормой), массогабаритными размерениями и характеристиками швартовного оборудования расчетных судов.

В общем случае МСП рекомендуется оборудовать комплексом средств для подъема и закрепления швартовных канатов судов: бросательными концами, линеметами, клюзами, киповыми планками, кнехтами или тумбами, самоотделяющимися гаками, механизмами (лебедками, шпилами). Состав элементов и конструкции отбойных устройств ПБУ/МСП в каждом конкретном случае является предметом специального рассмотрения Регистром.

5.14 Проектирование швартовных и отбойных устройств должно выполняться на основе специальных динамических расчетов взаимодействия судов при подходе, стоянке и перегрузке с ПБУ/МСП.

При выборе элементов устройств рекомендуется:
.1 применять медленно восстанавливающиеся амортизаторы повышенной энергоемкости с малым параметром жесткости и низкими коэффициентами трения;
.2 включать предохранительные элементы («слабое звено»), предупреждающие повреждение отбойного или швартовного устройства в целом;
.3 назначать размеры и расположение отбойных устройств, чтобы на корпуса судна и ПБУ/МСП передавались минимальные нагрузки;
.4 заводить, по возможности, каждый швартовный канал на отдельную лебедку;
.5 обеспечивать рациональные длины и углы наклона для каждого швартовного каната;
.6 предусматривать возможность и удобство ремонта устройств;
.7 принимать расчетные нагрузки на элементы и детали швартовных устройств в соответствии с прочностью швартовных тросов наибольшего расчетного судна;
.8 использовать, по возможности, один и те же элементы (механизмы, клюзы, стопоры, держатели) в швартовных, якорных и буксирных устройствах.

5.15 Причальные и посадочные устройства, которыми по усмотрению проектанта оборудуются ПБУ, должны отвечать требованиям настоящего раздела.

6 БУКСИРНОЕ УСТРОЙСТВО

6.1 ОБЩИЕ ТРЕБОВАНИЯ

6.1.1 Каждая ПБУ/МСП должна иметь буксирное устройство. В общем случае буксирное устройство ПБУ/МСП должно включать постоянно закрепленные к корпусу участки буксирных линий, к которым присоединяются тросы буксирных судов, устройства (оборудование) для крепления, отдачи и подъема буксирных линий, а также, при необходимости, снабжаться буксировыми тросами. По согласованию с Регистром буксировочные тросы могут храниться на буксире и не входить в состав снабжения ПБУ/МСП. При продолжительных транспортировках в тяжелых естественных условиях рекомендуется предусматривать запасной комплект буксирного троса и участка буксирной линии, закрепляемой на корпусе.

6.1.2 Количество, состав и характеристики элементов буксирных устройств, в основном, определяются величиной буксировочного сопротивления ПБУ/МСП и тяговыми характеристиками буксирных судов. Как правило, буксировочное сопротивление и достаточность тяговых усилий буксирования должны подтверждаться специальными расчетами, учитывающими фактические условия и особенности маршрута транспортировки. Расчеты должны учитывать требования и критерии части XVI «Морские операции».

6.1.3 Прочность различных элементов буксирных устройств должна соответствовать прочности выбранного расчетного буксирного троса и отвечать требованиям 5.3 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов.

6.2 БУКСИРНЫЙ ТРОС

6.2.1 Для буксировки с использованием одного тягового буксира каждая несамоходная ПБУ должна снабжаться буксировыми тросами, а МСП/модули
МСП должны буксироваться с помощью тросов в соответствии с требованиями 5.2.2 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов.

Разрывное усилие буксирного троса F_{br}, Н, должно выбираться по данным модельных испытаний, но не менее большего из значений, определенных по формулам:

$$F_{br} = \begin{cases} 4P_{t} & \text{при } P_{t} < 250000; \\ 2.2P_{t} & \text{при } P_{t} > 1000000, \end{cases}$$

где:
- P_{t} — номинальная тяга буксира на гаке, Н;
- h — коэффициент пропорциональности (запас прочности).

В формуле (6.2.1-2) для промежуточных значений номинальной тяги коэффициент пропорциональности (запас прочности) определяется линейной интерполяцией.

6.2.2 Длина буксирного троса L_{b}, м, для несамоходной ПБУ, МСП/модулей МСП определяется по формуле (но не менее 700 м):

$$L_{b} = 350 + 0.045N_{e},$$

где N_{e} — характеристика снабжения (см. 3.2.1).

Длина буксирного троса по согласованию с Регистром может быть уменьшена при соответствии обоснования (учете конкретных условий маршрутта буксировки и влияния работы двигателей буксира на буксируемый объект, наличия амортизационных вставок и т. п.).

6.2.3 Для самоходных ПБУ характеристики буксирного троса должны приниматься по табл. 3.1.3-1 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов согласно характеристике снабжения, определенной в соответствии с 3.2 настоящей части.

6.2.4 По согласованию с Регистром допускается не предусматривать на ПБУ буксирный трос при условии:

- буксировки ПБУ буксиром, снабженным буксирным тросям с характеристиками не ниже величин, определенных 6.2.1 — 6.2.3;
- наличия на ПБУ достаточного количества устройств достаточной прочности для крепления буксирного троса, принимаемого с буксира.

6.3 ЯКОРНЫЕ ЦЕПИ

6.3.1 При применении в составе буксирной линии якорных цепей разрывное усилие этих цепей должно быть не менее расчетного разрывного усилия буксирного троса. Якорные цепи должны засчитываться в общую длину буксирной линии.

6.4 БУКСИРОВКА С ПОМОЩЬЮ НЕСКОЛЬКИХ БУКСИРОВ

6.4.1 При буксировке ПБУ, МСП/модулей МСП несколькими буксарами разрывное усилие каждого буксированного трося F', Н, должно быть не менее определенного по формуле:

$$F' = \frac{K_{a}F_{br}}{n},$$

где K_{a} — коэффициент, равный:
- 1,15 при буксировке на двух буксирах;
- 1,3 при буксировке на трех и более буксирах;
- F_{br} — расчетное разрывное усилие трося согласно 6.2.1 при буксировке одним буксиром, Н.

6.4.2 Общая длина буксирной линии L_{b}, м, для каждого из буксиров должна составлять не менее $L_{b} = 2000P_{t, moo} / F_{min, br}$,

где $P_{t, moo}$ — тяговое усилие буксира на швартовах, Н;
- $F_{min, br}$ — минимальное разрывное усилие буксирной линии, Н.

6.5 СПЕЦИАЛЬНЫЕ УСТРОЙСТВА

6.5.1 На ПБУ/МСП должно быть предусмотрено устройство для подачи буксирного троса на буксир или буксирующее судно, а также выбираемое с них трося.

При использовании в ходе транспортировки одереживающих буксиров должны быть предусмотрены дополнительные буксирные устройства. Прочность элементов крепления этих устройств должна превышать в 1,3 раза минимальное разрывное усилие соответствующей буксирной линии.

При необходимости выполнения буксирно-кантовочных операций в состав буксирного оборудования должны входить причальные (опорные) и специальные швартовные устройства.

На период буксировки установка специальных устройств должна обеспечивать доступ персонала на ПБУ/МСП.

6.5.2 При применении вставок из синтетического каната в составе буксирных линий суммарное разрывное усилие вставки должно быть не менее 2,3 минимального разрывного усилия буксирной линии при тяговом усилии буксира менее 500 кН и 1,5 минимального разрывного усилия буксирной линии при тяговом усилии буксира более 1000 кН.

Для буксиров с тяговым усилием в интервале от 500 до 1000 кН коэффициент запаса прочности определяется линейной интерполяцией.
7 СИГНАЛЬНЫЕ МАЧТЫ

7.1 ОБЩИЕ ТРЕБОВАНИЯ

7.1.1 Сигнальные мачты должны отвечать требованиям разд. 6 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов.

При этом углы крена и дифферента принимаются из расчета максимальных параметров качки для данной ПБУ.

Сигнальные мачты МСП/модулей МСП являются в каждом случае предметом специального рассмотрения Регистром.

7.1.2 Установка сигнальных средств должна отвечать требованиям части III «Сигнальные средства» Правил по оборудованию морских судов и части I «Сигнальные средства» Правил по оборудованию ПБУ/МСП.

8 УСТРОЙСТВО И ЗАКРЫТИЕ ОТВЕРСТИЙ В КОРПУСЕ, НАДСТРОЙКАХ И РУБКАХ

8.1 ОБЩИЕ ТРЕБОВАНИЯ

8.1.1 Требования настоящего раздела распространяются на устройства и закрытия отверстий, расположенных выше предельной линии погружения ПБУ и МСП/модуля МСП при нахождении их на плаву согласно 1.1 части V «Деление на отсеки».

Устройство и закрытие отверстий, расположенных ниже предельной линии погружения, являются предметом специального рассмотрения Регистра.

8.1.2 Устройство и закрытие отверстий в корпусе, надстройках и рубках ПБУ, которым назначен минимальный надводный борт, в полной мере должны удовлетворять требованиям разд. 7 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов как для судов неограниченного района плавания и специально оговоренным требованиям Правил ПБУ/МСП.

8.1.3 Площади, примыкающие к буровому стволу, в максимально возможной степени должны быть свободны от отверстий, через которые газы или вода могут проникнуть в корпусные конструкции. Любые подобные отверстия, наличие которых неизбежно, должны быть снабжены быстродействующими закрывающими устройствами.

8.2 КОМИНГСЫ

8.2.1 Высота комингсов отверстий для дверей, сходных, световых и вентиляционных люков, вентиляционных раструбов, грузовых люков в открытых местах и средств их закрытия должны определяться с учетом требований остойчивости как в неповрежденном, так и поврежденном состоянии в соответствии с районами их расположения согласно 7.14 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов.

8.2.2 Регистр может снизить требования к высоте комингсов, исходя из:

.1 величины назначаемого надводного борта при условии значительного превышения им требуемого Правилами о грузовой марке морских судов;

.2 назначения помещений, в которые ведут эти отверстия;

.3 размеров, расположения, прочности и водонепроницаемости рассматриваемых помещений.

8.3 УСТРОЙСТВО И ЗАКРЫТИЕ ОТВЕРСТИЙ В ПЕРЕБОРКАХ ДЕЛЕНИЯ НА ОТСЕКИ

8.3.1 Устройство и закрытие отверстий в переборках деления ПБУ/МСП на отсеки должны удовлетворять требованиям 7.12 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов и специально оговоренным требованиям Правил ПБУ/МСП.

8.3.2 Требования настоящей главы распространяются на ПБУ/МСП, к которым предъявляются требования части V «Деление на отсеки».

8.3.3 Двери и горловины в переборках деления на отсеки.

8.3.3.1 Двери должны иметь дистанционное управление из центрального поста на палубе,
находящейся над аварийной ватерлинией после затопления и, кроме того, местное управление с каждой стороны переборки. На посту управления должны быть предусмотрены указатели, показывающие закрытое и открытое положение этих дверей.

8.3.3.2 Требования по оборудованию дистанционным управлением могут не предъявляться к тем дверям или крышкам люков, которые обычно закрыты, когда ПБУ/МСП находится на плаву, при условии, что предусмотрена система индикации, показывающая персоналу, как на месте, так и в центральном посту управления, закрыты они или открыты.

На каждой такой двери или крышке люка должна быть установлена табличка с предупреждением, что данная дверь или крышка должна быть закрыта, пока ПБУ/МСП находится на плаву.

8.4 КРЫШКИ ЛЮКОВ

8.4.1 Крышки сходных люков должны быть водонепроницаемыми и иметь быстро действующие устройства для задраивания и открывания, а также систему индикации их положения.

Должны быть предусмотрены указатели положения крышек во время нахождения ПБУ/МСП в эксплуатационном режиме и состоянии перегона (перехода).

8.5 ГОРЛОВИНЫ

8.5.1 Конструкция горловин для поштучных полупогруженных и погруженных ПБУ является предметом специального рассмотрения Регистром.

9 УСТРОЙСТВО И ОБОРУДОВАНИЕ ПОМЕЩЕНИЙ

9.1 ОБЩИЕ ТРЕБОВАНИЯ

9.1.1 Устройство и оборудование помещений должно удовлетворять требованиям разд. 8 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов и специально оговоренным требованиям Правил ПБУ/МСП.

9.1.2 На ПБУ/МСП распространяются требования Правил классификации и постройки морских судов как на суда специального назначения.

9.1.3 Оборудование путей эвакуации низкорасположенным освещением (НРО) на ПБУ/МСП, имеющих 200 и менее человек специального персонала, является предметом специального рассмотрения Регистром.

9.2 ВЫХОДЫ, ДВЕРИ, КОРИДОРЫ, НАКЛОННЫЕ И ВЕРТИКАЛЬНЫЕ ТРАПЫ

9.2.1 С каждой палубы помещений, в которых может регулярно находит житель или в которых проживает персонал, должны быть предусмотрены по меньшей мере два отдельных пути эвакуации, ведущие на открытые палубы и к местам посадки в спасательные шлюпки и плоты.

9.2.2 В виде исключения Регистр может добрное только один путь эвакуации, принимая во внимание характер и расположение помещений и количество лиц, которые в них обычно могут проживать или работать.

9.2.3 Не допускается располагать выходы из помещений и сооружений, ведущие в сторону возможного выделения токсичных или взрывоопасных газов.

9.2.4 В качестве одного из путей эвакуации Регистр может допустить использование вертикального трапа, если будут представлены доказательства невозможности установки наклонного трапа.

9.2.5 Все коридоры и проходы должны обеспечивать беспрепятственное перемещение людей по ним.

Тупики длиной более 7 м не допускаются.

9.2.6 В производственных помещениях ПБУ/МСП должны быть предусмотрены выходы с противоположных сторон. Выходы должны быть оборудованы дверями, открывающимися наружу.

9.3 ЛЕЕРНОЕ ОГРАЖДЕНИЕ, ФАЛЬШБОРТ

9.3.1 Открытые участки, а также все отверстия для схода на палубах должны быть обнесены защитными ограждениями, такими как леерное, фальшборд, или другими приспособлениями, отвечающими требованиям 8.6 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов.
10 УСТРОЙСТВО ПОДЪЕМА И СПУСКА КОЛОНН ПОГРУЖНЫХ НАСОСОВ ЗАБОРТНОЙ ВОДЫ

10.1 ОБЩИЕ ТРЕБОВАНИЯ

10.1.1 Требования настоящего раздела распространяются на узлы и детали устройства, предназначенного для подъема и спуска колонн погруженных насосов забортной воды СПБУ, за исключением тех узлов и деталей, требования к которым изложены в частях I «Классификация», II «Корпус», VI «Противопожарная защита» и VII «Механические установки и механизмы».

10.2 СПЕЦИАЛЬНЫЕ ТРЕБОВАНИЯ

10.2.1 Каждый погруженный насос забортной воды должен быть установлен на своей колонне и обслуживаться независимым приводом.

10.2.2 Конструкция шахты должна обеспечивать свободное перемещение колонны с установленным на ней насосом при максимально допустимых крене и дифференте ПБУ, а также при номинальных параметрах ветра и волнения.

10.2.3 В конструкции устройства должны быть предусмотрены направляющие, обеспечивающие вертикальное перемещение колонны и препятствующие самопроизвольному повороту ее вокруг своей оси.

10.2.4 Должно быть предусмотрено стопорное устройство, рассчитанное для надежного удерживания колонны в требуемом положении (верхнем, нижнем или промежуточном), разгрузающее механизмы устройства от воздействия нагрузок окружающей среды и функциональных нагрузок в соответствии с определениями части II «Корпус», действующих при нахождении ПБУ в рабочем состоянии.

10.2.5 Детали и узлы устройства подъема и спуска погруженных насосов забортной воды должны быть проверены на прочность при воздействии на них статической функциональной нагрузки.

10.2.6 Конструкция колонны должна быть проверена на прочность при воздействии нагрузок окружающей среды в условиях допускаемых максимального волнения и ветра, указанных в Инструкции по эксплуатации данной ПБУ, а также в заданном районе эксплуатации и перегона.

10.2.7 При выборе тросового привода его конструкция и прочность должны удовлетворять требованиям Правил по грузоподъемным устройствам морских судов.

10.2.8 Конструкция устройства должна обеспечивать спуск колонны и подключение погруженного насоса к системе за время не более 15 мин.

11 УСТРОЙСТВО ПОДЪЕМА И СПУСКА КОРПУСА СПБУ

11.1 ОБЩИЕ ТРЕБОВАНИЯ

11.1.1 Требования настоящего раздела распространяются на устройства, предназначенные для подъема и спуска платформы ПБУ и опорных колонн.

Эти устройства должны удовлетворять также соответствующим требованиям частей I «Классификация», II «Корпус», VI «Противопожарная защита» и VII «Механические установки и механизмы».

11.1.2 Каждая опорная колонна должна обслуживаться независимым приводом.

11.2 СПЕЦИАЛЬНЫЕ ТРЕБОВАНИЯ

11.2.1 Подъемное устройство должно исключать самопроизвольное взаимное перемещение колонн и платформ ПБУ и надежно удерживать поднятые платформы или колонну при нерабочем приводе.

Для гидравлических подъемных устройств должно предусматриваться устройство, позволяющее разгрузить гидравлическую систему при ее нерабочем состоянии, за исключением подъемных устройств с приводом от гидроцилиндров при наличии гидрозамков.
11.2.2 Закрепление подъемного механизма на порталах и соединения деталей устройства должны быть выполнены таким образом, чтобы перекосы от погрешностей изготовления и монтажа не оказывали неблагоприятного влияния на работу устройства.

11.2.3 Детали устройства должны быть проверены на прочность при действии нагрузок, приведенных в разд. 2 части II «Корпус».

11.2.4 Допускаемые напряжения определяются в соответствии с требованиями части II «Корпус».

11.2.5 Подъемное устройство должно само обеспечивать возможность или иметь приспособление для обеспечения его проверки перед началом спуска или подъема платформы ПБУ.

11.2.6 Устройство должно надежно работать при предельно допустимых крене и дифференте, значения которых приведены в Инструкции по эксплуатации данной ПБУ.

11.2.7 Конструкция подъемного устройства должна исключать возможность одновременного выхода всех захватов из зацепления с рейками опорных колонн.

11.2.8 Подъемное устройство должно допускать отключение любого из главных цилиндров при выходе из строя цилиндра или его трубопровода.

В этом случае устройство должно обеспечивать возможность перемещения платформы и колонн ПБУ до достижения ею безопасного положения.

11.2.9 Каждое подъемное устройство для удержания колонны в необходимом положении должно быть оборудовано при необходимости (по усмотрению проектанта) разгружающими и фиксирующими устройствами, способными воспринимать все действующие на колонну в соответствующих эксплуатационных условиях нагрузки и передавать их на корпус ПБУ.

11.2.10 Фиксирующие устройства (при наличии в проекте) должны быть такой конструкции, чтобы было возможным быстрое освобождение опорных колонн от фиксации при любых эксплуатационных перекосах колонн относительно корпуса.

12 АВАРИЙНОЕ СНАБЖЕНИЕ

12.1 ОБЩИЕ ТРЕБОВАНИЯ

12.1.1 Аварийное снабжение ПБУ в полной мере должно удовлетворять требованиям разд. 9 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов и специальным требованиям Правил ПБУ/МСП. Нормы снабжения МСП аварийным имуществом являются в каждом случае предметом специального рассмотрения Регистром.

12.1.2 ПБУ, определенные в 1.2.1 части I «Классификация» Правил ПБУ/МСП, должны иметь аварийное снабжение, указанное в 4, 5, 6, 8, 10, 12, 13, 15 — 32, 34 — 40 табл. 9.2.1 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов как для судов длиной от 70 до 150 м включительно.
ЧАСТЬ IV. ОСТОЙЧИВОСТЬ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящей части распространяются на:

.1 новые ПБУ/МСП, именуемые далее «объекты», если они находятся на плаву и форма их корпуса не может рассматриваться как традиционная для судов или барж;

.2 конструктивные элементы ПБУ/МСП, именуемые далее «объекты», если они находятся на плаву;

.3 морские суда, именуемые далее «объекты», у которых системы удержания, обеспечивающие функционирование судна по его назначению, не могут рассматриваться как традиционные якорные системы, соответствующие требованиям части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов;

.4 существующие ПБУ/МСП и указанные выше суда, именуемые далее «объекты», если в результате ремонта и/или переоборудования их остойчивость ухудшилась;

.5 ПБУ/МСП и указанные выше суда, именуемые далее «объекты», находящиеся в эксплуатации, в той мере, в которой это целесообразно и осуществимо.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

Определения и пояснения, относящиеся к общей терминологии, приведены в части I «Классификация».

В настоящей части приняты следующие определения.

1.2.1 Общие определения.

Плавучее сооружение (ПС) — объект, который находится на всех стадиях жизненного цикла в плавучем состоянии и который в процессе эксплуатации может попасть под воздействие предельных внешних условий.

Стационарное сооружение (СС) — объект, опирающийся в процессе эксплуатации постоянно на грунт морского дна, для которого положение на плаву может рассматриваться как кратковременное и относящееся к периодам его строительства, достройки и/или транспортировки, например, морские стационарные платформы (МСП).

Предполагается, что для СС на плаву заведомо исключается возможность воздействия предельных внешних условий.

В настоящей части к ПС относятся:

полупогруженное ПС без избыточной плавучести, удерживаемое в заданном положении с использованием якорной системы удержания (ЯСУ) и/или подруливающих устройств (динамической системы позиционирования — ДСП);

полупогруженное ПС с избыточной плавучестью и предварительно натянутой якорной системой удержания (ЯСУ);

самоподъемная установка (СПУ) — объект, опирающийся на грунт морского дна с помощью опорных колонн, для которого положение на плаву может рассматриваться как кратковременное и относящееся к периодам достройки и перехода/перегона.

В состав ПС и СС входят, как правило, следующие конструктивные элементы:

корпус — водонепроницаемая конструкция, обеспечивающая плавучесть и остойчивость объекта. Корпус может подразделяться на один, два и более нижних корпусов (понтонов), как правило, погруженных в воду, и верхний корпус, обычно находящийся над водой;

верхняя палуба (ВП) — водонепроницаемая конструкция, ограничивающая корпус сверху, от которой измеряется надводный борт;

верхнее строение (ВС) — конструкция на ВП, представляющая собой надстройки и рубки, используемые для размещения персонала, оборудования, систем и устройств, обеспечивающих функционирование сооружения по его назначению. ВС, как правило, состоит из модулей — функционально законченных конструкций, например, энергетического, технологического, жилого и других;

опорный блок (ОБ) — несущая конструкция сооружения, обеспечивающая поддержание и устойчивость объекта против внешних воздействий при размещении на грунте дна; опорным блоком может служить нижний корпус (корпуса);
модуль — конструкция, как правило, корпуса, ОБ, ВС и/или их часть, представляющая транспортную единицу, для которой положение на плаву может рассматриваться как кратковременное и относящееся к перикодам их достройки и/или транспортировки.

Предполагается, что для модуля заведомо исключается возможность воздействия предельных внешних условий;

транспортная единица — объект, доставляемый на плаву по внутренним водным путям и/или по морю;

объект — судно, ПБУ, МСП, другие сооружения, модуль и/или какие-либо их элементы, на которые распространяются требования настоящей части;

понтон плавучести/остойчивости — водонепроницаемая конструкция, временно устанавливаемая на объекте для обеспечения его плавучести и/или остойчивости.

Отверстия, считающиеся открытыми — отверстия в открытых палубах, бортах, колоннах и переборках надстройки и рубок, устройства для закрывания которых в отношении непроницаемости при воздействии моря, прочности и надежности не удовлетворяют требованиям части III "Устройства, оборудование и снабжение". Малые отверстия, такие как забортные отверстия судовых систем и трубопроводов, фактически не влияющие на остойчивость при динамическом крене, не считаются открытыми.

Походные запасы — топливо, пресная вода, провизия, смазочное масло, расходные материалы (судовые запасы), предназначенные для использования во время перехода/перегона объекта, и минимальное количество технологических запасов, необходимое для обеспечения начала работ.

Предельный угол статического наклона от действия наклоняющегося момента — меньший из углов: угла залива
ф1, угла
ф2, соответствующего второму пересечению кривой восстанавливающего момента с кривой наклоняющегося момента.

1.2.2 Расчетные условия.

Жизненный цикл ПБУ/МСП — все стадии создания, эксплуатации и ликвидации сооружения.

Постройка — режим, в котором производятся строительные или достроечные работы на плаву (например, стыковка модулей, монтаж ВС на акватории завода-строителья и т. п.).

Подготовка — режим, в котором производятся работы по переводу объекта из одного состояния в другое (например, частичный демон-таж конструкций и оборудования с целью улучшения характеристик остойчивости).

Морская операция — действия, производимые на внутренних водных путях и в море, которые необходимы для постройки, транспортировки и установки объекта на месте эксплуатации в соответствии с Руководством по проведению морских операций.

Эксплуатация — режим, в котором производятся работы в соответствии с назначением ПБУ/МСП и Руководством по эксплуатации.

Ликвидация — режим, при котором производится преднамеренное нарушение конструктивной целостности (демонтаж) ПБУ/МСП с целью прекращения существования.

Заданное сочетание внешних воздействий — установленная для объекта совокупность природных воздействий для данного расчетного режима в назначенном районе эксплуатации или во время морской операции.

1.2.3 Расчетные состояния.

Выживание — предельное состояние, в котором в случае жестокого (расчетного) шторма или тяжелой ледовой обстановки объект должен выдержать воздействие внешних нагрузок, соответствующих этому состоянию.

Критерии остойчивости в состоянии выживания должны, по возможности, удовлетворяться за счет заложенных при проектировании соответствующих технических решений, а также могут удовлетворяться за счет:

— прерывания операции (например, постановки на якорь при пересходе/перегоне, всплытия в исходное положение или посадки на грунт), если это повышает безопасность объекта и если прерывание операции может быть выполнено в течение не более трех часов;

— выполнения защитных мероприятий без прерывания операции или параллельно с ней (например, за счет балластировки).

Нормальное — состояние, в котором выполняются работы в соответствии с назначением объекта и Руководством по эксплуатации.

Временное — состояние, в котором выполняются морские операции в соответствии с Руководством по проведению морских операций, в том числе:

— буксировка;
— соединение объектов на плаву;
— спуск на воду, в том числе с баржи;
— перевод в вертикальное положение;
— налаж объекта на нижерасположенные конструкции;
— посадка на грунт, включая позиционирование, погружение, задавливание и выравнивание;
Часть IV. Остойчивость

143

снятие с грунта дна, включая вскрытие.
При подготовке и во время выполнения морских операций должны быть учтены осадка, наклонение, остойчивость, вертикальный клиренс, наваленный борт, балластировка всех судов и объектов, участвующих в операциях, в частности, баржи со спускаемым объектом и без него, а также комплекс технических средств, обеспечивающих «наплав» объекта (баржи, Об. понтоны, крановые и другие суда). Расчеты должны быть выполнены по методикам, согласованным с Регистром.
П е р е х о д / п е р е г о н — состояние, связанное с перемещением объекта из одного географического района в другой.

1.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

1.3.1. Общие положения, относящиеся к порядку классификации, проведению и объему освидетельствования, а также укрупненный перечень документации технического проекта, предъявляемой на рассмотрение и одобрение Регистру, изложены в части I «Классификация».
1.3.2. Для каждого объекта, на который распространяются требования настоящей части, Регистр осуществляет:
1. до постройки объекта — рассмотрение и одобрение технической документации, относящейся к его остойчивости;
2. во время постройки, переоборудования, морских операций и испытания объекта — наблюдение за проведением опытов кренования и морских операций; рассмотрение и одобрение Протоколов опытов кренования, Информации об остойчивости и Руководства по проведению морских операций;
3. при очередных освидетельствованиях для возобновления класса, а также после ремонта и модернизации объекта — установление изменений в нагрузке порожнем с целью заключения о дальнейшей пригодности Информации об остойчивости.

1.4 ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.4.1. Расчеты.
Расчеты должны выполняться одобренными Регистром методами. При использовании ЭВМ методики расчетов должны быть одобрены Регистром, программы вычислений иметь Свидетельство Регистра, а копии программ — лицензии авторов.

1.4.2. Расчет плеч остойчивости формы.
1.4.2.1. Перед расчетом плеч остойчивости формы должны быть определены:
расчетные режимы и расчетные состояния объекта;
рациональное расположение осей координат объекта;
оси наклонения.
Плечи остойчивости формы должны вычисляться при наклонениях относительно самых неблагоприятных в отношении остойчивости осей наклонения. Если положение таких осей не может быть указано без выполнения соответствующего расчета, должна быть построена круговая диаграмма остойчивости или ее часть, для построения которых расчеты должны выполняться при наклонении объекта вокруг различных осей с таким шагом, который позволит определить наиболее неблагоприятную ось наклонения в каждом расчетном случае.

1.4.2.2. Плечи остойчивости формы должны рассчитываться с учетом всех водонепроницаемых объемов объектов, а также понтоны плавучести/остойчивости (если последние установлены на объекте), палубных колодцев, шахт, отсеков «юбок» с воздушными подушками, с учетом возможности распространения воды по помещениям и отсекам при рассматриваемых наклонениях.

1.4.2.3. Надстройки, рубки и другие подобные конструкции могут учитываться в расчетах плеч остойчивости формы, если их прочность удовлетворяет требованиям части II «Корпус», а конструкция и закрытия отверстий — требованиям части III «Устройства, оборудование и снабжение». Отверстия, не удовлетворяющие указанным требованиям, считаются открытыми.

1.4.3. Схемы отсеков.
Схемы непроницаемых отсеков и отсеков с воздушными подушками, цистерн и колодцев должны содержать данные, необходимые для выполнения расчетов остойчивости, в том числе объемы и положение центров тяжести объемов цистерн, заполняемых жидкостями, и величины поправок на влияние свободных поверхностей жидкостей на остойчивость.

1.4.4. Планы палуб.
Планы палуб, входящие в состав проектной технической документации, должны содержать все данные, необходимые для определения центров масс палубных грузов. Если тяжелые палубные грузы или оборудование в процессе эксплуатации могут перемещаться, то на плани палуб должны быть показаны два крайних положения этих грузов или оборудования.
1.4.5 Схема расположения дверей, сходных люков и иллюминаторов. Угол заливания.

Схема расположения дверей, сходных люков и иллюминаторов, которые учитываются при вычислении плеч остойчивости формы, должна включать все отверстия в палубах, в бортах корпусов, в колоннах, в переборках надстроек и рубок с указанием степени непроницаемости их закрытий и с соответствующими ссылками на их конструкцию, согласно части III «Устройства, оборудование и снабжение».

К расчету плеч остойчивости формы должны быть приложены данные об углах заливания в виде кривой углов заливания либо в виде табличных значений этих углов.

1.4.6 Расчет влияния жидкостей.

1.4.6.1 В число цистерн, учитываемых при расчете влияния свободных поверхностей жидкостей на остойчивость, должны включаться цистерны каждого вида жидкостей, в которых по условиям постройки, морских операций и эксплуатации могут быть одновременно свободные поверхности, а также цистерны систем успокоения качки. Наклоняющий момент от переливания жидкости δM_ϕ, кН·м, вычисляется относительно рассматриваемой оси наклонения объекта на угол ϕ.

Кроме того, должна учитываться вода на палубах при погружении/всплытии, а также в других местах, из которых она не может быть удалена.

Из числа возможных сочетаний цистерн по отдельным видам жидкостей либо одиночных цистерн следует выбрать такие, для которых создаваемый ими суммарный наклоняющий момент δM_{15} от переливания жидкости при наклонении объекта на угол 15° имел бы наибольшее значение. При этом во всех случаях поправка должна вычисляться при условном заполнении каждой цистерны на 50 % ее вместимости.

1.4.6.2 Выбор учитываемых цистерн следует производить в соответствии с Руководством по проведению морских операций или Инструкцией по приему и расходованию жидкостей, включая жидкую грузовую и балластную.

1.4.6.3 Операции с жидкостями, используемыми в качестве балласта во время морских операций (прием, откачка, перекачка), должны обеспечивать сохранение допустимых значений метацентрической высоты (в соответствии с разд. 3), осадки и углов наклона объекта.

1.4.6.4 При использовании кингстонов для приема забортной воды во время морских операций должно быть обеспечено сохранение значений метацентрической высоты (в соответствии с 3.1.3), осадки и углов наклона объекта.

1.4.7 Расчетные материалы, связанные с проверкой остойчивости.

1.4.7.1 Объем проектной технической документации по остойчивости, представляемой Регистру, согласовывается с ним с учетом конструктивных особенностей и условий эксплуатации объекта или содержания морских операций, но обязательно должен включать следующие документы, представляемые на стадиях проектирования:

1. схему деления объекта на водонепроницаемые отсеки с указанием отверстий, их расположения, размеров и типов закрытий;
2. теоретический чертеж;
3. расчетные материалы по проверке посадки и остойчивости объекта в соответствии с требованиями настоящей части, в том числе:
расчет нагрузки масс;
схему размещения переменных грузов, включая жидкие грузы и балласт;
схему крайних положений грузов и оборудования, которые могут иметь разные положения;
расчеты и схемы парусности, обледенения и снега;
расчеты восстанавливающих и наклоняющих моментов (с учетом действия дрейфующего льда, систем удержания, понтона плавучести/остойчивости, влияния опорной реакции при контакте с грунтом);
расчет поправок на свободные поверхности жидкостей;
расчет амплитуд качки;
метацентрические диаграммы для операций погружения/всплытия;
4. руководство по проведению морских операций;
5. план управления балластными операциями.

1.4.7.2 Использование при монтаже или перегрузке объектов метода наплава должно быть учтено в расчетах.

1.4.7.3 Объем документации, если она представлена на ранних стадиях проектирования, определяется в пределах согласования с Регистром.

1.4.8 Требования к Информации об остойчивости.

1.4.8.1 Для оказания помощи начальному объекта в поддержании достаточной остойчивости объекта в эксплуатации и для оказания помощи контроли-
рующим органам должна быть разработана и выдана одобренная Регистром Информация об остойчивости.

Информация об остойчивости должна содержать сведения об остойчивости объекта в соответствии с требованиями настоящей части.

Формальное соблюдение указаний Информации об остойчивости не освобождает начальника объекта от ответственности за его остойчивость.

1.4.8.2 Объем и содержание Информации об остойчивости могут быть разными в зависимости от типа, назначения объекта, его района эксплуатации, запаса остойчивости.

Информация об остойчивости должна содержать, в частности, следующие материалы:

.1 общие данные по объекту;
.2 данные об остойчивости для типовых, предусматриваемых заранее вариантов нагрузки объекта в его расчетных состояниях: нормальным, при перегоне/переходе, при выживании, а также при погружении/всплытии;
.3 указания об ограничениях по гидрометеорологическим условиям для различных вариантов нагрузки объекта в нормальном состоянии в течение выживания и т. п.) и времени, необходимом для выполнения соответствующих работ;
.4 указания о порядке балластировки в соответствии с планом управления балластными операциями и указания по ограничению количества палубных и других грузов для типовых вариантов нагрузки объекта в его расчетных состояниях: нормальным, при выживании и при погружении/всплытии;
.5 вспомогательные графики, таблицы и другие материалы для обеспечения оценки остойчивости объекта при возможных в эксплуатации, но не предусмотренных заранее вариантах нагрузки, а также указания по использованию этих материалов с соответствующими примерами;
.6 рекомендации по поддержанию остойчивости объекта;
.7 данные о рекомендуемых источниках гидрометеорологической информации.

При составлении Информации об остойчивости следует пользоваться указаниями Приложения 1 к части IV «Остойчивость» Правил классификации и постройки морских судов с учетом конструктивных, эксплуатационных и других особенностей конкретного объекта.

1.4.8.3 Информация об остойчивости должна быть разработана по материалам кренования объекта. Для объектов серийной постройки, строящихся на одном заводе-строителе, Информация об остойчивости, разработанная для первого объекта, может быть использована и для последующих при условии выполнения требований 1.5.2.

1.4.8.4 Информация об остойчивости может разрабатываться в виде отдельного документа либо как составная часть Руководства по эксплуатации объекта.

1.4.9 Требования к Руководству по проведению морских операций.

1.4.9.1 Для каждого объекта на плаву в целях обеспечения безопасности при проведении морских операций должно быть разработано и доведено до сведения сдатчика объекта (исполнителя операции) одобренное Регистром Руководство по проведению морских операций, содержащее, в частности, следующие материалы:

.1 общие данные по объекту;
.2 данные об остойчивости объекта во всех предусмотренных проектом стадиях постройки и достройки на плаву, а также в операциях в их проектной (технологической) последовательности;
.3 указания об ограничениях по гидрометеорологическим условиям для различных этапов операции;
.4 указания о порядке балластировки, монтажа (демонтажа) и перемещения грузов в соответствии с проектом (технологией) выполнения каждой операции;
.5 рекомендации по поддержанию остойчивости объекта и другие указания по безопасному проведению операции;
.6 данные о рекомендуемых источниках гидromетеорологической информации.

1.4.9.2 Руководство должно содержать указание о том, что удовлетворение требованиям настоящей части не освобождает сдатчика объекта от ответственности за остойчивость его при проведении морских операций.

1.4.9.3 Руководство должно быть составлено по материалам кренования объекта. Для объектов, строящихся на одном заводе, Руководство, составленное для первого объекта, может быть использовано и для последующих при условии выполнения требований 1.5.2.

1.4.10 Требование к Плану управления балластными операциями.

Объем и содержание Плана управления балластными операциями могут быть разными в зависимости от типа и назначения объекта, его района эксплуатации.

План управления балластными операциями, в частности, должен содержать:

.1 подробные указания по управлению насосами, балластной системой, подготовке цистерн и воздушных труб к балластным операциям;
.2 указания по предотвращению образования в цистернах избыточного давления или вакуума;
3 информация о влиянии свободных поверхностей жидкостей на остойчивость и о "мертвых" остатках в цистернах, которые могут иметь свободную поверхность;
4 информация о погодных условиях, при которых допускается производить прием и откачку балласта;
5 рекомендованные курсы в районах, подверженных циклонам, тайфунам, ураганам, и в районах, где возможно сильное обледенение;
6 указания по поддержанию достаточной остойчивости при операциях с жидким балластом в соответствии с одобренной Информацией об остойчивости;
7 допускаемые значения минимальной и максимальной осадок;
8 указания по регистрации балластных операций;
9 указания, касающиеся действий в ситуациях, которые могут влиять на процесс приема и откачки балласта, включая ухудшение погодных условий, выход из строя насосов, обострение объекта и т. д.;
10 сведения о времени, необходимом для проведения балластных операций, а также их последовательность;
11 указания по контролю за количеством жидкого балласта;
12 перечень горловин, которые могут быть открыты при приеме балласта, с указанием о необходимости их закрывания после его окончания;
13 указания о приеме балласта в условиях низких температур;
14 перечень условий и обстоятельств, при которых прием и откачка балласта не допускается.

1.5 ОПЫТ КРЕНОВАНИЯ

1.5.1 Кренованию подвергаются новые объекты, указанные в 1.1.1.1, 1.1.1.2 и 1.1.1.3; существующие объекты, указанные в 1.1.1.4, 1.1.1.5, а также понтоны плавучести/остойчивости.
1.5.2 По согласованию с Регистром от кренования могут быть освобождены следующие объекты:
1 относительно которых можно определенно утверждать, что они имеют достаточную остойчивость во всех, регламентируемых настоящей частью вариантах нагрузки на плаву. Это утверждение должно быть основано на сравнении с подобными объектами по архитектурно-конструктивным признакам, главным размерениям, общему расположению и нагрузке масс, исходя из опыта их проектирования, постройки и эксплуатации;
2 у которых при условном увеличении значения проектной аппликаты центра тяжести на 20 % требования настоящей части выполняются (не применяется к судам, совершающим международные рейсы);
Часть IV. Остойчивость

147

кой к нагрузкам, рассмотренным в отдельных расчетных состояниях из числа, указанных в 1.2.3.

Если нагрузка объектов в режиме эксплуатации более опасна в отношении выполнения требований к остойчивости, чем при выполнении морских операций, то такие объекты предъявляются к кренованию при нагрузке масс, возможно более близкой к опасной в соответствии с Информацией об остойчивости.

1.5.6 Метацентрическая высота объекта при креновании должна быть такой, чтобы обеспечивалась безопасность проведения опыта, во всяком случае не менее 0,05 аппликаты центра тяжести.

Для достижения выполнения этого требования, а также для обеспечения благоприятной посадки объекта может быть принят в необходимом количестве балласт. При приеме жидкого балласта цистерны, в которых он находится, должны быть тщательно запрессованы, а их объемы и координаты центров тяжести надежно определены.

1.5.7 Объекты со стабилизирующими колоннами должны подвергаться проверке водоизмещения с интервалами, не превышающими пять лет. Если водоизмещение, полученное при проверке, отличается более, чем на 2 % от расчетного, объект должен быть подвергнут кренованию.

1.5.8 Креновование объекта должно производиться в присутствии инспектора Регистра в соответствии с одобренной Регистром Инструкцией по кренованию конкретного объекта, которая должна разрабатываться на основании Типовой инструкции по кренованию ПБУ/МСП и их модулей, приведенной в Приложении 2 к настоящей части.

1.5.9 Результаты кренования объекта, а также освидетельствования дейдэйта и последующего кренования, если таковые производятся в соответствии с 1.5.4, должны заноситься в Информацию об остойчивости. В вахтенном журнале ежедневно должны вестись записи всех изменений масс в конструкции, механизмах, оборудовании и снабжении, которые влияют на водоизмещение объекта порожнем.

1.5.10 При креновании в качестве крен-балласта используется твердый и жидкок балласт. Перенос крен-балласта с борта на борт может предусматриваться с применением грузовых кранов объектов и береговых кранов.

1.5.11 Общее количество крен-балласта определяется из условия, чтобы при расположении всего крен-балласта на одном борту на отведенных для него местах наклонение объекта составляло бы, в зависимости от особенностей объекта, 1 — 5° и чтобы при этом не происходило изменение формы ватерлинии, а подзоры и подрезы корпуса объекта не выходили из воды.

Начальный крен объекта не должен превышать, как правило, 0,3°.

В Инструкции по кренованию, разрабатываемой для конкретного объекта, указанные углы наклонений могут уточняться в зависимости от реальных условий проведения опыта кренования.

1.5.12 При креновании жидким крен-балластом должны быть известны форма, объемы, центры тяжести объемов цистерн, используемых для крен-балласта, указанные в таблицах их тарировки с учетом набора и оборудования этих цистерн. При этом предпочтительными являются бортовые, симметричные относительно оси наклонения, достаточно глубокие и узкие цистерны, по возможности, правильной формы. Соответствие цистерн их чертежам проверяется на месте.

Жидкий крен-балласт в цистернах должен быть либо надежно запрессован, либо иметь свободные поверхности в пределах прямостоянности цистерн.

1.5.13 Регистру должны быть представлены Протокол опыта кренования, чертежи и расчеты, связанные с обработкой опыта, а также Расчет нагрузки масс объекта.
2 ОБЩИЕ ТРЕБОВАНИЯ К ОСТОЙЧИВОСТИ

2.1 СИСТЕМА УДЕРЖАНИЯ. ОПИРАНИЕ О ГРУНТ

2.1.1 Влияние системы удержания (пассивной — якорной, швартовной или активной — динамической, комбинированной) должно учитываться:
.1 в нормальном состоянии;
.2 в состоянии выживания, если это приводит к худшим в отношении остойчивости оценкам критериев (например, при обрыве одной, нескольких или всех удерживающих связей) и если технически не предусмотрена возможность освобождения объекта от воздействия системы удержания за время до трех часов;
.3 во временном состоянии, если использование системы удержания предусматривается руководством по проведению морских операций.

2.1.2 Система удержания должна быть рассчитана на работу в условиях воздействия плавающего льда, если это оговорено руководством по эксплуатации, а ледовые усилия, воспринимаемые системой удержания, должны быть учтены в расчетах остойчивости.

2.1.3 Методика учета влияния системы удержания на остойчивость должна быть одобрена Регистром, а на программу расчета получено свидетельство Регистра.

2.1.4 Если в рассматриваемой операции предусмотрено проектом или технически возможно касание/опирание сооружения о грунт, то опорная реакция должна быть надлежащим образом учтена в расчетах посадки и остойчивости объекта по методике, одобренной Регистром.

2.2 ВАРИАНТЫ НАГРУЗКИ

2.2.1 Остойчивость должна проверяться, как правило, для всего диапазона возможных вариантов нагрузок во всех расчетных состояниях объекта. При этом должно рассматриваться самое неблагоприятное расположение перемещаемых грузов и оборудования.

При переходе в состояние выживания из нормального или временного рекомендуемого времени перехода должны быть указаны в информационной об остойчивости и в руководстве по морским операциям.

Должны быть учтены также варианты нагрузок, определенные соображениями:
принятых (доусмываемых) расчетных нагрузок на элементы конструкции корпуса объекта, исходя из условий воздействия максимальных внешних нагрузок, предусмотренных частью II "Корпус);
внешних нагрузок, возникающих вследствие существенного изменения посадки объекта вследствие аварийного затопления отсека или группы отсеков;
обеспечения необходимых вертикального клиренса и углубления объекта при его транспортировке и во время выполнения операций в различных расчетных режимах и состояниях.

2.2.2 Расположение оборудования и принятых на объект грузов и запасов должно быть таким, чтобы при переходе объекта в состояние выживания не производилось перемещение или удаление твердых запасов, оборудования или аналогичное изменение нагрузки масс объекта.

Регистр может разрешить перемещение или удаление твердых запасов и оборудования при переходе объекта в состояние выживания при следующих условиях:
.1 выполнены требования к остойчивости, указанные в разд. 3;
.2 объект эксплуатируется в районе, где погодные условия не становятся такими тяжелыми, как это предусмотрено в информационной об остойчивости;
.3 манипуляции с нагрузкой масс осуществляются в течение короткого промежутка времени в интервале достоверного прогноза погоды.

При этом допускаемые районы эксплуатации, погодные условия и варианты нагрузки должны указываться в информационной об остойчивости.

2.2.3 В число выбранных вариантов нагрузки должны быть включены такие, которые соответствуют:
.1 наименьшему коэффициенту остойчивости $g\Delta h_0$ (где g — ускорение силы тяжести, m/c^2, Δ — водоизмещение, t; h_0 — начальная метацентрическая высота при наклонении относительно самой неблагоприятной оси, m);
.2 наименьшему возвышению над ватерлинией отверстий, через которые вода может попасть в отсеки, заливание которых приведет к изменению ординат кривой восстанавливающих моментов более, чем на 5 %;
.3 наименьшему погружению под ватерлинией отверстий, через которые вода может попадать в отсеки, заливание которых приведет к изменению ординат кривой восстанавливающих моментов более, чем на 5 %;
.4 наихудшим значениям критериев остойчивости в неповрежденном состоянии;
2.2.4 В расчетах остойчивости и посадки при постройке объекта должны учитываться технологические вырезы, через которые вода может попасть в водонепроницаемые отсеки.

2.2.5 Морские операции должны быть рассмотрены по этапам и определены наиболее опасные варианты нагрузки для каждого этапа.

2.2.6 При операциях перемещения, транспортировки и спуска объекта должны быть рассмотрены посадка и остойчивость обеспечивающих судов, участвующих в операции, с учетом нагрузок, которые действуют со стороны обеспечиваемого объекта.

2.2.7 Если морская операция или эксплуатация объекта осуществляется в зимней сезонной зоне, должен быть рассмотрен вариант нагрузки с обледенением и снегом в соответствии с 2.5.5.

2.3 КРИВЫЕ ВОССТАНАВЛИВАЮЩИХ МОМЕНТОВ

2.3.1 Кривые восстанавливающих моментов M_{ϕ}, кН·м, объекта должны быть вычислены и построены:
1. для всех рассматриваемых вариантов нагрузки при наклонениях объекта относительно самой неблагоприятной в отношении остойчивости оси;
2. с учетом влияния свободных поверхностей жидкостей (грузов, запасов, балласта, жидкости в цистернах успокоителей качки и т. д.) в соответствии с Планом управления балластными операциями или Руководством по проведению морских операций.

2.3.2 Кривые восстанавливающих моментов должны быть вычислены и построены по методике, одобренной Регистром, для объемного водоизмещения V, м³:
1. для объекта, не удерживаемого от дрейфа системой удержания,

 $$ V = \frac{1}{\rho} \left(\Delta - P_{V} - P_{R} \right); $$

 (2.3.2.1)

2. для объекта, удерживаемого от дрейфа системой удержания,

 $$ V = \frac{1}{\rho} \left(\Delta + \sum_{i} P_{Pi} - P_{V} - P_{S} \right). $$

 (2.3.2.2)

В этих формулах в далее по тексту приняты следующие обозначения:

- Δ — масса объекта, т;
- P_{V} — вертикальная составляющая ветровой нагрузки, кН;
- P_{R} — вертикальная составляющая реакции, возникающей при дрейфе объекта относительно воды, кН;
- P_{Pi} — вертикальная составляющая усилия от i-го элемента системы удержания $(i = 1, \ldots, n)$, кН;
- P_{S} — вертикальная составляющая усилия от течения, кН;
- ρ — плотность забортной воды, т/м³.

Схема воздействия на объект указанных сил приведена на рис. 2.3.2, где:

- действуют восстанавливающий момент, силы веса и поддержания (рис. 2.3.2, а);
- действует ветровая нагрузка: V_{Tu} — истинная скорость ветра; V_{T} — скорость дрейфа относительно грунта дна (путевая скорость), V_{Tr} — кажущаяся скорость ветра (рис. 2.3.2, б);
- действуют усилия от дрейфа и течения: $V_{T} \neq 0$, $V_{R} = V_{T} - V_{S}$, V_{S} — скорость течения (рис. 2.3.2, в);
- действует усилие от течения $V_{T} = 0$ (рис. 2.3.2, г);
- действует усилие от i-го элемента системы удержания (положительное направление) (рис. 2.3.2, д).

2.4 КРИВЫЕ НАКЛОНЯЮЩИХ МОМЕНТОВ

2.4.1 Составляющие наклоняющих моментов M_{ϕ}, кН·м, объекта должны быть вычислены и построены:

2.4.1.1 Для всех рассматриваемых вариантов нагрузки объекта должны быть вычислены и построены кривые наклоняющих моментов M_{ϕ}, кН·м, создаваемых ветровым моментом M_{Tu}, кН·м, действующим перпендикулярно к самой
Правила классификации, постройки и оборудования ПБУ/МСП

Рис. 2.3.2 Схемы внешних воздействий в плоскости наклона объекта

неблагоприятной в отношении остойчивости оси наклона объекта, а также:

1) для объектов, не удерживаемых от дрейфа, возникающего под действием ветра, должна быть учтена гидродинамическая часть наклоняющего момента M_R, кН·м, так что

$$M_R = M_v + M_R + (P_v - P_R)(z_d - d_f)\sin\varphi + y_x\cos\varphi$$ (2.4.1.1)

где d_f — осадка объекта, в м, по оси Z, соответствующая водонизмещению V и углу наклона φ.
2 для объектов, удерживаемых от дрейфа системой удержания, должны быть вычислены и учтены составляющие усилий, создаваемые системой удержания и течением, так что

\[M_h = M_v + M_s + (P_r - P_s)\frac{h_g - h_f \cdot \sin \phi + y_g \cdot \cos \phi}{2} + M_p, \]

(2.4.1.1.2-1)

где \(M_s, P_s \) — момент и вертикальная составляющая усилий от течения, кНм, соответственно;

\[M_p = \sum F_p \left[y_g \cdot \sin \phi + (d - z_i) \cdot \cos \phi \right] - \sum F_p \frac{(z_g - z_f) \cdot \sin \phi - (y_g - y_f) \cdot \cos \phi}{2}, \]

(2.4.1.1.2-2)

где \(F_p \) — горизонтальная составляющая усилия от \(i \)-го элемента системы удержания, кН;

\(z_i, y_i \) — координаты точки приложения усилия \(i \)-го элемента удержания, м.

.3 для объектов, удерживаемых на якорях в дрейфующих льдах, должны быть вычислены и учтены составляющие усилий от дрейфующих льдах, должны быть вычислены и учтены составляющие усилий от ледовой нагрузки, по методике, одобренной Регистром.

2.4.1.2 Для СС следует также учитывать наклоняющий момент от сил \(P_{v}, \) возникающих при касании «юбки» грунта дна.

2.4.1.3 Наклоняющие моменты \(M_v, M_R, M_S \), кНм, и соответствующие им усилия должны определяться, как правило, методами физического моделирования по одобренной Регистром методикам.

При отсутствии данных физического моделирования допускается определять ветровую нагрузку и ее плечо относительно ватерлинии, а также усилия и моменты от дрейфа и течения, как указано в 2.4.2 — 2.4.4, а ледовую нагрузку — по методике, одобренной Регистром.

2.4.2 Ветровой наклоняющий момент.

2.4.2.1 Ветровая нагрузка (горизонтальная составляющая силы ветрового воздействия) \(F_v \), кН, при использовании данных физического моделирования определяется как

\[F_v = C_v \frac{D}{2} A_v V_3^2, \]

(2.4.2.1-1)

где \(C_v \) — коэффициент ветрового сопротивления \(F_v \), отнесенный к площади парусности объекта \(A_v, \) м², и к скоростному напору ветра \(\frac{D}{2} V_3^2, \) кПа, при заданном в (2.5.1.1) профиле скорости ветра \(V_3 \) над морем.

П р и м е ч а н и е: В случае, если коэффициент \(C_v \) отнесен к площади парусности в наклоненном на угол \(\phi \) положении, то это должно быть учтено в расчете.

Плечно приложения ветровой нагрузки \(F_v \) относительно ватерлинии \(h_p \) м, определяется как

\[h_p = \frac{M_v}{F_v}, \]

(2.4.2.1-2)

где \(M_v \) — ветровой наклоняющий момент относительно ватерлинии, кНм.

Расчетная плотность воздуха \(\rho_A \), т/м³, должна определяться по формуле

\[\rho_A = 3.5 \times 10^3 \frac{p}{273 + t}, \]

(2.4.2.1-3)

при таких значениях атмосферного давления \(p \), кПа, и температуры \(t \), °С, характерных для рассматриваемого района (и сезона, если речь идет о морских операциях), которые приводит к наибольшим значениям \(\rho_A \).

2.4.2.2 Для учета наружности мелких деталей, не устанавливаемых на модели при физическом моделировании, следует ветровую нагрузку \(F_v \) и момент \(M_v \) увеличивать соответственно на 2 и 5 %.

2.4.2.3 При отсутствии данных физического моделирования для построения круговой диаграммы может быть использован прием, изложенный в Приложении 3 к настоящей части. Для этого ветровая нагрузка на объект должна быть предварительно определена при воздействии ветра от четырех направлений, отличящихся на 90°, а затем выполнен расчет ветровой нагрузки по указаниям упомянутого приложения.

При приближенных расчетах ветровая нагрузка и плечо ее приложения определяются как

\[F_v = D A V_3^2, \]

(2.4.2.3-1)

где

\[A_v = \sum j C_{s_j} C_{h_{j}} A_{v_{j}}, \]

(2.4.2.3-2)

и

\[h_p = \frac{\sum j C_{s_j} C_{h_{j}} A_{v_{j}}}{A_v}, \]

(2.4.2.3-3)

где \(A_v \) — площадь парусности, м²; \(A_{v_{j}} \) — площадь \(j \)-го элемента объекта, м²; \(h_{v_{j}} \) — высота над ватерлиней центра площади \(A_{v_{j}}, \) м; \(C_{h_{j}} = (V_3^2/V_3) \) — коэффициент высоты (зоны), определяемый при \(h_p = h_{v_{j}} \) на основании формулы (2.5.1.1), а при \(h_{v_{j}} < 10,0 \) м принимаемый равным единице или по таблице 2.4.2.3-1 для характерных скоростей ветра; \(C_{s_j} \) — коэффициент формы (обтекания) элемента, в таблице 2.4.2.3-2 приведены коэффициенты \(C_{s_j} \) для некоторых элементов парусности.

2.4.2.4 Для объектов с прямоугольным верхним корпусом без больших вырезов при отсутствии результатов физического моделирования ветровой наклоняющий момент допускается определять по методике, изложенной в Приложении 4 к настоящей части.

2.4.3 Гидродинамическая часть наклоняющего момента.

2.4.3.1 Для объекта, не удерживаемого от дрейфа, плечно приложения силы сопротивления дрейфу \(h_R \) относительно ватерлинии и вертикальная составляющая \(P_R \) сил, действующих на объект при дрейфе, определяются физическим моделированием по одобренной Регистром методике.

Часть IV. Остойчивость
Правила классификации, постройки и оборудования ПБУ/МСП

Таблица 2.4.2.3-1

<table>
<thead>
<tr>
<th>Высота над уровнем моря, м</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>1,182</td>
<td>1,208</td>
<td>1,242</td>
</tr>
<tr>
<td>30</td>
<td>1,296</td>
<td>1,339</td>
<td>1,396</td>
</tr>
<tr>
<td>40</td>
<td>1,379</td>
<td>1,435</td>
<td>1,510</td>
</tr>
<tr>
<td>50</td>
<td>1,446</td>
<td>1,513</td>
<td>1,602</td>
</tr>
<tr>
<td>60</td>
<td>1,502</td>
<td>1,578</td>
<td>1,680</td>
</tr>
<tr>
<td>70</td>
<td>1,550</td>
<td>1,633</td>
<td>1,746</td>
</tr>
<tr>
<td>80</td>
<td>1,592</td>
<td>1,682</td>
<td>1,805</td>
</tr>
<tr>
<td>90</td>
<td>1,630</td>
<td>1,726</td>
<td>1,858</td>
</tr>
<tr>
<td>100</td>
<td>1,664</td>
<td>1,766</td>
<td>1,905</td>
</tr>
<tr>
<td>110</td>
<td>1,695</td>
<td>1,802</td>
<td>1,949</td>
</tr>
<tr>
<td>120</td>
<td>1,723</td>
<td>1,836</td>
<td>1,990</td>
</tr>
<tr>
<td>130</td>
<td>1,750</td>
<td>1,867</td>
<td>2,027</td>
</tr>
<tr>
<td>140</td>
<td>1,775</td>
<td>1,896</td>
<td>2,062</td>
</tr>
<tr>
<td>150</td>
<td>1,798</td>
<td>1,924</td>
<td>2,095</td>
</tr>
<tr>
<td>160</td>
<td>1,820</td>
<td>1,949</td>
<td>2,126</td>
</tr>
<tr>
<td>170</td>
<td>1,840</td>
<td>1,973</td>
<td>2,155</td>
</tr>
<tr>
<td>180</td>
<td>1,860</td>
<td>1,996</td>
<td>2,183</td>
</tr>
<tr>
<td>190</td>
<td>1,879</td>
<td>2,018</td>
<td>2,209</td>
</tr>
<tr>
<td>200</td>
<td>1,896</td>
<td>2,039</td>
<td>2,235</td>
</tr>
<tr>
<td>210</td>
<td>1,913</td>
<td>2,059</td>
<td>2,259</td>
</tr>
<tr>
<td>220</td>
<td>1,929</td>
<td>2,078</td>
<td>2,282</td>
</tr>
<tr>
<td>230</td>
<td>1,945</td>
<td>2,097</td>
<td>2,304</td>
</tr>
<tr>
<td>240</td>
<td>1,960</td>
<td>2,114</td>
<td>2,326</td>
</tr>
<tr>
<td>250</td>
<td>1,974</td>
<td>2,131</td>
<td>2,346</td>
</tr>
</tbody>
</table>

Примечание. Промежуточные значения высот определяются линейной интерполяцией.

Таблица 2.4.2.3-2

<table>
<thead>
<tr>
<th>Элементы парусности</th>
<th>Сф,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ветровая площадь</td>
<td>0,4</td>
</tr>
<tr>
<td>Верхний корпус с гладкими поверхностями (форма корпуса в плане):</td>
<td></td>
</tr>
<tr>
<td>равносторонний треугольник при направлении действия ветра:</td>
<td></td>
</tr>
<tr>
<td>по биссектрисе угла</td>
<td>0,65</td>
</tr>
<tr>
<td>перпендикулярно грань</td>
<td>1,01</td>
</tr>
<tr>
<td>квадрат при направлении действия ветра:</td>
<td>0,78</td>
</tr>
<tr>
<td>по биссектрисе угла</td>
<td>0,93</td>
</tr>
<tr>
<td>перпендикулярно грань</td>
<td>0,93</td>
</tr>
<tr>
<td>равносторонний пятиугольник при направлении действия ветра:</td>
<td></td>
</tr>
<tr>
<td>по биссектрисе угла</td>
<td>0,76</td>
</tr>
<tr>
<td>перпендикулярно грань</td>
<td>0,70</td>
</tr>
<tr>
<td>равносторонний шестиугольник при направлении действия ветра:</td>
<td></td>
</tr>
<tr>
<td>по биссектрисе угла</td>
<td>0,71</td>
</tr>
<tr>
<td>перпендикулярно грань</td>
<td>0,63</td>
</tr>
<tr>
<td>круг. с острыми кромками диаметром R и высотой D</td>
<td>0,61</td>
</tr>
<tr>
<td>со скругленными кромками при радиусе, равном половине высоты</td>
<td>0,32</td>
</tr>
<tr>
<td>прямоугольник с отношением сторон:</td>
<td>0,89</td>
</tr>
<tr>
<td>(\lambda = R/L \leq 0,5)</td>
<td>0,96</td>
</tr>
<tr>
<td>(\lambda = R/L = 1,5)</td>
<td>1,1</td>
</tr>
<tr>
<td>Верхний корпус прямоугольной формы в плане с подпалубными балками</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Продолжение табл. 2.4.2.3-2

<table>
<thead>
<tr>
<th>Элементы парусности</th>
<th>Сф,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Верхний корпус с верхним строением</td>
<td>0,63</td>
</tr>
<tr>
<td>(\beta = 0^\circ)</td>
<td>1,2</td>
</tr>
<tr>
<td>(\beta = 180^\circ)</td>
<td>0,7</td>
</tr>
<tr>
<td>Надстройки, рубки, кабины и другие коробчатые конструкции, располагаемые:</td>
<td></td>
</tr>
<tr>
<td>по периметру верхней палубы</td>
<td>1,2</td>
</tr>
<tr>
<td>в центральной части палубы</td>
<td>1,2</td>
</tr>
<tr>
<td>Порядок буровой вышки</td>
<td>1,2</td>
</tr>
<tr>
<td>Гладкие цилиндрические элементы (раскосы, стабилизирующие колонны, опорные цилиндрические колонны)</td>
<td>1,2</td>
</tr>
<tr>
<td>верхний корпус с верхним строением</td>
<td>1,2</td>
</tr>
<tr>
<td>по периметру верхней палубы</td>
<td>1,2</td>
</tr>
<tr>
<td>направление действия ветра:</td>
<td></td>
</tr>
<tr>
<td>равносторонний шестиугольник при направлении действия ветра:</td>
<td></td>
</tr>
<tr>
<td>по биссектрисе угла</td>
<td>0,93</td>
</tr>
<tr>
<td>перпендикулярно грань</td>
<td>0,93</td>
</tr>
<tr>
<td>квадрат при направлении действия ветра:</td>
<td>0,78</td>
</tr>
<tr>
<td>по биссектрисе угла</td>
<td>0,78</td>
</tr>
<tr>
<td>перпендикулярно грань</td>
<td>0,78</td>
</tr>
<tr>
<td>равносторонний пятиугольник при направлении действия ветра:</td>
<td></td>
</tr>
<tr>
<td>по биссектрисе угла</td>
<td>0,76</td>
</tr>
<tr>
<td>перпендикулярно грань</td>
<td>0,70</td>
</tr>
<tr>
<td>равносторонний шестиугольник при направлении действия ветра:</td>
<td></td>
</tr>
<tr>
<td>по биссектрисе угла</td>
<td>0,71</td>
</tr>
<tr>
<td>перпендикулярно грань</td>
<td>0,63</td>
</tr>
<tr>
<td>круг. с острыми кромками диаметром R и высотой D</td>
<td>0,61</td>
</tr>
<tr>
<td>со скругленными кромками при радиусе, равном половине высоты</td>
<td>0,32</td>
</tr>
<tr>
<td>прямоугольник с отношением сторон:</td>
<td>0,89</td>
</tr>
<tr>
<td>(\lambda = R/L \leq 0,5)</td>
<td>0,96</td>
</tr>
<tr>
<td>(\lambda = R/L = 1,5)</td>
<td>1,1</td>
</tr>
<tr>
<td>Верхний корпус прямоугольной формы в плане с подпалубными балками</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Примечания:
1. Площадь парусности составных элементов объекта \(A_p \) является характерной площадью, однозначно связанной с величиной коэффициента сопротивления \(C_f \).
2. Для конструкций со сплошными стенками (верхний корпус, надстройки, рубки и т. д.) в качестве характерной площади принимается площадь проекций всех элементов, находящихся внутри объема (свечи буровой вышки, стрелы кранов), а также элементов наветренной грани с учетом площади затенения.
3. Площадь проекции ферменных конструкций определяется либо площадью проекции ферменных элементов наветренной грани с учетом площади незатененной части, либо умножением габаритной площади проекции ферменных элементов наветренной грани на коэффициент затенения, который принят равным 0,45 для буровой вышки и 0,3 — для трехгранных опорных колонн, а также 0,2 для четырехгранных опорных колонн, стрел кранов и других ферменных конструкций из трубчатых элементов.
4. При расчете площади парусности при встречном и боковом ветре объектов с гладкими опорными или стабилизирующими колоннами круглого и квадратного сечений, а также с ферменными опорными колоннами в расчет должны включаться площади проекций колонн с учетом эффекта затенения.

Коэффициент затенения для колонн с круглым сечением определяется по формуле:
\[K_3 = \exp(-0,002 + 1,033/\l^2 - 20,4/\l^2), \]

где \(\l = d_i \) — диаметр колонны; \(d_i \) — диаметр колонны.

Коэффициент затенения для колонн с квадратным сечением определяется по формуле:
\[K_3 = \exp(0,005 - 0,79/\l^2 - 30,4/\l^2), \]
Часть IV. Остойчивость

153

Окончание табл. 2.4.2-2

где \(\gamma = h/b; \)

\[b \] — ширина грани колонны.

Коэффициент затенения для трехгранных ферменных колонн принимается: \(K_3 = 1/6b. \)

Коэффициент затенения для четырехгранных ферменных сечений элементов (рубки и надстройки корабельной формы) расположены на палубе друг за другом в направлении действия ветра, учет затенения производится путем умножения площади подветренного элемента на коэффициент затенения \(K_3 = 1/6b. \)

Если два одинаковых плохообтекаемых конструктивных элемента (рубки и надстройки коробчатой формы) расположены на палубе друг за другом в направлении действия ветра, учет затенения производится путем умножения площади подветренного элемента на коэффициент затенения \(K_3 = 1/6b. \)

6. Если два одинаковых плохообтекаемых конструктивных элемента (рубки и надстройки коробчатой формы) расположены на палубе друг за другом в направлении действия ветра, учет затенения производится путем умножения площади подветренного элемента на коэффициент затенения \(K_3 = 1/6b. \)

7. При промежуточных значениях \(q_{d,i} \) значения \(C_{S,i} \) определяются линейной интерполяцией.

8. Коэффициент сплошности представляет собой произведение коэффициента заполнения на коэффициент затенения.

2.4.3.2 При отсутствии результатов физического моделирования допускается приближенное определение плеча приложения силы сопротивления дрейфу (вертикальную составляющую сил, действующих на объект при дрейфе, в этом случае допускается принимать равной нулю):

1. Для объектов, корпус которых имеет форму, близкую к традиционной форме обводов судов или барж (при \(B/d = 2,0 — 6,0 \)), при наклонении относительно продольной оси допускается определение плеча сопротивления дрейфу \(h_R, m \), по формуле:

\[h_R = d(B/d - 3,00 - 0,02(B/d - 5,35)^2) \]

где \(d, B \) — соответственно осадка и ширина корпуса по ватерлинии, м.

2. Для объектов с подводной частью, состоящей из плохообтекаемых \(j \) — элементов, имеющих площадь проекции на вертикальную плоскость \(A_k, m^2 \), плечно сопротивления дрейфу может быть определено как:

\[h_R = \sum C_{R,i} A_R h R, \]

где \(C_{R,i} \) могут быть приняты равными коэффициентам \(C_S \) для соответствующих форм элементов. При рассмотрении элементов следует учитывать затенение.

2.4.3.3 Момент (плечно) и составляющие усилий от течения для объекта, удерживаемого от дрейфа системой удержания, определяются аналитически равными \(C_{S,i} \) с учетом различий в знаках (см. рис. 2.32).

2.4.4 Момент и усилия от системы удержания.

Горизонтальное усилие \(F_R \), действующее на объект со стороны системы удержания при отсутствии контакта самого объекта с грунтом принимается равным сумме горизонтальных со- стоящих ветровой нагрузки \(F_V \) и нагрузки от течения \(F_S \) и обратным им по направлению:

\[F_R = F_V + F_S. \]

Наклоняющий момент от системы удержания должен вычисляться с учетом вертикальной составляющей этих сил и соответствующего изменения гидростатических сил. Угловое плечно горизонтальной составляющей сил от системы удержания определяется как:

\[h_R = M_R/(F_V + F_S). \]

Расчет влияния системы удержания должен выполняться по методике, одобренной Регистром.

2.5 РАСЧЕТНЫЕ ВНЕШНИЕ (ПРИРОДНЫЕ) УСЛОВИЯ

При выборе параметров расчетных схем внешних воздействий на объект проектант (по согласованию с заказчиком) должен руководствоваться учетом таких обстоятельств, как:

- различия в расчетных режимах;
- особенности географических районов и продолжительность постройки, морских операций, перехода/перегоня, эксплуатации объекта;
- сезонность и местные особенности внешних воздействий (ветра, течений, волнения, обледенения и т. п.);
- защищенность акватории;
- возможные ограничения по гидрометеоусловиям;
- достоверность прогнозов погоды;
- специфические особенности объекта и т. п.

2.5.1 Ветер.

2.5.1.1 Коэффициент высоты (зоны) \(C_{H,i} = (V_{h,i}/V_{p,i})^2 \), учитывая увеличение скорости ветра \(V_{h,i} \) м/с, в зависимости от высоты \(h_{ij} \), определяется по формуле:

\[C_{H,i} = (V_{h,i}/V_p)^2 = \left[1 + 2,5(h_{ij}/10) \right] \sqrt{(0,71 + 0,071V_p)/10} \]

где \(V_p \) — расчетная скорость ветра (средняя за 10 мин скорость ветра на высоте 10 м над поверхностью моря), м/с;

\(h_{ij} \) — скорость ветра в зоне на высоте \(h_{ij} \) над поверхностью моря, м/с.

2.5.1.2 Расчетная скорость ветра назначается проектантом по согласованию с владельцем объекта на основании данных от признанных источников гидрометеорологической информации о максимальном значении возможной скорости ветра на разных этапах жизненного цикла объекта:
1. Правила классификации, постройки и оборудования ПБУ/МСП

1.1.3 Если отсутствуют данные, указанные в 2.5.1.2, то расчетная скорость ветра принимается:
в нормальном состоянии на открытых акваториях — 36 м/с; а на защищенных акваториях — 25.8 м/с;
в состоянии выживания — в соответствии с Приложением 5 к настоящей части, а при отсутствии данных — 51,5 м/с;
во временном состоянии, в состоянии перехода/перегона, в режимах постройки и подготовки на плаву при продолжительности операции не более трех часов — по Инструкции завода-строителя (с учетом местных и сезонных условий), а при большей продолжительности — 25.8 м/с на защищенных акваториях и 36 м/с на открытых акваториях.

2.5.2 Волна.

2.5.2.1 Воздействие волнения учитывается только в безледовые сезоны.

2.5.2.2 Волнение описывается и задается следующими расчетными параметрами:
\(h_{3%} \) — высотой волны 3%-ной обеспеченности, м;
\(T \) — средним периодом крупных волн, с;
\(\chi \) — генеральным направлением бега волн.

Значения \(h_{3%} \), \(T \) и других параметров спектральной плотности волнения должны приниматься соответствующими расчетной силе ветра с учетом местных особенностей волнобразования, а при проведении морских операций — также и с учетом сезона.

Расчетные параметры волнения должны быть согласованы с Регистром и указаны в Информации об остойчивости и Руководстве по проведению морских операций.

2.5.2.3 Расчетная высота волнения должна приниматься (если не указано иное) по режимному (многолетнему) распределению высот волн \(h_{3%} \), как высота, имеющая 50%-ную обеспеченность при расчетной силе ветра.

2.5.2.4 Во временном состоянии расчетная высота волн назначается проектантом по согласованию с владельцем объекта, но не должна превышать значения, указанные ниже:
на защищенных акваториях — 0,5 м;
на открытых акваториях — 2,0 м.

2.5.2.5 В состоянии выживания расчетные высоты волн должны приниматься для рассма-
Судов, а объект эксплуатируется в зимней сезонной зоне, остойчивость объекта и обеспечивающих судов, помимо основных вариантов нагрузки, должна быть проверена с учетом обледенения и снега.

2.5.5.2 В расчетах остойчивости с учетом обледенения и снега в первом приближении можно пользоваться следующими рекомендациями:

1. Для объектов, находящихся в зимних сезонных зонах севернее параллели 66°30'N и южнее параллели 60°00'S, а также в зимнее время в Беринговом море, Охотском море и в Татарском проливе следует принимать:
 - массу льда на квадратный метр площади горизонтальной проекции открытых палуб (независимо от наличия навесов) при высоте от ватерлинии до 10 м равной 30 кг, при высоте от 10 до 30 м — 15 кг, при высоте более 30 м — допускается не учитывать;
 - массу снега на квадратный метр площади указанных выше палуб (независимо от высоты): 100 кг для необитаемых и 10 кг для обитаемых объектов, либо при установленном географическом районе размещения тех же объектов — в соответствии с рис. 2.5.5.2.1;
 - массу льда на квадратный метр площади парусности при высоте от ватерлинии до 10 м равной 15 кг, при высоте от 10 до 30 м — 7,5 кг, при высоте более 30 м — допускается не учитывать;

2. В оставшихся районах зимней сезонной зоны, а также для объектов, находящихся в Азовском море, в Черном море севернее параллели 44°00'N и в Каспийском море севернее параллели 42°00'N нормы обледенения и снега следует принимать вдвое меньшими по сравнению с установленными в 2.5.5.2.1 за исключением районов, в которых по согласованию с Регистром обледенение и снег могут не учитываться.

2.5.5.3 Для учета парусности несплошных поверхностей у сооружений, подвергающихся обледенению, площадь и момент парусности сплошных поверхностей относительно основной плоскости, увеличиваются соответственно на 10 и 20 % или 7,5 и 15 % в зависимости от норм обледенения, указанных выше.

2.5.5.4 Для снижения массы льда и снега предусматривать при проектировании объектов специальные технические средства.

Рис. 2.5.5.2.1
3 КРИТЕРИИ ОСТОЙЧИВОСТИ

3.1 ОБЩИЕ ТРЕБОВАНИЯ

3.1.1 Критерии остойчивости, приведенные в настоящем разделе, являются обязательными для всех объектов. Эти критерии определяются в соответствии с рис. 3.1.1-1 при учете качки объекта и в соответствии с рис. 3.1.1-2, если качка не учитывается.

Рис. 3.1.1-1 Диаграмма статической остойчивости с учетом качки:

Рис. 3.1.1-2 Диаграмма статической остойчивости без учета качки

Искомые площади на рис. 3.1.1-1 и 3.1.1-2 определяются:

площадь A — фигурой cde (либо cde₂f₁, если φ₁ < φ₂);
площадь B — фигурой ocef (либо ocef₁f₁, если φ₁ < φ₂);
площадь C — фигурой abc.

3.1.2 При проверке остойчивости объектов по согласованию с Регистром могут быть применены альтернативные критерии остойчивости при условии сохранения равномерного уровня безопасности, учитываемого:

- реально возможные внешние (природные) воздействия на объект с учетом их особенностей в конкретных районах в течение установленных сроков эксплуатации;
- вероятность возникновения обстоятельств, недостаточно учитываемых в расчетах, введением соответствующих коэффициентов безопасности.

3.1.3 Начальная метацентрическая высота должна соответствовать требованиям, изложенными ниже.

Исправленная начальная метацентрическая высота \(h₀ \) всех типов объектов, соответствующая наклонению вокруг любой горизонтальной оси, должна быть не менее:

- при проведении морских операций — 0,3 м;
- при эксплуатации — 0,6 м;
- при эксплуатации объектов со стабилизирующим колоннами — 1,0 м;
- после окончания операции спуска с баржи объект должен оставаться на плаву в устойчивом равновесии с положительной метацентрической высотой.

3.1.4 При наличии отверстий, считающихся открытыми:

\[
\frac{m}{A} \geq 60 \frac{m}{A} \frac{L}{fₚ} \geq 60 \frac{m}{A} \frac{L}{fₚ} , \text{м,} \quad (3.1.4-1)
\]

где \(m/A \) — отношение массы наибольшего перемещаемого по объекту груза к водоизмещению рассматриваемого варианта нагрузки, но не менее 0,01;

- допускаемый угол наклона, град, равный \(\phiₚ = \frac{\phi₁}{\phi₁ + \phi₂} \) (3.1.4-2), но не более 15° (фₚ — наименьший из углов заливания через отверстия, считающиеся открытыми);
- \(b \) — горизонтальное расстояние от оси наклона до отверстия при угле наклона, равном нулю.

3.1.5 Предметом специального рассмотрения Регистром являются остойчивость:

- баржи во время спуска объекта и после спуска; спускаемого с баржи объекта;
- судов и плавучих средств (барж, ОБ, понтонов плавучести/остойчивости и т. п.), участвующих в морских операциях;
- ПС с избыточной плавучестью и предварительно натянутой ЯСУ.
Часть IV. Остойчивость

3.2 РАСЧЕТНАЯ АМПЛИТУДА КАЧКИ

3.2.1 Расчетная амплитуда качки объекта φr — амплитуда колебаний относительно рассматриваемой оси наклонения, вызванных ветровым волнением, набегающим на объект от направления, перпендикулярного оси наклонения. Расчетная амплитуда качки имеет 1,1%-ную обеспеченность и принимается равной:

\[φ_r = 3\sqrt{D_r}, \quad (3.2.1) \]

где \(D_r \) — дисперсия качки, град² (рад²).

3.2.2 Расчетная амплитуда качки должна определяться с учетом глубины воды (если глубина воды меньше \(0,03gT^2 \)), а при использовании системы удержания — с учетом ее влияния. В состоянии выживания должны быть определены амплитуды качки при различных вариантах повреждения системы удержания.

3.2.3 Расчетная амплитуда качки должна определяться по одобренной Регистром методике.

3.2.4 При использовании физического моделирования для определения амплитуды качки Регистру должны быть представлены на одобрение следующие методики:

- испытаний моделей объектов;
- использования результатов модельных испытаний для оценки амплитуды качки.

3.2.5 В качестве одного из критериев остойчивости рекомендуется рассматривать возвышение над взволнованной поверхностью моря нижней кромки отверстий, считающихся открытыми, \(h_f \), м, и принимаемое по следующей формуле, но не менее 0,6 м:

\[h_f = h_{f,0} - 3\sqrt{D_n}, \quad (3.2.5) \]

где \(h_{f,0} \) — возвышение отверстия над поверхностью моря на тихой воде, м;
\(D_n \) — дисперсия погружений нижней кромки отверстий на волнении, м².

3.3 ТРЕБОВАНИЯ К ДИАГРАММЕ СТАТИЧЕСКОЙ ОСТОЙЧИВОСТИ

3.3.1 Кривая восстанавливающих моментов \(M_φ \), кН’м, должна быть положительной во всем диапазоне углов наклонения от угла \(φ = 0 \) до угла второго пересечения \(φ_2 \) кривой \(M_φ \) с кривой наклоняющихся моментов \(M_n \), кН’м.

3.3.2 Площадь под кривой \(M_n \) от угла первого пересечения \(φ_1 \) до угла второго пересечения \(φ_2 \) (или до угла залывания \(φ_f \) через отверстие, считающееся открытым, если \(φ_f < φ_2 \)) без учета качки должна быть более площади под кривой \(M_n \), ограниченной теми же углами, но крайней мере в 1,3 или 1,4 раза в зависимости от типа объекта; при учете качки соотношение площадей должно быть согласовано с Регистром.

3.3.3 Угол наклонения от совместного действия ветра и качки на подветренную сторону \(φ_{02} \), определяемый из условия равенства площадей \(A (ed_1) \) и \(C (abc) \) (см. рис. 3.1.1-1), не должен превышать угла максимума \(φ_{02} \) кривой \(M_φ \).

3.3.4 Кривая \(M_φ \) должна пересекать кривую \(1,7M_n \), или, по крайней мере, касаться ее.

3.3.5 Во всех случаях шлейф статической остойчивости \(l_o = M_φ/gD_n, \) м, должны быть не менее приведенных в табл. 3.3.5 при \(h_o = 0,3 \) м.

<table>
<thead>
<tr>
<th>(φ_{02}), град</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_o), м</td>
<td>0</td>
<td>0,060</td>
<td>0,151</td>
<td>0,242</td>
<td>0,264</td>
<td>0,257</td>
<td>0,220</td>
<td>0,156</td>
<td>0,077</td>
<td>0</td>
</tr>
</tbody>
</table>

3.4 ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К ОСТОЙЧИВОСТИ

3.4.1 Полупогружные объекты.

3.4.1.1 В дополнение к требованиям 2.2 остойчивость полупогружных объектов должна быть проверена также для следующих вариантов нагрузки:

- в нормальном состоянии, с максимальным количеством технологических запасов в верхнем корпусе, с полным запасом бурильных труб, размещенных на штатных местах;
- в состоянии выживания, в условиях, когда связь со скважиной прервана, бурильные трубы закреплены на стеллажах, объект переведен на новую осадку, технологические запасы перемещены (при необходимости) в понтоны и колонны;
- при переходе/перегоне с максимальным количеством походных запасов;
- при всплытии/погружении с максимальным количеством походных запасов.

3.4.1.2 Остойчивость полупогружных объектов считается достаточной, если удовлетворяются следующие требования:

3.4.1.2.1 при нагрузке согласно 3.4.1.1.3 максимум кривой \(M_φ \) должен...
находиться при угле наклонения большем, чем амплитуда качки при волнении, превышающем на 1 балл волнение, на которое рассчитывается переход/перегон объекта.

3.4.2 Самоподъемные объекты.

3.4.2.1 В дополнение к требованиям 2.2 остойчивость самоподъемных объектов должна быть проверена также при переходе/перегоне при следующих вариантах нагрузки:

1. с опорными колоннами, поднятыми максимально вверх, с полными походными технологическими запасами и с 10 % судовых запасов;

2. с опорными колоннами, опущенными в воду на 30 % их длины и с полными походными запасами.

3.4.2.2 Остойчивость самоподъемных объектов считается достаточной, если при нагрузках согласно 3.4.2.1 площади В, С (см. рис. 3.1.1-2) соответствуют следующему условию, а при учете качки (см. рис. 3.1.1-1) соотношение площадей должно быть согласовано с Регистром:

\[(A + B) \geq 1.4(B + C)\] \hspace{1cm} (3.4.2.2)

3.4.3 Погруженные объекты.

Остойчивость погруженных объектов должна проверяться в состоянии перехода/перегона и при операциях погружения/всплытия. При этом площади A, B, C (см. рис. 3.1.1-2) должны соответствовать условию (3.4.1.2.1), а при учете качки (см. рис. 3.1.1-1) соотношение площадей должно быть согласовано с Регистром.

3.4.4 Морские суда.

3.4.4.1 Остойчивость морских судов, на которые распространяются положения 1.1.1.3, в нормальном состоянии при наихудшем в отношении остойчивости варианте нагрузки, должна быть согласована с Регистром.

3.4.4.2 Остойчивость морских судов, на которые распространяются положения 1.1.1.3, на переходе и при обледенении должны удовлетворять требованиям части IV «Остойчивость» Правил классификации и постройки морских судов.

3.4.5 Стационарные объекты.

Остойчивость стационарных объектов должна проверяться во временном состоянии. При этом площади A, B, C (см. рис. 3.1.1-2) должны удовлетворять условию (3.4.1.2.1), а при учете качки (см. рис. 3.1.1-1) соотношение площадей должно быть согласовано с Регистром.
ПРИЛОЖЕНИЕ 1

РАСЧЕТ ОСТОЙЧИВОСТИ ОБЪЕКТА

Материалы практических расчетов, в том числе расчетов остойчивости, рекомендуется располагать в следующих последовательности и объеме:

1. Введение, поясняющее цель выполнения расчета.
2. Исходные данные с перечислением характеристик объекта, необходимых для выполнения расчета.
3. Принятые методики и схемы выполнения расчета; исходные расчетные формулы, коэффициенты и т. п. со ссылками на источники (перечень источников приводится в конце расчета).
4. Перечень используемого программного обеспечения и сведения об одобрении его Регистром.
5. Собственно расчет (вычисления).
6. Результаты расчета, представляемые (по возможности) в виде графиков, диаграмм, схем, таблиц и т. п.
7. Заключение.
8. Приложения с вспомогательными исходными и расчетными материалами (если необходимо).
9. Перечень использованных источников (литературы).
ТИПОВАЯ ИНСТРУКЦИЯ ПО КРЕНОВАНИЮ ПБУ/МСП И ИХ МОДУЛЕЙ

1 ОБЩИЕ ТРЕБОВАНИЯ

1.1 Целью кренования объекта является определение его водоизмещения и положения центра масс (центра тяжести).

1.2 Для проведения опыта кренования назначается комиссия по кренованию во главе с председателем. В комиссию входят представители завода-строителя, КБ-проектанта и заказчика (владельца) объекта.

1.3 Комиссия руководит подготовкой, проведением, обработкой результатов опыта кренования и несет ответственность за качество и достоверность его результатов.

1.4 Требования комиссии в части подготовки, проведения и обработки результатов кренования обязательны для всех лиц, участвующих в креновании и обеспечивающих его.

1.5 Все отступления от требований Инструкции, если они не ухудшают качество кренования, принимаются председателем комиссии, указываются и обосновываются в протоколе кренования.

Форма протокола кренования приведена в приложении 2.1 к Инструкции.

1.6 Перед проведением опыта кренования комиссия:

уточняет и объясняет обязанности всех непосредственных участников кренования;

назначает время и место проведения кренования, имеющее достаточную глубину и защищенное от ветра, волн, вызываемых ветром или проходящими мимо судами, и течений;

разрабатывает способ швартовки для быстрейшего наклонения объекта.

1.7 Акватория в месте проведения кренования должна быть свободна от льда и предметов, мешающих наклонениям объекта и передвижению плавсредств вокруг него при выполнении замеров осадок (надводного борта).

1.8 Глубина воды при наклонениях объекта под наиболее углубленной частью его днища должна быть не менее 2 м при отсутствии жидкого ила в толще воды до этой глубины (акт по форме Приложения 2.1.2).

1.9 При наличии течения объект устанавливается вдоль него.

1.10 Кренование проводится в тихую погоду. Допускается его проведение при наличии мелкой ряби или слабого волнения до 1 балла (высота волн 3-процентной обеспеченности — до 0,25 м) и скорости ветра не более 2 м/с (акт по форме Приложения 2.1.2).

1.11 Скорость и направление ветра замеряются в начале и в конце кренования, а также одновременно с замерами углов крена во время наконечения объекта.

1.12 Перед кренованием должен быть выполнен анализ чувствительности параметров, влияющих на его результаты. Такими параметрами являются осадка, угол крена, плотность морской воды, кренящие грузы и расстояния их переноса, изменяющаяся скорость ветра, точность измерительного оборудования и т. д.

Анализ чувствительности должен дать суммарную ожидаемую ошибку в определении положения центра тяжести и также показать, какие параметры должны учитываться во время испытания.
Часть IV. Остойчивость

2 НАГРУЗКА ОБЪЕКТА ПРИ КРЕНСОБИ

2.1 Кренование объекта может производиться в следующих состояниях его нагрузки:

.1 соответствующем спуску на воду в период постройки;
.2 близкое к состоянию порожнем (по проекту);
.3 перед основными морскими операциями.

Это в особенности относится к случаям, когда расчетное значение метацентрической высоты близко к минимально допустимой величине и если такое состояние обусловлено перемещением тяжелых грузов.

Повторное кренование может потребоваться, если при расчетном (проектном) изменении нагрузки масс объекта в условиях перехода из состояния 2.1.1 в состояние 2.1.2 нарушиваются требования настоящей части при

\[Z_g = 1,2Z_{g1} - 0,2Z_{g2}, \]

где \(Z_{g1} \) — расчетная аппликата центра масс объекта в состоянии 2.1.1;
\(Z_{g2} \) — расчетная аппликата центра масс в состоянии 2.1.2 (\(Z_{g2} > Z_{g1} \));
\(Z_g \) — условная аппликата центра масс в условиях опыта.

2.2 Посадка объекта при креновании должна быть такой, чтобы действующая ватерлиния при его наклонениях не пересекала поверхность днища, для чего, если необходимо, может быть принят выравнивающий балласт в таком количестве, чтобы обеспечить указанное положение действующей ватерлинии.

По согласованию с Регистром в качестве выравнивающего балласта могут применяться жидкий балласт. Цистерны (отсеки), в которые принят выравнивающий балласт, должны быть запрессованы, и в них должны отсутствовать свободные поверхности жидкости (воздушные подушки).

2.3 Варианты нагрузки объекта, соответствующие его состояниям при креновании, должны предусматриваться в предварительных расчетах для контроля и сравнения их с результатами кренования.

2.4 Суммарная масса недостающих грузов допускается не более 2 % водоизмещения объекта в условиях опыта \(\Delta_{aof} \).

Масса излишних грузов, включая крен-балласт и выравнивающий балласт в соответствии с требованиями 2.2, не должна превышать 4 % водоизмещения объекта в условиях опыта \(\Delta_{aof} \).

2.5 Метацентрическая высота объекта при креновании должна быть не менее 0,05 аппликаты центра тяжести.

2.6 С объекта должны быть удалены:
персонал предприятий и организаций вместе со своим инструментом, оборудованием, кроме лиц, непосредственно участвующих в креновании или обеспечивающих его;
все посторонние предметы (грузы), не входящие в нагрузку масс объекта при креновании; строительный мусор и снег.

2.7 Обледенение наружных и внутренних поверхностей объекта, включая подводную часть корпуса, не допускается.

2.8 Перед кренованием на объекте могут быть оставлены:

.жидкие грузы в имеющихся на нем механизмах, аппаратах и трубопроводах систем для поддержания их в рабочем состоянии;
.топливо и масло в расходных цистернах, котельная вода для обеспечения опыта кренований и работы котлов для обогрева в зимнее время;
.пресная (питьевая и мытебвая) вода в расходных цистернах.

2.9 Комиссия по кренованию в каждом конкретном случае производит оценку возможности оставления на креноваемом объекте «мертвых» остатков и запасов жидкых грузов (см. 5.3) и на основании такой оценки принимает решение, согласованное с инспектором Регистра, присутствующим при креновании.

3 КРЕН-БАЛЛАСТ

3.1 Для кренования объекта могут применяться:
твердый балласт;
жидкий балласт;
переходы людей;
подъемные краны объекта.

Кренование жидким крен-балластом может производиться двумя способами:
.1 при запрессовке крен-балласта;
.2 при постоянном наличии у крен-балласта свободных поверхностей.

При выборе способа кренования жидким балластом следует учитывать:
форму, объем и положение центра тяжести объема каждой цистерны;
конструктивные особенности цистерн, предназначенных для крен-балласта;
возможность эффективного устранения свободных поверхностей (воздушных подушек) при запрессовке крен-балласта.

3.2 При расположении всего крен-балласта на одном борту должен обеспечиваться крен объекта 2 — 4 град. Для объектов большого водоизмещения и/или с чрезмерной начальной метацентрической высотой допускается уменьшение указанного значения угла крена до 1 град.
3.3 При креновании жидким крен-балластом самым тщательным образом должны быть определены объем и центр объема каждой цистерны, используемой для крен-балласта, объемы и расположение внутреннего набора и оборудования этих цистерн, разработаны таблицы их тарировки. Соответствие цистерн их чертежам должно быть проверено на месте. Форма акта определения массы жидкого крен-балласта приведена в Приложении 2.1.8.

3.4 Уровни и количество «мертвых» остатков в цистернах при креновании первым способом должны замеряться после каждой операции по перекачке крен-балласта, причем влияние свободных поверхностей «мертвых» остатков крен-балласта и жидких грузов на качество кренования должно быть пренебрежимо малым, что в каждом конкретном случае оценивается комиссий по кренованию по следующему критерию. Поправка на влияние свободных поверхностей к расчетному значению поперечно-метacentрической высоты \(h \), соответствующему состоянию нагрузки масс объекта во время кренования, должна быть одновременно не более:

\[
0,002h \text{ для каждой отдельной цистерны, в которой имеется «мертвый» остаток крен-балласта или жидкого груза;}
\]

\[
0,01h \text{ в сумме для всех цистерн, в которых имеются «мертвые» остатки крен-балласта или жидкого груза.}
\]

При определении поправок моменты инерции свободных поверхностей вычисляются при исходном (начальном) крене объекта с учетом плотности жидкостей.

Углы наклоения, вызываемые перетеканием «мертвых» остатков, должны быть столь малыми, чтобы они не регистрировались приборами, предназначенными для измерения углов наклоения при креновании.

3.5 При каждом заполнении цистерны крен-балластом должно быть обращено внимание на безусловное отсутствие воздушных подушек после запрессовки крен-балласта.

3.6 Если по конструктивным особенностям цистерн или по иным причинам невозможно полное устранение воздушных подушек при запрессовке крен-балласта, используется второй способ кренования с перекачкой крен-балласта с бorta на борт при постоянном наличии свободных поверхностей.

Свободные поверхности должны иметь прямоугольную форму и одинаковые размеры в цистернах правого борта (ПБ) и левого борта (ЛБ), не меняющиеся при верхнем и нижнем уровнях перекачиваемого крен-балласта.

Верхний и нижний уровни свободной поверхности в цистерне устанавливаются в пределах прямолинейности цистерны. Эти уровни в углах цистерны отмечены четко различимыми рисками (марками), доступными наблюдению через верхние горловины (люки) с помощью переносного освещения, либо определяются другими надежными способами.

3.7 Перемещение центра массы перекачиваемого с бorta на борт крен-балласта должно быть близким к поперечно-горизонтальному.

Количество жидкого крен-балласта на объекте при креновании должно оставаться постоянным и обязательно проверяться непосредственно перед кренованием и сразу же после его окончания.

3.8 Для кренования должны использоваться по возможности достаточно узкие по ширине объекта цистерны, что будет способствовать:

- уменьшению погрешности определения кренящего момента;
- уменьшению влияния свободных поверхностей «мертвых» остатков жидкого балласта при первом способе кренования;
- более эффективному устранению воздушных подушек при первом способе кренования;
- повышению точности учета свободных поверхностей крен-балласта при втором способе кренования.

3.9 Поправка к начальной поперечно-метacentрической высоте на влияние свободных поверхностей в цистернах учитывается при обработке опыта кренования.

4 УСТРОЙСТВА ДЛЯ ЗАМЕРОВ УГЛОВ НАКЛОНЕНИЯ

4.1 Основными средствами замеров углов крена при креновании объекта являются шланговые ватерпасы (три и более) либо оптические квадранты (два и более), устанавливаемые в разных местах по длине объекта.

При необходимости замеров углов дифферента следует пользоваться еще тремя ватерпасами или двумя квадрантами, устанавливаемыми в разных местах по ширине объекта.

4.2 База ватерпаса (расстояние между его измерительными трубками) должна быть достаточнобольшой для повышения точности замеров углов наклонений и соответствовать длине самих трубок или измерительных линеек. В любом случае минимальная база ватерпаса должна быть не менее 13 — 15 м.

Замеры углов наклонений ватерпасами должны выполняться людьми, имеющими опыт работы с этими приборами.

4.3 Измерительные линейки с миллиметровой шкалой, по которым отчитываются уровни
5 ПОДГОТОВКА ОБЪЕКТА К КРЕНОВАНИЮ

5.1 Перед кренованием посадка объекта должна быть такой, чтобы соблюдались условия 2.2. Начальный крен, как правило, должен отсутствовать или, в крайнем случае, не превышать 0,3°; устранение дифферента не требуется.

Замер начального крена производится приборами, указанными в разд. 4, по базовым линиям (контрольным площадкам) корпуса объекта, устанавливаемым до спуска его на воду.

5.2 Один из основных условий качественного креноования является тщательная подготовка к нему цистерн жидких грузов.

При запрессовке жидких грузов в цистернах (включая крен-балласт) принимаются меры по предотвращению образования воздушных подушек. Не ранее, чем через 1,5 — 2,0 ч после запрессовки цистерны проверяются, обнаруженные при этом воздушные подушки тщательно устраняются. Способы их устранения устанавливаются комиссией по кренованию в каждом конкретном случае. По ее указанию могут быть взяты пробы жидких грузов для определения их плотности.

5.3 Непосредственно перед кренованием объекта производится осмотр его помещений и емкостей: отсеков, коффердамов, цистерн (включая мелкие цистерны и бачки) и т. п. — на предмет наличия в них жидких грузов, составляется акт их подготовленности к кренованию (по форме Приложения 2.1.6) и составляется таблица состояния помещений и емкостей, в которых находятся жидкые грузы, непосредственно перед кренованием (по форме Приложения 2.1.7).

При невозможности или непосредственноном креновании жидкые грузы должны быть равномерно распределены по всем помещениям и емкостям объекта с тем, чтобы обеспечить обеспечение условия 2.2.

5.4 Все переменные грузы, входящие в расчетный вариант нагрузки объекта при его креновании, размещают на штатных местах и закрепляют. По усмотрению комиссии массы этих грузов могут быть определены взвешиванием либо по данным технической документации.

На все излишние (недостающие) грузы по отношению к расчетному варианту нагрузки объекта при его креновании составляются ведомости по форме Приложения 2.1.3.

5.5 Устройства для замеров углов наклонений объекта устанавливаются в соответствии с указаниями разд. 4. Проверка правильности их установки фиксируется в акте по форме Приложения 2.1.10.

5.6 Комиссии по кренованию предъявляются: акт о приемке главных размерений объекта по форме Приложения 2.1.1 (особенно тщательно измеряется высота борта в тех местах, где производятся замеры надводного борта при определении посадки объекта); акт о приемке марок углубления (при их наличии). Марки углубления должны быть защищены и ярко окрашены.

5.7 Подготавливаются плотики или шлюпки (по усмотрению комиссии по кренованию) для замеров надводного борта объекта и осадок по маркам углубления (при их наличии). Марки углубления должны быть защищены и ярко окрашены.
диаметром не менее 5 мм. Нижний конец трубки надевается на резиновый шланг длиной 3000 — 5000 мм, к свободному концу которого подвешивается груз-утяжелитель для придания шлангу вертикального положения в воде. Такой шланг позволяет при наличии на поверхности воды ряби, не раскачивающей объект, замерить в трубке с необходимой точностью уровень спокойной воды, не подверженной влиянию колебаний поверхностного волнения.

Аналогичное устройство, но без рулетки, может быть использовано для замеров осадок объекта по маркам углубления (при их наличии).

Количество устройств для замеров надводного борта (осадок) объекта должно быть не менее 3 по длине. Результаты замеров надводного борта оформляются в виде акта по форме Приложения 2.1.4.

5.9 Разрабатывается план размещения на время кренования участников опыта. Устанавливаются команды (сигналы): «Приготовиться к замерам», «Начать замеры», «Окончить замеры», которые должны быть слышны (видны) везде, где во время кренования находятся люди. Форма ведомости размещения участников кренования приведена в Приложении 2.1.9.

5.10 Устанавливаются способы связи командного пункта председателя комиссии по кренованию с наблюдателями у ватерпасов (квадрантов), мест замеров надводного борта, марок углубления, швартовов и т.д.

5.11 С началом подготовки объекта к кренованию запрещается прием, снятие, перемещение по нему каких-либо грузов без разрешения председателя комиссии по кренованию.

6 ПРОВЕДЕНИЕ КРЕНОВАНИЯ

6.1 Для кренования объекта отводится акватория, отвечающая требованиям 1.6 — 1.10.

6.2 Объект должен удерживаться в диаметральной плоскости продольными швартовами максимально возможной длины. Число швартовов желательно иметь не более двух (в крайнем случае четырех). При креновании в промежутках между командами (сигналами): «Приготовиться к замерам» и «Окончить замеры» швартовы объекта должны быть слышны (видны) везде, где во время кренования находятся люди. Форма ведомости размещения участников кренования приведена в Приложении 2.1.9.

6.3 Непосредственно перед кренованием производится проверка готовности к нему объекта, в том числе осмотр и сверка по дварительно составленным ведомостям: всех цистерн, отсеков, механизмов, трубопроводов и т.п. для контроля правильности подготовки жидких грузов к кренованию; открытых шлюп и всех помещений объекта для контроля наличия и размещения переменных грузов; размещения участников креновании по команде (сигналу): «Приготовиться к замерам»; правильности исходного размещения кренбалласта.

Сразу же после окончания замеров производится повторная проверка состояния объекта.

Перед началом кренования с глубины, равной половине осадки объекта, берется проба забортной воды для определения ее плотности, и замеряется ее температура.

6.4 Все замеры углов наклона объекта, направления и скорости ветра (акт по форме Приложения 2.1.2), направления объекта относительно течения производятся только в промежутках времени между сигналами «Начать замеры» и «Окончить замеры».

6.5 Замеры надводного борта и осадок по маркам углубления (при их наличии) производятся дважды: непосредственно перед началом кренования и сразу же после его окончания.

По усмотрению комиссии по кренованию замеры производятся либо одновременно на обоих бортах в одной поперечной плоскости, либо одновременно на всех местах замеров, причем в каждой шлюпке или плотике должно быть не менее двух наблюдателей.

При отсутствии колебаний поверхности воды (или при незначительных их размахах — до 50 мм) для замеров могут использоваться только металлические рулетки без дополнительных при способлений, указанных в 5.8.

6.6 Необходимость учета стрелки прогиба корпуса объекта при определении его водозмещения и аппликаты центра величины во время опыта определяется комиссией по кренованию на основании расчетов общей прочности объекта и замеров фактических значений надводного борта и осадок по маркам углубления (при их наличии).

6.7 Число перемещений крен-балласта и, соответственно, замеров углов крена должно быть таким, чтобы из общего числа замеров не менее восьми удовлетворяли критериям качества кренования (см. Протокол кренования). Конечное положение крен-балласта после всех его перемещений должно быть тождественно исходному.

6.8 При измерениях плеч перемещения крен-балласта применяется только металлическая рулетка; при величине плеч более 20 м применяется двадцатиметровая рулетка с ее переносом.

6.9 Замеры положений уровней жидкости в ватерпасах (квадрантах) производятся перед
началом перемещений крен-балласта на противоположный борт и после каждого перемещения.

Отсчет положения уровней начинают после того, как размах колебаний жидкости станет не менее 20 мм, после чего записывают отсчет уровней в обоих крайних положениях (верхнем и нижнем) не менее, чем для трех размахов. Под размахом колебаний здесь понимается расстояние между двумя последовательными крайними (верхним и нижним) уровнями жидкости в трубке ватерпаса.

После каждого замера наблюдатели на ватерпасах (квадрантах) докладывают руководителю кренования об окончании замеров и сообщают результаты наблюдений.

6.10 Точность производимых при креновании замеров должна быть не ниже следующей:

- надводный борт и осадка, мм: 5
- база ватерпаса, мм: 10
- уровень жидкости в трубке ватерпаса, мм: 2
- масса крен-балласта, %: 1,0
- положение центра массы крен-балласта, мм: 10
- плечо перемещения крен-балласта, мм: 10
- твёрдые и жидкие грузы, входящие в дедвейт:
 - масса, т: 0,01
 - абсцисса центра массы, м: 0,10
 - ордината и аппликата центра массы, м: 0,05
 - плотность воды, %: 0,1

7 ПРОТОКОЛ ОПЫТА КРЕНОВАНИЯ

7.1 Кренование оформляется протоколом и актами № 1 — 10, которые по форме приложений 2.1.1 — 2.1.10 являются неотъемлемой его частью. Протокол подписывается всеми членами комиссии по кренованию, акты — ответственными исполнителями, назначенными председателем комиссии по кренованию.

7.2 Инспектор Регистра, присутствующий при креновании, подписывает протокол кренований.

8 ОБРАБОТКА РЕЗУЛЬТАТОВ КРЕНОВАНИЯ

8.1 За исходные данные при обработке результатов кренований применяются выполненные при креновании замеры и техническая документация объекта.

8.2 Водоизмещение, координаты центра величины (ЦВ) и поперечный метацентрический радиус объекта определяются по документации, обеспечивающей необходимую точность масштабов и замеров, учет выступающих частей и т.д. Элементы теоретического чертежа вычисляются на ЭВМ с необходимой точностью и с учетом дифферента объекта, если его величина превышает 0,005 его длины (0,005L).

8.3 За окончательное значение высоты надводного борта (осадки) объекта принимается среднее арифметическое из их значений до и после кренования с округлением до 5 мм (см. приложение 2.1.4).

При определении элементов подводного объема объекта (водоизмещения Δ, координат ЦВ Xс и Zс) следует учитывать его прогиб любым, достаточно точным способом.

8.4 Из расчета может быть исключено не более одного замера из восьми, указанных в 6.7. Большое количество замеров может быть исключено только в обоснованных случаях по согласованию с Регистром, иначе кренование признается неудовлетворительным и должно быть повторено.
ПРОТОКОЛ КРЕНОВАНИЯ ОБЪЕКТА

Приложение 2.1

(место кренования) «_» 200__ г.

1 Объект

Наименование, строительный номер __
Назначение ___
Завод-строитель, год постройки __
Владелец __
Главные размерения (проектные) фактические:
длина L (_________) ___________________ м
ширина B (_________) ___________________ м
высота борта D (_________) ___________________ м
(См. Акт приемки главных размерений объекта — Приложение 2.1.1 к протоколу кренования)

2 Организация кренования

Цель кренования ___

Кренование проводилось комиссией по кренованию, назначенной в составе:
председателя __ (должность, ф.и.о.)
членов __ (должность, ф.и.о.)

Результаты работы комиссии отражены в соответствующих актах — приложениях ____________ к Протоколу кренования

При креновании присутствовал инспектор Регистра ____________________________ (должность, ф.и.о.)
Кренование производилось на (в) __ (указать место кренования)

Время кренования: начало: _______ ч _______ мин «_» _______ 200__ г.
окончание: _______ ч _______ мин «_» _______ 200__ г.

Кренование проведено в соответствии с ___
(указать руководящий документ, отступления от него)
3 Условия кренования

Скорость ветра \(\text{м/с} \) (Подробные данные о ветре изложены в Приложении 2.1.2 к Протоколу кренования)

Скорость течения \(\text{м/с} \)

Состояние поверхности воды

Плотность воды (см. Приложение 2.1.2 к Протоколу кренования) \(\rho_w \text{ т/м}^3 \)

Глубина воды под днищем объекта \(\text{м} \)

Температура воздуха \(\text{°С} \)

Атмосферные осадки

Ледовая обстановка (размеры и способ образования майны)

(отсутствие касания льда и т.п.)

4 Подготовка к кренованию

Объект к кренованию подготовлен (см. Приложения 2.1.6 — 2.1.10 к Протоколу кренования)

Начальный крен объекта \(\text{град.} \)

С объекта удалены посторонние предметы, строительный мусор, снег.

Обледенение наружных и внутренних поверхностей объекта, в том числе и в подводной части, отсутствует.

В расчет принимаются излишние и недостающие грузы по табл. 1 (см. Приложения 2.1.3, 2.1.7 — 2.1.9 к Протоколу кренования)

<table>
<thead>
<tr>
<th>Грузы, в том числе жидкостные, % от водоизмещения объекта в условиях опыта (\Delta_e)</th>
<th>Масса, т</th>
<th>Плечи, м</th>
<th>Моменты, тм</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
</tbody>
</table>

Излишние грузы; \(\text{________} \) % от \(\Delta_d \)

(сумма из приложений ________)

Недостающие грузы; \(\text{________} \) % от \(\Delta_d \)

(сумма из приложений ________)

Таблица 1
Влияние на качество кренования свободных поверхностей жидкых грузов, работающих механизмов (указать, какие) практически исключалось.

Для кренования использовалась техническая документация, указанная в табл. 2.

<table>
<thead>
<tr>
<th>Наименование документа</th>
<th>Обозначение документа</th>
<th>Разработчик документа</th>
</tr>
</thead>
</table>

На объект принят твердый (жидкий) балласт (заполняется при его наличии) (назначение балласта (спрямление и т.п.)) указанный в табл. 3.

<table>
<thead>
<tr>
<th>Место расположения твердого (жидкого) балласта</th>
<th>Масса, т</th>
<th>Координаты Ц.М., м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Всего</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Поперечная метацентрическая высота при креновании по расчету _________________ обеспечена и равна _________________

5 Кренование

5.1 В расчет принимаются величины надводного борта (осадка) объекта, указанные в табл. 4 по расчётным данным акта замеров надводного борта (осадок) — см. Приложение 2.1.4 к Протоколу кренования.

5.2 По данным табл. 4 построением на (наименование документа) получены осадки:
на кормовом перпендикуляре (транце) ___________ м,
на носовом перпендикуляре (транце) ___________ м,
на середине длины объекта (мидель-шпангоуте) ___________ м.
Начальный крен объекта на ___________ борт ___________ град.
Начальный дифферент на ___________ град (____________ м).
Для указанной посадки объекта расчетом по (наименование документа) с учетом _________________ в (таблице, в отдельном документе и т.д.) получены:
водоизмещение объемное ∇ = ___________ м³,
водоизмещение весовое Δ = p/∇ = ___________ т,
координаты центра величины:
Xс = ___________ м,
Yс = ___________ м,
Zс = ___________ м;
поперечный метацентрический радиус r = ___________ м.
5.3 При замерах углов крена швартовы имели слабину и ничто не препятствовало свободным колебаниям объекта.

В расчет принимаются величины углов крена, указанные в табл. 5 по данным замеров уровней в шланговых ватерпасах (оптических квадрантах) — см. Приложение 2.1.5 к Протоколу кренования.

5.4 Вычисление метацентрической высоты hк в условиях опыта произведено в табл. 6 и далее, где значение hк принято средним из не менее чем восьми значений метацентрической высоты hк, полученных по отдельным замерам.

Масса перекачиваемого жидкого крен-баласта ___________ т.
Часть IV. Остойчивость

Таблица 5
Расчетные значения углов крена объекта при креновании

<table>
<thead>
<tr>
<th>Номер последовательного наклонения (замера)</th>
<th>Положение крен-балласта (борт)</th>
<th>Угол крена по ватерпасу (квадранту), рад. (град.)</th>
<th>Принятое значение угла, рад. (град.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>№1</td>
<td></td>
<td>№1</td>
<td>№2</td>
</tr>
</tbody>
</table>

Плечо переноса перекачиваемого жидкого крен-балласта ____________________ м.
Кренящий момент от переноса жидкого крен-балласта ____________________ тм.

В табл. 6 приращения углов крена используются как средние их приращения из табл. 5.1 (5.2) Приложения 2.1.5 по всем используемым в опыте кренования ватерпасам (квадрантам).

Таблица 6

<table>
<thead>
<tr>
<th>Номер операции (замера)</th>
<th>Приращение</th>
<th>h = Мш/Моб, м</th>
<th>h1 — h0, м</th>
<th>(h1 — h0)², м²</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сумма</td>
<td>Σh₁ —</td>
<td>Σ(h₁ — h₀)²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

По данным табл. 6:

\[h₀ = \frac{Σh₁}{n}, \text{ м}, \]

где n — число качественных замеров.

Кренование признано качественным, так как:

1. для каждого замера соблюдено условие

\[|h₁ — h₀| ≤ 2, \sqrt{Σ(h₁ — h₀)²}/(n — 1); \]

2. вероятная ошибка опыта удовлетворяет условию

\[t_{\text{авг}} \sqrt{Σ(h₁ — h₀)²}/(n — 1) ≤ \left\{ \begin{array}{ll} 0,02(1 + \frac{3}{h₀}), & \text{при } h₀ ≤ 2, \text{м,} \\ 0,04h₀, & \text{при } h₀ > 2, \text{м,} \end{array} \right. \]

где t_{\text{авг}} — коэффициент, принят в соответствии с 1.5.11 по табл. 1.5.11 части IV «Остойчивость» Правил классификации и постройки морских судов;

3 с учетом значений h и l_{\text{макс}} в наихудшем по их величине расчетном случае нагрузки удовлетворено условие:

\[t_{\text{авг}} \sqrt{Σ(h₁ — h₀)²}/(n — 1) ≤ 0,05h \text{ или } 0,10l_{\text{макс}}, \]

смотра по тому, что меньше, но не менее 4 см,

где l_{\text{макс}} — максимальное плечно диаграммы статической остойчивости при наихудшем по его значению расчетном варианте нагрузки, м;

h — исправленная начальная метацентрическая высота при наихудшем по ее значению расчетном варианте нагрузки, м.

При невыполнении какого-либо из условий: 5.4.1, 5.4.2, 5.4.3 — по согласованию с Регистром в расчет принимается полученное при креновании значение метацентрической высоты h₀ за вычетом из нее вероятной ошибки опыта:

\[h₁' = h₀ - t_{\text{авг}} \sqrt{Σ(h₁ — h₀)²}/(n — 1). \]

Так как при креновании имелись свободные поверхности в цистернах жидкого балласта, суммарная поправка на которые равна \(\delta \) — (ΣP_{ Fr i} / А), то метацентрическая высота в условиях опыта равна \(h₀ — h₁ + \delta \).

При вычислении поправки на влияние свободных поверхностей необходимо учитывать, что в качестве \(i \) для каждой цистерны со свободной поверхностью должен выбираться момент инерции площади свободной поверхности жидкости, соответствующей фактическому уровню заполнения цистерны и углу наклона цистерны при проведении опыта кренования.

5.5 Таким образом, координаты центра масс объекта во время кренования составили (при дифференте Ц0,005L):

абсцисса X = X_{сп} — (V_{ф} — h₀)sinψ;
ордината Y = h₀tgψ;
аппикута Z = Z_{сп} + (V_{ф} — h₀)cosψ.

(Формулы приведены с учетом возможных углов крена φ и дифферента ψ).

Водоизмещение \(\Delta = \ldots \) т (см. 5.2)

5.6 Водоизмещение и координаты центра масс объекта приведены в табл. 7.

Таблица 7

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Элементы нагрузки масс</th>
<th>Масса, т</th>
<th>Плечи, м</th>
<th>Моменты, тм</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>Mx</td>
<td>My</td>
</tr>
</tbody>
</table>

1 Объект в усло-
2 Величина опыта
3 Увеличение груза
4 Недостающие
5 (1)+(2)+(3)
6 Замечания
По усмотрению председателя комиссии по кренованию.

7 Обработка результатов кренования
Обработка результатов опыта кренования выполнена _________________________________
(наименование предприятия)

Калькодержателем материалов кренования является __________________________________
(наименование предприятия)

Неотъемлемой частью настоящего Протокола кренования объекта _____________________
(наименование объекта)
являются Приложения 2.1.1 — 2.1.10 к Протоколу кренования.

8 Выводы
Кренование выполнено качественно.
По результатам кренования считаются установленными следующие фактические данные объекта

(наименование объекта)

водоизмещение \(\Delta_0 = \) т;
апликата \(Z_g = \) м;
абсцисса \(Z_g = \) м;
ордината \(Y_g = \) м.

Председатель комиссии по кренованию:

__
(подпись, ф.и.о.)

Члены комиссии
представитель завода __________________________
представитель КБ-проектанта __________________________
представитель заказчика __________________________

(подпись, ф.и.о.)

При креновании присутствовал инспектор Регистра

__
(подпись, ф.и.о.)
Часть IV. Остойчивость

ПРИЛОЖЕНИЕ 2.1.1

АКТ ПРИЕМКИ ГЛАВНЫХ РАЗМЕРЕНИЙ ОБЪЕКТА

«___» ____________________ 200 ___ г. город ____________________________

предприятие ___________________

Главная размерения __ объекта

(наименование, назначение)

проверены ________________________________

(место постройки, сборки, монтажа)

длина L — с помощью ____________________________

ширинна B — с помощью ____________________________

высота борта D — с помощью ____________________________

Данные проверки указаны в табл. 1.1.

<table>
<thead>
<tr>
<th>Главные размерения</th>
<th>По проекту, м</th>
<th>Фактически, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ширина</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Высота борта:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>левый борт</td>
<td></td>
<td></td>
</tr>
<tr>
<td>правый борт</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Главные размерения по отклонениям от чертежа ________________________________

находятся в пределах допусков.

Замеры производили: ____________________________

(должность, ф.и.о.)
ПРИЛОЖЕНИЕ 2.1.2

АКТ ЗАМЕРОВ СКОРОСТИ И НАПРАВЛЕНИЯ ВЕТРА, ПЛОТНОСТИ ВОДЫ И ПОЛОЖЕНИЯ ОБЪЕКТА ПРИ КРЕНОВАНИИ

Объект __________________________ «___» __________________ 200 ___ г.

(наименование)

Данные по замерам указаны в табл. 2.1.

<table>
<thead>
<tr>
<th>Номер замера</th>
<th>Скорость ветра, м/с</th>
<th>Направление ветра относительно объекта</th>
<th>Направление объекта</th>
<th>Время замера: ч, мин</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Направление ветра определялось указанием угла между диаметральной плоскостью и вектором скорости, считая от носа на наветренный борт.

По пробам с глубины ______________ м плотность воды составила ______________ т/м³ при температуре ______________ °C.

Замеры производили: __________________________

(должность, ф.и.о.)

Часть IV. Остойчивость

ПРИЛОЖЕНИЕ 2.1.3

ВЕДОМОСТЬ
ИЗЛИШНИХ (НЕДОСТАЮЩИХ) ГРУЗОВ

Объект __________________________ «___» __________________ 200 ___ г.

(наименование)

Все грузы на объекте, являющиеся излишними (недостающими) по отношению к нагрузке масс, соответствующей состоянию объекта на момент кренования, приведены в табл. 3.1 (3.2).

Таблица 3.1 (3.2)

<table>
<thead>
<tr>
<th>Наименование груза</th>
<th>Масса, т</th>
<th>Плечи, м</th>
<th>Моменты, тм</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
</tbody>
</table>

Остатки жидких грузов в корпусе*

Жидкие грузы в механизмах, аппаратах и т. п., обеспечивающие их рабочее состояние**

*Включаются в ведомости излишних (недостающих) грузов по данным Приложения 2.2.7.

**Указываются проектные данные.

Ведомость составили: __________________________ __________________________

(должность, ф.и.о.)
ПРИЛОЖЕНИЕ 2.1.4

АКТ
ЗАМЕРОВ НАДВОДНОГО БОРТА (ОСАДОК) ОБЪЕКТА

Объект _______________________________ «____» 200 г.

1. Замеры выполнены с использованием __________________________ и приведены в табл. 4.1.

(наименование приспособлений)

<table>
<thead>
<tr>
<th>Место (сечение) замера</th>
<th>Время замера: до/после кренования</th>
<th>Уровень отсчета: палуба (фальшборт)/ марка углубления</th>
<th>Надводный борт: осадка по марке, мм</th>
<th>Замер от палубы, марки углубления, мм</th>
<th>Величина теоретическая, теоретическая, мм</th>
<th>Толщина палубного стрингера, киля, мм</th>
<th>Величина расчетная, мм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сечение 1-1</td>
<td>Д/п по рис. 2</td>
<td>Верхняя палуба</td>
<td>2290</td>
<td>2270</td>
<td>20</td>
<td>2270</td>
<td>2260</td>
</tr>
<tr>
<td>Сечение 2-2</td>
<td>Д/п по рис. 2</td>
<td>То же</td>
<td>2280</td>
<td>2240</td>
<td>2260</td>
<td>2260</td>
<td>2240</td>
</tr>
<tr>
<td>Сечение 3-3</td>
<td>Д/п по рис. 2</td>
<td>То же</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(В таблице числовые значения величин приведены в качестве примера)

2. Расчетные величины надводного борта (осадок) нанесены на __________________________

(наименование чертежа)

3. Согласно выполненным замерам корпус модуля имел (не имел) прогиб со стрелкой ________ мм

Акт составили: __

(должность, ф.и.о.)
Приложение 2.1.5

Акт замеров отклонений уровней ватерпасов и углов наклонений объекта

Объект (наименование) «» 200 г.

Таблица 5.1

<table>
<thead>
<tr>
<th>Номер операции (замера)</th>
<th>Место (борт) размещения крен-балласта</th>
<th>Замер уровня, мм</th>
<th>Приращение угла крена, рад (град)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>База _____ мм</td>
<td>Ватерпас №1 Ватерпас №2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ПБ ЛБ ПБ ЛБ</td>
<td>Ватерпас №1 Ватерпас №2</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 5.2

<table>
<thead>
<tr>
<th>Номер операции (замера)</th>
<th>Место (борт) размещения крен-балласта</th>
<th>Квадрант №</th>
<th>Среднее значение угла, град</th>
<th>Угол крена, град</th>
<th>Приращение угла крена</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Угол крена, град</td>
<td>Замер 1 Замер 2 Замер 3</td>
<td>Щелевое значение угла, град</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(При определении углов наклонений объекта с помощью оптических квадрантов используются таблицы вида табл. 5.2)

В расчет принимаются приращения углов наклонения объекта, определенные по данным всех квадрантов, используемых для данного вида наклонений (крен, дифферент).

Замеры производили: ________________________________

(должность, ф.и.о.)
Приложение 2.1.6

Акт проверки подготовленности отсеков, цистерн жидких грузов, бачков и коффердамов к кренованию

Объект ____________________________ «__» _____________ 200 ___ г.

(наименование)

Комиссия по кренованию проверила состояние отсеков, цистерн жидких грузов, бачков и коффердамов объекта и установила, что к началу кренования:

1) отсеки, цистерны и коффердамы осушены за исключением цистерн, в которых по решению комиссии оставлены и опрессованы жидкые грузы (см. Приложение 2.1.7 к настоящему Протоколу);

(особые отметки)

2) клапаны приемных и расходных трубопроводов запрессованы, запломбированы;
3) масса жидкостей в цистернах учтена в ведомостях излишних (недостающих) грузов.

Председатель комиссии __

(подпись, ф.и.о.)

Члены комиссии __

(подпись, ф.и.о.)
ПРИЛОЖЕНИЕ 2.1.7

АКТ
ПРОВЕРКИ СОСТОЯНИЯ ОТСЕКОВ, ЦИСТЕРН ЖИДКИХ ГРУЗОВ, БАЧКОВ И КОФФЕРДАМОВ

Объект _____________________________ «__» __________ 200 __ г.
(наименование)

Члены комиссии по кренованию __________________________
(ф.и.о.)

произвели тщательную проверку цистерн жидкых грузов, включая мелкие расходные и другие цистерны, бачки и т. п. Результаты проверки указаны в табл. 7.1.

<table>
<thead>
<tr>
<th>Наименование цистерны</th>
<th>При наличии жидкого балласта</th>
<th>Характер заполнения</th>
<th>Составляющие нагрузки масс</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Масса, т</td>
<td>Плечи, м</td>
<td>Моменты, тм</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X Y Z</td>
<td>Mx My Mz</td>
</tr>
<tr>
<td>Пресной воды №</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Масла</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Жидкого балласта №</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Топлива №</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Итого излишние грузы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Итого недостающие грузы</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Жидкий балласт __________ т принят для придания объекту осадки __________ м, соответствующей расчету.

Цистерны по пп. ________________ запрессованы до появления жидкости в воздушных трубах с предварительной выдержкой ________________ ч.

(В табл. 7.1 приводятся все имеющиеся на объекте цистерны, отсеки и коффердамы, в которых могут быть жидкые грузы, независимо от степени их заполнения. В графе «характер заполнения» отмечается, что помещение запрессовано, заполнено полностью, заполнено частично, с остатками жидкого груза, порожнёе).

Члены комиссии по кренованию:

Подписи ____________________________
(ф.и.о.)
АКТ
ОБ ОПРЕДЕЛЕНИИ МАССЫ ЖИДКОГО КРЕН-БАЛЛАСТА
(примерная форма)

Объект ____________________________ «___» __________ г. 200___ г.
(наименование)

Определение массы жидкого крен-балласта произведено расчетным путем (с помощью мерных сосудов).
Приведены схемы форм и объемов балластных (и других) цистерн или отсеков (далее — цистерн), используемых для крен-балласта. Схемы изображены в трех проекциях (или в аксонометрии) с указанием всех геометрических размеров, расположения металлического набора и оборудования в цистернах, сделаны ссылки на отчетные чертежи цистерн (отсеков).
Определение объемов и центров тяжести объемов цистерн, а также уровней и количества запасов в них выполнены в таблицах (или другими способами), зарегистрированы свободные поверхности и их влияние на качество кренования.
Осуществлялся строгий контроль за состоянием свободных поверхностей жидкого крен-балласта в цистернах после каждой перекачки крен-балласта (либо за отсутствием свободных поверхностей), о чем сделаны соответствующие записи в акте. (Форма и количество таблиц, рисунков, описывающих данный процесс — на усмотрение комиссии по кренованию).
Свободные поверхности жидкого крен-балласта во всех цистернах при всех наклонениях имели правильную прямоугольную форму.
При перекачке крен-балласта верхний и нижний его уровни в цистернах находились в пределах прямостенности цистерн и отмечались четко различимыми рисками (марками) на рейках, установленных в углах цистерн, и доступных наблюдению через горловины (люки) с помощью хорошего переносного освещения (или другими надежными способами).
Поправки на влияние свободных поверхностей в цистернах жидкого балласта учтены при определении начальной поперечной метацентрической высоты по данным опыта кренования.

Процедуры по составлению настоящего акта выполняли: ________________________________
(должность, ф.и.о.)
ВЕДОМОСТЬ РАЗМЕЩЕНИЯ УЧАСТНИКОВ КРЕНОВАНИЯ НА ОБЪЕКТЕ

Объект _____________________________ « ___ » ____________________ 200 ____ г.
(наименование)

Ведомость выполнена в форме табл. 9.1

<table>
<thead>
<tr>
<th>Наименование помещения (места)</th>
<th>Кол-во человек</th>
<th>Масса, т</th>
<th>Плечи, м</th>
<th>Моменты, тм</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Итого:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ведомость составили: ________________________________
(должность, ф.и.о.)
ПРИЛОЖЕНИЕ 2.1.10

АКТ
ЗАМЕРА БАЗЫ ШЛАНГОВЫХ ВАТЕРПАСОВ,
ПРОВЕРКИ ПРАВИЛЬНОСТИ УСТАНОВКИ
ИЗМЕРИТЕЛЬНЫХ ЛИНЕЕК (РЕЕК) И ОПТИЧЕСКИХ КВАДРАНТОВ

Объект ___ «___» ______________________ 200 ___ г.
(наименование)

Длины баз ватерпасов замерялись стальной линейкой длиной ___________ м между стеклянными трубками, прикрепленными к измерительным линейкам (рейкам) на высоте ___________ м от верхней палубы объекта.

Проверкой установлено, что:
база ватерпасов составляет ___________ м;
крепление измерительных линеек (реек) к корпусу объекта исключает их смещение при работе с ними во время кренования;
линейки (рейки) установлены перпендикулярно к основной плоскости объекта;
установка оптических квадrantов проверена по базовым линиям корпуса (контрольным пло­щадкам), находящимся на __

Результаты замеров указаны в табл. 10.1.

Таблица 10.1

<table>
<thead>
<tr>
<th>Номер ватерпаса (квадранта)</th>
<th>Место установки ватерпаса (квадранта)</th>
<th>Длина базы ватерпаса, мм</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Замер 1</td>
<td>Замер 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Замеры производили: __

(ф.п.о.)

Должность ____________________________
Часть IV. Остойчивость

ПРИЛОЖЕНИЕ 3

МЕТОДИКА РАСЧЕТА ВЕТРОВОЙ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА ОБЪЕКТ ПРИ КРУГОВОМ ИЗМЕНЕНИИ НАПРАВЛЕНИЯ ВЕТРА

Методика расчета применима для определения ветровых нагрузок, действующих на полупогруженные буровые установки с прямоугольным верхним корпусом, стабилизирующими колоннами различной конфигурации и вертолетной площадкой вне указанного корпуса при произвольных углах натекания ветра.

Для определения ветровой нагрузки при произвольном направлении ветра необходимо определить ветровые нагрузки при натекании воздушного потока перпендикулярно к миделю и диаметральной плоскости планируемой установки (рис. 3.1).

![Рис. 3.1](image)

Ветровые нагрузки F_1, F_2, F_3, F_4 определяются расчетом по 2.4.2 настоящей части.

Промежуточные значения ветровой нагрузки F_β, град, при изменении угла натекания потока β от 0 до $\pi/2$ в каждой из четвертей определяются по эмпирической зависимости:

$$F_\beta = F_1 \cos^2 \beta + F_2 \sin^2 \beta + \frac{1}{2} |\delta F| \tan 2 \sin 2 \beta,$$

где $|\beta| < \pi/2$ — угол, отсчитываемый от направления ветра, при котором рассчитана F_i, $i = 1$, 2, 3, 4 (при определении F_i в последней четверти $F_i = F_4$, $F_{i+1} = F_3$);

$$\delta F = F_i - F_{i+1}$$ — разность значений ветровой нагрузки при и $i+1$-м положениях объекта;

$$\theta = 57,3 \sqrt{\text{\delta F} / (F_i + F_{i+1})}$$ — угол сдвига, определяющий величину и положение максимума ветровой нагрузки.

Коэффициент $k = 0,66$, рад., получен на основании результатов испытаний в аэродинамической трубе.

Если $|\delta F| / (F_i + F_{i+1}) 100 > 7\%$, то ветровую нагрузку следует определять по формуле:

$$F_\beta = \frac{F_i + F_{i+1}}{2} (1 + 0,25|\sin \beta |).$$

Максимальное значение ветровой нагрузки $F_{\beta max}$, определяемой по формуле (3.1), будет:

$$F_{\beta max} = \frac{F_i + F_{i+1} + 1}{2} \frac{|\delta F|}{2 \sin 2 \beta}$$

при $\beta = \{ \pi/4 + 0$, если $F_i < F_{i+1}$; $\pi/4 - 0$, если $F_i > F_{i+1}$.

Если $|\delta F| / (F_i + F_{i+1}) 100 < 7\%$, то максимальное значение ветровой нагрузки при $\beta = \pi/4$ будет:

$$F_{\beta max} = 1,25 \frac{F_i + F_{i+1}}{2}.$$

ПРИЛОЖЕНИЕ 4

МЕТОДИКА РАСЧЕТА ВЕТРОВОГО НАКЛОНЯЮЩЕГО МОМЕНТА ПОЛУПОГРУЖНОГО И ПОГРУЖНОГО ОБЪЕКТА С ПРЯМОУГОЛЬНЫМ ВЕРХНИМ КОРПУСОМ

Настоящая методика расчета учитывает влияние вертикальных сил, возникающих на верхнем корпусе и вертолетной площадке (вне его) при наклонении объекта, и экранирующее действие поверхности воды на величину наклоняющего момента.

Метод расчета применим для определения ветрового наклоняющего момента полупогруженной и погруженной установки с прямоугольным верхним корпусом при продольном и поперечном наклонении.

При наклонении ПБУ ветровая нагрузка, действующая на составные элементы буровой установки, за исключением верхнего корпуса и вертолетной площадки, считается пропорциональной косинусу угла наклона.

Дополнительные горизонтальные силы, обусловленные наличием подъемной силы на корпусе и вертолетной площадке ПБУ при наклонении, определяются по формуле:

$$\delta F = \frac{V_0^2}{2} n_0 (C_{Z0} + S_{n_0} + C_{Z0} - S_{n_0}) \delta \gamma,$$

где V_0 — средняя скорость установившегося ветрового потока на высоте 10 м над уровнем моря.
Правила классификации, постройки и оборудования ПБУ/МСП

\[z = \frac{z_h}{L_h} \]

где

- \(z_h \) — коэффициент возрастания скоростного напора на высоте \(z_h \), равной отстоянию центра площади верхнего корпуса от поверхности моря;
- \(C_{zh} \) — коэффициент подъемной силы верхнего корпуса при произвольном угле наклона установки выбирается по рис. 4.1 — 4.3 в зависимости от относительной высоты расположения центра проекции верхнего корпуса над поверхностью воды;
- \(L_h \) — размер верхнего корпуса в направлении ветрового потока, м;
- \(C_{zh,d} \) — коэффициент подъемной силы вертолетной площадки при произвольном угле наклона установки; выбирается по рис. 4.2 для высоты \(z = \infty \) (безграничный поток);
- \(S_h, S_{h,d} \) — площади верхнего корпуса и вертолетной площадки в плане, м² (в расчете принимаются эти площади, так как значения коэффициентов подъемной силы и кренящего момента, показанные на рис. 4.1 — 4.6, получены как отношение сил и моментов к площади в плане);
- \(\alpha \) — угол наклона установки (кrena \(\phi \) или дифферента \(\psi \)), град.

Ветровая нагрузка при наклонении ПБУ, обусловленная горизонтальными составляющими ветровых сил, определяется по формуле:

\[F = \frac{p_A V^2}{2} \frac{1}{\lambda} \left[(\cos \alpha \sum_j C_s j d_j A_{jV} + n_k \sin \alpha (C_{zh} S_h + C_{zh,d} S_{h,d}) \right] \]

(4.2)

где

- \(A_{jV} \) — площадь парусности \(j \)-го элемента парусности;
- \(C_{jy} \) — коэффициент формы \(j \)-го элемента парусности;
- \(C_{jH} \) — коэффициент высоты \(j \)-го элемента парусности.

Рис. 4.1
Ветровой кренящий момент относительно центра приложения гидродинамических сил определяется по формуле:

\[M = M_{H,F} + M_{V,F} + FZ_a, \]

где:
- \(M_{H,F} \) — момент горизонтальных сил относительно начала поточной системы координат \(OXYZ \), являющегося точкой пересечения вертикальной оси \(Z \) с плоскостью ватерлинии (рис. 4.7, точка 0);
- \(M_{V,F} \) — момент вертикальных сил относительно точки 0 — начала поточной системы координат \(OXYZ \);
- \(F \) — ветровая нагрузка, определяемая по формуле (4.2);
- \(Z_a \) — расстояние от ватерлинии до центра приложения равнодействующей гидродинамических сил, определяемое по 2.4.3.

Момент горизонтальных сил определяется по формуле:

\[M_{H,F} = \frac{p_4V^2}{2} \left(m_{sh}S_hl_h + C_{zh,d}S_hdX_{zh,d} \right), \]

где \(Z_{zh,d} \) — центр вертолетной площадки (рис. 4.7) от поверхности моря, м;
- \(Z_0 \) — отстояние центра площади парусности \(j \)-го элемента от поверхности моря, м.

Момент вертикальных сил определяется по формуле:

\[M_{V,F} = \frac{p_4V^2}{2} \left(m_{sh}S_hl_h + C_{zh,d}S_hdX_{zh,d} \right), \]

где \(m_{sh} \) — коэффициент момента вертикальных сил на корпусе, определяемый по зависимостям, приведенным на рис. 4.5 — 4.7;
- \(X_{zh,d} \) — плечо вертикальной силы, возникающей на вертолетной площадке, м (принимается равным величине проекции на горизонтальную плоскость расстояния от центра вертолетной площадки до центра верхнего корпуса (см. рис. 4.7).
Формула (4.5) применяется при продольном и поперечном наклонении установки, если вертолетная площадка расположена с наветренной стороны. С подветренной стороны влияние вертикальной силы, возникающей на вертолетной площадке, не учитывается, так как оно мало.

Аэродинамические коэффициенты C_z и m_{zh} для корпусов с промежуточными значениями удлинения $\lambda = B_0/L_0$ определяются интерполяцией при построении зависимостей $C_z = f(\lambda)$ и $m_{zh} = f(\lambda)$ для $\alpha = \text{const}$ и $z = \text{const}$.

Для промежуточных значений относительных высот z коэффициенты C_z и m_{zh} определяются интерполяцией при построении зависимостей $C_z = f(z)$ и $m_{zh} = f(z)$ при $\lambda = \text{const}$ и $\alpha = \text{const}$.

ПРИЛОЖЕНИЕ 5

ЗНАЧЕНИЯ ЭКСТРЕМАЛЬНЫХ СКОРОСТЕЙ ВЕТРА И ВЫСОТ ВОЛН, ВОЗМОЖНЫХ ОДИН РАЗ В 50/100 ЛЕТ

<table>
<thead>
<tr>
<th>Район</th>
<th>Средняя скорость ветра (период усреднения 10 мин.), $\theta_{90/100}$, м/с</th>
<th>Высота волны 3%-ной обеспеченности $h_{90/100}$, м</th>
<th>Схема</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Д.и. Балтийского моря</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>34/36</td>
<td>13/14</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>34/36</td>
<td>13/14,5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>34/36</td>
<td>15/16</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>36/38</td>
<td>15/16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>37/40</td>
<td>13/15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>32/34</td>
<td>9/10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>35/37</td>
<td>14/16</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>34/36</td>
<td>9/10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>35/37</td>
<td>9/11</td>
<td></td>
</tr>
<tr>
<td>Всю аэваторию</td>
<td>37/40</td>
<td>15/16</td>
<td></td>
</tr>
</tbody>
</table>
Таблица 5.2

<table>
<thead>
<tr>
<th>Район</th>
<th>Средняя скорость ветра (период осреднения 10 мин.), (\frac{m}{c})</th>
<th>Высота волны 3%-ной обеспеченности (\frac{m}{c})</th>
<th>Схема</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Нет данных</td>
<td>18/20</td>
<td>Для Баренцева моря</td>
</tr>
<tr>
<td>2</td>
<td>То же</td>
<td>18/20</td>
<td>Не является зоной РФ</td>
</tr>
<tr>
<td>6 (в пределах зоны РФ)</td>
<td>31-33/33-35</td>
<td>17/18</td>
<td>То же</td>
</tr>
<tr>
<td>7</td>
<td>31-33/33-35</td>
<td>15/16</td>
<td>Не является зоной РФ</td>
</tr>
<tr>
<td>8</td>
<td>31-45/33-36</td>
<td>13/15</td>
<td>То же</td>
</tr>
<tr>
<td>9</td>
<td>31-33/33-35</td>
<td>14/16</td>
<td>Не является зоной РФ</td>
</tr>
<tr>
<td>10</td>
<td>32-45/33-35</td>
<td>11/12</td>
<td>То же</td>
</tr>
<tr>
<td>11</td>
<td>31/33</td>
<td>9/10</td>
<td>Не является зоной РФ</td>
</tr>
<tr>
<td>Вся акватория: до 75° с.ш.</td>
<td>45/46</td>
<td>17/18</td>
<td></td>
</tr>
<tr>
<td>Свыше 75° с.ш.</td>
<td>Нет данных</td>
<td>18/20</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 5.3

<table>
<thead>
<tr>
<th>Район</th>
<th>Средняя скорость ветра (период осреднения 10 мин.), (\frac{m}{c})</th>
<th>Высота волны 3%-ной обеспеченности (\frac{m}{c})</th>
<th>Схема</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34/36</td>
<td>8,5/9,5</td>
<td>Для Каспийского моря</td>
</tr>
<tr>
<td>2</td>
<td>34/38</td>
<td>13/14</td>
<td>44/46</td>
</tr>
<tr>
<td>3</td>
<td>34/36</td>
<td>12/13</td>
<td>17/19</td>
</tr>
<tr>
<td>Вся акватория:</td>
<td>36/38</td>
<td>13/14</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 5.4

<table>
<thead>
<tr>
<th>Район</th>
<th>Средняя скорость ветра (период осреднения 10 мин.), (\frac{m}{c})</th>
<th>Высота волны 3%-ной обеспеченности (\frac{m}{c})</th>
<th>Схема</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ш, Г</td>
<td>Нет данных</td>
<td>17/19</td>
<td>Для Охотского моря</td>
</tr>
<tr>
<td>2 Ш, Г</td>
<td>44/46</td>
<td>13/15</td>
<td>44/46</td>
</tr>
<tr>
<td>3 Ш, Г</td>
<td>Нет данных</td>
<td>18/20</td>
<td>39/41</td>
</tr>
<tr>
<td>4 Г</td>
<td>44/46</td>
<td>10/11</td>
<td>Нет данных</td>
</tr>
<tr>
<td>5 Ш, Г</td>
<td>Нет данных</td>
<td>17/19</td>
<td>6 Ш</td>
</tr>
<tr>
<td>6 Ш</td>
<td>39/41</td>
<td>18/19</td>
<td>40/42</td>
</tr>
<tr>
<td>7 Г</td>
<td>44/46</td>
<td>12/13</td>
<td>Нет данных</td>
</tr>
<tr>
<td>8 Ш, Г</td>
<td>Нет данных</td>
<td>13/14</td>
<td>7 Ш</td>
</tr>
<tr>
<td>9</td>
<td>44/46</td>
<td>17/19</td>
<td>Нет данных</td>
</tr>
<tr>
<td>Вся акватория: в шельфовых зонах</td>
<td>44/46</td>
<td>17/19</td>
<td></td>
</tr>
<tr>
<td>В средней части (глубоководная зона)</td>
<td>Нет данных</td>
<td>18/20</td>
<td></td>
</tr>
</tbody>
</table>
Таблица 5.5

<table>
<thead>
<tr>
<th>Район</th>
<th>Средняя скорость ветра (период осреднения 10 мин.), (\varphi_{90/100}) М/с</th>
<th>Высота волны 3%-ной обеспеченности (h_{30/100}) м</th>
<th>Схема</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Для Черного моря</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>37/40</td>
<td>12,5/14,5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>36/39</td>
<td>13/14,5</td>
<td></td>
</tr>
<tr>
<td>Вся акватория:</td>
<td>37/40</td>
<td>13/14,5</td>
<td></td>
</tr>
</tbody>
</table>

Примечания: 1. Сведения по ветру и волнению даны для зимнего периода и должны приниматься как расчетные. Параметры трансформированных волн в мелководных зонах должны пересчитываться по данным для глубокой воды.
2. Условные обозначения: Ш — шельфовая зона, Г — глубоководная зона.

Для целей расширения эксплуатационных возможностей объекта с учетом сезонов необходимо пользоваться данными Госкомгидромета, учитывающими сезонность и районирование. При отсутствии этих данных допускается использовать понижающие коэффициенты, приведенные в табл. 5.6.

Таблица 5.6

<table>
<thead>
<tr>
<th>Гидрометеорологические условия</th>
<th>Сезон</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Зима</td>
</tr>
<tr>
<td>Ветер</td>
<td>1,0</td>
</tr>
<tr>
<td>Волнение</td>
<td>1,0</td>
</tr>
</tbody>
</table>
ЧАСТЬ V. ДЕЛЕНИЕ НА ОТСЕКИ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящей части распространяются на:
- все виды самоподъемных и погружных ПБУ и МСП при их нахождении на плаву при транспортировке;
- полупогружные ПБУ при их транспортировке и эксплуатации;
- модули МСП на плаву при транспортировке в случае, если на них находится более 12 чел.

Перечисленные выше плавучие сооружения именуются далее «объектами».

1.1.2 Буровые суда должны удовлетворять требованиям, изложенным в части V «Деление на отсеки» Правил классификации и постройки морских судов, при повреждении одного любого отсека, если судовладелец не предъявляет более высоких требований, и дополнительно — требованиям 2.5.5.

1.1.3 Необходимость выполнения требований настоящей части для модулей МСП, не упомянутых в 1.1.1, определяется Регистром с учетом их водоизмещения и наличия на них оборудования.

1.1.4 В случае, если Регистр не настаивает на выполнении требований настоящей части, но по желанию владельца или строителя МСП предусматривается обеспечение удовлетворительной аварийной посадки и остойчивости составляющих ее модулей, рекомендуется выполнение требований 2.7 при затоплении заданных отсеков или групп смежных отсеков.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

1.2.1 Определения и пояснения, относящиеся к общей терминологии, указаны в части I «Классификация».

В данной части приняты следующие определения:

Аварийная ватерлиния — ватерлиния поврежденного объекта после затопления одного или нескольких смежных отсеков.

Водонепроницаемость — способность конструкции предотвращать проникновение воды в том и другом направлениях при действии давления воды под напором, на который эта конструкция рассчитана.

Длина объекта (L) — длина корпуса, измеренная на уровне ватерлинии, соответствующей максимальной осадке объекта на плаву при транспортировке.

Осадка (d) — расстояние, измеренное по вертикали между верхней кромкой горизонтального киля или от точки притыкания внутренней (наружной) длины для объектов с неметаллической обшивкой к брусковому килю до соответствующей ватерлинии объекта.

Отсек — часть внутреннего пространства корпуса, ограниченная наружной обшивкой, водонепроницаемыми переборками, палубами, платформами, стрингерами и фларами. Для стабилизирующих колонн под отсеком применяется часть внутреннего пространства колонны, ограниченная периметром наружной обшивки, водонепроницаемыми вертикальными переборками и горизонтальными платформами.

Коэффициент проницаемости помещения (μ) — отношение объема, который может быть заполнен водой при полном затоплении помещения, к полному теоретическому объему помещения.

Непроницаемость при воздействии моря — означает, что в любых морских условиях вода не проникает внутрь объекта.

Процесс затопления — любое затопление какой-либо неповрежденной части корпуса установки, создающей плавучесть, через отверстия, которые расположены ниже аварийной ватерлинии, и которые не могут быть закрыты водонепроницаемо, или которые по эксплуатационным условиям должны оставаться открытыми.

Спрямление объекта — процесс устранения или уменьшения крена и/или дифферента.

Угол наклона — угол между вертикалью и линией пересечения диаметральной плоскости и плоскости миделлангоута объекта.

Тангент угла наклона φ определяется по формуле:

\[\tan(\phi) = \left(1^{2} + \tan^{2}(\theta + \psi) \right)^{1/2} \]

где \(\theta \) — угол крена,
\(\psi \) — угол дифферента.

Ширина корпуса объекта (B) — наибольшая теоретическая ширина корпуса объекта,
измеренная на середине его длины \(L \) на уровне или ниже ватерлинии при транспортировке. Во всех расчетных случаях затопления принимается только одна пробоина и учитывается только одна свободная поверхность влившейся после аварии забортной воды. При этом пробоина считается имеющей форму прямоугольного параллелепипеда.

1.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

1.3.1 Общие положения, относящиеся к порядку классификации, техническому наблюдению за постройкой и классификационным освидетельствованиям, а также требования к технической документации, представляемой на рассмотрение и одобрение Регистру, изложены в части I «Классификация».

1.3.2 Для каждого объекта, на который распространяются требования настоящей части, Регистр осуществляет:

1 проверку соответствия конструктивных мероприятий, связанных с делением на отсеки, требованиям, указанным в части II «Корпус», части III «Устройства, оборудование и снабжение ПБУ/МСП» и части VII «Механические установки и механизмы»;

2 рассмотрение и одобрение Информации об аварийной посадке и остойчивости;

3 рассмотрение и одобрение соответствующего программного обеспечения в случае, если для оценки аварийной посадки и остойчивости предусмотрено также использование бортовой ЭВМ.

1.4 ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.4.1 При расчетах аварийной посадки и остойчивости действие якорных, швартовных, буксирных и других закреплений учитывается, если это может привести к тяжелым последствиям. Учет влияния подобных закреплений должен производиться по методике или программе расчетов, одобренных Регистром.

1.4.2 При определении начальной метacentрической высоты и построении диаграмм статической остойчивости поврежденного объекта поправки на влияние свободных поверхностей жидкостей в неповрежденных цистернах должны учитываться таким же образом, как в расчетах остойчивости неповрежденного объекта в соответствии с частью IV «Остойчивость».

1.4.3 При построении диаграмм статической остойчивости поврежденного объекта закрытые надстройки, рубки, палубный груз, а также утки залывания через считающиеся открытыми отверстия должны учитываться таким же образом, как при построении диаграмм неповрежденного объекта в соответствии с частью IV «Остойчивость».

Надстройки и рубки, получившие повреждения, могут приниматься в расчет только с коэффициентами проницаемости, указанными в 2.3, или вообще не учитываться. Находящиеся внутри них отверстия для доступа в незатопленные помещения считаются открытыми для попадания воды при соответствующих углах наклона, если они не имеют штатных устройств для закрытия, непроницаемых при воздействии моря.

1.4.4 Все объекты должны быть снабжены одобренной Регистром Информацией об аварийной посадке и остойчивости. Информация должна позволять начальнику объекта учитывать требования, связанные с делением на отсеки, и оценивать состояние объекта при получении пробоины для принятия необходимых мер по сохранению поврежденного объекта.

Информация должна содержать следующие данные:

1 сведения об объекте, схематические чертежи его продольного и поперечных разрезов, планов палуб и платформ, характерных сечений корпусов и стабилизирующих колонн с указанием водонепроницаемых переборок, выгородок, платформ, отверстий в них, характера закрытий этих отверстий. Особо должны быть оговорены те отверстия, которые открыты во время бурения и должны быть водонепроницаемо задраены во время транспортировки. Должны быть также представлены схемы систем, используемых при борьбе за живучесть объекта;

2 сведения, необходимые для поддержания посадки и остойчивости неповрежденного объекта, достаточные для того, чтобы он мог в соответствии с требованиями настоящей части выдержать самое опасное расчетное повреждение;

3 сводку результатов расчетов положения поврежденного объекта, в которой должны быть приведены параметры исходной и аварийной посадки, крен и дифферент, метacentрическая высота и диаграммы остойчивости до и после принятия мер по спрямлению, а также рекомендуемые меры и время спрямления;

4 прочие сведения по конструктивному обеспечению деления на отсеки, использованию устройств для перетока воды и аварийных
Часть V. Деление на отсеки

1.4.5 Информация об аварийной посадке и остойчивости должна быть составлена на основании результатов опыта кренования объекта и по данным Информации об остойчивости.

1.4.6 В промежутки времени, не превышающие пять лет, Информация об аварийной посадке и остойчивости построенного полугруженного ПБУ должна либо подтверждаться, либо корректироваться с учетом изменения водоизмещения порожнем и/или результатов проведения опыта кренования эксплуатирующейся установки.

1.4.7 На каждом объекте должны быть вывешены схемы, показывающие границы водонепроницаемых отсеков, расположение отверстий, ведущих в эти отсеки, и средства их закрытия с указанием постов управления этими средствами, а также устройств для выравнивания крена и дифферента, возникающих в результате затопления отсеков.

1.4.8 Для оценки аварийной посадки и остойчивости рекомендуется использовать бортовую ЭВМ. При этом соответствующее программное обеспечение должно иметь допуск Регистра.

Электронная информация не заменяет Информацию об аварийной посадке и остойчивости.

1.5 ОБЩИЕ ТРЕБОВАНИЯ К ДЕЛЕНИЮ НА ОТСЕКИ

1.5.1 Деление на отсеки объектов, перечисленных в 1.1.1, считается удовлетворительным, если аварийная посадка и остойчивость отвечают требованиям разд. 2.

1.5.2 В зависимости от типа объекта требования разд. 2 должны выполняться в следующих случаях:
.1 при транспортировке — для самоподъемных, погружных и полугруженных ПБУ, МСП и их модулей, а также буровых судов;
.2 в рабочем положении на плаву — для полугруженных ПБУ и буровых судов.

1.5.3 Допускается использование альтернативных требований к делению на отсеки и аварийной плавучести и остойчивости в случае приведения и одобрения Регистром доказательств того, что уровень безопасности поврежденного объекта будет не ниже, чем уровень, который обеспечивается выполнением требований части V «Деление на отсеки» Правил классификации и постройки морских судов.

2 ПОСАДКА И ОСТОЙЧИВОСТЬ ПОВРЕЖДЕННОГО ОБЪЕКТА

2.1 ОБЩИЕ ТРЕБОВАНИЯ

2.1.1 Посадка и остойчивость неповрежденного объекта во всех эксплуатационных случаях нагрузки, соответствующих назначению судна (без учета обледенения), должна быть достаточной для того, чтобы были выполнены требования к аварийной посадке и остойчивости поврежденного объекта.

2.1.2 Требования к аварийной посадке и остойчивости объекта считаются выполненными, если при повреждениях, указанных в 2.2, с затоплением числа отсеков, указанных в 2.4, при коэффициентах проницаемости, определяемых согласно 2.3, расчеты, произведенные в соответствии с условиями 2.1.3 — 2.1.7, покажут, что надлежащие требования, указанные в 2.5, 2.6 и 2.7, выполнены.

2.1.3 Расчеты, подтверждающие выполнение требований 2.5, 2.6 и 2.7 к аварийной посадке и остойчивости поврежденного объекта, должны быть произведены для такого числа наихудших в отношении посадки и остойчивости эксплуатационных случаев нагрузки (в границах осадки по самую высокую ватерлинию деления на отсеки и предусмотренного в проекте распределения грузов), такого расположения и размеров повреждения, определенных в соответствии с 2.2, чтобы на основании этих расчетов можно было убедиться в том, что во всех остальных случаях состояние поврежденного объекта в части аварийной остойчивости, остаточного надводного борта, отстояния от аварийной ватерлинии отверстий, через которые возможно распространение воды по объекту, и углов крена будет лучше.

2.1.4 Если расстояние между двумя соседними главными поперечными переборками меньше, чем расчетная протяженность пробоины по длине, то при проверке аварийной посадки и остойчивости соответствующий отсек должен,
Правила классификации, постройки и оборудования ПБУ/МСП

по усмотрению проектанта, присоединяться к одному из смежных отсеков.

Форпик и ахтерпик считаются самостоятельными отсеками, независимо от их протяженности.

2.1.5 Если в пределах предполагаемой зоны повреждения расположен уступ переборки, при рассмотрении затопления отсека переборка с уступом должна считаться захваченной повреждением.

2.1.6 Если любое повреждение меньших размеров, чем указано в 2.2, может привести к более тяжелым последствиям в отношении посадки и остойчивости поврежденного объекта, такое повреждение должно быть рассмотрено при выполнении проверочных расчетов аварийной посадки и остойчивости.

2.1.7 Если в пределах предполагаемой зоны повреждения расположены трубопроводы, каналы и тоннели, их конструкция должна исключать распространение воды в отсеки, которые считаются незатопленными.

2.1.8 Средства для спрямления объекта после аварии должны быть одобрены Регистром и, по возможности, автоматически действующими.

При наличии управляемых переточных каналов посты управления их клинкетами должны располагаться выше палубы переборок.

2.2 РАЗМЕРЫ И ЗОНЫ РАСЧЕТНЫХ ПОВРЕЖДЕНИЙ

2.2.1 Аварийные посадка и остойчивость поврежденных полупогружных ПБУ при транспортировке должны удовлетворять требованиям 2.5 и 2.6 как при повреждении борта и транца, так и при повреждении днища, а других поврежденных объектов — требованиям 2.5.

2.2.1.1 Расчетные размеры повреждений наружных бортов и транцев:
1. протяженность по длине $L/2$ или 14,5 м (в зависимости от того, что меньше);
2. глубина повреждения 1,5 м — для самоходных ПБУ и 1,5 м или 0,2 ширины нижнего корпуса (в зависимости от того, что больше) — для погружных и полупогружных ПБУ и МСП;
3. размер по вертикали — от основной ширины неограниченно вверх.

При необычно больших осадках и возвышениях палубы переборок при транспортировке допускается принимать размер по вертикали — от линии, расположенной на 10 м ниже верхней (с учетом дифферента), вверх до линии, расположенной на 7 м выше верхней (также с учетом дифферента).

2.2.1.2 Расчетные размеры днищевых повреждений:
1. протяженность по длине $L/3$ или 5 м (в зависимости от того, что меньше);
2. протяженность по ширине $B/6$ или 5 м (в зависимости от того, что меньше) — для двухкорпусных объектов B равно сумме ширин нижних корпусов;
3. протяженность по высоте, измеренная в диаметральной плоскости от теоретических обводов корпуса, 1 м.

2.2.2 Для объектов при транспортировке считается возможным:
1. получение пробоины борта или транца, не затрагивающей переборок деления на отсеки, отстоящих друг от друга на расстоянии не менее указанного в 2.2.1.1 в любом месте и периметру корпуса (нижних корпусов — для погружных и полупогружных ПБУ и МСП), с учетом реальной возможности получения пробоины в рассматриваемом районе;
2. получение днищевой пробоины между поперечными и продольными переборками, если они расположены друг от друга на расстоянии не менее указанного в 2.2.1.2.1 и 2.2.1.2.2.

В случае, если расстояние между соседними переборками меньше, чем расчетный размер предполагаемой пробоины, указанный в 2.2.1.1, 2.2.1.2.1 и 2.2.1.2.2, следует рассматривать совместное затопление смежных отсеков. При этом расстояние между переборками, ограничивающими район затопления, должно быть не меньше размеров расчетного повреждения.

2.2.3 В расчетах аварийной посадки и остойчивости, подтверждающих выполнение требований 2.5 и 2.6 для полупогружных ПБУ согласно 1.5.2.2, находящихся на плаву в рабочем состоянии, принимаются следующие размеры повреждений колонн и раскосов:
1. протяженность по длине — 1/8 периметра стабилизирующей колонны на уровне действующей ватерлинии или 2,5 м (в зависимости от того, что больше);
2. глубина повреждения — 1,5 м;
3. размер по вертикали — 3 м.

2.2.4 Следует считать разрушенными водонепроницаемые горизонтальные платформы и вертикальные переборки, шахты, трубопроводы и т. д., которые могут быть охвачены указанными в 2.2.3 повреждениями в любом месте зоны, ограниченной:
двумя внешними квадрантами (180°) на средних колоннах;
третьем внешним квадрантом (270°) на угловых колоннах;
8 м по высоте (5 м выше и 3 м ниже действующей ватерлинии с учетом дифферента).

При этом указанные выше зоны могут быть изменены, если Регистру будет доказана не-
возможность повреждения в той или иной зоне в результате осуществления конструктивных или достаточно эффективных организационных мероприятий, предусмотренных конкретным проектом.

2.2.5 Если любое повреждение меньших размеров, чем указано в 2.2.1 и 2.2.3, может привести к более тяжким последствиям, то оно должно быть рассмотрено при выполнении расчетов аварийной посадки и остойчивости.

2.2.6 В районе расчетного повреждения считаются поврежденными все трубопроводы. Должны быть предусмотрены меры, предотвращающие прогрессирующее затопление через поврежденные трубопроводы.

2.3 КОЭФФИЦИЕНТЫ ПРОНИЦАЕМОСТИ

2.3.1 В расчетах аварийной посадки и остойчивости коэффициент проницаемости затопленного помещения должен приниматься равным:
 .1 0,85 — для помещений, занятых механизмами, электростанциями, а также технологическим оборудованием;
 .2 0,95 — для жилых помещений; пустых помещений, включая порожние цистерны;
 .3 0,6 — для помещений, предназначенных для сухих запасов.

2.3.2 Проницаемость затопленных цистерн с жидким грузом или жидкими запасами или водяным балластом определяется исходя из предположения, что весь груз из цистерны выливается, а забортная вода вливается с учетом коэффициента проницаемости, равного 0,95.

2.3.3 Значения коэффициентов проницаемости помещений могут быть приняты меньшими, чем указано выше, лишь в том случае, если выполнен специальный расчет проницаемости, одобренный Регистром.

2.3.4 Если расположение помещений или характер их эксплуатации таковы, что очевидна целесообразность применения других коэффициентов проницаемости, приводящих к более жестким требованиям, Регистр вправе потребовать применения этих, более жестких коэффициентов.

2.4 ЧИСЛО ЗАТАПЛИВАЕМЫХ ОТСЕКОВ

2.4.1 Требования к посадке и остойчивости поврежденного объекта должны выполняться при затоплении одного любого отсека при повреждениях, указанных в 2.2.

Искключение может составить число затапливаемых отсеков стабилизирующих колонн полупогруженных ПБУ при получении расчетного повреждения, размеры и положение которого указаны в 2.2.3 и 2.2.4., а также корпусов при расстоянии между соседними переборками меньше, чем соответствующий расчетный размер повреждения, указанный в 2.2.1.1, 2.2.1.2.1 и 2.2.1.2.2.

2.4.2 Необходимость обеспечения аварийной посадки и остойчивости при затоплении двух или трех любых смежных отсеков на всей длине и ширине корпуса или его части определяется судовладельцем.

2.5 ТРЕБОВАНИЯ К ЭЛЕМЕНТАМ ПОСАДКИ И ОСТОЙЧИВОСТИ ПОВРЕЖДЕННЫХ ОБЪЕКТОВ

2.5.1 Аварийная ватерлиния до принятия мер по спрямлению и после спрямления должна проходить ниже палубы переборок вне района затопления. Отступление от этого требования допускается, когда аварийная ватерлиния до процесса спрямления и после него проходит по крайней мере на 0,3 м ниже отверстий в переборках, наружных бортах, через которые возможно дальнейшее распространение воды.

Под отверстиями, через которые возможно дальнейшее распространение воды по объекту, понимаются воздушные и вентиляционные трубы, а также вырезы, закрываемые непроницаемыми при воздействии моря дверями и крышками.

К ним могут не относиться: глухие бортовые и палубные иллюминаторы; горловины, закрываемые крышками на часто расставленных болтах; водонепроницаемые, скользящие, дистанционно управляемые двери при условии, что они расположены вне зоны расчетных повреждений.

Люки малых размеров и навесные водонепроницаемые двери могут быть предметом особых рассмотрений Регистром в зависимости от их эксплуатации в конкретных условиях, а также конструктивных и организационных мер по их закрытию.

2.5.2 Начальная метацентрическая высота, соответствующая наклонению относительно любой возможной оси в конечной стадии затопления, определенная методом постоянного водоизмещения, до принятия мер по спрямлению и/или увеличению остойчивости должна быть не менее 0,3 м.

2.5.3 Угол наклонения, определенный с учетом углов крена и дифферента, в конечной
Правила классификации, постройки и оборудования ПБУ/МСП

стадия затопления не должен превышать 7° после принятия мер по спрямлению; угол наклона до спрямления нормируется в 2.5.5.2.

2.5.4 Диаграмма статической остойчивости поврежденного объекта должна иметь достаточную площадь участков с положительными плечами. При этом в конечной стадии затопления, а также после спрямления максимальное плечно статической остойчивости должно быть не менее 0,3 м.

2.5.5 Поврежденный объект, включая поврежденное буровое судно (последнее — в дополнение к 1.1.2), должен иметь достаточную остойчивость в поврежденном состоянии, чтобы выдержать статически приложенный крепящий момент при действии ветра со скоростью 25,8 м/с (50 узлов) с любого направления. При этом с учетом статического действия ветра:

1. Ватерлиния поврежденного объекта должна проходить ниже нижней кромки любого отверстия, через которое может происходить прогрессивное затопление, с учетом указаний об отверстиях, содержащихся в 2.5.1;
2. Угол наклона не должен превышать 17°;
3. Протяженность участка диаграммы статической остойчивости с положительными плечами от угла наклона до угла залывания или второго пересечения кривых ветрового момента и восстанавливающего момента (в зависимости от того угла, который меньше) должна быть менее 7°. В качестве угла залывания следует принимать угол, при котором вода начинает проникать в отсек, не имеющий водонепроницаемых или непроницаемых при воздействии моря закрытых участков, или смежных с забортной водой помещением. При этом:

1. Угол наклона в конечной стадии затопления не должен быть более 25°;
2. Любое отверстие, расположенное ниже ватерлинии в конечной стадии затопления, должно быть водонепроницаемым;
3. Протяженность диаграммы статической остойчивости с положительными плечами с учетом угла залывания должна быть не менее 7°.

2.6 ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К ПОСАДКЕ И ОСТОЙЧИВОСТИ ПОВРЕЖДЕННЫХ ПОЛУПОГРУЗНЫХ УСТАНОВОК

2.6.1 В дополнение к 2.5.5.1 — 2.5.5.4 требуется, чтобы любое отверстие, нижняя кромка которого возникает над аварийной ватерлинией (с учетом действия оговоренного в 2.5.5 ветра) менее чем на 4 м, было непроницаемым при воздействии моря.

2.6.2 Полупогруженная установка должна выдерживать в любых условиях эксплуатации и транспортировки затопление любого водонепроницаемого отсека (одного, независимо от его размеров), полностью или частично расположенного ниже ватерлинии, который может быть либо помещением, содержащим балластные насосы, либо помещением, содержащим механизмы с системой охлаждения забортной водой, или смежным с забортной водой помещением. При этом:

1. Угол наклона в конечной стадии затопления не должен быть более 25°;
2. Любое отверстие, расположенное ниже ватерлинии в конечной стадии затопления, должно быть водонепроницаемым;
3. Протяженность диаграммы статической остойчивости с положительными плечами с учетом угла залывания должна быть не менее 7°.

2.6.3 Требование 2.6.2 при транспортировке или в рабочем положении не распространяется на помещения, содержащие балластные насосы или механизмы с системой охлаждения забортной водой, в случае, если насосы или механизмы не должны работать соответственно в одном из двух режимов эксплуатации, и если эти помещения не смежны с забортной водой.

2.7 УСЛОВИЯ ДОСТАТОЧНОСТИ ПЛАВУЧЕСТИ И ОСТОЙЧИВОСТИ ПОВРЕЖДЕННЫХ МОДУЛЕЙ МСП

2.7.1 Аварийная посадка и плавучесть модуля с затопленным отсеком или отсеками считаются удовлетворительными, если:

1. Начальная метацентрическая высота модуля в конечной стадии затопления для ненакрененного положения, определенная методом постоянного водоизмещения, до принятия мер по ее увеличению составляет не менее 0,05 м;
2. Угол наклона не превышает 25°;
3. Протяженность φ_1 диаграммы статической остойчивости с положительными плечами с учетом угла залывания составляет не менее 20°. Значение протяженности диаграммы может быть снижено до $\varphi_1 = 10°$ при условии, что площадь участка диаграммы с положительными плечами не менее $(20° / \varphi_1)0,0175$ мрад.

![Рис. 2.5.5.4 Кривые восстанавливающего момента (1) и ветрового кривого (2)]](image)
Часть V. Деление на отсеки

4.4 аварийная ватерлиния до, в процессе и после спрямления проходит по крайней мере на 0,3 м ниже отверстий в переборках, палубах и бортах, через которые возможно дальнейшее распространение воды;

5 допускается вход в воду палубы переборок и даже открытой палубы.

2.7.2 Значение максимального плеча диаграммы статической остойчивости должно быть не менее 0,1 м в пределах указанной протяженности.

В промежуточных стадиях затопления максимальное плечно диаграммы статической остойчивости должно быть не менее 0,05 м, а протяженность положительной ее части — не менее 7°.
ЧАСТЬ VI. ПРОТИВОПОЖАРНАЯ ЗАЩИТА

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящей части распространяются на конструктивные элементы противопожарной защиты ПБУ/МСП, системы пожаротушения и пожарной сигнализации, а также на противопожарное оборудование и снабжение. Кроме требований настоящей части на ПБУ/МСП распространяются все приемлемые требования части VI «Противопожарная защита» Правил классификации и постройки морских судов.

1.1.2 Требования противопожарной защиты к элементам конструкции ПБУ/МСП, механизмам, их деталям, электрическому оборудованию, системам и трубопроводам, устройствам, хранилищам жидкого топлива и масла, конструкции и расположению котлов, холодильным установкам, помещениям и т. п. изложены в соответствующих частях настоящих Правил.

1.1.3 Специальное оборудование и снабжение (системы пожаротушения и сигнализации, установки пожаротушения, предметы переносного противопожарного снабжения и т. п.), предназначенное для предотвращения и борьбы с пожаром в зоне бурения и технологической зоне, не оговоренное настоящей частью Правил, должно отвечать их требованиям в объеме, согласованном с Регистром в каждом конкретном случае.

Необходимость его установки и его характеристики определяет заказчик с учетом наличия и числа на ПБУ/МСП специальных аварийно-спасательных партий и находящихся в аварийном ПБУ/МСП судов со знаком ФФ в символе класса.

Объем наблюдения Регистра за указанным оборудованием и снабжением определяет заказчик и согласовывает с Регистром.

1.1.4 Размещение бурового и технологического оборудования, а также технические решения, связанные с обеспечением безопасного бурения и эксплуатации скважин, сбора, хранения, подготовки и транспортирования продукции скважин, должны соответствовать требованиям компетентных государственных органов надзора за безопасностью в нефтяной и газовой промышленности.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

1.2.1 Определения и пояснения, относящиеся к общей терминологии Правил, указаны в Общих положениях о классификационной и иной деятельности и части I «Классификация» Правил ПБУ/МСП. Определения и пояснения, относящиеся к противопожарной защите, указаны в 1.2 части VI «Противопожарная защита» Правил классификации и постройки морских судов.

1.2.2 В настоящей части, если не предусмотрено иное, приняты следующие определения.

Жилые помещения — каюты, кают-компании, спортивные залы, госпитали, буфеты, не содержащие оборудования для приготовления горячей пищи, и другие подобные помещения.

Служебные помещения — камбузы, хлебопекарни, буфеты, содержащие оборудование для приготовления горячей пищи, кладовые, мастерские, не являющиеся частью машинных помещений, и другие подобные помещения.

Помещения технологического оборудования — помещения, в которых расположено оборудование, предназначенное для сбора, хранения, подготовки и транспортирования продукции скважин.

Машины помещения категорий А и прочие машины помещения — см. 1.2 части VII «Механические установки» Правил классификации и постройки морских судов.

Посты управления — помещения, в которых расположено радиооборудование, или главное навигационное оборудование, или аварийный источник электроэнергии, или в которых сосредоточены средства управления системами пожаротушения или сигнализации обнаружения пожара.

Зона бурения — часть ПБУ/МСП, в которой находится оборудование, предназначенное для бурения скважин.

Технологическая зона — часть МСП, в которой находится оборудование, предназначенное для эксплуатации скважин и связанных с этим процессов сбора, хранения, подготовки и транспортирования продукции скважин со МСП.
Взрывоопасные зоны и пространства — см. 2.9 части X «Электрическое оборудование».

Обслуживающий персонал — лица, для целей настоящей части, постоянно или временно находящиеся на ПБУ/МСП в связи с ее назначением или по причине специальных работ, производимых на ПБУ/МСП.

Нижний предел воспламеняемости — минимальная концентрация нефтяных газов и паров в воздухе, способная воспламениться от источника зажигания с последующим распространением горения по смеси.

Конструкции типа Н — конструкции, образованные переборками и палубами, которые должны быть:
изготовлены из стали или из другого равноценного материала;
достаточно жесткими;
изготовлены так, чтобы предотвратить прохождение через них дыма и пламени в течение 120 мин стандартного испытания огнестойкости;
изолированы пограничными материалами или равноценными огнезащитными составами так, чтобы средняя и максимальная (в любой точке) температура на стороне, противоположной огневому воздействию, не повышалась по сравнению с первоначальной температурой более чем на 140 °С и 180 °С соответственно.

В зависимости от времени, в течение которого обеспечивается соблюдение указанного перепада температур в процессе стандартного испытания огнестойкости, конструкциям присваиваются следующие обозначения: Н-120 — в течение 120 мин; Н-60 — в течение 60 мин; Н-0 — в течение 0 мин.

Конструкции испытываются на огнестойкость по методике, изложенной в резолюции ИМО А.754(18) «Рекомендации по испытаниям на огнестойкость перекрытий классов «А», «В» и «Г», с учетом, что стандартная кривая температуры в зависимости от времени соответствует международному стандарту ИСО 834-1 «Испытания огнестойкости элементов строительных конструкций. Общие требования».

1.3 ЧЕРТЕЖИ И СХЕМЫ

1.3.1 В центральном посту управления или на видимых местах в коридорах и вестибюлях должны быть постоянно вывешены планы общего расположения МСП/ПБУ, на которых для каждой палубы должны быть четко показаны:
.1 размещение постов управления;
.2 расположение огнестойких и огнезадерживающих конструкций;
.3 помещения, оборудованные системой сигнализации обнаружения пожара;
.4 помещения, защищаемые стационарными системами пожаротушения, с указанием места расположения приборов и арматуры для управления их работой, а также расположения пожарных кранов;
.5 размещение средств противопожарного снабжения;
.6 пути доступа в различные помещения и на палубы с указанием путей эвакуации, коридоров и дверей;
.7 система вентиляции, включая расположение заслонок и постов управления вентиляторами, а также опознавательных номеров вентиляторов;
.8 места расположения документов, указанных в 1.3.6.

1.3.2 По одному сброшюрованному комплексу планов с указанными в 1.3.1 сведениями должно иметься у каждого лица командного состава, и один экземпляр должен постоянно находиться в легкодоступном месте.

1.3.3 Комплект планов, защищенный от воздействия внешней среды, должен постоянно находиться в брызгозащищенном укрытии, расположенном на надстройке с жилыми помещениями, окрашенным в красный цвет и обозначенным специальным знаком (рис. 1.3.3-1).

Рис. 1.3.3-1

Укрытие должно легко открываться, быть легкодоступным для аварийных партий и располагаться в местах с хорошей освещенностью, где по возможности имеется также аварийное освещение. Укрытие не должно располагаться во взрывоопасной зоне, а также на переборках надстройки с жилыми помещениями, окрашенными в красный цвет и обозначенными специальным знаком.

Если укрытие не находится непосредственно у мест высадки аварийных партий, должны быть предусмотрены специальные знаки (рис. 1.3.3-2), указывающие путь к нему. Размеры знаков должны быть не менее 300 × 400 мм.

Знаки должны располагаться на одном уровне, а расстояние между ними не должно превышать 50 м.
1.3.4 Планы и брошюры должны составляться на государственном языке и должны содержать перевод на английский язык, при этом условные обозначения элементов, перечисленных в 1.3.1, должны соответствовать резолюции ИМО A.654(16) «Графические символы, используемые в планах противопожарной защиты».

Для МСП, эксплуатируемых на российском континентальном шельфе, перевод на английский язык не требуется.

Графические символы должны быть изображены в цветной раскраске.

1.3.5 Планы и брошюры должны постоянно обновляться, и любые изменения в противопожарной защите ПБУ/МСП должны вноситься в них в кратчайшие сроки.

1.3.6 В отдельной папке, хранящейся в легко доступном месте, должны находиться инструкции по техническому обслуживанию и применению всех средств и установок тушения и локализации пожара.

2 КОНСТРУКТИВНАЯ ПРОТИВОПОЖАРНАЯ ЗАЩИТА

2.1 ОБЩИЕ ТРЕБОВАНИЯ

2.1.1 Требования к конструктивной противопожарной защите МСП.

2.1.1.1 Для выполнения мер конструктивной противопожарной защиты должны применяться все приемлемые требования 2.1 части VI «Противопожарная защита» Правил классификации и постройки морских судов.

2.1.1.2 Корпус, надстройки, конструктивные переборки и палубы должны быть изготовлены из стали.

В зависимости от назначения, размеров и расположения помещений на МСП Регистр может допустить применение иных материалов.

2.1.1.3 Надстройка МСП, если ее длина превышает 50 м и число обслуживающего персонала более 100 человек, в районе расположения жилых и служебных помещений должна быть разделена на главные вертикальные зоны перекрытиями типа А-60. Количество уступов и выступов (рecessов) должно быть минимальным, а там, где они необходимы, они также должны быть выполнены перекрытиями типа А-60. Если с одной стороны перекрытия имеется помещение категории (8), (9), перечисленных в 2.1.1.7.2, тип огнестойкости может быть снижен до А-0.

Переборки, образующие главные вертикальные зоны, должны простираться от палубы до палубы и до обшивки надстройки или других ограничивающих конструкций.

Если главная вертикальная зона разделена горизонтальными перекрытиями типа А на горизонтальные зоны с тем, чтобы обеспечить надлежащую преграду между зонами МСП, защищенными и не защищенными спринклерной системой, такие перекрытия должны быть доведены до ближайших переборок главных вертикальных зон и до наружных ограничивающих конструкций МСП и изолированы в соответствии с величинами изоляции и огнестойкости, указанными в табл. 2.1.1.7-2.

2.1.1.5 Все переборки в жилых и служебных помещениях, на которые не распространяется требование, чтобы они были перекрытиями типа А, должны быть по меньшей мере перекрытиями типа В и С, как это предусмотрено табл. 2.1.1.7-1.

2.1.1.6 Все переборки коридоров, на которые не распространяется требование, чтобы они были перекрытиями типа А, должны быть типа В и должны простираться от палубы до палубы, за исключением следующего:

.1 когда с обеих сторон переборки установлены непрерывные подволоки или зашивки типа В, часть переборки за непрерывным подволоком или зашивкой должна быть из материала, который по толщине и составу допускается для изготовления перекрытий типа В; но который должен отвечать стандартам огнестойкости типа В лишь в той мере, в какой это является целесообразным и практически возможным;

.2 когда МСП защищена автоматической спринклерной системой, переборки коридоров из
материалов типа В могут заканчиваться у подво­лока коридора при условии, что такой подволок изготовлен из материала, который по толщине и составу допускается для изготовления перекры­тий типа В. Такие переборки и подволоки должны отвечать стандартам огнестойкости типа В лишь в той мере, в какой это является целесообразным и практически возможным. Все двери и рамы в таких переборках должны быть изготовлены из негорючих материалов и установлены так, чтобы обеспечить достаточную огнестойкость.

2.1.1.6 Все переборки, в отношении которых требуется, чтобы они были перекрытиями типа В, за исключением переборок коридоров, предусмо­тренных в 2.1.1.5, должны простираться от палубы до палубы и до обшивки надстроек или других ограничивающих конструкций, однако, если с обеих сторон переборки установлены непрерывные подволоки и зашивки класса В, такие переборки и подволоки должны отвечать стандартам огнестойкости типа В лишь в той мере, в какой это является целесообразным и практически возможным.

Переборки, не ограничивающие главные вертикальные и горизонтальные зоны

<table>
<thead>
<tr>
<th>Помещения</th>
<th>Категории помещений</th>
<th>Категории помещений</th>
</tr>
</thead>
<tbody>
<tr>
<td>Посты управления</td>
<td>A-0</td>
<td>A-60</td>
</tr>
<tr>
<td>Трапы и лифты</td>
<td>A-0</td>
<td>A-15</td>
</tr>
<tr>
<td>Коридоры</td>
<td>A-0</td>
<td>A-60</td>
</tr>
<tr>
<td>Места сбора для эвакуации и внешние пути эвакуации</td>
<td>A-0</td>
<td>A-15</td>
</tr>
<tr>
<td>Открытые палубы</td>
<td>A-0</td>
<td>A-15</td>
</tr>
<tr>
<td>Жилые помещения (низкая пожароопасность)</td>
<td>C2</td>
<td>A-0</td>
</tr>
<tr>
<td>Судовые помещения</td>
<td>C2</td>
<td>A-60</td>
</tr>
<tr>
<td>Санитарные и подобные им помещения</td>
<td>C2</td>
<td>A-0</td>
</tr>
<tr>
<td>Цистерны и пустые пространства</td>
<td>A-0</td>
<td>A-60</td>
</tr>
<tr>
<td>Прочие машинные помещения</td>
<td>A-0</td>
<td>A-60</td>
</tr>
<tr>
<td>Служебные помещения (высокая пожароопасность)</td>
<td>A-0</td>
<td>A-60</td>
</tr>
<tr>
<td>Хранитель нефти</td>
<td>A-0</td>
<td>A-60</td>
</tr>
<tr>
<td>Зона буриения</td>
<td>A-0</td>
<td>A-60</td>
</tr>
</tbody>
</table>

1 Если помещения используются для одной цели, перекрытия между ними могут не устанавливаться.
2 Если перекрытия являются перекрытиями главных противопожарных вертикальных зон, требуемых в 2.1.1.3, то они должны быть типа A-60.
3 Огнестойкость борта МСП выше ватерлинии, огнестойкость наружной стенки надстроек, расположенных ниже мест посадки в спасательные плоты и слипов для эвакуации, и примыкающих к ним районов, может быть снижена до типа A-30.
4 Если на судне установлены вентиляционные решётки, огнестойкость переборки туалета в пределах вентиляционной решётки не должна быть ниже типа B.

Примечания:
1. Если из-за каких-либо конструктивных особенностей МСП возникает трудность в определении по таблицам минимальной категории огнестойкости какого-либо перекрытия, то его выбор является предметом специального рассмотрения Регистром.
2. Если из-за содержания и назначения помещения возникают сомнения относительно их огнестойкости, то оно должно рассматриваться как помещение той категории, к которой предъявляются более высокие требования в отношении огнестойкости ограничивающих конструкций.
3. Если в таблице поставлен прочерк, то никаких специальных требований к материалу и огнестойкости ограничивающих конструкций не предъявляется.
4. N.A. означает, что смежное расположение помещений не приемлемо.
5. Знак * означает, что перекрытия должны быть изготовлены из стали, однако они могут не быть перекрытиями типа A. Места прохода через эти перекрытия кабелей, трубопроводов и т. п. должны быть оборудованы уплотнёнными ограждениями типа.
<table>
<thead>
<tr>
<th>Помещения</th>
<th>Категории помещений</th>
<th>Категории помещений</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Посты управления</td>
<td>A-0</td>
<td>A-0</td>
</tr>
<tr>
<td>Трапы и лифты</td>
<td>A-0</td>
<td>A-0</td>
</tr>
<tr>
<td>Коридоры</td>
<td>A-15</td>
<td>A-0</td>
</tr>
<tr>
<td>Места сбора для эвакуации и внешние пути эвакуации</td>
<td>A-0</td>
<td>A-0</td>
</tr>
<tr>
<td>Открытые палубы</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Жилые помещения (низкая пожароопасность)</td>
<td>A-60</td>
<td>A-0</td>
</tr>
<tr>
<td>Санитарные и подобные им помещения</td>
<td>A-60</td>
<td>A-0</td>
</tr>
<tr>
<td>Цистерны и пустые пространства</td>
<td>A-60</td>
<td>A-0</td>
</tr>
<tr>
<td>Машинные помещения категории А</td>
<td>A-60</td>
<td>A-0</td>
</tr>
<tr>
<td>Прочие машинные помещения</td>
<td>A-60</td>
<td>A-0</td>
</tr>
<tr>
<td>Служебные помещения (высокая пожароопасность)</td>
<td>A-60</td>
<td>A-0</td>
</tr>
<tr>
<td>Хранители нефти</td>
<td>A-60</td>
<td>A-0</td>
</tr>
<tr>
<td>Технологическая зона</td>
<td>A-60</td>
<td>A-0</td>
</tr>
<tr>
<td>Зона бурения</td>
<td>A-60</td>
<td>A-0</td>
</tr>
</tbody>
</table>

(1) Посты управления:
помещения, в которых расположены аварийные источники электроэнергии и освещения;
помещения, в которых расположено радиооборудование;
станции пожаротушения, посты управления системами пожаротушения и посты сигнализации обнаружения пожара;
центральный пост управления главными механизмами, если он находится за пределами помещения, в котором расположены эти механизмы;
помещения, в которых расположена централизованная система оповещения о пожаре;
помещения, в которых расположен центральный пост и оборудование аварийной громкоговорящей связи.

(2) Трапы и лифты:
внутренние трапы, лифты и эскалаторы и их выгородки;
трап или лифт, который выгоражен только в одном междупалубном пространстве, должен рассматриваться как часть помещения, от которого он не отделен противопожарной дверью.

(3) Коридоры:
коридоры и вестибюли.

(4) Места сбора для эвакуации и внешние пути эвакуации:
места размещения спасательных шлюпок и плотов;
открытые участки палуб и закрытые палубы, образующие места посадки в спасательные шлюпки и плоты и места их спуска;
внешние и внутренние места сбора;
внешние трапы и открытые палубы, используемые как пути эвакуации;
борта МСП до ватерлинии и борта надстроек, расположенные ниже районов мест посадки в спасательные плоты и спусков для эвакуации и примыкающие к ним районы.

(5) Открытые палубы:
открытые пространства (пространства вне надстроек), исключая зону бурения и технологическую зону, и несмежные с этими зонами.

(6) Жилые помещения:
помещения, определение которых дано в 1.2.2, за исключением коридоров.

(7) Служебные помещения (низкая пожароопасность):
шкафы и кладовые, не имеющие условий для хранения воспламеняющихся жидкостей;
сушильные помещения;
мастерские, не являющиеся частью машинных помещений.

(8) Санитарные и подобные им помещения:
общественные санитарные помещения, прачечные, душевые, туалеты и т. д.

(9) Цистерны и пустые пространства:
встроенные водяные цистерны.

См. сноску 1 к табл. 2.1.1.7-1.
Примечания: См. примечания к табл. 2.1.1-1.
Часть VI. Противопожарная защита

(10) Машины помещения категории А: помещения, определение которых дано в 1.2.2.
(11) Прочие машины помещения: помещения, определение которых дано в 1.2.2. за исключением машинных помещений категории А;
цистерны для жидкого топлива и других нефтепродуктов (если они установлены в отдельном помещении, в котором нет механизмов);
туннели топливных и технологических трубопроводов;
закрытые проходы и шахты, обслуживающие перечисленные выше помещения.

(12) Служебные помещения (высокая пожароопасность):
камбузы, буфетные, содержащие оборудование для приготовления горячей пищи;
кладовые для хранения воспламеняющихся жидкостей (включая краски, медикаменты и т. д.);
лаборатории, в которых хранятся воспламеняющиеся жидкости.

(13) Хранилища нефти:
цистерны и другие емкости, предназначенные для хранения нефти, в том числе сливные цистерны.

(14) Технологическая зона:
зона, определение которой дано в 1.2.2.
(15) Зона бурения:
зона, определение которой дано в 1.2.2.

2.1.2 Требования к конструктивной противопожарной защите ПБУ.

2.1.2.1 Для выполнения мер конструктивной противопожарной защиты должны применяться все приемлемые требования 2.1 части VI «Противопожарная защита» Правил классификации и постройки морских судов.

2.1.2.2 Для конструктивной противопожарной защиты жилых и служебных помещений ПБУ должен применяться способ 1С, изложенный в 2.3 части VI «Противопожарная защита» Правил классификации и постройки морских судов.

2.1.2.3 На ПБУ минимальная огнестойкость перекрытий и палуб, разделяющих смежные помещения, должна соответствовать данным табл. 2.1.2.3-1 и 2.1.2.3-2. При пользовании указанными таблицами необходимо руководствоваться следующими требованиями:
.1 таблицы применяются соответственно к перекрытиям и палубам, разделяющим смежные помещения;
.2 для определения соответствующих стандартов огнестойкости, применимых к перекрытиям между смежными помещениями, такие помещения в зависимости от их пожароопасности подразделяются на 10 категорий, приведенных ниже. Название каждой категории является скорее типовым, чем ограничивающим.

(1) Посты управления:
помещения, определение которых дано в 1.2.2.
(2) Коридоры:
коридоры и вестибюли.

Таблица 2.1.2.3-1

<table>
<thead>
<tr>
<th>Помещения</th>
<th>Категория помещений</th>
<th>Категория помещений</th>
<th>Категория помещений</th>
</tr>
</thead>
<tbody>
<tr>
<td>Машинные помещения</td>
<td>(6) A-0</td>
<td>(7) A-60</td>
<td>(8) A-0</td>
</tr>
<tr>
<td>Прочие машинные помещения</td>
<td>(7) A-0</td>
<td>(8) A-60</td>
<td>(9) A-0</td>
</tr>
<tr>
<td>Зона бурения</td>
<td>(8) A-0</td>
<td>(9) A-60</td>
<td>(10) *</td>
</tr>
<tr>
<td>Служебные помещения (высокая пожароопасность)</td>
<td>(9) A-0</td>
<td>(10) A-60</td>
<td></td>
</tr>
<tr>
<td>Открытые палубы</td>
<td>(10) A-0</td>
<td>(11)</td>
<td></td>
</tr>
</tbody>
</table>

1. Перекрытия, отделяющие друг от друга помещения, в которых расположено радиооборудование и навигационное оборудование, могут быть типа B-0.
2. Для уточнения типа перекрытия см. 2.1.4.3 части VI «Противопожарная защита» Правил классификации и постройки морских судов.
3. Если помещения используются для одной цели, перекрытия между ними могут не устанавливаться.

Примечание. Знак * означает, что перекрытия должны быть изготовлены из стали, однако они могут не быть перекрытиями типа A. Места прохода через эти перекрытия кабелей, трубопроводов и т. п. должны быть оборудованы уплотнениями одобрённого типа.
Правила классификации, постройки и оборудования ПБУ/МСП

Таблица 2.1.2.3-2

<table>
<thead>
<tr>
<th>Помещения</th>
<th>Категория помещений</th>
<th>Категория помещений</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Посты управления</td>
<td>А-0</td>
<td>А-0</td>
</tr>
<tr>
<td>Коридоры</td>
<td>А-0</td>
<td>А-0</td>
</tr>
<tr>
<td>Жилые помещения</td>
<td>А-60</td>
<td>А-0</td>
</tr>
<tr>
<td>Трапы и лифты</td>
<td>А-0</td>
<td>А-0</td>
</tr>
<tr>
<td>Служебные помещения (низкая пожаро-</td>
<td>А-15</td>
<td>А-0</td>
</tr>
<tr>
<td>опасность)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Машинные помещения категории А</td>
<td>А-60</td>
<td>А-60</td>
</tr>
<tr>
<td>Прочие машинные помещения</td>
<td>А-15</td>
<td>А-0</td>
</tr>
<tr>
<td>Зона бурения</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Служебные помещения (высокая пожаро-</td>
<td>А-60</td>
<td>А-0</td>
</tr>
<tr>
<td>опасность)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Открытые палубы</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

1.2.3 Смотри соответствующие ссылки в табл. 2.1.2.3-1.
4 Если прочие машинные помещения имеют низкую пожарную опасность, т.е. в них отсутствуют механизмы, работаю-
щие на жидком топливе или использующие смазку под давлением, допускается применение перекрытий типа А-0.

Примечание. Знак * означает, что перекрытия должны быть изготовлены из стали, однако они могут не быть
перекрытиями типа А. Места прохода через эти перекрытия кабелей, трубопроводов и т.п. должны быть оборудованы
уплотнениями одобренного типа.

(3) Жилые помещения:
помещение, определение которых дано в 1.2.2, за исключением коридоров.

(4) Трапы и лифты:
внутренние трапы, лифты и эскалаторы и их выгородки;
трап или лифт, который выгорожен только в одном межпалубном пространстве, должен рассматриваться как часть помещения, от которо- го он не отделен противопожарной дверью.

(5) Служебные помещения (низкая пожаро-
opасность):
шкафы и кладовые, не имеющие условий для хранения воспламеняющихся жидкостей, а также супильные помещения и прачечные.

(6) Машинные помещения категории А:
помещения, определение которых дано в 1.2.2.

(7) Прочие машинные помещения:
помещения, определение которых дано в 1.2.2, за исключением машинных помещений категории А.

(8) Зона бурения:
зона, определение которой дано в 1.2.2.

(9) Служебные помещения (высокая пожаро-
opасность):
камбузы, буфетные, содержащие оборудование для приготовления горячей пищи;
шкафы и кладовые для хранения воспламе- няющихся жидкостей (включая краски, медика- менты и т.д.);
мастерские, не являющиеся частью машинных помещений.

(10) Открытые палубы:
открытые участки палуб и закрытые палубы, не представляющие пожарной опасности.

2.1.3 Трапы, пути эвакуации.
2.1.3.1 Трапы внутри надстроек должны быть защищены перекрытиями с самозакрываю-
ящимися дверями.

2.1.3.2 Трап, соединяющий только две палу-
бы, может не выгораживаться при условии, что он обеспечивает в одном межпалубном пространстве.
если трап выгорожен в одном межпалубном пространстве, то выгорожен в одном межпалубном пространстве, то выгорожен в одном межпалубном пространстве, то
этот трап может быть защищен в соответствии с требованиями табл. 2.1.1.7-2 и 2.1.2.3-2.

2.1.3.3 Выгородки трапов должны иметь непос-
редственное сообщение с коридорами и иметь пло-
щади согласно 8.5.4.2 части III «Устройство, обо-
рудование и снабжение» Правил классификации и
постройки морских судов. В пределах периметра
выгородки трапов разрешено только обществен-
ные туалеты, кладовые для хранения предметов аварийно-спасательного имущества и противопожарного
снабжения. Прямой доступ к выгородкам трапов
могут иметь только общественные помещения,
коридоры, общественные туалеты, открытые палубы и
другие трапы, требуемые 8.5 части III «Устройства,
оборудование и снабжение» Правил классификации и
постройки морских судов.

2.1.3.4 Не разрешается устанавливать мебель
в коридорах, образующих пути эвакуации в
районах жилых помещений.
2.1.3.5 Участки путей эвакуации к спасательным средствам, не защищенным конструкциями или оборудованием от прямого воздействия пламени в случае пожара в районе устья скважины, должны быть защищены со стороны устья скважин системой водяных завес.

2.1.4 Огнестойкие и огнезадерживающие конструкции.

2.1.4.1 Наружные ограничивающие конструкции надстроек и рубок, выгораживающие жилые помещения, посты управления, места сбора для эвакуации и внешние пути эвакуации, а также связанные с ними служебные и машинные помещения, должны быть:

.1 типа Н-60 на всех участках, обращенных в сторону зоны бурения или технологической зоны и которые могут быть подвержены тепловому воздействию при пожаре в указанных зонах;

.2 типа А-60 на всех других участках.

2.1.4.2 Вопросы потери несущей способности основных конструкций при пожаре являются предметом рассмотрения компетентных государственных органов надзора за безопасностью в нефтяной и газовой промышленности.

2.1.5 Закрытие отверстий в огнестойких и огнезадерживающих конструкциях.

2.1.5.1 Если в наружных ограничивающих конструкциях надстроек и рубок, обращенных в сторону зоны бурения или технологической зоны, а также на примыкающих к ним наружных конструкциях на расстоянии 3 м, требуется устанавливать окна и иллюминаторы, то они должны быть глухого (неоткрывающегося) типа, отвечающие требованиям 7.2 части III «Устройства, оборудование и снабжение» Правил классификации и постройки морских судов. Окна в рулевых рубках ПБУ могут быть открывающегося типа, обеспечивающего их быстрое закрытие.

Окна и иллюминаторы, установленные в конструкциях типа А-60, обращенных в сторону зоны бурения или технологической зоны, должны быть типа А-60 и быть оборудованы крышками из стали или равноценного материала.

2.1.5.2 Наружных ограничивающих конструкциях надстроек и рубок, обращенных в сторону зоны бурения или технологической зоны, а также на примыкающих к ним наружных конструкциях на расстоянии 3 м, не должны устанавливаться двери, ведущие в жилые помещения, посты управления и связанные с ними служебные, машинные помещения, а также другие непосредственно сообщающиеся с ними помещения.

2.1.5.3 Как правило на корпусных конструкциях не должны устраиваться двери, окна и другие отверстия в сфере радиусом 3 м и центром в месте отклонения потока бурового раствора, выходящего из скважины.

2.1.5.4 Наружные двери надстроек и рубок, выгораживающих жилые помещения, посты управления и связанные с ними служебные, машинные помещения, должны быть самозакрывающимися и типа А-0, за исключением водонепроницаемых дверей.

2.2 РАСПОЛОЖЕНИЕ ПОМЕЩЕНИЙ

2.2.1 Помещения, в которых находится оборудование, предназначенное для бурения скважин, сбора, хранения, подготовки и транспортирования продукции скважин, не должны примыкать к жилым помещениям и постам управления и должны быть выгорожены конструкциями типа А-0.

2.2.2 Жилые помещения, посты управления и связанные с ними служебные и машинные помещения, насколько это практически возможно и целесообразно, должны размещаться совместно в надстройке, отдельной от зоны бурения и технологической зоны.

2.2.3 Расположение надстроек и рубок должно быть таким, чтобы в случае пожара в районе устья скважины по крайней мере один путь эвакуации к спасательным средствам обеспечивал защиту от теплового воздействия пожара.

2.2.4 Расположение цистерн для топлива и масла смежно с жилыми и служебными помещениями, а также путями эвакуации в надстройке не допускается.

2.3 СРЕДСТВА ОБЕСПЕЧЕНИЯ ВЕРТОЛЕТОВ

2.3.1 Комплекс обеспечения вертолетов (посадочная площадка, ангар для вертолетов, заправочная станция, топливные щестрины) должен размещаться вдали от зоны бурения и технологической зоны, а также мест, имеющих источники воспламенения, и помещений с большим выделением тепла, он не должен быть смежным с жилыми помещениями.

Комплекс следует размещать таким образом, чтобы он был защищен надстройками от прямого воздействия пламени при пожаре в зоне бурения и технологической зоны.

2.3.2 Посадочная площадка, поддерживающие ее конструкции и ангар для вертолетов должны быть из стали.
2.3.3 Если под посадочной платформой предусмотряются помещения, то они должны быть отделены от нее палубой типа А-60.

2.3.4 Посадочная площадка и места заправки вертолетов топливом должны быть четко обозначены и иметь ограждающие компоненты, предотвращающие распространение утечек топлива. Дренажная система для сбора протечек вертолетного топлива должна быть независимой от других систем.

2.3.5 Заправочная станция для вертолетов должна удовлетворять следующим требованиям:
1. ограничивающие конструкции и закрытия отверстий станции должны обеспечивать ее газонепроницаемость. Двери в станцию должны быть стальными;
2. палубы должны иметь покрытия, исключающие искрообразование, а оборудование, устройства и механизмы должны быть выполнены и установлены таким образом, чтобы исключалась возможность искрообразования;
3. трубопроводы, кабели, проходящие через ограничивающие конструкции станции, не должны нарушать ее газонепроницаемость;
4. должны быть предусмотрены устройства дистанционной остановки подачи топлива из цистерн в случае возникновения пожара. Эти устройства должны управляться из безопасного места;
5. при наличии нескольких цистерн с топливом схема топливной системы должна предусматривать возможность подачи топлива к заправляемому вертолету одновременно только от одной из них;
6. слив и сбор пролитого топлива должен производиться в цистерну некондиционного топлива;
7. трубопроводы топливной системы должны быть изготовлены из стали или равноценного материала, быть по возможности короткими и иметь защиту от повреждений;
8. установка для заправки вертолетов должна иметь измерительный прибор, регистрирующий количество выданного топлива, гибкий раздаточный шланг со стволом, снабженным самозапорным клапаном, и устройство, исключающее повышение давления в топливной системе сверх допустимого.
2.3.6 Цистерны для топлива должны быть изготовлены из материалов стойких к коррозии и воздействию вертолетного топлива.
Топливо может храниться как в транспортных, так и в стационарных цистернах.
Цистерны должны иметь прочное крепление, закрытие и заземление. Цистерны должны быть всегда доступны для осмотра.

Стационарные цистерны допускается устанавливать на открытых палубах, при этом они должны быть защищены от механических повреждений и прямого попадания солнечных лучей.
При оборудовании цистерн устройствами для аварийного сброса их за борт должны быть приняты меры, предотвращающие удар сбрасываемой цистерны о конструкции ПБУ/МСП.
Места установки таких цистерн должны располагаться вдали от мест посадки в спасательные шлюпки и плоты и их спуска.
Цистерна для топлива должна также отвечать требованиям части VIII «Системы и трубопроводы».
2.3.7 Число и расположение кранов водопожарной системы должно быть таким, чтобы обеспечить подачу трех струй воды в любую часть ангара и двух струй воды на любую часть платформы.
2.3.8 Посадочная платформа должна быть защищена системой пожаротушения, оборудованной настенными стволами или пеногенераторами, способными подавать пену в любую часть платформы при неблагоприятных условиях, пригодных для работы вертолета. Система должна подавать пену в течение не менее 5 мин с интенсивностью подачи раствора, указанной в табл. 2.3.8.

<table>
<thead>
<tr>
<th>Категория платформы</th>
<th>Полная длина вертолета, м</th>
<th>Интенсивность, л/мин</th>
</tr>
</thead>
<tbody>
<tr>
<td>Н1</td>
<td>до 15</td>
<td>250</td>
</tr>
<tr>
<td>Н2</td>
<td>от 15 до 24</td>
<td>500</td>
</tr>
<tr>
<td>Н3</td>
<td>от 24 до 35</td>
<td>800</td>
</tr>
</tbody>
</table>

2.3.9 В местах непосредственной близости от входа на посадочную платформу должны быть предусмотрены:
по меньшей мере один огнетушитель, содержащий не менее 45 кг порошка или не менее 90 кг углекислого газа;
не менее двух огнетушителей с содержанием не менее 5 кг углекислого газа или эквивалентных им огнетушителей с одобряемыми газообразными огнетушащими агентами. Один из огнетушителей должен иметь конструкцию, позволяющую тушить с его помощью мотор вертолета;
не менее двух комбинированных ручных стволов и рукавов к ним, обеспечивающих подачу воды в любую часть платформы с интенсивностью не менее 250 л/мин; два полных комплекта снаряжения пожарного, включая одежду, шлем с забралом, перчатки, изолирующие дыхательные аппараты и запасные баллоны к ним;
покрывало для тушения пламени.
2.3.10 В соответствующих местах вертолетного комплекса должны быть помещены надписи «Не курить».
2.3.11 Должны учитываться применимые к ПБУ/МСП общие авиационные требования к средствам обеспечения вертолетов на судах.

2.4 ПОМЕЩЕНИЯ ДЛЯ ПРОИЗВОДСТВА СВАРОЧНЫХ РАБОТ. СТАЦИОНАРНАЯ СИСТЕМА ДЛЯ КИСЛОРОДА И АЦЕТИЛЕНА

2.4.1 Помещения для производства электрогазосварочных работ и места хранения кислорода и ацетилена должны соответствовать требованиям 2.1.5.4 части VI «Противопожарная защита» Правил классификации и постройки морских судов.

3 ПРОТИВОПОЖАРНОЕ ОБОРУДОВАНИЕ И СИСТЕМЫ

3.1 ОБЩИЕ ТРЕБОВАНИЯ

3.1.1 Требования настоящего раздела распространяются на все противопожарное оборудование и системы пожаротушения ПБУ/МСП.

Если на МСП предусматриваются дополнительное противопожарное оборудование и/или системы пожаротушения сверх требуемых настоящим разделом, они должны отвечать требованиям в объеме, в каждом случае согласованном с Регистром.

Системы пожаротушения должны также отвечать требованиям разд. 2, 4, 5 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

3.1.2 В зависимости от назначения помещения ПБУ/МСП, в дополнение к водонапорной системе, должны быть защищены одной из стационарных систем пожаротушения и соответствия табл. 3.1.2, если не оговорено иное.

Применение других эквивалентных систем пожаротушения является предметом специального рассмотрения Регистром.

3.1.3 В обоснованных случаях применение систем водяных завес и водяного орошения может быть заменено установкой огнестойких и огнезадерживающих конструкций.

3.1.4 Защита палуб в районах хранения нефти и самих хранилищ должна быть обеспечена стационарной палубной системей пожаротушения и стационарной системой инертного газа, за исключением того, что вместо вышеуказанных систем Регистр может, принимая во внимание устройство и оборудование ПБУ/МСП, допустить другие сочетания стационарных систем, если они обеспечивают равноценную замену.

Чтобы считаться равноценной, система, предложенная вместо палубной системы пены, должна:
обесценивать тушение горящих разливов, а также препятствовать воспламенению еще негорящих разливов нефти;
обесценивать тушение пожара во всех вскрытых хранилищах нефти.

Чтобы считаться равноценной, система, предложенная вместо стационарной системы инертных газов, должна:
обесценивать предотвращение опасного скопления взрывоопасных смесей в неповрежденных хранилищах во время обычной эксплуатации и во время необходимых работ в хранилищах;
иметь конструкцию, сводящую к минимуму опасность воспламенения вследствие образования статического электричества этой системой.

3.1.5 Размещение противопожарного оборудования и прокладка трубопроводов систем пожаротушения в районах регламентируемых зон должно быть выполнено, насколько это практически возможно, так, чтобы избежать при авариях опасности их повреждения и сохранить при этом их работоспособность.

3.1.6 В обоснованных случаях допускается установка систем с автоматическим пуском огнетушащих веществ при безобатном наличии ручного и исключения возможности самостоятельного пуска, учитывая вибрацию, тряску, удачу, которые могут быть связаны с работой оборудования на ПБУ/МСП.
Таблица 3.1.2

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Помещения</th>
<th>Стационарные системы пожаротушения</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Огнетуш.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ларная</td>
</tr>
<tr>
<td>1</td>
<td>Жилые помещения (кроме туалетов, умывальных, душевых, операционных и т. н.)</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Служебные (хозяйственные кладовые горючих материалов)</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Кладовые воспламеняющихся жидкостей, воспламеняющихся сжиженных и сжатых газов</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Помещения технологического оборудования</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Открытые палубы в районе взрывоопасных зон</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Машины помещений категории А и помещения синтезаторов.-Analizy dlya vertolotov i stancii razdacha topli va</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>Глушители двигателей внутреннего сгорания, утилизационные котлы, дымоходы инсинераторов, каналы вытяжной вентиляции камбуза и пекарен</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>Пути эвакуации (см. 2.1.3.5)</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>Выходы из машинных помещений и помещений технологического оборудования, заключенные в шахту</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>Посадочная платформа вертолетов</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>Нефтеобъёмы емкости</td>
<td>+</td>
</tr>
</tbody>
</table>

1. До 100 человек обслуживающего персонала — по согласованию с заказчиком, свыше 100 человек персонал — обязательно.
2. Следует применять систему тушения пеной средней кратности около 100 : 1.
3. Следует применять систему тушения пеной кратностью около 1000 : 1.
4. Следует применять систему тушения пеной средней кратностью 1 : 1, 100 : 1 (или комбинированную пению) с использованием лафетных стволов.
5. Кладовые воспламеняющихся жидкостей, сжатых и сжатых газов, могут не иметь стационарной системы пожаротушения, если площадь кладовой не превышает 4 м2.
6. Требуется, если шахта выполнена как конструкция А-0. Устанавливается снаружи.
7. Необходимость определяется заказчиком.

3.1.7 МСП, оборудованные танкерным терминалом, должны иметь в районе швартовки танкеров по крайней мере два лафетных ствола, способных подавать пену и воду как в район отгрузки нефти на терминале, так и на грузовую палубу танкеров.

3.1.8 Вместо водоохлаждения, требуемых для защиты зон: бурения; технологического оборудования; газовых и нефтяных коллекторов; циркуляции и обработки бурого раствора; трубопроводов с нефтью и газами; емкостей для сжатого газа (кислорода, азота) и др., расположенных на открытой палубе, могут применяться лафетные стволы для подачи пены и воды, если ими может быть обеспечена подача огнетушащих веществ в любую часть зоны. Допускается наличие комбинированного способа с применением лафетных стволов и водоохлаждения.

3.1.9 Должно быть предусмотрено международное береговое соединение и обеспечена возможность его подключения к водоохранныей системе с любой стороны ПБУ/МСП.

3.2 ВОДОПОЖАРНАЯ СИСТЕМА

3.2.1 Должно быть предусмотрено не менее двух стационарных пожарных насосов с независимым приводом. Подача каждого насоса должна быть не менее 60 м³/ч. При больной высоте всасывания допускается производить забор воды из цистерн для хранения запаса забортной воды, наполняемых погружными или иными насосами.

3.2.2 Один из пожарных насосов должен быть предназначен специально для пожаротушения.

3.2.3 Размещение приемных кингстонов, пожарных насосов и их источников энергии должно быть таким, чтобы пожар в любом из помещений не мог вывести из строя все пожарные насосы.

3.2.4 Суммарная подача и напор пожарных насосов должны быть достаточными для обеспечения работы двух ручных пожарных стволов, одновременной работы других систем пожаротушения, потребляющих воду и необходимых для борьбы с пожаром в одном из помещений или районов открытой палубы ПБУ/МСП, для которого требуется наибольшее количество воды.
3.2.5 Подача каждого пожарного насоса должна быть достаточной для одновременного обеспечения не менее двух струй воды от двух любых пожарных кранов через стволы с диаметром спрыска 19 мм при минимальном давлении 0,35 МПа у кранов. В системе пожаротушения для защиты вертолетной площадки насосы должны обеспечивать минимальное давление 0,7 МПа у установок пожаротушения.

Если расход воды для других систем пожаротушения превышает расход в системе пожаротушения для защиты вертолетной площадки, этот расход должен быть определяющим при расчете требуемой подачи пожарных насосов.

3.2.6 Пожарные насосы, расположенные в помещениях без постоянной вахты, должны иметь дистанционный пуск и управление клапанами насосов с центрального поста управления либо с одного из постов с вахтой в рабочем состоянии ПБУ/МСП.

3.2.7 Цистерны для хранения запаса забортной воды должны удовлетворять требованиям 3.3.2.2 части VIII «Системы и трубопроводы».

Вместимость цистерны должна быть такой, чтобы предельно допустимое количество воды в них обеспечивало работу двух ручных пожарных стволов в течение 15 мин, но во всех случаях не менее 10 м³.

3.2.8 Магистральный трубопровод по возможности должен прокладываться вдали от взрывоопасных зон так, чтобы использовать конструкции ПБУ/МСП для его защиты.

3.2.9 Магистральный трубопровод должен быть снабжен отсечными клапанами, расположенными так, чтобы обеспечить оптимальное использование магистрали в случае повреждения любой его части.

3.2.10 Магистральный трубопровод не должен иметь каких-либо подключений, не связанных с пожаротушением.

3.2.11 Для целей пожаротушения могут быть использованы осушительные, балластные, санитарные и другие насосы забортной воды, если их подача и напор соответствуют требованиям и если они не используются для перекачки нефтепродуктов.

3.2.12 На ПБУ/МСП с обслуживающим персоналом более 100 человек водопожарная система должна постоянно находиться под давлением, а водопожарная магистраль в районе надстроек должна выполнятся по кольцевой схеме с установкой разобщительных клапанов, обеспечивающих работоспособность системы при отключении отдельных участков кольцевой магистрали.

3.2.13 Каждый центробежный насос, подключенный к пожарной магистрали, должен быть снабжен невозвратным клапаном, установленным в напорном трубопроводе насоса.

3.3 СИСТЕМА ВОДЯНОГО ОРОШЕНИЯ

3.3.1 Система водяного орошения предусматривается для защиты зон и помещений согласно табл. 3.1.2.

3.3.2 Управление системой должно производиться из мест за пределами защищаемых зон и помещений.

3.3.3 Расчетная подача насосов, обслуживающих систему водяного орошения, должна быть достаточной для обеспечения интенсивности подачи воды не менее 12 л/мин на 1 м² площади палубы зоны.

3.3.4 Каждая зона должна защищаться секцией (секциями), входящей в общую систему водяного орошения и соединенной с ней отсечными клапанами, с целью её (их) отключения при аварии.

3.4 СИСТЕМА ВОДЯНЫХ ЗАВЕС

3.4.1 Система водяных завес предусматривается для защиты зон и помещений согласно табл. 3.1.2.

3.4.2 Управление системой должно производиться из мест за пределами защищаемых зон и помещений.

3.4.3 Питание водой системы водяных завес должно производиться, как правило, от водопожарной системы. Расчетная подача насосов, обслуживающих систему, должна обеспечивать интенсивность подачи воды не менее 70 л/мин на 1 м длины завес.
4 СИСТЕМЫ ПОЖАРНОЙ СИГНАЛИЗАЦИИ

4.1 СИГНАЛИЗАЦИЯ ОБНАРУЖЕНИЯ ПОЖАРА

4.1.1 ПБУ/МСП должна быть оборудована автоматической сигнализацией обнаружения пожара.

4.1.2 Кроме помещений, указанных в 4.2.1 части VI «Противопожарная защита» Правил классификации и постройки морских судов, автоматические извещатели обнаружения пожара должны быть установлены в помещениях взрывоопасных зон и пространств 1 и 2, указанных в 2.9 части X «Электрическое оборудование» Правил ПБУ/МСП.

4.2 РУЧНАЯ ПОЖАРНАЯ СИГНАЛИЗАЦИЯ

4.2.1 ПБУ/МСП должна быть оборудована ручной пожарной сигнализацией.

4.2.2 Кроме помещений, указанных в 4.2.1 части VI «Противопожарная защита» Правил классификации и постройки морских судов, ручные пожарные извещатели должны быть установлены в помещениях взрывоопасных зон и пространствах 1 и 2, указанных в 2.9 части X «Электрическое оборудование» Правил ПБУ/МСП.

4.3 СИСТЕМЫ И ОБОРУДОВАНИЕ ДЛЯ КОНТРОЛЯ ВОЗДУШНОЙ СРЕДЫ

4.3.1 Должны быть предусмотрены стационарные системы автоматического контроля воздушной среды на содержание в ней: нефтяных газов и паров; сероводорода.

Необходимость наличия на МСП стационарных систем автоматического контроля воздушной среды на содержание в ней сероводорода определяется по результатам обнаружения сероводорода в пластовом флюиде первой разведочной скважины. Необходимость наличия такой системы на ПБУ определяет заказчик и согласовывается с Регистром.

4.3.2 Системы контроля воздушной среды должны непрерывно работать и обеспечивать:

- подачу светового и звукового сигналов на соответсвующий местный пост управления, инженерно-технологический пост, пост бурового мастера и центральный пост управления при достижении концентрации нефтяных газов и паров в диапазоне (20 ± 10) % от нижнего предела воспламеняемости и концентрации сероводорода до 3 мг/м³;
- включение системы вентиляции в режим работы с максимальным количеством обменов воздуха в помещении в час;
- отключение пробозаборных устройств или датчиков на содержание нефтяных газов и паров, работающих на термохимическом принципе, при повышении концентрации сероводорода до 10 мг/м³ с подачей сигнала на центральный пост управления;
- подачу сигнала на центральный пост управления о возникших в самой системе неисправностях.

4.3.3 Световые сигналы о концентрации нефтяных газов и паров должны отличаться от сигналов о концентрации сероводорода.

4.3.4 Элементы системы должны удовлетворять требованиям части XI «Электрическое оборудование» Правил классификации и постройки морских судов.

4.3.5 Конструкция датчиков и приборов, устанавливаемых во взрывоопасных зонах и пространствах, должны отвечать требованиям 2.11 части X «Электрическое оборудование» Правил ПБУ/МСП.

4.3.6 Пробозаборные устройства должны быть изготовлены из материалов, стойких к коррозии и воздействию нефтяных газов и паров и сероводорода. Диаметр и длина трубопроводов должны определяться из условия обеспечения прохождения пробы воздуха к датчику за время не более 60 с.

4.3.7 Допускается применение переключающих устройств, обеспечивающих последовательный контроль воздушной среды в нескольких точках. Переключение должно фиксироваться в течение времени, достаточного для прохождения пробы воздуха до датчика.

4.3.8 Места установки пробозаборных устройств или датчиков на содержание нефтяных газов и паров (датчиков на содержание сероводорода) определяются проектом обустройства месторождения с учетом плотности газов, технических характеристик применяемого оборудования и его размещения.

4.3.9 На буровых установках пробозаборные устройства или датчики на содержание нефтяных газов и паров должны устанавливаться:

- в районах напорной части каждого бурового и цементировочного насосов на высоте не более 0,5 м над палубой или над сплошным настилом;
Часть VI. Противопожарная защита

над цистернами бурового раствора на высоте 0,2 м над их верхней кромкой и на высоте 0,5 м над палубой, где они установлены;

у вибросита на расстоянии не более 1,0 м от него по горизонтали, на высоте не более 0,5 м над ним;

.2 на открытых пространствах — у отклонителя потока не менее чем в четырех точках на расстоянии не более 1,0 м от него. При расположении отклонителя потока в полузакрытых пространствах — не менее чем в двух точках.

4.3.10 На буровых установках пробозаборные устройства или датчики на содержание сероводорода должны устанавливаться:

.1 в помещениях цистерн бурового раствора, буровых насосов и циркуляционной системы: в рабочей зоне на высоте не более 1,0 м над палубой или над сплошным настилом;

у вибросита на расстоянии не более 1,0 м от него, на высоте не более 1,0 м над палубой (площадкой);

.2 на открытых и полузакрытых пространствах — у отклонителя потока.

4.3.11 Должны быть предусмотрены:

.1 два переносных газоанализатора для определения концентрации нефтяных газов и паров;

.2 два переносных газоанализатора для определения концентрации сероводорода.

5 ПРОТИВОПОЖАРНОЕ СНАБЖЕНИЕ, ЗАПАСНЫЕ ЧАСТИ И ИНСТРУМЕНТ

5.1 ОБЩИЕ ТРЕБОВАНИЯ

5.1.1 Противопожарное снабжение, запасные части и инструмент должны приниматься, как минимум, в соответствии с разд. 5 части VI «Противопожарная защита» Правил классификации и постройки морских судов применительно к нефтеналивным судам, а в части вертолетного комплекса — согласно 2.3.9 настоящей части.

При этом в снабжении пожарного не допускается применение дымового шлема или маски в комплекте с воздушным рукавом и насосом.

5.1.2 Для МСП, имеющих надстройку с главными вертикальными противопожарными зонами, должны быть предусмотрены два дополнительных комплекта снаряжения пожарного для каждой зоны.
ЧАСТЬ VII. МЕХАНИЧЕСКИЕ УСТАНОВКИ И МЕХАНИЗМЫ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования, содержащиеся в настоящей части, распространяются на механические установки, двигатели, механизмы, оборудование машинных помещений, обеспечивающие выполнение требований безопасности ПБУ/МСП.

Кроме требований настоящей части на механические установки ПБУ/МСП распространяются все применимые для них требования частей VII, VIII, IX, X, XII и XV Правил классификации и постройки морских судов. Эти требования относятся также к оборудованию, системам и трубопроводам технологического и бурового комплексов в той части, в которой они могут быть применимы.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

1.2.1 Определения и пояснения, относящиеся к общей терминологии, приведены в Общих положениях о классификационной и иной деятельности, в части I «Классификация» и части VI «Противопожарная защита» Правил классификации и постройки морских судов. Кроме этого используются все применимые определения и пояснения части VII «Механические установки» Правил классификации и постройки морских судов.

1.2.2 В настоящей части приняты следующие определения:

Главный пост управления (ГПУ)

ПБУ/МСП — помещение, в котором расположены органы дистанционного управления главными механизмами и двигателями самоходных ПБУ, механизмами, системами, устройствами, предназначенными для подъема и спуска СПБУ, погружения и всплытия полупогруженных и погруженных ПБУ, механизмами, оборудованием и устройствами, обеспечивающими выработку электроэнергии, а также безопасную эксплуатацию ПБУ/МСП, контрольно-измерительные приборы, приборы аварийно-предупредительной сигнализации и средства связи.

Машины помещения общего назначения — помещения, в которых расположены механизмы, оборудование и устройства, предназначенные для выработки электрической энергии, а также для обеспечения безопасной эксплуатации ПБУ/МСП.

Машины помещения технологического назначения — помещения, в которых расположены механизмы, оборудование и устройства, предназначенные для выполнения технологического процесса строительства и эксплуатации скважины.

Посты управления — помещения, в которых расположены основное навигационное оборудование, радиооборудование, аварийные источники энергии, оборудование систем обнаружения пожара и управления системами пожаротушения, управление системой динамического позиционирования, а также управление балластной системой полупогруженных и погруженных ПБУ. Однако при применении требований части VI «Противопожарная защита» помещение, в котором расположен аварийный источник энергии, не считается постом управления.

Технологические механизмы и оборудование — механизмы и оборудование, предназначенные для производства буровых работ.

Технологические помещения — открытые или закрытые помещения, в которых расположено технологическое оборудование и механизмы, не вошедшие в 1.2.5 и 2.9 части X «Электрическое оборудование».

1.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

1.3.1 Общие положения, относящиеся к порядку классификации, техническому наблюдению за постройкой и к освидетельствованию, а также требования к технической документации, представляющей на рассмотрение и одобрение Регистра, изложены в Общих положениях о классификационной и иной деятельности и в части I «Классификация» Правил ПБУ/МСП.

1.3.2 В процессе постройки ПБУ/МСП техническому наблюдению Регистра подлежат изготовление, монтаж и испытания механизмов, оборудования и систем, указанных в частях VII, VIII, IX, X, XII и XV Правил классификации и постройки морских судов, а также:

1 механизмов и системы подъема СПБУ;
2 МЕХАНИЧЕСКИЕ УСТАНОВКИ

2.1 ОБЩИЕ ТРЕБОВАНИЯ

2.1.1 Мощность главных механизмов буровых судов должна выбираться в соответствии с 2.1 части VII «Механические установки» Правил классификации и постройки морских судов, а мощность главных механизмов самоходных ПБУ должна быть достаточной, чтобы обеспечить управляемость ПБУ при движении назад при всех нормальных условиях эксплуатации. 2.1.2 Все внешние врачающиеся детали механизмов и оборудования (соединительные муфты, валы, приводы, ремни и т. н. на насосах, компрессорах, охладителях, газовых турбинах и двигателях) должны быть оборудованы защитными кожухами. 2.1.3 В случае применения оборудования с повышенным уровнем шумности должны быть приняты защитные меры против шума. 2.1.4 Нагревающиеся свыше 220 °С поверхности механизмов, оборудования и трубопроводов должны быть изолированы.

2.2 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

2.2.1 Все механизмы, оборудование и системы, обеспечивающие безопасную эксплуатацию ПБУ, должны сохранять работоспособность при нижеследующих условиях. 2.2.1.1 Статические условия: .1 для полупогружных и погружных ПБУ — при наклонении до 15° включительно в любом направлении; .2 для СПБУ — при наклонении до 25° включительно в любом направлении; .3 для буровых судов — при крене 15° и одновременном дифференци скольжения 5°. 2.2.1.2 Динамические условия для самоходных ПБУ и буровых судов: .1 для полупогружных и погружных ПБУ — при наклонении до 22,5° включительно в любом направлении. .2 для СПБУ — при наклонении до 15° включительно в любом направлении; .3 для буровых судов — при бортовой качке 22,5° и одновременной килевой качке 10°. 2.2.2 Аварийные источники энергии должны сохранять работоспособность при работе в следующих условиях: .1 для полупогружных и погружных ПБУ — при наклонении до 25° включительно в любом направлении; .2 для СПБУ — при наклонении до 15° включительно в любом направлении; .3 для буровых судов — при бортовой качке 22,5° и одновременной килевой качке 10°. 2.2.3 В 2.2.1 и 2.2.2 значения углов наклона при бортовой качке указаны для наклонения на любой борт, значения углов дифферента и килевой качки — на нос или на корму. По согласованию с Регистром значения наклонений, указанные в 2.2.1 и 2.2.2, могут быть изменены в зависимости от типа, размеров и условий эксплуатации ПБУ.

2.3 РАСПОЛОЖЕНИЕ МЕХАНИЗМОВ И ОБОРУДОВАНИЯ

2.3.1 Установка двигателей внутреннего сгорания в взрывоопасных помещениях (см. 2.9 части X «Электрическое оборудование») и пространствах, как правило, не допускается. В случае такой необходимости это должно быть предметом специального рассмотрения Регистром. 2.3.2 Воздухозаборные устройства двигателей внутреннего сгорания и котлов должны располагаться на расстоянии не менее 3 м от взрывоопасных пространств. 2.3.3 Котлы, работающие на жидким или газообразном топливе, не должны располагаться во взрывоопасных помещениях и пространствах. 2.3.4 Сосуды под давлением систем натяжения водоотделяющей колонны и компенсации качки, расположенные на открытых палубах и платформах, должны быть защищены от механических повреждений и от воздействия солнечных лучей.
2.3.5 Буровое оборудование, в котором могут содержаться нефтепродукты, не должно располагаться в машинных помещениях, где находятся главные и вспомогательные механизмы.

2.4 ПОСТЫ УПРАВЛЕНИЯ

2.4.1 ГПУ ПБУ/МСП должен, как правило, располагаться вне машинных помещений и на максимально возможном удалении от взрывоопасных пространств.

2.4.2 ГПУ ПБУ должен быть оборудован:

1. органами управления главными механизмами и двигательми;
2. органами управления механизмами подъема (спуска) корпуса СПБУ;
3. органами управления системами погружения и всплытия полупогруженных и погруженных ПБУ;
4. приборами для контроля работы подъемных устройств СПБУ, устройств и систем, обеспечивающих погружение и всплытие полупогруженных и погруженных ПБУ;
5. индикацией, извещающей о готовности к работе подъемных устройств и систем дистанционного управления;
6. приборами для контроля положения корпуса ПБУ (крен, дифферент, осадка, клиренс и т. п.);
7. устройствами для отключения любого из подъемных механизмов в случае его неисправности;
8. устройствами для включения аварийных стопорных устройств, разгружающих гидравлическую систему (при наличии);
9. средствами связи;
10. сигнализацией о неисправностях в устройствах, в системах погружения и всплытия полупогруженных и погруженных ПБУ.

2.4.3 В центральном посту управления ПБУ, помимо перечисленных в 3.2.1 части VII «Механические установки» Правил классификации и постройки морских судов, должны быть предусмотрены приборы сигнализации и индикации в соответствии с 3.1.2.5.5 части VIII «Системы и трубопроводы» Правил ПБУ/МСП.

2.4.4 Каждый механизм подъемного устройства СПБУ должен быть оборудован местным постом управления. Местный пост управления должен быть оборудован:

1. органами управления механизмами подъема;
2. приборами для контроля работы подъемного механизма (давление в системах гидравлических приводов и системе управления, в полостях гидроцилиндров);
3. средствами двухсторонней связи с ГПУ ПБУ/МСП;
4. устройствами автоматического отключения местного управления при достижении наклонения, опасного для ПБУ.

2.5 СРЕДСТВА СВЯЗИ

2.5.1 ГПУ ПБУ/МСП должен быть оборудован двусторонней связью с ЦПУ, расположенным в машинном помещении.

2.5.2 Должна быть предусмотрена двухсторонняя связь между постом управляющего балластной системой и помещениями, где расположены балластные насосы, клапаны и другое оборудование, обеспечивающее работу балластных операций.

2.5.3 Должна быть предусмотрена двусторонняя связь инженерно-технологического поста (поста бурового мастера) с ЦПУ, расположенным в машинном помещении, ГПУ и другими помещениями, в которых установлено оборудование, влияющее на безопасность ПБУ/МСП.

2.6 МАШИННЫЕ ПОМЕЩЕНИЯ

2.6.1 Машинные помещения (см. 1.2.2, 1.2.3 настоящей части и 1.2 части VII «Механические установки» Правил классификации и постройки морских судов), а также взрывобезопасные машинные помещения технологического назначения, как правило, не должны сообщаться с взрывоопасными помещениями и пространствами (см. 2.9 части X «Электрическое оборудование» Правил ПБУ/МСП). При необходимости такого сообщения должны быть выполнены соответствующие требования 2.9 части X «Электрическое оборудование» Правил ПБУ/МСП, чтобы машинные помещения и взрывобезопасные машинные помещения технологического назначения остались взрывобезопасными.

2.6.2 Каждое помещение, имеющее вахтенное обслуживание или требующее частого посещения обслуживающим персоналом, должно иметь не менее двух выходов, расположенных в противоположных концах помещения. Длина тупиковых коридоров в этих помещениях не должна превышать 5 м.

2.6.3 Взрывобезопасные машинные помещения технологического назначения (см. 1.2.6) должны иметь не менее двух выходов, один из которых должен вести непосредственно на открытую палубу.
2.7 ВИБРАЦИЯ МЕХАНИЗМОВ И ОБОРУДОВАНИЯ

2.7.1 Вибрация механизмов и оборудования, перечисленных в 1.1, не должна превышать норм, приведенных в разд. 9 части VII «Механические установки» Правил классификации и постройки морских судов, а также затруднять эксплуатацию технологических механизмов и оборудования (см. 1.2.2 настоящей части).

2.7.2 Вибрация, возбуждаемая технологическими механизмами и оборудованием, не должна нарушать нормальную работу механизмов и оборудования, перечисленных в 1.1.

2.7.3 Все механизмы и оборудование должны быть установлены на фундаменты способом, исключающим возникновение вибраций неприемлемых амплитуд при работе с полной нагрузкой с учетом возможности возникновения сейсмических воздействий точки установки ПБУ/МСП.

2.8 ХОЛОДИЛЬНЫЕ УСТАНОВКИ

2.8.1 На ПБУ/МСП распространяются все требования части XII «Холодильные установки» Правил классификации и постройки морских судов, относящиеся к неклассифицируемым и классифицируемым холодильным установкам, в той мере, в какой они могут быть применимы.

2.8.2 Помещения холодильных установок и трубопроводов холодильного агента должны располагаться вне взрывоопасных помещений и пространств.

3 МЕХАНИЗМЫ

3.1 ОБЩИЕ ТРЕБОВАНИЯ

3.1.1 Детали механизмов, указанные в табл. 3.1.1 настоящей части, а также в табл. 1.2.4 части IX «Механизмы» Правил классификации и постройки морских судов, в процессе изготовления подлежат контролю Регистра в отношении выполнения требований части XIII «Материалы» и XIV «Сварка» Правил классификации и постройки морских судов и Правил ПБУ/МСП, а также одобренной технической документации, указанной в 1.2.3 части IX «Механизмы» Правил классификации и постройки морских судов.

3.1.2 Допускается использование главных двигателей в качестве источников энергии для обеспечения работы механизмов бурового оборудования. При этом должны быть предусмотрены эффективные средства защиты их от возможных перегрузок.

3.1.3 Электрооборудование двигателей и механизмов должно удовлетворять соответствующим требованиям части XI «Электрическое оборудование» Правил классификации и постройки морских судов.

3.1.4 Все механизмы и оборудование, обеспечивающие безопасную эксплуатацию ПБУ, должны сохранять работоспособность в условиях, указанных в 2.2.1 — 2.2.3 настоящей части.

3.2 ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ

3.2.1 Двигатели, предназначенные для использования на ПБУ/МСП, должны отвечать требованиям разд. 2 и 9 части IX «Механизмы» Правил классификации и постройки морских судов в том объеме, в каком они могут быть применимы.
3.3 ГАЗОТУРБИННЫЕ ДВИГАТЕЛИ

3.3.1 Газотурбинные двигатели, предназначенные для использования на ПБУ/МСП, должны отвечать требованиям разд. 8 части IX «Механизмы» Правил классификации и постройки морских судов, в том объеме, в каком эти требования могут быть применимы.

3.4 ВСПОМОГАТЕЛЬНЫЕ МЕХАНИЗМЫ

3.4.1 Вспомогательные механизмы, предназначенные для установки на ПБУ/МСП, должны отвечать требованиям разд. 5 части IX «Механизмы» Правил классификации и постройки морских судов в том объеме, в каком эти требования применимы.

3.5 ПАЛУБНЫЕ МЕХАНИЗМЫ

3.5.1 Палубные механизмы, предназначенные для установки на ПБУ/МСП, должны отвечать требованиям разд. 6 части IX «Механизмы» Правил классификации и постройки морских судов в том объеме, в каком эти требования применимы.

3.6 МЕХАНИЗМЫ ПОДЪЕМА И СПУСКА

3.6.1 Общие требования к механизмам подъема и спуска корпуса СПБУ.
3.6.1.1 Конструкция механизмов должна обеспечивать надежную работу подъемного устройства при всех возможных в условиях эксплуатации положениях корпуса ПБУ.
3.6.1.2 Конструкция механизмов должна обеспечивать немедленный ввод их в действие по прямому назначению.

3.7 ПРИВОДЫ ГИДРАВЛИЧЕСКИЕ

3.7.1 Приводы гидравлические, предназначенные для использования на ПБУ/МСП, должны отвечать требованиям разд. 7 части IX «Механизмы» Правил классификации и постройки морских судов в том объеме, в каком эти требования применимы.

3.8 ПЕРЕДАЧИ, РАЗОБЩИТЕЛЬНЫЕ И УПРУГИЕ МУФТЫ

3.8.1 Передачи, разобщительные и упругие муфты, предназначенные для использования на ПБУ/МСП, должны отвечать требованиям разд. 4 части IX «Механизмы» Правил классификации и постройки морских судов в том объеме, в каком эти требования применимы.
ЧАСТЬ VIII. СИСТЕМЫ И ТРУБОПРОВОДЫ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящей части распространяются на следующие системы трубопроводов.

1.1.1.1 Системы трубопроводов общего назначения:
осушительная;
балластная;
воздушных, переливных и измерительных трубопроводов;
вентиляции и кондиционирования воздуха жилых и служебных помещений.

1.1.1.2 Системы, обслуживающие энергетическую установку:
топливная;
смазочного масла;
водяного охлаждения;
сжатого воздуха;
газовыпускная;
питательной воды;
конденсатная;
паропроводов и трубопроводов продувания;
с органическими теплоносителями;
вентиляции машинных помещений, аккумуляторных помещений и ящиков.

1.1.1.3 Системы специальные:
вентиляции взрывоопасных помещений;
снабжения забортной водой СПБУ;
гидравлическая система подъема и спуска корпуса ПБУ;
топлива для вертолетов;
технологические;
аварийного сброса бурового раствора.

Применительно к системам, используемым для непосредственного обеспечения технологического процесса, требования настоящей части должны учитываться в мере, необходимой для обеспечения непотопляемости, взрыво- и пожаробезопасности установки.

1.2 ОПРЕДЕЛЕНИЯ

1.2.1 В настоящей части приняты следующие определения.

Система трубопроводов — совокупность трубопроводов, механизмов, аппаратов, приборов, устройств и емкостей предназначенных для выполнения определенных функций по обеспечению эксплуатации установки.

Трубопровод — совокупность труб, арматуры, любых внутренних и наружных облицовок, покрытий, изоляции, деталей крепления и защиты труб от повреждений, предназначенная для транспортировки жидкостей, газообразных и многофазных сред, а также передачи давления и звуковых волн.

Арматура — запорные, предохранительные и регулирующие устройства, предназначенные для управления движением, распределением и регулированием расхода и других параметров перемещаемой среды путем полного или частичного закрытия проходного сечения.

1.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

1.3.1 Общие положения, относящиеся к порядку технического наблюдения за постройкой и освидетельствованиями, а также требованиям к объему технической документации, предъявляемой на рассмотрение и одобрение Регистру, должны соответствовать требованиям Общих положений о классификационной и иной деятельности.

1.3.2 В объем технической документации, представляемой для рассмотрения и одобрения Регистру, должны включаться также принципиальные схемы систем технологического комплекса, по которым транспортируются взрывоопасные и воспламеняющиеся среды.

1.4 ЗАЩИТА И ИЗОЛЯЦИЯ ТРУБОПРОВОДОВ

1.4.1 Защита трубопроводов от коррозии и избыточного давления, а также их изоляция должны выполняться с учетом требований 1.4 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.
2 ОБЩИЕ ТРЕБОВАНИЯ К СИСТЕМАМ ТРУБОПРОВОДОВ

2.1 МЕТАЛЛИЧЕСКИЕ ТРУБОПРОВОДЫ

2.1.1 Требования к материалам, используемым для изготовления трубопроводов и арматуры, допустимым радиусам погибов труб и их термической обработке после гибки, допустимым толщинам стенок труб и т.д. изложены в разд. 2 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

2.2 ТРУБОПРОВОДЫ ИЗ ПЛАСТМАСС

2.2.1 Применяемые пластмассовые трубопроводы должны быть изготовлены, собраны и испытаны в соответствии с требованиями разд. 3 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

2.3 ШЛАНГИ

2.3.1 Применяемые на ПБУ/МСП шланги должны отвечать требованиям разд. 6 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

2.4 АРМАТУРА

2.4.1 Конструкция ручной и дистанционно управляемой арматуры, ее маркировка, распо-
а также внутри других помещений, должна выполняться с учетом требований разд. 5 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

2.5.2 Системы трубопроводов, проводящих безопасные среды, должны быть отделены от трубопроводов, которые могут содержать взрывоопасные и воспламеняющиеся среды.

Перекрестное подключение может быть допущено Регистром в том случае, если приняты меры по исключению возможного загрязнения трубопровода с безопасной средой.

2.5.3 Если трубопроводы или вентиляционные каналы ПБУ обслуживают более чем один отсек или расположены в зоне возможного затопления (см. 3.4 части V «Деление на отсеки»), должны быть предусмотрены конструктивные меры, исключающие затопление других отсеков через эти системы в случае их повреждения.

Для этого трубопроводы и вентиляционные каналы должны оборудоваться водонепроницаемыми запорными устройствами, устанавливаемыми на водонепроницаемых переборках и палубах с дистанционным управлением с верхней палубы.

2.6 ИСПЫТАНИЯ СИСТЕМ ТРУБОПРОВОДОВ

2.6.1 Требования к испытаниям трубопроводов и арматуры изложены в разд. 21 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

3 ТРЕБОВАНИЯ К СИСТЕМАМ ТРУБОПРОВОДОВ В ЗАВИСИМОСТИ ОТ ИХ НАЗНАЧЕНИЯ

3.1 СИСТЕМЫ ТРУБОПРОВОДОВ ОБЩЕГО НАЗНАЧЕНИЯ

3.1.1 Осушительная система.

3.1.1.1 Если не оговорено особо, должны выполняться применимые требования разд. 7 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

3.1.1.2 Водонепроницаемые отсеки и все расположенные ниже палубы переборок помещения, содержащие важное для обеспечения работы или безопасности установки оборудование, должны иметь стационарную систему осушения или дренажа.

Эффективное осушение должно обеспечиваться в любых условиях, независимо от того, находится установка в вертикальном положении или наклонена, как это указано в 3.5 части V «Деление на отсеки».

3.1.1.3 Сухие отсеки, смежные с морем или танками, содержащие жидкости и пустые помещения, через которые проходят трубопроводы, перекачивающие жидкости, должны оборудоваться стационарной осушительной системой или переносными осушительными средствами.

При использовании последних, должно быть предусмотрено два осушительных переносных насоса, расположенных в легкодоступном месте.

3.1.1.4 Все распределительные коробки и управляемые вручную клапаны, связанные с перекачивающим оборудованием, должны быть легкодоступны в нормальных условиях эксплуатации.

Клапаны, размещенные в расположенных ниже ватерлинии безвзятенных помещениях, не имеющих сигнализации поступления воды, должны кроме местного иметь и дистанционное управление извне таких помещений.

3.1.1.5 Должны быть предусмотрены средства сигнализации о наличии воды в отсеках, смежных с морем или цистернами, содержащими жидкости, а также в сухих отсеках, через которые проходят трубопроводы, содержащие жидкости.

3.1.1.6 Стационарная осушительная система, упомянутая в 3.1.1.2, должна обслуживаться по крайней мере двумя насосами с независимым приводом или эквивалентными осушительными средствами.

В качестве осушительных насосов могут применяться независимые балластные и санитарные насосы достаточной производительности.

3.1.1.7 Площадь сечения главной осушительной магистрали должна быть не менее суммарной площади двух наибольших отростков.

Внутренний диаметр отростков от каждого осушаемого помещения, мм, должен быть не менее определенного по следующей формуле с округлением до ближайшего стандартного размера:

\[d = 2,15 \sqrt{A + 25}, \]

где \(A \) — площадь смоченной поверхности наполненного затопленного отсека, исключая площадь поверхности его набора, м². В любом случае, внутренний диаметр любого отростка должен быть не менее 50 мм.
Правила классификации, постройки и оборудования ПБУ|МСП

3.1.1.8 Производительность каждого осушительного насоса должна быть такова, чтобы обеспечить скорость потока в осушительной магистрали не менее 2 м/с.

Если более двух насосов связаны с осушительной магистралью, их суммарная производительность должна быть не менее эффективной.

3.1.1.9 Производительность осушительной системы для МСП должна быть достаточной для осушения наибольшего из обслуживаемых помещений в случае одновременного использования установленных там средств водяного пожаротушения.

3.1.1.10 На полупогруженных и погружных ПБУ по крайней мере один из осушительных насосов должен быть погруженного типа с источником питания на рабочей платформе ПБУ.

3.1.1.11 На СПБУ и буровых судах, осушительные насосы должны размещаться в разных водонепроницаемых отсеках или быть погруженного типа с источником питания на рабочей платформе ПБУ.

3.1.1.12 На каждой ПБУ клапанные коробки и арматура управления должны размещаться таким образом, чтобы в случае затопления одного из насосов, другой мог обслуживаться любой затопленный отсек.

3.1.1.13 На полупогруженных и погружных ПБУ должно предусматриваться дистанционное управление осушительной системой из мест постоянной вахты.

3.1.1.14 Машинные отделения ПБУ с механизмами, обеспечивающими движение или позиционирование, а также насосные помещения в нижних корпусах стабилизирующих колонн, которые обычно не посещаются, должны обеспечиваться двумя независимыми системами индикации предельного уровня в люках.

3.1.1.15 На полупогруженных и погружных ПБУ центричные ящики, если их затопление может существенно повлиять на остойчивость, должны обеспечиваться средствами дистанционного обнаружения затопления и стационарными средствами осушения.

Сигнализация о затоплении должна выводиться в пост управления балластными операциями.

Должны быть также предусмотрены средства для удаления грязи и шлама из осушительной или дренажной системы.

3.1.1.16 Системы осушения или дренажа взрывоопасных и взрывобезопасных помещений должны быть раздельными.

3.1.1.17 Объединение системы осушения со сточной системой жилого комплекса не допускается.

3.1.2 Балластная система.

3.1.2.1 Если не оговорено иное, должны быть выполнены применимые требования разд. 8 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

3.1.2.2 Балластная система должна обслуживаться не менее чем двумя балластными насосами с независимым приводом.

Не требуется, чтобы эти насосы предназначались исключительно для обслуживания балластной системы, но они должны быть всегда доступны для использования по основному назначению.

Может быть допущена управляемая гравитационная балластировка.

3.1.2.3 Расположение приемных отростков должно обеспечивать откачуку воды из любой балластной цистерны при любых возможных условиях эксплуатации положениях ПБУ.

3.1.2.4 Должна быть предусмотрена защита от случайного открытия приемных клапанов в рабочем состоянии ПБУ или в состоянии ее перехода.

3.1.2.5 Требования для установок со стабилизирующимися колоннами.

3.1.2.5.1 Должна быть обеспечена возможность опорожнения любого балластного танка по крайней мере двумя насосами с приводом от источника энергии, установленными так, чтобы танки могли быть осушены при любых рабочих или транспортных условиях.

Балластные насосы должны быть самовсасывающего типа или обеспечиваться отдельной самовсасывающей системой.

3.1.2.5.2 Производительность системы должна быть достаточной для подъема буровой из рабочего положения при максимальной нормальной осадке в положение осадки при штормовом отставе или более высокой, установленной Регистром, не более чем за 3 часа.

Подача электроэнергии к одному из балластных насосов и системе управления балластными операциями должна обеспечиваться от основного и аварийного источников электрической энергии.

3.1.2.5.3 Балластная система должна быть спроектирована таким образом, чтобы предотвратить случайные перекачки балласта из одного танка в любой другой танк.

Перекачка балласта из танка в танк через единственный клапан не допускается, кроме случая, когда такая перекачка не оказывает влияния на остойчивость.

3.1.2.5.4 Балластная система должна быть выполнена так, чтобы даже в случае выхода из строя одного из насосов, она была бы способна восстановить допустимые по условиям остойчи-
часть крен и осадку из аварийных условий, указанных в 3.1 части V «Деление на отсеки».

3.1.2.5.5 Балластные насосы, клапаны балластных танков и кингстонных ящиков должны обеспечиваться средствами дистанционного управления и контроля из центрального поста управления балластными операциями.

Насосы также должны быть обеспечены средствами местного управления из насосного отделения, а клапаны — ручными независимыми средствами управления.

Центральный и резервные посты управления балластными операциями должны располагаться в закрытых помещениях, легкодоступных в условиях шторма или аварии. Эти помещения не должны располагаться внутри зон предполагаемого аварийного затопления.

Центральный пост управления балластными операциями должен включать следующее:
- систему индикации положения клапанов;
- систему индикации уровня в танках;
- систему индикации осадки;
- средства связи с другими постами, откуда возможно управление балластными насосами и клапанами.

Системы контроля и управления должны быть независимыми, так чтобы отказ одной из них не приводил к отказу другой. Система управления балластными насосами и клапанами должна быть устроена так, чтобы в случае выхода из строя любого из ее элементов, это не приводило бы к потере управления другими насосами или клапанами.

Клапаны, установленные на балластных танках, должны автоматически закрываться при исчезновении энергии для исключения неуправляемых перекачек.

3.1.3 Системы воздушных, переливных и измерительных трубопроводов.

3.1.3.1 Системы воздушных, переливных и измерительных трубопроводов должны выполняться с учетом применимых требований разд. 10 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов, если не оговорено иное.

3.1.3.2 Выходные концы воздушных трубопроводов должны быть расположены с учетом расчета остойчивости в поврежденном состоянии и положения аварийной ватерлинии.

Следует избегать применения воздушных и переливных труб, способных вызвать прогрессирующее затопление.

3.1.3.3 Если при наклонении ПБУ в поврежденном состоянии на угол до 5° от аварийной ватерлинии концы воздушных труб оказываются погруженными в воду, такие трубы должны оборудоваться автоматическими закрытиями, обеспечивающими требованиям 10.1.8 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

3.1.3.4 Выходные концы воздушных трубопроводов, встроенных в корпус и расположенных в разных водонепроницаемых отсеках, в общий коллектор не должны выводиться выше наименьшей страны армировки ПБУ.

3.1.3.5 Высота воздушных труб СПБУ, измеряемая от палубы до уровня жидкости в трубе, должна быть не менее 380 мм.

3.1.3.6 Объединение переливных труб из нескольких цистерн в общий коллектор должно быть обеспечено обвязкой не менее чем тремя независимыми переливными трубами, которые должны быть оборудованы измерительными трубами, закрывающимися при исчезновении энергии для исключения неуправляемых перекачек.

3.1.4 Система вентиляции и кондиционирования воздуха жилых и служебных помещений.

3.1.4.1 Система вентиляции и кондиционирования воздуха жилых и служебных помещений ПБУ/MСП должна выполняться с учетом применимых требований разд. 10 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов, если не оговорено иное.

3.1.4.2 Вентиляция взрывобезопасных помещений должна быть отдельной от вентиляции взрывоопасных помещений, при этом следует учитывать взаимное расположение вентиляционных сетей и мест расположения источников загрязнения.
ПРАВИЛА КЛАССИФИКАЦИИ, ПОСТРОЙКИ И ОБОРУДОВАНИЯ ПБУ/МСП

3.2 СИСТЕМЫ, ОБСЛУЖИВАЮЩИЕ ЭНЕРГЕТИЧЕСКУЮ УСТАНОВКУ

3.2.1 Топливная система.
3.2.1.1 Если не оговаривается иное, то должны быть выполнены применимые требования разд. 13 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.
3.2.1.2 Топливные трубопроводы должны прокладываться через взрывобезопасные помещения.

Как правило, прокладка топливных трубопроводов на рабочих площадках или в других местах, где они могут быть повреждены, не допускается.

Такая прокладка может быть допущена в исключительных случаях при наличии надлежащей защиты трубопроводов от механических повреждений.
3.2.1.3 Топливные цистерны должны быть отделены от взрывоопасных пространств коффердамами. Их расположение внутри взрывоопасных пространств не допускается.
3.2.1.4 Вместимость топливной цистерны АДГ должна удовлетворять требованиям 9.3.1 части X «Электрическое оборудование».
3.2.1.5 Прием жидкого топлива должен выполняться через наполнительные трубы, выведенные над открытыми палубами или площадками за пределами взрывоопасных зон.

Рекомендуется предусматривать для этой цели специальные станции.
3.2.1.6 Когда для распыления попутного газа используется пар или воздух, на трубопроводе воздуха или пара должен устанавливаться невозвратный клапан.

Этот клапан должен быть частью постоянно установленного трубопровода, быть легкодоступным и расположененным как можно ближе к форсунке.
3.2.2 Система смазочного масла.
3.2.2.1 Для буровых судов должны выполняться требования разд. 14 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.
3.2.2.2 Система смазочного масла первичных двигателей генераторов и аварийных пожарных насосов должна быть автономной.
3.2.3 Водяная система охлаждения.
3.2.3.1 Если не оговаривается иное, то должны быть выполнены применимые требования разд. 15 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.
3.2.3.2 Система охлаждения приводных двигателей генераторов и вспомогательных механизмов СПБУ должна обеспечивать их бесперебойную работу при всех эксплуатационных режимах, включая режимы подъема и спуска корпуса ПБУ.
3.2.3.3 Приемные отверстия трубопроводов заборной воды должны оборудоваться защитными сетками и фильтрами. Должна быть предусмотрена возможность очистки фильтров без остановки обслуживаемых механизмов.
3.2.4 Система сжатого воздуха.
3.2.4.1 Если не оговаривается иное, то должны быть выполнены применимые требования разд. 16 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.
3.2.4.2 Для пуска дизель-генераторов и действия системы управления дизелями должна быть предусмотрена автономная система сжатого воздуха.
3.2.4.3 Общий запас воздуха должен быть достаточным для обеспечения не менее шести пусков наиболее мощного двигателя из всех установленных.
3.2.4.4 Запас сжатого воздуха ПБУ в объеме, указанном в 3.2.4.3, должен содержаться не менее чем в двух воздугохранилищах или двух группах воздугохранилищ.
3.2.4.5 Трубопроводы пускового воздуха должны быть полностью отделены от трубопроводов воздуха, предназначенного для технологических нужд. Использование пускового воздуха для технологических нужд не допускается.
3.2.4.6 Число пусковых компрессоров, предназначенных для пополнения запаса пускового воздуха ПБУ, должно быть не менее двух, один из них может быть навешенным.

В случае выхода из строя одного из компрессоров, производительность оставшихся должна быть достаточной для заполнения воздугохранилищ, упомянутых в 3.2.4.4, в течение одного часа от давления, при котором возможен пуск, до давления, при котором возможно выполнение шести пусков.
3.2.4.7 Для всех ПБУ должно выполняться требование 16.2.3 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.
3.2.5 Газовывпускная система.
3.2.5.1 Газовыпускные трубопроводы должны прокладываться и подключаться к оборудованию с учетом требований разд. 11 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.
3.2.5.2 Газовыпускные трубопроводы ДВС, газоходы котлов, камбузов и инсинераторов...
должны быть оборудованы искрогасителями одобренного Регистром типа и выведены за пределы взрывоопасных пространств.

3.2.6 Системы питательной воды котлов.
Системы питательной воды котлов ПБУ/МСП должны выполняться с учетом применимых требований разд. 17 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

3.2.7 Конденсатная система.
Системы конденсатные ПБУ/МСП должны выполняться с учетом применимых требований разд. 19 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

3.2.8 Системы паропроводов и трубопроводов продувания.
Системы паропроводов и трубопроводов продувания ПБУ/МСП должны выполняться с учетом применимых требований разд. 18 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

3.2.9 Системы с органическими теплоносителями.
Системы с органическими теплоносителями ПБУ/МСП должны выполняться с учетом применимых требований разд. 20 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

3.2.10 Система вентиляции машинных помещений, акумуляторных помещений и ящиков.
Система вентиляции машинных помещений, акумуляторных помещений и ящиков должна соответствовать требованиям 12.1.1 — 12.1.7, 12.5 и 12.10 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

3.3 СИСТЕМЫ СПЕЦИАЛЬНЫЕ

3.3.1 Система вентиляции взрывоопасных помещений.
3.3.1.1 Все закрытые взрывоопасные помещения зон 1 и 2 (см. 2.9 части X «Электрическое оборудование») должны оборудоваться приточно-вытяжной вентиляцией, обеспечивающей избыточное давление со стороны взрывообезопасного помещения или помещения с меньшим уровнем взрывоопасности.

При падении установленного избыточного давления должно быть предусмотрено автоматическое включение вентиляторов.

3.3.1.2 Приточные каналы, проходящие внутри взрывоопасных помещений, должны иметь избыточное давление.

3.3.1.3 Взрывоопасные помещения зоны 1 должны быть оборудованы вентиляцией с регулируемой подачей, обеспечивающей не менее 10 и не более 20 обменов воздуха в час.

При допустимой концентрации газа должно обеспечиваться 10 обменов в час. В случае повышения концентрации газа до 20 ± 10 % от нижнего предела взрываемости должно быть предусмотрено автоматическое увеличение кратности вентиляции до 20 обменов в час.

3.3.1.4 Кратность вентиляции взрывоопасных помещений зоны 2 должна быть не менее 10 обменов в час.

3.3.1.5 Вытяжные каналы зон 1 и 2 должны быть раздельными. Внутренние пространства указанных каналов относятся к тем же зонам, что и помещения, из которых они проложены. Применение отверстий в приточных вентиляционных каналах взрывоопасных помещений должно допускаться в открытые пространства зон той же или меньшей категории взрывоопасности.

3.3.1.6 В системе вентиляции взрывоопасных помещений должны применяться вентиляторы во взрывобезопасном исполнении.

3.3.2 Система снабжения забортной водой СПБУ.
3.3.2.1 В состав системы должны входить цистерны для хранения запасов воды системы охлаждения, если не предусмотрен другой способ охлаждения, и системы пожаротушения. Объем цистерны системы охлаждения должен быть достаточен для выполнения требований 3.2.3.2, а системы пожаротушения — для обеспечения установленных средств водяного пожаротушения, требуемых 3.2.7 части VI «Противопожарная защита».

3.3.2.2 Должны быть приняты необходимые меры по предотвращению замерзания воды в цистернах, если это необходимо по условиям эксплуатации.

3.3.2.3 Система должна обслуживаться не менее чем двумя погружными насосами с механическим приводом. Подача любого из этих насосов должна быть не менее, чем это необходимо для обеспечения системы охлаждения и водяной системы пожаротушения.

3.3.2.4 Расчетная подача насосов должна обеспечиваться при всех возможных в эксплуатации глубинах их погружения.

3.3.2.5 Каждый насос забортной воды должен иметь автономный приемный трубопровод, защищенный от внешнего воздействия волн, льда и механических повреждений, снабженный приемным фильтром и, при необходимости, обогревом.
3.3.2.6 Система должна оборудоваться измерительными приборами и сигнализацией давления. Индикация показаний измерительных приборов должна быть выведена в ЦПУ.

3.3.3 Гидравлическая система подъема и спуска корпуса ПБУ.

3.3.3.1 Гидравлическая система подъема и спуска корпуса ПБУ должна отвечать применимым требованиям разд. 7 части IX «Механизмы» Правил классификации и постройки морских судов.

3.3.3.2 Соединение системы трубопроводов гидравлических подъемников с другими гидравлическими системами не допускается.

3.3.3.3 В системах со значительной неравномерностью работы следует предусматривать средства, предотвращающие пульсацию давления.

3.3.3.4 Система должна сохранять работоспособность при выходе из строя одного из насосов.

3.3.3.5 Неисправность или повреждение трубопроводов гидравлических подъемников не должна приводить к самопроизвольному перемещению корпуса ПБУ или ее опорных колонн более чем на один шаг. При этом скорость перемещения не должна превышать спецификационную.

3.3.3.6 Применяемая рабочая жидкость должна сохранять спецификационные свойства при всех условиях эксплуатации, не оказывая вредного воздействия на материал трубопроводов и арматуры.

3.3.3.7 Если изменение температуры окружающей среды может оказать существенное влияние на вязкость рабочей жидкости, должны предусматриваться средства для предотвращения такого влияния при всех спецификационных температурных условиях.

3.3.3.8 Вместимость цистерны рабочей жидкости системы гидравлических подъемников механизма подъема каждой опоры должна быть не менее объема жидкости, заполняющей эту систему.

3.3.3.9 Цистерны гидроприводов должны быть оборудованы системой сигнализации по предельно допустимому нижнему уровню, выведенной в ГПУ.

3.3.3.10 Сточные трубы поддонов гидравлического оборудования, расположенного в помещениях гидроподъемных устройств и цистерны, должны быть отведены в сточные цистерны.

3.3.4 Система топлива для вертолетов.

3.3.4.1 Система топлива для вертолетов должна выполняться с учетом требований 2.3 части VI «Противопожарная защита».

3.3.4.2 Станции раздачи топлива должны располагаться на открытых площадках, удаленных на максимальное расстояние от жилых помещений и возможных источников воспламенения.

3.3.4.3 Цистерны, содержащие вертолетное топливо, должны оборудоваться системой инертного газа и устройством, предотвращающим недопустимые колебания давления в цистернах при изменении температуры, а также при их заполнении или опорожнении.

3.3.4.4 При использовании смешанных топливных контейнеров их установка должна выполняться с учетом обеспечения возможности их аварийного сброса.

Конструкция контейнеров должна быть одобrena Регистром.

3.3.5 Технологические трубопроводы.

3.3.5.1 Прокладка технологических и транспортных трубопроводов, в которых при использовании ПБУ/МСП по их прямому назначению могут содержаться взрывоопасные газы или воспламеняющиеся жидкости, через жилые и служебные помещения, посты управления и машинные отделения, танки и сухие отсеки не допускается.

3.3.6 Система аварийного сброса бурового раствора.

3.3.6.1 Трубопровод аварийного сброса бурового раствора следует оборудовать двумя отсечными клапанами, один из которых должен иметь сигнализацию положения, выведенную в пост управления.

Ближайший к цистерне бурового раствора клапан должен иметь дистанционный привод из легко доступного места, расположенного выше палубы переборок.

3.3.6.2 Трубопровод аварийного сброса бурового раствора не должен проходить через машинные, а также жилые и служебные помещения.

3.3.6.3 Установка клапанов трубопровода аварийного сброса должна быть выполнена с учетом требований 4.3.2.10 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.
ЧАСТЬ IX. КОТЛЫ, ТЕПЛООБМЕННЫЕ АППАРАТЫ И СОСУДЫ ПОД ДАВЛЕНИЕМ

1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1 Требования настоящей части распространяются на котлы, теплообменные аппараты и сосуды под давлением, используемые для обеспечения работы систем и механизмов, обслуживающих энергетический и жилой комплексы ПБУ или МСП.

1.2 Для котлов, теплообменных аппаратов и сосудов под давлением иного назначения требования Правил ПБУ/МСП могут применяться в той степени, насколько это будет признано практически целесообразным.

2 ОБЩИЕ ПОЛОЖЕНИЯ

2.1 Объем технического наблюдения, применяемые материалы, прочность конструктивных элементов, сварка и термическая обработка, а также объем испытаний котлов, теплообменных аппаратов и сосудов под давлением, упомянутых в 1.1, должны соответствовать требованиям разд. 1 и 2 части X «Котлы, теплообменные аппараты и сосуды под давлением» Правил классификации и постройки морских судов.

3 КОТЛЫ

3.1 Паровые котлы, а также котлы на органических теплоносителях, применяемые на ПБУ и МСП, их топочные устройства, системы управления, регулирования и защиты и сигнализации, арматура и контрольно-измерительные приборы должны соответствовать требованиям разд. 3 — 5 части X «Котлы, теплообменные аппараты и сосуды под давлением» Правил классификации и постройки морских судов.

3.2 По согласованию с Регистром для котлов, устанавливаемых на МСП, могут быть допущены отклонения от требований 2.1 настоящей части.

4 ТЕПЛООБМЕННЫЕ АППАРАТЫ И СОСУДЫ ПОД ДАВЛЕНИЕМ

4.1 Теплообменные аппараты и сосуды под давлением должны соответствовать требованиям разд. 6 части X «Котлы, теплообменные аппараты и сосуды под давлением» Правил классификации и постройки морских судов.

4.1.1 Гидроаккумуляторы.
4.1.1.1 Жидкая и газовая фазы гидроаккумуляторов должны быть соответстующим образом разделены в случае, если их непосредственный контакт может привести к потере газа или паре жидкой фазы.

4.1.1.2 Каждый гидроаккумулятор должен быть обеспечен предохранительным устройством, установленным на газовой стороне. Это устройство может быть установлено на не отключаемом участке трубопровода.

4.1.1.3 Газовые баллоны, предназначенные для заполнения гидроаккумуляторов, должны быть изготовлены по одобренным Регистром стандартам.
ЧАСТЬ X. ЭЛЕКТРИЧЕСКОЕ ОБОРУДОВАНИЕ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящей части распространяются на электрическое оборудование механических (энергетических) установок, а также систем и устройств плавучих буровых установок и морских стационарных платформ (ПБУ или МСП), подлежащих техническому наблюдению Регистра, а также на отдельные виды электрического оборудования в соответствии с 1.3 настоящего раздела.

1.1.2 Применимыми требования настоящей части следует распространять также на стационарно установленное электрическое оборудование, не указанное в 1.3, но способное отрицательно повлиять на работу ответственных механизмов и устройств, в случаях их неисправностей или аварий.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

1.2.1 Определения и пояснения, относящиеся к общей терминологии Правил ПБУ/МСП, указаны в Общих положениях о классификационной и иной деятельности.

В настоящей части приняты следующие определения.

Аварийное освещение — освещение помещений и пространств ПБУ или МСП светильниками, получающими питание от аварийного или аварийного переходного источника электрической энергии.

Аварийный источник электрической энергии — источник электрической энергии, предназначенный для питания необходимых потребителей при исчезновении напряжения на главном распределительном щите (ГРЩ).

Аварийный переходный источник электрической энергии — источник электрической энергии, предназначенный для питания необходимых потребителей с момента исчезновения напряжения на шинах ГРЩ до начала работы аварийного источника электрической энергии.

Безопасное напряжение — напряжение, не представляющее опасности для персонала. Это условие считается выполненным, если обмотки трансформаторов, преобразователей и других устройств для понижения напряжения являются электрически раздельными и пониженное напряжение этих устройств или источников электрической энергии не превышает 50 В между полюсами при постоянном токе, или 50 В между фазами или между фазами и корпусом при переменном токе.

Главные механизмы ПБУ или МСП — механизмы, предназначенные для обеспечения выполнения ПБУ или МСП основных технологических процессов в соответствии с ее функциональным назначением.

Закрытые пространства — пространства, ограниченные перекрытиями и/или палубами и переборками, которые могут иметь двери или окна.

Заземление — преднамеренное электрическое соединение заземляемой части электрического оборудования с корпусом платформы, имеющее сопротивление не выше 0,02 Ом.

Зона защиты молниеzapритного устройства — область, внутри которой пространство платформы защищено от прямых ударов молнии.

Корпус ПБУ или МСП — все металлические части ПБУ или МСП, имеющие надежное электрическое соединение с наружной металлической обшивкой.

Молниеуловитель — верхняя часть молниеотводного устройства, предназначенная для непосредственного восприятия атмосферных разрядов.

Минимальные комфортные условия обитаемости на ПБУ или МСП — условия, при которых обеспечивается работа электрических вспомогательных механизмов и устройств для: освещения; приготовления пищи; обогрева; сохранения пищевых продуктов (бытовое холодильное оборудование); системы принудительной вентиляции; обеспечения санитарной водой; обеспечения пресной водой.

Несответственные устройства — электрическое оборудование, временно отключенное которого не снижает уровень безопасности ПБУ или МСП, безопасности находящихся на
ней людей и экологической безопасности окружающей среды.

Основной источник электрической энергии — источник электрической энергии, предназначенный для питания всех электрических механизмов, устройств и систем, необходимых для поддержания нормального функционирования ПБУ или МСП и нормальных условий обитаемости на ней, не прибегая при этом к использованию аварийного источника электрической энергии.

Ответственные устройства — электрическое оборудование, нормальная работа которого обеспечивает безопасность эксплуатации ПБУ или МСП, безопасность находящихся на ней людей и экологическую безопасность окружающей среды. К таким устройствам относятся устройства, перечисленные в 1.3.2.1.

Полузакрытые пространства — пространства, где естественные условия вентиляции значительно отличаются от условий на открытых палубах из-за наличия таких конструкций, как перекрытия, встроеботы и переборки, которые так установлены, что естественное рассеивание (дисперсия) газа может не происходить.

Посты управления — помещения и пространства, в которых должно располагаться следующее оборудование и устройства (в полной или неполной комплектации):
- системы управления и нормальной остановки механизмов и устройств технологических процессов;
- система аварийной остановки механизмов и устройств (включая технологические механизмы и устройства);
- пульты управления основным источником электрической энергии;
- пульт управления вспомогательными механизмами и дистанционно управляемыми клапанами трубопроводов;
- система радиосвязи и система внутренней связи, включающая систему аварийной сигнализации; централизованная станция пожарной сигнализации и сигналов обнаружения взрывоопасных концентраций газов;
- пост дистанционного управления средствами объемного пожаротушения;
- пост непосредственного управления средствами объемного пожаротушения;
- пост управления аварийным источником электрической энергии.

Специальные электрические помещения — помещения, предназначенные исключительно для электрического оборудования и доступные только для обслуживающего персонала.

1.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

1.3.1 Общие положения.
Общие положения, относящиеся к порядку классификации, техническому наблюдению за постройкой ПБУ или МСП и изготовлением оборудования и освидетельствованиям, изложены в части I «Классификация» Правил ПБУ/МСП.

1.3.2 Техническое наблюдение за электрическим оборудованием на ПБУ или МСП.

1.3.2.1 Техническому наблюдению на ПБУ или МСП подлежат следующие виды ответственного оборудования, систем и устройств:
.1 гребная электрическая установка самоходной ПБУ и электрическое и электронное оборудование систем динамического позиционирования;
.2 основные, аварийные и аварийные переходные источники электрической энергии, а также источники бесперебойного электрического питания для ответственных систем;
.3 силовые трансформаторы и преобразователи электрической энергии, применяемые в оборудовании, системах и устройствах, перечисленных в 1.3.2.1;
.4 распределительные устройства и пульты управления и контроля;
.5 электрические приводы механизмов, обслуживающих работу главных механизмов, приводы механизмов подъема и спуска самоподъемных ПБУ, рулевых устройств, винтов регулируемого шага, подруливающих устройств, насосов систем погружения и вспыления полупогруженных ПБУ, погружных насосов СПБУ и подъемных устройств забортных трубопроводов этих насосов, якорных и швартовных механизмов, механизмов спусковых устройств шлюпочных и шлюпочных, компрессоров пускового воздуха и воздуха для систем управления и звуковых сигналов, осушительных и балластных насосов, насосов и устройств систем пожаротушения, механизмов водонепроницаемых и противопожарных дверей, вентиляторов машинных помещений, коффердамов, жилых и служебных помещений, вентиляторов взрывоопасных помещений и пространств, вентиляторов оборудования с видом взрывозащиты «оболочка под избыточным давлением»;
.6 основное и аварийное освещение помещений и мест расположения ответственных устройств, путей эвакуации и незакрепленное аварийное освещение;
.7 габаритные и сигнально-отличительные и сигнально-проблесковые фонари;
.8 электрические машинные телеграфы самоходных ПБУ.
Правила классификации, постройки и оборудования ПБУ/МСП

1.2.2.2 Электрическое оборудование взрывозащищенного исполнения подлежит техническому наблюдению в отношении его взрывозащищенности со стороны специальной организации, документы которой признаются Регистром, независимо от того, подвергается или нет данное оборудование техническому наблюдению, согласно требованиям 1.3.3.1.

1.3.3 Объем и нормы испытаний электрического оборудования после изготовления являются предметом специального рассмотрения Регистром, в требования по испытаниям изложены в Правилах технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов.

1.4 ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

1.4.1 Общие принципы, касающиеся порядка одобрения Регистром технической документации, изложены в Общих положениях о классификационной и иной деятельности. Объем технической
документации по электрическому оборудованию, предъявляемой на рассмотрение Регистру по установке в целом, содержится в части I «Классификация».

1.4.2 До начала технического наблюдения за изготовлением электрического оборудования должна быть представлена на рассмотрение Регистру по каждому виду оборудования следующая документация:

.1 описание принципа действия и основные характеристики оборудования;
.2 спецификация (перечень изделий), в которой указаны все используемые элементы, приборы и материалы с их техническими характеристиками;
.3 чертежи общего вида с разрезами;
.4 принципиальные схемы;
.5 программа испытаний;
.6 результаты расчета вала ротора (якоря); чертежи узлов крепления полюсов, активного железа, коллектора и т. д., а также мест сварных соединений конструкции с валом — для электрических машин с номинальным током более 1000 А;
.7 расчет шин на динамическую и термическую устойчивость при коротких замыканиях — для распределительных щитов, если номинальный ток отдельно работающих генераторов или сумма токов параллельно работающих генераторов превышает 1000 А;
.8 данные динамической и статической помехоустойчивости или указание способа испытания электromагнитной совместимости;
.9 указание конкретных мер подавления помех;
.10 чертежи общего расположения электрического оборудования во взрывоопасных зонах с указанием вида взрывозащиты, типа применяемых кабелей, их сечений и деталей соединительных коробок;
.11 электрические схемы оборудования взрывозащищенного исполнения, схемы относящихся к ним цепей, документация, подтверждающая вид взрывозащиты;
.12 чертежи и спецификация электрического оборудования с видом взрывозащиты «оболочка под избыточным давлением», системы сигнализации о потере избыточного давления воздуха и соответствующие схемы.

2 ОБЩИЕ ТРЕБОВАНИЯ

Электрическая установка ПБУ или МСП должна быть такой, чтобы обеспечивать:

питание от основного источника электрической энергии всех электрических механизмов и устройств, обеспечивающих нормальное функционирование ПБУ или МСП, включая нормальные условия обитаемости персонала без применения аварийного источника электрической энергии;

в случае выхода из строя основного источника электрической энергии питание ответственных электрических механизмов и устройств, обеспечивающих безопасность ПБУ или МСП, от аварийного источника электрической энергии в течение заданного периода времени;

безопасность экипажа и установки в целом в условиях нормального и аварийного функционирования ПБУ или МСП.

2.1 УСЛОВИЯ РАБОТЫ

2.1.1 Климатические условия.
2.1.1.1 В качестве номинальных рабочих температур окружающего воздуха и охлаждающей воды для электрического оборудования должны применяться указанные в табл. 2.1.1.1.

Таблица 2.1.1.1

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Место расположения оборудования</th>
<th>Температура окружающего воздуха и охлаждающей воды, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Неограниченный р-н</td>
<td>Вне тропической зоны</td>
</tr>
<tr>
<td></td>
<td>воздух</td>
<td>вода</td>
</tr>
<tr>
<td>1</td>
<td>Машины, специальные электрические помещения, камбузы</td>
<td>+45 — 0</td>
</tr>
<tr>
<td>2</td>
<td>Служебные, жилые и другие помещения</td>
<td>+45 — 0</td>
</tr>
<tr>
<td>3</td>
<td>Открытые палубы</td>
<td>+45 — 25*</td>
</tr>
</tbody>
</table>

Примечания: 1. Электрические и электронные элементы и устройства, предназначенные для установки в распределительные шкафы, шкафы, должны надежно работать при температуре окружающей среды до 55 °C. Температура до 70 °C не должна вызывать повреждений элементов, устройств и систем.
2. * Рабочая температура для электрооборудования, устанавливаемого на открытых палубах, должна соответствовать району использования ПБУ или МСП.
2.1.1.2 Электрическое оборудование должно надежно работать в условиях относительной влажности воздуха 75 ± 3 % при температуре + 45 ± 2 °С или 80 ± 3 % при температуре + 40 ± 2 °С, а также при относительной влажности воздуха 95 ± 3 % при температуре + 25 ± 2 °С.

Электрическое оборудование, устанавливаемое на открытых палубах ПБУ или МСП в районах с холодным климатом, должно надежно работать в условиях относительной влажности воздуха 85 % при температуре — 6 °С.

2.1.1.3 Конструктивные части электрического оборудования должны изготавливаться из материалов, устойчивых к воздействию морской атмосферы, или должны быть надежно защищены от вредного воздействия этого фактора.

2.1.1.4 Если электрическое оборудование устанавливается в помещениях или пространствах, защищенных от воздействия окружающей среды, то допустимая окружающая температура для такого оборудования может быть снижена с 45 °С до 35 °С, если условия, что:
- оборудование не является аварийным и расположено вне машинных помещений;
- управляющая температура в помещении осуществляется, как минимум, двумя охлаждающими блоками, оборудованными таким образом, что в случае выхода из строя одного из блоков, оставшиеся способны удовлетворительно поддерживать заданную температуру в помещении;
- оборудование способно в первоначальный период безотказно работать при окружающей температуре 45 °С до тех пор, пока окружающая температура не достигнет заданной меньшей величины, безопасной для оборудования. Само охлаждающее оборудование должно быть рассчитано на окружающую температуру 45 °С;
- на постах с постоянным присутствием персонала обеспечена звуковая и световая сигнализация о неисправностях охлаждающих блоков.

2.1.1.5 Для оборудования с меньшей чем 45 °С допустимой окружающей температурой, должно быть обеспечено, чтобы кабели питания этого оборудования были рассчитаны на максимальную окружающую температуру, которая может быть зафиксирована (или ожидала) при прокладке по протяжении всей длины кабеля.

2.1.1.6 Оборудование, устанавливаемое для охлаждения и поддержания более низкой температуры окружающей среды (для оборудования, указанного в 2.1.1.4 и 2.1.1.5), должно классифицироваться, как ответственное оборудование и быть объектом технического наблюдения Регистра, в соответствии с требованиями Правил ПБУ/МСП.

2.1.2 Механические воздействия.

2.1.2.1 Электрическое оборудование должно надежно работать при вибрациях с частотами от 2 до 80 Гц, а именно: при частотах от 2 до 13,2 Гц с амплитудой перемещений ± 1 мм и при частотах от 13,2 до 80 Гц с ускорением ± 0,7g.

Электрическое оборудование, установленное на источниках вибрации (дизели, компрессоры и т. п.) или в румпельном отделении на ПБУ, должно надежно работать при вибрациях от 2 до 25 Гц с амплитудой перемещений ± 1,6 мм и при частотах от 25 до 100 Гц с ускорением ± 4,0g.

Электрическое оборудование должно надежно работать также при ударах с ускорением ± 5,0g и частоте в пределах от 40 до 80 ударов в минуту.

2.1.2.2 Электрическое оборудование должно безотказно работать при крене:
- ППБУ — до 15° длительном и до 22,5° кратковременным в любом направлении;
- СПБУ — до 10° длительном и до 15° кратковременным в любом направлении;
- ПБУ — до 15° длительном и до 22,5° крене на нос или корму, а также при бортовой качке до 22,5° и илье до 7,5° от вертикали.

Аварийное электрическое оборудование должно, кроме того, надежно работать при длительном крене:
- ППБУ — до 25° в любом направлении;
- СПБУ — до 15° в любом направлении;
- ПБУ — до 22,5° и дифференте до 10, а также при одновременном крене и дифференте в указанных выше пределах.

2.1.2.3 Электрическое оборудование должно обладать соответствующей механической прочностью и устанавливаться в таком месте, где нет опасности механического повреждения (см. также 2.7.4).

2.1.3 Допускаемые отклонения параметров питания.

2.1.3.1 Электрическое оборудование должно быть такой конструкции, чтобы в всех случаях в установившихся режимах оно оставалось работоспособным при отклонениях напряжения питания и частоты от номинальных значений, указанных в табл. 2.1.3.1 (см. также 3.1.2.2 и 16.8.3.3).

<table>
<thead>
<tr>
<th>Параметр электросети</th>
<th>Отклонение от номинальных значений</th>
<th>Допустимые отклонения</th>
<th>Время процесса (с)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Напряжение</td>
<td>± 6 — 10</td>
<td>± 20 — 20</td>
<td>1,5</td>
</tr>
<tr>
<td>Частота</td>
<td>± 5 — 5</td>
<td>± 10 — 10</td>
<td>5</td>
</tr>
</tbody>
</table>

Примечание: При питании от аккумуляторной батареи: длительное изменение напряжения в пределах + 30 % — 25 % для оборудования, подключенного к аккумуляторной батарее и не отключаемого при ее зарядке; длительное изменение напряжения в пределах + 20 % — 25 % для оборудования, отключаемого от батареи во время ее зарядки.
2.1.3.2 Для механизмов и устройств на ПБУ или МСП, за исключением механизмов и устройств ответственного назначения, допускается применение электрического оборудования общепромышленного исполнения, не в полной мере соответствующего указанным выше требованиям, что в каждом случае является предметом специального рассмотрения Регистром.

2.2 ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ

2.2.1 Общие требования.
2.2.1.1 Настоящие требования распространяются на электрическое оборудование, оборудование автоматизации, радиооборудование и навигационное оборудование ПБУ или МСП для обеспечения электромагнитной совместимости электрического и электронного оборудования установки.

2.2.1.2 Оборудование должно безотказно работать при помехах с параметрами:
.1 постоянное и переменное (50 Гц) магнитное поле в соответствии с табл. 2.2.1.2.1.

<table>
<thead>
<tr>
<th>Класс оборудования</th>
<th>Напряженность, А/м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Постоянное поле</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
</tr>
</tbody>
</table>

Таблица 2.2.1.2.1

Допускается установка оборудования:
класса 1 — на расстоянии 2 м и более от мощного источника поля (шинопровод, групповой трансформатор);
класса 2 — на расстоянии 1 м и более от мощного источника поля;
класса 3 — без ограничения расстояния от любого источника поля;
.2 гармонические составляющие напряжения по цепям питания в соответствии с графиком высших гармоник сети, изображенным на рис. 2.2.1.2.2 в логарифмическом масштабе;
.3 электростатические разряды с амплитудой напряжения 8 кВ;
.4 радиочастотные электромагнитные поля в диапазоне 30 — 500 МГц со среднеквадратическим значением напряжения 1 В и 30-процентной модуляцией на частоте 1 МГц;
.6 радиочастотные помехи по цепям проводимости в диапазоне 0,01 — 50 МГц со среднеквадратическим значением напряжения 1 В и 30-процентной модуляцией на частоте 1 МГц;
.7 микросекундные импульсы напряжения по цепям питания с амплитудой 1 кВ для симметричной подачи импульсов и 2 кВ для несимметричной подачи импульсов длительностью 1,2/50 мкс.
.8 микроимпульсы напряжения по цепям проводимости в диапазоне 0,01 — 30 МГц со среднеквадратическим значением напряжения 1 В и 30-процентной модуляцией на частоте 1 МГц;
.9 микросекундные импульсы напряжения по цепям питания с амплитудой 1 кВ для симметричной подачи импульсов и 2 кВ для несимметричной подачи импульсов длительностью 1,2/50 мкс.

Значение K_u регламентируется для полностью укомплектованной электроэнергетической системы. По особому согласованию с Регистром допускается использование отдельных шин с $K_u > 10\%$ для питания мощных источников гармонических составляющих напряжения и невосприимчивого к ним электрооборудования при условии, что указанные шины подключаются к основным шинам через фильтрующие или гальванические развязывающие устройства (см. также 2.2.2.2).

2.2.1.4 Уровень напряжений радиономех, создаваемых оборудованием, работающим на зажимах электрооборудования, не должен превышать значений, указанных на рис. 2.2.1.4.

2.2.1.5 На ПБУ или МСП, для которых ограничение уровня радиономех от силовых полупроводниковых преобразователей в соответствии с требованиями 2.2.1.4 не представляется возможным, есть питание средств автоматизации, радио- и навигационного оборудования должна иметь гальваническую развязку, обеспечивающую затухание не менее 40 дБ в диапазоне частот 0,01 — 30 МГц, с сетью питания этих преобразователей.
Кабели питания оборудования с уровнями радиопомех, превышающими указанные в 2.2.1.4, должны прокладываться на расстоянии не менее 0,2 м от кабелей других групп оборудования при длине совместной прокладки более 1 м (см. также 2.2.2.8).

2.2.2.1 Для защиты радиооборудования от электромагнитных помех следует учитывать требования, содержащиеся в части IV «Радиооборудование» Правил по оборудованию морских судов.

2.2.2.2 Для защиты электрической сети от помех следует применять помехоподавляющие устройства и средства гальванической развязки: фильтры, реакторы, разделительные трансформаторы, вращающиеся преобразователи.

2.2.2.3 Экраны, металлическую оболочку или броню силовых кабелей следует заземлять с металлическим корпусом оборудования как можно чаще, как минимум, на каждом конце кабеля.

2.2.2.4 Экраны информационных сигнальных кабелей и кабелей цепей управления следует, как правило, заземлять только на одном конце на стороне блока обработки первичного сигнала. При этом кабель должен иметь внешнюю изоляционную оболочку.

2.2.2.5 Должна обеспечиваться непрерывность экранирования, для чего экраны кабелей должны быть соединены с заземленными корпусами оборудования, в кабельных ответвительных и распределительных коробках и щитах, в проходах кабелей через переборки.

2.2.2.6 Заземление металлических корпусов электрического и электронного оборудования должно иметь электрическое сопротивление не более 0,02 Ом, должно быть вибро- и коррозионностойким, выполнено наиболее коротким путем, быть доступным для проверки.

2.2.2.7 Экраны кабелей не должны использоваться в качестве обратного провода.

2.2.2.8 Все информационные сигнальные кабели должны быть экранированными и прокладываться на расстоянии не менее 20 см от незащищенных силовых кабелей и кабелей цепей управления. При параллельной прокладке указанное выше расстояние должно быть уве-
личено до 50 см. Пересечения кабелей должны выполняться под прямым углом.

2.2.2.9 Кабели аналоговых сигналов рекомендуется прокладывать отдельно от кабелей цифровых сигналов. Следует избегать параллельной прокладки кабелей, несущих цифровые и аналоговые сигналы, в одной трассе. Если разделенная прокладка кабелей невозможна, то кабели, прокладываемые в стальных трубах или металлических каналах (желобах), которые должны иметь токопроводящие соединения между собой и корпусом судна. Кабели цепей электроакустических систем и подобные им должны прокладываться в металлических трубах и отдельно от других кабелей.

2.2.2.10 Вся кабельная сеть, проложенная в помещениях, где установлено оборудование средств связи и радионавигации, а также на верхних палубах и надстройках, и не отделенных от антенны металлической палубой или металлической переборкой, должна быть выполнена экранированными кабелями с соблюдением непрерывности экрана. При вводе кабеля питания распределительного щита радиооборудования в помещение радиорубки на его входе должен быть установлен фильтр защиты от радиопомех.

2.3 МАТЕРИАЛЫ

2.3.1 Конструктивные материалы.

2.3.1.1 Конструктивные части электрического оборудования должны изготавливаться из материалов прочных, по крайней мере, трудновоспламеняющихся, устойчивых к воздействию морской атмосферы и паров масла и топлива, или должны быть надежно защищены от воздействия этих факторов.

2.3.1.2 Винты, гайки, петли и подобные детали, предназначенные для крепления закрытий электрического оборудования, установленного на открытой палубе и в помещениях с повышенной влажностью, должны изготавливаться из коррозионно-стойких материалов и/или иметь надежное антикоррозионное покрытие.

2.3.1.3 Все токоведущие части электрических устройств должны изготавливаться из меди, медных сплавов или других материалов, обладающих равноценными свойствами, за исключением:

1. элементов реостатов, которые должны изготавливаться из механически прочных материалов с высоким удельным сопротивлением, выдерживающего высокую температуру;

2. короткозамкнутых обмоток роторов асинхронных двигателей, которые допускается изготавливать из алюминия или его сплавов, стойких к морским условиям;

3. угольных щеток, металлокерамических контактов и других подобных частей, когда это обусловлено требуемыми свойствами;

4. элементов электрического оборудования, которые непосредственно присоединены к корпусу ПБУ или МСП и используются в качестве обратного провода в локальной однопроводной системе.

Применение для токоведущих частей других материалов является в каждом случае предметом специального рассмотрения Регистром.

2.3.2 Изоляционные материалы.

2.3.2.1 Изоляционные материалы частей, находящихся под напряжением, должны обладать соответствующей диэлектрической прочностью, быть устойчивыми против появления токов утечки по поверхности, влаго- и маслостойкими и достаточно прочными, или должны быть соответствующим образом защищены. Температура нагрева токоведущих частей и мест их соединения при номинальной нагрузке не должна превышать допустимой температуры нагрева изоляционных материалов.

2.3.2.2 Для охлаждения неизолированных частей электрического оборудования допускается применение негорючих жидкостей с соответствующими изоляционными и тепло проводными характеристиками.

2.3.2.3 Для изоляции обмоток машин, аппаратов и других ответственных устройств должны применяться изоляционные материалы в соответствии с национальными общепринятыми стандартами. Рекомендуется применение изоляционных материалов не ниже класса Е.

2.3.2.4 Провода, используемые для внутренних соединений электрических устройств, должны
иметь изоляцию, изготовленную, по крайней мере, из трудновоспламеняющихся материалов, а у аппаратов с повышенным нагревом, а также указанных в разделе 15, — из негорючих материалов.

2.3.2.5 Изоляционные материалы, применяемые для изготовления кабелей, — см. 16.3.

2.4 КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ И СТЕПЕНЬ ЗАЩИТЫ ЭЛЕКТРИЧЕСКОГО ОБОРУДОВАНИЯ

2.4.1 Общие требования.
2.4.1.1 Части, требующие замены во время эксплуатации, должны легко демонтироваться.
2.4.1.2 При применении винтовых креплений должны быть предусмотрены меры, исключающие самоотвинчивание винтов и гаек, а в местах, требующих частого демонтажа или открытия, — также их утерю.
2.4.1.3 Уплотнительные прокладки частей электрического оборудования (дверцы, крышки, смотровых отверстий, сальников и т. п.) должны обеспечивать соответствующую степень защиты в условиях эксплуатации. Уплотнения должны быть прикреплены к кожуху или крышке.
2.4.1.4 Кожухи, щитки и крышки электрического оборудования, расположенного в местах, доступных неспециализированному персоналу, должны открываться только с помощью инструментов или специальных ключей.
2.4.1.5 Электрическое оборудование, в котором может происходить образование конденсата, должно снабжаться устройствами для его отвода. Внутри оборудования должны быть предусмотрены каналы, обеспечивающие отвод конденсата со всех частей оборудования. Обмотки и части под напряжением должны быть расположены так, чтобы они не подвергались воздействию конденсата.
2.4.1.6 Электрическое оборудование с принудительной вентиляцией, предназначенное для установки в нижних частях влажных помещений, должно иметь такую систему вентиляции, чтобы засасывание влаги и масляных паров внутрь оборудования было исключено.
2.4.1.7 Если в пульте или щите управления применены измерительные приборы с подводом к ним нефти, нефтепродуктов, пара или воды, должны быть приняты меры, исключающие возможность попадания этих компонентов на части, находящиеся под напряжением, при повреждении приборов или трубопроводов.
2.4.1.8 Переносное штатное электрическое оборудование, предназначенное для работы в особо сырых (влажных) помещениях и про странствах должно быть выполнено с применением безопасного напряжения.
2.4.1.9 Все электрические аппараты должны быть сконструированы и установлены так, чтобы они не могли нанести травму персоналу при обслуживании и прикосновении к ним в процессе нормальной работы.

2.4.2 Изоляционные расстояния.
Расстояния между частями, находящимися под напряжением с разными потенциалами, или между частями, находящимися под напряжением, и заземленными металлическими частями или наружным кожухом по воздуху и по поверхности изоляционного материала, должны соответствовать рабочим напряжениям и условиям работы устройства с учетом свойств примененных изоляционных материалов.

2.4.3 Внутренний монтаж.
2.4.3.1 Весь внутренний монтаж электрического оборудования должен быть выполнен многопроволочным проводом. Применение однопроволочных проводов является в каждом случае предметом специального рассмотрения Регистром.
2.4.3.2 Для внутреннего монтажа распределительных устройств, пультов управления и других устройств распределения, коммутации и т. п. должны применяться провода площадью сечения не менее 1 мм². Для систем управления, защиты, измерения параметров, сигнализации и внутренней связи допускается применение проводов площадью сечения не менее 0,5 мм².
Для электронных и электрических устройств преобразования и передачи слабых сигналов могут применяться провода площадью сечения не менее 0,5 мм², что в каждом случае является предметом специального рассмотрения Регистром.
2.4.3.3 Токоведущие части должны быть закреплены так, чтобы они не испытывали дополнительной механической нагрузки; причем не следует применять винты, ввинчиваемые непосредственно в изоляционный материал.
2.4.3.4 Концы многопроволочных жил кабелей и проводов должны быть обработаны в зависимости от типа применяемого зажима, или должны иметь кабельные наконечники.
2.4.3.5 Изолированные провода должны укладываться и крепиться таким образом, чтобы не уменьшалось сопротивление изоляции и они не подвергались повреждениям вследствие электродинамических усилий, вибрации и сотрясений.
2.4.3.6 Должны быть приняты меры, чтобы температуры, допустимые для изолированного провода в нормальных эксплуатационных условиях, или за время отключения тока короткого замыкания, не были превышены.
2.4.3.7 Подключение изолированных проводов к клеммам или шинам должно выполняться таким образом, чтобы во всех рабочих режимах изоляция провода не подвергалась воздействию температуры перегрева.

2.4.4 Степень защиты оболочек электрического оборудования.

2.4.4.1 В зависимости от места установки должно применяться электрическое оборудование с соответствующим защитным исполнением, или должны приниматься другие меры для защиты оборудования от вредного влияния окружающей среды и защиты персонала от поражения электрическим током.

2.4.4.2 Минимальная степень защиты электрического оборудования, установленного в помещениях и пространствах ПБУ или МСП, должна выбираться согласно табл. 2.4.4.2.

2.4.4.3 Если существует возможность попадания жидкостей на электрические панели систем управления или сигнализации, или подобное электрооборудование, необходимое для обеспечения безопасности установки, то такое оборудование должно быть выполнено с видом защиты оболочки не менее IP23.

<table>
<thead>
<tr>
<th>Место расположения электрического оборудования</th>
<th>Электрическое оборудование</th>
<th>Электрические машины, трансформаторы</th>
<th>Распределительные щиты, пуско-регулирующая аппаратура, пускатели, пульты управления</th>
<th>Оборудование связи и сигнализации, установочная аппаратура (выключатели, розетки, соединительные коробки)</th>
<th>Нагревательные и отопительные приборы</th>
<th>Светильники</th>
</tr>
</thead>
<tbody>
<tr>
<td>Помещения и пространства, в которых могут образовываться взрывоопасные смеси паров, газов и пыли с воздухом</td>
<td>Ex (см. 2.11)</td>
<td>Ex (см. 2.11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сухие помещения, сухие жилые помещения</td>
<td>IP20</td>
<td>IP20</td>
<td>IP20</td>
<td>IP20</td>
<td>IP20</td>
<td></td>
</tr>
<tr>
<td>Ходовой мостик, радиорубка</td>
<td>IP22</td>
<td>IP22</td>
<td>IP22</td>
<td>IP22</td>
<td>IP22</td>
<td></td>
</tr>
<tr>
<td>Служебные помещения, помещения рулевой машины, отделение холодильных машин (за исключением аммиачного оборудования), помещение аварийного генератора, кладовые общего назначения, буфетные, провизионные помещения</td>
<td>IP22</td>
<td>IP22</td>
<td>IP22</td>
<td>IP22</td>
<td>IP22</td>
<td></td>
</tr>
<tr>
<td>Машинные и котельные помещения: выше настила</td>
<td>IP22</td>
<td>IP22</td>
<td>IP22</td>
<td>IP22</td>
<td>IP22</td>
<td></td>
</tr>
<tr>
<td>ниже настила</td>
<td>IP44</td>
<td></td>
<td>IP44</td>
<td>IP44</td>
<td>IP44</td>
<td></td>
</tr>
<tr>
<td>посты управления (сухие) закрытые помещения для сепараторов</td>
<td>IP44</td>
<td>IP44</td>
<td>IP44</td>
<td>IP44</td>
<td>IP44</td>
<td></td>
</tr>
<tr>
<td>Охлаждаемые помещения, камбузы, прачечные, ванные и душевые</td>
<td>IP44</td>
<td></td>
<td>IP55</td>
<td>IP44</td>
<td>IP44</td>
<td></td>
</tr>
<tr>
<td>Помещения технологические, туннеи вспомогательных грузовых трюма</td>
<td>IP55</td>
<td>IP55</td>
<td>IP55</td>
<td>IP55</td>
<td>IP55</td>
<td></td>
</tr>
<tr>
<td>Открытые палубы</td>
<td>IP56</td>
<td>IP56</td>
<td>IP56</td>
<td>IP56</td>
<td>IP56</td>
<td></td>
</tr>
</tbody>
</table>

Примечание: Если оболочка оборудования не обеспечивает требуемой степени защиты, следует применить иные методы или иное расположение оборудования для обеспечения требуемой степени защиты.
Правила классификации, постройки и оборудования ПБУ/МСП

2.4.4.4 Дополнительные требования по степени защиты электрооборудования на напряжение свыше 1000 В указаны в разд. 18 настоящей части.

2.5 ЗАЩИТНЫЕ ЗАЗЕМЛЕНИЯ НЕТОКОВЕДУЩИХ МЕТАЛЛИЧЕСКИХ ЧАСТЕЙ ЭЛЕКТРИЧЕСКОГО ОБОРУДОВАНИЯ

Металлические корпуса электрического оборудования, работающего при напряжении, превышающем безопасное, и не обладающего двойной или усиленной изоляцией, должны иметь заземляющий зажим, обозначенный стандартным символом.

В зависимости от назначения электрического оборудования должна быть предусмотрена возможность заземления внутри или снаружи корпуса.

Дополнительные требования по заземлению электрооборудования на напряжение свыше 1000 В указаны в разд. 18 настоящей части.

2.5.1 Части, подлежащие заземлению.

2.5.1.1 Металлические части корпусов (оболочек) электрического оборудования, к которым возможно прикосновение во время эксплуатации и которые в случае повреждения изоляции могут оказаться под напряжением (за исключением указанных в 2.5.1.2), должны иметь надежный электрический контакт с частью корпуса ПБУ или МСП, снабженной заземляющим зажимом (см. также 2.5.3).

2.5.1.2 Защитные заземления не требуются для следующих видов оборудования:
.1 электрического оборудования, питаемого током безопасного напряжения;
.2 электрического оборудования, имеющего двойную или усиленную изоляцию;
.3 металлических частей электрического оборудования, закрепленных в изоляционном материале или проходящих сквозь него и изолированных от заземленных и находящихся под напряжением частей таким образом, что в нормальных рабочих условиях они не могут оказаться под напряжением, или соприкаться с частями;
.4 корпусов специально изолированных подшипников;
.5 цоколей патронов и крепежных элементов люминесцентных ламп, абажуров и отражателей, кожухов, прикрепленных к патронам или светильникам, изготовленных из изоляционного материала, или винченым в такой материал;
.6 крепежных элементов кабелей;
.7 для одиночного потребителя с напряжением до 250 В, получавшего питание от изолирующего трансформатора.

2.5.1.3 Экранирующие оболочки и металлическая броня кабелей должны быть заземлены.

2.5.1.4 Вторичные обмотки всех измерительных трансформаторов тока и напряжения должны быть заземлены.

2.5.2 Заземление конструкций на стальных ПБУ или МСП.

2.5.2.1 Надстройки из сплавов алюминия, прикрепленные к стальному корпусу, но изолированные от него, должны заземляться не менее чем двумя специальными проводами каждый площадью сечения не менее 16 мм², не вызывающими электрической коррозии в месте их соединений с надстройкой и корпусом. Такие заземляющие соединения должны устанавливаться в нескольких местах по периметру надстройки, быть доступны для осмотра и защищены от повреждений.

2.5.2.2 Все стационарно установленное механическое оборудование, трубопроводы, металлические конструкции вышек, мачт и вертолетных площадок должны быть надежно заземлены, если для указанного оборудования, или конструкций не оговорены особые условия их монтажа на ПБУ или МСП.

2.5.3 Заземляющие зажимы и проводники.

2.5.3.1 Крепление к корпусу заземляющих проводников площадью сечения свыше 4 мм² должно быть выполнено болтами диаметром не менее 6 мм, для проводников площадью сечения до 4 мм² — болтами диаметром 5 мм, для крепления проводников площадью сечения до 2,5 мм² допускаются болты диаметром 4 мм. Болты не должны использоваться для других целей, кроме крепления заземляющих проводников. Болты, ввинчивающиеся в материал корпуса без гаек, должны быть из латуни или из другого коррозионно-стойкого материала.

Место корпуса, к которому присоединяется заземляющий проводник, должно быть зачищено до металла и надежно защищено от коррозии.

2.5.3.2 Стационарное электрическое оборудование должно быть заземлено с помощью наружных заземляющих проводников или жилой заземления в питающем кабеле. При использовании для заземления одной из жил питающего кабеля она должна присоединяться к заземляемой части оборудования внутри его корпуса.

Допускается не применять специального заземления с помощью наружных заземляющих проводников, если монтаж оборудования обеспечивает надежный электрический контакт между корпусом оборудования и корпусом ПБУ или МСП во всех эксплуатационных условиях.

Для заземления, выполняемого наружными заземляющими проводниками, должны применяться медные проводники. Можно также применять проводники из другого коррозионно-стойкого металла, но при условии, что его сопротивление не будет превышать сопротивле-
Часть X. Электрическое оборудование

233

ния требуемого медного проводника. Площадь сечения медного заземляющего проводника должна быть не менее указанной в табл. 2.5.3.2.

Таблица 2.5.3.2

<table>
<thead>
<tr>
<th>Площадь сечения жилы питающего кабеля, мм²</th>
<th>Площадь сечения заземляющего проводника стационарного оборудования, мм², минимальная</th>
</tr>
</thead>
<tbody>
<tr>
<td>До 2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>2,5 — 120</td>
<td>1/2 площади сечения жилы питающего кабеля, но не менее 4</td>
</tr>
<tr>
<td>Свыше 120</td>
<td>70</td>
</tr>
</tbody>
</table>

Для заземления, выполняемого специальной жилой питающего кабеля, площадь сечения этой жилы должна быть равна номинальной площади сечения жилы питающего кабеля — для кабелей площадью сечения до 16 мм² и по крайней мере равна 1/2 площади сечения жилы питающего кабеля, но не менее 16 мм² — для кабелей площадью сечения более 16 мм².

2.5.3.3 Заземление передвижных, съемных и переносных потребителей должно производиться через гнездо заземления штепсельной розетки или другое заземленное контактное устройство и медную заземляющую жилу питающего гибкого кабеля. Площадь сечения заземляющей жилы должна быть не менее номинальной площади сечения жилы питающего гибкого кабеля для кабелей площадью сечения до 25 мм² и по крайней мере равна 1/2 площади сечения жилы питающего гибкого кабеля, но не менее 16 мм² — для кабелей площадью сечения более 25 мм².

2.5.3.4 Проводники и жилы, заземляющие оборудование, должны быть неотключаемыми.

2.5.3.5 Все металлические защитные и экрацирующие оболочки кабелей должны быть электрически непрерывными и должны быть соответствующим образом заземлены.

Заземление экрацирующих оболочек и металлической брони кабелей должно выполняться одним из следующих способов:

1. медным заземляющим проводом площадью сечения не менее 1,5 мм² — для кабелей площадью сечения жилы до 25 мм² и не менее 4 мм² — для кабелей площадью сечения жилы боксеч 25 мм²;
2. путем соответствующего крепления брони или металлической оболочки к корпусу ПБУ или МСП;
3. при помощи колец, находящихся в кабельных сальниках, при условии, что они являются коррозионно-стойкими и хорошо проводящими.

2.5.3.6 Наружные заземляющие проводники должны быть доступны для контроля и защиты от коррозии и механических повреждений.

2.6 МОЛИНЕЗАЩИТНЫЕ УСТРОЙСТВА

2.6.1 Общие требования.

2.6.1.1 ПБУ или МСП должны быть оборудованы молниезащитными устройствами, защищающими зону которых должна перекрывать все оборудование, требующее молниезащиты.

ПБУ или МСП, на которых вторичные проявления молнии могут привести к пожарам и взрывам, должны иметь устройства молниезащитного заземления, исключающие возможность образования вторичных искрений.

2.6.1.2 Молниеотводное устройство должно состоять из молниеуловителя, отводящего провода и заземления. На металлических мачтах допускается не устанавливать специальные молниеотводные устройства, если конструктивно предусмотрен надежный электрический контакт мачты с металлическим корпусом ПБУ или МСП или с местом заземления.

2.6.1.3 Колпаки опорно-подъемных устройств СПБУ в походном положении, а также после установки СПБУ на грунт, должны заземляться на корпус заземляющей перемычки. Эта перемычка по сечению и контактной поверхности должна отвечать требованиям 2.6.3.1 и 2.6.3.2.

2.6.2 Молниеуловитель.

2.6.2.1 На ПБУ или МСП в качестве молниеуловителей следует использовать собственные вертикально протяженные конструкции: вышки, мачты, полумачты, надстройки и т. д., если предусмотрено надежный электрический контакт мачты с металлическим корпусом. Дополнительные молниеуловители должны применяться только в тех случаях, когда собственные элементы конструкции не обеспечивают молниезащиту.

2.6.2.2 Если на топе металлической мачты установлено электрическое оборудование, должен быть предусмотрен надежный электрический контакт мачты с металлическим корпусом.

Дополнительные молниеуловители должны применяться только в тех случаях, когда собственные элементы конструкции не обеспечивают молниезащиту.

2.6.2.3 Молниеуловитель должен быть изготовлен из прута диаметром не менее 12 мм. В качестве материала прута могут применяться медь, медные сплавы или сталь, защищенная от коррозии. Для алюминиевых мачт должен применяться алюминиевый молниеуловитель.

2.6.2.4 Молниеуловитель должен крепиться к мачте таким образом, чтобы он возвышался над верхним устройством, находящимся на топе мачты, не менее чем на 300 мм.

2.6.3 Отводящий провод.

2.6.3.1 Отводящий провод должен изготавливаться из прута, полосы или многопроволочного провода площадью сечения не менее 70 мм² при...
применении меди или ее сплавов и не менее 100 мм² при применении стали, причем стальной отводящий провод должен быть защищен от коррозии.

2.6.3.2 Отводящие провода должны прокладываться по наружной стороне мачт и надстроек с наименьшим числом изгибов, которые должны быть плавными с возможно большим радиусом.

2.6.3.3 Отводящие провода не должны проходить через взрывоопасные пространства и помещения.

2.6.4 Заземление.

2.6.4.1 В качестве заземления могут применяться любые металлические конструкции ПБУ или МСП, погруженные в воду во всех условиях эксплуатации или имеющие надежное электрическое соединение с забортной водой или грунтом.

2.6.5 Соединения в молниеотводном устройстве.

2.6.5.1 Соединения между молниеуловителем, отводящим проводом и заземлением должны выполняться сваркой или болтовыми зажимами.

2.6.5.2 Площадь контактной поверхности между отводящим проводом и молниеуловителем или заземлением должна быть не менее 1000 мм².

Соединяющие зажимы и соединительные болты должны быть изготовлены из меди, медных сплавов или стали, имеющей защиту от коррозии.

2.6.6 Устройства молниеопасного заземления.

2.6.6.1 Молниеопасному заземлению подлежат изолированные металлические конструкции, подвижные соединения, трубопроводы, экраны электрических сетей и линий связи, узлы ввода во взрывоопасные помещения.

2.6.6.2 Трубопроводы для нефтепродуктов, а также прочие трубопроводы, связанные со взрывоопасными помещениями и расположенными на открытых участках на палубе или в помещениях, не имеющих электромагнитного экранирования, должны защищаться на корпус не реже чем через каждые 10 м по длине. Трубопроводы, не связанные со взрывоопасными помещениями и расположенными на палубе, где возможно появление взрывоопасных газов, должны защищаться не реже чем через каждые 30 м по длине.

2.6.6.3 Металлические части, находящиеся вблизи отводящих проводов, должны быть зашумьены, если они не расположены на зашумленных конструкциях или не имеют иного металлического контура с корпусом ПБУ или МСП. Устройства или металлические части, находящиеся на расстоянии до 200 мм от отводящих проводов, должны быть соединены с отводящим проводом таким образом, чтобы исключалась возможность образования вторичных искрений.

2.6.6.4 Все соединения элементов заземления должны быть доступны для контроля и защищены от механических повреждений.

2.7 РАЗМЕЩЕНИЕ ЭЛЕКТРИЧЕСКОГО ОБОРУДОВАНИЯ

2.7.1 Электрическое оборудование должно устанавливаться таким образом, чтобы был обеспечен удобный доступ к органам управления и ко всем частям, требующим ухода, осмотра и замены.

2.7.2 Электрические машины должны быть в возможности установлены таким образом, чтобы влияние качки ПБУ по всем осьям было сведено к минимуму. Конструкция подшипников электрических машин и их система смазки должна выдерживать указанные воздействия качки в штормовых условиях без нарушений и потери смазочного масла и оставаться работоспособной в течение длительного периода времени при кренах и дифферентах, указанных в 2.1.2.2.

2.7.3 На каждой ПБУ или МСП ответственное электрическое оборудование, например, генераторы, главные и другие распределительные щиты, электрические двигатели и их пускорегулирующая аппаратура, должны быть так расположены и защищены, чтобы оставаться работоспособными в случае аварийного частичного затопления машинного помещения льным водам выше уровня верхней границы танков. Проектный предел «частичного затопления» должен быть в пределах глубинны воды в помещении, равной 1,5 м.

2.7.4 Электрическое оборудование должно быть расположено так, чтобы магнитное влияние его при включении или выключении не приводило к девиации компаса более чем в 30° (0,05°).

2.7.5 Электрическое оборудование, охлаждаемое водой, должно располагаться таким образом, чтобы река охлаждающего воздуха не производилась из льял или других мест, в которых воздух может быть загрязнен парами или пылью веществ, вредно действующих на изоляцию.

2.7.6 Электрическое оборудование установленное в местах, где имеются вибрации и сотрясения (более сильные, чем указанные в 2.1.2.1), которое невозможно устранить, должно иметь конструкцию, обеспечивающую нормальную его работу в этих условиях, или должно устанавливаться на соответствующих амортизаторах.

2.7.7 Электрическое оборудование должно крепиться таким образом, чтобы не умень-
шлась прочность и не нарушалась непроницаемость палуб, переборок и обшивки корпуса.

2.7.8 Открытые части электрического оборудования, находящиеся под напряжением, должны располагаться не ближе 300 мм по горизонтали и 1200 мм по вертикали от незащищенных горючих материалов.

2.7.9 Если корпуса электрического оборудования выполнены из иного материала, чем конструкции, на которых они установлены, то в случае необходимости должны быть приняты меры для исключения электролитической коррозии.

2.8 СПЕЦИАЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ ПОМЕЩЕНИЯ

2.8.1 Двери специальных электрических помещений должны закрываться на замок и открываться наружу. Если двери выходят в коридоры и проходы жилых и служебных помещений, допускается, чтобы они открывались внутрь при условии установки ограждений и упоров. На дверях должна находиться предписывающая надпись. Из помещения двери должны открываться без применения ключа.

2.8.2 Специальные электрические помещения не должны быть смежными с отсеками и палубами, имеющими воспламеняющиеся жидкости. Если данное требование конструктивно невыполнимо, должны быть приняты меры для исключения электролитической коррозии.

2.8.3 Специальные электрические помещения не должны быть смежными с отсеками, помещениями, предназначенными для хранения горючих материалов, а также с помещениями, в которых могут происходить взрывы.

2.8.4 Специальные электрические помещения, в проходах и местах обслуживания при установке электрического оборудования открытого исполнения должны устанавливаться под потолком из изоляционного материала.

2.9 ВЗРЫВООПАСНЫЕ ЗОНЫ

2.9.1 ПБУ или МСП должна подразделяться на взрывоопасные и взрывобезопасные зоны и помещения в соответствии с требованиями 2.9.2 — 2.9.5.

2.9.2 Взрывоопасные зоны подразделяются следующим образом:

- Зона «0» — пространство, в котором постоянно или в течение длительного времени присутствует взрывоопасная смесь воздуха и газа;
- Зона «1» — пространство, в котором при нормальных условиях работы возможно присутствие взрывоопасной смеси воздуха и газа;
- Зона «2» — пространство, в котором маловероятно появление взрывоопасной смеси воздуха и газа, а в случае ее появления эта смесь присутствует в течение непродолжительного периода времени.

2.9.3 К зоне «0» относятся:

-1 внутренние пространства открытых цистерн и трубопроводов, относящихся к технологическим устройствам системы газоносившего (активного) бурового раствора, т. е. раствора между устьем скважин и конечным сечением устройства, и внутренние пространства цистерн и трубопроводов нефте- и газопродуктов, а также другие пространства, в которых постоянно или в течение продолжительного периода времени присутствует взрывоопасная нефтегазо-воздушная смесь;
-2 внутренние пространства открытых технологических устройств от поверхности бурового раствора до верхнего среза устройства;
-3 внутренние пространства вентиляционных труб для отвода нефтегазо-воздушной смеси из объемов и пространств, указанных в настоящем пункте.

2.9.4 К зоне «1» относятся:

-1 закрытые пространства, содержащие какую-либо часть циркуляционной системы газоносившего (активного) бурового раствора (например, между устьем скважины и промывочным щитом), в которой имеются разъемные соединения, или открытый желоб, являющийся возможным источником выделений нефтегазо-воздушной смеси;
-2 закрытые или полузакрытые пространства, расположенные под буровой палубой, в которых находятся возможные источники выделения нефтегазо-воздушной смеси;
-3 закрытые пространства на буровой палубе, не отвечающие требованиям по объемам и открытых отверстий, указанных в настоящем пункте;
-4 зона в пределах 1,5 м во все стороны от границ любых отверстий в оборудовании, являющихся составной частью системы газоносившего бурового раствора, в открытых или полузакрытых пространствах, кроме указанных в 2.9.4.2, а также зона в пределах 1,5 м от вытяжных вентиляционных отверстий помещений зоны «1»;
-5 каналы, углубления и другие подобные конструкции в пространствах, которые могли бы быть отнесены к зоне «2», но удаление скапливающихся паров и газов из которых невозможно.
2.9.5 К зоне «2» относятся:
1. закрытые пространства, в которых расположены открытые части циркуляционной системы бурового раствора на участке между выходом из дегазирующего устройства до места присоединения приемной трубы насоса бурового раствора (дегазированный буровой раствор);
2. открытые пространства в пределах границ буровой вышки на высоту до 3 м над буровой палубой;
3. полузакрытые пространства под настилом буровой палубы или за ее пределами до любого ограждения (переборки), которое может задерживать газы;
4. сферические открытые пространства под настилом буровой палубы радиусом 3 м от возможного источника выделения нефтегазоэмульсии, как например, от верхней части бурового отверстия;
5. пространства, простирающиеся на 1,5 м во все стороны за пределы зоны «1», определенной требованиями 2.9.4.2 и 2.9.4.4;
6. сферические открытые пространства радиусом 1,5 м от границ отверстий вытяжной вентиляции или любых других отверстий для доступа в помещения и пространства зоны «2» из безопасной зоны;
7. полузакрытые буровые вышки на высоту их корпусов над буровой палубой, или на высоту 3 м над ней, в зависимости от того, что выше;
8. воздушные замкнутые пространства (шлюзы) между зоной «1» и взрывоопасными зонами.

2.9.6 Прочие пространства и помещения, не относящиеся к зонам «1», «2» и «1», относятся к взрывоопасным помещениям и пространствам.

2.9.7 Распределение помещений и пространств по взрывоопасным зонам в соответствии с 2.9.3 — 2.9.5 в каждом отдельном случае может быть изменено по требованию Регистра в зависимости от конструктивных особенностей установки и условий вентиляции помещений и пространств.

2.9.8 Распределение на соответствующие взрывоопасные зоны помещений и пространств, не указанных в 2.9.3 — 2.9.5, которые могут в определенных условиях становиться взрывоопасными, в каждом отдельном случае является предметом специального рассмотрения Регистром.

2.10 ОТВЕРСТИЯ, УСЛОВИЯ ДОСТУПА И ВЕНТИЛЯЦИЯ, ВЛИЯЮЩИЕ НА РАСПИРАНИЕ ВЗРЫВООПАСНЫХ ЗОН

2.10.1 Если по технологическим причинам не является обязательным, то установка дверей или других отверстий не допускается между:
1. взрывозащищенными и взрывоопасными зонами;
2. взрывоопасными помещениями и пространствами зоны «2» и зоны «1».

2.10.2 Если двери или другие отверстия предусмотрены между пространствами, указанными в предыдущем пункте, то взрывоопасность любого помещения, имеющего такие отверстия, определяется следующим образом:
1. взрывозащищенное пространство становится взрывоопасным той же зоны, откуда имеется доступ через двери или другие отверстия;
2. взрывоопасное пространство зоны «2» становится взрывозащищенным пространством зоны «1», за исключением случаев, указанных в 2.10.3.

2.10.3 Закрытые помещения с неносредственным доступом в зону «1» считаются зоной «2», если выполнены все нижеказанные условия:
1. доступ осуществляется через газозащищенные двери, открывающиеся в направлении пространства зоны «2»;
2. вентиляция обеспечивает движение (поток) воздуха при открытой двери из помещения взрывоопасной зоны «2» в помещение зоны «1»;
3. при прекращении действия вентиляции срабатывает аварийно-предупредительная сигнализация в посту управления с постоянной вахтой.

2.10.4 Закрытые помещения с носредственным доступом в помещения зоны «1» не считаются взрывоопасными, если выполнены все нижеказанные условия:
1. доступ осуществляется через двойные самозакрывающиеся газозащищенные двери, образующие воздушный шлюз;
2. в помещении вследствие действия вентиляции имеется избыточное давление по отношению к взрывоопасному помещению (пространству) зоны «1»;
3. при исчезновении избыточного давления воздуха срабатывает аварийно-предупредительная сигнализация в посту управления с постоянной вахтой.

2.10.5 Закрытые помещения, непосредственно сообщающиеся с взрывоопасным помещением зоны «2», считаются взрывоопасными, если выполнены все нижеказанные условия:
1. доступ осуществляется через самозакрывающиеся газозащищенные двери, открывающиеся в сторону взрывоопасного помещения;
2. вентиляция обеспечивает движение (поток) воздуха при открытой двери из взрывобезопасного помещения во взрывоопасное помещение зоны «2»;
3. при прекращении действия вентиляции срабатывает аварийно-предупредительная сигнализация в посту управления с постоянной вахтой.
2.10.6 Если система вентиляции, обеспечивающая взрывобезопасность помещения, удовлетворяет требованиям Правил ПБУ/МСП препятствовать любому проникновению в него газов из зоны «1», то двойные двери, образующие воздушный шлюз, могут быть заменены одной самозакрывающейся газонепроницаемой дверью, открывающейся в сторону взрывобезопасного помещения.

2.10.7 Установка на самозакрывающихся газонепроницаемых дверях устройств, удерживающих их в открытом положении, не допускается.

2.10.8 Все самозакрывающиеся газонепроницаемые двери должны иметь предостерегающие надписи о том, что двери всегда должны быть закрытыми.

2.10.9 Исполнение трубопроводов должно исключать возможность непосредственной связи между помещениями и пространствами разных взрывоопасных зон, а также между взрывоопасными и взрывобезопасными пространствами.

2.11 ЭЛЕКТРИЧЕСКОЕ ОБОРУДОВАНИЕ И КАБЕЛИ ВО ВЗРЫВООПАСНЫХ ЗОНАХ

2.11.1 Требования настоящей главы относятся к оборудованию, которое устанавливается во взрывоопасных закрытых и полузакрытых помещениях и пространствах, относящихся к взрывоопасным зонам «0», «1» и «2».

К таким помещениям относятся хранилища легковоспламеняющихся веществ, аккумуляторные и помещения, в которых находятся цистерны, механизмы и трубопроводы для воспламеняющихся жидкостей с температурой вспышки паров 60 °С и ниже.

2.11.2 Электрическое оборудование, устанавливаемое во взрывоопасных зонах, должно быть сертифицированным с точки зрения взрывобезопасности, независимо от того, подлежит ли это оборудование техническому наблюдению Регистра на основании требований, приведенных в 1.3.3.1.

Сертификация устанавливаемых видов взрывозащиты электрического оборудования, осуществляется специальными компетентными независимыми организациями, документы (сертификаты) которых признаются Регистром.

2.11.3 Во взрывоопасных помещениях и пространствах допускается устанавливать электрическое оборудование только во взрывозащищенном исполнении с видом взрывозащиты, соответствующим категории и группе наиболее опасной газообразной смеси, которая может присутствовать в месте установки.

2.11.4 В пространствах взрывоопасной зоны «0» допускается установка сертифицированного электрического оборудования и кабеля только с видом взрывозащиты «искробезопасная электрическая цепь» (Exia).

2.11.5 В помещениях и пространствах зоны «1» допускается установка сертифицированного электрического оборудования со следующими видами взрывозащиты:

1 «искробезопасная электрическая цепь» (Exia, Exib);
2 «взрывонепроницаемая оболочка (Exd);
3 «повышенной надежности против взрыва» (Exe);
4 «специальный вид защиты» (Exs);
5 «оболочка под избыточным давлением» (Exp).

2.11.6 В помещениях и пространствах зоны «2» допускается установка сертифицированного электрического оборудования следующих видов:

1 перечисленного в 2.11.5;
2 неиспользуемого оборудования с оболочкой IP55 и выше, которое в нормальных условиях эксплуатации не имеет искрений частей, не образует электрической дуги и не имеет поверхностей, нагревающихся выше 80 °С.

2.11.7 Электрическое оборудование, устанавливаемое во взрывоопасной зоне «2», а также вне взрывоопасных зон, но предназначенное для работы в аварийных ситуациях (например, в случаях неуправляемого проявления скважин, приводящих к расширению взрывоопасных зон), должно быть взрывозащищенного исполнения видов, требуемых для зоны «1».

2.11.8 Светильники во взрывозащищенном исполнении должны быть установлены таким образом, чтобы вокруг них, за исключением места крепления, оставалось свободное пространство шириной не менее 100 мм.

2.11.9 Непосредственное крепление электрического оборудования к стенкам цистерн горючих жидкостей не допускается. Во всех случаях электрическое оборудование должно крепиться на расстоянии не менее 75 мм от стенок цистерн.

2.11.10 Во взрывоопасных зонах допускается прокладка кабелей со следующими характеристиками:

1 во взрывоопасной зоне «0» — типы кабелей, специально предназначенные для реализации «искробезопасной электрической цепи»;
2 во взрывоопасной зоне «1» все кабели должны иметь:
 неметаллическую непроницаемую внешнюю оболочку поверх экранирующей, или защитной металлической оплетки; или
Правила классификации, постройки и оборудования ПБУ1МСП

неметаллическую непроницаемую внешнюю оболочку и медную оболочку (для кабелей с минеральной изоляцией);

3 во взрывоопасной зоне «2» все кабели должны иметь:
оболочки, как указано для зоны «1»;
неметаллическую внешнюю оболочку без металлической экранирующей или защитной оплетки, при условии обеспечения соответствующей защиты от механических повреждений.

2.11.11 Во взрывоопасных помещениях и пространствах разрешается прокладывать кабели, предназначенные только для электрического оборудования, установленного в этих помещениях и пространствах. Допускается прокладка транзитных кабелей через упомянутые помещения и пространства при условии выполнения требований, изложенных в 2.11.10.

2.11.12 Все экраны, а также металлические оплетки кабелей цепей питания электрических двигателей и цепей освещения, проходящих через взрывоопасные помещения и пространства или питающих электрическое оборудование, установленное в этих помещениях, должны быть заземлены, по крайней мере, на обоих концах.

2.11.13 Кабели искробезопасных цепей могут использоваться только для одного устройства и должны прокладываться отдельно от других кабелей.
Кабели переносных электрических устройств, за исключением кабелей искробезопасных цепей, не должны проходить через взрывоопасные помещения и пространства.
В малярных помещениях и в вентиляционных каналах, обслуживающих эти помещения, допускается устанавливать только то электрическое оборудование, которое необходимо для обслуживания данного помещения. Такое электрическое оборудование должно быть взрывозащищенного исполнения видов:
.1 искробезопасная электрическая цепь (Exi);
.2 с оболочкой под избыточным давлением (Exp);
.3 с взрывозащитой в оболочке (Exd);
.4 повышенной надежности против взрыва (Exe);
.5 специальный вид защиты (Exs).

2.11.14 Минимальные требования к электрическому оборудованию по виду взрывозащиты должны соответствовать категории газовой смеси ПВ и группе газовой смеси 13.

2.11.15 Закрытые пространства, ведущие в малярные помещения, могут рассматриваться как не опасные, если выполнены все указанные ниже условия:
.1 дверь в малярное помещение обеспечивает газонепроницаемость, не имеет удерживающих устройств в открытом состоянии и имеет само-закрывающеся устройство;
.2 малярные помещения обеспечиваются не-зависимой вытяжной вентиляционной системой, и/или нагнетательной, имеющей забор воздуха из мест, расположенных вне взрывоопасных пространств, при отключении системы вентиляции срабатывает сигнализация в посту управления с постоянной вахтой;
.3 на входе устанавливаются предостерегающие надписи, извещающие о наличии в помещениях огнеопасных жидкостей.

2.12 АНТИСТАТИЧЕСКОЕ ЗАЗЕМЛЕНИЕ

2.12.1 Антистатическое заземление оборудования является обязательным средством обеспечения электростатической искробезопасности для всех типов ПБУ и МСП, где имеются взрывоопасные помещения и пространства.

2.12.2 Стационарное и переносное оборудование, устанавливаемое в закрытых и полуоткрытых помещениях и пространствах, в которых могут образовываться взрывоопасные смесяи паров, газов или пыли с воздухом, должно иметь антисстатическое заземление.

2.12.3 У всех входов во взрывоопасные помещения и пространства должны создаваться условия для снятия электростатического заряда с входящих туда людей посредством установки металлических заземленных пластин, поручней или рукояток для снятия заряда при прикосновении рукой, или установки увлажняемых матов (ковриков).

2.12.4 Не требуется специального антистатического заземления для следующего оборудования:
.1 заземленного электрического оборудования (в том числе переносного) в соответствии с требованиями 2.5;
.2 трубопроводов для прокладки кабелей и кабельных каналов, заземленных в соответствии с 16.8.8;
.3 электрического оборудования, оборудования автоматизации, радиооборудования и электродиагностического оборудования, заземленного в соответствии с требованиями 2.2.2;
.4 оборудования и конструкций, имеющих молниеотводительное заземление в соответствии с 2.6.6.

2.12.5 Устройство и контроль антистатического заземления.

2.12.5.1 Если к антистатическому заземлению не предъявляются иные специальные требования, конструкция заземляющих устройств (перемычек) должна отвечать требованиям 2.5. Способ присое-
дения заземляющих устройств к неметаллическим оболочкам оборудования, или пластмассовым трубопроводам, должен быть определен изготовителем оборудования.

2.12.5.2 Конструкция проводников антистатического заземления должна соответствовать требованиям настоящей главы и одобренных Регистром стандартов.

2.12.5.3 Измеренная величина сопротивления устройства антистатического заземления между оборудованием, (деталью, конструкцией) и корпусом ПБУ/МСП, не должна превышать 10^6 Ом, при площади контакта измерительного электрода с поверхностью оборудования не более 20 мм^2. Контроль сопротивления антистатического заземления должен производиться измерительным прибором (омметром) с оперативным напряжением не более 10 В.

3 ОСНОВНОЙ ИСТОЧНИК ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

3.1 СОСТАВ И МОЩНОСТЬ ОСНОВНОГО ИСТОЧНИКА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

3.1.1 На ПБУ или МСП должен быть предусмотрен основной источник электрической энергии мощностью, обеспечивающей питание всего необходимого электрического оборудования ПБУ или МСП в условиях, указанных в 3.1.4. Такой источник должен состоять по крайней мере из двух генераторов с независимым приводом.

3.1.2 Число и мощность генераторов с независимым приводом, а также трансформаторов и электрических преобразователей, входящих в состав основного источника электрической энергии, должны быть такими, чтобы при выходе из строя любого из них оставшиеся обеспечивали возможность:

.1 питания необходимого электрического оборудования в условиях, указанных в 3.1.4, при одновременном обеспечении минимальных комфортных условий обитаемости для находящихся на ПБУ или МСП людей;

.2 пуска самого мощного электродвигателя с наибольшим пусковым током. При этом пуск двигателя не должен вызывать такого понижения напряжения и частоты в сети, которое может повлечь выпадение из синхронизма, остановку первичного двигателя генератора, а также отключение работающих машин и аппаратов;

.3 питания потребителей технологического комплекса, прекращение питания которых может привести к созданию аварийных ситуаций на ПБУ или МСП и опасности для персонала;

.4 питания гребной электрической установки и/или электрических агрегатов системы динамического позиционирования ПБУ. Для этой цели может быть использован также аварийный источник электрической энергии, если его собственная мощность, или суммарная мощность с любым иным источником электрической энергии обеспечивает одновременно питание аварийных потребителей, указанных в 9.3.

3.1.3 При наличии соответствующего резервирования и расположения на ПБУ или МСП агрегатов основного источника, исключающих их одновременный выход из строя, а также их достаточной мощности, допускается использование единой электростанции для питания ответственных потребителей, указанных в 1.3.2, гребной электрической установки, системы динамического позиционирования и потребителей технологического комплекса.

3.1.4 Состав и мощность электрических агрегатов основного источника должен определяться с учетом следующих режимов работы ПБУ и МСП:

.1 ходового режима и/или маневрирования для ПБУ;

.2 бурения скважины;

.3 добчи и перекачки на танкер нефтегазопродуктов;

.4 аварийных режимов, например, пожара, затопления, или других, влияющих на безопасность ПБУ или МСП, аварийных условий;

.5 других режимов в соответствии с устройством и назначением ПБУ или МСП.

3.1.5 Питание потребителей технологического комплекса может осуществляться от отдельного источника электрической энергии.

3.2 ЭЛЕКТРИЧЕСКИЕ АГРЕГАТЫ

3.2.1 Общие требования.

3.2.1.1 Первичные двигатели генераторов, должны удовлетворять требованиям разд. 3 части VII «Механические установки» и дополнительным требованиям настоящей главы.
3.2.1.2 При коротких замыканиях в сети генераторы должны обеспечивать значение установившегося тока короткого замыкания, достаточное для срабатывания защитных устройств.

3.2.1.3 У генераторов с независимым приводом должно обеспечиваться регулирование напряжения в пределах, указанных в 10.5 и 10.6, а частоты — в пределах, указанных в разд. 3 части VII «Механические установки».

3.2.1.4 Для генераторов переменного тока отклонение от синусоидальной формы напряжения не должно быть более 5 % от его пикового значения основной гармоники.

3.2.2 Распределение нагрузки при параллельной работе генераторов.

3.2.2.1 Генераторы переменного тока, предназначенные для параллельной работы, должны снабжаться такой системой компенсации реактивного падения напряжения, чтобы во время параллельной работы распределение реактивной нагрузки между генераторами не отличалось от пропорциональной их мощности более чем на 10 % номинальной реактивной нагрузки наибольшего генератора или не более чем на 25 % номинальной мощности наименьшего генератора, если это значение меньше вышеуказанного.

3.2.2.2 При параллельной работе генераторов переменного тока и нагрузке от 20 до 100 % общей мощности допускаются отклонения токов генераторов в пределах ±15 % номинального значения тока наибольшего генератора.

3.3 ЧИСЛО И МОЩНОСТЬ ТРАНСФОРМАТОРОВ

3.3.1 На ПБУ или МСП, где в качестве агрегатов основного источника электрической энергии предусмотрены трансформаторы, получающие питание от береговой сети, а также если освещение и другие ответственные устройства питания через трансформаторы, то должно быть предусмотрено не менее двух трансформаторов такой мощности, чтобы при выходе из строя одного из них оставшиеся могли обеспечить полную потребность в электрической энергии при всех условиях работы ПБУ или МСП.

Трансформаторы должны подключаться к разным секциям ГРЩ.

3.4 ПИТАНИЕ ОТ ВНЕШНЕГО ИСТОЧНИКА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

3.4.1 Если предусматривается питание электрической сети ПБУ или МСП от внешнего источника электрической энергии, то должен быть предусмотрен щит питания от внешнего источника (см. также 4.5.4.5).

3.4.2 На щите питания от внешнего источника электрической энергии должны быть предусмотрены:

1. клеммные устройства для подключения гибкого кабеля;
2. коммутационные и защитные устройства для включения и защиты стационарно проложенной кабельной трассы до главного распределительного щита; при расстоянии между щитом питания от внешнего источника электрической энергии и главным распределительным щитом менее 10 м по длине кабеля защитное устройство допускается не устанавливать;
3. переключаемый вольтметр или сигнальные лампы о наличии на клеммах напряжения от внешнего источника тока;
4. устройство или возможность включения переносного устройства для контроля полярности или порядка следования фаз;
5. табличка, указывающая на напряжение, род тока и частоту;
6. устройство для механического закрепления конца гибкого кабеля, подведенного к щиту, и скобы для подвески кабеля, которые должны располагаться на щите питания от внешнего источника или вблизи него.

3.5 СИСТЕМЫ СОЕДИНЕНИЙ АГРЕГАТОВ ОСНОВНОГО ИСТОЧНИКА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

3.5.1 Агрегаты основного источника электрической энергии должны быть приспособлены для длительной параллельной работы на общие шины, при этом должна быть применена схема соединений, обеспечивающая возможность подключения их на параллельную работу в любое время для перевода нагрузки с одного агрегата на другой.

3.5.2 При наличии системы автоматической синхронизации на ГРЩ должны быть предусмотрены необходимые приборы и средства для обеспечения резервной ручной синхронизации.

3.5.3 На главном распределительном щите для синхронных генераторов переменного тока, если требуется для начального возбуждения, должно быть установлено устройство для подмагничивания.
3.5.4 Если не предусматривается параллельной работы между агрегатами основного собственного и внешними источниками электрической энергии на общие шины электрической установки, система соединения в таком случае должна иметь блокировку, исключающую возможность подключения их на параллельную работу.

3.5.5 На главных распределительных щитах, предназначенных для распределения электрической энергии параллельно работающих генераторов, должны быть установлены разъединительные устройства для разъединения системы сборных шин. Потребители и генераторы должны быть, по возможности, симметрично распределены на все системы сборных шин.

Устройствами разединения шин ГРЩ могут быть либо автоматический выключатель без электромагнитного расцепителя, либо разъединительное устройство, или выключатель, которым можно быстро и легко соединять или разъединить шины секций ГРЩ.

Болтовые соединения, такие как соединения шин между секциями, не могут быть приняты за такие устройства.

3.5.6 От главного распределительного щита в нормальных условиях эксплуатации, как правило, должно предусматриваться питание аварийного распределительного щита (АРЩ), т. е. системы аварийного питания ответственных потребителей ПБУ или МСП.

3.6 ИСТОЧНИКИ БЕСПЕРЕБОЙНОГО ПИТАНИЯ (ИБП)

3.6.1 Источники бесперебойного питания (ИБП) в дополнение к требованиям, изложенным ниже, должны отвечать требованиям стандарта МЭК 62040 и применимым требованиям национальных стандартов.

3.6.2 ИБП, отвечающие настоящим требованиям, могут применяться в качестве аварийных или переходных источников электрической энергии, требуемых разд. 9 настоящей части.

3.6.3 Выбор типа ИБП должен определяться требованиями к обеспечению электрического питания подключаемой нагрузки.

3.6.4 ИБП должны быть оборудованы байпасом, который обеспечивает питание нагрузки от сети в случае выхода из строя инвертора.

3.6.5 На постах с постоянной вахтой для каждого ИБП должна быть предусмотрена световая и звуковая сигнализация по параметрам:
- неисправность питания со стороны нагрузки;
- замыкание на корпус;
- срабатывание устройства защиты аккумуляторной батареи;
- аккумуляторная батарея разряжается;
- питание нагрузки через байпас для постоянно подключенных ИБП к сети.

3.6.6 Требования по размещению ИБП должны быть аналогичны требованиям по размещению аварийного или переходного источников электрической энергии.

3.6.7 ИБП с аккумуляторными батареями закрытого типа допускается устанавливать в любом помещении, кроме жилых, при условии обеспечения достаточной вентиляции в помещении.

3.6.8 ИБП должен поддерживать номинальное напряжение и частоту на стороне нагрузки в течение всего времени, необходимого для питания подключенных потребителей.

3.6.9 Мощность выпрямителя ИБП должна быть достаточной для поддержания номинального напряжения и частоты на нагрузке, после восстановления напряжения в сети питания, с одновременной зарядкой аккумуляторной батареи максимально возможным зарядным током.

3.6.10 Режим ускоренной зарядки аккумуляторных батарей ИБП максимально возможным зарядным током должен иметь блокировку с вентиляцией аккумуляторного помещения.

4 РАСПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

4.1 СИСТЕМЫ РАСПРЕДЕЛЕНИЯ И ДОПУСТИМЫЕ НАПРЯЖЕНИЯ

4.1.1 На ПБУ и МСП допускается применение следующих систем распределения электрической энергии:
- переменного тока 50 или 60 Гц напряжением свыше 1000 В (до 15 000 В включительно):
 - трехфазная трехпроводная изолированная;
 - трехфазная трехпроводная с нулевой точкой, заземленной через высокооомный резистор или реактор;
- переменного тока 50 или 60 Гц напряжением до 1000 В:
 - трехфазная трехпроводная изолированная;
трехфазная трехпроводная с нулевой точкой, заземленной через высокоомный резистор или реактор;

3 переменного тока 50 или 60 Гц напряжением до 500 В дополнительно:

- как указано в 4.1.1.2;
- трехфазная четырехпроводная изолированная;
- однофазная двухпроводная изолированная;
- однофазная однопроводная с использованием корпуса платформы в качестве обратного провода только для напряжения до 30 В, кроме системы питания сигнально-отличительных фонарей, при условии, что любой возможный ток не будет проходить непосредственно через любое из взрывоопасных помещений;

4 постоянного тока напряжением до 1000 В:

- двухпроводная изолированная;
- однопроводная (только для напряжения до 50 В для местных заземленных систем, например, стартерных систем двигателей внутреннего сгорания) с использованием корпуса платформы в качестве обратного провода, при условии, что любой возможный ток не будет проходить непосредственно через любое из взрывоопасных помещений.

Использование других систем распределения является в каждом случае предметом специального рассмотрения Регистром. (См. также 18.2).

4.1.2 Каждая изолированная система распределения, вне зависимости от того является ли она первичной или вторичной, силовой, осветительной или отопительной, должна быть снабжена приборами контроля изоляции, с устройствами звуковой и световой сигнализации, срабатывающими при снижении сопротивления изоляции ниже установленной нормы.

4.1.3 Допустимые напряжения на зажимах источников электрической энергии с частотой 50 или 60 Гц не должны превышать значений, указанных в 4.1.1 в зависимости от принятой системы распределения электрической энергии.

4.1.4 Допустимые напряжения на зажимах источников электрической энергии постоянного тока не должны превышать следующих значений: 500 В — для силовых систем; 250 В — для систем освещения, обогрева и штепсельных розеток.

4.1.5 Допустимые напряжения на зажимах потребителей не должны превышать значений, указанных в табл. 4.1.5.

Дополнительные требования для сетей на напряжение более 1000 В указаны в разд. 18 настоящей части.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Потребители</th>
<th>Допустимое напряжение, В</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Перевозные силовые потребители, нагревательные, камбузные и отопительные приборы, установленные стационарно в помещениях других, чем указано в п. 2</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>Переключатели, питаемые от штепсельных розеток, установленных стационарно во время их работы, нагревательные и отопительные приборы, установленные в каютах, трапах и других подобных помещениях персонала</td>
<td>500</td>
</tr>
<tr>
<td>3</td>
<td>Освещение, сигнализация, внутренняя связь, штепсельные розетки для питания переносных потребителей с двойной или усиленной изоляцией или электрически отделенных с помощью изолирующего трансформатора</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>Штепсельные розетки, установленные в местах и помещениях с повышенной влажностью или особо сырых, предназначенных для питания переносных потребителей без двойной или усиленной изоляцией или электрически не отделенных</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>Станционные силовые потребители</td>
<td>500</td>
</tr>
<tr>
<td>6</td>
<td>Нагревательные, камбузные и т. п. приборы</td>
<td>250</td>
</tr>
<tr>
<td>7</td>
<td>Освещение, штепсельные розетки</td>
<td>250</td>
</tr>
</tbody>
</table>

Примечание: Возле штепсельных розеток с напряжением выше безопасного, установленных в помещениях с повышенной влажностью или особо сырых, должны быть помещены надписи, указывающие на применение потребителей с двойной или усиленной изоляцией или же потребителей, электрически отделенных от напряжения выше безопасного.

4.2 ПИТАНИЕ ОТВЕТСТВЕННЫХ УСТРОЙСТВ

4.2.1 От шкафа главного распределительного щита (ТГЩ) должны получать питание по отдельным фидерам следующие потребители, относящиеся к ответственным:

1 электрические приводы рулевых и якорных устройств ПБУ;
2 электрические приводы пожарных насосов, насосов и компрессоров спринклерных систем;
3 электрические приводы осушительных насосов;
4 электрические приводы механизмов, обслуживающих работу главных механизмов;
5 штаты электрических приводов грузовых, швартовных, шлюпочных и других ответственных устройств, предназначенных для спасательных средств и эвакуации персонала;
.6 электрические приводы механизмов подъема и спуска самоподъемных ПБУ, систем погружения и спуска подпогруженных ПБУ;
.7 электрические приводы вентиляторов взрывоопасных помещений и пространств, вентиляторов оборудования с видом взрывозащиты «оболочка под избыточным давлением»;
.8 электрические приводы механизмов, обеспечивающих технологический комплекс (т. е. механизмов, предназначенных для выполнения основного назначения ПБУ или МСП);
.9 электрические приводы агрегатов взрывоопасных помещений и пространств, вентиляторов оборудования с видом взрывозащиты «оболочка под избыточным давлением»;
.10 оборудование систем динамического по-
позиционирования (подруливающие устройства и их системы управления);
.11 аварийный распределительный щит (АРЩ) при нормальных условиях работы ПБУ или МСП;
.12 гирокомпас (от системы бесперебойного питания);
.13 система основного освещения (через соответствующее трансформаторное оборудование);
.14 щит радиостанции (от системы бесперебойного питания);
.15 щит навигационных приборов (от системы бесперебойного питания);
.16 щит сигнально-отличительных и предупредительных проблесковых фонарей и щит электрических звуковых сигнальных устройств (от системы бесперебойного питания);
.17 секционные щиты и распределительные устройства питания других потребителей ответственного назначения, объединенных по принципу однородности выполняемых функций;
.18 распределительные устройства объединенного пульта управления (см. также 4.4);
.19 щит станции автоматической сигнализации обнаружения пожара и предупреждения о пуске средств объемного пожаротушения (от системы бесперебойного питания);
.20 зарядные устройства стартерных аккумуляторных батарей и батарей, питания которых ответственные устройства и относящихся к системе бесперебойного питания;
.21 щиты питания электрических приводов закрытия водонепроницаемых дверей и устройств, удерживающих противопожарные двери в открытом состоянии, а также щиты сигнализации о положении и закрытии водонепроницаемых и противопожарных дверей (от системы бесперебойного питания);
.22 щит холодильной установки системы углекислотного тушения низкого давления; .23 щиты освещения ангаров и светотехнического оборудования посадочных площадок для вертолетов;
.24 другие, не перечисленные выше потребители, — по требованию Регистра.
4.2.2 Если механизмы одного назначения с электрическими приводами, указанными в 4.2.1, установлены в двойном или большем количестве, то по крайней мере один из этих электрических приводов должен получать питание по отдельному фидеру от главного распределительного щита. На электрические приводы остальных таких механизмов допускается подавать питание от секционных щитов или специальных распределительных устройств, предназначенных для питания ответственных потребителей.
4.2.3 Электрические приводы, секционные
щиты, специальные распределительные устройства или пульты, установленные в двойном или большем количестве, или питаемые по двум фидерам, должны быть подключены к разным секциям главного распределительного щита (см. 3.5.5).

4.3 ПИТАНИЕ ЭЛЕКТРИЧЕСКИХ И ЭЛЕКТРОННЫХ
СИСТЕМ АВТОМАТИЗАЦИИ
4.3.1 Питание электрических и электронных систем автоматизации должно отвечать требованиям разд. 3 части XIV «Автоматизация».
4.3.2 Питание устройств автоматизации, необходимых для запуска и работы аварийного дизель-генератора, должно осуществляться от стартерной или другой отдельной аккумуляторной батареи, расположенной в помещении аварийного дизель-генератора.

4.4 ПИТАНИЕ ОБЪЕДИНЕНИХ ПУЛЬТОВ
УПРАВЛЕНИЯ
4.4.1 Распределительные устройства объединенного пульта должны получать питание от главного распределительного щита непосредственно или через трансформаторы по двум независимым фидерам, подключенными к разным секциям сборных шин главного распределительного щита, или по одному фидеру от главного распределительного щита и по одному фидеру от аварийного распределительного щита.
4.4.2 Распределительные устройства объединенного пульта управления должны получать независимое питание по отдельному фидеру также от другого источника или источников, если это необходимо, исходя из требований к обору-
дованию, получающему питание от этих распределительных устройств, или по другим техническим причинам.

4.4.3 На распределительном устройстве должен быть предусмотрен переключатель фидеров питания.

Если применяется автоматический переключатель, должно быть обеспечено также ручное переключение фидеров. При этом должна быть предусмотрена необходимая блокировка.

4.4.4 Каждый потребитель из особо перечисленных в 4.2.1, получающий питание от распределительных устройств объединенного пульта управления, должен питаться отдельным фидером.

4.4.5 В объединенном пульте управления должно быть предусмотрено устройство световой сигнализации о наличии напряжения питания от каждого из возможных фидеров.

4.5 РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА

4.5.1 Конструкция распределительных щитов.

4.5.1.1 Каркасы, лицевые панели и кожухи главных, аварийных, секционных и групповых распределительных щитов должны изготовляться из металла или из другого прочного негорючего материала.

Генераторные секции главного распределительного щита должны быть отделены друг от друга и от соседних секций переборками из негорючего материала, предотвращающими распространение искр и пламени.

4.5.1.2 Распределительные щиты должны иметь достаточно жесткую конструкцию, выдерживающую механические напряжения, возникающие в условиях эксплуатации и вследствие коротких замыканий.

4.5.1.3 Распределительные щиты должны быть по крайней мере защищены от капель. Эта защита не требуется, если щиты предназначены для установки в местах, где отсутствуют условия для попадания в распределительные щиты вертикально падающих капель.

4.5.1.4 Распределительные щиты, предназначенные для установки в местах, доступных посторонним лицам, должны быть снабжены дверцами, открывающимися специальным ключом, одинаковыми для всех распределительных щитов на ПБУ или МСП.

4.5.1.5 Конструкция дверец распределительных щитов должна быть такой, чтобы после их открывания был обеспечен доступ ко всем частям, требующим ухода, а части, расположенные на дверцах и находящиеся под напряжением, должны быть защищены от случайного прикосновения.

Открывающиеся панели и дверцы, на которых расположены электрическая аппаратура управления и измерительные приборы, должны быть надежно заземлены не менее чем одной гибкой перемычкой. Если открывающиеся части щитов изготовлены из диэлектрического материала, должны быть заземлены приборы и аппаратура.

4.5.1.6 Главные, аварийные и секционные распределительные щиты, а также пульты управления должны снабжаться поручнями, расположенными на их лицевой стороне. Распределительные щиты с доступом с задней стороны должны снабжаться горизонтальными поручнями, расположенными на задней стороне щита. В качестве материала для поручней допускается изоляционный материал, дерево или металлические трубы с соответствующим изоляционным покрытием.

4.5.1.7 Генераторные панели главных распределительных щитов должны освещаться светильниками, получающими питание со стороны генератора перед главным выключателем или не менее чем от двух разных систем сборных шин.

4.5.1.8 Освещение лицевой стороны панелей распределительных щитов не должно мешать наблюдению за приборами и вызывать слепящего действия.

4.5.1.9 Конструкция распределительных щитов приклонного типа должна обеспечивать доступ к частям, требующим обслуживания. Двери распределительных щитов и распределительных шкафов должны быть оборудованы устройствами для фиксирования их в открытом положении. Выдвижные блоки и приборы должны иметь устройства, предотвращающие выпадение в вывинутом положении.

4.5.1.10 Каждое распределительное устройство на напряжение выше безопасного, которое имеет коммутационную и защитную аппаратуру и на котором не установлен вольтметр, должно быть снабжено сигнальной лампой, показывающей наличие напряжения на шинах.

4.5.2 Шины и неизолированные провода.

4.5.2.1 Предельная температура нагрева шин и непроводных проводов распределительных щитов при номинальной нагрузке и при коротком замыкании или допустимой для медных шин однофазной нагрузке короткого замыкания должна определяться по национальным стандартам.

4.5.2.2 Управляемые шины должны быть рассчитаны по крайней мере на 50 % номинального тока наибольшего генератора, подключенного к главному распределительному щиту.

4.5.2.3 Если шина соприкасается с изолированными частями или находится вблизи них, ее
Часть X. Электрическое оборудование

тепловое влияние в рабочем режиме или при коротком замыкании не должно вызывать превышения температуры, допустимой для данного изоляционного материала.

4.5.2.4 Шины и неизолированные провода в распределительных устройствах должны обладать электродинамической и термической устойчивостью при протекании токов короткого замыкания, возникающих в соответствующих местах сети. Электродинамические усилия, возникающие в шинах и неизолированных проводах при коротких замыканиях, должны определяться по национальным стандартам.

4.5.2.5 Изоляторы и другие части, предназначенные для крепления шин и неизолированных проводов, должны выдерживать усилия, возникающие во время коротких замыканий.

4.5.2.6 Частота собственных колебаний медных полосовых шин не должна находиться в диапазонах 40 — 60 и 90 — 110 Гц для номинальной частоты 50 Гц; 50 — 70 и 110 — 130 Гц для номинальной частоты 60 Гц.

4.5.2.7 Шины и неизолированные провода, относящиеся к разным полюсам, должны быть маркированы следующими отличительными цветами:
 - красным — для положительного полюса;
 - синим — для отрицательного полюса;
 - черным или зелено-желтым (поперечные полосы) — для заземляющих проводов;
 - голубым — для среднего провода.

Уравнительный провод должен окрашиваться в цвет того полюса, в котором он находится, и добавочно белыми поперечными полосами.

4.5.2.8 Шины и неизолированные провода, относящиеся к разным фазам, должны быть маркированы следующими отличительными цветами:
 - желтым — для фазы 1;
 - зеленым — для фазы 2;
 - фиолетовым — для фазы 3;
 - серым — для нейтрального провода;
 - зелено-желтым (поперечные полосы) — для заземляющих проводов.

4.5.2.9 Соединение шин должно выполняться таким образом, чтобы исключалась возможность появления коррозии в местах их соединения.

4.5.2.10 Расчет токов короткого замыкания и выбор коммутационных аппаратов.

4.5.3.1 Коммутационные электрические аппараты должны соответствовать по крайней мере национальным стандартам и должны быть подобраны таким образом, чтобы:
 - в нормальных условиях работы их номинальные напряжения, номинальные токи и допустимые температуры не были превышены;
 - выдерживать без повреждений и достижения опасных температур предусмотренные перегрузки в переходных режимах;
 - их характеристики в режиме короткого замыкания соответствовали фактическому коэффициенту мощности короткозамкнутой сети, а также характеру изменения сверхпереходного и переходного тока короткого замыкания.

4.5.3.2 Номинальная отключающая способность коммутационных электрических аппаратов, предназначенных для отключения токов короткого замыкания, должна быть не меньше, чем ожидаемый ток короткого замыкания в месте их установки в момент отключения.

4.5.3.3 Номинальная включающая способность автоматических выключателей и выключателей, которые могут быть включены в цепь, замкнутую накоротко, должна быть не менее ожидаемого максимального тока включения в месте их установки при коротком замыкании.

4.5.3.4 Ток электродинамической стойкости электрических аппаратов, не предназначенных для отключения токов короткого замыкания, должен быть не менее ожидаемого максимально го тока короткого замыкания в месте их установки.

4.5.3.5 Термическая устойчивость аппаратов должна соответствовать ожидаемому току короткого замыкания в момент отключения в местах их установки с учетом предусматриваемой продолжительности короткого замыкания, обусловленной селективным действием защиты.

4.5.3.6 Применение автоматического выключателя, не обладающего отключающей и/или включающей способностью, соответствующей максимальному ожидаемому току короткого замыкания в месте установки при условии, что он защищен со стороны генератора предохранителями и/или автоматическим выключателем, имеющим по крайней мере необходимые номиналы для токов короткого замыкания и не являющимся выключателем генератора.

Характеристики устройства, составленного таким образом, должны быть такими, чтобы:
 - при отключении максимального ожидаемого тока короткого замыкания автоматический выключатель на стороне нагрузки не повреждался до степени непригодности к дальнейшей работе;
 - при включении автоматического выключателя на максимальный ожидаемый ток короткого замыкания остальная часть установки не повреждалась при этом допускается, чтобы автоматический выключатель, установленный на стороне нагрузки, не был бы немедленно пригодным к дальнейшей работе.
4.5.3.7 В цепях с номинальным током нагрузки, превышающим 320 A, для защиты от перегрузок должны устанавливаться автоматические выключатели.

4.5.3.8 Выключатели в цепях генераторов постоянного тока смешанного возбуждения, предназначенных для параллельной работы, должны иметь полюс для уравнительного провода, механически сопряженный с остальными полюсами выключателя таким образом, чтобы он включался до подключения остальных полюсов к шинам и отключался после их отключения.

4.5.3.9 Расчет токов короткого замыкания должен выполняться на основе стандартов или расчетных методов, одобренных Регистром.

4.5.3.10 При расчете максимальных токов короткого замыкания эквивалентный источник тока короткого замыкания должен содержать все генераторы, включая синхронные компенсаторы, которые могут быть параллельно включены и все электродвигатели, работающие одновременно. Токи от генераторов и двигателей должны быть рассчитаны на основе их характеристик.

При отсутствии точных сведений для электродвигателей переменного тока принимаются следующие кратности действующего тока подпитки точки короткого замыкания:

- в начальный момент короткого замыкания — 6,25 \(I_1 \);
- в момент \(T \), т. е. после одного периода короткого замыкания, — 2,5\(I_1 \);
- в момент \(2T \), т. е. после двух периодов короткого замыкания, — \(I_1 \);
- для ударного тока — 8 \(I_1 \)

(\(I_1 \) — суммарный номинальный ток электродвигателей, работающих одновременно в расчетном режиме).

При расчетах максимального значения тока короткого замыкания в системах постоянного тока значение тока подпитки от электродвигателей принимается равным 6-кратной сумме номинальных токов электродвигателей, работающих одновременно в расчетном режиме.

Расчет токов короткого замыкания следует выполнять для всех расчетных точек короткого замыкания, необходимых для выбора или проверки элементов силовой электрической цепи. В любом случае расчет токов короткого замыкания следует выполнить для следующих расчетных точек:

- со стороны генератора — на выводах автоматического выключателя;
- на сборных шинах главного распределительного щита;
- на шинах аварийного распределительного щита;
- на клеммах потребителей и шинах щитов, получающих питание непосредственно от главного распределительного щита.

Расчет минимального тока короткого замыкания следует выполнять, если он требуется для оценки чувствительности защиты установки.

Расчет токов короткого замыкания должен содержать перечень предусмотренных коммутационных аппаратов и их характеристики, а также ожидаемый в месте их установки ток короткого замыкания.

4.5.4 Расположение коммутационных аппаратов и измерительных приборов.

4.5.4.1 Аппараты, измерительные и контрольные приборы, относящиеся к соответствующим генераторам и другим крупным ответственным устройствам, следует устанавливать на распределительных устройствах, относящихся к этим генераторам и устройствам.

Это требование может быть не выполнено для генераторов, если имеется центральный пульт управления, на котором установлены коммутационная аппаратура и измерительные приборы нескольких генераторов.

4.5.4.2 Для каждого генератора постоянного тока должны устанавливаться на главном и аварийном распределительных щитах по одному амперметру и вольтметру.

Для каждого генератора переменного тока должны быть установлены на главном распределительном щите и для аварийного генератора — на аварийном распределительном щите следующие измерительные приборы:

- 1 амперметр с переключателем для измерения тока в каждой фазе;
- 2 вольтметр с переключателем для измерения фазных или линейных напряжений;
- частотомер (допускается применение одного сдвоенного частотомера для генераторов, работающих параллельно, с переключателем на каждый генератор);
- ваттметр (для мощности свыше 50 кВА);
- другие необходимые приборы.

4.5.4.3 В случае использования на главном или аварийном распределительных щитах для подключения и защиты мощных потребителей или секционных распределительных щитов автоматических выключателей с блоками управления, имеющими возможность вывода на встроенный монитор отдельных параметров, допускается соответственно измерительные приборы не устанавливать.

4.5.4.4 В целях ответственных потребителей с номинальным током от 20 A и более должны устанавливаться амперметры, которые допускается устанавливать на главном распределительном
ном щите или у постов управления. Допускается установка амперметров с переключателями, но не более чем на шесть потребителей.

4.5.4.5 На главном распределительном щите в каждом фидере питания от внешнего источника электрической энергии должны быть предусмотрены:

1. коммутационные и защитные устройства;
2. вольтметр или сигнальная лампа;
3. устройство защиты от обрыва фаз.

4.5.4.6 На главных и аварийных распределительных щитах для каждой изолированной системы распределения должно быть предусмотрено переключаемое или отдельное устройство для измерения сопротивления изоляции. Ток утечки на корпус, обусловленный работой измерительного устройства, в любых случаях не должен превышать 30 мА.

Должна быть предусмотрена световая и звуковая сигнализация о недопустимом понижении сопротивления изоляции с выводом на центральный пост управления электроэнергетической системой.

4.5.4.7 Измерительные приборы должны иметь шкалы с заштампом по делениям, превышающим номинальные значения измеряемых величин.

Следует применять измерительные приборы с пределами шкал не менее следующих:

1. вольтметры — 120 % номинального напряжения;
2. амперметры для генераторов, не работающих параллельно, и потребителей — 130 % номинального тока;
3. амперметры для генераторов, работающих параллельно, — пределы шкалы тока нагрузки 130 % номинального тока и пределы шкалы обратного тока 15 % номинального тока (последнее только для генераторов постоянного тока);
4. ваттметры для генераторов, не работающих параллельно, — 130 % номинальной мощности;
5. ваттметры для генераторов, работающих параллельно, — пределы шкалы мощности нагрузки 130 % и пределы шкалы обратной мощности 15 %;
6. частотомеры — ±10 % номинальной частоты.

Указанные пределы шкал могут быть изменены по согласованию с Регистром.

4.5.4.8 Номинальные напряжения, токи и мощности генераторов должны быть отмечены на шкалах измерительных приборов ясно видимыми отметками.

4.5.4.9 Там, где возможно, выключатели должны устанавливаться и подключаться к шинам таким образом, чтобы в положении "Выключено" подвижные контакты и вся связанная с выключателем защитная и контрольная аппаратура не находились под напряжением.

4.5.4.10 Если в цепях распределительных щитов устанавливаются выключатели с предохранителями, предохранители должны быть обязательны расположены между шинами и выключателями.

Применение другой последовательности установки допускается только по согласованию с Регистром.

4.5.4.11 Предохранители в распределительных щитах, установленных на фундаменте на уровне настила, должны быть расположены на уровне не ниже 150 и не выше 1800 мм от настила.

Находящиеся под напряжением открытые части распределительных щитов должны быть расположены на высоте не менее 150 мм над настилом.

4.5.4.12 Предохранители в распределительных щитах должны устанавливаться таким образом, чтобы доступ к ним был легким и замена плавких вставок не вызывала опасности для обслуживающего персонала. Ввинчиваемые предохранители должны быть установлены таким образом, чтобы питающие провода были подключены к центральной, менее доступной клеме.

4.5.4.13 Предохранители, защищающие полюсы или фазы одной цепи, должны быть установлены рядом горизонтально или вертикально, с учетом конструкции предохранителя. Взаимное расположение предохранителей в цепи переменного тока соответственно последовательности фаз должно быть слева направо или сверху вниз.

В цепи постоянного тока предохранитель положительного полюса должен быть расположен слева, сверху или ближе к обслуживающему персоналу.

4.5.4.14 Ручные приводы регуляторов напряжения, установленные на главном или аварийном распределительном щите, должны располагаться вблизи измерительных приборов, относящихся к соответствующим генераторам.

4.5.4.15 Амперметры генераторов постоянного тока со смещенным возбуждением, предназначенных для параллельной работы, должны быть установлены в цепи полюса, не соединенном с уравнительным проводом.

4.5.4.16 Для подключения подвижных или ограниченно подвижных приборов должны применяться многопроволочные гибкие провода.

4.5.4.17 Органы управления аппаратов, приборы, панели и отходящие цепи на распределительных щитах должны иметь надписи. Коммуникационные положения (включено/выключено) ан-
Правила классификации, постройки и оборудования ПБУ/МСП

парадов должны быть обозначены. Кроме того, должны быть указаны номинальные токи установленных предохранителей, уставки автоматических выключателей и электротепловых реле.

4.5.4.18 Каждая цепь, отходящая от распределительного щита, должна быть снабжена выключателем, отключающим все полюса и/или фазы. Выключатели могут не устанавливаться во вторичных распределительных коробках освещения, имеющих общий выключатель, а также в цепях приборов, устройств блокировки и сигнализации, местного освещения щитов, защищенных предохранителями.

4.5.5 Световая сигнализация.

4.5.5.1 Для световой сигнализации должны применяться цвета, указанные в табл. 4.5.5.1.

Применение способов световой сигнализации других, чем указанные в 4.5.5.1 (например, других цветов, буквенных символов), является в каждом случае предметом специального рассмотрения Регистром.

<table>
<thead>
<tr>
<th>Цвет</th>
<th>Значение</th>
<th>Вид сигнала</th>
<th>Состояние механизма</th>
</tr>
</thead>
<tbody>
<tr>
<td>Красный</td>
<td>Авария</td>
<td>Постоянный</td>
<td>Аварийное отключение устройством защиты</td>
</tr>
<tr>
<td>Желтый (оранжевый)</td>
<td>Неисправность</td>
<td>Постоянный</td>
<td>Не нормальное состояние (перегрузка, отклонение параметра и т. п.)</td>
</tr>
<tr>
<td>Зеленый</td>
<td>В работе</td>
<td>Постоянный</td>
<td>Нормальный режим</td>
</tr>
<tr>
<td>Белый (синий)</td>
<td>Наличие напряжения питания</td>
<td>Постоянный</td>
<td>Механизм готов к пуску (работе)</td>
</tr>
</tbody>
</table>

4.5.6 Размещение распределительных устройств.

4.5.6.1 Главные и секционные распределительные щиты, другие распределительные устройства должны устанавливаться в местах, где исключена возможность концентрации газов, паров нефти и воды, пыли и кислотных испарений.

4.5.6.2 Если распределительное устройство с защитным исполнением IP10 и ниже располагается в специальном помещении, шкафу или нише, то такие помещения должны быть изготовлены из негорючего материала или иметь облицовку из такого материала.

4.5.6.3 Размещение трубопроводов и цистерн вблизи распределительных щитов должно соответстовать требованиям части VIII «Системы и трубопроводы».

4.5.6.4 Генераторные агрегаты и подключеный к ним главный распределительный щит должны располагаться в одном помещении, или в одной главной вертикальной противопожарной зоне.

Выгородки, предусмотренные для ГРЩ, ЦПУ и других специальных электрических помещений, находящиеся в пределах главных границ машинного помещения, не считаются отдельными их от генераторных агрегатов.

4.5.7 Доступ к распределительным щитам.

4.5.7.1 С передней стороны распределительного щита должен быть проход шириной не менее 800 мм при длине щита до 3 м и не менее 1000 мм при длине щита свыше 3 м.

4.5.7.2 С задней стороны вдоль свободно стоящих распределительных щитов должен быть обеспечена проход шириной не менее 600 мм для щитов длиной до 3 м и не менее 800 мм для более длинных щитов.

Между свободно стоящими распределительными устройствами, имеющими открытые части под напряжением и размещенными в специальных электрических помещениях, ширина проходов должна быть не менее 1000 мм.

4.5.7.3 Пространство позади свободно стоящих распределительных щитов с открытыми частями, находящимися под напряжением, должно быть выгорожено и снабжено дверями в соответствии с 2.8.1.

4.5.7.4 У распределительных щитов длиной более 3 м должно быть предусмотрено не менее двух дверей в пространство за щитом из помещения, в котором установлен щит. Эти двери должны находиться на возможно большем расстоянии друг от друга.

Допускается, чтобы одна из дверей выходила в смежное помещение, которое имеет по крайней мере второй выход.

4.5.7.5 Проходы, указанные в 4.5.7.1 — 4.5.7.3, измеряются от наиболее выступающих частей аппаратуры и конструкций щитов до выступающих частей оборудования или конструкций корпуса.

4.5.7.6 В проходах перед и за распределительными щитами должны быть размещены диэлектрические коврики.

4.5.7.7 Дополнительные требования по размещению распределительных устройств на напряжение свыше 1000 В указаны в разд. 18 настоящей части.
5 ЭЛЕКТРИЧЕСКИЕ ПРИВОДЫ МЕХАНИЗМОВ И УСТРОЙСТВ

5.1 ОБЩИЕ ТРЕБОВАНИЯ

5.1.1 Местные посты управления приводов должны удовлетворять соответствующим требованиям части VII «Механические установки», а питание электрических (электронных) систем автоматизации — требованиям части XIV «Автоматизация».

5.1.2 Механизмы с электрическим приводом должны иметь световую сигнализацию о включенном состоянии электропривода.

5.1.3 Устройства, имеющие автоматическое, дистанционное и местное управление, должны быть выполнены таким образом, чтобы при переходе на местное управление автоматическое и дистанционное управление отключалось. При этом местное управление должно быть независимым от автоматического или дистанционного.

5.2 БЛОКИРОВКА РАБОТЫ МЕХАНИЗМОВ

5.2.1 Механизмы, имеющие электрический и ручной приводы, должны быть оборудованы блокирующим устройством, исключающим возможность одновременной работы приводов.

5.2.2 Если требуется включение в работу механизмов в определенной последовательности, должны быть применены соответствующие блокирующие устройства, схема и конструкция которых являются предметом специального рассмотрения Регистром.

5.2.3 Допускается установка устройства, выключающего блокировку, при условии, что оно защищено от непреднамеренного (случайного или несанкционированного) выключения блокировки. Вблизи этого устройства должна находиться информационная надпись, указывающая его назначение и запрещающая пользование им не уполномоченным на это лицам.

Такое устройство не допускается для механизмов, приведенных в 5.2.1.

5.2.4 Пуск механизмов, электрические двигатели или аппаратура которых требуют во время нормальной работы дополнительной вентиляции, должен быть возможен только при действующей вентиляции.

5.3 ОТКЛЮЧАЮЩИЕ УСТРОЙСТВА БЕЗОПАСНОСТИ

5.3.1 Системы управления механизмов, работа которых при определенных обстоятельствах может угрожать безопасности людей или платформ, должны снабжаться отключающими устройствами, обеспечивающими безопасное отключение питания электрического привода.

Отключающие устройства безопасности (кнопки, тумблеры и т. п.) должны быть защищены от случайного приведения их в действие.

5.3.2 Кнопки или другие отключающие устройства безопасности должны быть расположены у постов управления или в других местах, обеспечивающих безопасность эксплуатации.

5.3.3 В электрических приводах механизмов, в которых во избежание повреждений или аварийных случаев требуется ограничение движения, должны быть предусмотрены конечные выключатели, обеспечивающие надежное отключение электрического двигателя.

5.4 КОММУТАЦИОННАЯ И ПУСКОРЕГУЛИРУЮЩАЯ АППАРАТУРА

5.4.1 Коммутационная аппаратура в цепях электрических приводов, не являющаяся одновременно защитным устройством от токов короткого замыкания, должна выдерживать ток короткого замыкания, который может протекать в месте ее установки, в течение времени, необходимого для срабатывания защиты.

5.4.2 Пуск электрического двигателя должен быть возможен только из нулевого положения пускотрепулирующей аппаратуры.

5.4.3 У пускотрепулирующей аппаратуры, которая позволяет осуществлять отключение обмоток параллельного возбуждения, должно быть предусмотрено устройство для гашения поля.

5.4.4 Для каждого электрического двигателя мощностью 0,5 кВт и более и его пускотрепулирующей аппаратуры должно быть предусмотрено устройство для отключения питания; при этом, если пускотрепулирующая аппаратура установлена на главном или другом распределительном щите в этом же помещении и обеспечена ее видимость с места установки электрического двигателя, то для этой цели допускается использование выключателя, установленного на щите.
Если требования о расположении пускорегулирующей аппаратуры, изложенные выше, не выполнены, следует предусмотреть:

.1 устройство, блокирующее выключатель на распределительном щите в выключенном положении; или
.2 дополнительный выключатель вблизи электрического двигателя; или
.3 такую установку предохранителей в каждом полюсе или фазе, чтобы они могли быть легко вынуты и вновь вставлены обслуживающим персоналом.

5.5 ЭЛЕКТРИЧЕСКИЕ ПРИВОДЫ НАСОСОВ

5.5.1 Электрические двигатели топливопере-качивающих и маслопере-качивающих насосов и сепараторов должны быть оборудованы дистанционными отключающими устройствами, находящимися вне помещений этих насосов и вне шахт машинных помещений, но в непосредственно-ной близости от выхода из этих помещений.

5.5.2 Электрические двигатели насосов, от-качивающих жидкости за борт через отливные отверстия, находящиеся выше уровня ватерлинии при самой малой осадке, в местах спуска спасательных шлюпок или спасательных плотов, должны быть оборудованы выключателями, находящимися вблизи постов управления приводных механизмов спусковых устройств соответствующих шлюпок или плотов.

5.5.3 Электрические двигатели погружных осушительных и аварийных пожарных и балластных насосов должны иметь устройства дистанционного пуска, расположенные выше палубы переборок. Устройства дистанционного пуска должны иметь световую сигнализацию о включении электрического привода.

5.5.4 Отключающие устройства электрических приводов, указанные в 5.5.1, должны быть размещены на видимых местах, защищены от непреднамеренного воздействия и снабжены поясняющими надписями.

5.5.5 Местный пуск пожарных, балластных и осушительных насосов должен быть возможен даже в случае повреждения их цепей дистанционного управления.

5.5.6 Электрические двигатели пожарных, балластных и осушительных насосов (по крайней мере один из пары) должны получать питание через аварийный распределительный щит и быть способными выполнять свои функции в случае потери питания от основного источника электрической энергии.

5.5.7 Кабели и кабельные вводы в погружные насосы должны иметь соответствующую защиту от механических повреждений и должны быть работоспособными при максимальном давлении столба воды в случае наивысшей ватерлинии при повреждении корпуса ПБУ.

5.5.8 Электрические двигатели насосов пере-качки, сдачи или сброса нефте-, нефтесодержащих или сточных вод должны иметь устройства дистанционного отключения, установленные в районе расположения выходных штрубков.

5.6 ЭЛЕКТРИЧЕСКИЕ ПРИВОДЫ ЯКОРНЫХ И ШВАРТОВНЫХ МЕХАНИЗМОВ

5.6.1 В дополнение к требованиям части VII «Механические установки и механизмы» привод брашнелей, якорно-швартовных шпилей и швартовных лебедок должен удовлетворять требованиям настоящей части.

5.6.2 При применении электрических двигателей переменного тока с короткозамкнутым ротором электрические приводы якорного и швартовного механизмов после 30-минутной работы при номинальном напряжении могут обеспечивать возможность стоянки под током электрического двигателя при номинальном напряжении в течение не менее 30 с для якорных механизмов и 15 с для швартовных механизмов. Для двигателей с переключаемыми полюсами это требование действительно для работы двигателей с обмоткой, создающей наибольший пусковой момент.

Электрические двигатели постоянного тока и переменного тока с фазным ротором должны выдерживать указанный режим работы, но при моменте, в два раза превышающем номинальный, причем напряжение может быть ниже номинального.

После режима стоянки под током превышение температуры должно быть не более 130 % допустимого значения для примененной изоляции.

5.6.3 У якорно-швартовных шпилей и швартовных лебедок на ступенях скоростей, предназначенных только для швартовных операций, должна быть предусмотрена защита от перегрузки электрического двигателя.

5.7 ЭЛЕКТРИЧЕСКИЕ ПРИВОДЫ ВЕНТИЛЯТОРОВ

5.7.1 Электрические двигатели вентиляторов машинных помещений и помещений, связанных с взрывоопасными зонами, должны иметь не менее
двух отключающих устройств, причем одно из них должно находиться вне этих помещений и их шахт, но в непосредственной близости от выхода из этих помещений.

5.7.2 Электрические двигатели вентиляторов грузовых трюмов, других технологических помещений, а также вентиляторов камбуза должны иметь отключающие устройства, расположенные в местах, легко доступных с палубы, но вне шахт машинных помещений.

Электрические двигатели вытяжной вентиляции камбузных плит независимо от числа отключающих устройств должны иметь отключающее устройство, расположенное непосредственно в помещении камбуза.

5.7.3 Электрические двигатели вентиляции жилых и служебных помещений должны иметь по крайней мере два устройства дистанционного отключения, причем одно должно быть расположено на главном посту управления, а второе отключающее устройство должно иметь доступ с открытой палубы.

5.7.4 Электрические двигатели вентиляторов помещений, которые защищены системой объемного пожаротушения, должны иметь отключающее устройство, автоматически срабатывающее при пуске системы пожаротушения в данное помещение.

5.8 ЭЛЕКТРИЧЕСКИЕ ПРИВОДЫ СПАСАТЕЛЬНЫХ ШЛЮПОЧНЫХ ЛЕБЕДОК

5.8.1 Электрический привод шлюпочной лебедки должен обеспечивать выполнение требований части II «Спасательные средства» Правил по оборудованию морских судов.

5.8.2 Органы управления электрическим приводом шлюпочной лебедки должны иметь устройство самовозврата в положение «стоп».

5.8.3 Непосредственно у поста управления шлюпочной лебедкой должен устанавливаться выключатель силовой цепи электрического двигателя.

5.9 ЭЛЕКТРИЧЕСКИЕ ПРИВОДЫ ВОДОНЕПРОНИЦАЕМЫХ И ПРОТИВОПОЖАРНЫХ ДВЕРЕЙ

5.9.1 Электрические приводы водонепроницаемых дверей должны обеспечивать выполнение требований части III «Устройства, оборудование и снаряжение».

5.9.2 Питание электрических приводов и сигнализации об открытом и закрытом положении водонепроницаемых дверей должно осуществляться от основного, аварийного и аварийного переходных источников электрической энергии в соответствии с требованиями 4.2 и 9.3.

5.9.3 Электрические приводы устройств, удерживаемых противопожарные двери открытыми (см. часть VI «Противопожарная защита»), должны:

.1 получать питание от основных и аварийных источников электрической энергии;
.2 иметь дистанционное управление с главного и резервного постов управления установкой для закрывания каждой двери в отдельности, по группам или всех дверей одновременно;
.3 автоматически закрывать все двери одновременно при исчезновении напряжения питания;
.4 быть сконструированы таким образом, чтобы любое повреждение в устройстве закрывания одной двери не выводило из действия системы питания и управления другими дверями.

5.10 ЭЛЕКТРИЧЕСКИЕ ПРИВОДЫ РУЛЕВЫХ УСТРОЙСТВ САМОХОДНЫХ ПБУ

5.10.1 Для главных и вспомогательных рулевых устройств, требуемых для управления ПБУ, должны быть предусмотрены электрические или электроэнергетические приводы.

5.10.2 Электрические системы главных и вспомогательных рулевых приводов должны быть спроектированы таким образом, чтобы любая неисправность в одной системе не могла вывести из строя другую. Этот же принцип должен быть применен, когда вместо главного и вспомогательного привода рулевого устройства применяются два и более идентичных агрегатов.

5.10.3 Характеристики и мощность электродвигателя рулевого устройства должна определяться в зависимости от требуемого торгового или максимального рабочего момента привода для всех возможных рабочих условий. Отношение определяющего момента к номинальному должно быть по крайней мере 1.6.

5.10.4 Каждый электродвигатель главного и вспомогательного рулевого устройства должен иметь собственный пускатель, расположенный в румпельном отделении установки. Допускается расположение пускателей в помещениях распределительных щитов, откуда они получают питание.

5.10.5 Каждый электрический или электроэнергетический привод, состоящий из одного или более агрегатов, должен получать питание по двум фидерам от главного распределительного щита, проложенным в разных трассах на макси-
мально возможном удалении друг от друга. Один из этих фидеров должен получать питание от аварийного распределительного щита. Вспомогательный электрический или электрогидравлический привод может получать питание от фидеров питания главного привода.

5.10.6 Каждый фидер должен быть рассчитан на питание всех электродвигателей и пусковой и регулирующей аппаратуры, которые подключены к нему и могут работать одновременно.

5.10.7 При выходе из строя основного источника питания электрооборудования должно быть обеспечено автоматическое восстановление питания в течение 45 с от аварийного источника электрической энергии или от другого независимого источника, установленного в румпельном помещении и предназначенного только для этой цели.

5.10.8 Каждая система пуска и остановки электрооборудования должна получать питание от соответствующих фидеров питания электродвигателей.

5.10.9 Системы управления электрооборудованием рулевого устройства должны получать питание по отдельным фидерам, проложенным отдельными трассами, от соответствующих пускателей в румпельном помещении, или от шин распределительных устройств, питаемых силовые цепи рулевого привода.

5.10.10 Для каждой силовой цепи и цепи управления должна быть предусмотрена защита только от коротких замыканий. Других видов защиты предусматриваться не должно.

Защита от сверхтоков может быть допущена, если она будет срабатывать не менее чем при двукратном номинальном токе, с соответствующей выдержкой времени. Указанными защитами не должна срабатывать от пусковых токов двигателей.

5.10.11 Пуск и остановка электрических двигателей привода руля должен осуществляться из рулевой рубки и из румпельного помещения. В румпельном помещении должны быть предусмотрены устройства, отключающие дистанционные пуск и остановку и обеспечивающие включение двигателей при любых неисправностях электрооборудования. Пусковые устройства должны обеспечивать повторный автоматический пуск электродвигателей при восстановлении напряжения после перерыва в подаче питания.

5.10.12 Система управления главной рулевой установкой должна предусматривать возможность управления как из рулевой рубки, так и из румпельного помещения. Это же относится и к системе управления вспомогательным приводом рулевой установки, причем обе системы управления должны быть независимы друг от друга.

5.10.13 Если предусматривается рулевая установка с двумя и более идентичными электрическими приводами, то должны быть предусмотрены как минимум две независимые системы управления, способные обеспечить управление как из рулевой рубки так и из румпельного помещения. При этом не требуется дублировать рулевой штурвал или другие органы управления. Если в системе управления предусмотрен гидравлический задающий механизм, то его также не требуется дублировать.

5.10.14 В рулевой рубке и у поста управления пропульсивной установкой в машинном помещении должна быть предусмотрена световая и звуковая сигнализация:

1 об исчезновении напряжения питания, обрыве фазы и перегрузке каждого силового агрегата;
2 об исчезновении напряжения питания каждой системы управления;
3 о минимальном уровне масла в каждой цистерне гидравлической системы.

Кроме того, должна быть предусмотрена световая индикация работы силовых агрегатов рулевого привода.

5.10.15 В рулевой рубке должен быть предусмотрен индикатор положения пера руля. Это устройство должно быть независимым от силовых агрегатов рулевого устройства и от их систем управления. Устройство должно получать питание от аварийного распределительного щита, или от другого независимого источника электрической энергии, например от системы бесперебойного питания. В румпельном помещении также должна быть предусмотрена индикация положения пера руля, но она не обязательно должна быть электрической.

5.10.16 Дублированные силовые цепи и соответствующие системы управления рулевой установкой с их компонентами в шкафах управления и пультах должны быть отделены физически друг от друга насколько это возможно. Соответствующие кабели должны прокладываться разными трассами на максимальном удалении друг от друга, как по горизонтали, так и по вертикали, по всей их длине.

5.11 ЭЛЕКТРИЧЕСКИЕ ПРИВОДЫ ТОПОЧНЫХ УСТРОЙСТВ КОТЛОВ И ИНСИНЕРАТОРОВ

5.11.1 Электрические приводы топочных устройств котлов и инсинераторов должны иметь устройства дистанционного отключения, располагаемые вне помещений, где они установлены (см.
Часть X. Электрическое оборудование

также 5.3.8 части X «Котлы, теплообменные аппараты и сосуды под давлением» и 4.3.5, 4.10.3.4 и 6.2.3 части XIV «Автоматизация»).

5.11.2 Если помещения, где установлены инсинераторы и котлы, защищены аэрозольной системой пожаротушения, то электрические приводы топочных устройств котлов и инсинераторов должны автоматически отключаться при пуске этой системы.

6 ОСВЕЩЕНИЕ

6.1 ОБЩИЕ ТРЕБОВАНИЯ

6.1.1 Во всех помещениях, местах и пространствах платформы, освещение которых является важным для обеспечения безопасности персонала, управления механизмами и устройствами, обитаемости и эвакуации людей, должны быть установлены стационарные светильники основного освещения, которые должны получать питание от основного источника электрической энергии.

6.1.2 Перечень помещений, мест и пространств, где в дополнение к светильникам основного освещения должны быть установлены светильники аварийного освещения, приведен в 9.3.1.1.

Светильники, установленные в помещениях и пространствах, где возможно механическое повреждение колпаков, должны быть снабжены защитными сетками.

6.1.3 Установка светильников должна выполняться таким образом, чтобы исключался нагрев кабелей и близлежащих материалов до температуры, превышающей допустимую.

6.1.4 В помещениях и местах, которые освещаются люминесцентными лампами и в которых находятся видимые вращающиеся части механизмов, должны быть приняты меры для устранения стробоскопического эффекта.

6.1.5 В помещениях и пространствах, освещаемых светильниками с разрядными лампами, не обеспечивающими непрерывности горения при колебаниях напряжения в соответствии с 2.1.3, должны предусматриваться также светильники с лампами накаливания.

6.1.6 Аудиторные и другие взрывоопасные помещения и пространства должны освещаться светильниками из смежных безопасных помещений через газонепроницаемые застекленные отверстия или светильниками взрывозащищенного исполнения, установленными внутри помещений.

6.2 ПИТАНИЕ ЦЕПЕЙ ОСНОВНОГО ОСВЕЩЕНИЯ

6.2.1 Распределительные щиты основного освещения должны получать питание по отдельным фидерам. От щитов основного освещения допускается осуществлять питание электрических приводов неответственного назначения мощностью до 0,25 кВт и отдельных капотных электрических грелок с номинальным током до 10 А.

6.2.2 Защитные устройства конечных ответвлений цепей освещения должны рассчитываться на номинальный ток не более 16 А, суммарный ток нагрузки подключенных потребителей не должен превышать 80 % номинального тока защитного устройства.

Число осветительных точек, питаемых от конечных целей освещения, не должно превышать приведенный в табл. 6.2.2.

<table>
<thead>
<tr>
<th>Напряжение, В</th>
<th>Макс. число освет. точек</th>
</tr>
</thead>
<tbody>
<tr>
<td>До 50</td>
<td>10</td>
</tr>
<tr>
<td>51 — 120</td>
<td>14</td>
</tr>
<tr>
<td>121 — 250</td>
<td>24</td>
</tr>
</tbody>
</table>

6.2.3 Освещение открытых палуб, машинных помещений, помещений постов управления, кабузов, служебных и общественных помещений, коридоров, трапов, туннелей, выходов на открытую палубу и т. п. должно получить питание не менее чем по двум независимым фидерам с таким расположением светильников, чтобы в случае выхода из строя одного из фидеров указанные помещения и пространства не теряли освещение полностью и обеспечивалась бы возможно большая равномерность их освещения. Эти фидеры должны получать питание от разных групповых щитов, которые в свою очередь должны получать питание от разных секций шин системы распределения электрической энергии.
Правила классификации, постройки и оборудования ПБУ/МСП

6.2.4 Светильники местного освещения в жилых помещениях, а также штепсельные розетки должны получать питание от щита освещения по отдельному фидеру, другому, чем фидер питания светильников общего освещения.

6.2.5 Освещение помещений и пространств каждой противопожарной зоны ПБУ или МСП должно получать питание по двум фидерам, независимым от фидеров, питающих освещение других противопожарных зон.

Фидеры освещения по возможности должны быть проложены таким образом, чтобы пожар в одной зоне не повредил фидеров освещения в других зонах.

В случае применения секционированных шин освещения в главном распределительном щите такие фидеры должны получать питание от разных секций шин.

6.2.6 Основное освещение должно быть выполнено таким образом, чтобы при выходе его из строя при пожаре или в другом аварийном случае в помещениях, в которых расположены основные источники энергии и/или трансформаторы основного освещения, система аварийного освещения в этих помещениях не выходила из строя.

6.3 АВАРИЙНОЕ ОСВЕЩЕНИЕ

6.3.1 Освещенность отдельных помещений, мест и пространств, указанных в 9.3.1.1, при аварийном освещении должна быть не менее 10 % общей освещенности при основном освещении (см. 6.7). Допускается, чтобы освещенность от светильников аварийного освещения в машинных помещениях составляла 5 % освещенности при основном освещении, если предусмотрены штепсельные розетки, питаемые от сети аварийного освещения, предназначенные для переносных светильников.

6.3.2 Для получения требуемой в 6.3.1 освещенности светильники аварийного освещения с лампами накаливания могут комбинироваться с люминесцентными лампами.

6.3.3 Светильники основного освещения допускается использовать в качестве светильников аварийного освещения, если они могут получать питание также и от аварийных источников энергии.

6.3.4 Сеть аварийного освещения должна быть выполнена таким образом, чтобы при выходе ее из строя при пожаре или в других аварийных случаях в помещениях, в которых расположены аварийные источники электрической энергии и/или трансформаторы аварийного освещения, система основного освещения не выходила из строя.

6.3.5 Для аварийного освещения могут применяться стационарные светильники со встроенными аккумуляторами и с автоматической подзарядкой их от сети основного освещения.

6.3.6 Каждый светильник аварийного освещения и светильник комбинированного, т. е. совместного с аварийным освещения должен быть обозначен красным цветом.

6.3.7 Низкорасположенное аварийное освещение (с электрическим питанием).

6.3.7.1 Система низкорасположенного освещения должна получать питание от шин АРЩ таким образом, чтобы функционировать как в нормальных условиях, когда работают основные генераторы, так и в аварийных условиях. Система низкорасположенного освещения должна находиться в действии постоянно.

6.3.7.2 Низкорасположенное освещение должно обеспечивать следующие уровни яркости:

1 активные части системы должны иметь минимальную яркость 10 кд/м²;
2 точечные источники, состоящие из миниатюрных ламп накаливания, должны обеспечивать среднюю сферическую интенсивность не менее 150 мкд при расстоянии между лампами не более 100 мм;
3 точечные источники, выполненные светоизлучающими диодами, должны иметь минимальную пико-интенсивность 35 мкд. Угол сферического конуса половинной интенсивности должен соответствовать направлению подхода и обзора наблюдателя. Расстояние между светоизлучающими диодами не должно быть более 300 мм.

6.3.7.3 Питание системы низкорасположенного освещения должно быть устроено таким образом, чтобы отказ любого источника света и пожар в одной противопожарной зоне или на одной палубе не приводили к выходу из строя освещения и маркировки участков пути эвакуации в другой противопожарной зоне или палубе.

6.3.7.4 Отказ или повреждение любого источника света не должны приводить к потере видимого очертания пути эвакуации на участке длиной более 1 м.

6.3.7.5 Степень защиты оболочек источников света должна быть не менее IP55.

6.4 ВЫКЛЮЧАТЕЛИ В ЦЕПЯХ ОСВЕЩЕНИЯ

6.4.1 Во всех цепях освещения должны быть применены двухполюсные выключатели.
В сухих жилых и служебных помещениях допускается применение однополюсных выключателей в цепях, отключающих одиночные светильники или группы светильников на номинальный ток не более 6 А, а также светильников на безопасное напряжение.

6.4.2 Для стационарных светильников наружного освещения должны быть предусмотрены устройства централизованного отключения всех светильников с главного поста управления платформой или из другого поста с постоянной вахтой на верхней палубе.

6.4.3 Выключатели цепей освещения помещений подвесного типа должны находиться с внешней стороны этих помещений.

6.4.4 Выводы светильников за свободно стоящими распределительными щитами должны быть установлены у каждого входа на распределительный щит.

6.4.5 В цепях аварийного освещения не должны применяться местные выключатели светильников. Допускается применение местных выключателей в цепях светильников аварийного освещения, которые в нормальных условиях являются светильниками основного освещения.

Главный пост управления платформы должен быть оборудован выключателем системы аварийного освещения.

Светильники аварийного освещения мест посадки в спасательные средства, которые в нормальных условиях являются светильниками основного освещения, должны включаться автоматически при обесточивании шин главного распределительного щита.

6.5 СВЕТИЛЬНИКИ ЛАМП НАКАЛИВАНИЯ И ГАЗОРАЗРЯДНЫЕ СВЕТИЛЬНИКИ

6.5.1 Светильники должны иметь такую конструкцию, чтобы кабельные вводы в них были достаточной величины и без необработанных (шершавых) выступов, острых углов и резких изгибов. Все выходы для кабелей должны иметь хорошо закругленные края и быть соответствен но обработаны, чтобы не повредить кабель.

6.5.2 Изолированные проводники должны иметь возможность так подключаться к клеммам, чтобы они не могли в условиях вибрации прикасаться к другим токосъемным элементам внутри светильника.

6.5.3 Светильники должны иметь такую конструкцию, чтобы пыль и влага не могли скапливаться внутри на их токоведущих частях и изоляции.

6.5.4 Токосъемные части светильников должны быть надежно изолированы от корпуса или оболочки.

6.5.5 Все металлические части светильников должны быть электрически соединены между собой и предусмотренной специальной клеммой для заземления.

6.5.6 Детали, подлежащие токосъему части в ламподержателях, должны быть, как минимум, из материалов, не поддерживающих горение, для люминесцентных ламп и из негорючих материалов для ламп накаливания.

6.5.7 Исполнение оболочки (корпуса) светильников должно быть, как минимум, IP 2X.

6.5.8 В светильниках для таких помещений как ванные, прачечные, камбузы и подобные, детали ламподержателей, к которым возможно прикосновение персонала во время замены лампы, должны быть изготовлены или покрыты изоляционным материалом и снабжены защитным экраном.

6.5.9 В случае питания светильников от системы с заземленной нейтрально наружный контакт ламподержателя должен соединяться с нейтральным проводом системы питания.

6.5.10 Дроссели и конденсаторы люминесцентных светильников должны защищаться надежно металлическими кожухами.

6.5.11 Конденсаторы емкостью 0,5 мкФ и более должны снабжаться разрядными устройствами. Разрядное устройство должно быть выполнено таким образом, чтобы через 1 мин после отключения конденсатора его напряжение не превышало 50 В.

6.5.12 Дроссели и трансформаторы с большим индуктивным сопротивлением должны устанавливаться как можно ближе к светильнику, для которого они предназначены. Трансформаторы должны иметь первичные и вторичные обмотки, электрически разделенные, и не должны содержать горючих материалов и жидкостей.

6.5.13 Светильники тлеющего разряда, питаемые напряжением свыше 250 В, должны быть снабжены предохранителями надписями, указывающими напряжение. Все детали таких светильников, находящиеся под напряжением, должны быть защищены от случайного прикосновения при обслуживании.

6.5.14 Конструкция светильников должна предусматривать соответствующий теплоотвод, вызываемый нагревом корпусов от ламп, балластных резисторов, емкостей и т. п. Температура поверхностей светильников, к которым возможно прикосновение в процессе обслуживания, не должна превышать 60 °C.

6.5.15 Превышение температуры зажимов (клемм) для подключения кабелей питания над окружающей температурой не должно превышать 40 °C.
Правила классификации, постройки и оборудования ПБУ/МСП

6.5.16 Класс изоляции проводов, используемых для внутренних соединений должен быть в соответствии с максимальной температурой в корпусах светильников.

6.5.17 Применяемые в светильниках ламподержатели (патроны) должны быть стандартного типа в соответствии с табл. 6.5.17.

<table>
<thead>
<tr>
<th>Типы ламподержателей</th>
<th>Допустимые характеристики ламп</th>
</tr>
</thead>
<tbody>
<tr>
<td>Напряжение, В</td>
<td>Мощность, Вт / Ток, A</td>
</tr>
<tr>
<td>Ламподержатели ламп с винтовым цоколем:</td>
<td></td>
</tr>
<tr>
<td>E40</td>
<td>250</td>
</tr>
<tr>
<td>E27</td>
<td>250</td>
</tr>
<tr>
<td>E14</td>
<td>250</td>
</tr>
<tr>
<td>E10</td>
<td>24</td>
</tr>
<tr>
<td>Ламподержатели ламп с байонетным цоколем:</td>
<td></td>
</tr>
<tr>
<td>B22</td>
<td>250</td>
</tr>
<tr>
<td>B15d</td>
<td>250</td>
</tr>
<tr>
<td>5s</td>
<td>55</td>
</tr>
<tr>
<td>Ламподержатели трубчатых ламинатных ламп:</td>
<td></td>
</tr>
<tr>
<td>G13</td>
<td>250</td>
</tr>
<tr>
<td>G5</td>
<td>250</td>
</tr>
<tr>
<td>Ламподержатели линейных газоразрядных и металлогалогенных ламп:</td>
<td></td>
</tr>
<tr>
<td>R7s</td>
<td>250</td>
</tr>
<tr>
<td>Fa4</td>
<td>250</td>
</tr>
</tbody>
</table>

6.5.18 Ламподержатели для ламп с цоколем E40 должны быть оборудованы устройствами для фиксации (закрепления) ламп в держателе.

6.6 ШТЕПСЕЛЬНЫЕ РОЗЕТКИ

6.6.1 Штепсельные розетки для переносного освещения должны быть установлены по крайней мере:

.1 на палубе — вблизи постов управления брашнилами и швартовыми лебедками;
.2 в помещениях гирокомпаса и другого навигационного оборудования (при наличии);
.3 в помещениях преобразователей радиоустановки;
.4 в помещениях рулевого устройства и подруливающих устройств (при наличии);
.5 в помещениях аварийных агрегатов;
.6 в машинных помещениях;
.7 за главным распределительным щитом;
.8 в специальных электрических помещениях;
.9 на главных и резервных постах управления;
.10 в радиорубке (при наличии);
.11 в районах выгородок лага, эхолота, других приборов, связанных с измерениями параметров внешней среды;
.12 в помещениях централизованных установках вентиляции и кондиционирования воздуха.

6.6.2 Штепсельные розетки для переносного оборудования, питаемые разными напряжениями, должны иметь конструкцию, исключающую соединение вилок для одного напряжения с розеткой для другого напряжения.

6.6.3 Штепсельные розетки для переносного освещения, установленные на открытых палубах, должны быть установлены штепсельным разъемом вниз.

6.6.4 Штепсельные розетки не должны устанавливаться в машинных помещениях ниже настила, в закрытых помещениях сепараторов топлива и масла или в местах, где требуется оборудование взрывозащищенного исполнения.

6.7 ОСВЕЩЕННОСТЬ

6.7.1 Освещенность отдельных помещений и пространств должна быть не менее требуемой национальными санитарными нормами (стандартами) и по крайней мере не ниже указанной в табл. 6.7.1.

Приведенные в табл. 6.7 нормы общей освещенности относятся к уровню 800 мм над настилом помещений, а нормы общей плюс местной освещенности — к уровню рабочих поверхностей.

Уровень общей освещенности должен измеряться на уровне 1 м над полом (настилом), а локальной освещенности — непосредственно над рабочей поверхностью.

6.8 ПРОЖЕКТОРЫ И ДУГОВЫЕ ЛАМПЫ

6.8.1 Все части прожекторов или дуговых ламп, предназначенные для обслуживания и регулировки в процессе работы должны иметь конструкцию, исключающую риск поражения оператора электрическим током.

6.8.2 Выключатели, предназначенные для прожекторов или дуговых ламп, должны быть многополюсными.

6.8.3 В случае использования с дуговыми лампами последовательных резисторов, выключатели должны отключать от сети как лампу, так и ее последовательный резистор.
Часть X. Электрическое оборудование

Таблица 6.7.1

<table>
<thead>
<tr>
<th>Помещения и пространства</th>
<th>Общая (средняя) освещенность (E_{av}), люкс, лк.</th>
<th>Мин. осв. лк.</th>
<th>Макс. осв. лк.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Наружные пространства (основное осв.)</td>
<td>50</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>Внутренние пространства, коридоры, жилые пространства (основное освещение)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Трапы</td>
<td>150</td>
<td>60</td>
<td>300</td>
</tr>
<tr>
<td>Технологические пространства периодически посещаемые</td>
<td>150</td>
<td>60</td>
<td>300</td>
</tr>
<tr>
<td>Технологические пространства часто посещаемые</td>
<td>300</td>
<td>150</td>
<td>450</td>
</tr>
<tr>
<td>Буровая площадка</td>
<td>300</td>
<td>150</td>
<td>450</td>
</tr>
<tr>
<td>Помещения постов управления, лаборатории</td>
<td>500</td>
<td>250</td>
<td>750</td>
</tr>
<tr>
<td>Машины, помещения, насосные помещения (основное освещение)</td>
<td>200</td>
<td>80</td>
<td>400</td>
</tr>
<tr>
<td>Помещения вспомогательных механизмов</td>
<td>200</td>
<td>80</td>
<td>400</td>
</tr>
<tr>
<td>Мастерские</td>
<td>300</td>
<td>120</td>
<td>600</td>
</tr>
<tr>
<td>Помещения распределительных щитов</td>
<td>300</td>
<td>150</td>
<td>450</td>
</tr>
<tr>
<td>Служебные помещения (офисы)</td>
<td>500</td>
<td>250</td>
<td>750</td>
</tr>
<tr>
<td>Прачечные, камбузы, столовые</td>
<td>300</td>
<td>120</td>
<td>600</td>
</tr>
<tr>
<td>Лазарет, госпиталь</td>
<td>300</td>
<td>120</td>
<td>360</td>
</tr>
<tr>
<td>Локальное освещение в лазарете</td>
<td>1000</td>
<td>500</td>
<td>1500</td>
</tr>
<tr>
<td>Помещения радиооборудования</td>
<td>500</td>
<td>250</td>
<td>750</td>
</tr>
<tr>
<td>Аварийный лазарет (если предусмотрен)</td>
<td>300</td>
<td>120</td>
<td>360</td>
</tr>
</tbody>
</table>

Примечания: 1. Количество точек замера, требуемых для оценки освещенности выбирается по нижеприведенной таблице и зависит от индекса помещения, рассчитываемого по формуле:

$$K = \frac{ae}{h(a + b)},$$

где K — индекс;

e и a — длины сторон помещения;

η — высота светильника над рабочей площадью.

2. Расчет первоначальных уровней освещенности должен предусматривать естественное ухудшение освещенности из-за старения ламп и накопления загрязнений светильников.

7 ВНУТРЕННЯЯ СВЯЗЬ И СИГНАЛИЗАЦИЯ

7.1 МАШИННЫЕ ЭЛЕКТРИЧЕСКИЕ ТЕЛЕГРАФЫ САМОХОДНЫХ ПБУ

7.1.1 Машинные телеграфы, кроме требований настоящей главы, должны соответствовать требованиям части VII «Механические установки и механизмы».

7.1.2 Машинные телеграфы должны иметь шкалы с регулируемой подсветкой, быть оборудованы световой сигнализацией о наличии напряжения в цепи питания и звуковой сигнализацией об исчезновении напряжения в цепи питания.

7.1.3 Машинные телеграфы должны получать питание от главного распределительного щита или от щита навигационного оборудования.

При наличии на ПБУ объединенного пульта управления машинный телеграф может получать питание от этого пульта.

7.1.4 Установка поста машинного телеграфа в главном посту управления должна быть такой, чтобы при передаче приказаний о ходе оперативная рукоятка прибора перемещалась в том же направлении, что и установка. Вертикальное положение рукоятки должно соответствовать команде «стоп».
Правила классификации, постройки и оборудования ПБУ/МСП

7.1.5 При установке машинных телеграфов, устройств дистанционного управления главными двигателями и винтами регулируемого шага на наклонных панелях пультов управления рукоятка в положении «стоп» должна быть установлена перпендикулярно к плоскости пульта и фиксирована точно в этом положении.

7.1.6 При наличии двух машинных телеграфов и более, расположенных в непосредственной близости друг от друга (на одной палубе), телеграфы должны обеспечивать передачу команд с любого из них и получение ответа на все одновременно без дополнительных переключений.

Переход на телеграфы, расположенные на другой палубе или в другой части установки, должен осуществляться при помощи переключателей, расположенных на ходовом мостике (главном посту управления).

7.1.7 Каждый машинный телеграф должен иметь звуковое сигнальное устройство, обеспечивающее подачу звукового сигнала на передающем и принимающем приборе при подаче команды и ответа об исполнении. Действие звукового сигнального устройства не должно прекращаться, пока не будет получен правильный ответ на заданный ход (см. также часть VII «Механические установки и механизмы»).

7.2 СЛУЖЕБНАЯ ВНУТРЕННЯЯ СВЯЗЬ

7.2.1 Между главным постом, резервным постом и местными постами управления механической установкой, а также между главным постом управления и радиорубкой (если она вне главного поста) должна быть предусмотрена независимая парная телефонная связь.

При наличии на ПБУ или МСП закрытого или открытого центрального поста управления механической установкой должна быть обеспечена также независимая парная переговорная связь.

При наличии на ПБУ/МСП закрытого или открытого центрального поста управления механической установкой должна быть обеспечена также независимая парная переговорная связь между ЦПУ и главным и резервным постами управления.

Для этой цели могут использоваться либо независимые парные телефонные связи, либо парная телефонная связь между главным постом и центральным постом управления с параллельно подключенными и установленными на местных постах управления телефонами.

7.2.2 Кроме устройств связи, указанных в 7.2.1, должна быть предусмотрена отдельная система независимой телефонной связи между главным и резервным постами управления и постами в основных служебных помещениях и постами: на баке, юте, постом наблюдения на мачте (при наличии), постами в румпельных помещениях и помещениях подруливающих устройств, помещениях, в которых расположены аварийный распределительный щит, ответственное навигационное оборудование, станция объемного пожаротушения, а также с жилыми помещениями механизмов и другими помещениями, в которых размещены устройства, обеспечивающие безопасность эксплуатации ПБУ или МСП.

Должна быть предусмотрена телефонная связь между центральным постом управления, местным постом управления главными механизмами и жилыми помещениями механизмов. Вместо телефонов для этих целей допускается использовать двусторонние громкоговорящие устройства.

При наличии независимой парной переговорной связи между главным и резервным постами управления и указанными помещениями дополнительные средства связи можно не устанавливать.

7.2.3 Системы служебной связи должны обеспечивать возможность вызова абонента и четкое ведение переговоров в условиях специфического шума у мест расположения оборудования связи. При установке аппаратов служебной телефонной связи в помещениях с большой интенсивностью шума должны быть приняты меры для шумопоглощения или предусматриваться дополнительные телефонные трубки.

7.2.4 Для устройств связи, указанных в 7.2.1 и 7.2.2, должны применяться безбатарейные телефоны, или должно быть предусмотрено питание от основного источника электрической энергии и аккумуляторной батареи, включающейся автоматически при исчезновении питания от основного источника энергии, т. е. от системы бесперебойного питания.

7.2.5 Повреждение или отключение одного аппарата не должно нарушать работоспособность других аппаратов.

7.2.6 Телефоны, предусмотренные в 7.2.1 для парной переговорной связи, должны быть оборудованы звуковой и световой сигнализацией о вызове, как в центральном посту управления, так и в машинном отделении.

7.2.7 Двусторонняя громкоговорящая установка может быть самостоятельной или совмещенной с командно-трансляционным устройством.

7.3 АВРАЛЬНАЯ СИГНАЛИЗАЦИЯ

7.3.1 ПБУ/МСП должны быть оборудованы системой авральной сигнализации, обеспечивающей хорошую слышимость сигналов тревоги...
7.3.2 Звуковые и световые приборы аварийной сигнализации должны устанавливаться в следующих местах:
1. в машиных помещениях;
2. в служебных и общественных помещениях;
3. в коридорах жилых, служебных и общественных помещений;
4. на открытых палубах;
5. в производственных помещениях и пространствах.

7.3.3 Система аварийной сигнализации должна получать питание от судовой сети, а также от пита армированного распределительного щита и аварийного переходного источника электрической энергии, согласно требованиям 9.3.1.7 и 9.3.6.3, или от источника (системы) бесперебойного питания ответственного оборудования.

Допускается питание аварийной сигнализации от сети и от отдельной аккумуляторной батареи при наличии устройств для автоматического переключения цепей аварийной сигнализации на аккумуляторную батарею. В этом случае не требуется питания от аварийного и переходного источников электрической энергии.

7.3.4 Система аварийной сигнализации должна обеспечиваться неотрывным питанием независимо от того, находится батарея аккумуляторов в положении зарядки или разрядки.

7.3.5 В случае применения отдельной аккумуляторной батареи для аварийной сигнализации допускается питать от нее также другие устройства внутренней связи и сигнализации, если емкость батареи достаточна для одновременного питания всех потребителей в течение не менее 3 ч, а также если эти устройства выполнены таким образом, что повреждение одной цепи не нарушит работы других цепей, и если для этих устройств не требуется более длительного времени питания.

7.3.6 В цепях питания аварийной сигнализации должна предусматриваться защита только от короткого замыкания. Устройства защиты должны устанавливаться в обоих проводах фидера питания, а также в цепях каждого звукового прибора.

Защита нескольких звуковых приборов одним общим защитным устройством допускается, если в помещениях, где они установлены, обеспечена хорошая слышимость других звуковых приборов, имеющих независимую защиту.

7.3.7 Звуковые приборы аварийной сигнализации должны располагаться таким образом, чтобы сигнал был четко слышен при шуме в данном помещении. Звуковые приборы, установленные в помещениях с большой интенсивностью шумов, должны снабжаться дополнительно световой сигнализацией.

Тональность приборов аварийной сигнализации должна отличаться от тональности приборов других видов сигнализации.

Звуковые сигналы (за исключением колокола) должны иметь частоту сигнала от 200 до 2500 Гц. Могут быть предусмотрены средства регулирования частоты звуковых сигналов в указанных пределах.

7.3.8 Аварийная сигнализация должна приводиться в действие при помощи двухполюсного замыкателья с самовозвратом с главного поста управления, резервного поста управления, а также из помещения, предназначенного для нештатной службы в случае отсутствия персонала в главном посту управления.

На постах в цепи замыкателя должна быть установлена сигнальная лампа, информирующая о приведении в действие аварийной сигнализации.

Замыкатели должны иметь надписи, указывающие их назначение.

7.3.9 В цепях системы аварийной сигнализации не должны устанавливаться другие коммуникационные устройства, кроме замыкателья, указанного в 7.3.8. С целью исключения некомпетентного отключения системы аварийной сигнализации его распределительный щит должен иметь устройство блокировки выключателя питания во включенном положении или иные устройства, предохраняющие его от доступа посторонних лиц.

Допускается использование промежуточных контакторов, включаемых замыкательем, но не более одного контактора в каждом луше.

7.3.10 Звуковые приборы, замыкатели и распределительные устройства системы аварийной сигнализации должны иметь хорошо видимые отличительные обозначения.

7.3.11 Сеть звуковых приборов аварийной сигнализации должна состоять не менее чем из двух луцев, включаемых одним замыкательем, с таким расположением звуковых приборов, чтобы в помещениях с большой площадью (машиных и котельных помещениях, технологических помещениях и других) устанавливались звуковые приборы от разных луцев.
7.4 СИГНАЛИЗАЦИЯ ОБНАРУЖЕНИЯ ПОЖАРА

7.4.1 Кроме требований настоящей главы, системы сигнализации обнаружения пожара должны удовлетворять требованиям разд. 4 части VI «Противопожарная защита».

7.4.2 Применение датчиков системы сигнализации обнаружения пожара, установленных в помещениях, где могут образоваться взрывоопасные пары, или находящихся в потоке воздуха, отсасываемого из этих помещений, регламентируется в 2.9.

7.4.3 Для питания системы сигнализации обнаружения пожара должно быть предусмотрено не менее двух источников электрической энергии, один из которых должен быть аварийным. Питание должно осуществляться по отдельным фидерам, предназначенным только для этой цели. При исчезновении питания от основного источника электрической энергии должно быть предусмотрено автоматическое переключение питания на аварийный источник с подачей звукового и светового сигнала. Если основным источником энергии являются аккумуляторные батареи, то должны быть предусмотрены две отдельные аккумуляторные батареи (основная и резервная), причем емкость каждой из них должна быть достаточной для работы системы сигнализации обнаружения пожара без подзарядки в течение не менее 3 суток.

7.4.4 Система сигнализации обнаружения пожара, работающая на принципе забора проб воздуха из защищаемых помещений в приемное устройство, должна получать питание вместе с ее вентиляторами по отдельным фидерам от основного источника электрической энергии и от аварийного источника, или другого независимого источника электрической энергии.

7.4.5 Централизованное приемное устройство сигнализации обнаружения пожара должно быть сконструировано таким образом, чтобы:

1. любой сигнал или повреждение одной цепи не влияли на нормальную работу других цепей;
2. сигнал обнаружения признаков пожара преобладал над другими сигналами, поступающими на приемное устройство, и позволял определить расположение помещения, из которого поступил сигнал обнаружения признаков пожара;
3. цепи контактных датчиков сигнализации обнаружения пожара работали на размыкание. Допускается применение датчиков, работающих на замыкание, если они имеют герметизированные контакты, а цепь их непрерывно контролируется на обрыв и замыкание на корпус;
4. имелась возможность контроля его работы;
5. имелась возможность отключения отдельных лучей или извещателей. При этом должна быть обеспечена световая сигнализация отключенного состояния луча или извещателя.

7.4.6 Приемное устройство сигнализации должно давать сведения не менее указанных в табл. 7.4.6.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Режим работы</th>
<th>Сист. с датчиком температуры</th>
<th>Сист. с воздухо-забором</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>В работе</td>
<td>Свет</td>
<td>Свет</td>
</tr>
<tr>
<td>2</td>
<td>Питание от аварийного источника</td>
<td>Свет и звук</td>
<td>Свет и звук</td>
</tr>
<tr>
<td>3</td>
<td>Пожар</td>
<td>Звук, свет и место</td>
<td>Звук, свет и место</td>
</tr>
<tr>
<td>4</td>
<td>Неисправность датчиков</td>
<td>Свет и звук</td>
<td>Свет и звук</td>
</tr>
<tr>
<td>5</td>
<td>Неисправность вентилятора проб</td>
<td>—</td>
<td>Свет и звук</td>
</tr>
</tbody>
</table>

Световой сигнал обнаружения признаков пожара необходимо выполнять таким образом, чтобы он состоял из двух указателей (двух ламп или двойной нити накаливания) или должно быть предусмотрено специальное устройство для контроля исправности ламп сигнализации. Цвет светового сигнала должен соответствовать требованиям 4.5.5.

Световые сигналы должны быть раздельными для каждого рода информации.

Сигналы, служащие для определения расположения помещения или района, из которого поступил импульс, могут быть общими с сигналом обнаружения признаков пожара или повреждения.

Световые сигналы должны действовать с момента получения импульса до момента устранения причины их срабатывания, причем сигнал, указанный в п. 1 табл. 7.4.6, должен действовать постоянно независимо от рода источника питания.

7.4.7 Если сигнал обнаружения пожара не будет принят (квитирован) в течение 2 мин на приемном устройстве, то в машинных, жилых и других помещениях, где может находиться персонал, должна автоматически включаться сигнализация о пожаре.

7.4.8 Системы обнаружения пожара, способные дистанционно определять расположение помещения, из которого поступил сигнал о пожаре, должны быть выполнены так, чтобы:
Часть X. Электрическое оборудование

.1 петля не могла быть повреждена пожаром более чем в одной точке;
.2 были предусмотрены средства, которые при любом повреждении в петле (например, обрыв, короткое замыкание, заземление) сохраняли бы работоспособность оставшейся части петли;
.3 была предусмотрена возможность быстрого восстановления работоспособности системы в случае выхода из строя ее механических, электрических и электронных элементов;
.4 срабатывание первого сигнала пожарной сигнализации не препятствовало бы срабатыванию любого другого извещателя и подаче последующих сигналов тревог;

7.4.9 В системе пожарной сигнализации должны быть предусмотрены, как минимум, два приемных устройства. Центральное приемное устройство должно располагаться в центральном посту управления, дублирующее приемное устройство должно располагаться в резервном посту управления.

7.4.10 Датчики пожарной сигнализации и ручные извещатели должны располагаться во всех помещениях и пространствах, в которых возможно возникновение пожара. Во всех помещениях технологического комплекса, в машиных помещениях, постах управления, в помещениях распределительных щитов, в коридорах, каютах, кладовых, других помещениях жилого модуля должны предусматриваться датчики и/или ручные извещатели. Ручные извещатели должны предусматриваться там, где обычно может находиться персонал. Чертежи размещения датчиков и извещателей подлежат рассмотрению Регистром.

7.4.11 Если при срабатывании пожарной сигнализации предусматривается автоматическая остановка технологического или иного ответственного оборудования, то в этом случае при проектировании системы должны быть приняты меры обеспечения повышенной достоверности срабатывания сигнализации за счет резервирования и логической обработки сигналов датчиков. Указанные требования могут быть реализовано, например, путем установки в одном помещении не менее трех датчиков, подключенных к разным лучам (цепям) с применением мажоритарного голосования два из трех.

7.4.12 При срабатывании пожарной сигнализации центральная станция должна выдавать на внешние устройства, как минимум, следующие управляющие сигналы:
- в систему аварийной остановки вентиляторов соответствующих помещений и закрытие противопожарных дверей и заслонок;
- в устройство аварийного пуска пожарных насосов;
- в систему аварийной сигнализации ПБУ.

7.5 СИГНАЛИЗАЦИЯ ПРЕДУПРЕЖДЕНИЯ О ПУСКЕ СИСТЕМЫ ОБЪЕМНОГО ПОЖАРОТУШЕНИЯ

7.5.1 Сигнализация должна кроме требований настоящего раздела удовлетворять требованиям части VI «Противопожарная защита».

7.5.2 Питание сигнализации должно осуществляться от судовой сети в аккумуляторной батареи емкостью, достаточной для ее питания в течение 30 мин.

При этом должно быть предусмотрено устройство для автоматического переключения цепей питания сигнализации на аккумуляторную батарею при исчезновении напряжения в судовой сети.

7.6 СИГНАЛИЗАЦИЯ ЗАКРЫТИЯ ВОДОНЕПРОНИЦАЕМЫХ И ПРОТИВОПОЖАРНЫХ ДВЕРЕЙ

7.6.1 Световая сигнализация (индикация) открытого и закрытого состояния водонепроницаемых дверей и сходных люков, требуемая 8.3.3 и 8.4 части Ш «Устройства, оборудование и снабжение ПБУ/МСМ», должна получать питание от электрической сети и независимого источника, как указано в 7.3.3.

7.6.2 Световая сигнализация (индикация) открытого и закрытого состояния противопожарных дверей, требуемая 2.1.5 части VI «Противопожарная защита», должна получать питание от электрической сети и независимого источника, как указано в 7.3.3.

7.7 АВАРИЙНО-ПРЕДУПРЕДИТЕЛЬНАЯ СИГНАЛИЗАЦИЯ МЕХАНИЧЕСКОЙ УСТАНОВКИ В ПОМЕЩЕНИЯХ МЕХАНИКОВ

7.7.1 В жилых помещениях механиков должна быть предусмотрена система обобщенной АПС механической установки, в соответствии с требованиями части XIV «Автоматизация».

7.7.2 Кроме того, там же должна быть предусмотрена звуковая и световая сигнализация аварийного вызова механика, приводимая в действие вручную с центрального поста управления механической установки и из машинного помещения.
7.7.3 Питание вышеуказанных систем сигнализации должно осуществляться от источника бесперебойного питания, как указано в 4.2.

7.8 СИГНАЛЬНО-ОТЛИЧИТЕЛЬНЫЕ ФОНАРИ

7.8.1 Для питания стационарно установленных сигнально-отличительных фонарей, указанных в разд. 2 части I «Сигнальные средства» Правил по оборудованию ПБУ/МСП, должен быть предусмотрен специальный распределительный щит.

7.8.2 Щит сигнально-отличительных фонарей должен получать питание по двум фидерам:
1. по одному фидеру от главного распределительного щита через аварийный распределительный щит;
2. по второму фидеру от ближайшего группового щита, который не получает питания от аварийного распределительного щита; или
3. от системы бесперебойного питания, как указано в 4.2.

7.8.3 Сигнально-отличительные фонари должны быть присоединены к сети питания гибким проводом со штепсельным разъемом.

7.8.4 Цепи питания сигнально-отличительных фонарей должны быть выполнены по двухпроводной системе, и в каждой цепи должен быть предусмотрен двухполюсный выключатель, установленный на распределительном щите сигнально-отличительных фонарей.

7.8.5 Каждая цепь питания сигнально-отличительных фонарей должна иметь защиту в обоих проводах и световую сигнализацию о действии сигнально-отличительного фонаря.

7.8.6 Падение напряжения на распределительном щите, пытающем сигнально-отличительные фонари, включая и систему сигнализации действия фонарей, не должно превышать 5 % при номинальном напряжении до 30 В и 3 % — при напряжении свыше 30 В.

7.8.7 Конструкция применяемых сигнально-отличительных фонарей должна соответствовать требованиям, изложенными в разд. 3 части I «Сигнальные средства» Правил по оборудованию ПБУ/МСП.

7.9 СИГНАЛИЗАЦИЯ ОБНАРУЖЕНИЯ ВЗРЫВООПАСНЫХ КОНЦЕНТРАЦИЙ ГАЗОВ

7.9.1 На главном или центральном посту управления платформой должна быть предусмотрена стационарная система сигнализации взрывоопасных концентраций газов, которая должна постоянно контролировать каждый район и все помещения платформы, в которых может появиться опасная концентрация взрывоопасной газовой смеси. На резервном (аварийном) посту управления платформой должна предусматриваться дублирующая панель стационарной системы сигнализации взрывоопасных концентраций газов. В системе должна предусматриваться индикация по вызову величины концентрации взрывоопасных газовых смесей.

7.9.2 Датчики (газоанализаторы) взрывоопасной концентрации газов должны быть установлены по крайней мере в следующих помещениях и пространствах:
1. во взрывоопасных помещениях и пространствах зоны 1;
2. во всех входных частях каналов вентиляции, направляющих воздух во взрывоопасные зоны;
3. в пространствах и помещениях, указанных в части VI «Противопожарная защита».

Должна быть предусмотрена возможность отключения с центральной станции отдельного газоанализатора или луча. При этом на центральной станции должен включаться световой сигнал, указывающий отключенный газоанализатор или луч.

7.9.3 Система сигнализации должна подавать световой и звуковой сигнал на главном посту управления в случае обнаружения в защищаемых помещениях следующих уровней взрывоопасных концентраций газов:
1. максимальной концентрации в 25 % от нижнего взрывоопасного предела для углеводородов;
2. 10 и 20 ppm для сероводорода.

7.9.4 Автоматическая система остановки электрооборудования неизъёмно закрепленного исполнения должна срабатывать следующим образом:
1. если концентрация газа, указанная в 7.9.3, достигает 60 % нижнего взрывоопасного предела; или
часть X. Электрическое оборудование

взрывоопасная концентрация газов будет обнаружена во входных частях воздушных каналов, направляющих воздух в взрывообезопасные зоны.

7.9.5 Питание системы обнаружения и сигнализации взрывоопасных концентраций газов должно осуществляться от основного и аварийного источников электрической энергии, или от системы бесперебойного питания, как указано в 4.2.

7.9.6 В системе газовой сигнализации должен быть предусмотрен самоконтроль. По крайней мере при таких повреждениях, как потеря питания, обрыв или короткое замыкание в датчиках, или при повреждениях в системе трубопроводов отбора проб и вентиляции должен подаваться сигнал АПС.

7.9.7 Должна быть предусмотрена возможность проверки исправной работы газоанализаторов, например, с помощью поверочных газов, имеющих фиксированную концентрацию газа.

7.9.8 При срабатывании системы газовой сигнализации должен быть предусмотрен сигнал «Газ» в систему центральной аварийной сигнализации платформы.

7.10 СВЕТОСИГНАЛЬНЫЕ И ОСВЕТИТЕЛЬНЫЕ СРЕДСТВА ВЕРТОЛЕТНЫХ ПЛОЩАДОК

7.10.1 Общие требования.

7.10.1.1 Светосигнальные и осветительные средства для посадочных вертолетных площадок должны удовлетворять применимым требованиям, изложенным в 6.2.

7.10.1.2 Светосигнальные и осветительные средства для посадочных вертолетных площадок должны обеспечивать как минимум следующее:
обозначение периметра (границ) посадочной площадки;
освещение посадочной зоны;
обозначение возвышающихся конструкций в зоне посадки.

7.10.1.3 Используемые для этих целей огни должны иметь степень защиты не ниже IP56 и надежно работать при внешних воздействиях, указанных в разд. 2 части XI «Электрическое оборудование» Правил классификации и постройки морских судов.

7.10.1.4 Все светосигнальные и осветительные средства, а также другое электрооборудование в пределах вертолетных заправочных постов и ангаров должно быть взрывозащищенного типа и иметь степень взрывозащиты, соответствующую как минимум классу Т3 и группе II A.

7.10.1.5 В отношении своих светотехнических характеристик огни должны удовлетворять требованиям ИКАО (Международная организация гражданской авиации), что должно быть подтверждено соответствующим заключением или свидетельством компетентного органа гражданской авиации.

7.10.1.6 Питание светосигнальных и осветительных средств, указанных в настоящем разделе, должно осуществляться от основного и аварийного источника питания, получающего питание от основного и аварийного источника питания с автоматическим переключением при исчезновении питания.

7.10.2 Огни обозначения периметра.

7.10.2.1 Игнально-отличительная цепь обозначения периметра (границ) посадочной зоны должны состоять как минимум из 8 круговых огней мощностью не менее 40 Вт каждый и расположенных вокруг границы посадочной зоны.

7.10.2.2 Расстояние между соседними огнями не должно превышать 3 м. Огни обозначения периметра должны быть желтого цвета. Допускается использование огней желтого и синего цветов с их последовательным чередованием.

7.10.2.3 Огни должны быть разделены на две независимые цепи и получать питание таким образом, чтобы при неисправности питания одной из цепей, 50 % огней обозначения периметра оставались работоспособными.

7.10.2.4 После монтажа колпаки огней не должны возвышаться над уровнем посадочной площадки более чем на 150 мм.

7.10.3 Освещение посадочной зоны.

7.10.3.1 П осадочная зона и указатель направления ветра должны быть освещены. Для этой цели могут быть использованы прожекторы заливного света.

7.10.3.2 При установке средств освещения должны быть предприняты соответствующие меры, исключающие ослепление пилотов вертолетов при взлете, посадке и маневрировании.

7.10.4 Заградительно-предупредительные огни.

7.10.4.1 Для обеспечения безопасности полетов, все значительно возвышающиеся конструкции и объекты, такие как элементы надстройки, бурильные и технологические колонны и т. д., должны быть обозначены специальными заградительно-предупредительными огнями красного цвета.

7.10.4.2 Конструкции и объекты, возвышающиеся над уровнем посадочной площадки на 15 м и выше, должны быть обозначены заградительными огнями по всей высоте через каждые 10 м начиная с самой верхней точки конструкции.

7.10.4.3 В качестве заградительно-предупредительных должны применяться круговые огни мощностью не менее 40 Вт.
Правила классификации, постройки и оборудования ПБУ/МСП

8 СИСТЕМА ЭЛЕКТРИЧЕСКОЙ ЗАЩИТЫ

8.1 ОБЩИЕ ТРЕБОВАНИЯ

8.1.1 Каждая отдельная электрическая цепь должна быть защищена от короткого замыкания и перегрузки, если для отдельных цепей не оговорен иной способ защиты, или сигнализации (как например, для электрических цепей рулевых машин или пожарных насосов).

8.1.2 Цепи, отходящие от распределительных щитов, должны быть защищены от коротких замыканий и перегрузок с помощью устройств, установленных в начале каждой цепи.

Защита от перегрузки цепи питания распределительного щита не требуется, если питаемые от этого щита потребители имеют индивидуальные устройства защиты от перегрузок, а кабель цепи питания щита выбран на максимальный суммарный ток всех потребителей этого щита.

8.1.3 Защитные устройства должны быть подобраны к характеристикам защищаемого оборудования таким образом, чтобы они срабатывали при недопустимых перегрузках. Номинальные уставки приборов защиты от перегрузок для каждой защищаемой цепи должны быть четко обозначены на приборах защиты.

8.1.4 Система защиты должна быть избирательной по токам перегрузки и по предусматриваемым токам короткого замыкания. При этом защита должна быть устроена так, чтобы повреждения в неответственных потребителях и их цепях питания не оказывали отрицательного влияния на надежность работы электростанции ПБУ или МСП и обеспечение питания ответственных устройств.

Защитные устройства от токов короткого замыкания и перегрузок не должны срабатывать от пусковых токов защищаемого электрического оборудования.

8.1.5 Защита от перегрузки должна быть установлена:
.1 не менее чем в одной фазе — при однофазной системе переменного тока, или в положительном полюсе при двухпроводной системе постоянного тока;
.2 не менее чем в двух фазах — при изолированной трехпроводной системе трехфазного тока;
.3 во всех фазах — при трехфазной четырехпроводной системе.

8.1.6 Защита от коротких замыканий должна устанавливаться в каждом изолированном полюсе системы постоянного тока, а также в каждой фазе системы переменного тока. Установку на току устройств защиты от токов короткого замыкания должны соответствовать не менее чем 200 % номинального тока защищаемого оборудования. Срабатывание защиты допускается без выдержки времени или с выдержкой времени, необходимой для получения соответствующей избирательности.

8.1.7 Если на отдельных участках цепи питания предусмотрено уменьшение площади сечения кабеля, для каждого кабеля меньшей площади сечения должна быть установлена дополнительная защита, если стоящая выше защита не защищает кабель меньшей площади сечения.

8.1.8 В цепях питания аварийного распределительного щита, а также в цепях питания аварийных потребителей не должны применяться защитные устройства, исключающие возможность немедленного повторного включения после срабатывания защиты.

8.1.9 Дополнительные требования для устройств защиты в сетях с напряжением свыше 1000 В приведены в разд. 18 настоящей части.

8.2 ЗАЩИТА ГЕНЕРАТОРОВ

8.2.1 Для генераторов, не предназначенных для параллельной работы, должны быть установлены устройства защиты от перегрузок и короткого замыкания. Для генераторов, предназначенных для параллельной работы, должны быть установлены по крайней мере следующие устройства защиты:
.1 от перегрузок;
.2 от короткого замыкания;
3 от обратного тока или от обратной мощности;
4 от минимального напряжения.

8.2.2 Система защиты генераторов от перегрузок должна соответствовать их перегрузочным характеристикам и удовлетворять следующим требованиям:
1 для перегрузок до 10 % должна предусматриваться только световая и звуковая аварийно-предупредительная сигнализация, действующая с выдержкой времени в диапазоне 0 — 15 мин. Выдержка времени более 15 мин допускается, если это требуется условиями эксплуатации и если конструкция генератора это допускает;
2 для перегрузок в диапазоне 10 — 50 % автоматический выключатель должен отключать генератор с выдержкой времени, соответствующей двум минутам при 50-процентной перегрузке (т. е. при меньших перегрузках должна предусматриваться выдержка времени, большая чем 2 мин). Перегрузка более чем 50 % от номинальной и выдержка в 2 мин могут быть превышены, если это требуется условиями эксплуатации электро-станции и если конструкция генератора это допускает;
3 для перегрузок, превышающих 50 % номинальной, отключение генератора должно происходить с выдержкой времени, обеспечивающей соответствующую избирательность, для чего в автоматических выключателях генераторов должны быть предусмотрены соответствующие выдержки времени.

8.2.3 Должны быть предусмотрены устройства, автоматически и избирательно отключающие неответственные потребители при перегрузке генераторов. Отключение потребителей может быть выполнено в одну или несколько ступеней соответственно перегрузочной способности генератора.

8.2.4 Защита генераторов, предназначенных для параллельной работы, от обратного тока или от обратной мощности должна быть подобрана к характеристикам приводного двигателя. Пределы уставок указанных видов защиты должны соответствовать приведенным в табл. 8.2.4.

<table>
<thead>
<tr>
<th>Род тока</th>
<th>Пределы уставок защиты от обратного тока или от обратной мощности в зависимости от привода генератора</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Турбина</td>
</tr>
<tr>
<td>Переменный</td>
<td>2 — 6 % ном. мощности, кВт</td>
</tr>
<tr>
<td>Постоянный</td>
<td>2 — 15 % ном. тока, А</td>
</tr>
</tbody>
</table>

Защита генераторов постоянного тока от обратного тока должна устанавливаться в подносе, противоположном тому, в котором находится уравнительный провод. При снижении приложенного напряжения на 50 % защита от обратной мощности или от обратного тока должна быть еще способна к действию, хотя значения обратного тока или обратной мощности могут быть другими.

8.2.5 Защита от минимального напряжения должна обеспечивать возможность надежного подключения генераторов к шинам при напряжении 85 % и более номинального и исключать возможность подключения генераторов к шинам при напряжении менее 35 % номинального, а также отключать генераторы при снижении напряжения на их зажимах в пределах от 70 до 35 % номинального.

Защита от минимального напряжения должна действовать с выдержкой времени на отключение генераторов от шин при снижении напряжения и должна действовать мгновенно при попытке подключения к шинам генератора до достижения указанного выше минимального напряжения.

8.2.6 Для генераторов мощностью 1000 кВА и более должна быть предусмотрена защита от внутренних повреждений и защита кабельной трассы между генератором и его автоматическим выключателем на ГРЩ. В случае короткого замыкания внутри генератора или в кабеле между генератором и автоматическим выключателем, указанная защита должна обеспечить снятие возбуждения генератора и отключение его автоматического выключателя.

8.2.7 Если генератор постоянного тока с приводом от турбины предназначен для параллельной работы, должно быть предусмотрено устройство для отключения автоматического выключателя генератора при срабатывании регулятора безопасности турбины.

8.2.8 Уставки по току устройств защиты с выдержкой времени должны подбираться таким образом, чтобы во всех случаях обеспечивалось надежное отключение тока короткого замыкания по истечении установленной выдержки времени.

8.2.9 В системах возбуждения генераторов допускается применение шлейфов предохранителей в качестве защитного устройства для полупроводниковых элементов.

8.3 Защита электрических двигателей

8.3.1 На фидерах, отходящих от распределительных щитов, питающих электрические двигате-
Правила классификации, постройки и оборудования ПБУ/МСП

266

ли мощностью выше 0,5 кВт, должны устанавливаться устройства защиты от токов короткого замыкания и перегрузок, а также устройство нулевой защиты, если не требуется повторный автоматического пуска электрического двигателя.

Защитные устройства по перегрузке и нулевой защите допускается устанавливать в пусковых устройствах электрических двигателей.

8.3.2 Защитные устройства от перегрузки электрических двигателей с продолжительными режимами работы должны отключать защищаемый электродвигатель при перегрузке в диапазоне 105 — 125 % номинального тока.

Устройства защиты электрических двигателей от перегрузок допускается заменять световой и звуковой сигнализацией, что в каждом случае является предметом специального рассмотрения Регистром.

8.3.3 В цепях питания электрических приводов пожарных насосов не должны применяться устройства защиты от перегрузки, работающие на принципе электротепловых или температурных реле.

Вместо устройства защиты от перегрузки в этом случае должна предусматриваться световая и звуковая сигнализация.

8.4 ЗАЩИТА ЭЛЕКТРОПРИВОДОВ РУЛЕВЫХ УСТРОЙСТВ ПБУ

8.4.1 Для электрических двигателей и систем управления электрического или электрогидравлического рулевого устройства должно быть предусмотрено устройство защиты только от токов короткого замыкания.

Должна быть установлена световая и звуковая сигнализация о перегрузке двигателя и выходе из строя любой из фаз.

8.4.2 Автоматические выключатели, защищающие электрические двигатели рулевых устройств от токов короткого замыкания при применении постоянного тока, должны иметь уставки на выключение без выдержки времени при токе не менее 300 % и не более 400 % номинального тока защищаемого электрического двигателя, а при переменном токе — на выключение без выдержки времени при токе более чем 125 % наибольшего пускового тока защищаемого двигателя.

Если в качестве такой защиты применяются предохранители, следует подобрать номинальный ток предохранителей на одну ступень выше, чем это вытекает из условий пусковых токов электрического двигателя.

8.4.3 Для электрических двигателей приводов средств активного управления ПБУ (подруливающих устройств) должна быть предусмотрена защита от перегрузки и от токов короткого замыкания. Защитные устройства от перегрузки указанных приводов должны иметь световую и звуковую аварийно-предупредительную сигнализацию о перегрузке и отключать электродвигатель в пределах, указанных в 8.3.2 с соответствующей выдержкой времени.

Защита от токов короткого замыкания должна соответствовать требованиям 8.4.2.

8.5 ЗАЩИТА ТРАНСФОРМАТОРОВ

8.5.1 На фидерах питания первичных обмоток трансформаторов должны быть установлены устройства защиты от короткого замыкания и перегрузки.

Для трансформаторов мощностью до 6,3 кВА допускается защита только предохранителями.

Защиту трансформаторов от перегрузки допускается заменять световой и звуковой аварийно-предупредительной сигнализацией, что в каждом случае является предметом специального рассмотрения Регистром.

8.5.2 Если трансформаторы предназначены для параллельной работы, необходимо устанавливать автоматические выключатели, выключающие их первичную и вторичную обмотки, но не обязательно одновременно.

Если такие трансформаторы получают питание от различных секций ГРЩ, которые в процессе эксплуатации могут быть разъединены, то необходимо предусмотреть блокировку, исключающую их параллельную работу при разъединении секций ГРЩ.

8.6 ЗАЩИТА АККУМУЛЯТОРОВ

8.6.1 Для батарей аккумуляторов, за исключением батарей, предназначенных для пуска двигателей внутреннего сгорания, должны быть предусмотрены устройства защиты от токов короткого замыкания.

8.6.2 Каждая система зарядки аккумуляторов должна иметь защиту от разрядки батареи вследствие понижения или исчезновения напряжения на выходе зарядного устройства.

8.6.3 Для батарей аккумуляторов, предназначенных для пуска двигателей внутреннего сгорания, рекомендуется устанавливать разъединители в начале цепи со стороны аккумуляторов,
отключающие батареи от потребителей (допускается установка разъединителя в одном полюсе).

8.7 ЗАЩИТА ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ И ПРИБОРОВ УПРАВЛЕНИЯ И КОНТРОЛЯ

8.7.1 Контрольные лампы, а также измерительные и регистрирующие приборы должны иметь защиту от короткого замыкания или устройства, ограничивающие ток короткого замыкания.

Контрольные лампы могут не иметь собственной защиты от короткого замыкания или устройств, ограничивающих ток короткого замыкания, если выполнены все указанные ниже условия:
1. лампы находятся в общем кожухе устройства;
2. лампы получают питание от цепей, находящихся внутри кожуха устройства;
3. защита цепи устройства рассчитана на ток не превышающий 25 А;
4. повреждение в цепи лампы не может вызвать перерыва в работе ответственного устройства.

Устройства защиты от короткого замыкания или устройства, ограничивающие ток короткого замыкания, должны находиться возможно ближе к зажимам со стороны питания.

8.7.2 Конденсаторы защиты от радиопомех, устанавливаемые в цепях главных и аварийных распределительных щитов, в цепях генераторов, а также электрических устройств ответственного назначения, должны иметь защиту от токов короткого замыкания.

8.7.3 Катушки напряжения аппаратов и устройств управления и защиты должны иметь защиту от короткого замыкания, но могут не иметь собственной защиты, если выполнены оба указанные ниже условия:
1. катушки установлены в общем кожухе устройства, имеют общую защиту и относятся к системе управления одного устройства;
2. катушки получают питание от цепи устройства, защита которого рассчитана на ток не более 25 А.

8.7.4 Для измерительных трансформаторов напряжения и трансформаторов питания цепей управления защита от перегрузок и сигнализации не требуются.

Переключение измерительных трансформаторов тока должно быть выполнено таким образом, чтобы исключалась возможность нахождения их вторичных обмоток в разомкнутом состоянии.

8.8 ЗАЩИТА СИЛОВЫХ ПОЛУПРОВОДНИКОВЫХ УСТРОЙСТВ

8.8.1 Силовые полупроводниковые устройства должны иметь защиту от внутренних и внешних перенапряжений.

8.8.2 Блоки полупроводниковых элементов должны быть защищены от короткого замыкания. Защита отдельных диодов или тиристоров должна быть отделена от защитной цепи нагрузки.

8.8.3 Если предусмотрен только один потребитель, допускается, чтобы нагрузка и блоки полупроводниковых элементов имели одну общую защиту.

8.9 УСТРОЙСТВА ЗАЩИТНОГО ОТКЛЮЧЕНИЯ (УЗО)

8.9.1 Для защиты персонала от поражения электрическим током и защиты отдельных видов электрического оборудования от однофазных замыканий на корпус должны применяться устройства защитного отключения.

8.9.2 Устройства защитного отключения должны устанавливаться в цепях питания розеток, предназначенных для питания переносного оборудования и в цепях питания каютных розеток, а также розеток в общественных и иных помещениях с напряжением выше безопасного (50 В).

8.9.3 Устройства защитного отключения должны иметь следующие уставки срабатывания по току нулевой последовательности:
30 мА — для потребителей с двойной или усиленной изоляцией;
10 мА — для потребителей с нормальной изоляцией.

8.9.4 Для электрического оборудования ответственного назначения установка устройств защитного отключения не допускается.
9 АВАРИЙНЫЕ ЭЛЕКТРИЧЕСКИЕ УСТАНОВКИ

9.1 ОБЩИЕ ТРЕБОВАНИЯ

9.1.1 На каждой ПБУ или МСП должны быть предусмотрены автономный аварийный и аварийный переходный источник электрической энергии. В качестве аварийного источника должен применяться дизель-генератор, а в качестве переходного аварийного источника — система аккумуляторных батарей с автоматическим зарядным устройством, получающим питание от штит АРЩ.

9.1.2 Если основной источник электрической энергии вместе со своими распределительными устройствами и системами управления полностью независим от распределительных устройств и систем в других помещениях так, что пожар или другая авария в одном из этих помещений не будет нарушать нормальное электроснабжение установки от других источников, то отдельный аварийный источник электрической энергии может не устанавливаться при условии, что:

.1 имеется не менее двух генераторов в двух и более помещениях, удовлетворяющих требованиям настоящей части;

.2 имеющиеся генераторы оборудованы системами автоматического пуска, обеспечивающими пуск резервного генератора и прием нагрузки в течение не более 45 с;

.3 расположение каждого помещения, в котором размещены агрегаты, удовлетворяет требованиям 9.2.1, 9.2.2 и 9.2.3.

9.1.3 Мощность аварийного источника должна быть достаточной для питания всех потребителей, одновременная работа которых требуется для обеспечения безопасности ПБУ или МСП в случае аварии.

9.1.4 Должно быть предусмотрено устройство для испытания всей аварийной установки вместе с устройствами автоматического пуска дизель-генератора.

9.1.5 В центральном посту управления механической установкой, или на главном распределительном щите должен устанавливаться указатель, действующий при разрядке любой аккумуляторной батареи, являющейся аварийным переходным или резервным источником энергии.

9.1.6 Аварийные источники электрической энергии должны иметь защиту только от коротких замыканий. Для аварийного дизель-генератора в центральном посту управления должна быть предусмотрена световая и звуковая сигнализация о перегрузке генератора.

9.2 ПОМЕЩЕНИЯ АВАРИЙНЫХ ИСТОЧНИКОВ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

9.2.1 Помещения аварийных источников электрической энергии и их трансформаторов, при их наличии, аварийных переходных источников энергии, аварийного распределительного щита и распределительного щита аварийного освещения должны быть расположены выше самой верхней непрерывной полубашишке и на максимальном удалении от взрывоопасных зон. Указанные помещения на ПБУ, на которые распространяются требования части V «Деление на отсеки», должны также располагаться, как минимум, на 300 мм выше самой высокой аварийной ватерлинии.

Выходы из этих помещений должны быть легко доступными и вести непосредственно на открытую полубашишу, на которой расположен аварийный источник электрической энергии.

9.2.2 Размещение аварийных источников электрической энергии, а также принадлежащих к ним трансформаторов, если таковые применяются, переходных источников электрической энергии, аварийного распределительного щита и распределительного щита аварийного освещения относительно основных источников электрической энергии и их трансформаторов и главного распределительного щита должно быть таким, чтобы пожар или другая авария в помещениях основного источника электрической энергии, принадлежащих ему трансформаторов, главного распределительного щита, а также в любом машинном помещении категории А, не вызывали повреждений в системе питания, в управлении и распределении электрической энергии от аварийного источника.

9.2.3 Помещения аварийных источников электрической энергии, принадлежащих к ним трансформаторов, переходных источников электрической энергии, аварийного распределительного щита и распределительного щита аварийного освещения не должны быть смежными с машинно-котельными помещениями и с помещениями основного источника электрической энергии, принадлежащих ему трансформаторов и главного распределительного щита.
9.2.4 Аварийный распределительный щит должен быть установлен возможно ближе к аварийному источнику электрической энергии, т. е. в одном помещении с дизель-генератором, за исключением того случая, когда такое размещение отрицательно воздействует на работу распределительного щита.

В этом же помещении должны также находиться все пусковые и зарядные устройства, а также стартерные аккумуляторные батареи для пуска аварийного агрегата, с учетом выполнения требований, изложенных в 1.3.2.

9.2.5 Помещение аварийного генераторного агрегата должно иметь отопление, обеспечивающее температуру, достаточную для бесперебойного пуска аварийного агрегата, и вентиляцию, обеспечивающую достаточный приток воздуха для работы дизель-генератора с полной нагрузкой при закрытом помещении.

9.3 АВАРИЙНЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

9.3.1 Аварийные источники на ПБУ или МСП должны обеспечивать питание в течение 18 ч следующих потребителей:
.1 аварийного освещения:
во всех коридорах, трапах и выходах из служебных помещений, а также в кабинах пассажирских лифтов и их шахтах;
машиных помещений, помещений генераторных агрегатов;
всех местных постов управления, а также главного и аварийного распределительных щитов;
помещений аварийного дизель-генератора;
главного и резервного поста управления и помещений, связанных с управлением технологическим процессом и механизмами, ответственными за поддержание этого процесса, а также помещений, в которых находятся устройства аварийного отключения электрического оборудования;
штурманской рубки и радиорубки (при наличии);
мест хранения аварийного имущества, пожарного инвентаря, снаряжения пожарных и установок ручных пожарных извещателей;
помещений рулевого привода и подруливающих устройств ПБУ;
у пожарных и спринклерных насосов, аварийного осушительного насоса и мест установки пусковых устройств этих механизмов;
ангаров и посадочных мест для вертолетов;
помещения гирокомпаса и другого навигационного оборудования;

 медицинских помещений;
.2 электрических приводов и систем сигнализации, предназначенных для спасательных средств и эвакуации персонала;
.3 электрических приводов и систем управления противовывбросового оборудования и устройств отсоединения ПБУ или МСП от устьевого комплекса;
.4 электрических приводов и систем управления стационарно установленного водолазного оборудования;
.5 электрических устройств, действие которых необходимо при оставлении ПБУ или МСП персоналом;
.6 сигнально-отличительных фонарей и других фонарей, требуемых действующими Международными правилами предупреждения столкновения судов;
.7 средств внутренней связи и оповещения, а также аварийной сигнализации;
.8 радио- и навигационного оборудования в соответствии с требованиями частей IV "Радиооборудование" и V "Навигационное оборудование" Правил по оборудованию морских судов;
.9 системы сигнализации обнаружения пожара и системы сигнализации взрывоопасных концентраций газов;
.10 ламп дневной сигнализации, звуковых сигнальных средств (свистков, гонгов и др.), вызывной ручной сигнализации ответственного персонала и остальных видов сигнализации, требуемых в аварийных состояниях;
.11 одного из пожарных насосов и электрооборудования, обеспечивающего работу пенообразователей, указанных в части VI "Противопожарная защита" Правил ПБУ/МСП;
.12 в течение 96 ч всех габаритных проблесковых фонарей и электрических звуковых сигнальных средств, необходимых для обозначения ПБУ или МСП;
.13 электрических приводов водонепроницаемых и противопожарных дверей с их указателями и предупредительной сигнализацией;
.14 необходимых для аварийных операций погружных и полупогружных ПБУ электрических приводов балластных насосов, системы управления клапанами балластной системы и указателей количества балласта и состояния ПБУ;
.15 других систем, работа которых будет признана Регистром необходимой для обеспечения безопасности ПБУ или МСП и находящихся на ней людей.

9.3.2 Аварийный источник электрической энергии должен обеспечить питание в течение 3 ч аварийного освещения мест посадки в спасательные средства на палубе и за бортом согласно
Правила классификации, постройки и оборудования ПБУ|МСП

части II «Спасательные средства» Правила по оборудованию морских судов.

9.3.3 Аварийный источник электрической энергии должен обеспечить питание рулевого устройства при его наличии.

9.3.4 Аварийный источник электрической энергии должен:
.1 приводиться в действие двигателем внутреннего сгорания, имеющим характеристики, указанные в части IX «Механизмы» Правил классификации и постройки морских судов, и оборудованном системой аварийно-предупредительной сигнализации;
.2 запускаться автоматически при исчезновении напряжения на шинах главного распределительного щита. Общее время пуска и приема нагрузки генератором не должно превышать 45 с.

9.3.5 В качестве аварийного переходного источника электрической энергии, требуемого в 9.1.1, следует применять аккумуляторную батарею, которая должна работать без подзарядки, при сохранении изменений напряжения на ее клеммах в пределах 12 % номинального в течение полного периода требуемого настоящим разделом времени разрядки.

9.3.6 Емкость батареи, являющейся переходным источником электрической энергии, должна быть достаточной для обеспечения в течение 30 мин питания следующих потребителей:
.1 аварийного освещения и необходимых габаритных и сигнально-отличительных фонарей согласно 9.3.1.1, 9.3.1.6, 9.3.1.12 и 9.3.2;
.2 всех средств внутренней связи и оповещения, необходимых в аварийных условиях;
.3 системы аварийной сигнализации, сигнализации обнаружения пожара и взрывоопасных концентраций газов, сигнализации о включении системы объемного пожаротушения;
.4 ламп дневной сигнализации, звуковых сигналов, световых сигналов (свистки, гонги и др.);
.5 командного транспланирования устройства или системы громкой связи, указанной в 7.2.7;
.6 устройств закрытия водонепроницаемых и противопожарных дверей, сигнализации их положения и предупреждения об их закрытии.

Потребители, перечисленные в 9.3.6.2 — 9.3.6.6, могут не получать питание от переходного источника, если они имеют собственные аккумуляторные батареи, обеспечивающие их питание в течение требуемого времени.

9.4 РАСПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ОТ АВАРИЙНЫХ ИСТОЧНИКОВ

9.4.1 В нормальных эксплуатационных условиях аварийный распределительный щит должен получать питание от главного распределительного щита. Фидер питания АРЩ должен иметь защитные устройства от перегрузки и короткого замыкания, установленные на главном распределительном щите.

На аварийном распределительном щите следует предусмотреть выключатель, который должен автоматически отключаться при исчезновении напряжения на шинах главного распределительного щита.

Если предусматривается питание главного распределительного щита от аварийного, автоматический выключатель на аварийном распределительном щите должен быть оборудован, по крайней мере, защитными устройствами от короткого замыкания.

9.4.2 Если аварийный дизель-генератор предусмотрен для питания в исключительных случаях и кратковременно неаварийных потребителей, следует:
.1 предусмотреть соответствующие мероприятия, обеспечивающие действие аварийных устройств во всех аварийных условиях;
.2 предусмотреть в случае аварии (пожар, затопление), автоматическое отключение неаварийных потребителей от АРЩ для обеспечения питания аварийных потребителей.

9.4.3 Указанные в 9.3.1 потребители должны получать питание по отдельным фидерам от шин аварийного распределительного щита, оборудованного соответствующей коммутационной и защитной аппаратурой. Допускается питание указанных в 9.3.1.1 — 9.3.1.12, 9.3.1.12 потребителей с объединенного пульта управления, расположенного на главном посту управления платформы и получающего питание в соответствии с 4.4.

9.4.4 Во избежание случайного или некомпетентного отключения перечисленных в 9.3.6 потребителей они должны получать питание через специальный распределительный щит, доступ к которому будет обеспечен только уполномоченным на то персоналу.

9.4.5 Кабели, питающие аварийные потребители, должны прокладываться таким образом, чтобы затопление потребителей ниже палубы переборок не лишило питания остальных потребителей, находящихся выше этой палубы.

9.4.6 Распределительные устройства аварийных потребителей должны находиться выше палубы переборок.
9.5 ПУСКОВЫЕ УСТРОЙСТВА АВАРИЙНЫХ ДИЗЕЛЬ-ГЕНЕРАТОРОВ

9.5.1 В качестве пусковых устройств аварийных дизель-генераторов могут применяться:
1. электрическое стартерное устройство с собственной аккумуляторной батареей и зарядным устройством;
2. система сжатого воздуха с собственным независимым воздухохранителем;
3. гидравлическая система пуска;
4. ручные пусковые устройства: инерционное пусковое устройство; гидравлические аккумуляторы, заряжаемые вручную; патроны с пороховым зарядом.

9.5.2 Каждый аварийный дизель-генератор должен быть оборудован автоматическим пусковым устройством с запасом энергии, достаточным, по крайней мере, для трех последовательных пусков. Должен быть предусмотрен также второй источник энергии для производства дополнительно еще трех пусков в течение 30 мин, если не предусмотрено ручное пусковое устройство.

9.5.3 Питание зарядных устройств аккумуляторных батарей и электрических приводов механизмов, обеспечивающих пусковые системы сжатого воздуха или гидравлические системы запуска аварийного дизель-генератора, должно осуществляться от аварийного распределительного щита по отдельным фидерам.

9.5.4 Аварийный генератор должен быть способен уверенно запускаться при температуре в помещении АДГ 0 °C.

9.5.5 Пусковые системы сжатого воздуха АДГ могут пополняться автоматически через невозвратный клапан от главных или вспомогательных воздухохранителей, или от аварийного электрокомпрессора, получавшего питание от АРЩ.

9.5.6 Все пусковые и зарядные устройства аккумуляторов, а также аккумуляторы и другие устройства хранения энергии для пуска АДГ должны быть расположены в помещении аварийного генератора и не должны использоваться в других целях.

9.5.7 Если автоматический пуск АДГ не предусмотрен в связи с его нецелесообразностью и это может быть доказано эффективностью другого способа пуска АДГ, как например, ручного инерционного, ручного гидравлического или пускового устройства с пороховым зарядом, то на эти устройства распространяются требования, изложенные в 9.5.2, за исключением требования автоматического пуска.

9.6 АВАРИЙНЫЕ ПОСТЫ И СИСТЕМА АВАРИЙНОГО ОТКЛЮЧЕНИЯ ЭЛЕКТРИЧЕСКОГО ОБОРУДОВАНИЯ

9.6.1 На ПБУ или МСП должно быть предусмотрено, как минимум, два независимых аварийных поста управления. Один из этих постов должен быть расположен вблизи поста буровых операций, другой в соответствующем помещении с постоянной вахтой персонала вне пределов взрывоопасных зон.

9.6.2 Аварийные посты управления должны быть оборудованы:
ручными замыкателями аварийной сигнализации;
независимыми средствами связи между этими постами и всеми другими постами управления (главным постом ПБУ или МСП, центральным по местной механической установке и т. п.) обеспечивающими безопасность платформы;
средствами аварийного отключения оборудования, указанными в 9.6.3.

9.6.3 Средства аварийного отключения на аварийных постах управления должны в аварийных условиях, когда из-за неисправного проникновения скважины взрывоопасные зоны выходят за пределы, указанные в 2.9, обеспечить возможность следующей последовательности отключения электрического оборудования:
- системы вентиляции помещений, кроме вентиляторов, обеспечивающих приток воздуха, необходимого для работы и охлаждения агрегатов основного источника электрической энергии;
- все электрическое оборудование, расположенное за пределами взрывоопасной зоны 1;
- агрегаты основного источника электрической энергии;
- потребители, получающие питание от аварийного источника электрической энергии, кроме потребителей, указанных в 9.3.6;
- аварийный дизель-генератор.

9.6.4 Независимо от указанных в 9.6.3 средств дистанционного аварийного отключения оборудования, при включении системы объемного пожаротушения одновременно и автоматически должна отключаться вентиляция того помещения, в котором она начинает действовать.

9.6.5 Указанная в 9.6.3 последовательность отключения механизмов в зависимости от конкретных аварийных ситуаций может быть изменена. Рекомендуемая последовательность отключения механизмов должна быть включена в специальную инструкцию по действиям в аварийных ситуациях.

9.6.6 Система аварийного отключения должна быть выполнена таким образом, чтобы свести к минимуму возможность ее случайного отключения
или отключения в результате повреждений или ошибок в последовательности операций управления.

9.6.7 После аварийного отключения, указанного в 9.6.3, должно продолжать действовать следующее электрическое оборудование взрывозащищенного исполнения, размещенное в незакрытых пространствах и допускаемое к эксплуатации в пределах зоны 2:

1. аварийное освещение, указанное в 9.3.6.1, в течение 30 мин;
2. система аварийного управления превентором;
3. система аварийной сигнализации;
4. система внутренней громкоговорящей связи;
5. связное радиооборудование, получающее питание от собственных аккумуляторных батарей.

10 ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

10.1 ОБЩИЕ ТРЕБОВАНИЯ

10.1.1 Материалы валов электрических машин (генераторов и двигателей) должны отвечать требованиям части XIII «Материалы» Правил классификации и постройки морских судов.

10.1.2 Системы возбуждения и автоматические регуляторы напряжения генераторов переменного тока в режиме установившегося короткого замыкания должны поддерживать не менее чем трехкратный номинальный ток в течение 2 с.

10.1.3 Генераторы основного источника электрической энергии, машины гребной электрической установки, а в обоснованных случаях и другие электрические машины ответственного назначения ПБУ или МСП должны иметь обогрев для поддержания температуры по крайней мере на 3° выше температуры окружающего воздуха.

10.1.4 Роторы и якоря электрических машин переменного и постоянного тока должны выдерживать в течение 2 мин без повреждения и остаточных деформаций следующую повышенную частоту вращения:

1. генераторы, вращающиеся преобразователи, электрические муфты и тормоза — 120 % номинальной частоты вращения, по крайней мере на 3 % выше наибольшей частоты вращения, возникающей при уравнительном (переходном) процессе;

2. электрические двигатели с последовательным возбуждением — 120 % наибольшей допустимой частоты вращения, указанной на фирменной табличке, однако не менее 150 % номинальной частоты вращения;

3. все остальные электрические двигатели, кроме указанных выше, — 120 % наибольшей частоты вращения.

10.1.5 Если машина сконструирована таким образом, что после установки в машинном помещении ее нижняя часть будет находиться ниже настила, то забор воздуха для ее вентиляции не должен производиться в нижней части машины.

10.1.6 В электрических машинах должны быть предусмотрены меры против скопления в их корпусах влаги и конденсата. Если для охлаждения электрических машин используются жидкостные теплообменные аппараты, то их конструкция должна быть такой, чтобы охлаждающая жидкость в случае протечек не могла попасть внутрь электрической машины. При этом должна быть предусмотрена сигнализация о протечке теплообменного аппарата.

10.2 КЛЕММНЫЕ КОРОБКИ, КОНТАКТНЫЕ КОЛЬЦА, КОЛЛЕКТОРЫ И ЩЕТКИ

10.2.1 Электрические машины постоянного тока мощностью 200 кВт и более должны иметь смотровые окна, обеспечивающие возможность наблюдения за состоянием коллектора и щеток без демонтажа крышек.

10.2.2 Допустимое значение износа коллекторных пластин или контактных колец должно быть указано на их торцевой стороне. Это значение следует принимать не менее 20 % высоты коллекторов или контактных колец.

10.2.3 Для якорей массой выше 1000 кг должна быть предусмотрена возможность обработки коллектора без выемки якоря из машины.

10.2.4 Электрические машины должны иметь клеммные коробки для удобного подключения внешних кабелей. Клеммы должны иметь соответствующую маркировку, они должны быть достаточно прочными, защищенными от случайного контакта с корпусом и между полюсами или фазами.

10.2.5 Клеммные коробки должны иметь достаточные воздушные зазоры между токовыми
10.2.6 Положение щеток в электрических машинах постоянного тока должно быть четко и надежно обозначено. Машинны постоянного тока должны быть изготовлены таким образом, чтобы они могли работать во всех режимах с постоянным расположением щеток.

10.2.7 Коллекторные машины должны работать практически без искрения при любой нагрузке в пределах от холостого хода до номинальной. При требуемых перегрузках, реверсировании и пуске машин не должно появляться искрение в такой степени, чтобы возникали повреждения щеток или коллекторов.

10.3 ПОДШИПНИКИ

10.3.1 Конструкция подшипников должна исключать возможность разбрызгивания и протекания масла вдоль вала и проникновение его на обмотки машины или на части, находящиеся под напряжением.

10.3.2 Корпуса подшипников скольжения должны снабжаться отверстием для слива избыточного количества масла и крышкой в верхней части корпуса, а на машинах мощностью 100 кВт и более должны устанавливаться указатели уровня масла.

10.3.3 Система смазки под давлением должна снабжаться устройством для контроля давления масла, поступающего в подшипник.

10.3.4 Для электрических машин с подшипниками скольжения, следует принимать меры, препятствующие протеканию блуждающих токов через подшипники.

10.4 ДАТЧИКИТЕМПЕРАТУРЫ

10.4.1 Статоры электрических машин переменного тока мощностью свыше 5000 кВт или с осевой длиной активной стали более 1000 мм должны снабжаться датчиками температуры, расположенными в тех местах машины, где можно ожидать наиболее высокие температуры.

10.5 ГЕНЕРАТОРЫ ПЕРЕМЕННОГО ТОКА

10.5.1 Общие требования.

10.5.1.1 Каждый генератор переменного тока должен иметь отдельную независимую систему автоматического регулирования напряжения.

10.5.1.2 Повреждения в системе регулирования напряжения генераторов не должны вызывать перенапряжений на его зажимах выше значений, обусловленных максимальным расчетным резервом возбуждения.

10.5.1.3 Генераторы переменного тока должны иметь такой конструкции, чтобы после нагрузки до установившейся температуры, соответствующей номинальной нагрузке, они могли выдерживать перегрузку по току 50 % в течение 120 с.

10.5.1.4 Генераторы переменного тока должны обладать достаточным резервом возбуждения для поддержания в течение 2 мин номинального напряжения с точностью 10 % при перегрузке генератора током, равным 150 % номинального, и коэффициенте мощности, равном 0,6.

10.5.2 Регулирование напряжения.

10.5.2.1 Генераторы переменного тока должны иметь системы автоматического регулирования напряжения, обеспечивающие поддержание напряжения в пределах ±2,5 % (аварийные генераторы — до ±3,5 %) от номинального при изменении нагрузки от нуля до номинальной при номинальном коэффициенте мощности. При этом частота вращения должна быть в пределах, оговоренных в части IX «Механизмы» Правил классификации и постройки морских судов.

10.5.2.2 Внезапное изменение симметричной нагрузки генератора, работающего при номинальной частоте вращения и номинальном напряжении, при имеющихся токе и коэффициенте мощности, не должно вызывать снижения напряжения ниже 85 % и повышения выше 120 % от номинального. После этого изменения нагрузки напряжение генератора должно в течение не более 1,5 с восстанавливаться в пределах ±3 % номинального напряжения. Для аварийных агрегатов эти значения могут быть увеличены по времени до 5 с и по напряжению до ±4 % номинального.

При отсутствии точных данных о максимальной внезапной нагрузке, включаемой при имеющейся нагрузке генератора, можно принимать нагрузку величиной 60 % номинального тока с коэффициентом мощности 0,4 и менее, включаемой при
холостом ходе и затем отключаемой. При этом частота вращения должна быть в пределах, оговаренных в части IX «Механизмы» Правил классификации и постройки морских судов.

10.6 ГЕНЕРАТОРЫ ПОСТОЯННОГО ТОКА

10.6.1 Общие требования.
10.6.1.1 Генераторы постоянного тока с параллельным и независимым возбуждением должны иметь автоматические регуляторы напряжения.
10.6.1.2 Генераторы постоянного тока должны быть такой конструкции, чтобы после нагрева до установившейся температуры, соответствующей номинальной нагрузке, они могли выдерживать перегрузку по току 50 % в течение 15 с.

10.6.2 Регулирование напряжения.
10.6.2.1 Ручные регуляторы напряжения генераторов постоянного тока смещённого возбуждения должны обеспечивать в холодном состоянии возможность понижения напряжения холостого хода не менее чем на 10 % ниже номинального напряжения генератора с учетом увеличения частоты вращения на холостом ходу.
10.6.2.2 Ручные регуляторы напряжения должны быть изготовлены таким образом, чтобы поворот их органов управления по часовой стрелке вызывал повышение напряжения.
10.6.2.3 Если напряжение генератора с параллельной обмоткой возбуждения (или с параллельной и легкой последовательной обмоткой возбуждения) установлено на номинальное значение при полной нагрузке, то при снижении нагрузки генератора до холостого хода напряжение генератора не должно повышаться более чем на 15 % номинального значения.
10.6.2.4 Указанные в 10.6.2.1 устройства для регулирования напряжения должны иметь точность регулирования до ±1 % для генераторов мощностью до 100 кВт и до ±0,5 % для генераторов мощностью выше 100 кВт. Указанная точность регулирования этих независимых устройств должна поддерживаться в холодном и нагретом состоянии, а также при любой нагрузке в пределах рабочих нагрузок генератора.
10.6.2.5 Агрегаты постоянного тока с генераторами смещённого возбуждения должны иметь такие внешние характеристики, чтобы напряжение нагнетателя генератора, установленное на номинальное значение с точностью до ±1 % при 20-процентной нагрузке, не изменялось при полной нагрузке более чем на ±1,5 % для генераторов мощностью 50 кВт и более и более чем на ±2,5 % для генераторов мощностью ниже 50 кВт.

10.6.2.6 Изменение напряжения между 20 и 100 % номинальной нагрузки генератора сме­шанного возбуждения не должно превышать следующих значений:
1) ±3 % — для генераторов мощностью 50 кВт и более,
2) ±4 % — для генераторов мощностью более 15 кВт, но менее 50 кВт,
3) ±5 % — для генераторов мощностью 15 кВт и менее.

10.6.2.7 Агрегаты постоянного тока с генераторами параллельного возбуждения должны иметь такие внешние характеристики генераторов и автоматические регуляторы напряжения, чтобы при изменении нагрузки от холостого хода до номинальной напряжение поддерживалось с точностью ±2,5 % номинального.

10.7 ЭЛЕКТРОДВИГАТЕЛИ

10.7.1 Электрические двигатели должны быть такой конструкции, чтобы они могли развивать без остановки или внезапного изменения частоты вращения увеличенные моменты, указанные в табл. 10.7.1

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Тип двигателя</th>
<th>Превышение момента, %</th>
<th>Продолжительность, с</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Синхронные и асинхронные с (f_{rated} = 4,5f_{rated})</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Асинхронные для длинной и повторно-кратковременной работы</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Асинхронные кратковременной работы с переменной нагрузкой</td>
<td>100</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Постоянного тока</td>
<td>50</td>
<td>15</td>
</tr>
</tbody>
</table>

10.7.2 В электрических двигателях с кратковременными или повторно-кратковременными режимами работы рекомендуется предусматривать встроенные датчики температуры.
10.7.3 В электрических двигателях привода якорных и швартовных механизмов рекомендуется применять защиту от перегрузок в виде встроенных датчиков температуры, подобных таким образом, чтобы система защиты отключала электрический двигатель при превышении температуры, допустимой для изоляции обмоток машины, не более чем на 30 %.
Выводы от датчиков должны располагаться в легкодоступном месте.

10.8 ЭЛЕКТРОМАГНИТНЫЕ ТОРМОЗА

10.8.1 Срабатывание тормоза (торможение) должно происходить при исчезновении напряжения на катушке тормоза.
10.8.2 Понижение напряжения на 30 % от номинального при нагретом состоянии тормоза не должно вызывать затормаживания.
10.8.3 Электромагнитные тормоза должны допускать возможность ручного растормаживания.

10.8.4 Электромагнитные тормоза должны иметь, по крайней мере, две нажимные пружины.
10.8.5 Обмотки параллельного возбуждения электромагнитного тормоза со смешанным возбуждением должны быть такими, чтобы они могли удержать тормоз в расторможенном состоянии даже тогда, когда через последовательную обмотку не протекает ток.
10.8.6 Обмотки параллельного возбуждения тормозов должны быть изготовлены или защищены таким образом, чтобы они не могли повреждаться при перенапряжениях, возникающих во время их выключения (см. также 5.4.3).

11 ТРАНСФОРМАТОРЫ

11.1 ОБЩИЕ ТРЕБОВАНИЯ

11.1.1 Требования настоящего раздела касаются силовых трансформаторов, указанных в 3.3.
Дополнительные требования для трансформаторов на напряжение свыше 1000 В указаны в разд. 18 настоящей части.
11.1.2 На ПБУ или МСП допускается применение как сухих, так и погруженных в жидкость (трансформаторное масло) трансформаторов. Если трансформаторы устанавливаются внутри помещений, то они должны быть сухого, естественно охлаждаемого типа. Применение и установка в помещениях трансформаторов другого типа в каждом случае является предметом специального рассмотрения Регистром.
11.1.3 Трансформаторы, используемые для работы с полупроводниковыми преобразователями, должны быть сконструированы с учетом возможных искажений как по частоте питания, так и по синусоидальности напряжения.
11.1.4 Обмотки трансформаторов первичных и вторичных напряжений должны быть электрически разделены.
11.1.5 При применении трансформаторов, погруженных в трансформаторное масло, должно учитываться следующее:
.1 трансформаторы должны быть герметичного исполнения, или
.2 трансформаторы должны быть изготовлены так, чтобы исключалась возможность перелива, или утечки жидкости при всех условиях эксплуатации платформы, в том числе при максимальных ее кренах и дифферентах;
.3 компенсационные устройства охлаждающей жидкости трансформаторов должны быть выполнены так, чтобы исключалась возможность выхода охлаждающей жидкости наружу при любых температурных колебаниях;
.4 охлаждающая жидкость должна быть не токсичной и не поддерживающей горение;
.5 должна быть предусмотрена аварийно-предупредительная сигнализация по максимальной температуре охлаждающей жидкости и защита по наличию в охлаждающей жидкости газа.
11.1.6 При использовании принудительного охлаждения трансформаторов должна быть предусмотрена возможность их работы на пониженной мощности в случае выхода из строя охлаждающих насосов или вентиляторов. При этом должна предусматриваться также аварийно-предупредительная сигнализация.

11.2 ПЕРЕГРУЗКА, ИЗМЕНЕНИЕ НАПРЯЖЕНИЯ И ПАРАЛЛЕЛЬНАЯ РАБОТА

11.2.1 Трансформаторы должны выдерживать 10-процентную перегрузку в течение 1 ч, а также 50-процентную перегрузку в течение 5 мин.
11.2.2 Изменение напряжения в пределах между холостым ходом и номинальной нагрузкой при активной нагрузке не должно превышать 5 % для трансформаторов мощностью до 6,3 кВА на фазу и 2,5 % для трансформаторов большей мощности.

11.2.3 Трансформаторы, предназначенные для параллельной работы, должны иметь одинаковые группы соединения обмоток, одинаковые коэффициенты трансформации, а их напряжения короткого замыкания должны быть такими, чтобы нагрузка любого трансформатора не отклонялась от значения, соответствующего пропорциональной доли мощности каждого трансформатора, более чем на 10 % номинального тока данного трансформатора.

11.2.4 Номинальные мощности трансформаторов, предназначенных для параллельной работы, не должны отличаться друг от друга более чем в 2 раза.

12 СИЛОВЫЕ ПОЛУПРОВОДНИКОВЫЕ УСТРОЙСТВА

12.1 ОБЩИЕ ТРЕБОВАНИЯ

12.1.1 В силовых полупроводниковых устройствах должны применяться полупроводниковые элементы кремниевого типа.

Использование элементов другого типа допускается по особому согласованию с Регистром.

12.1.2 Для предотвращения образования конденсата в устройствах на полупроводниковых приборах, рассеиваемая мощность которых более 500 Вт, должен быть предусмотрен обогрев для поддержания температуры по крайней мере на 3° С выше температуры окружающего воздуха.

12.1.3 Силовые полупроводниковые устройства должны иметь воздушное охлаждение (естественное или принудительное).

Жидкостное охлаждение допускается только по особому согласованию с Регистром.

12.1.4 Для силовых полупроводниковых устройств с принудительным охлаждением должна быть предусмотрена защита, снижающая или отключающая нагрузку при отключении охлаждения.

До срабатывания защиты должна быть предусмотрена звуковая и световая сигнализация о превышении максимально допустимой температуры охлаждающей среды на выходе системы.

12.2 ДОПУСТИМЫЕ ПАРАМЕТРЫ ИСКАЖЕНИЯ НАПРЯЖЕНИЯ

12.2.1 Коэффициент гармонических искажений \(K_h \) судовой сети, обусловленный работой силовых полупроводниковых устройств, не должен превышать 10 %.

Применение силовых полупроводниковых устройств, вызывающих искажение синусоидальной кривой напряжения более 10 %, является предметом специального рассмотрения Регистром.

Коэффициент гармонических искажений должен определяться по формуле, приведенной в 2.2.1.3.

12.2.2 Коэффициент максимального относительного отклонения мгновенного значения напряжения от значения 1-й гармоники не должен превышать 30 %.

Коэффициент \(\Delta U_m \) должен определяться по формуле:

\[
\Delta U_m = \Delta U_m/(\sqrt{2}U_1),
\]

где \(\Delta U_m \) — максимальное значение отклонения;

\(U_1 \) — действующее значение 1-й гармоники напряжения.

12.3 СИСТЕМЫ УПРАВЛЕНИЯ И СИГНАЛИЗАЦИЯ

12.3.1 Силовые полупроводниковые устройства должны иметь световую сигнализацию о включении и выключении состояния силовых цепей и цепей управления.

12.3.2 Силовая часть полупроводниковых устройств должна быть электрически изолирована от системы управления.

12.3.3 Длительное отключение токов в параллельных ветвях силовых полупроводниковых устройств не должно превышать 10 % значения среднего тока.

12.3.4 Работа силовых полупроводниковых устройств не должна нарушаться при выходе из строя отдельных полупроводниковых элементов. Если нагрузка на отдельные полупроводниковые элементы превышает допустимые значения, она должна быть автоматически снижена.
Часть X. Электрическое оборудование

При выходе из строя полупроводниковых элементов должна срабатывать световая и звуковая сигнализация.

12.4 ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

12.4.1 Силовые полупроводниковые устройства должны быть оборудованы измерительными приборами для измерения основных входных и выходных параметров устройства.

12.4.2 На шкалах приборов должны быть отмечены номинальные значения параметров. На шкале термометра охлаждающего воздуха, при принудительном охлаждении преобразователя, должна быть отмечена максимально допустимая температура.

13 АККУМУЛЯТОРЫ

13.1 ОБЩИЕ ТРЕБОВАНИЯ

13.1.1 Аккумуляторы должны быть изготовлены так, чтобы у полностью заряженных аккумуляторов после 28 сут нахождения без нагрузки при температуре (25 ± 5) °C потеря емкости вследствие саморазряда не превышала 30-процентной номинальной емкости для кислотных и 25-процентной номинальной емкости для щелочных аккумуляторов.

13.1.2 Сосуды аккумуляторов и закрытия для отверстий должны быть сконструированы таким образом, чтобы при наклоне сосуда от вертикали в любом направлении на угол 40° электролит не выпивался и не разбрызгивался.

Закрытия должны изготавливаться из материала прочного и стойкого к воздействию электролита. Конструкция закрытий не должна допускать возникновения чрезмерного давления газов в аккумуляторе.

13.1.3 Применяемые мастики не должны менять своих свойств и повреждаться при изменениях температуры окружающей среды от −30 до +60 °C.

13.1.4 Материалы, применяемые для изготовления аккумуляторных ящиков, должны быть стойкими к воздействию электролита. Отдельные элементы, размещенные в ящиках, должны быть закреплены таким образом, чтобы их взаимное перемещение было невозможным.

13.1.5 Для батарей, предназначенных к использованию в качестве источника энергии ответственных и аварийных потребителей, должен быть предусмотрен журнал контроля состояния батарей и ее обслуживания. Этот журнал должен содержать, как минимум, следующую информацию об аккумуляторной батарее: тип батареи и ее наименование; напряжение и емкость; размещение; наименование оборудования и/или систем, для которых батарея предназначена; данные по плановому периодическому обслуживанию или замене; данные по последнему обслуживанию или замене; данные изготовителя батареи и допустимый срок ее хранения — для батарей, предназначенных для замены и хранящихся отдельно.

13.1.6 На судне должна быть предусмотрена инструкция по замене батарей, в которой должно быть указано, что новая батарея должна иметь эквивалентные (идентичные) характеристики.

13.1.7 В случае замены герметичной аккумуляторной батареи на вентилируемую, в помещении, где устанавливается батарея, должна быть обеспечена соответствующая вентиляция, как указано в 13.4.

13.1.8 Описание работы и обслуживания аккумуляторных батарей должны быть включены в судовые документы системы безопасного обслуживания, подлежащие контролю со стороны Регистра.

13.2 РАЗМЕЩЕНИЕ АККУМУЛЯТОРОВ

13.2.1 Батареи на напряжение выше безопасного, а также батареи зарядной мощностью более 2 кВт, рассчитанной по наибольшему зарядному току и номинальному напряжению, должны располагаться в специальных аккумуляторных помещениях, доступных с палубы, или в специальных ящиках, оборудованных подогревом и вентиляцией и установленных на палубе.

Батареи зарядной мощностью от 0,2 до 2 кВт могут устанавливаться в ящиках или шкафах, расположенных внутри специальных помещений ПБУ или МСП.
Аккумуляторные батареи, предназначенные для электростартерного пуска двигателей внутреннего сгорания, кроме аварийных агрегатов, допускается устанавливать в машинных помещениях в специальных ящиках или шкафах с достаточной вентиляцией.

Батареи зарядной мощностью менее 0,2 кВт, а также необработываемые герметичные батареи без ограничения зарядной мощности допускается устанавливать в любом помещении, за исключением жилых, при условии, что они будут иметь защиту от прикосновения к токоведущим частям, от воздействия воды и механических повреждений и не будут вредно влиять на окружающее оборудование.

13.2.2 Кислотные и щелочные аккумуляторы не должны располагаться в одном помещении или в одном ящике. Сосуды и приборы, предназначенные для батарей с разными электролитами, должны устанавливаться отдельно.

13.2.3 Внутренняя часть помещений или ящиков для аккумуляторов, а также все конструктивные части, которые могут подвергаться вредному воздействию электролита или газа, должны быть соответственно защищены.

13.2.4 Аккумуляторные батареи, а также отдельные элементы должны быть надежно закреплены. При установке их на стеллажах в два или более яруса все стеллажи должны иметь спереди и сзади зазор не менее 50 мм для циркуляции воздуха, а расстояние от пола до пробок элементов верхнего яруса не должно превышать 1500 мм.

13.2.5 При установке аккумуляторных батарей или отдельных аккумуляторов (элементов) должны быть предусмотрены подкладки и распорки между ними, обеспечивающие зазор не менее 15 мм со всех сторон для циркуляции воздуха.

13.2.6 На входных дверях в аккумуляторное помещение или около них, а также на ящиках с аккумуляторами должны быть предостерегающие надписи об опасности взрыва.

13.3 ОБОГРЕВ

13.3.1 Аккумуляторные помещения и ящики, в которых во время эксплуатации температура может опускаться ниже 5 °С, должны иметь систему обогрева. Обогрев допускается осуществлять за счет тепла смежных помещений, а также водяными или паровыми радиаторами, расположенными внутри аккумуляторных помещений или ящиков.

13.3.2 Клапаны системы обогрева должны находиться вне аккумуляторных помещений.

13.3.3 Для обогрева аккумуляторных помещений общая система кондиционирования ПБУ или МСП не должна применяться в качестве основной.

13.4 ВЕНТИЛЯЦИЯ

13.4.1 Помещения и ящики для аккумуляторов должны иметь достаточную вентиляцию, исключающую возможность образования и скопления взрывчатых смесей.

13.4.2 Аккумуляторные помещения, снабженные искусственной вентиляцией, должны иметь устройства, предотвращающие возможность включения аккумуляторов на зарядку до включения вентиляции.

Зарядка должна автоматически выключаться в случае остановки вентиляторов.

13.5 ЗАРЯДКА АККУМУЛЯТОРНЫХ БАТАРЕЙ

13.5.1 Для зарядки аккумуляторных батарей ответственных потребителей должно быть предусмотрено зарядное устройство, рассчитанное на зарядку батарей в течение 8 ч. В случае применения дополнительной батареи, заменяющей находящуюся на зарядке, время зарядки может превышать 8 ч.

13.5.2 Устройство должно предусматривать возможность измерения напряжения на клеммах батарей и зарядного тока, а для переходных аварийных источников энергии — также разрядного тока.

13.5.3 Должны быть предусмотрены устройства для зарядки аккумуляторов переносных аккумуляторных фонарей и аккумуляторных заочных сигнально-отличительных фонарей.

13.6 УСТАНОВКА ЭЛЕКТРИЧЕСКОГО ОБОРУДОВАНИЯ В АККУМУЛЯТОРНЫХ ПОМЕЩЕНИЯХ

13.6.1 Кроме светильников взрывозащищенного исполнения, а также кабелей, подведенных к аккумуляторам и светильникам, установка в аккумуляторных помещениях другого электрического оборудования не допускается.

13.6.2 Кабели, подводимые к аккумуляторам и светильникам, допускается прокладывать открытый при условии, что они имеют металлическую броню или оплетку, покрытую неметаллической оболочкой, и эта броня или оплетка надежно заземлена на обоих концах.
13.7 ЭЛЕКТРОСТАРТЕРНЫЙ ПУСК ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

13.7.1 Количество стартерных батарей.
13.7.1.1 Для электростартерного пуска двигателей внутреннего сгорания (ДВС), независимо от количества двигателей, должно быть стационарно установлено:
не менее чем по две стартерные батареи для каждого двух ДВС с возможностью переключения каждой батареи для старта обоих ДВС; либо
не менее чем две общие стартерные батареи для пуска всех двигателей. При этом должна быть предусмотрена постоянная система коммутации, обеспечивающая возможность использования любой из батареи для пуска любого двигателя из группы, обслуживаемой этой батареей.

14 ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ И УСТАНОВОЧНАЯ АРМАТУРА

14.1 ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ

14.1.1 Общие требования.
14.1.1.1 Конструкция выключателей со сменными контактами должна быть такой, чтобы замена контактов могла выполняться обычными инструментами без демонтажа выключателя или его основных узлов.
14.1.1.2 Все разведители и выключатели, кроме каютных, должны быть снабжены механическими или электрическими индикаторами положения контактов (включено-выключено), находящимися в месте, с которого аппарат приводится в действие оператором.
14.1.1.3 Положения барабанов контроллера и командоконтроллера должны четко фиксироваться механически; при этом нулевое положение должно фиксироваться более отчетливо, чем другие.
Барабаны контроллера и командоконтроллера должны снабжаться шкалой и указателем, показывающим положение включения.
14.1.1.4 Пускорегулирующие аппараты, за исключением применяемых для непрерывного плавного регулирования, должны быть изготовлены таким образом, чтобы конечные и промежуточные фиксированные положения на отдельных ступенях управления были легко ощутимы, а движение за конечные положения было бы невозможным.

14.1.2 Аппараты с ручным приводом.
14.1.2.1 Направление движения ручных органов управления коммутационных или пускорегулирующих аппаратов должно быть таким, чтобы вращение рукоятки (маховика) по часовой стрелке или перемещение рукоятки (рычага) вверх или вперед соответствовало включению аппарата, пуску электрического двигателя, увеличению частоты вращения, повышению напряжения и т. п.
При управлении подъемниками или опускающими устройствами вращение рукоятки (маховика) по часовой стрелке или движения рукоятки (рычага) на себя должно соответствовать подъему, а вращение против часовой стрелки или движение от себя — опусканию.
14.1.2.2 Кнопки выключателей должны быть изготовлены таким образом, чтобы они не могли быть случайно приведены в действие.
14.1.3 Аппараты с электрическим приводом.
14.1.3.1 Приводной механизм автоматических и других выключателей должен быть сконструирован так, чтобы в случае исчезновения энергии, приводящей в движение машинный привод, контакты выключателя оставались только во включенном или выключенном положении.
14.1.3.2 Электрический привод должен обеспечивать надежное включение аппарата при напряжении питания, равном 85 — 110 % номинального значения, а при переменном токе — при отклонениях частоты в пределах +5 % от
Правила классификации, постройки и оборудования ПБУ/МСП

номинальной при температуре окружающей среды 45 °C и при нагретой обмотке привода.

14.1.3.3 Работа привода при 110 % номинального напряжения не должна вызывать повреждений выключателя или чрезмерного воздействия на контакты, влияющего на коммутационную способность аппарата. По отношению к электромагнитным контактам указанное выше требование должно быть выполнено при замыкании контактора при температуре окружающей среды — 10 °C и при нагретой обмотке катушки.

14.1.3.4 Снижение напряжения до 70 % номинального напряжения питания привода не должно вызывать размыкания главных и вспомогательных контактов или уменьшения контактного нажима при температуре окружающей среды 45 °C и нагретой обмотке привода.

14.1.3.5 Конструкцией должна быть предусмотрена возможность ручного управления выключателем, имеющим электрический привод.

14.1.4 Катушки.

14.1.4.1 Крепление провода или наконечника к обмотке катушки должно быть выполнено таким образом, чтобы усилия от присоединенного провода не передавались на витки катушки. Отводы катушек напряжения должны изготавливаться из многопроволочного гибкого провода, за исключением тех случаев, когда контактные зажимы закреплены непосредственно на корпусе катушки.

14.1.6 Резисторы.

14.1.6.1 Элементы резисторов должны легко заменяться посекционно или в целом.

14.1.6.2 Блоки балластных резисторов должны быть расположены и вентилироваться таким образом, чтобы они не нагревали другие устройства до недопустимых пределов.

14.1.6.3 Дополнительные требования к резисторам цепей заземления сетей с напряжением выше 1000 В указаны в разд. 18 настоящей части.

14.2 УСТАНОВОЧНАЯ АРМАТУРА

14.2.1 Общие требования.

14.2.1.1 Корпуса арматуры должны изготавливаться из коррозионно-стойкого или соответственно защищенного от коррозии и, по крайней мере, трудносплавляющегося материала с соответствующей механической прочностью. Корпуса арматуры, предназначенной для установки на открытой палубе, в охлаждаемых помещениях и сырных местах, должны изготавливаться из латуни, бронзы или равноценного материала или из пластмасс соответствующего качества. Если применяется сталь или сплав алюминия, то необходимо применять соответствующую антикоррозионную защиту.

В изделиях из сплава алюминия не рекомендуется производить резьбовых и посадочных соединений деталей.

14.2.2 Патроны.

14.2.2.1 Конструкция осветительных патронов с винтовым цоколем должна обеспечивать надежное удержание ламп от самоотвинчивания.

14.2.2.2 Каждый осветительный патрон должен иметь обозначение их характеристик.

14.2.2.3 Конструкция осветительных патронов с винтовым цоколем должна обеспечивать надежное удержание ламп от самоотвинчивания.

14.2.3 Штепсельные соединения.

14.2.3.1 Штепсельные розетки и вилки для напряжения выше безопасного должны иметь контакты для подключения заземляющих жил кабеля присоединяемых потребителей.

14.2.3.2 Не допускается применение штепсельных вилок с разрезными штырями. Штыри штепсельных вилок, а также штыри штепсельных розеток, не должны выдерживать в процессе работы силу натяжения вилки или вилки, а также на них не должны действовать сильные вибрации.

14.2.3.3 Штепсельные розетки и вилки должны быть изготовлены таким образом, чтобы обеспечивалась соответствующая степень защиты от влаги и пыли.

14.2.3.4 Штепсельные розетки и вилки должны быть изготовлены таким образом, чтобы обеспечивалась соответствующая степень защиты от влаги и пыли.

14.2.3.5 У штепсельных розеток с номинальным током более 16 А должны быть блокировочные выключатели, которые могут быть встроены в арматщу.
14.2.3.6 В штепсельных розетках без блокировки расстояния между контактами по воздуху и по изоляционному материалу должны быть такими, чтобы не могло возникнуть короткого замыкания вследствие перекрытия дуги при отсоединении вилки, нагруженной током на 50 % больше номинального при номинальном напряжении.
14.2.3.7 Штепсельные розетки и вилки должны иметь такую конструкцию, чтобы нельзя было вставить токоведущие штыри в гнездо заземления, а конструкция розеток, предназначенных для подключения двигателей (устройств), направление вращения которых зависит от изменения очередности фаз или полюсов, должна дополнительно исключать возможность изменения этого порядка. При соединении вилки со штепсельной розеткой заземляющая часть вилки должна входить в контакт с заземляющей частью штепсельной розетки до соединения токоведущих штырей.
14.2.3.8 В штепсельных розетках и вилках не допускается устанавливать предохранители.
14.2.3.9 Конструкция штепсельных розеток должна исключать возможность подключения к ним вилок потребителей, рассчитанных на более низкое напряжение.
14.2.3.10 Штепсельные розетки на открытых палубах, должны быть установлены штепсельным разъемом вниз, а подключаемый к ним кабель не должен проходить через комингсы дверей или другие закрываемые отверстия, ограничивающие взрывоопасные помещения и пространства.

15 ЭЛЕКТРИЧЕСКИЕ НАГРЕВАТЕЛЬНЫЕ И ОТОПИТЕЛЬНЫЕ ПРИБОРЫ

15.1 ОБЩИЕ ТРЕБОВАНИЯ
15.1.1 Допускается применение электронагревательных устройств только стационарного типа.
15.1.2 Питание электронагревательных устройств должно осуществляться от главного распределительного щита или групповых щитов, предназначенных для этой цели, а также от распределительных щитов освещения с учетом требований 6.2.1.
15.1.3 Несущие части конструкции электронагревательных устройств, а также внутренние поверхности кожухов должны быть изготовлены из негорючих материалов.
15.1.4 Допускаемый ток утечки в нагретом состоянии должен быть не более 1 мА на 1 кВт номинальной мощности для любого отдельно включаемого нагревательного элемента и не более 10 мА для всего прибора.
15.1.5 Электронагревательные устройства должны быть такой конструкции, чтобы температура их частей, которыми должен пользоваться персонал или с которым возможно соприкосновение, не превышала значений, указанных в табл. 15.1.5.

15.2 ОТОПИТЕЛЬНЫЕ ПРИБОРЫ
15.2.1 Электрические отопительные приборы, предназначенные для помещений, должны быть стационарными. Они должны быть оборудованы устройствами, отключающими питание в случае недопустимого повышения температуры корпуса прибора.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Части приборов</th>
<th>Допускаемые температуры, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Рукоятки управления длительного использования:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>металлические</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>неметаллические</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>То же, но кратковременного использования</td>
<td></td>
</tr>
<tr>
<td></td>
<td>металлические</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>неметаллические</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>Оболочки электрических отопительных приборов помещений при температуре окружающего воздуха 20 °C</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Воздух, выходящий из отопительных приборов в обогреваемое помещение</td>
<td>80</td>
</tr>
</tbody>
</table>
Правила классификации, постройки и оборудования ПБУ/МСП

15.2.2 Отопительные приборы должны быть установлены согласно требованиям 2.1.13 части VI «Противопожарная защита».

15.2.3 Если на отопительных и нагревательных приборах не предусматриваются встроенные отключающие устройства, то такие устройства должны быть установлены в помещении в непосредственной близости от корпусов нагревательных приборов.
Выключатели должны отключать питание во всех полюсах или фазах.

15.2.4 Конструкция кожухов электрических отопительных приборов должна исключать возможность размещения на них каких-либо предметов.

15.2.5 Стационарные отопительные приборы на напряжение 380 В, допускаемые в соответствии с табл. 4.1.5, должны иметь защитное исполнение, исключающее возможность доступа к частям под напряжением без применения специального инструмента. Кожухи должны быть снабжены надписями, указывающими напряжение.

15.2.6 Камбузные электрические нагревательные приборы должны изготовляться таким образом, чтобы исключить возможность соприкосновения посуды с частями, находящимися под напряжением, и чтобы утечка жидкостей не вызывала короткого замыкания или повреждения изоляции.

15.3 НАГРЕВАТЕЛЬНЫЕ УСТРОЙСТВА ДЛЯ НЕФТЕПРОДУКТОВ

15.3.1 Подогрев нефтепродуктов (топлива и масел) с температурой вспышки выше 60 °С допускается осуществлять электрическими подогревателями при выполнении требований 15.3.2 и 15.3.3.

15.3.2 Нагревательные устройства на трубопроводах выполненные кабелями нагрева, должны быть оборудованы средствами регулировки температуры, световой сигнализацией о режимах работы, а также световой и звуковой сигнализацией о неисправностях и повышении температуры сверх допустимой.

15.3.3 Нагревательные устройства в танках должны быть косвенного нагрева и быть оборудованы средствами регулировки температуры нагреваемой среды, датчиками температуры поверхности нагревательных элементов, датчиками минимального уровня и средствами отключения питания нагревателей при превышении допустимого верхнего предела температуры и при уменьшении уровня ниже минимального.

15.3.4 Независимо от типа электрического устройства регулирования температуры нагреваемой среды следует предусмотреть устройство отключения питания нагревателя с ручной разблокировкой при достижении температуры поверхности нагревательного элемента 220 °C.

15.3.5 Кабели нагрева и поверхности электрические нагреватели должны получать питание по отдельным фидерам с номинальным током, не превышающим 63 А.

15.3.6 Для кабелей нагрева и поверхностных нагревателей должна быть предусмотрена соответствующая защита от механических повреждений. Должны быть предусмотрены соответствующие надписи, предупреждающие персонал о недопустимости механических воздействий на трубопроводы, снабженные кабелями нагрева.

15.3.7 Применение кабелей нагрева и поверхностных нагревателей во взрывоопасных зонах и пространствах допускается только при соответствующем виде взрывозащиты, подтвержденном сертификатами от компетентных органов.

15.4 УСТРОЙСТВА С ПРИМЕНЕНИЕМ КАБЕЛЯ НАГРЕВА

15.4.1 Устройства с кабелями нагрева применяются для удаления льда и предотвращения обледенения оборудования и пространств, предназначенных для:
выполнения установкой своего основного функционального назначения (технологическое оборудование);
сохранения управляемости;
сохранения остойчивости;
безопасности экипажа (технологические площадки, трапы, леера, плоты, шлюпки, и т. п.).

15.4.2 Теплопроизводительность таких устройств должна быть не менее:
300 Вт/м² для пространств открытых палуб, вертолетных площадок, трапов и переходных мостиков;
200 Вт/м² для надстроек;
50 Вт/м² для леерного ограждения с внутренним обогревом.
Теплопроизводительность для иных зон и пространств подлежит в каждом случае специальному рассмотрению.

15.4.3 В устройствах с кабелями нагрева должно быть особо обращено внимание на теплопередачу между кабелем и обогреваемым оборудованием (пространством) для эффективного обогрева.

15.4.4 Распределительный щит для указанных устройств должен быть оборудован:
ваттметром или амперметром для индикации общей нагрузки;
отличительной табличкой с указанием расчетной нагрузки каждой цепи, а также шита в целом;
Часть X. Электрическое оборудование

установленным контроля замыкания на землю по каждой цепи с предупредительной сигнализацией;

сигнальными лампами о включении нагрузки по каждой цепи.

15.4.5 Двухпроводниковые кабели нагрева должны быть защищены от перегрузки на 125 % номинального тока цепи. Для кабелей саморегулируемого типа защита от перегрузки может не применяться.

16 КАБЕЛИ И ПРОВОДА

16.1 ОБЩИЕ ТРЕБОВАНИЯ

16.1.1 Требования настоящего раздела распространяются на силовые кабели и провода на напряжение до 1000 B и кабели управления и сигнализации. Дополнительные требования к кабелям и условия их прокладки на напряжение свыше 1000 B указаны в разд. 18 настоящей части.

16.2 ЖИЛЫ

16.2.1 Жилы кабелей, предназначенных для питания ответственных потребителей, должны быть многопроволочными и изготовлены из электролитической меди (см. также 16.8.1.2). В табл. 16.2.1 приведены сведения о номинальном числе проволок в жиле. Однопроволочные жилы допускаются только для кабелей с минеральной изоляцией и для кабелей с площадью сечения жил не превышающей 2,5 мм² и напряжением до 250 B, прокладываемых в жилых помещениях.

<table>
<thead>
<tr>
<th>Номинальная площадь сечения жилы, мм²</th>
<th>Наименьшее число проволок в жиле</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5 — 6</td>
<td>7</td>
</tr>
<tr>
<td>10 — 16</td>
<td>7 — 6</td>
</tr>
<tr>
<td>25 — 35</td>
<td>19 — 6</td>
</tr>
<tr>
<td>50 — 70</td>
<td>19 — 15</td>
</tr>
<tr>
<td>95</td>
<td>37 — 15</td>
</tr>
<tr>
<td>120 — 185</td>
<td>37 — 30</td>
</tr>
<tr>
<td>240 — 300</td>
<td>61 — 30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Номинальная площадь сечения жилы, мм²</th>
<th>Наименьшее число проволок в жиле</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5 — 6</td>
<td>7</td>
</tr>
<tr>
<td>10 — 16</td>
<td>7 — 6</td>
</tr>
<tr>
<td>25 — 35</td>
<td>19 — 6</td>
</tr>
<tr>
<td>50 — 70</td>
<td>19 — 15</td>
</tr>
<tr>
<td>95</td>
<td>37 — 15</td>
</tr>
<tr>
<td>120 — 185</td>
<td>37 — 30</td>
</tr>
<tr>
<td>240 — 300</td>
<td>61 — 30</td>
</tr>
</tbody>
</table>

16.2.2 Соединения отдельных проволок жилы должны быть смешены по отношению друг к другу по длине жилы на расстоянии не менее 500 мм.

16.2.3 Отдельные проволоки медных жил с резиновой изоляцией должны быть покрыты полудой или другим соответствующим слоем. Могет быть допущено отсутствие полуды или другого устойчивого против коррозии покрытия наружного проволока или всех проволок жилы с резиновой изоляцией, если заводом-изготовителем предусмотрены меры, гарантирующие, что резиновая изоляция не будет оказывать вредного воздействия на металл жилы. Для жил, имеющих другие виды изоляции, лужения не требуется.

16.3 ИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ

16.3.1 Для изоляции кабелей и проводов могут быть применены изоляционные материалы, указанные в табл. 16.3.1. Применение других изоляционных материалов является в каждом случае предметом специального рассмотрения Регистром.

<table>
<thead>
<tr>
<th>Обозначение изоляции</th>
<th>Нормативные типы изоляционных материалов</th>
<th>Допустимая рабочая температура провода для расчета допустимой длительной нагрузки кабеля, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC/A</td>
<td>Поливинилхлорид обыкновый</td>
<td>60</td>
</tr>
<tr>
<td>PVC/D</td>
<td>Поливинилхлорид теплостойкий</td>
<td>75</td>
</tr>
<tr>
<td>EPR</td>
<td>Эпоксидная резина</td>
<td>85</td>
</tr>
<tr>
<td>XLPE</td>
<td>Полизилимидная сетчатая структура</td>
<td>85</td>
</tr>
<tr>
<td>S95</td>
<td>Кремнийорганическая резина</td>
<td>95</td>
</tr>
</tbody>
</table>
16.4 ОБОЛОЧКИ

16.4.1 Защитные оболочки кабелей и проводов могут изготавливаться из неметаллических материалов, указанных в табл. 16.4.1, свинца и меди. Применение оболочек из других материалов является в каждом случае предметом специального рассмотрения Регистром.

<table>
<thead>
<tr>
<th>Обозначение оболочки</th>
<th>Тип неметаллической защитной оболочки</th>
<th>Максимально допустимая температура жил кабеля, °С</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV1</td>
<td>Поливинилхлорид</td>
<td>60</td>
</tr>
<tr>
<td>SV2</td>
<td>То же, но теплостойкий</td>
<td>85</td>
</tr>
<tr>
<td>SP1</td>
<td>Резина полиэтиленовая</td>
<td>85</td>
</tr>
<tr>
<td>SH1</td>
<td>Хлорсульфонированный полиэтилен</td>
<td>85</td>
</tr>
</tbody>
</table>

16.4.2 Защитные оболочки должны быть одинаковой толщины, в пределах допустимых отклонений, по всей производственной длине кабеля и облегать жилы кабеля концентрически. Оболочки должны образовывать непроницаемое покрытие, плотно прилегающее к защищаемым изолированным жилам.

16.4.3 Свинцовые оболочки кабелей следует изготавливать из соответствующих сплавов, регламентируемых национальными стандартами. Оболочки из чистого свинца можно применять только тогда, когда свинцовая оболочка будет покрыта дополнительной защитной оболочкой.

16.4.4 Оболочки электрических кабелей и проводов должны быть, как минимум, не распространяющие горения, в процессе эксплуатации не должны терять свойств, обеспечивающих нераспространение горения.

16.5 ЗАЩИТНЫЕ ПОКРЫТИЯ

16.5.1 Экранирующая оплетка должна изготавливаться из медной луженой проволоки. Если применяется медная нелуженая проволока, она должна быть защищена соответствующей оболочкой. Не экранирующие оплетки могут изготавливаться из стальной оцинкованной проволоки. Оплетка должна быть равномерной, и ее плотность должна быть такой, чтобы ее масса была, по крайней мере, равна 90 % массы трубки того же диаметра, изготовленной из такого же материала и с толщиной стенки, равной диаметру проволоки оплетки.

16.5.2 Металлическая броня должна изготавливаться из отожженной и оцинкованной стальной проволоки или ленты, намотанной спирально с соответствующим шагом спуска на оболочку кабеля или на дополнительную подушку на оболочке таким образом, чтобы образовался непрерывный цилиндрический слой, обеспечивающий защиту и гибкость готового кабеля. По особому требованию броня может быть изготовлена вышеуказанным методом из немагнитных металлов.

16.5.3 Броня или оплетка кабелей, изготовленных из стальной ленты или проволоки, должна быть надежно защищена от коррозии.

16.5.4 Подушка под броню должна изготавливаться из влагостойких материалов.

16.6 МАРКИРОВКА

16.6.1 Кабели с изоляцией из резины или из поливинилхлорида для предельных температур на жиле выше 60 °С следует обозначать способом, позволяющим их опознать.

16.6.2 Жилы кабеля должны быть маркированы способом, обеспечивающим достаточную сохранность маркировки. У многожильных кабелей с жилами, расположенных в нескольких концентрических слоях, по крайней мере, две смежные жилы в каждом слое следует маркировать разными цветами.

16.7 МОНТАЖНЫЕ ПРОВОДА

16.7.1 Для внутренних соединений в распределительных щитах и электрических устройствах должны применяться одножильные изолированные провода (см. также табл. 16.3.1).

16.7.2 Для внутреннего монтажа электрических устройств допускается применять неизолированные провода и шины. Внешний монтаж неизолированными проводами или шинами допускается при условии надежного их ограждения.

16.8 КАБЕЛЬНАЯ СЕТЬ

16.8.1 Общие требования.

16.8.1.1 Должны применяться огнеустойкие и нераспространяющие горение кабели и провода с медными жилами, изготовленные в соответствии с требованиями настоящей части или одобренные Регистром действующими стандартами. Применение кабелей и проводов других типов...
является в каждом случае предметом специального рассмотрения Регистром.

16.8.1.2 Должны применяться кабели и провода с многопроволочными жилами и площадью поперечного сечения жилы не менее:
1. 1,0 мм² — в цепях питания, управления и сигнализации ответственных устройств и в цепях питания других устройств;
2. 0,75 мм² — в цепях управления и сигнализации;
3. 0,5 мм² — в цепях контрольно-измерительных и внутренней связи с числом жил в кабеле не менее четырех.

Для питания неответственных устройств допускается применение кабелей с однопроволочной жилой площадью сечения 1,5 мм² и менее. Число жил силовых кабелей должно соответствовать фазности или полярности сети распределения.

16.8.1.3 В сетях с большими индуктивными и емкостными нагрузками должны применяться кабели, рассчитанные на рабочее напряжение приблизительно удвоенному номинальному.

16.8.1.4 Наибольшая допустимая температура изоляции жилы устанавливаемого кабеля или провода должна быть, по крайней мере, на 10 °C выше предусматриваемой температуры окружающей среды.

16.8.1.5 В местах, подверженных воздействию нефтепродуктов или другой агрессивной среды, должны применяться кабели, имеющие оболочку, стойкую к воздействию данной среды. Кабели, не обладающие этими свойствами, допускается прокладывать в таких местах только в металлических трубах.

16.8.1.6 В местах, где кабели могут подвергаться механическим повреждениям, должны прокладываться кабели, имеющие соответствующую броню, а кабели других типов должны в таких местах иметь соответствующую защиту или прокладываться в трубах.

16.8.1.7 Кабели, поставляемые электросетями от высоковольтных электрических установок и подверженные коррозионной среде, должны быть электрически изолированными от основных конструкций здания, а также от других жил в кабеле, находящихся в контакте с ними.

16.8.1.8 Кабели ответственных и аварийных устройств, а также кабели устройств, требуемых для работы в условиях пожара, включая кабели их питания, не должны прокладываться в трассах, проходящих через помещения с высокой пожарной опасностью (см. 16.8.1.9) за исключением случаев, когда сами устройства размещены в этих помещениях.

В случае необходимости такой прокладки кабели должны быть огнестойкими.

16.8.1.9 К помещениям с высокой пожарной опасностью относятся:
- машинные помещения категории А;
- помещения, содержащие оборудование для подготовки топлива и других легко воспламеняющихся веществ;
- камбузы и их вспомогательные помещения, содержащие оборудование для приготовления пищи; прачечные, содержащие оборудование для сушки;
- жилые помещения повышенной пожарной опасности;
- магазины, кладовые и подсобные помещения для хранения воспламеняющихся жидкостей;
- закрытые и полузакрытые взрывоопасные помещения, для которых требуется установка электрического оборудования взрывозащищенного исполнения.

16.8.1.10 Кабели, распределительные устройства, коммутационные и защитные аппараты, установочная аппаратура, относящиеся к этим устройствам, должны быть такой конструкции или устанавливаться таким образом, чтобы свести к минимуму выход из строя этих устройств из-за пожара в любом одном из таких помещений или зон.

16.8.1.11 К устройствам, требуемым для работы в условиях пожара относятся:
- аварийная сигнализация;
- системы пожаротушения;
- сигнализация обнаружения пожара;
- сигнализация предупреждения о пуске систем пожаротушения;
- устройство управления противопожарными дверями с указателями их положения;
- устройства управления водонепроницаемыми дверями с указателями их положения и предупредительной сигнализацией; аварийное освещение;
- командно-транспортное устройство;
- низкокоразложенное освещение;
- дистанционное аварийное отключение систем, работа которых может поддерживать распространение пожара и/или взрыва.

16.8.1.12 Кабели устройств, указанных в 16.8.1.11, при прокладке через помещения с высокой пожарной опасностью, должны быть огнестойкими от панели управления этих устройств до ближайшего распределительного пункта.
Правила классификации, постройки и оборудования ПБУ/МСП

... тельного щита, установленного в помещении или зоне, обслуживающей эти устройства.

16.8.1.13 Кабели питания устройств, указанных в 16.8.1.10, при прокладке через помещения с высокой пожарной опасностью, должны быть огнестойкими от аварийного источника питания до ближайшего распределительного щита, установленного в помещении или зоне, обслуживающей эти устройства.

16.8.1.14 Кабели устройств, требуемых для работы в условиях пожара, включая кабели их питания, должны быть огнестойкими, если они проходят через машинные помещения категории А, котельные помещения, камбузы и другие выгороженные помещения с высокой пожарной опасностью, а также через их шахты, противопожарные зоны или палубы другие, чем те, в которых они установлены. К таким устройствам относятся:

авральная сигнализация и сигнализация обнаружения пожара;
системы пожаротушения и сигнализация о пуске средств пожаротушения;
устройства управления противопожарными дверями с указателями их положения;
устройства управления водонепроницаемыми дверями с указателями их положения и предупредительной сигнализацией;
аварийное освещение;
служебная связь и командно-трансляционное устройство;
низкорасположенное освещение.

16.8.2 Выбор кабелей и проводов по нагрузкам.

16.8.2.1 Расчет допустимых токовых нагрузок должен выполняться на основе стандартов или расчетных методов, одобренных Регистром. Допустимые токовые нагрузки для одно- и двухжильных кабелей и проводов с различными изоляционными материалами при температуре окружающей среды 45 °С, должны соответствовать указанным в табл. 16.8.2.1.

Приведенные в этой таблице токовые нагрузки относятся к следующим прокладкам кабелей:

1) при прокладке не более шести кабелей в одном пучке или в один ряд с плотным прилеганием друг к другу;

2) при прокладке кабелей в два ряда, независимо от количества кабелей в ряду, при условии, что между группой или пучком из шести кабелей имеется свободное пространство для циркуляции воздуха.

При прокладке более шести кабелей в пучке, которые могут быть одновременно нагружены номинальным током, или при отсутствии свободного пространства между ними для циркуляции воздуха допустимые табличные токовые нагрузки для данного сечения должны быть снижены на 15 % (коэффициент 0,85).

16.8.2.2 Значение номинальных токовых нагрузок в Амперах для сечений, приведенных в табл. 16.8.2.1, а также для любых сечений рассчитываются по формуле:

\[I = aS^{0.625}, \]

где \(a \) — коэффициент, соответствующий максимально допустимой рабочей температуре жилы, который определяется по табл. 16.8.2.2; \(S \) — номинальная площадь сечения жилы, мм².

Таблица 16.8.2.1

<table>
<thead>
<tr>
<th>Номинальное сечение жилы, мм²</th>
<th>Максимальная рабочая допустимая температура жилы, °С</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>95</td>
<td>100</td>
</tr>
</tbody>
</table>

Таблица 16.8.2.2

<table>
<thead>
<tr>
<th>Максимальная допустимая температура жилы, °С</th>
<th>Коэффициент (a) для номинальной площади сечения, мм²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\geq 2.5)</td>
<td>(\leq 2.5)</td>
</tr>
<tr>
<td>60</td>
<td>9.5</td>
</tr>
<tr>
<td>65</td>
<td>11</td>
</tr>
<tr>
<td>70</td>
<td>12</td>
</tr>
<tr>
<td>75</td>
<td>13.5</td>
</tr>
<tr>
<td>80</td>
<td>15</td>
</tr>
<tr>
<td>85</td>
<td>16</td>
</tr>
<tr>
<td>90</td>
<td>18</td>
</tr>
</tbody>
</table>
16.8.2.3 Допустимые токовые нагрузки для двух-, трех- и четырехжильных кабелей должны определяться путем снижения нагрузки, указанной в табл. 16.8.2.1 для данного сечения, при помощи следующих поправочных коэффициентов:
0,85 — для двухжильных кабелей;
0,70 — для трех- и четырехжильных кабелей.

16.8.2.4 Допустимые токовые нагрузки кабелей и проводов, установленных в цепях с повторно-кратковременной или кратковременной нагрузкой, должны определяться умножением длительных нагрузок кабелей, указанных в табл. 16.8.2.1 или выбранных по 16.8.2.2, на поправочные коэффициенты, указанные в табл. 16.8.2.4.

Таблица 16.8.2.4
Поправочные коэффициенты для кабелей и проводов с металлической и без металлической оболочкой

<table>
<thead>
<tr>
<th>Номинальное сечение жил, мм²</th>
<th>Повторно-кратковременный режим ПВ 40 %</th>
<th>Кратковременная работа 30 мин</th>
<th>Кратковременная работа 60 мин</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>с металлической оболочкой</td>
<td>без металлической оболочкой</td>
<td>с металлической оболочкой</td>
</tr>
<tr>
<td>1,09</td>
<td>1,24</td>
<td>1,09</td>
<td>1,06</td>
</tr>
<tr>
<td>1,5</td>
<td>1,26</td>
<td>1,09</td>
<td>1,06</td>
</tr>
<tr>
<td>2,5</td>
<td>1,27</td>
<td>1,10</td>
<td>1,06</td>
</tr>
<tr>
<td>4</td>
<td>1,30</td>
<td>1,14</td>
<td>1,06</td>
</tr>
<tr>
<td>6</td>
<td>1,33</td>
<td>1,17</td>
<td>1,06</td>
</tr>
<tr>
<td>10</td>
<td>1,36</td>
<td>1,21</td>
<td>1,08</td>
</tr>
<tr>
<td>16</td>
<td>1,40</td>
<td>1,26</td>
<td>1,09</td>
</tr>
<tr>
<td>25</td>
<td>1,42</td>
<td>1,30</td>
<td>1,12</td>
</tr>
<tr>
<td>35</td>
<td>1,44</td>
<td>1,33</td>
<td>1,14</td>
</tr>
<tr>
<td>50</td>
<td>1,46</td>
<td>1,37</td>
<td>1,17</td>
</tr>
<tr>
<td>70</td>
<td>1,47</td>
<td>1,40</td>
<td>1,21</td>
</tr>
<tr>
<td>95</td>
<td>1,49</td>
<td>1,42</td>
<td>1,25</td>
</tr>
<tr>
<td>120</td>
<td>1,50</td>
<td>1,44</td>
<td>1,28</td>
</tr>
<tr>
<td>150</td>
<td>1,51</td>
<td>1,45</td>
<td>1,32</td>
</tr>
<tr>
<td>185</td>
<td>—</td>
<td>—</td>
<td>1,36</td>
</tr>
<tr>
<td>240</td>
<td>—</td>
<td>—</td>
<td>1,41</td>
</tr>
<tr>
<td>300</td>
<td>—</td>
<td>—</td>
<td>1,46</td>
</tr>
</tbody>
</table>

16.8.2.5 Допустимые токовые нагрузки, указанные в табл. 16.8.2.1, приведены для температуры окружающей среды, равной 45 °С.
Поправочные коэффициенты для пересчета допустимых нагрузок, которые должны вводиться в зависимости от температуры окружающей среды, приведены в табл. 16.8.2.5.

16.8.2.6 При выборе кабелей для конечных цепей освещения или нагревательных приборов не должны применяться никакие поправочные коэффициенты токовой нагрузки и одновременности.

16.8.2.7 Кабели должны быть рассчитаны таким образом, чтобы они могли выдержать максимальный ток короткого замыкания с учетом токовременной характеристики защитных устройств и пикового значения ожидаемого тока короткого замыкания в первом полупериоде.

16.8.2.8 Кабели, прокладываемые параллельно для одной и той же фазы или полюса, должны быть одного типа, прокладываться совместно и иметь одинаковые сечения не менее 10 мм² и одинаковую длину.

16.8.3 Выбор площади сечения кабелей на допустимое падение напряжения.

16.8.3.1 Падение напряжения на кабеле, соединяющем генераторы с главным распределительным щитом или с аварийным распределительным щитом, не должно превышать 1 %.

16.8.3.2 Падение напряжения между сборными шинами главного распределительного щита или аварийного распределительного щита и любыми точками установки при нормальных условиях работы не должно превышать 6 % номинального напряжения, а для потребителей, питаемых от аккумуляторной батареи с номинальным напряжением до 50 В, это значение может быть увеличено до 10 %. В переходных процессах, например, при пуске электрических двигателей, могут быть допущены кратковременные провалы напряжения, превышающие 10 %.
Для целей сигнально-отличительных фонарей может быть потребовано ограничение падения

Таблица 16.8.2.5
Предельная температура жилы температура окружающей среды, °С
<table>
<thead>
<tr>
<th>Прецизная температура жилы °C</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>1,29</td>
<td>1,15</td>
<td>1,00</td>
<td>0,82</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>65</td>
<td>1,22</td>
<td>1,12</td>
<td>1,00</td>
<td>0,87</td>
<td>0,71</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>70</td>
<td>1,18</td>
<td>1,10</td>
<td>1,00</td>
<td>0,89</td>
<td>0,77</td>
<td>0,63</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>75</td>
<td>1,15</td>
<td>1,08</td>
<td>1,00</td>
<td>0,91</td>
<td>0,82</td>
<td>0,71</td>
<td>0,58</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>80</td>
<td>1,13</td>
<td>1,07</td>
<td>1,00</td>
<td>0,93</td>
<td>0,85</td>
<td>0,76</td>
<td>0,65</td>
<td>0,53</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>85</td>
<td>1,12</td>
<td>1,06</td>
<td>1,00</td>
<td>0,94</td>
<td>0,87</td>
<td>0,79</td>
<td>0,71</td>
<td>0,61</td>
<td>0,50</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>90</td>
<td>1,10</td>
<td>1,05</td>
<td>1,00</td>
<td>0,94</td>
<td>0,88</td>
<td>0,82</td>
<td>0,74</td>
<td>0,67</td>
<td>0,58</td>
<td>0,47</td>
<td>—</td>
</tr>
<tr>
<td>95</td>
<td>1,10</td>
<td>1,05</td>
<td>1,00</td>
<td>0,95</td>
<td>0,89</td>
<td>0,84</td>
<td>0,77</td>
<td>0,71</td>
<td>0,63</td>
<td>0,55</td>
<td>0,45</td>
</tr>
</tbody>
</table>
напряжения на меньшее значение для обеспечения требуемых световых характеристик.

16.8.3.3 Кабели, служащие для питания электрических двигателей переменного тока с прямым пуском, должны быть рассчитаны так, чтобы падение напряжения на клеммах двигателя в момент пуска не превышало 25 % номинального напряжения.

Возможность увеличения указанного падения напряжения является в каждом случае предметом специального рассмотрения Регистром.

16.8.4 Прокладка кабелей.

16.8.4.1 Кабели должны быть проложены по возможности по прямым и доступным трассам таким образом, чтобы исключалось их скручивание и другие механические воздействия, могущие привести к их повреждению. Кабельные трассы должны проходить через места, в которых кабели не будут подвергаться продолжительному воздействию масла, топлива, воды и чрезмерного внешнего нагрева. Трассы должны находиться на расстоянии не менее 100 мм от источников тепла.

16.8.4.2 На расстоянии не менее 50 мм от двойного дна и от цистерн нефтепродуктов не должны прокладываться никакие кабели.

От наружной обшивки, а также от противопожарных, водонепроницаемых и газонепроницаемых переборок и палуб кабели должны находиться на расстоянии не менее 20 мм.

16.8.4.3 При прокладке кабельных пучков, не испытанных на распространение пламени, должны быть предусмотрены следующие меры:

1. должны быть применены огнезадерживающие конструкции, по крайней мере, типа В-0 (см. также 2.1.2.9 части VI «Противопожарная защита» Правил классификации и постройки морских судов) на входах кабельных пучков в главный распределительный щит, аварийный распределительный щит, центральные посты управления, щиты централизованного управления силовой установкой и механизмов ответственного назначения, а также на каждом конце полностью закрытых трасс (см. рис. 16.8.4.3.1);

2. в закрытых и полузакрытых помещениях и пространствах кабельные пучки, уложенные в полузакрытых и открытых трассах, должны быть защищены:

огнестойкой массой, наложенной по всей длине для вертикальных трасс и участками длиной 1 м с интервалами 14 м — для горизонтальных трасс (см. рис. 16.8.4.3.2-1); или

прутким прокладки огнезадерживающих конструкций типа В-0, по крайней мере, на каждой второй палубе или через каждые 6 м для вертикальных трасс и через каждые 14 м для горизонтальных трасс (см. рис. 16.8.4.3.2-2). Огнеза}

16.8.4.4 Кабели с наружной металлической оболочкой допускается прокладывать на конструкциях из легкого металла и крепить с помощью скоб из легкого металла только в
Часть X. Электрическое оборудование

289

случае применения надежной антикоррозионной защиты.

16.8.4.5 Прокладывать кабели под настилом машинных помещений обычным способом не допускается. Если такая прокладка необходима, то кабели должны прокладываться в металлических трубах или в закрытых каналах (см. 16.8.8).

16.8.4.6 У кабелей, прокладываемых через расширительные соединения корпуса, должны быть предусмотрены компенсационные петли радиусом, достаточным для такого соединения. Внутренний диаметр петли должен быть не менее 12 наружных диаметров кабеля.

16.8.4.7 Прокладка кабелей с изоляцией на разные допустимые температуры в общих кабельных трассах должна осуществляться таким образом, чтобы кабели не нагревались выше допустимой температуры кабелей с меньшей допустимой температурой.

16.8.4.8 Кабели с разными защитными оболочками, из которых меньшее стойкие могут подвергаться повреждению, не должны прокладываться в общей трубе, общем желобе или другим способом совместной незакрепленной прокладки.

16.8.4.9 Жилы многожильных кабелей не должны использоваться для питания и управления не связанных друг с другом ответственных устройств.

В многожильном кабеле не допускается присоединение одновременно безопасного напряжения и рабочих напряжений, превышающих безопасное.

16.8.4.10 При питании устройств по двум отдельным фидерам они должны прокладываться разными трассами, по возможности на максимальном расстоянии друг от друга в горизонтальном и вертикальном направлениях.

16.8.4.11 При прокладке кабелей в каналах и других конструкциях, изготовленных из горючих материалов, районы прокладки кабелей должны быть защищены от возгорания с помощью огнезащитных средств таких, как облицовка, покрытия или пропитка.

16.8.4.12 Прокладываемые кабели не должны быть утоплены в тепловую или звуковую изоляцию, если она изготовлена из горючих материалов. От такой изоляции кабели должны быть отделены облицовкой из негорючего материала или расположены на расстоянии не менее 20 мм от нее.

При прокладке в тепловой или звуковой изоляции, изготовленной из негорючих материалов, кабели должны быть рассчитаны с соответствующим снижением нагрузки.

16.8.4.13 Кабели, прокладываемые в охлаждаемых помещениях, должны иметь защитную оболочку из металла, полихлоропреновой резины или из другого материала, стойкого к влиянию холодильного агента.

Если кабели имеют броню, то она должна быть надлежащим образом защищена от коррозии.

16.8.4.14 Кабель в охлаждаемых помещениях должен прокладываться на перфорированных панелях или мостах и крепиться таким способом, чтобы сохранялось свободное пространство между кабелем и стенками помещения. Панели, мосты и крепежные скобы должны быть защищены от коррозии.

Если кабели пересекают тепловую изоляцию охлаждаемого помещения, то они должны проходить через нее под прямым углом в соответствии с действующей втулкой, уплотненной с обеих сторон.

16.8.4.15 При прокладке кабелей должны быть выдержаны минимальные внутренние радиусы изгиба кабелей в соответствии с табл. 16.8.4.15.

16.8.4.16 Кабели и заземляющие перемычки оборудования, установленного на амортизаторах, должны быть подведены таким образом, чтобы они не повреждались в условиях эксплуатации.

16.8.4.17 Кабели, прокладываемые на открытых палубах, мачтах и т. п., должны быть защищены от прямого воздействия солнечной радиации.

Рис. 16.8.4.3.2-2 Защита кабельных трасс огнезадерживающими конструкциями типа В-0
ящих в кабелях, не передавались на их вводы и присоединения.

16.8.5.4 Кабельные трассы и кабели, прокладываемые параллельно обшивке корпуса ПБУ или МСП, должны крепиться к набору корпуса, а не к обшивке.

На водонепроницаемых переборках и мачтах кабели должны крепиться на специальных конструкциях (кассетах, мостах, подушках и т. п.).

16.8.5.5 Кабели, идущие параллельно переборкам, подверженным отпотеванию, должны прокладываться на мостиках или на перфорированных панелях таким образом, чтобы сохранялось пространство между кабелями и переборками.

16.8.5.6 Кабельные трассы должны прокладываться с минимальным количеством пересечений. В местах пересечения кабелей должны применяться мостики. Между мостиком и перекрывающейся с ним кабельной трассой должен оставаться воздушный зазор не менее 5 мм.

16.8.6 Проходы кабелей через палубы и переборки.

16.8.6.1 Проходы кабелей через водонепроницаемые, газонепроницаемые и противопожарные переборки и палубы должны быть уплотнены соответствующими конструкциями.

Уплотнения в местах проходов кабелей через указанные переборки и палубы не должны снижать их непроницаемость, причем на кабели не должны передаваться усилия, возникающие от упругих деформаций корпуса.

16.8.6.2 При прокладке кабеля через проницаемые переборки или элементы набора толщиной менее 6 мм в отверстия для прохода кабелей должны устанавливаться облицовка или втулка, предохраняющие кабель от повреждений.

При толщине переборок или набора 6 мм и более устанавливать облицовку или втулку не требуется, но кромки отверстия должны быть закруглены.

16.8.6.3 Прокладка кабелей через водонепроницаемые палубы должна быть выполнена одним из следующих способов:

1. В металлических трубах (стояках), выступающих над палубой на высоту не менее 900 мм, в местах, где возможны механические повреждения кабеля, и на высоту не менее высоты комингса дверей для данного помещения, где такая возможность отсутствует;

2. В общих металлических стаканах или в коробках с дополнительной защитой кабелей кожухами высотой, указанной в 16.8.6.3.2.

Коробки должны быть уплотнены уплотнительными массами, а трубы должны иметь сальники или быть уплотнены кабельной массой.
16.8.7 Уплотнительные массы.
16.8.7.1 Для заполнения кабельных коробок в водонепроницаемых переборках и палубах должны применяться уплотнительные массы, обладающие хорошим сцеплением с внутренними поверхностями кабельных коробок и оболочками кабелей, стойкими к воздействию воды и нефтепродуктов, не дающими усадок и нарушений герметичности при длительной эксплуатации в условиях, оговоренных в 2.1.1 и 2.1.2.
16.8.7.2 Уплотнения кабельных проходов через противопожарные переборки должны быть такими, чтобы они выдерживали стандартное испытание огнестойкости, предусмотренное для переборки данного типа в 2.1.2.6 части VI «Приступная защита» Правил классификации и постройки морских судов.
16.8.8 Прокладка кабелей в трубах и кабельных каналах.
16.8.8.1 Металлические трубы и каналы, в которых прокладываются кабели, должны быть защищены от коррозии с внутренней и наружной стороны. Внутренняя поверхность труб и каналов должна быть ровной и гладкой. Концы труб и каналов должны быть обработаны или защищены таким образом, чтобы при втягивании кабеля не подвергались повреждению. Кабели с оболочкой из свинца, не имеющие дополнительного защитного покрытия, не должны прокладываться в трубах и каналах.
16.8.8.2 Радиус изгиба трубы и канала должен быть не меньше допустимого для проложенного в ней кабеля самого большого диаметра (см. 16.8.4.15).
16.8.8.3 Суммарная площадь поперечных сечений всех кабелей, определенная по их внешним диаметрам, не должна превышать 40 % площади внутреннего поперечного сечения трубы и канала.
16.8.8.4 Трубы и каналы должны быть механически и электрически непрерывными и быть надежно заземлены, если это заземление не предусмотрено при монтаже труб и каналов.
16.8.8.5 Трубы и каналы должны прокладываться так, чтобы в них не могла скапливаться вода. При необходимости в трубах и каналах должны предусматриваться вентиляционные отверстия по возможности в самых высоких и низких точках так, чтобы обеспечивалась циркуляция воздуха и предотвращалась конденсация паров. Отверстия в трубах и каналах допускаются только в местах, где это не увеличивает опасности взрыва или пожара.
16.8.8.6 Трубы и каналы для прокладки кабелей, которые проложены вдоль корпуса, должны иметь компенсационные устройства, вызванные деформацией корпуса, и быть надежно заземлены.
16.8.8.7 Если в соответствии с 16.8.1.1 разрешено применение кабелей с горючей оболочкой, то их прокладка должна производиться в металлических трубах.
16.8.8.8 Кабели, проложенные в трубах и каналах, должны быть заземлены так, чтобы они не повреждались от растяжения из-за собственной массы.
16.8.9 Специальные требования к прокладке одножильных кабелей переменного тока.
16.8.9.1 Рекомендуется не применять одножильные кабели для переменного тока. Если прокладка таких кабелей необходима, то кабели на номинальную силу тока, превышающую 20 А, должны удовлетворять следующим требованиям:
1. кабели не должны иметь покрытий из магнитного материала;
2. кабели, относящиеся к одной цепи, должны прокладываться в одной трассе или в одной трубе. Прокладка таких кабелей в разных трубах допускается только при прокладке в одной металлической трубе;
3. кабельные узлы, за исключением изготовленных из немагнитных материалов, должны охватывать все одножильные кабели одной цепи;
4. расстояние между кабелями должно быть не более одного диаметра кабеля.
16.8.9.2 Кабели, относящиеся к одной цепи, должны прокладываться в одной трассе или в одной металлической трубе и иметь минимально возможную длину. Допускается прокладка таких кабелей на длину не более 50 мм.
16.8.9.3 Если одножильные кабели с номинальным током более 250 А прокладываются параллельно стальным конструкциям, то расстояние между кабелями должно быть не менее 50 мм.
16.8.9.4 При прокладке одножильных кабелей на длину не более 185 мм² должно применяться кроссирование кабелей через промежутки не более 15 м. При длине кабелей до 30 м кроссирование не требуется.
16.8.9.5 Многожильные кабели с параллельно соединенными жилами должны прокладываться как одножильные и на них должны распространяться все требования для одножильных кабелей.
16.8.10 Подключение и соединение кабелей.
должны иметь контактное, защитное и уплотнительное оконцевание, обеспечивающие надежный электрический контакт и не допускающие проникновения влаги внутрь кабеля, а также защищающие изоляцию жил кабеля от механических повреждений, воздействия воздуха и масляных паров.

16.8.10.2 В местах подключения жилы кабеля с резиновой изоляцией должны иметь защиту изоляции от повреждения (перетирания и т. п.). Кабельные оконцевания и соединения их жил должны быть выполнены таким образом, чтобы после монтажа и в процессе эксплуатации сохранялись их электрические, механические и прочие характеристики.

16.8.10.3 Защитная оболочка кабеля, вводимого в устройство, должна входить внутрь устройства не менее чем на 10 мм.

16.8.10.4 Соединение кабелей в местах их разветвления должно производиться в разветвительных коробках с помощью стандартных зажимов.

16.8.10.5 Если при прокладке кабелей требуется добавочные соединения, они должны осуществляться в соответствующих соединительных коробках, снабженных зажимами. Соединение в целом должно быть защищено от влияния внешних условий. Допустимость применения соединений кабелей и применение других способов соединения кабелей, кроме указанного выше, является в каждом случае предметом специального рассмотрения Регистром.

17 ГРЕБНЫЕ ЭЛЕКТРИЧЕСКИЕ УСТАНОВКИ САМОХОДНЫХ ПБУ

17.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ И ЗНАК В СИМВОЛЕ КЛАССА

17.1.1 Требования настоящего раздела распространяются на гребные электрические установки (ГЭУ) и их компоненты, а также на изготовление, монтаж и испытания, в том числе:
- генераторы и их первичные двигатели,
- распределительные щиты,
- трансформаторы/реакторы,
- полупроводниковые преобразователи частоты (ППЧ) (конвертеры),
- гребные электрические двигатели (ГЭД),
- системы возбуждения,
- системы управления ГЭУ, системы контроля (АПС, индикация и регистрация параметров ГЭУ),
- а также системы защиты,
- системы силовых шинопроводов, кабельных трасс и кабельной сети системы управления.

17.1.2 Требования настоящего раздела распространяются также на носовые и кормовые подруливающие устройства, являющиеся устройствами управления и динамического позиционирования ПБУ.

17.1.3 Выполнение требований настоящего раздела и применимых требований других разделов настоящей части обязательно для ПБУ, где к основному символу класса добавляется один из знаков «DINPOS» в соответствии с 7.5 части XIV «Автоматизация».

17.1.4 Электрическое оборудование ГЭУ должно отвечать требованиям других разделов и глав настоящей части, если отсутствуют другие указания.

17.1.5 В электрических системах ГЭУ допускается применение напряжений, не превышающих указанных в 18.1.2.

17.1.6 Комплект документации как на систему ГЭУ в целом, так и на все основные ее компоненты (генераторы, трансформаторы, ГЭД, системы управления, и т.п.) должен быть представлен на рассмотрение в Регистр.

17.1.7 Каждый изготовитель компонентов системы должен представить документированное подтверждение, что его компонент ГЭУ изготовлен в соответствии с требованиями международных или национальных стандартов, а также соответствует требованиям Правил РС.

17.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

17.2.1 В настоящем разделе приняты следующие определения и пояснения.
- Гребной электрический двигатель — электрический двигатель, предназначенный для передачи пропульсивной энергии ПБУ.
- Система дистанционного управления — система для образования задающих параметров для ППЧ и выбора соответствующего поста управления, а также для ввода необходимых ограничений от других систем, если это необходимо, в нормальных эксплуатационных условиях.
- Главный пост управления ГЭУ — пост управления главной пропульсивной установкой, на котором имеется вахта в условиях хода в море или при позиционировании.
- Местный пост управления — располагающийся в месте установки системы пост управления, предназначенный для образования и введения в систему задающих параметров для ППЧ, независимых от заданных параметров системы.
дистанционного управления и других внешних ограничений.

Система управления главной электроэнергетической установкой — система, предназначенная для пуска и остановки первичных двигателей генераторов в зависимости от требуемой мощности, включения и распределения нагрузки между работающими генераторами и т.д.

Азимутальный привод — привод, обеспечивающий поворот пропульсивного блока вокруг вертикальной оси.

Привод в гондоле — пропульсивная система, в которой ГЭД установлен в специально предназначенной для него погружной гондоле ПБУ.

Генератор ГЭУ — генератор, предназначенный для обеспечения питания главной пропульсивной установки.

Распределительный щит ГЭУ — распределительный щит, предназначенный для распределения электроэнергии главной пропульсивной установки.

Дублированный датчик — датчик с двумя чувствительными элементами в одном корпусе.

Резервированный датчик — два отдельных датчика в отдельных корпусах, установленных для контроля одного и того же параметра.

17.3 СТРУКТУРА ГЭУ

17.3.1 Типовые системы.
17.3.1.1 Современная ГЭУ проектируется, как правило, с полупроводниковыми преобразователями частоты и должна состоять как минимум из следующих компонентов:
- главные генераторы ГЭУ — 2 шт.,
- главный распределительный щит (ГРЩ), разделенный на две части межсекционным автоматическим выключателем или разъединителем — 1 шт.,
- силовые трансформаторы для преобразования напряжения ГРЩ в напряжение полупроводниковых преобразователей — 2 шт.,
- силовые полупроводниковые преобразователи для питания ГЭД — 2 шт.,
- ГЭД,
- микропроцессорная (компьютерная) система управления.

17.3.1.2 Для одновальных ГЭУ синхронные и асинхронные ГЭД должны иметь две системы статорных обмоток, которые могли бы независимо отключаться от соответствующего ППЧ. Каждый ППЧ должен быть рассчитан, по крайней мере, на 50 % номинальной мощности ГЭУ.
Гребные двигатели постоянного тока должны быть двухякорными (двухколлекторными), причем каждая якорная обмотка должна быть рассчитана, по крайней мере, на 50 % номинальной мощности установки. Каждая якорная обмотка должна получать питание от своего независимого преобразователя. Любая единичная неисправность в преобразователе не должна приводить к полной потере хода.

17.3.1.3 Для гребного вала должны быть предусмотрены тормозные или блокирующие устройства, не позволяющие произвольно вращаться отключенному гребному движителю (валу) при любых погодных условиях или в процессе буксировки ПБУ.

17.3.1.4 В основу проектирования должен быть положен принцип локализации одной неисправности, т. е. в случае появления неисправности в любом из компонентов системы ГЭУ ход ПБУ должен сохраняться хотя бы с частичной мощностью.
При появлении любой неисправности в системе ГЭУ на всех действующих постах управления должен быть предусмотрен аварийно-предупредительный сигнал.

Для всех вспомогательных механизмов и устройств ответственного назначения должны предусматриваться местные посты управления, на которые переводится управление в случае неисправности любого компонента дистанционной компьютерной системы управления ГЭУ.

17.3.1.5 При создании ГЭУ, компоненты которой, изготовленные разными предприятиями, будут частью системы, должно быть предусмотрено одно ведущее предприятие, ответственное за интеграцию всего комплекта ГЭУ.

Это предприятие должно распределять приоритеты всех автоматизированных и автоматических функций, исходя из принципа обеспечения безопасности ПБУ в целом, как это предусматривается программным обеспечением компьютерных систем управления и контроля.

Это предприятие должно иметь необходимый опыт и ресурсы, обеспечивающие управляемый интеграционный процесс создания ГЭУ.

17.3.2 Крутильные колебания.
17.3.2.1 При проектировании должно предусматриваться необходимое согласование моментов инерции механических компонентов и их констант упругости с электрическими характеристиками в системе для предотвращения недопустимых механических напряжений при чрезмерных амплитудах крутильных колебаний комплекса. Колебательная система в целом включает в себя не только первичные двигатели, генераторы, электродвигатели, муфты, редукторы, валы и винты, но и трансформаторы, конвертеры и возбудители.

17.3.2.2 Изготовители этих компонентов должны представить всю необходимую информацию по
этому вопросу ответственному предприятию за всю систему, как указано в 17.3.1.5.

Наивысший пик крутильного момента может ожидаться в случае двухфазного короткого замыкания на клеммах гребного двигателя. Наивысший пик падающегося, постоянного момента может ожидаться в случае трехфазного короткого замыкания на клеммах гребного двигателя. Эти возможные ситуации с колебаниями нагрузки должны находиться под контролем системы управления ГЭУ. Реальная ситуация с крутильными колебаниями установки должна быть подтверждена расчетом крутильных колебаний.

17.3.3 Устойчивость функционирования ГЭУ.

Система ГЭУ должна устойчиво функционировать при любых погодных условиях хода в море и в условиях маневрирования (позиционирования).

Любые другие системы на борту, ни система общих информационных шин, ни общие программные средства не должны отрицательно влиять на управление движением и маневрированием в случае создания интегрированной системы контроля и управления.

Необходимые меры должны быть приняты для исключения электромагнитных помех, как указано в 2.2 «Электромагнитная совместимость».

Все устройства управления первичными двигателями, переключателями электрических цепей, контактами, контролируемыми в системах возбуждения, и т.д. должны иметь необходимые блокирующие устройства для предотвращения ошибочных операций, которые могут привести к повреждениям двигателей.

17.3.4 Защита против влаги и конденсата

17.3.4.1 В корпусах ГЭД, генераторах, полупроводниковых преобразователях, других компонентов ГЭУ должны предусматриваться устройства, препятствующие образованию и скоплению влаги и конденсата, особенно в периоды длительных стоянок. Этими устройствами могут быть электрические нагреватели, осушители воздуха и т.п.

17.3.4.2 В помещениях электрических машин, распределительных щитов и пультов управления рекомендуется предусматривать электрическое отопление.

17.3.4.3 Под генераторами и двигателями ГЭУ должно быть установлено стационарное освещение.

17.3.4.4 Часты гребных электрических машин (двигателей и генераторов), установленные под настилом, должны иметь степень защиты не ниже, чем IP56.

Если они помещаются в сухом отсеке или защищены от попадания воды водонепроницаемым фундаментом, и если, кроме того, имеется сигнализация, срабатывая при попадании воды в этот отсек, то может быть допущена степень защиты IP23.

17.3.5 Системы возбуждения электрических машин ГЭУ.

17.3.5.1 Общие требования.

17.3.5.1.1 Каждая система возбуждения должна получать питание по отдельному фидеру. Предельный ток и напряжение системы возбуждения, а также их источник питания должны в полной мере удовлетворять требованиям для всех режимов ГЭУ, в частности, при маневрировании, в режимах перегрузки и при коротком замыкании, а также в условиях опрокидывающего момента.

17.3.5.1.2 Цепи питания систем возбуждения должны иметь защитные устройства только от коротких замыканий, поскольку потребителями являются обмотки возбуждения, имеющие строго регламентируемые и неизменные электрические характеристики. Срабатывание электромагнитного расцепителя при коротком замыкании должно сопровождаться сигналом АПС на постах управления.

17.3.5.1.3 Если установленный в систему питания возбуждения автоматический выключатель отключил систему возбуждения, то автоматический выключатель генератора или, соответственно, гребного двигателя должен также отключить электрическую машину от системы питания.

17.3.5.1.4 Если питание системы возбуждения снабжено независимыми устройствами защиты против снижения частоты и перенапряжения или устройствами пропорционального регулирования «напряжение/частота», то они должны быть отрегулированы таким образом, чтобы система защиты реагировала при достижении недопустимых режимов.

17.3.5.1.5 Цепи возбуждения должны быть оборудованы устройствами для снижения (подавления) всплеска напряжения при размыкании выключателя возбуждения (система гашения поля).

17.3.5.1.6 Должны быть предусмотрены средства (фильтры и т.п.) для ограничения гармонических искажений и снижения коэффициента мощности.

17.3.5.2 Возбуждение генераторов.

17.3.5.2.1 Установленные и переходные режимы процесса регулирования системы возбуждения, включая автоматический регулятор напряжения, должны соответствовать требованиям МЭК 60092-301.

17.3.5.2.2 Системы возбуждения должны получать питание со стороны генератора, который должен быть самовозбуждающимся. Напряжение должно подниматься автоматически без дополнительных вспомогательных устройств.

17.3.5.2.3 Для управляющих целей возбудителя, а также и для начального возбуждения может быть применен внешний источник энергии, если он резервирован.

Этот внешний источник должен получать питание от ГРЩ, АРЩ и дополнительно от
Часть X. Электрическое оборудование

резервной аккумуляторной батареи. Как минимум для всех генераторов должны быть предусмотрены два внешних источника энергии.

17.3.5.3 Возбуждение ГЭД.
17.3.5.3.1 Питание возбудителя должно осуществляться непосредственно от той секции ГРЩ, от которой получает питание статорная обмотка двигателя.

17.3.5.3.2 Системы возбуждения и системы автоматического регулирования должны быть выполнены таким образом, чтобы ГЭД были защищены от чрезмерного повышения частоты вращения при поломке или оголении гребного винта.

17.4 ШИНОПРОВОДЫ ГЭУ

17.4.1 Системы шинопроводов для передачи электрической энергии должны быть сертифицированы на предмет их функционирования без обслуживания, или все механические и электрические соединения должны быть доступными для периодического контроля и обслуживания.

17.5 ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ (ЭМС) ГЭУ

17.5.1 Общие требования.
ГЭУ должна без сбоев и отказов функционировать в условиях воздействия электромагнитных помех, т.e. соответствовать критерию «A» стандарта МЭК 61000 и требованиям, изложенным в 2.2 «Электромагнитная совместимость».

17.5.2 Суммарные (общие) гармонические искажения.
17.5.2.1 Оборудование, создающее всплески напряжения, частоты и тока, не должно быть причиной отказов и выходов из строя другого оборудования на борту из-за помех, передающихся кондуктивно, индуктивно или радиационно.

17.5.2.2 При проектировании и изготовлении должен учитываться тот факт, что силовые полупроводниковые преобразователи ГЭУ создают электромагнитные помехи внутри сети. Если есть потребность установки и электронергетическая сеть соединены электрически или через трансформаторы, то суммарные гармонические искажения не должны превышать 10 % номинальной величины напряжения.

17.5.2.3 Если величина гармонических искажений превышает 10 % в рабочем состоянии ГЭУ, то ответственное за проектирование ГЭУ предприятие должно обеспечить соответствующую фильтрацию и функционирование без помех любых подключаемых потребителей.

17.5.3 Радиочастотные помехи.
Если полупроводниковые преобразователи ГЭУ размещены в отдельных специальных помещениях или шкафах, то максимальные величины излучений (контролируются) измеряются только вне этих помещений или шкафов.

Требования к помехоустойчивости для самих преобразователей ГЭУ должны быть не ниже требований, относящихся к любому другому оборудованию на ПБУ.

Кондуктивные и излучаемые помехи, исходящие из шкафов или помещений полупроводниковых преобразователей, должны быть снижены до приемлемого (допустимого) уровня.

17.6 ПЕРВИЧНЫЕ ДВИГАТЕЛИ ГЕНЕРАТОРОВ ГЭУ

17.6.1 Общие требования.
Первичные двигатели генераторов ГЭУ, как правило, являются главными двигателями электроэнергетической установки ПБУ.

Примечание. Главные двигатели должны соответствовать требованиям, предъявляемым к ним соответствующими частями Правил ПБУ/МСП.

17.6.2 Допустимые отклонения частоты вращения.
17.6.2.1 Если генераторы ГЭУ также используются для питания сети ПБУ, то статические (длительные) и динамические (кратковременные) отклонения частоты генераторов (при соответствующих изменениях нагрузки) должны соответствовать требованиям, предъявляемым к судовой сети в 2.11.3 части IX «Механизмы» Правил классификации и постройки морских судов.

17.6.2.2 Если система управления частотой вращения гребного винта требует изменений частоты вращения первичных двигателей генераторов ГЭУ, то регуляторы частоты вращения первичных двигателей должны иметь устройство как местного, так и дистанционного управления частотой вращения.

17.6.2.3 Номинальная мощность, а также перегрузочная способность первичных двигателей должны выбираться с учетом обеспечения мощности, требуемой в процессе переменных нагрузок общего электрического оборудования, изменений нагрузок ГЭУ при маневрировании, ходе в море, в тяжелых (штормовых) погодных условиях.

17.6.3 Параллельная работа.
При параллельной работе генераторов применимые системы регулирования должны обеспечивать стабильное пропорциональное распределение нагрузок во всем оперативном
диапазоне мощностей первичных двигателей, как указано в 3.2.2.

17.6.4 Мощность реверсирования.
17.6.4.1 При экстренном маневре с полного переднего хода на полный ход назад первичные двигатели должны быть способны поглотить (абсорбировать) соответствующую часть рекуперируемой энергии без срабатывания защиты от разноса или от обратной мощности.
17.6.4.2 Для абсорбирования соответствующей части рекуперируемой энергии и торможения ГЭД при реверсе допускается применение «резисторов торможения», обеспечивающих необходимое ограничение частоты вращения первичных двигателей и электрических машин в допустимых пределах. Величина рекуперируемой энергии должна ограничиваться автоматизированной системой управления ГЭУ.

17.7 ГЕНЕРАТОРЫ ГЭУ

17.7.1 Общие требования.
17.7.1.1 Генераторы должны быть спроектированы и изготовлены в соответствии с требованиями стандартов МЭК 60034 и МЭК 60092-301 или равнозначных национальных стандартов.
17.7.1.2 Генераторы, работающие с полупроводниковыми преобразователями, должны быть рассчитаны на наличие ожидаемого уровня гармонических составляющих в системе. С этой целью должен предусматриваться существенный резерв мощности, компенсирующий повышение температуры генератора по сравнению с обычной синусоидальной нагрузкой.
17.7.1.3 Статорные обмотки генераторов номинальной мощностью выше 500 кВА должны быть снабжены датчиками температуры.
17.7.1.4 Генераторы номинальной мощностью выше 500 кВА должны быть оборудованы электрическими подогревателями, обеспечивающими поддержание температуры внутри корпуса генератора ориентировочно на 3 °C выше температуры окружающей среды.
17.7.1.5 Генераторы ГЭУ должны быть оборудованы фильтрами очистки охлаждающего воздуха при открытой и замкнутой системах вентиляции. Вентиляционные каналы должны быть устроены так, чтобы вода не попадала внутрь машины.
17.7.1.6 Допускается использовать генераторы ГЭУ для питания вспомогательных электрических механизмов и устройств, при условии обеспечения стабильности напряжения и частоты во всех режимах, в том числе маневровых в соответствии с требованиями 2.1.3.
17.7.1.7 В цепях возбуждения генераторов не должны устанавливаться автоматические выключатели, за исключением тех, которые действуют на снятие возбуждения с машин при коротких замыканиях или повреждениях в цепи главного тока.

17.7.2 Подшипники генераторов и смазка.
17.7.2.1 Вкладыши подшипников скольжения должны быть легко заменяемыми. Должны быть предусмотрены средства контроля смазки подшипников. Надежная смазка должна быть обеспечена также и при возможном максимальном дифференте. Должны быть предусмотрены соответствующие уплотнения, препятствующие попаданию смазочного масла внутрь генератора.
17.7.2.2 Если применяются подшипники с принудительной смазкой (под давлением), то на постах ГЭУ должны быть предусмотрены как минимум следующие аварийно-предупредительные сигналы:
неисправность системы смазки (отказ насоса смазки, потеря давления в трубопроводе смазки и т. п.), максимальная температура каждого из подшипников.
17.7.2.3 Все подшипники должны быть оборудованы индикаторами (измерительными приборами) температуры. Подшипники, состоящие из двух половин, должны быть оборудованы термометрами для измерения температуры нижней половины вкладыша подшипника, насколько это возможно.
17.7.2.4 Генераторы должны быть оборудованы резервными (аварийными) устройствами смазки подшипников, обеспечивающими достаточную смазку подшипников в течение времени до остановки машины, в случае возникновения неисправности, или аварии нормальной системы смазки.
17.7.2.5 Во избежание повреждения подшипников должны быть приняты меры, препятствующие возможному протеканию электрических токов между подшипником и валом машины, для чего один из подшипников должен быть гальванически изолирован от корпуса машины.
17.7.3 Охлаждение генераторов.
17.7.3.1 Температура охлаждающего воздуха генераторов, оборудованных принудительной вентиляцией, должна постоянно контролироваться в воздушных каналах, воздушных фильтрах и водных теплообменных аппаратах (охладителях) термометрами, установленными вне электрической машины.
17.7.3.2 Кроме термометров должны быть предусмотрены датчики температуры охлаждающего воздуха, которые должны подавать аварийно-предупредительный сигнал при превышении допустимой температуры.
17.7.3.3 Для машин с замкнутой системой охлаждения и теплообменным аппаратом должен
контролироваться поток первичного и вторичного охлаждающего агента. При исчезновении потока должен подаваться аварийно-предупредительный сигнал.

17.7.3.4 Протечки воды и конденсата не должны попадать на обмотки машины. Должна быть предусмотрена сигнализация, контролирующая возникновение протечек.

17.7.4 Защита генераторов.
Устройства защиты должны соответствовать требованиям, изложенным в МЭК 60092-202, или соответствующим национальным стандартам.
Должны выполняться требования, изложенные также в 8.2 и 18.2.4 (оборудование с напряжением выше 1000 В).

17.8 РАСПРЕДЕЛИТЕЛЬНЫЕ ЩИТЫ ГЭУ

17.8.1 Распределительные щиты ГЭУ должны соответствовать требованиям 4.5 (щит с напряжением до 1000 В) и 18.6 (щиты с рабочим напряжением выше 1000 В) и проектироваться как ГРЩ.
Разделение шин, как минимум на две части, должно быть выполнено автоматическим выключателем или разъединителем.

17.8.2 При проектировании щита, выборе сечения шин и т.п. должно учитываться наличие в системе гармонических составляющих, связанных с применением силовых полупроводниковых преобразователей, увеличивающих нагрев.

17.8.3 Если требуется обеспечить определенную последовательность операций по коммутации, должна быть предусмотрена надежная блокировка, исключающая неправильные переключения.

17.8.4 Переключатели, предназначенные для оперативных переключений в цепях ГЭУ при снятом напряжении, должны иметь блокировочное устройство, не допускающее отключения их под током или ошибочного включения.

17.9 СИЛОВЫЕ ТРАНСФОРМАТОРЫ ГЭУ

17.9.1 Общие требования.
17.9.1.1 Трансформаторы и реакторы должны соответствовать требованиям, изложенными в разд. 11, а также 18.4 (высоковольтные трансформаторы).
17.9.1.2 При выборе трансформаторов должно учитываться наличие в системе гармонических составляющих, связанных с применением силовых полупроводниковых преобразователей.
17.9.1.3 Для ГЭУ должно быть предусмотрено не менее двух независимых силовых трансформаторов.
Должны использоваться трансформаторы только с раздельными обмотками. Автотрансформаторы допускаются только для запуска двигателей.

17.9.1.4 Температура обмоток трансформаторов, применяемых для ГЭУ, должна контролироваться системой датчиков и сигнализаторов.

17.9.2 Охлаждение.

17.9.2.1 Жидкостно-охлаждаемые трансформаторы.
Обмотки жидкостно-охлаждаемых трансформаторов должны быть полностью погружены в жидкость, в том числе при наклонах в любую сторону на угол 22,5° включительно.
Трансформаторы должны быть оборудованы необходимыми устройствами для сбора и накопления утечек охлаждающей жидкости.
В районе установки трансформатора должны быть установлены устройства обнаружения пожара и устройства пожаротушения. Допускаются устройства пожаротушения с ручным управлением.
Трансформаторы должны быть оборудованы системой защиты, действующей при появлении газов в охлаждающей жидкости.
Температура охлаждающей жидкости должна контролироваться системой датчиков. Должен быть предусмотрен аварийно-предупредительный сигнал по превышению температуры охлаждающей жидкости, а также отдельного датчика должна быть предусмотрена защита, отключающая трансформатор, если температура жидкости превысит предельно допустимую.
Уровень охлаждающей жидкости должен контролироваться двумя датчиками, один из которых должен приводить в действие аварийно-предупредительный сигнал, а второй, установленный на предельно допустимый уровень, должен отключать трансформатор.

17.9.2.2 Трансформаторы, охлаждаемые воздухом.
Работа вентиляторов для охлаждения трансформаторов, а также температура охлаждающего воздуха должны контролироваться системой датчиков.
При превышении температуры или выходе из строя вентиляторов должен подаваться аварийно-предупредительный сигнал.

17.9.2.3 Трансформаторы, охлаждаемые замкнутой воздушной системой с водяным воздуходувом.
При применении замкнутой воздушной системы охлаждения с воздуходувом, дополнительно к требованиям, изложенным в 17.9.2.2, должны контролироваться:
минимальный поток первичного и вторичного контура охлаждающих сред (воздуха и воды),
при протечках теплообменного аппарата должен срабатывать аварийно-предупредительный сигнал.
Правила классификации, постройки и оборудования ПБУ/МСП

Теплообменный аппарат должен устанавливаться таким образом, чтобы протечки воды и конденсат не могли попадать на обмотки.

17.9.3 Измерительные приборы трансформаторов.
Для трансформаторов ГЭУ на ГРЩ должны быть предусмотрены амперметры на первичной стороне в каждой фазе.

17.9.4 Защита трансформаторов.
Для каждого трансформатора ГЭУ должна быть предусмотрена защита от перегрузки и от короткого замыкания на первичной и вторичной стороне.
Защита на вторичной стороне может быть реализована полупроводниковым преобразователем ГЭУ.

17.10 ПОЛУПРОВОДНИКОВЫЕ ПРЕОБРАЗОВАТЕЛИ ГЭУ

17.10.1 Общие требования.
17.10.1.1 Преобразователи должны быть спроектированы и изготовлены в соответствии с требованиями серии стандартов МЭК 60146 и разд. 12.
17.10.1.2 Для ГЭУ должно предусматриваться не менее двух полностью независимых, отдельно установленных полупроводниковых преобразователей.
17.10.1.3 Одна общая система управления преобразователями не допускается. Это означает, что если для системы управления требуется тахогенератор в качестве датчика, то должны предусматриваться два отдельных или один единый тахогенератор для двух преобразователей.
17.10.1.4 Для каждой системы управления должны предусматриваться два гальванически изолированных датчика скорости. Допускается общий корпус для обоих датчиков.
17.10.1.5 Если преобразователь подает питание на ГЭД с постоянным возбуждением, то в главной цепи «двигатель — преобразователь» должен быть предусмотрен выключатель-разъединитель, который автоматически должен разрывать главную цепь в случае неисправности инвертора (выпрямителя). Должны быть предусмотрены устройства диагностики, обнаруживающие появление таких неисправностей.
17.10.2 Проектирование полупроводниковых преобразователей.
17.10.2.1 Полупроводниковые преобразователи, а также аппаратура цепей главного тока должны выдерживать перегрузки по току не менее чем 250 % I, в течение 2 с.
17.10.2.2 Преобразователи для ГЭУ должны быть рассчитаны на номинальный момент привода (номинальный момент на гребном валу). При этом необходимо учесть, чтобы кратковременные перегрузки и изменения (провальы) частоты вращения, вызванные перегрузкой, не приводили к срабатыванию защиты преобразователей и выходу из строя системы управления.
17.10.2.3 Шкафы полупроводниковых преобразователей должны соответствовать требованиям тех же стандартов и правил, что и для ГРЩ.
17.10.2.4 Конструкция шкафов полупроводниковых преобразователей должна предусматривать возможность быстрой замены силовых компонентов. Это может быть достигнуто путем применения модульной конструкции отдельных тиристоров, субмодульной конструкции тиристоров одной фазы или иным способом.
17.10.3 Охлаждение полупроводниковых преобразователей.
17.10.3.1 Если преобразователи оборудованы принудительной системой охлаждения, то должен быть предусмотрен контроль ее состояния. В случае выхода из строя системы охлаждения должны быть предусмотрены меры, предотвращающие перегрев и выход из строя преобразователя.
17.10.3.2 Для систем охлаждения должна быть предусмотрена система АПС. Сигнал АПС может производиться при исчезновении потока охлаждающей среды, либо при высокой температуре полупроводников.
17.10.3.3 Единичные неисправности в системе охлаждения преобразователей не должны приводить к отключению всех преобразователей ГЭУ.
17.10.4 Защита полупроводниковых преобразователей.
17.10.4.1 Эксплуатационные перенапряжения в системе питания преобразователей должны быть ограничены соответствующими устройствами, не допускающими повреждений (пробоев) силовых полупроводниковых элементов (тиристоров или транзисторов).
17.10.4.2 Система управления должна обеспечивать ограничение тока до номинального его значения полупроводниковых элементов при всех эксплуатационных условиях, в том числе и наиболее тяжелых.
17.10.4.3 Силовые полупроводники должны выдерживать короткое замыкание на клеммах преобразователя без каких-либо повреждений. Допускается защита от токов короткого замыкания предохранителями. Соответствующие обратные связи преобразователя должны контролировать (ограничивать) ток таким образом, чтобы ни один компонент не был поврежден, даже если преобразователь включен на двигатель с заторможенным ротором.
Часть X. Электрическое оборудование 299

17.11 Фильтрация гармонических составляющих

17.11.1 Должны применяться линейные фильтры, ограничивающие до допустимого уровня искажения синусоидальности напряжения на шинах ГРЩ при любых режимах работы ГЭУ.

17.11.2 Цепи каждого фильтра должны иметь защиту от сверхтоков и токов короткого замыкания. Целостность предохранителей в цепях фильтров должна контролироваться. При перегорании любого предохранителя должен быть сигнал АПС.

17.11.3 При конструировании и использовании линейных фильтров следует учитывать возможность их подключения в любой конфигурации. В частности, авторезонанс должен быть исключен при любых условиях нагрузки и сочетании работающих генераторов.

17.11.4 В случае наличия нескольких параллельных цепей фильтра должна контролироваться симметричность токов. Несимметричное распределение токов в цепях отдельного фильтра, а также неисправность самого фильтра должны приводить к срабатыванию сигнализации (АПС).

17.12 Гребные электрические двигатели (ГЭД)

17.12.1 Общие требования.

17.12.1.1 ГЭД должны соответствовать требованиям МЭК 60034 и МЭК 60092-301 или равнозначным национальным стандартам.

17.12.1.2 Обмотки статоров двигателей переменного тока, а также главные и дополнительные полюса и компенсационные обмотки двигателей постоянного тока, электрических машин мощностью выше 500 кВА должны быть оборудованы датчиками температуры.

17.12.1.3 Двигатели, работающие с полупроводниковыми преобразователями, должны конструироваться с учетом ожидаемых гармонических составляющих системы. Должен быть предусмотрен достаточный резерв мощности для компенсации повышенной температуры в сравнении с нагревом машины при синусоидальной нагрузке.

17.12.1.4 Гребные двигатели должны быть оборудованы электрическими подогревателями, поддерживающими температуру внутри корпуса машины на 3 °С выше температуры окружающей среды.

17.12.2 Подшипники и смазка.

17.12.2.1 Вкладыши подшипников скольжения должны быть легко заменяемыми. Должны быть предусмотрены средства контроля смазки подшипников. Надежная смазка должна быть обеспечена и при возможном максимальном дифференте судна. Должны быть предусмотрены соответствующие уплотнения, препятствующие попаданию смазочного масла внутрь двигателя.

17.12.2.2 Если применяются подшипники с принудительной смазкой (под давлением), то должны быть предусмотрены аварийно-предупредительные сигналы:

- неисправность системы смазки (отказ насоса смазки, потеря давления в трубопроводе смазки и т.п.);
- максимальная температура каждого из подшипников.

17.12.2.3 Система циркуляционной смазки подшипников под давлением должна быть оборудована двумя насосами смазочного масла, каждый из которых должен иметь подачу, достаточную для обеспечения работы ГЭД в нормальных условиях.

17.12.2.4 Все подшипники должны быть оборудованы индикаторами (измерительными приборами) температуры. Подшипники, состоящие из двух половин, должны быть оборудованы термометрами, измеряющими температуру нижней половины вкладыша подшипника, независимо это возможно.

17.12.2.5 Гребные двигатели должны быть оборудованы резервными (аварийными) устройствами смазки подшипников, обеспечивающими достаточную смазку подшипников до остановки машины в случае возникновения неисправности или аварии нормальной системы смазки.

17.12.2.6 Во избежание повреждения подшипников должны быть приняты меры, препятствующие протеканию вредных электрических токов между подшипником и валом машины.

17.12.3 Охлаждение ГЭД.

17.12.3.1 Система охлаждения должна обеспечить достаточное охлаждение гребного двигателя при любых его нагрузках и при любых скоростях вращения.

17.12.3.2 Температура охлаждающего воздуха электрических машин, оборудованных принудительной вентиляцией, должна постоянно контролироваться в воздушных каналах, воздушных фильтрах и водяных охладителях термометрами, установленными вне электрической машины.

17.12.3.3 ГЭД должны быть оборудованы встроенными датчиками температуры, которые должны подавать аварийно-предупредительный сигнал при превышении допустимой температуры.

17.12.3.4 В машинах с замкнутой системой охлаждения и теплообменным аппаратом должен контролироваться также поток основного и вторичного охлаждающего агента.

17.12.3.5 Должна быть предусмотрена сигнализация, контролирующая возникновение протечек.
Установление теплообменного аппарата должно быть таким, чтобы протечки воды и конденсата не попадали на обмотки.

17.12.3.6 В случае выхода из строя системы охлаждения гребного двигателя должен быть предусмотрен аварийный режим работы для обеспечения маневрирования судна в сложных навигационных условиях. При этом допускается вмешательство оператора для принудительного открытия аварийных воздушных заслонок охлаждения.

17.12.3.7 ГЭД с воздушным охлаждением должны быть оборудованы двумя вентиляторами принудительной вентиляции, каждый из которых имеет подачу, достаточную для обеспечения нормальных условий работы электрического двигателя. Должна быть предусмотрена световая сигнализация о работе и АПС об остановке вентиляторов.

17.12.3.8 Система жидкостного охлаждения для многогорных машин должна быть автономной для каждого якоря.

17.12.4 Защита ГЭД.

17.12.4.1 Защита от перегрузки в главных цепях и цепях возбуждения должна быть настроена таким образом, чтобы исключить ее срабатывание при перегрузках, вызванных маневрированием ПБУ, или при ходе в штормовых условиях.

17.12.4.2 Защита от коротких замыканий и перегрузки двигателя может обеспечиваться преобразователем. При этом должны быть приняты во внимание различия в конструкциях гребных электрических машин (машина постоянного тока, синхронная машина, асинхронная машина или машина с возбуждением от постоянных магнитов).

17.12.4.3 Должно быть предусмотрено независимое устройство защиты от чрезмерной частоты вращения (разности), как это требуется в 2.11 «Управление, защита и регулирование» части IX «Механики» Правил классификации и постройки морских судов.

ГЭД должен выдерживать чрезмерную частоту вращения в пределах рабочих характеристик защитного устройства, настроенного на срабатывание при заданной чрезмерной частоте вращения.

17.12.4.4 Двигатель должен выдерживать без повреждений токи внезапного короткого замыкания на его клеммах при номинальной нагрузке. Устанавливаемый ток короткого замыкания двигателя, имеющего постоянное возбуждение, не должен приводить к термическим повреждениям обмоток и его токопроводящих компонентов, токопроводящих колец, кабелей, фидеров на роторе и устройств (диодов) защиты, если они установлены.

17.13 СПЕЦИАЛЬНЫЕ ТРЕБОВАНИЯ К ПОГРУЖНЫМ ПОВОРОТНЫМ ГРЕБНЫМ ЭЛЕКТРИЧЕСКИМ ДВИГАТЕЛЯМ (ППГЭД)

17.13.1 Общие требования.

17.13.1.1 Если в рабочем состоянии пространство, где установлена электрическая машина и другое оборудование, недоступно и иметь особые окружающие условия (высокую температуру, влажность и т. п.), должны быть предусмотрены специальные меры, такие как применение особо надежных материалов и комплектующих, соответствующего количества датчиков контроля, а также специальные средства для защиты ППГЭД от загрязнений и повреждений.

Комплектующие элементы, элементы управления, датчики, токопроводящие кабели, кабельные соединения и вспомогательные приводы должны быть изготовлены и смонтированы таким образом, чтобы обеспечить их возможность выдерживать вибрационные нагрузки с ускорением, по крайней мере, 4 г в диапазоне частот 3 — 100 Гц.

17.13.2 Датчики.

17.13.2.1 Изготовитель должен подготовить перечень всех датчиков с указанием типа, мест их установки, функционального назначения и величин настроек (диапазоны измерения и уставки).

17.13.2.2 Зарегистрированные результаты должны контролироваться на достоверность. Недостоверные входные сигналы должны вызывать срабатывание АПС. Должны применяться только датчики, имеющие систему самоконтроля.

17.13.3 Подшипники.

17.13.3.1 Уровни наполнения масла в корпусах подшипников должны контролироваться датчиками,
Часть X. Электрическое оборудование
301
как на стоянке, так и при работе. Любые утечки масла должны вызывать срабатывание АПС.

Это требование применимо также к циркуляционным системам смазки. Такие системы должны дополнительно быть оборудованы контролем потока смазочного масла. АПС по снижению потока смазочного масла должна быть независимой от системы управления ГЭУ.

17.13.3.2 Подшипники вала должны контролироваться на недопустимые изменения в процессе работы путем анализа таких параметров, как температура, вибрация, качество смазочного масла.

Температура подшипников вала должна контролироваться системой АПС и системой защиты, действующих в два этапа. Этап 1-й — сигнал АПС, этап 2-й — остановка двигателя. Система защиты должна быть независимой от системы индикации температуры подшипников и АПС.

17.13.4 Колодцы в гондолах ППГЭД.

17.13.4.1 Уровень воды в колодцах должен контролироваться датчиками уровня. В дополнение к традиционным работающим на АПС датчикам уровня воды в колодцах (Макс. уровень, НЛ) должны быть предусмотрены независимые, так называемые интеллектуальные датчики, исключающие ложные срабатывания для контроля максимального аварийного уровня (HHL), которые дают сигнал в систему автоматической остановки ППГЭД, защищая его от последующих повреждений при заполнении.

17.13.4.2 Если связующим компонентом между гондолой ГЭД и корпусом ПБУ служит отдельное помещение, не связанное с колодцами машинного помещения, то в этом помещении также должен контролироваться уровень возможного поступления воды.

17.13.4.3 Система уплотнений гребного вала должна контролироваться таким образом, чтобы поступление забортной воды обнаруживалось до того, как появится опасность затопления. Должна быть предусмотрена система аварийного уплотнения гребного вала. Все функции активизации аварийной системы уплотнения должны быть проверяемыми, например, если применяется система со сжатым воздухом, то до последнего клапана.

17.13.4.4 Система охлаждения основного оборудования должна быть независимой от системы управления ГЭУ.

17.13.5 Система охлаждения оборудования в гондоле ГЭД.

Должна быть предусмотрена эффективная система охлаждения, предусматривающая необходимое количество и типы датчиков. Общие требования к таким системам изложены в 7.5.

17.13.6 Уровень воды в колодцах должен контролироваться датчиками уровня. В дополнение к традиционным работающим на АПС датчикам уровня воды в колодцах (Макс. уровень, НЛ) должны быть предусмотрены независимые, так называемые интеллектуальные датчики, исключающие ложные срабатывания для контроля максимального аварийного уровня (HHL), которые дают сигнал в систему автоматической остановки ППГЭД, защищая его от последующих повреждений при заполнении.

17.13.7 Защита ППГЭД.

17.13.7.1 Двигатели мощностью более 1 МВт и все двигатели с постоянным возбуждением должны иметь защиту от внутренних повреждений, которая также защищает линию главного тока между полупроводниковым преобразователем и двигателем. Отключение поврежденного (неисправного) оборудования должно быть выполнено с соответствующей выдержкой времени и подачей аварийно-прерывательного сигнала.

17.13.7.2 Влажность воздуха в двигателях с замкнутой системой воздушного охлаждения должна контролироваться. При превышении допустимого уровня влажности должен быть предусмотрен сигнал АПС.

17.13.8 Цепи главного тока питания двигателя.

17.13.8.1 Кабели питания, имеющие высокую допустимую рабочую температуру, должны прокладываться отдельно от других кабелей. Если необходимо должны предусматриваться разделяющие устройства, препятствующие контактам внешних оболочек кабелей.

17.13.9 Токосъемные кольца.

17.13.9.1 При проектировании должен приниматься во внимание тот факт, что механические и электрические характеристики токосъемных колец могут ухудшаться под воздействием паров масел, угольной пыли и воздуха, содержащего соленый туман, или из-за окисления. В связи с этим должен предусматриваться необходимый запас по допустимому коммутируемому току и рабочему напряжению.

17.13.9.2 Испытание токосъемных колец должно выполняться в рамках типового одобрения. Должна проверяться возможность применения используемых материалов на максимально допустимую для них температуру.
17.13.9.3 Соединительные кабели токосъемных колец должны выбираться таким образом, чтобы предотвратить превышение максимально допустимой температуры на их жилах. В процессе ходовых испытаний при испытании на нагрузку должно быть подтверждено, что максимальная температура всех компонентов токосъемных колец не превышает допустимую.
17.13.9.4 Если данные от датчиков обратных связей, контролируемых параметров и т.п. передаются через систему информационных шин, то система шин должна быть дублированной. Выход из строя любой из систем шин должен вызывать сработывание АПС.
17.13.9.5 Блок токосъемных колец, оборудованный внешней принудительной системой охлаждения, должен быть способен работать без системы охлаждения определенный период времени. Выход из строя системы охлаждения должен вызывать срабатывание АПС.
17.13.10 Азимутальный привод.
17.13.10.1 Азимутальный привод должен соответствовать требованиям, предъявляемым к приводам рулевых устройств, изложенным в 5.10 «Электрические приводы рулевых устройств самоходных ПБУ». Для всех электрических и гидравлических компонентов системы должен действовать принцип локализации единичной неисправности (исключения ее влияния на функционирование). Безопасное функционирование привода должно обеспечиваться независимо от углового положения руля и скорости ПБУ, в любой момент выявления неисправности. Проектант должен разработать и представить на согласование «Анализ влияния видов неисправностей» (FMEA).
17.13.10.2 Положение угла разворота азимутального привода должно указываться механическим индикатором на шкале в месте установки привода (румпельное отделение).
17.13.10.3 Для каждой азимутальной пропульсивной установки должны быть предусмотрены, как минимум два независимых электрических привода для разворота. Один из этих приводов должен получать питание от ГРЩ, а другой от АРЩ.
17.13.10.4 Азимутальные электрические приводы должны иметь защиту от короткого замыкания и могут иметь защиту от перегрузки, которая осуществляется только системой управления полупроводниковым преобразователем. Они должны обеспечивать 160 % номинального момента, необходимого для обеспечения номинальной скорости разворота за 60 с, как указано в 6.2.2 части IX «Механизмы» Правил классификации и постройки морских судов.
Азимутальные приводы иной конструкции, например гидравлические, должны также соответствовать изложенным выше требованиям.
17.13.10.5 Азимутальный угол упора должен быть ограничен до ±35°. При небольшой допустимой мощности и, следовательно, при небольшой скорости ПБУ или при аварийном «Стоп — маневре» это ограничение может быть снято системой управления.
17.13.10.6 Азимутальный угол упора должен ограничиваться в зависимости от ступени задаваемой скорости ПБУ для того, чтобы не подвергать ПБУ опасности (из-за чрезмерного упора во время поворota). Система таких ограничений (блокировок) должна обеспечиваться необходимым резервированием и должна действовать независимо от системы управления азимутальным углом (разворотом гоцдоль ГЭУ).
17.13.10.7 Достижение или превышение допустимых величин ограничений азимутального угла должно вызывать срабатывание АПС. После срабатывания ограничения угла разворота возвращение привода к допустимым углам должно быть возможным без ручного возврата.
17.13.10.8 Оборудование, обеспечивающее функционирование и индикацию азимутального привода, должно быть изготовлено таким образом, чтобы обеспечивалась четкая и понятная индикация положения задаваемого направления упора гребного винта или направления движения ПБУ. Оператору должно быть абсолютно понятно, какое из двух заданий было выбрано: направление движения ПБУ или направление упора гребного винта ГЭУ.
17.13.10.9 Местный пост управления для азимутальной установки должен быть оборудован следующим приборами: амперметрами для каждой системы питания каждого компонента нагрузки; индикаторами азимутальных углов (углов разворота) для каждого привода; индикаторами готовности системы питания для каждого привода; индикаторами нарушения (неготовности) системы питания для каждого привода; управление из ЦПУ; управление с ходового мостика; управление с местного поста управления; индикация «в работе» для соответствующего привода гребного винта.
Местный пост управления может быть активирован (введен в действие) на месте в любое время и должен иметь высший приоритет (доминирование).
17.14 СИСТЕМЫ УПРАВЛЕНИЯ ГЭУ
Компьютерные системы управления ГЭУ должны быть спроектированы, изготовлены и испытаны в соответствии с требованиям разд. 5 «Компьютеры и
17.14.1 Системы управления электроэнергетической установкой (электростанцией).
17.14.1.1 Для систем питания ГЭУ с генераторами, работающими параллельно, должна предусматриваться автоматизированная компьютерная система управления электростанцией, обеспечивающая адекватное генерирование электроэнергии в соответствии с потребностями конкретных режимов работы ГЭУ, в том числе при ходе в море и маневрировании. Автоматическое отключение генераторов по сигналу достаточности или избыточности мощности в режиме маневрирования ПБУ не допускается.
17.14.1.2 В случае снижения частоты на шинах ГРЩ, перегрузки по току или перегрузки и реверсе мощности, передаваемой на гребную электрическую установку мощность должна автоматически ограничиваться (во избежание обесточивания шин ГРЩ).
17.14.1.3 Если генераторы работали параллельно, и один из них был отключен системой защиты, то автоматизированная система управления электростанцией должна автоматически снизить мощность ГЭУ с тем, чтобы оставшиеся генераторы были защищены от неприемлемых перегрузок и продолжали бы работать при допустимых нагрузках. Это же требование должно применяться к разделительным автоматическим выключателям на шинах ГРЩ.
17.14.1.4 Срабатывание автоматического разделительного выключателя шин ГРЩ не должно приводить к неисправности в системе. При этом не требуется, чтобы система управления электростанцией оставалась в автоматическом режиме, если система питания разделена. Любая потеря автоматических функций системы управления должна приводить к срабатыванию АИПС.
17.14.2 Типовая конфигурация ГЭУ и посты системы управления.
17.14.2.1 Минимальная конфигурация должна состоять из следующих компонентов:
- один пост управления на ходовом мостике;
- один центральный блок процессоров (микроконтроллеров) в машинном помещении;
- два полупроводниковых преобразователя;
- один гребной электрический двигатель, (с двумя независимыми обмотками статора);
- одна местная панель управления (с двумя независимыми входными каналами);
- один пост машинного телеграфа.
17.14.2.2 Дополнительно могут быть предусмотрены посты управления на крыльях мостика и пост управления в ЦПУ (с постом машинного телеграфа). При выходе из строя системы управления с мостика должна оставаться в работе система местного управления, устанавливаемая в непосредственной близости от блоков преобразователей и непосредственно связанная цепями управления с ними.
17.14.3 Посты управления ГЭУ.
17.14.3.1 Посты управления ГЭУ могут быть установлены в любом удобном месте в соответствии с назначением ПБУ.
17.14.3.2 Местный пост управления является доминирующим и должен располагаться в непосредственной близости от привода или полупроводникового преобразователя. Изменения режимов ГЭУ, задаваемые с этого поста должны инициироваться системой, показывающей заданную и выполняющую команду.
17.14.3.3 Каждый пост управления должен быть оборудован устройством аварийной остановки ГЭУ, независимым от системы управления и активным (включенным) постом управления.
17.14.4 Главный и местный посты управления.
17.14.4.1 Должны предусматриваться, как минимум два независимых друг от друга поста управления ГЭУ — главный пост и местный пост управления.
17.14.4.2 В случае повреждения, неисправности или потери питания системы управления на главном посту должно быть предусмотрено управление преобразователями ГЭУ с местного поста управления.
17.14.4.3 Главный пост управления ГЭУ должен быть выполнен таким образом, чтобы система управления разворотом (изменением азимута упора) действовала независимо от системы управления частотой вращения и реверсом ГЭД гребной электрической установки.
17.14.4.4 Срабатывание АИПС по всем параметрам ГЭУ должно квитироваться на местном посту управления. Предупредительные сигналы, которые не требуют срочного последующего вмешательства персонала, могут квитироваться на главном посту управления (на ходовом мостике) с обязательным последующим квитированием на местном посту.
17.14.4.5 Должна предусматриваться возможность повторного старта (пуск) ГЭУ с обоих постов управления (местного и главного) в
Правила классификации, постройки и оборудования ПБУ/МСП

304

Правила классификации, постройки и оборудования ПБУ/МСП

17.14.4.6 Если управление ГЭУ осуществляется с применением электрического, пневматического или гидравлического локального привода, то выход из строя этого привода не должен сопровождаться отключением ГЭУ, а каждый из постов на пульте должен быть немедленно готов к управлению вручную.

17.14.4.7 Допускается применение механически связанных постов, установленных в ходовой рубке (на мостике) для их синхронной работы.

17.14.5 Измерительное, индицирующее и контролирующее оборудование в системах управления.

17.14.5.1 Неисправности в устройствах измерения, контроля и индикации не должны приводить к неисправностям в системе управления ГЭУ. Так, например, неисправность датчика действительной величины частоты вращения или датчика величины опорного сигнала частоты вращения не должна приводить к неуправляемому увеличению частоты вращения гребного винта.

17.14.5.2 На местном (доминирующем) посту управления должен иметь световую сигнализацию о наличии напряжения в цепи управления.

17.14.6 Готовность (отказоустойчивость) ГЭУ.

17.14.6.1 Потеря питания или неисправность любых других систем управления и контроля не должны приводить к потере управления ГЭУ и азимутального привода ППГЭД, т.е. к потере хода и управляемости ПБУ.

индикатор «Управление с местного поста управления».

17.14.5.3 На главном посту управления (на ходовом мостике) должны быть предусмотрены:

- индикаторы частоты вращения каждого гребного вала;
- приборы измерения мощности каждого вала;
- индикатор «Электростанция готова к включению» (дополнительных генераторов);
- индикатор «Электростанция готова к работе ГЭУ»;
- индикатор «Электростанция не готова к работе ГЭУ»;
- индикатор «Ограничение мощности ГЭУ»;
- индикатор «Требуется снизить мощность» — если не включена система автоматического управления или включена кнопка «override» (отмена автоматического управления станцией);
- индикатор «Управление из ЦПУ»;
- индикатор «Управление с ходового мостика»;
- индикатор «Управление с местного поста»;
- индикатор мощности, остающейся в резерве (рекомендуется).

17.14.5.4 Если установлено два или более постов управления для изменения скорости и угла разворота лопастей ВРШ, то на каждом из этих постов должны быть предусмотрены как индикаторы изменения скорости, так и угла разворота лопастей ВРШ.

17.14.5.5 На посту управления в ЦПУ должны быть предусмотрены:

- индикаторы частоты вращения каждого гребного вала;
- приборы измерения мощности каждого вала;
- индикатор «Электростанция готова к включению» (дополнительных генераторов);
- индикатор «Электростанция готова к работе ГЭУ»;
- индикатор «Электростанция не готова к работе ГЭУ»;
- индикатор «Ограничение мощности ГЭУ»;
- индикатор «Требуется снизить мощность» — если не включена система автоматического управления или включена кнопка «override» (отмена автоматического управления станцией);
- индикатор «Управление из ЦПУ»;
- индикатор «Управление с местного поста»;
- индикатор «Управление с ходового мостика»;
- индикатор генераторов, работающих на ГЭУ;
- индикатор мощности, остающейся в резерве (рекомендуется).

Перечень контролируемых параметров системы АПС указан в Приложении A.

17.14.6 Готовность (отказоустойчивость) ГЭУ.
17.14.6.2 Гребная электрическая установка, азимутальные приводы и их системы управления должны иметь систему самоконтроля и АПС для быстрого обнаружения неисправностей.

17.14.6.3 Большинство возможных неисправностей таких, как потеря питания, обрыв или короткое замыкание в кабелях и проводах, должны приводить к наименее критическому из всех возможных новых состояний ПБУ (выход из строя в безопасную сторону).

18 ТРЕБОВАНИЯ К ЭЛЕКТРИЧЕСКОМУ ОБОРУДОВАНИЮ НА НАПРЯЖЕНИЕ СВЫШЕ 1000 В ДО 15000 В

18.1 ОБЩИЕ ТРЕБОВАНИЯ

18.1.1 Область распространения.

Настоящее требования применимы к трехфазным системам переменного тока с номинальным напряжением, превышающим 1 кВ, где под номинальным напряжением понимается напряжение между фазами.

Требования к конструкции и установке для низковольтного электрического оборудования (до 1000 В), изложенные в настоящей части, применимы также и для высоковольтного электрического оборудования, если в настоящем разделе не указано иное.

18.1.2 Номинальное напряжение системы.

18.1.2.1 Номинальные напряжения систем распределения электрической энергии не должны превышать значений, указанных в табл. 18.1.2.1

<table>
<thead>
<tr>
<th>Номинальные межфазные напряжения, кВ</th>
<th>Номинальная частота, Гц</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (3,3)</td>
<td>50 (60)</td>
</tr>
<tr>
<td>6 (6,6)</td>
<td>50 (60)</td>
</tr>
<tr>
<td>10 (11)</td>
<td>50 (60)</td>
</tr>
<tr>
<td>15</td>
<td>50 (60)</td>
</tr>
</tbody>
</table>

Примечание: Номинальное напряжение выше 15 кВ может быть допущено, если это необходимо для специального применения.

18.1.3 Разделение высоковольтного и низковольтного оборудования.

18.1.3.1 Электрическое оборудование напряжением свыше 1000 В не должно устанавливаться в те же корпуса (оболочки), где установлено низковольтное оборудование, если не обеспечено соответствующее разделение, или не приняты соответствующие меры, обеспечивающие безопасный доступ для обслуживания низковольтного оборудования.

18.1.3.2 Использование высоковольтных источников питания выше 15 кВ может быть допущено, если это необходимо для специального применения.

18.1.3.3 У входа в специальные электрические помещения должны находиться предостерегающие надписи, указывающие величину напряжения. Корпуса электрического оборудования, установленного вне специальных электрических помещений, должны снабжаться предостерегающими надписями, указывающими величину напряжения.

18.2 ПРОЕКТИРОВАНИЕ СИСТЕМЫ

18.2.1 Системы распределения.

18.2.1.1 Конфигурация сети для обеспечения бесперебойности питания.

Конструкция ГРЩ должна предусматривать возможность его разделения, как минимум, на две независимых половины секций посредством межсекционного автоматического выключателя или разъединителя.

К каждой половине секции должен быть подключен, как минимум, один генератор.

Если предусматриваются два независимых ГРЩ, соединяемых между собой кабельными перемычками, то автоматические выключатели должны быть предусмотрены на обеих ее сторонах. Все дублированные электрические приводы должны получать питание от различных ГРЩ или его разделенных секций.

18.2.1.2 Системы с заземленной нейтралью.

18.2.1.2.1 Нулевые точки генераторов, включаемых на параллельную работу, допускается подключать на общую шину перед заземляющим резистором или реактором, установленным в...
Правила классификации, постройки и оборудования ПБУ/МСП

рассматриваемых системах с заземленной нейтралью соединения нейтрали с корпусом должны быть предусмотрены для каждой разделенной группы секций ГРЩ.

18.2.2.3 Трансформаторы.

Степень защиты оболочек трансформаторов должна быть не ниже, чем IP23.

Для трансформаторов, устанавливаемых в помещениях, доступных для некомпетентного персонала, степень защиты оболочки должна быть не ниже, чем IP4X.

Для трансформаторов, не заключенных в оболочку, распространяются требования 18.7.1.

18.2.2.4 Распределительные устройства, щиты управления и конверторы.

Степень защиты металлических оболочек распределительных щитов, щитов управления, шкафов статических преобразователей должна быть не ниже, чем IP32. Для щитов, устанавливаемых в помещениях, доступных неквалифицированному персоналу, степень защитной оболочки должна предусматриваться не ниже, чем IP4X.

18.2.3 Изоляционные расстояния.

18.2.3.1 Изоляционные расстояния по воздуху.

Изоляционные расстояния по воздуху между частями, находящимися под напряжением с разными потенциалами, или между частями под напряжением и заземленными металлическими частями, или наружным кожухом должны быть не менее указанных в табл. 18.2.3.1.

Таблица 18.2.3.1

<table>
<thead>
<tr>
<th>Номинальное напряжение, кВ</th>
<th>Минимальное расстояние по воздуху, мм</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (3,3)</td>
<td>55</td>
</tr>
<tr>
<td>6 (6,6)</td>
<td>90</td>
</tr>
<tr>
<td>10 (11)</td>
<td>120</td>
</tr>
<tr>
<td>15</td>
<td>160</td>
</tr>
</tbody>
</table>

Минимальные расстояния для промежуточных значений рабочих напряжений выбираются как для следующего большего значения стандартного напряжения.

При выборе меньших расстояний должны быть предусмотрены специальные импульсные высоковольтные испытания, подтверждающие допустимость такого выбора.

18.2.3.2 Изоляционные расстояния по материалу.

Изоляционные расстояния по поверхности материалов между частями под разными потенциалами и между частями под напряжением и корпусом должны выбираться на основе национальных или международных стандартов.

Для нестандартизованных частей оборудования, включающих секции шин в распределительных устройствах, минимальные расстояния по поверхности материала должны быть рассчитаны из...
Часть X. Электрическое оборудование

соотношения 25 мм на 1 кВ, а за токоограничивающими устройствами — 16 мм на 1 кВ.

18.2.4 Устройства защиты.
18.2.4.1 Замыкание на стороне генератора.
Кроме видов защиты, указанных в 8.2, генераторы должны быть снабжены устройствами защиты против межфазных коротких замыканий в кабеле, соединяющем генератор и ГРЩ, и против межвитковых замыканий внутри генератора.
При срабатывании этого устройства защиты генератор должен отключаться от ГРЩ и его возбуждение должно автоматически сниматься.
В распределительных системах с глухо заземленной нейтралью замыкание фазы генератора на корпус должно также приводить к срабатыванию защиты.
18.2.4.2 Замыкание на корпус.
18.2.4.2.1 При любых замыканиях на корпус в системе (на панелях управления) должна срабатывать звуковая и световая сигнализация.
18.2.4.2.2 В низкомомпенсированных (глухо заземленных) системах при замыканиях на корпус должна срабатывать защита, автоматически отключающая поврежденную цепь.
18.2.4.2.3 В высокоомпенсированных заземленных системах (в системах с заземленной через высокоомный резистор нейтралью), если отходящие от ГРЩ фидеры не могут быть отключены в случае замыкания на корпус, изоляция электрооборудования, получающего питание от этих фидеров, должна быть рассчитана на линейное напряжение системы.

Примечания:
1. Система должна классифицироваться как «эффективно заземленная» (низкомомпенсированная), если «коэффициент заземления» менее 0,8, и «не эффективно заземленная» (высокоомпенсированная), если «коэффициент заземления» более 0,8.
2. «Коэффициент заземления» определяется как отношение между напряжением «фаза — корпус» в исправной, т. е. неповрежденной системе и линейным («фаза — фаза») напряжением.

18.2.4.3 Силовые трансформаторы.
Силовые трансформаторы должны быть защищены от короткого замыкания и от перегрузки автоматическими выключающими.
Если трансформаторы предназначены для параллельной работы, то срабатывание защиты на ведомой стороне должно приводить к автоматическому отключению его также на ведущей стороне.
18.2.4.4 Трансформаторы напряжения для систем управления и измерительных приборов.
Трансформаторы, предназначенные для питания цепей управления и приборов, должны быть защищены от перегрузки и короткого замыкания на ведущей стороне.
18.2.4.5 Предохранители.
Плавкие предохранители должны применяться для защиты от коротких замыканий.

Для защиты от перегрузки применение предохранителей не допускается.
18.2.4.6 Низковольтные системы.
Низковольтные системы распределения (до 1000 В), получающие питание от высоковольтных трансформаторов (систем), должны иметь защиту от перенапряжений, связанных с попаданием высокого напряжения на вторичную (низковольтную) сторону. Это может быть реализовано следующими мерами:
применением заземленной низковольтной системы;
соответствующими ограничителями напряжения нейтрали;
заземлением экрана между первичной и вторичной обмотками трансформатора.
18.2.4.7 Защитные заземления.
Металлические корпуса электрического оборудования должны быть наружными медными гибкими проводниками сечением, рассчитанным на ток однофазного короткого замыкания, но не менее 16 мм². Заземляющие провода должны быть маркированы.
Заземляющие проводники могут соединяться сваркой или болтами диаметром не менее 10 мм.

18.3 ЭЛЕКТРИЧЕСКИЕ МАШИНЫ (ТРЕБОВАНИЯ К КОНСТРУКЦИИ)
18.3.1 Обмотки статоров генераторов.
Статорные обмотки генераторов должны иметь доступными как фазные выводы, так и нулевые для возможности установки дифференциальной защиты.
18.3.2 Датчики температуры.
Электрические машины должны быть оборудованы встроенными датчиками температуры статорных обмоток, обеспечивающими звуковую и световую сигнализацию при превышении температуры сверх допустимых пределов.
Для встроенного датчиков температуры должны быть предусмотрены средства (устройств) защиты от попадания высокого напряжения в измерительные цепи.
18.3.3 Испытания.
В дополнение к испытаниям, требуемым для всех электрических машин, должны быть предусмотрены испытания высокочастотным испытательным напряжением в соответствии с МЭК 60034-15 отдельных фазных обмоток (катушек) машины, подтверждающие достаточный уровень стойкости против межвитковых замыканий, вызываемых импульсными всплесками напряжения с высокой крутизной фронта.
18.3.4 Конструкция.
18.3.4.1 Корпус машины, подшипниковые щиты, защитные ограждения воздухозаборных и
выпускных отверстий должны быть изготовлены из стальных сплавов. Алюминиевые сплавы для указанных деталей машин не допускаются.

18.3.4.2 Для отвода конденсата в нижней части корпуса машины должно быть предусмотрено легко доступное для обслуживания спускное устройство. На двигателях вертикального исполнения сверху должен быть предусмотрен жестко закрепляемый козырек, защищающий от попадания внутрь машины воды и посторонних предметов. Нижний торцевой шит должен иметь форму, предотвращающую скопление воды в районе подшипника.

18.3.4.3 Клеммные коробки машин должны иметь такие размеры, чтобы обеспечивать:
необходимые изоляционные расстояния между токоведущими частями и корпусом;
необходимые изоляционные расстояния между фазами;
достаточное пространство для размещения концевых заделок кабелей подключения и выводов обмоток; и
возможность изменения расположения вводов питающих кабелей до четырех положений, под углом 90°.
Для измерительных трансформаторов тока, нагревательного антиконденсационного элемента, датчиков температуры и т. п. должна быть предусмотрена отдельная клеммная коробка.

18.3.4.4 Выводы фаз статорной обмотки должны входить в отдельную, отключающуюся от коробок на низшие напряжения, клеммную коробку через уплотнительную прокладку.
Для нейтральных выводов может быть предусмотрена отдельная клеммная коробка.
Внутри клеммных коробок должны быть предусмотрены клеммы для заземляющих жил кабелей. При этом должно быть обеспечено надежное электрическое соединение между корпусом машины и корпусом коробок.

18.3.4.5 Двигатели номинальной мощностью 1000 кВт и выше должны быть оборудованы устройствами дифференциальной защиты. Для этой цели на корпусе двигателя должна быть предусмотрена отдельная клеммная коробка, располагаемая с противоположной стороны от главной клеммной коробки, в которой должны быть предусмотрены установочные места для трех трансформаторов тока и выводов нейтральных концов обмоток.

18.3.4.6 Температура подшипников двигателей мощностью 1000 кВт и более должна контролироваться местными индикаторами (приборами). Для каждого подшипника должны быть предусмотрены также датчики температуры для дистанционного контроля.

18.3.4.7 Для предотвращения вредного влияния подшипников токов подшипник на стороне противоположной приводу должен быть электрически изолирован от корпуса. Должна быть предусмотрена возможность измерения сопротивления изоляции изолированного подшипника без его демонтажа.

18.3.4.8 Конструкция подшипников скольжения должна предусматривать:
местные указатели уровня смазочного масла;
при принудительной циркуляционной схеме отдельный насос с локальным трубопроводом, емкостью, охладителем, фильтром и указателем расхода;
возможность установки приборов вибрационного контроля, включая необходимые кабельные линии, а также приборов измерения износа подшипника;
блокировку пуска двигателя при отсутствии смазки.

18.4 СИЛОВЫЕ ТРАНСФОРМАТОРЫ

18.4.1 Общие требования.
18.4.1.1 Сухие трансформаторы должны соответствовать требованиям МЭК 60726. Применяемые сухие трансформаторы должны иметь заземленные экраны между обмотками высшего и низшего напряжений.
Трансформаторы с жидкостным охлаждением должны соответствовать требованиями МЭК 60076. Трансформаторы, погружённые в охлаждающее масло, должны быть оборудованы, как минимум, устройствами АПС и защиты по следующим параметрам:
«Минимальный уровень жидкости» — АПС и автоматическое отключение;
«Максимальная температура жидкости» — АПС и автоматическое отключение, или снижение нагрузки;
«Высокое давление газа в оболочке» — автоматическое отключение.

18.4.1.2 Трансформаторы, устанавливаемые в помещениях, доступных неквалифицированному персоналу, должны иметь степень защиты оболочки не ниже, чем IP4X.

18.4.1.3 Если на стороне низкого напряжения трансформаторов имеется изолированная нулевая точка, то между нулевой точкой каждого трансформатора и корпусом платформы должен быть предусмотрен искрогасящий предохранитель. Предохранитель должен быть рассчитан на разряд при напряжении равном или меньшем чем 80 % минимального испытательного напряжения потребителей, питаемых от данного трансформатора.

18.4.1.4 К разряднику допускается параллельное присоединение аппаратуры для контроля состояния изоляции низковольтной стороны установки или для
обнаружения места повреждения этой изоляции. Такая аппаратура не должна препятствовать надежному действию разрядника.

18.4.1.5 Должны быть предусмотрены эффективные средства (например, подогрев) для предотвращения конденсации и накопления влаги внутри трансформаторов, когда они выключены.

18.5 КАБЕЛИ

18.5.1 Общие требования.
Кабели должны быть изготовлены в соответствии с требованиями МЭК 60092-353 и МЭК 60092-354 или других соответствующих национальных стандартов.

18.5.1.2 Конструкция, тип и допускаемые токовые нагрузки применяемых кабелей являются предметом специального рассмотрения Регистром.

18.6 РАСПРЕДЕЛИТЕЛЬНЫЕ УСТРОЙСТВА И ЩИТЫ УПРАВЛЕНИЯ

18.6.1 Общие требования.
Распределительные щиты и щиты управления должны быть изготовлены в соответствии с требованиями МЭК 60298 и следующими дополнительными требованиями.

18.6.2 Конструкция.
18.6.2.1 Механическая конструкция.
Распределительные щиты должны быть изготовлены из металла, должны быть закрытого типа — в соответствии с МЭК 60298, или из изолирующих материалов, закрытого типа — в соответствии с МЭК 60466, или в соответствии с требованиями национальных стандартов.

18.6.2.1.1 Распределительные щиты должны закрываться специальным ключом, отличным от ключей распределительных штуков и устройств низкого напряжения. Открывание дверей или вкладывание отдельных элементов должно быть возможно только после отключения от электрической сети данной панели или распределительного щита.

18.6.2.1.2 Вдоль распределительных щитов должно быть предусмотрено два ряда изолирующих поручней, на высоте 600 и 1200 мм.

Таблица 18.6.2.1.3

<table>
<thead>
<tr>
<th>Номинальное напряжение, кВ</th>
<th>Минимальная высота прохода, мм</th>
<th>Мин. расстояние электрических частей под напряжением от разных видов защитных заграждений, мм</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (3,3)</td>
<td>2500</td>
<td>100, 180, 300, 600</td>
</tr>
<tr>
<td>6 (6,6)</td>
<td>2500</td>
<td>120, 200, 300, 600</td>
</tr>
<tr>
<td>10 (11)</td>
<td>2500</td>
<td>150, 220, 300, 600</td>
</tr>
<tr>
<td>15</td>
<td>2500</td>
<td>160, 240, 300, 600</td>
</tr>
</tbody>
</table>

18.6.2.2 Блокировочные устройства.
Автоматические выдвижные выключатели, применимые в распределительных щитах, должны иметь устройство, которое фиксирует их, как в рабочем, так и в выдвинутом положении. Для обеспечения безопасного обслуживания выдвижных выключателей и других аппаратов должны быть предусмотрены блокировочные ключи и блокируемые разъединители.

18.6.2.3 Шторки (заслонки).
Должно предусматриваться автоматическое закрытие неподвижных токоведущих контактов разъема при помощи изолирующих перегородок в выдвинутом положении автоматического выключателя.

18.6.2.4 Устройства заземления и междуфазного замыкания.
С целью обеспечения безопасного обслуживания высоковольтных распределительных устройств для сборных шин и отходящих фидеров должно быть предусмотрено определенное количество аппаратов, для принудительного замыкания шин между собой и на корпус.

Устройство должно быть рассчитано на максимальный ток короткого замыкания. Такое
Правила классификации, постройки и оборудования ПБУ/МСП

18.6.3 Вспомогательная система питания распределительных устройств.

18.6.3.1 Источник питания.

Если для привода механизмов автоматических и других выключателей, а также для устройств защиты требуется отдельный вспомогательный электрический или иной источник энергии, то кроме основного такого источника должен быть предусмотрен резервный источник, запас энергии которого должен быть достаточным для действия всех аппаратов по крайней мере два раза.

Однако, расписители автоматических выключателей, срабатывающие от перегрузки, от короткого замыкания или от «нулевого» напряжения, должны быть независимыми от любых электрических источников энергии.

Это требование не запрещает применения шунтовых, т. е. работающих от оперативного напряжения, расписителей при условии, что будет обеспечен контроль целостности (непрерывности) отключающих цепей и их системы питания, т. е. в случае нарушения целостности цепей или при неисправности (исчезновении) их питания, на панелях управления будет срабатывать аварийно-предупредительная сигнализация.

18.6.3.2 Количество источников питания.

Для разделенных ГРЩ (см. 18.2.1.1) для приводов механизмов автоматических и других выключателей должен быть предусмотрен, кроме собственных источников энергии, получающих питание каждый от своей системы питания, дополнительный резервный источник. При необходимости этим источником может быть аварийный источник электрической энергии, предназначенный для вывода механической установки из полностью обесточенного состояния или «мертвого» ("dead ship") состояния.

18.6.4 Высоковольтные испытания.

Каждый главный и другие распределительные щиты должны быть испытаны высоким напряжением стандартной частоты. Процедура испытаний и величина испытательного напряжения должны соответствовать требованиям соответствующего национального стандарта или МЭК 60298.

18.7 УСТРОЙСТВО ПО СОГЛАСОВАНИЮ С РЕГИСТРОМ МОЖЕТ БЫТЬ ПЕРЕНОСНЫМ.

18.7.1 Электрическое оборудование.

18.7.1.1 Если высоковольтное оборудование без защитной оболочки устанавливается в специальном помещении, фактически являющимся его оболочкой, то двери такого помещения должны иметь такую блокировку, чтобы их открыть было исключено, пока не будет отключено напряжение и токоведущие части оборудования не будут заземлены.

У входов в помещении или пространства, где расположено высоковольтное оборудование, должны быть предусмотрены предупреждающие надписи о наличии опасного высокого напряжения.

18.7.1.2 В обоснованных случаях может быть допущена установка оборудования вне специальных электрических помещений при условии, что защитное исполнение его будет не ниже IP44 и доступ к токоведущим частям оборудования будет возможным только при снятии напряжения, и при использовании специального инструмента.

18.7.1.3 В специальном электрическом помещении должна находиться схема соединений и чертеж размещения электрического оборудования.

18.7.2 Кабели.

18.7.2.1 Прокладка кабельных трасс. Кабели не должны проходить через жилые помещения. Однако, если это требуется условиями технологического характера, то такая прокладка допустима в специальных закрытых транзитных системах (конструкциях).

18.7.2.2 Разделение. Высоковольтные кабели должны прокладываться отдельно от кабелей на напряжение ниже 1000 В.

В частности, высоковольтные кабели не должны прокладываться в одних и тех же трассах, или в одних и тех же каналах или трубах, или в одних и тех же коробах.

Если высоковольтные кабели различного номинального напряжения прокладываются в одних и тех же трассах, то изоляционные расстояния между кабелями должны быть не менее изоляционных расстояний, установленных для кабелей более высокого напряжения, как указано в 18.2.3.1.

Однако, высоковольтные кабели не должны прокладываться в одних и тех же трассах с кабелями с номинальным напряжением 1 кВ и ниже.

18.7.2.3 Монтаж кабелей. Высоковольтные кабели должны прокладываться в металлических трубопроводах или в металлических коробах, или они должны быть защищены металлическими кожухами.

Открытая прокладка кабелей (на несущих штампованных панелях) допускается, если они имеют непрерывную металлическую броню, которая должна быть надежно (многократно) заземлена.

18.7.2.4 Оконцевания кабелей. Оконцевания всех жил высоковольтных кабелей должны быть выполнены из соответствующего изоляционного материала. В соединительных коробах, если жилы кабеля не изолированы, фазы должны быть отделены от корпуса и друг от друга прочными перегородками из соответствующего изоляционного материала. Высоковольтные кабели,
имеющие проводящий слой между фазами для контроля напряженности электрического поля изоляции кабеля, должны иметь выводы, предназначенные для такого контроля.

Материал изоляции выводов должен быть совместим с материалом изоляции и оболочки кабеля, и выводы должны быть оборудованы устройствами для заземления всех металлических экранирующих компонентов кабеля (металлических лент, проводов и т. п.).

18.7.2.5 Маркировка.
Высоковольтные кабели должны иметь легко читаемую идентификационную маркировку.

18.7.2.6 Испытания после завершения монтажа.
Перед вводом в эксплуатацию новой высоковольтной кабельной сети или после ее модернизации (ремонта или установки дополнительных кабелей) все кабели по отдельности с их элементами (оконцевания, заземляющие выводы и т. п.) должны быть испытаны высоким напряжением.

Испытания должны проводиться после замера сопротивления изоляции.
Если испытания электрической прочности изоляции высоковольтного кабеля выполняются испытательным напряжением переменного тока, то испытательное напряжение должно быть не ниже, чем:

$$1,6 \left(2,5U_0 + 2kV\right)$$ — для кабелей с номинальным напряжением "$$U_0$$" равным 3,6 kV и менее, и

$$4,2U_0$$ — для кабелей с номинальным напряжением выше 3,6 kV, где "$$U_0$$" — номинальное напряжение переменного тока номинальной частоты, для которых кабель был разработан, применяемое между каждой жилой и заземлением, или металлическим его экраном.

Испытательное напряжение должно быть приложено на период времени не менее 15 мин.

После завершения испытаний жилы кабеля должны быть заземлены на определенный период времени, достаточный для удаления приобретенного электрического заряда.

После этого производится повторный замер сопротивления изоляции кабеля.

19 ЗАПАСНЫЕ ЧАСТИ

19.1 ОБЩИЕ ТРЕБОВАНИЯ

19.1.1 На каждой ПБУ или МСП должны быть запасные части для электрической установки в количестве не менее требуемом настоящим разделом.

19.1.2 Номенклатура и количество запасных частей гребных электрических установок, электрических муфт, систем самовозбуждения и автоматического регулирования напряжения генераторов и систем автоматики, тип которых не предусматривается табл. 19.2, являются в каждом конкретном случае предметом специального рассмотрения Регистром.

19.1.3 Запасные части должны быть такими, чтобы их применение не требовало дополнительной обработки или подгонки.

19.1.4 Запасные части должны соответствовать требованиями настоящей части.

После изготовления запасные части должны подвергаться испытаниям.

19.1.5 Запасные части должны быть закреплены в доступных местах, замаркированы и надежно защищены от воздействия окружающей среды.

19.1.6 Установленное оборудование должно быть снабжено набором специального инструмента и приспособлений, необходимых для его разборки и сборки в эксплуатационных условиях.

Установка должна быть снабжена необходимыми материалами для ухода за аккумуляторами (дистиллированной водой, кислотой, щелочью), кабелями и проводами, плавкими вставками всех размеров для предохранителей, изоляционными материалами, а также материалами, которые могут потребоваться при устранении неисправностей электрического оборудования.

19.1.7 Запасные части не обязательны для электрических приводов механизмов, если такие механизмы установлены в двойном количестве, используются по прямому назначению и мощность (производительность) каждого из установленных механизмов является достаточной.

Для генераторов электростанции запасные части не обязательны, если установлены генераторы соответствующей мощности в количестве, превышающем требования настоящей части.
19.2 НОРМЫ ЗАПАСНЫХ ЧАСТЕЙ

19.2.1 Каждая ПБУ или МСП должна снабжаться запасными частями, относящимися к электрическому оборудованию, указанными в табл. 19.2.1.

Таблица 19.2.1

<table>
<thead>
<tr>
<th>Устройства</th>
<th>Запасные части</th>
<th>Количество</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вращающиеся генераторы</td>
<td>Щетки</td>
<td>По 1 компл.</td>
<td>На 3 генератора одного типа</td>
</tr>
<tr>
<td>Статические преобразователи</td>
<td>Щеткодержатели</td>
<td>По 1 шт.</td>
<td>На 3 возбудит. или 1 блок в сборе</td>
</tr>
<tr>
<td>Электрические двигатели</td>
<td>Подшипники</td>
<td>По 1 компл.</td>
<td>На 6 двигателей одного типа</td>
</tr>
<tr>
<td>Главный и аварийный щиты, распределительные щиты, пульты управления пусковой аппаратуры</td>
<td>Полупроводниковые элементы</td>
<td>По 1 шт.</td>
<td>Каждого типа на 6 устройств</td>
</tr>
<tr>
<td>Щиты и электроизмерительные приборы</td>
<td>Щетки</td>
<td>По 1 шт. каждого типа</td>
<td>На 10 однотипных</td>
</tr>
<tr>
<td>Система аварийной сигнализации</td>
<td>Щеткодержатели</td>
<td>По 1 компл.</td>
<td>По рекомендации изготовителя</td>
</tr>
<tr>
<td>Система служебной телефонной связи</td>
<td>Подшипники</td>
<td>По 1 шт. каждого типа</td>
<td>По рекомендации изготовителя</td>
</tr>
<tr>
<td>Освещение</td>
<td>Приборы в сборе</td>
<td>По 1 шт.</td>
<td></td>
</tr>
<tr>
<td>Контролируемый параметр</td>
<td>Пределы значений</td>
<td>Применимо для:</td>
<td>Местный измерительный прибор</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Система смазки</td>
<td>Неисправность</td>
<td>Измерительное стекло</td>
<td>X</td>
</tr>
<tr>
<td>Температура подшипников</td>
<td>Макс.</td>
<td>Термометр</td>
<td>X</td>
</tr>
<tr>
<td>Температура обмоток статора</td>
<td>Макс.</td>
<td>Синхронный ГЭУ</td>
<td>X</td>
</tr>
<tr>
<td>Токосъемные кольца</td>
<td>Неисправность (Электрическая дуга)</td>
<td>Смотровой люк</td>
<td>X</td>
</tr>
<tr>
<td>Система охлаждения воды/воздуха</td>
<td>Неисправность</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Температура охлаждающего воздуха на входе</td>
<td>Макс.</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Охлаждающая жидкость</td>
<td>Утечка</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Частота вращения</td>
<td>Макс.</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Регулирование напряжения</td>
<td>Выход из строя</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Сопротивление изоляции статора и фидера питания</td>
<td>Мин.</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Сопротивление изоляции системы возбуждения, фидера</td>
<td>Мин.</td>
<td>Синхронный ГЭУ</td>
<td>X</td>
</tr>
<tr>
<td>Трансформаторы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Температура обмоток</td>
<td>Макс.</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Охлаждающая жидкость</td>
<td>Утечка</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Система охлаждения</td>
<td>Неисправность</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Преобразователи</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Питающая сеть</td>
<td>Неисправность</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Система охлаждения</td>
<td>Неисправность</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Температура силовых секций</td>
<td>Макс.</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Питок охладителя</td>
<td>Мин.</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Охлаждающая жидкость</td>
<td>Утечка</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Предварительный сигнал</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Авария, выход из строя</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Датчик скорости и положения ротора</td>
<td>Неисправность</td>
<td>Синхронный ГЭУ</td>
<td>X</td>
</tr>
<tr>
<td>Аварийный стоп (конвертер отключен)</td>
<td>Неисправность</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Предохранитель полупроводника</td>
<td>Неисправность</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Температура полупроводника</td>
<td>Макс.</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Напряжение (звено постоянного тока)</td>
<td>Макс.</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Ток (звено постоянного тока)</td>
<td>Макс.</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Ток на выходе конвертера</td>
<td>Макс.</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Сеть питания ГЭУ, судовая электрическая система</td>
<td>X</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Фильтр гармонических составляющих</td>
<td>Авария, повреждение</td>
<td>X</td>
<td>x</td>
</tr>
<tr>
<td>Контролируемый параметр</td>
<td>Предельное значение Макс./Мин.</td>
<td>Местный измерительный прибор</td>
<td>АПС, дисплей в ЦПУ</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>ГЭД</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Система смазки</td>
<td>Ненормальная</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Температура подшипников</td>
<td>Макс.</td>
<td>Термометр</td>
<td></td>
</tr>
<tr>
<td>Температура главных полюсов</td>
<td>Макс.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Температура дополнительных полюсов или компенсационных обмоток</td>
<td>Макс.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Система охлаждения воды/воздуха</td>
<td>Ненормальная</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Температура охлаждающего воздуха на входе</td>
<td>Макс.</td>
<td>Термометр</td>
<td></td>
</tr>
<tr>
<td>Охлаждающая жидкость</td>
<td>Утечка</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Частота вращения</td>
<td>Макс.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Колодец/щетки</td>
<td>Ненормальная (электрическая дуга)</td>
<td>Смотровой люк</td>
<td></td>
</tr>
<tr>
<td>Ток якоря</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сопротивление изоляции цепи якоря и фидера питания</td>
<td>Макс.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Трансформаторы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Температура обмоток</td>
<td>Макс.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Охлаждающая жидкость</td>
<td>Утечка</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Система охлаждения</td>
<td>Ненормальная</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Преобразователи</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Питающая сеть</td>
<td>Ненормальная</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Система охлаждение</td>
<td>Ненормальная</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Температура силовых секций</td>
<td>Макс.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Поток охладителя (прямое охлаждение)</td>
<td>Мин.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Охлаждающая жидкость</td>
<td>Утечка</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Предварительный сигнал</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Авария, выход из строя</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Датчик скорости вращения якоря</td>
<td>Ненормальная</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Аварийный стоп (конвертер отключен)</td>
<td>Ненормальная</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Предохранитель полупроводника</td>
<td>Ненормальная</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сеть питания ГЭУ, судовая электрическая система</td>
<td>Ненормальная</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Фильтр гармонических составляющих</td>
<td>Авария, повреждение</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.1 Стационарно установленные на борту ПБУ и МСП холодильные установки должны отвечать требованиям разд. 1 — 8, 11 и 12 части XII «Холодильные установки» Правил классификации и постройки морских судов.
ЧАСТЬ XII. МАТЕРИАЛЫ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящей части распространяются на материалы и изделия, предназначенные для сварных конструкций, деталей механизмов и оборудования ПБУ и МСП, подлежащих наблюдению Регистра в соответствии с требованиями других частей Правил ПБУ/МСП.

1.1.2 Материалы и изделия, подлежащие наблюдению при их изготовлении, должны удовлетворять требованиям настоящей части и части XIII «Материалы» Правил классификации и постройки морских судов. Допускается, после специального рассмотрения Регистром, поставка материалов и изделий в соответствии с требованиями национальных и международных стандартов, признанных Регистром.

Материалы, отличаяющиеся по химическому составу, механическим свойствам, состоянию поставки или методу изготовления от указанного в настоящей части подлежат рассмотрению Регистром. При этом должны быть представлены данные, подтверждающие возможность применения этих материалов по назначению. Регистр также может потребовать проведения дополнительных испытаний.

1.1.3 Материалы и изделия, подлежащие наблюдению Регистра, должны изготавливаться признанными Регистром предприятиями, имеющими соответствующий документ:

Свидетельство о признании изготовителя — документ, подтверждающий соответствие изготавливаемой продукции и условия ее производства требованиям правил Регистра и удостоверяющий внесение предприятия в издаваемый Регистром соответствующий перечень.

Свидетельство о типовом одобрении — документ, подтверждающий соответствие изготавливаемой предприятием продукции требованиям Правил Регистра и удостоверяющий внесение предприятия в издаваемый Регистром соответствующий перечень.

Свидетельство Регистра — документ, удостоверяющий соответствие определенного объема конкретного вида продукции требованиям правил Регистра и, если оговорено отдельно, требованиям заказа. Свидетельство выдается инспектором Регистра при осуществлении наблюдений за изготовлением продукции.

Сертификат предприятия — документ, удостоверяющий соответствие определенного объема конкретного вида продукции требованиям заказа и подтверждающий изготовление продукции в полном соответствии с существующей на предприятии технологией. Сертификат выдается предприятием и должен быть удостоверен подписью ответственного лица от контролирующего качество продукции органа предприятия.

Клеймо Регистра — в настоящей части под термином «клеймо» понимается клеймо, штемпель или пломбир определенного, регламентированного Регистром вида, которые наносятся на продукцию в конечном виде или в процессе изготовления с целью подтверждения осуществленного Регистром наблюдения и идентификации продукции выданным на нее документом.

1.2 ОПРЕДЕЛЕНИЯ И ПОСЯНЕНИЯ

1.2.1 Определения и пояснения, относящиеся к общей терминологии, приведены в части XIII «Материалы» Правил классификации постройки морских судов.

1.2.2 В настоящей части приняты также следующие определения.

Признанное предприятие — предприятие, внесенное в издаваемый Регистром Перечень одобренных (признанных) материалов и предприятий-изготовителей.

Признанная лаборатория — лаборатория (центр), внесенная в перечень лабораторий (центров), имеющих Свидетельства о признании лабораторий.

Свидетельство о признании изготовителя — документ, подтверждающий соответствие изготавливаемой предприятием продукции и условий ее производства требованиям Регистра и удостоверяющий внесение предприятия в издаваемый Регистром соответствующий перечень.

Свидетельство о типовом одобрении — документ, подтверждающий соответствие изготавливаемой предприятием продукции требованиям Правил Регистра и удостоверяющий внесение предприятия в издаваемый Регистром соответствующий перечень.

Свидетельство Регистра — документ, удостоверяющий соответствие определенного объема конкретного вида продукции требованиям правил Регистра и, если оговорено отдельно, требованиям заказа. Свидетельство выдается инспектором Регистра при осуществлении наблюдения за изготовлением продукции.

Сертификат предприятия — документ, удостоверяющий соответствие определенного объема конкретного вида продукции требованиям заказа и подтверждающий изготовление продукции в полном соответствии с существующей на предприятии технологией. Сертификат выдается предприятием и должен быть удостоверен подписью ответственного лица от контролирующего качество продукции органа предприятия.

Клеймо Регистра — в настоящей части под термином «клеймо» понимается клеймо, штемпель или пломбир определенного, регламентированного Регистром вида, которые наносятся на продукцию в конечном виде или в процессе изготовления с целью подтверждения осуществленного Регистром наблюдения и идентификации продукции выданным на нее документом.
Часть XII. Материалы

Проба — часть полуфабриката либо специально изготовленная заготовка, предназначенная для изготовления образцов для испытаний.
Образец — изготовленное из пробы изделие определенной формы и размеров, на котором непосредственно проводится определение механических, технологических или иных свойств материала при испытаниях.
Полуфабрикат — лист, поковка, отливка, труба и т.п. в дальнейшем, при использовании по назначению, подвергающиеся механической или технологической обработке.
Партия — ограниченное количество полуфабрикатов, на которые распространяются результаты проведенных в установленном порядке испытаний.
Первоначальные испытания — определенный объем контрольных испытаний, регламентированный специальной, одобренной Регистром программой и выполняемый во время освидетельствования предприятия Регистром с целью выдачи ему Свидетельства о признании изготовителя.
Сдаточные испытания — определенный Правилами Регистра или согласованной с ним документацией объем испытаний поставляемой продукции, на основании результатов которого могут быть оформлены Свидетельства Регистра.
Зет-сталь — сталь с гарантированным уровнем пластических свойств в направлении толщины проката, предназначенная для сварных конструкций, способная воспринимать значительные напряжения, перпендикулярные к поверхности проката.
Слоистый разрыв — разрушение элементов сварных конструкций, изготовленных из листового проката или труб, как следствие значительных сварочных напряжений и/или внешних нагрузок, действующих в направлении, перпендикулярном к поверхности проката.
Нестабильное разрушение образца — полное или частичное разрушение (проскок трещины) образца, при котором регистрируется падение нагрузки и неконтролируемое возрастание перемещений более чем на 1 %.

1.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

1.3.1 Положения, определяющие порядок и объем осуществления технического наблюдения, изложены в Общих положениях о классификационной и иной деятельности и 1.3 части XIII «Материалы» Правил классификации и постройки морских судов.
1.3.2 Наблюдение и соответствующие испытания при изготовлении материалов проводятся в объеме требований настоящей части.
1.3.2.1 Объем и порядок испытаний необходимых для получения предприятием Свидетельства о признании изготовителя, в общем случае определяется исходя из требований разделов 3 и 4 настоящей части. Программа испытаний составляется предприятием и представляется для согласования в Регистр.
Как правило, при первоначальном освидетельствования предприятия проект программы испытаний должен содержать:
.1 определение химического состава (ковшовая пробы и полуфабрикат);
.2 испытания на растяжение;
.3 испытания на ударный изгиб (продольные и поперечные образцы);
.4 испытания на изгиб;
.5 испытания на чувствительность к механическому старению;
.6 микроскопический анализ;
.7 микроскопический анализ;
.8 определение ликвационной неоднородности серы.
Также могут быть востребованы результаты или проведение испытаний по определению:
.9 параметра трещиностойкости (CTOD) для основного металла и металла зоны термовлияния сварных соединений. Определение CTOD проводится при температуре, соответствующей назначаемой категории стали (A, B, D, E, F), а также при других температурах, определяемых программой испытаний;
.10 температуры нулевой пластичности (NDT) для основного металла;
.11 температуры вязкохрупкого перехода (T_{av}) для основного металла и т.д.
1.3.2.2 Если, исходя из условий применения, требуется подтверждение специальных свойств материала, то должны быть представлены результаты или выполнены следующие испытания:
.1 растяжение при повышенной температуре;
.2 испытания на усталость материала;
.3 определение коррозионной стойкости;
.4 коррозионно-усталостные испытания;
1.3.2.3 Все испытания должны выполняться в присутствии представителя Регистра по методикам, согласованным с Регистром.
1.3.2.4 В общем случае, испытания любой из представленных на первоначальное одобрение категории стали необходимо выполнять на металле, как минимум, двух плавков. Пробы с целью изготовления образцов для испытаний должны отбираться не менее чем от двух полуфабрикатов разной толщины (максимальной, средней или минимальной из указанных в заявлке) для каждой
В зависимости от представленных предприятием статистических данных, свидетельствующих об уровне стабильности качества поставляемой продукции, количество представляемых для испытаний плавок, полуфабрикатов может быть изменено.

1.3.2.5 Удовлетворительные результаты испытаний, выполненные на стали высшей категории, могут быть распространены на сталь низшей категории, если технология изготовления, химический состав и условия поставки для этих категорий одинаковы. Положительные результаты испытаний стали уровня прочности 36 могут быть распространены на сталь уровня прочности 32, при выполнении упомянутых выше условий.

1.3.2.6 Испытания на ударный изгиб должны проводиться на продольных и поперечных образцах, отобранных от двух концов каждого из представленных к испытаниям полуфабрикатов. Как правило, испытания должны выполняться при +20, 0, —20, —40 и —60 °С, для стали категории F испытания должны выполняться дополнительно и при —80 °С. В результате испытаний должна быть представлена диаграмма зависимости работы удара от температуры испытаний, одновременно указывается процент вязкой (хрупкой) составляющей в изломе образцов. Если иное не оговорено, испытания в указанном объеме проводятся при первоначальном освидетельствовании предприятия и, по требованию инспектора Регистра, в сомнительных или спорных случаях, касающихся качества поставляемого проката.

1.3.2.8 Макроскопический анализ проводится с целью определения структуры деформированного металла, нарушенных его сплошности, прироста зерна и т. д. Как правило, макроанализ выполняется на поперечных образцах (штанги, профиль — полное сечение), отобранных от начала головного полуфабриката или головной части раската. Если другое не указано, проведение макроскопического анализа требуется при первоначальном освидетельствовании предприятия, при внесении изменений в технологию производства и, по требованию инспектора Регистра, в сомнительных или спорных случаях, касающихся качества поставляемого проката.

1.3.2.9 Микроскопический анализ проводится с целью определения размеров зерна стали в процессе эксплуатации и оценки чувствительности к росту зерна стали при ее нагреве. Определяются действительное и природное зерно. Металлографические образцы (микрошлифы) изготавливаются в различных сечениях полуфабриката. Для проката микрошлифы изготавливаются из металла 1/3 или 1/4 поверхности (в зависимости от толщины) и из середины полуфабриката. Микрошлифы обычно готовят из продольных образцов, изготовленных из начала головного полуфабриката слитка или головной части раската. Анализ проводится на травленых и не травленых шлифах при увеличении 100 и/или 400. Если другое не указано, проведение микроанализа требуется при первоначальном освидетельствовании предприятия, при внесении изменений в технологию производства и, по требованию инспектора Регистра, в сомнительных или спорных случаях, касающихся качества поставляемого проката.

1.3.2.10 При применении на предприятии разных способов выплавки, использовании классического способа разливки в изложницы, или применении непрерывной разливки стали, а также при прокатке заявленного в Заявке на признание полуфабриката на разных станах и т. д. приведенные выше требования должны распространяться для каждой технологической цепочки отдельно.
2 МЕТОДЫ ИСПЫТАНИЙ

2.1 ОБЩИЕ ТРЕБОВАНИЯ

2.1.1 Испытания материалов, подлежащих наблюдению при изготовлении, должны выполняться в соответствии с требованиями разд. 2 части XIII «Материалы» Правил классификации и постройки морских судов и признанных Регистром национальных или международных стандартов.

2.1.2 Отдельному согласованию с Регистром подлежат методики испытаний по определению:
.1 характеристики трещиностойкости основного металла и металла сварных соединений (CTOD);
.2 температуры нулевой пластичности (NDT);
.3 температуры вязкохрупкого перехода (TK).

Требования к упомянутым здесь видам испытаний изложены в 2.2, 2.3 и 2.4.

2.2 ИСПЫТАНИЯ НА CTOD

2.2.1 Общие требования.

2.2.1.1 Основным назначением испытаний является контроль вида разрушения материалов при наличии трещины в климатическом диапазоне температур. При испытаниях определяется параметр трещиностойкости CTOD (критическое раскрытие вершины трещины) при статическом нагружении.

За CTOD принимается рассчитанная в соответствии со стандартами одна из следующих величин раскрытия трещины, связанных с определяемым видом ее распространения:

- \(\delta_c \) — когда до начала нестабильного разрушения (хрупкого распространения трещины) ее средний стабильный подрост составил менее 0,2 мм;

- \(\delta_m \) — когда до начала нестабильного разрушения (хрупкого распространения трещины) средний стабильный подрост составил более 0,2 мм;

- \(\delta_n \) — когда был достигнут максимум нагрузки без нестабильного разрушения.

2.2.1.2 Для определения CTOD применяются образцы с предварительно выращенной усталостной трещиной, которые испытываются при заданной скорости перемещения нагружающей траверсы испытательной машины, обеспечивающей скорость роста коэффициента интенсивности напряжений в пределах \(0,5 \ldots 1,5 \) МПа·м\(^{1/2}\)/с на упругом участке деформирования. Образцы нагружаются до разрушения (полного или частичного) или до превышения максимального усилия, зарегистрированного при пластическом деформировании.

2.2.2 Образцы для испытаний на CTOD.

2.2.2.1 Пробы для изготовления образцов для испытания на CTOD должны отбираться из мест, максимально приближенных к месту отбора проб для испытаний на растяжение и ударный изгиб.

2.2.2.2 Ориентация образцов, если другого не указано, при их изготовлении должна быть такой, чтобы направление распространения трещины совпадало с направлением последней прокатки (преимущественным направлением деформирования металла).

2.2.2.3 При невозможности провести испытания образцов тощиной, приближенной к натурной, допускается, по согласованию с Регистром, повторное испытание на образцах меньшей толщины с боковыми канавками, предотвращающими образование губ среза. Глубина канавок должна составлять 0,10...0,15 толщины образца.

2.2.2.4 Разрешается испытывать образцы, изготовленные из полуфабрикатов, имеющих угла вые деформации и кривизну (например, труб). В этих случаях пробы могут быть сорваны, причем точки приложения нагрузки должны находиться на расстоянии не менее толщины образца от линии надреза, а зона надреза не должна претерпевать влияния на результаты испытаний деформаций.

2.2.2.5 Для образцов с остаточными напряжениями, а также подверженными правке, допускается механическое снятие остаточных напряжений. Термообработка в этом случае не допускается. Рекомендуемый метод механического снятия остаточных напряжений заключается в локальном сжатии боковых поверхностей образца, прилагающем в зоне вершины надреза, с пластической деформацией образца не более 0,5 % толщины образца с каждой стороны. Для этого следует использовать штампы достаточной площади, чтобы по возможности покрыть образец за одно обжатие. Покрытие вершины надреза обязательно.

2.2.2.6 При определении трещиностойкости зоны термического влияния надрез следует выполнять так, чтобы вершина трещины была возможно большей длиной ее фронта располагалась в слое, обладающем предпочтительно наименьшей вязкостью. Рекомендуется для этого применять сварку со специальной разделкой шва (К- или V-образной). Технологический
м процесс сварки должен быть одобрен Регистром. Особое внимание должно быть обращено применяемым при этом сварочным материалам и погонной энергии. Перед нанесением разметки и выполнением надреза на образце необходимо осуществить трансляцию и исследование структуры металла зоны термического влияния. Если другие указания отсутствуют, зоной наименьшей вязкости следует считать зону наибольшей величины зерен, максимального перегрева при сварке. По требованию Регистра, испытания могут выполняться и при нанесении надреза по иным зонам. Точность полученных результатов, в этом случае, должна обеспечиваться увеличением количества испытываемых образцов (до 8 — 10 на одну температуру испытания) и отбраковкой после испытания тех, где трещина вышла за пределы исследуемой зоны в соответствии с условиями корректности испытаний, приведенными в 2.2.5 настоящей части. С целью отбраковки, после испытаний необходимо проводить определение фактического положения начальной трещины и траектории ее распространения; может потребоваться изготовление поперечных шлифов, повторное трансляция и регистрация структурных составляющих, по которым пошло разрушение.

2.2.3 Типы образцов.
2.2.3.1 Для испытаний изготавливаются образцы следующих типов:
.1 образцы прямоугольного сечения на трехточечный изгиб;
.2 образцы компактные на внешцентренное растяжение.

Для полуфабрикатов, толщина которых не превышает 50 мм, рекомендуется применение образцов типа 1. При этом толщина образцов должна быть по возможности приближена к натурной толщине полуфабриката.
2.2.3.2 Для полуфабрикатов, толщина которых равняется или превышает 50 мм, рекомендуется использовать металлокомплектные образцы. Толщина компактных образцов должна быть максимально возможной для следующего ряда: 50 мм, 75 мм, 100 мм.

Размерные соотношения образцов и методы их изготовления должны соответствовать приведенным Регистром стандартам.

2.2.4 Оборудование, оснастка и средства измерений.
2.2.4.1 В общем случае, оборудование, оснастка и средства измерений должны удовлетворять требованиям стандартов и Правил ПБУ/МСП и периодически контролироваться и калиброваться уполномоченными на то национальными органами.
2.2.4.2 В качестве машин для испытаний следует использовать сервогидравлические или им подобные, с верхней границей рабочего диапазона нагрузок от 100 до 2500 кН, обеспечивающими нагружение со скоростями, установленными в 2.2.1 настоящей части и погрешностью измерения нагрузки не более ±0,1 % от верхней границы рабочего диапазона. Системы для измерения приложенной силы и регистрации результатов должны позволять делать запись диаграмм: «приложенная нагрузка — раскрытие берегов надреза».
2.2.4.3 Оснастка для испытаний на трехточечный изгиб должна обеспечивать возможность вращения и малого независимого перемещения опорных роликов с целью поддержания непрерывного контакта качения в течение всего испытания. Диаметр роликов должен составлять от 0,5 до 1,0 высоты образца.
2.2.4.4 Погрешности для нагружения компактных образцов (сереги и пальцы) должны допускать выравнивание образца при нагружении, для чего зазор между образцом и внутренними поверхностями серег должен быть увеличен до 0,5 — 1,0 мм, и обеспечивать отсутствие заклинивания пальцев при пластическом деформировании образца.
2.2.4.5 Погрешности при определении температуры испытаний не должна превышать ±1,5 °С. Измерения температуры должны проводиться термоэлектрическими преобразователями с вторичными измерительными приборами точностью не ниже 0,5.
2.2.4.6 Раскрытие берегов трещины измеряется с помощью датчиков перемещения с базой от 10 мм, с диапазоном измерения от ±10 % до ±50 % от базы. Погрешность измерения перемещения с их помощью не должна превышать ±1,5 % от верхней границы рабочего диапазона.
2.2.4.7 Датчик перемещения должен проходить тарировку перед каждой серийю измерений идентичных образцов. Особенное это важно для испытаний при низкой температуре. Если датчик хорошо изолирован от образца, тарировка при комнатной температуре считается достаточной. Погрешность тарировки не более ±0,01 мм.
2.2.5 Условия корректности полученных значений СТОД.
2.2.5.1 Геометрические размеры образцов должны находиться в пределах стандартных допусков.
2.2.5.2 Отношение длины трещины к высоте образца должно находиться в диапазоне от 0,45 до 0,55, для всех типов образцов.
2.2.5.3 Минимальная протяженность участковой трещины определяется как большее из следующих значений: 1,3 мм или 2,5 % высоты образца.
2.2.5.4 Разница между двумя любыми из измерений длины начальной усталостной трещины не
должна превышать 10 % среднего значения длины трещины по этим измерениям. При испытаниях зоны термического влияния допуск может быть увеличен до 20 %.

2.2.5.5 При испытаниях металла зоны термического влияния считается достаточным наличие по фронту начальной усталостной трещины участка целевой микроструктуры протяженностью 15 % толщины образца, если другое не указано.

2.2.6 Определение результата испытания на СТОД.

При определении параметра трещинностойкости СТОД основного металла и металла ЗТВ минимальное количество корректных образцов, испытанных при одной температуре, должно быть не менее трех.

Значение СТОД для данной температуры определяется как среднее из результатов испытаний при следующих условиях:
при испытании трех корректных образцов ни один из полученных результатов не должен быть менее 70 % от среднего для основного металла и менее 50 % от среднего для основного металла и металла ЗТВ;
при испытании пяти и более корректных образцов ни один из полученных результатов не должен быть менее 50 % от среднего для основного металла и металла ЗТВ.

При невыполнении этих условий за величину СТОД принимается минимальное зарегистрированное значение этого параметра.

2.3 ИСПЫТАНИЯ ПАДАЮЩИМ ГРУЗОМ ДЛЯ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ НУЛЕВОЙ ПЛАСТИЧНОСТИ

2.3.1 Общие положения.

2.3.1.1 Основным назначением испытаний является определение условий развития хрупкого разрушения в материале толщиной не менее 15 мм.

2.3.1.2 Испытание представляет собой изгибное нагружение падающим грузом серии образцов при различных температурах с целью определения температуры, при которой происходит разрушение стандартных образцов - температуры нулевой пластичности (NDT).

Прогиб образцов должен соответствовать стандартам и ограничиваться стопором.

2.3.2 Образцы для определения NDT.

2.3.2.1 Пробы для изготовления образцов для определений NDT должны отбираться из мест, максимально приближенных к месту отбора проб для механических испытаний. Если при отборе проб используются газовая резка, припуск на механическую обработку на сторону, должен быть не менее 25 мм или не менее толщины полуфабриката, исходя из того, какая величина больше.

2.3.2.2 Ориентация образцов при их изготовлении, если другого не указано, должна быть такой, чтобы их продольные оси были перпендикулярны к последней прокатке полуфабриката (преимущественно направлению деформирования металла).

2.3.2.3 Определение NDT рекомендуется производить на серии из девяти образцов.

2.3.2.4 Размер образца выбирают по табл. 2.3.2.4 таким образом, чтобы толщина образца была максимально приближена к толщине представленного для испытаний полуфабриката.

<table>
<thead>
<tr>
<th>Тип образца</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина, мм</td>
<td>360 ± 2,0</td>
<td>130 ± 1,0</td>
<td>130 ± 1,0</td>
</tr>
<tr>
<td>Ширина, мм</td>
<td>90 ± 2,0</td>
<td>50 ± 1,0</td>
<td>50 ± 1,0</td>
</tr>
<tr>
<td>Толщина, мм</td>
<td>25 ± 2,5</td>
<td>19 ± 1,0</td>
<td>15 ± 1,0</td>
</tr>
</tbody>
</table>

2.3.2.5 Образцы, как правило, изготавливаются механическим методом. Разогрев образцов при этом не допускается. Растягиваемая сторона образца механической обработке не подвергается.

2.3.2.6 Для испытаний используются прямоугольные образцы с хрупкой наплавкой на растягиваемой необработанной стороне. В наплавке нон-реж образца выполняется надрез, от которого при ударном нагружении распространяется трещина.

2.3.2.7 Надрез наносится только по наплавленному металлу. Контролируемые при этом параметры:
толщина нетто-сечения наплавленного металла под надрезом - 2-0,2 мм;
ширина надреза, максимальная - 1,5 мм.

2.3.2.8 Электроды для хрупкой наплавки должны иметь диаметр сердечника 4 - 6 мм. Каждая партия электродов должна проходить проверку пригодности следующим образом: дополнительно к основной партии образцов из исследуемого полуфабриката следует изготовить три образца типа 2 (табл. 2.3.2.4), которые после предварительной оценки температуры NDT должны быть испытаны при температуре не ниже NDT + 60 °C. На каждом из испытанных образцов должна образоваться визуально обнаруживаемая трещина, распространяющаяся от надреза в наплавке.

2.3.2.9 Хрупкую наплавку выполняют в один проход, от краев к центру, располагая ее вдоль образца, в центре необработанной механическим путем поверхности. Ширина наплавки должна быть 13 ± 2 мм, длина: 65 ± 5 мм, высота валика, примерно одинаковая по всей его длине, должна...
быть не менее 4 мм, что обеспечивается соответственно режимом сварки.

2.3.3 Оборудование, оснастка и средства измерений.

2.3.3.1 Оборудование, оснастка и средства измерений должны удовлетворять требованиям стандартов и настоящих Правил, периодически контролироваться и калиброваться уполномоченными на то национальными органами.

2.3.3.2 Испытания проводятся на копре со свободно падающим грузом массой, обеспечивающей энергию удара от 330 до 1750 Дж. Необходимый уровень энергии для конкретного материала и размера полуфабриката выбирается в соответствии со стандартами. Наковальня, изготовленная из монолитного металла, должна иметь твердость 50 — 55 HRC.

2.3.4 Условия корректности полученных значений NDT:
.1 геометрические размеры образцов должны находиться в пределах стандартных допусков;
.2 трещина в металле наплавки визуально обнаружима;
.3 образцы при изгибе достигли стопора;
.4 наплавка образцов не упирается в стопор;
.5 полученное значение температуры нулевой пластичности подтверждено результатами испытаний трех образцов при температуре NDT + 5 °С, ни один из которых не разрушился;
.6 доказана пригодность электродов, используемых для хрупкой наплавки.

2.4 ИСПЫТАНИЯ ДЛЯ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ВЯЗКО-ХРУПКОГО ПЕРЕХОДА T_{kb}

2.4.1 Общие требования.

2.4.1.1 Температура T_{kb} является температурой вязко-хрупкого перехода и характеризуется 70 % волокнистой составляющей в изломе образца натурной толщины. Выполненные испытания по определению T_{kb} позволяют определить хладостойкость испытываемого материала, проводить сравнение хладостойкости различных сталей, а также оценить температуру остановки хрупкой трещины T_{ar} в испытываемом материале на основании $T_{ar} - 0,9 T_{kb} - 10 ^{0}C$.

2.4.1.2 Процедура определения T_{kb} предусматривает выполнение испытаний серии образцов стали натурной толщины при трехочном изгибе до разрушения. Испытания выполняются при последовательно понижающихся температурах.

2.4.1.3 Во время проведения испытаний контролируются площадь кристаллической (хрупкой) или волокнистой (вязкой) составляющих в изломе образца и температура испытаний. Кроме того, после выполнения испытаний контролируется наличие расслоений в изломе в пределах волокнистой составляющей. При наличии расслоений испытания считаются некорректными, если расслоения достигают границы между вязкой и хрупкой составляющими излома или имеют протяженность более половины толщины образца.

2.4.1.4 Для построения температурной кривой рекомендуется проводить испытания согласно следующему ряду: +20, 0, —20, —40, —60 °С и т.д., в зависимости от представленной к испытаниям стали, с интервалом не более 20 °C.

2.4.2 Образцы для определения T_{kb}.

2.4.2.1 Пробы для изготовления образцов для определения T_{kb} должны отбираться из мест, максимально приближенных к местам отбора проб для определения механических свойств полуфабриката.

2.4.2.2 Ориентация образцов, если другого не указано, должна быть такой, чтобы их продольные оси были перпендикулярны к направлению последней прокатки (преимущественному направлению деформирования металла). Ориентация для каждого из образцов указывается в протоколе испытаний.

2.4.2.3 Определение T_{kb} рекомендуется проводить на серии из 10 — 12 образцов.

2.4.2.4 Изготовление образцов осуществляется механическим способом. По согласованию с Регистром и исполнителем испытаний допускается вырезка образцов с применением газовой или плазменной резки при условии механической обработки опорных и нагружаемых поверхностей для обеспечения их параллельности между собой и перпендикулярности поверхности листа.

По согласованию с Регистром допускается выполнение надреза с применением газовой резки.

2.4.2.5 Размеры образцов из металла натурной толщины должны соответствовать требованиям табл. 2.4.2.5. Радиус надреза плоских призматических образцов должен быть равен половине ширины надреза.

<table>
<thead>
<tr>
<th>Таблица 2.4.2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Толщина, мм</td>
</tr>
<tr>
<td>258</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>520</td>
</tr>
<tr>
<td>640</td>
</tr>
<tr>
<td>1,5</td>
</tr>
</tbody>
</table>

2.4.3 Оборудование, оснастка и средства измерений.

2.4.3.1 Оборудование и средства измерений должны удовлетворять требованиям стандартов
и Правил ПБУ/МСП, периодически контролироваться и калиброваться уполномоченными на то контрольными органами.

2.4.3.2 Машины с механическим приводом для определения ТкЪ использовать не рекомендуется.

2.4.4 Условия корректности полученных значений ТкЪ.

2.4.4.1 Геометрические размеры образцов должны находиться в пределах допусков.

2.4.4.2 Погрешность измерения заданной температуры образца в его сечении с надрезом не превышает ±2 °С в диапазоне от +150 до -200 °С.

2.4.4.3 Погрешность определения количества волокнистой или кристаллической составляющей в изломе образца не превышает ±5% от площади излома.

2.4.4.4 Полученное значение температуры ТкЪ подтверждено испытанием трех образцов. Если в двух из трех случаях в изломах содержится 70 ± 5% волокнистой составляющей, то данная температура принимается за ТкЪ.

З ВЫБОР МАТЕРИАЛА

3.1 ОБЩИЕ ТРЕБОВАНИЯ

3.1.1 Требования настоящего раздела распространяются на сталь для корпусных конструкций МСП.

3.1.2 В общем случае, выбор материалов осуществляется в соответствии с требованиями части II «Корпус» исходя из расчетной температуры материала Тд, ответственности рассматриваемого элемента конструкции, его толщины и условий нагружения: наличия циклических ветровых и ледовых нагрузок, возможности динамического режима нагружения при воздействии ледовых полей.

3.2 ВЫБОР КАТЕГОРИИ СТАЛИ

3.2.1 Выбор категории стали (А, В, D, Е, F) толщиной, равной или менее 50 мм, осуществляется в соответствии с табл. 1.5.1.2-1 части II «Корпус».

Применение стали в толщинах, превышающих регламентированные этой таблицей, возможно только после специального согласования с Регистром, при выполнении требований к характеристикам вязкости и хладостойкости, определяемых Регистром в соответствии с табл. 1.5.1.2-2 части II «Корпус».

3.2.2 Для стали любой категории толщиной более 50 мм и стали категории F толщиной, превышающей допустимую по табл. 1.5.1.2-1 части II «Корпус», должны быть представлены результаты испытаний по определению параметра трещиностойкости CTOD и NDT. Испытания на CTOD должны быть выполнены для заданной расчетной температуры или в температурном диапазоне, включающем расчетную.

3.2.3 Значения параметра CTOD для основного металла и зоны термического влияния сварного соединения при расчетной температуре Тд должны быть не ниже приведенных в табл. 3.2.3-1, 3.2.3-2, 3.2.3-3, 3.2.3-4, в зависимости от категории ответственности элемента конструкции и условий его нагружения.

3.2.3.1 Специальные конструкции, находящиеся под действием циклических ветровых, ветроволновых и сейсмических нагрузок.

Значения CTOD для основного металла приведены в табл. 3.2.3-1, для металла зоны термического влияния — в табл. 3.2.3-2.

3.2.3.2 Специальные конструкции, нагруженные статически.

Значения CTOD для основного металла и металла зоны термического влияния приведены в табл. 3.2.3-3.

<table>
<thead>
<tr>
<th>Таблица 3.2.3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Толщина, мм, не более</td>
</tr>
<tr>
<td>норм. 315 355 390 420 460 500 550 620 690</td>
</tr>
<tr>
<td>20 — — 0,10 0,10 0,10 0,10 0,10 0,10 0,10</td>
</tr>
<tr>
<td>30 — — 0,10 0,10 0,10 0,10 0,10 0,10 0,10</td>
</tr>
<tr>
<td>40 — 0,15 0,15 0,20 0,20 0,20 0,20 0,20 0,20</td>
</tr>
<tr>
<td>50 — 0,20 0,20 0,20 0,25 0,25 0,25 0,25 0,25</td>
</tr>
<tr>
<td>70 — 0,20 0,20 0,25 0,25 0,25 0,25 0,25 0,25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Таблица 3.2.3-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Толщина, мм, не более</td>
</tr>
<tr>
<td>норм. 315 355 390 420 460 500 550 620 690</td>
</tr>
<tr>
<td>20 — — — — 0,10 0,10 0,10 0,10 0,10</td>
</tr>
<tr>
<td>30 — 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,10</td>
</tr>
<tr>
<td>40 — 0,15 0,15 0,20 0,20 0,20 0,20 0,20 0,20</td>
</tr>
<tr>
<td>50 — 0,15 0,15 0,20 0,20 0,20 0,20 0,20 0,20</td>
</tr>
<tr>
<td>70 — 0,15 0,15 0,20 0,20 0,20 0,20 0,20 0,20</td>
</tr>
</tbody>
</table>
3.2.3.3 Основные конструкции, находящиеся под действием циклических ледовых, ветроволновых и сейсмических нагрузок.

Значения STOD для основного металла приведены в таблице 3.2.3-2, для металла зоны термического влияния — в табл. 3.2.3-3.

3.2.3.4 Основные конструкции, нагружаемые статически.

Значения STOD для основного металла и металла зоны термического влияния приведены в табл. 3.2.3-4.

3.2.3.5 Второстепенные конструкции, находящиеся под действием циклических ледовых, ветроволновых и сейсмических нагрузок.

Значения STOD для основного металла приведены в табл. 3.2.3-3, для металла зоны термического влияния — в табл. 3.2.3-4.

3.2.4 Для специальных элементов конструкций, подвергающихся непосредственному воздействию динамических ледовых или сейсмических нагрузок значения температуры нулевой пластичности NDT для основного металла толщиной t до 40 мм должно быть не выше:

\[T_d - 10 °C \text{ для } 15 \text{ мм} < t < 20 \text{ мм} \]

\[T_d - 20 °C \text{ для } 20 \text{ мм} < t < 30 \text{ мм} \]

\[T_d - 25 °C \text{ для } 30 \text{ мм} < t < 40 \text{ мм}. \]

Для металла толщиной более 40 мм значение температуры \(T_{ab} \), соответствующей 70 % волокнистой составляющей в изломе образца натурной толщины, должно быть не выше 1,1T_d + 10 °C.

3.2.5 Для специальных элементов конструкций, не подпадающих под требования 3.2.4, и основных элементов конструкций, находящихся под действием циклических ледовых, ветроволновых и сейсмических нагрузок, значения температуры нулевой пластичности NDT должно быть не выше \(T_d \) при толщине не более 30 мм и \(T_d - 10 °C \) для металла в больших толщинах.

4 ПРОКАТ ДЛЯ СТАЛЬНЫХ КОНСТРУКЦИЙ

4.1 ОБЩИЕ ТРЕБОВАНИЯ

4.1.1 Сталь, подлежащая наблюдению Регистра, должна удовлетворять требованиям части XIII «Материалы» Правил классификации и постройки морских судов и требованиям данного раздела.

Требования к стали для элементов конструкций МСП должны соответствовать требованиям, изложенным в разд. 3.

Требования этого раздела распространяются на свариваемую конструкционную сталь нормальной и повышенной прочности толщиной ≤100 мм и сталь высокой прочности толщиной ≤70 мм.

Сталь, не удовлетворяющая требованиям части XIII «Материалы» Правил классификации и постройки морских судов и требованиям настоящего раздела в отношении химического состава, термической обработки и механических свойств, может быть допущена Регистром для использования по назначению только после специального рассмотрения.

Предметом специального рассмотрения, также, является сталь категорий A40, D40, E40 и F40 толщиной более 50 мм.

4.1.2 Сталь, подлежащая наблюдению Регистра, может иметь следующие обозначения:

PC — символ перед обозначением категории, указывающий на поставку стали под наблюдением Регистра;

W — символ, указывающий на сталь улучшенной свариваемости, добавляется перед обозначением категории стали;

S — символ, добавляемый после обозначения категории стали, если эта сталь по каким-либо
Часть XII. Материалы

4.1.3 Если другое не оговорено отдельно, степень пластической деформации при прокатке, как минимум должна быть 5:1.

4.1.4 Прокат должен представляться к осмотру до нанесения защитного покрытия (если такое предусмотрено).

Сталь не должна иметь дефектов, препятствующих ее использованию по назначению. Количество, размеры и критерии оценки дефектов подлежат согласованию с Регистром.

Устранение поверхностных дефектов сваркой или другим методом должно осуществляться с предварительно одобренной Регистром технологией. В таких случаях Регистр может потребовать проведения соответствующих испытаний и применения неразрушающего контроля.

4.2 ХИМИЧЕСКИЙ СОСТАВ

4.2.1 Химический состав стали должен соответствовать:

- требованиям части XIII «Материалы» Правил классификации и постройки морских судов:
 для стали нормальной прочности — 3.2.2 и табл. 3.2.2-1;
 для стали повышенной прочности — 3.2.2 и табл. 3.2.2-2;
 для стали повышенной прочности категории F — 3.5.2.2 и табл. 3.5.2.2;
 для стали высокой прочности — 3.13.2 и табл. 3.13.2;
 для стали с гарантированными свойствами по толщине (зет-сталь) — 3.14.2 и табл. 3.14.2.1;

- требованиям настоящей части к стали улучшенной свариваемости:
 для стали повышенной прочности и улучшенной свариваемости — табл. 4.2.1.2;
 для стали высокой прочности и улучшенной свариваемости — 4.2.2.

4.2.2 Химический состав стали улучшенной свариваемости повышенной прочности должен удовлетворять требованиям табл. 4.2.1.2.

Химический состав стали улучшенной свариваемости повышенной прочности должен соответствовать требованиям одобренных Регистром стандартов и/или спецификаций.

В общем случае химический состав стали должен соответствовать требованиям, указанным в таблице 4.2.1.2.

<table>
<thead>
<tr>
<th>Категория</th>
<th>PCA32W</th>
<th>PCD32W</th>
<th>PCE32W</th>
<th>PCF32W</th>
<th>PCA43W</th>
<th>PCD43W</th>
<th>PCE43W</th>
<th>PCF43W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Раскисление</td>
<td>Спокойная, обработанная измельчающими зерно элементами</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Химический состав (ковшовая проба) %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>С</td>
<td>0,08—0,12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si max</td>
<td>0,50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0,60—1,60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P max</td>
<td>0,010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S max</td>
<td>0,008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu max</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo max</td>
<td>0,08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al рассчитанный в показе, max</td>
<td>0,055</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al общее содержание, max</td>
<td>0,06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb max</td>
<td>0,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V max</td>
<td>0,10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti max</td>
<td>0,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N max</td>
<td>0,009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sn max</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sb max</td>
<td>0,10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb max</td>
<td>0,005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As max</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi max</td>
<td>0,005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V max</td>
<td>0,0005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pcm max</td>
<td>0,22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

В общем случае химический состав стали подлежит согласованию с Регистром при первоначальном одобрении производства.

Коэффициент, характеризующий охрупчивание стали в следствие структурных превращений, рассчитанный по формуле:

\[P_{см} = C + Si/30 + (Mn + Cu + Cr)/20 + Ni/60 + Mo/15 + V/10 + Sb, \]

не должен превышать 0,22 для марганцовистой и низколегированной стали и 0,29 для легированной стали с содержанием Ni>1,5 %.

Содержание серы и фосфора должно быть ограничено значениями 0,01 и 0,015, соответственно.

Сталь должна быть спокойной, обработанной измельчающими зерно элементами. Допускается содержание азота до 0,012 % при условии, что Al/N<2. При содержании азота в интервале от 0,009 до 0,012 включительно, Регистр может потребовать проведения дополнительных испытаний на старение в соответствии с требованиями части XIII «Материалы» Правил классификации и постройки морских судов.
4.2.3 Фактические значения C_{eq} и P_{cm} должны приводиться в заводских сертификатах на поставляемую под наблюдением Регистра продукцию.

4.3 МЕХАНИЧЕСКИЕ СВОЙСТВА

4.3.1 Механические свойства стали должны соответствовать:

1. требованиям части XIII «Материалы» Правил классификации и постройки морских судов:
 - для стали нормальной прочности — 3.2.3 и табл. 3.2.2-1;
 - для стали повышенной прочности — 3.2.3, табл. 3.2.2-2 и табл. 3.2.3;
 - для стали повышенной прочности категории F — 3.5.2.3 и табл. 3.5.2.3;
 - для стали высокой прочности — 3.13.3, табл. 3.13.3-1 и табл. 3.13.3-2;
 - для стали с гарантированными свойствами по толщине — 3.14.3;

2. требованиям настоящей части к стали улучшенной свариваемости.

Для стали повышенной и высокой прочности улучшенной свариваемости механические свойства при испытании на растяжение должны удовлетворять требованиям для соответствующих категорий стали без индекса «W». Значения работы удара при испытании на ударный изгиб должны соответствовать табл. 4.3.1.2.

Относительное сужение «Zz» площади поперечного сечения при испытании на растяжение образцов из стали улучшенной свариваемости повышенной и высокой прочности, продольная ось которых перпендикулярна к поверхности проката, должна быть не менее 35 %.

4.4 СОСТОЯНИЕ ПОСТАВКИ

4.4.1 Состояние поставки стали обычной и улучшенной свариваемости должно соответствовать требованиям части XIII «Материалы» Правил классификации и постройки морских судов:

- для стали нормальной прочности — 3.2.4, табл. 3.2.4-1;
- для стали повышенной прочности — 3.2.4, табл. 3.2.4-2;
- для стали повышенной прочности категории F — 3.5.2.4;
- для стали высокой прочности — 3.13.4.

По согласованию с Регистром, сталь обычной и улучшенной свариваемости повышенной прочности может подвергаться закалке и отпуску.

4.5 ОТБОР ПРОБ

4.5.1 Если другие указания отсутствуют, отбор проб, в зависимости от категории и уровня прочности стали, производится в соответствии с требованиями 3.2.5, 3.13.5 и 3.14.4 части XIII «Материалы» Правил классификации и постройки морских судов.

4.5.1.1 Образцы для испытаний на растяжение должны вырезаться таким образом, чтобы их продольные оси были перпендикулярны к направлению последней прокатки (преимущественное направление деформирования металла), за исключением профилей, прутков и полос шириной 600 мм и менее.

4.5.1.2 Образцы для испытаний на ударный изгиб следует вырезать руководствуясь следующим:

Таблица 4.3.1.2

<table>
<thead>
<tr>
<th>Категория</th>
<th>Температура испытания на ударный изгиб, °C</th>
<th>Среднее значение работы удара, КУт(Дж), мин</th>
<th>Работа удара, КУт(Дж) для одного образца, мин</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA32W</td>
<td>0</td>
<td>44</td>
<td>31</td>
</tr>
<tr>
<td>PCD32W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCE32W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCTF32W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCA36W</td>
<td>0</td>
<td>47</td>
<td>34</td>
</tr>
<tr>
<td>PCD36W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCE36W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCTF36W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCA40W</td>
<td>0</td>
<td>50</td>
<td>36</td>
</tr>
<tr>
<td>PCD40W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCE40W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCTF40W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCD420W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCE420W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCD460W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCE460W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCD500W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCE500W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCD550W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCE550W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCD600W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCE600W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCD650W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCE650W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCD700W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCE700W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCD750W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PCE750W</td>
<td>-20</td>
<td>-40</td>
<td>-60</td>
</tr>
</tbody>
</table>

Значения работы удара для стали улучшенной свариваемости повышенной и высокой прочности при испытании на ударный изгиб
Часть XII. Материалы

1.1 для стали обычной свариваемости нормальной и повышенной прочности продольная ось образцов может быть либо параллельна, либо перпендикулярна к направлению последней прокатки. Как правило, при производстве стали во время сдаточных испытаний используются продольные образцы (KVL), при этом изготовитель стали должен гарантировать требуемое для представляемой стали значение работы удара на поперечных образцах (KVТ);

1.2 для стали высокой прочности и улучшенной свариваемости независимо от уровня прочности испытания на ударный изгиб выполняются на поперечных образцах;

1.3 проведение испытаний и на поперечных и на продольных образцах требуется Регистром при первоначальных испытаниях стали, выполняемых с целью выдачи предприятию Свидетельства о признании изготовителя или по требованию Регистра при подтверждении этого свидетельства. В случае необходимости подтверждения гарантий качества проката во время сдаточных испытаний Регистром может быть потребовано также выполнение совместных испытаний на ударный изгиб с использованием продольных и поперечных образцов.

4.5.1.3 Образцы для испытаний на растяжение и ударный изгиб должны изготавливаться в соответствии с требованиями 2.2 части XIII «Материалы» Правил классификации и постройки морских судов.

4.5.2 Пробы и образцы для испытаний по определению характеристик CTOD, NDT и Ткб определяются отдельно для каждого случая с учетом изложенного в разд. 2.

4.6 ОБЪЕМ ИСПЫТАНИЙ

4.6.1 Прокат предъявляется к испытаниям партиями. Каждая партия должна состоять из проката одного вида, одной плавки и одного состояния поставки. Толщина или диаметр проката в партии не должны отличаться более чем на 10 мм. Как правило, пробы для испытаний в партии должны отбираться от проката наименьшей толщины или диаметра.

4.6.2 Если не оговорено отдельно, количество образцов, отбираемых для испытаний от партии и размер партии должны соответствовать требованиям части XIII «Материалы» Правил классификации и постройки морских судов:

для стали обычной и улучшенной свариваемости нормальной и повышенной прочности — 3.2.6;
для стали обычной и улучшенной свариваемости высокой прочности — 3.13.6 и 3.14.5.

4.6.3 Объем испытаний по определению характеристики CTOD, NDT и Ткб определяется отдельно для каждого случая с учетом изложенного в разд. 2.

4.7 ОСМОТР И МАРКИРОВКА

4.7.1 Требования к предельным отклонениям по толщине, качеству поверхности, ее ремонту, а также к маркировке и системе обозначений должны соответствовать изложенным в 1.4, 3.2.7 и 3.2.8 части XIII «Материалы» Правил классификации и постройки морских судов.

4.7.2 Сталь не должна иметь дефектов, препятствующих ее применению по назначению.

Изготовитель должен гарантировать отсутствие поверхностных дефектов и внутренних несплошностей, размеры которых препятствуют проведению контроля сварных соединений неразрушающими методами контроля.

Листовая сталь для специальных конструкций должна подвергаться ультразвуковому контролю.

Методика и критерии оценки результатов контроля подлежат согласованию с Регистром.

4.7.3 Каждый полуфабрикат должен иметь четко нанесенные на нем наименование и/или обозначение предприятия-изготовителя, категорию стали, в соответствии с требованиями части XIII «Материалы» Правил классификации и постройки морских судов;

4.7.4 Номер партии, плавки или идентификационный номер, в соответствии с принятой на предприятие системой, позволяющей проследить весь процесс изготовления полуфабриката.

Допускается, при поставке прутков и профилей в связках, осуществлять маркировку на бирках.
4.8 ДОКУМЕНТЫ

4.8.1 Каждая партия или полуфабрикат, если указано отдельно, прошедшие испытания, должны сопровождаться свидетельством Регистра, или документом изготовителя, заверенным представителем Регистра. Как минимум, свидетельство Регистра должно содержать:
1 номер заказа;
2 номер строительного проекта, если он известен;
3 наименование, номер, размеры и массу полуфабрикатов;
4 категорию (марку) стали;

5 СТАЛЬ ДЛЯ КОТЛОВ, ТЕПЛООБМЕННЫХ АППАРАТОВ И СОСУДОВ, РАБОТАЮЩИХ ПОД ДАВЛЕНИЕМ

5.1 ОБЩИЕ ТРЕБОВАНИЯ

5.1.1 Требования настоящего раздела распространяются на стальной прокат предназначенный для котлов, теплообменных аппаратов и сосудов, работающих под давлением, подлежащих наблюдению в соответствии с требованиями других частей Правил ПБУ/МСП.

5.1.2 В общем случае, сталь для котлов, теплообменных аппаратов и сосудов, работающих под давлением, должна удовлетворять требованиям 3.3 части XIII «Материалы» Правил классификации и постройки морских судов и признанным Регистром стандартам или иной технической документации.

5.1.3 Сталь, отличная от упомянутой в 5.1.1, должна быть признана Регистром в соответствии с 1.3.2.1 части XIII «Материалы» Правил классификации и постройки морских судов.

Легированная сталь подлежит специальному рассмотрению Регистром.

5.1.4 Сталь для котлов, теплообменных аппаратов и сосудов, работающих под давлением, должна изготавливаться под наблюдением Регистра предприятиями, признанными Регистром в соответствии с 1.3.2 части XIII «Материалы» Правил классификации и постройки морских судов.

Объем первоначальных испытаний определяется в соответствии с требованиями разд. 3 настоящей части.

5.1.5 При первоначальном освидетельствовании, с целью получения предприятием Свидетельства о признании изготовителя, положительные результаты испытаний корпусной судостроительной стали, кроме категорий А и В, могут быть распространены на углеродистую и углеродисто-марганцовую котельную сталь.

5.2 ИСПЫТАНИЯ

5.2.1 В дополнение к изложенному в 3.3 части XIII «Материалы» Правил классификации и постройки морских судов при проведении первоначальных и сдаточных испытаний стали должны быть учтены следующие требования.

5.2.1.1 Сталь, предназначенная для изготовления сосудов, работающих под давлением, и перевозки сжиженных газов, испытывается на ударный изгиб с применением образцов с острым надрезом (KVₜ), продольная ось которых должна быть перпендикулярна к направлению последней прокатки. От полосовой стали и профилей для испытаний на ударный изгиб могут отбираться продольные (KVLₜ) образцы.

Если другие указания отсутствуют, испытания на ударный изгиб углеродистой и углеродисто-марганцовой стали, предназначенной для использования при отрицательной температуре, должны выполняться при температуре не менее чем на 5° ниже расчетной температуры.

В любом случае среднее значение работы удара KVₜ для образцов сечением 10 × 10 мм должно быть не ниже 27 Дж, а среднее значение работы удара KVₜ — не ниже 41 Дж.
Проведение испытаний на ударный изгиб при отрицательной температуре может быть потре­бовано Регистром и для стали, не предназнач­ной для работы при отрицательной температуре.

5.2.1.2 Сталь толщиной более 10 мм, пред­назначенная к применению при отрицательной температуре, дополнительно должна быть под­вергнута испытаниям падающим грузом. Испы­тания должны выполняться, как минимум, на двух образцах, отобранных из полуфабрикатов наибольшей толщины каждой плавки, в соот­ветствии с требованиями 2.2.6 части XIII «Мате­риалы» Правил классификации и постройки морских судов. Методика испытаний должна быть согласована с Регистром.

Отсутствие склонности стали к хрупкому разрушению должно быть подтверждено при температуре, на пять градусов ниже расчетной.

6 СТАЛЬНЫЕ ТРУБЫ

6.1 ОБЩИЕ ТРЕБОВАНИЯ

6.1.1 Требования настоящего раздела рас­пространяются на стальные трубы, предназнач­ные для сварных конструкций, деталей механи­ков и оборудования ПБУ и МСП, подлежащих наблюдению Регистра в соответствии с требова­ниями других частей Правил ПБУ/МСП.

6.1.2 Подлежащие наблюдению Регистра тру­бы должны удовлетворять требованиям 3.4 час­ти XIII «Материалы» Правил классификации и постройки морских судов.

6.1.3 Подлежащие наблюдению Регистра тру­бы различных систем и трубопроводов, предназначенные для работы при отрицательных температурах, подлежат специальному рассмо­трению Регистром.

6.1.4 Сталь труб сварных элементов конструк­ций должна удовлетворять требованиям разд. 4 настоящей части.

7 СТАЛЬНЫЕ ПОКОВКИ И ОТЛИВКИ

7.1 ОБЩИЕ ТРЕБОВАНИЯ

7.1.1 Требования настоящего раздела рас­пространяются на стальные отливки и поковки, предназначенные для изделий машиностроения и элементов конструкций, подлежащих наблюде­нию Регистра в соответствии с требованиями других частей Правил ПБУ/МСП.

7.1.2 Стальные поковки и отливки соответст­венно должны удовлетворять требованиям 3.7 и 3.8 части XIII «Материалы» Правил классифика­ции и постройки морских судов.

Поковки и отливки, предназначенные для деталей и изделий, работающих при отрицатель­ной температуре, должны удовлетворять требо­ваниям 3.5 части XIII «Материалы» Правил классификации и постройки морских судов.

Поковки и отливки, предназначенные для элементов конструкций ПБУ и МСП, подлежат специальному рассмотрению Регистром. Требо­вания к материалу поковок и отливок, в этом случае, устанавливаются в соответствии с тре­бованиями разд. 3 настоящей части.
1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящей части применяются при сварке элементов конструкций ПБУ и МСП, подлежащих техническому наблюдению Регистра в дополнение к требованиям части XIV «Сварка» Правил классификации и постройки морских судов.

1.1.2 Сварные соединения должны выполняться в соответствии с требованиями 1.3 части XIV «Сварка» Правил классификации и постройки морских судов и Правил ПБУ/МСП по одобренной Регистром технической документации и/или согласованным с Регистром стандартам.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

1.2.1 Определения и пояснения, относящиеся к общей терминологии, приведены в части XIV «Сварка» Правил классификации и постройки морских судов.

1.2.2 В настоящей части приняты следующие определения.

Спецификация процесса сварки (СПС) — документ, составленный производителем сварных конструкций и содержащий всю необходимую информацию по сварке конкретного соединения, включая спецификацию материалов, метода сварки, деталей подготовки кромок и всех технологических параметров.

Примечание: СПС, основанная на опыте предшествующей работы, а также на основании рекомендаций изготовителей сварочных материалов и основного металла, но не прошедшая утверждения и одобрения, называется предварительной (пСПС). Сварка образцов для одобрения технологического процесса сварки выполняется в соответствии с этой предварительной СПС.

Испытания по одобрению технологического процесса сварки — испытания, проводимые под наблюдением и в объеме требований правил Регистра с целью получения подтверждения способности производителя выполнять сварку конкретных сварочных соединений в условиях, близких к реальным, согласно требованиям СПС.

Испытания по одобрению технологического процесса сварки — испытания, проводимые под наблюдением и в объеме требований правил Регистра с целью получения подтверждения способности производителя выполнять сварку конкретных сварочных соединений в условиях, близких к реальным, согласно требованиям СПС.

Предварительные испытания технологического процесса сварки до начала производства — испытания по одобрению технологического процесса сварки, основанные на применении нестандартных образцов и проб, которые имитируют выполнение сварки в производственных условиях.

Испытания в процессе производства — испытания, включая разрушающие, основанные на сварке образцов, полученных непосредственно в процессе изготовления продукции и прошедшие аналогичную с ней обработку. При этом, в зависимости от конкретных условий и возможностей, образцы могут вырезаться из забойных элементов (припуска) конструкций или изготавливаться как «свидетели» в идентичных с продукцией условиях по одной и той же СПС.

Отчетность по одобрению технологического процесса сварки — документы Регистра, содержащие исчерпывающую информацию о проведении испытаний по одобрению технологического процесса сварки. К этим документам относятся Спецификация испытаний сварного соединения и Протокол результатов испытаний.

Свидетельство об одобрении технологического процесса сварки — документ Регистра, удостоверяющий, что применяемый на верфи или предприятии-изготовителе сварных конструкций технологический процесс сварки прошел испытания и одобрен Регистром для применения.

1.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

1.3.1 При выполнении сварочных работ для ПБУ и МСП объем технического наблюдения Регистра устанавливается в соответствии с 1.4.2 части XIV «Сварка» Правил классификации и постройки морских судов с учетом требований настоящей части.

1.4 ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

1.4.1 Техническая документация по сварке, предлагаемая на согласование по проекту ПБУ или МСП в целом, определяется разд. 4 «Техническая документация буровой установки» части I «Классификация». Техническая документация на подлежащее наблюдению Регистра конструкции должна содержать сведения по сварке в объеме требований тех частей Правил ПБУ/МСП, к которым конструкции относятся.
2 ТЕХНОЛОГИЧЕСКИЕ ТРЕБОВАНИЯ К ПРОЦЕССАМ ИЗГОТОВЛЕНИЯ СВАРНЫХ КОНСТРУКЦИЙ ПБУ/МСП

2.1 ОБЩИЕ ТРЕБОВАНИЯ

2.1.1 Все предприятия (судостроительные верфи, изготовители сварных конструкций, сварочные производства), которые выполняют работы по сварке конструкций под наблюдением Регистра, должны подтвердить свою готовность к выполнению работ соответствующего уровня сложности, а также гарантировать в полном объеме выполнение требований Регистра, установленных настоящей частью.

2.1.2 Под готовностью к выполнению работ по сварке понимается оснащение сварочного производства необходимым оборудованием и оснасткой, наличие внутренней системы обеспечения качества, соответствующую квалификацию производственного персонала, а также выполнение требований по одобрению Регистром применяемых технологических процессов сварки.

2.1.3 Предприятия должны гарантировать посредством постоянных внутренних проверок и инспекций в процессе изготовления продукции, а также по завершении сварочных работ, что эти работы выполняются в полном соответствии с требованиями Правил.

2.1.4 В том случае, если предприятие привлекает для выполнения работ сторонние субподрядные фирмы или временных рабочих, ответственность за выполнение требований по контролю производства, согласно 2.1.3 несет головная подрядная фирма.

2.1.5 В общем случае требования по контролю качества, которые гарантируются предприятием, включают проведение следующих проверок:

.1 основных материалов;
.2 сварочных материалов;
.3 подготовки кромок и сборки под сварку;
.4 условий хранения и порядка выдачи сварочных материалов;
.5 соответствия условий выполнения работ по сборке и сварке установленным требованиям;
.6 соответствия технологии сварки и термообработки требованиям спецификации процесса сварки;
.7 соответствия размеров сварных соединений требованиям конструкторской документации;
.8 приемочного контроля и испытаний сварных соединений и конструкций, а также порядка исправления выявленных дефектов;
.9 соответствия квалификации сварщиков характеру и сложности выполняемых работ.

2.1.6 Предприятия должны предоставлять свободный доступ инспектору Регистра для выполнения всех необходимых проверок и осведомительствований в процессе наблюдения за изготовлением сварных конструкций.

В том случае, если качество выполняемых работ по сварке не соответствует всем установленным требованиям, инспектор Регистра может потребовать прекращения всех работ до полного устранения причин, ухудшающих качество продукции.

2.2 ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ СВАРКИ

2.2.1 Общие требования.

2.2.1.1 Для сварки конструкций, подлежащих наблюдению Регистра, могут применяться только технологические процессы и способы сварки, обеспечивающие высокую стабильность получения гарантированного качества сварных соединений, что может быть подтверждено производителем сварных конструкций путем проведения испытаний по одобрению или другими способами в соответствии с требованиями Правил или по отдельному согласованию с Регистром.

2.2.1.2 Документом однозначно идентифицирующим применяемый предприятием-изготовителем технологический процесс сварки является Спецификация процесса сварки (производителя) — СПС.

2.2.1.3 Рассмотрение и процедура одобрения Регистром технологических процессов сварки устанавливается требованиями настоящей части.

2.2.1.4 Применяемые предприятием-изготовителем технологические процессы сварки должны быть допущены Регистром к применению. Документом, удостоверяющим, что технологический процесс сварки прошел процедуру одобрения, является Свидетельство об одобрении технологического процесса сварки.

2.2.2 Одобренные технологические процессы сварки.

2.2.2.1 Основным видом одобрения технологических процессов сварки является проведение испытаний по одобрению. При этом испытания по одобрению могут быть стандартными, требования к которым установлены в разд. 6 части XIV «Сварка» Правил классификации и постройки морских судов, а также предварительными перед началом производства. Виды проб и схема проведения последних устанавливаются в каждом конкретном случае и являются предме-
Правила классификации, постройки и оборудования ПБУ/МСП

том отдельного рассмотрения Регистром. При этом предварительные испытания до начала производства должны проводиться с соблюдением следующих основных требований:

1. сварку проб необходимо выполнять в условиях, максимально близких к сварке реальной конструкции, с моделированием комплексного влияния факторов, оказывающих влияние на качество металла соединения;

2. при сварке проб должны применяться сборочные приспособления, устройства, кантователи и т. п., аналогичные с теми, которые используются в производстве;

3. швы прихваток должны, при необходимости, подвергаться испытаниям в составе выполненного соединения;

4. объем проверок проб включает внешний осмотр и измерение, контроль на наличие поверхностных трещин (магнитопорошковый или капиллярный), определение твердости, контроль макрошлифов, а также отдельные виды разрушающих испытаний по согласованию с Регистром;

5. область одобрения по толщине основного металла и применяемых сварных соединений, как правило, ограничивается толщиной конкретных узлов, применительно к которым были выполнены испытания.

2.2.2.2 Испытания в процессе производства применяются по отдельному требованию Регистра в том случае, если имеются сомнения в стабильности качества продукции, изменения параметров технологического процесса или когда проведение стандартных и предварительных испытаний по мнению Регистра является недостаточным для конкретного технологического процесса. К таким технологическим процессам, характеризующимся повышенной степенью риска получения отклонений качества сварных соединений, относятся:

1. вертикальная сварка в направлении сверху вниз;

2. односторонняя сварка со свободным обратным формированием корня шва покрытыми электродами или порошковой проволокой;

3. способы сварки с высокими значениями погонной энергии (электрогазовая, электрошлифовальная и т. п.);

4. способы сварки, особо чувствительные к качеству сборки и подготовки кромок, такие как электроценожечная и лазерная.

2.2.2.3 В отдельных случаях, Регистр может принять решение об одобрении технологических процессов сварки на конкретном предприятии на основании предшествующего опыта работы по сварке однотипных конструкций, без проведения испытаний. Такой вид одобрения не может применяться для сварки специальных конструкций, сварки сталей высокой прочности или хладостойкости, а также для технологических процессов, требующих проведения испытаний до начала производства или в процессе производства.

2.3 ПРОИЗВОДСТВЕННЫЙ ПЕРСОННАЛ. КВАЛИФИКАЦИЯ СВАРЩИКОВ

2.3.1 Работы по сварке конструкций ПБУ и МСП, подлежащих наблюдению Регистра, должны выполняться только квалифицированными сварщиками, которые прошли соответствующие испытания и имеют действующее Свидетельство о допуске сварщика, выданное Регистром согласно указаниям разд. 5 части XIV «Сварка» Правил классификации и постройки морских судов.

Характер и сложность выполняемых сварщиком работ в производственных условиях должны полностью соответствовать указанным в Свидетельстве о допуске области одобрения.

Возможность допуска к работе сварщиков, имеющих квалификационные свидетельства, оформленные другими компетентными органами, включая другие классификационные общества, является предметом отдельного рассмотрения Регистром. Однако в любом случае остаются справедливыми требования:

1. эквивалентности объема и качества квалификационных испытаний, выполненных сварщиком при аттестации — требованиям разд. 5 части XIV «Сварка» Правил классификации и постройки морских судов;

2. общего порядка получения допуска — требованиям разд. 5 части XIV «Сварка» Правил классификации и постройки морских судов (стаж и перерывы в работе, возраст и т. п.);

3. области одобрения, установленные требованиями разд. 5 части XIV «Сварка» Правил классификации и постройки морских судов, в зависимости от объема практических испытаний при аттестации.

2.3.2 Каждое производственное подразделение, которое выполняет сварочные работы, должно иметь в штате ответственное лицо — инспектора, который осуществляет непосредственный контроль за соблюдением всех требований к выполнению сварочных работ согласно одобренной Регистром документации.

Как правило, производственный инспектор по сварке должен иметь квалификацию дипломированного инженера по сварке. В его обязанности также входит информирование инспектора Регистра о любых изменениях технологических про-
Часть XIII. Сварка

цессов сварки, а также о всех отклонениях, если такие имели место при выполнении сварочных работ.

Инспектор по сварке несет персональную ответственность за своевременность и качество выполнения следующих видов работ и контрольных операций:

1. составление СПС и аттестация технологических процессов сварки;
2. контроль за соответствием квалификации рабочих сварщиков требованиям Регистра;
3. входной контроль основных и сварочных материалов;
4. соблюдение условий хранения и выдачи сварочных материалов установленным требованиям;
5. подготовка кромок и сборка под сварку;
6. поддержание в надлежащем техническом состоянии сварочного оборудования и оснастки;
7. мониторинг выполнения сварочных работ на предмет наличия отклонения от СПС;
8. мониторинг и анализ качества сварных соединений на основании результатов операционного и приемочного контроля;
9. контроль и мониторинг работ по исправлению дефектных участков сварных соединений.

2.4 ОСНОВНОЙ МАТЕРИАЛ. СВАРИВАЕМОСТЬ

2.4.1 Для изготовления сварных конструкций ПБУ и МСП, подлежащих наблюдению Регистра, должны применяться основные материалы, полностью соответствующие требованиям Правил (см. часть ХIІ «Материалы» Правил классификации и постройки морских судов и часть ХII «Материалы» Правил ПБУ/МСП).

В этой связи, свариваемость основного материала в большинстве случаев считается удостоверенной в процессе испытаний по признанию Регистром самого материала и предприятия-изготовителя.

Ниже содержатся общие требования, регламентирующие необходимость проведения дополнительных испытаний на свариваемость применительно к конкретным условиям изготовления сварных конструкций на предприятиях.

2.4.2 Дополнительные испытания на свариваемость выполняются в процессе испытаний по одобрению технологических процессов сварки и обычно включают:

1. определение свойств зоны термического влияния для реального производственного цикла изготовления продукции (в большинстве случаев могут быть реализованы на стандартных пробах согласно разд. 6 части XIV «Сварка» Правил классификации и постройки морских судов);
2. подтверждение стойкости сварного соединения против образования холодных трещин для конкретных условий выполнения сварочных работ (обычно реализация требует применения нестандартных, т.н. технологических или лабораторных проб, в ходе предварительных испытаний по одобрению до начала производства).

2.4.3 Необходимость проведения дополнительных испытаний на свариваемость установлена на требованиями настоящего раздела, а также разд. 6 части XIV «Сварка» Правил классификации и постройки морских судов, и в общем случае обусловлена следующими факторами:

1. применение специфических процессов сварки, например, с большими значениями погонной энергии, которые не подпадают под обычную область одобрения по результатам испытаний на свариваемость;
2. наличие специальных требований к свойствам зоны термического влияния и шва, например, по результатам испытаний на трещиностойкость (СТОД);
3. применение основных материалов, имеющих повышенную чувствительность к технологическим особенностям выполнения сварки (например, высокопрочные стали, микролегированные хладостойкие стали, высоколегированные стали сложной структуры и т. п.);
4. проведение сварочных работ в неблагоприятных условиях;
5. наличие отклонений от требований настоящего раздела (например, по температуре предварительного подогрева);
6. проведение термической обработки после сварки.

2.5 СВАРОЧНЫЕ МАТЕРИАЛЫ

2.5.1 Применяемые для сварки элементов конструкций ПБУ и МСП, подлежащих наблюдению Регистра, сварочные материалы должны быть одобрены Регистром в соответствии с требованиями разд. 4. При этом применение сварочных материалов должно соответствовать указаниям Свидетельства об их одобрении, а также изложенными ниже требованиями.

2.5.2 В общем случае, применяемые сварочные материалы должны обеспечивать эквивалентность характеристик качества сварных соединений и основного металла.

Временное сопротивление разрыву сварного соединения должно быть не ниже временного
Правила классификации, постройки и оборудования ПБУ/МСП

сопротивления разрыву стали, используемой для данного элемента конструкции.

Для металла шва и зоны термического влияния значение работы удара и температура испытаний должны соответствовать требованиям к работоспособности сварного соединения.

2.5.3 Выбор сварочных материалов, предназначенных для сварки высоконагруженных ответственных и специальных конструкций толщиной 50 мм и более, должен основываться также на проведении испытаний на трещиностойкость по методике CTOD при температуре, отвечающей требованиям части XII «Материалы».

2.5.4 Назначение категории сварочных материалов для сварки конструкций из сталей нормальной и повышенной прочности.

Сварочные материалы должны применяться для сварки стали тех категорий, для которых они, в соответствии с табл. 2.5.4, допущены Регистром. При этом следует руководствоваться следующими требованиями:

1. для выполнения сварных соединений, в которых сталь нормальной прочности сваривается со сталью повышенной прочности, могут применяться сварочные материалы, соответствующие нижней категории из допускаемых согласно требованиям табл. 2.5.4 для каждой стали в отдельности (например, в сварном соединении сталей категорий D и Е32 могут применяться сварочные материалы категории 3);

2. для выполнения сварных соединений, в которых свариваются стали одинаковых уровней прочности, но с разными требованиями по температуре испытаний на ударный изгиб, могут применяться сварочные материалы низшей категории из допускаемых согласно требованиям табл. 2.5.4 для каждой стали в отдельности за исключением категории Е40 (например, для сварного соединения сталей категорий D32 и Е32 могут применяться сварочные материалы категории 3У);

3. для выполнения сварных соединений из сталей повышенной прочности, а также при сварке стали повышенной прочности со сталью нормальной прочности должны применяться сварочные материалы с контролируемым содержанием диффузионного водорода согласно табл. 4.2.1.4 части XIV «Сварка» Правил классификации и постройки морских судов. При этом электроны должны быть только с основным типом покрытия;

4. применение для сварки сталей нормальной прочности категорий А, В, D, Е сварочных материалов, получивших одобрение для соответствующих категорий сталей А40, D40, Е40, возможно только на основании специального разрешения Регистра для конкретных марок сварочных материалов;

5. применение для сварки сталей повышенной прочности сварочных материалов категории ІУ допускается только для соединений с толщиной металла до 25 мм включительно;

6. сварочные материалы, выбранные по табл. 2.5.4, могут быть назначены также и для сварки иной, чем предусмотрено указанной та-

Таблица 2.5.4

<table>
<thead>
<tr>
<th>Категория сварочного материала</th>
<th>Судостроительная сталь</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>нормальной прочности</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>I, I8, I1, I1,M, I1,TM, IV</td>
<td>+</td>
</tr>
<tr>
<td>ІУ, ІУ8, ІУ2, ІУМ, ІУТ, ІУV</td>
<td>+</td>
</tr>
<tr>
<td>2, 28, 2M, 2TM, 2V</td>
<td>+</td>
</tr>
<tr>
<td>2Y, 2Y2, 2M, 2TM, 2YV</td>
<td>+</td>
</tr>
<tr>
<td>2Y40, 2Y40S, 2Y40T, 2Y40M, 2Y40TM, 2Y40V</td>
<td>См. 2.5.4.4</td>
</tr>
<tr>
<td>3, 38, 3T, 3TM, 3M, 3V</td>
<td>+</td>
</tr>
<tr>
<td>3Y, 3Y5, 3Y7, 3YUM, 3YTM, 3YV</td>
<td>+</td>
</tr>
<tr>
<td>3Y40, 3Y40S, 3Y40T, 3Y40M, 3Y40TM, 3Y40V</td>
<td>См. 2.5.4.4</td>
</tr>
<tr>
<td>4, 45, 47, 4TM, 4Y, 4YV</td>
<td>+</td>
</tr>
<tr>
<td>4Y40, 4Y40S, 4Y40T, 4Y40M, 4Y40TM, 4YV</td>
<td>См. 2.5.4.4</td>
</tr>
</tbody>
</table>

1См. 2.5.4.5
Часть XIII. Сварка

335

блицей, стали, если по механическим свойствам и химическому составу эта сталь эквивалентна стали, для которой был одобрен данный сварочный материал;

7 электроды с рутиловым покрытием допускается применять для сварки второстепенных конструкций из стали нормальной прочности в толщинах до 20 мм, не испытывающих воздействия динамических нагрузок;

8 электроды с кислым типом покрытия не допускаются к применению при изготовлении ПБУ и МСП.

2.5.5 Назначение категории сварочных материалов для сварки конструкций из стали высокой прочности.

Сварочные материалы должны применяться для сварки стали высокой прочности тех категорий, для которых они, в соответствии с табл. 2.5.5-1 и 2.5.5-2, допущены Регистром.

<table>
<thead>
<tr>
<th>Идентификация категорий сварочных материалов по температуре испытаний</th>
<th>Идентификация категорий высокопрочной стали по температуре испытаний на ударный изгиб</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(420/690)</td>
<td>B(420/690)</td>
</tr>
<tr>
<td>Y(42/69)</td>
<td>+</td>
</tr>
<tr>
<td>4Y(42/69)</td>
<td>+</td>
</tr>
<tr>
<td>5Y(42/69)</td>
<td>+</td>
</tr>
</tbody>
</table>

При этом следует руководствоваться следующими ограничениями и требованиями:

1 в отдельных случаях Регистр может ограничить область применения конкретной марки сварочного материала только одной категорией прочности основного металла без распространения области одобрения на низшие категории стали высокой прочности в соответствии с табл. 2.5.5-2;

2 для выполнения сварных соединений из сталей высокой прочности, а также для сварки низкой прочности со сталями повышенной или нормальной прочности должны применяться сварочные материалы с контролируемым содержанием диффузионного водорода и имеющие классификационные индексы ННН или НН согласно табл. 4.2.1.4 части XIV «Сварка» Правил классификации и постройки морских судов;

3 для сварных соединений высокопрочных сталей не рекомендуется применение одно- и двухпроходной сварки. Одобренное их применения Регистром возможно только на основании дополнительных испытаний по специально согласованной с Регистром программе;

4 для сварных соединений высокопрочных сталей не рекомендуется применение электроплаковой и электрогазовой технологии сварки. Одобриение их применения Регистром возможно только на основании дополнительных испытаний по специально согласованной с Регистром программе;

5 для сварных соединений высокопрочных сталей не рекомендуется применение многопроходной и односторонней сварки на различных типах подкладок. Одобрение их применения Регистром возможно только на основании дополнительных испытаний по специально согласованной с Регистром программе;

6 электроды с рутиловым и кислым типом покрытия не должны применяться для сварки конструкций из стали повышенной прочности;

7 применение для сварки сталей высокой прочности сварочных материалов всех категорий, прошедших испытания в объеме требований 4.6 части XIV «Сварка» Правил классификации и постройки морских судов, возможно только для соединений с толянной основной металла не более 70 мм. Вопрос о применении сварочных материалов для сварки стали толщиной свыше 70 мм является предметом специального рассмотрения Регистром и требует проведения дополнительных испытаний по специально согласованной с Регистром программе согласно требованиям 4.2.

2.5.6 Назначение категории сварочных материалов для сварки конструкций из судостроительной стали, работающих при низких температурах.

Сварочные материалы для сварки конструкций из судостроительной стали, работающих при низких температурах, должны применяться в соответствии с требованиями табл. 2.5.6. Для соединений, в которых сталь повышенной прочности с индексом F сваривается со сталями других категорий, назначение категории сварочных материалов допускается производить в соответствии с требованиями, перечисленными в 2.5.4.
Правила классификации, постройки и оборудования ПБУ/МСП

Таблица 2.5.6

<table>
<thead>
<tr>
<th>Категория сварочного материала</th>
<th>Категория судостроительной стали</th>
</tr>
</thead>
<tbody>
<tr>
<td>F32</td>
<td>F36</td>
</tr>
<tr>
<td>5Y, 5YS, 5YT, 5YTM, 5YVV</td>
<td>+</td>
</tr>
<tr>
<td>5Y40, 5Y40S, 5Y40T, 5Y40M, 5Y40V</td>
<td>+</td>
</tr>
<tr>
<td>5Y42, 5Y42S, 5Y42M</td>
<td>+</td>
</tr>
<tr>
<td>5Y46, 5Y46S, 5Y46M</td>
<td>+</td>
</tr>
</tbody>
</table>

1Применение сварочных материалов категорий 5Y46, предназначенных для сварки сталей высокой прочности, подлежит дополнительному согласованию с Регистром.

2.6 ТИПЫ ШВОВ СВАРНЫХ СОЕДИНЕНИЙ. ОБЩИЕ РЕКОМЕНДАЦИИ

2.6.1 Стыковые соединения.

2.6.1.1 В зависимости от толщины соединяемых элементов, способа и пространственного положения сварки, а также доступности для выполнения, стыковые соединения могут выполняться без разделки кромок, с односторонней или двухсторонней (симметричной и несимметричной) формой разделки кромок в соответствии с требованиями национальных стандартов. В том случае, если проектантом или изготовителем сварных конструкций предусматривается нестандартная форма подготовки свариваемых кромок и конструктивные размеры сварного соединения, они должны быть отдельно приведены на чертежах и в спецификации на выполнение работ по сварке.

Форма сварных швов и детали подготовки кромок для специальных способов сварки (например, односторонней на медных ползунах, электрогазовой или электрозлаковой сварки) подлежат одобрению Регистром в индивидуальном порядке на основании результатов испытаний технологических процессов сварки.

2.6.1.2 Стыковые сварные соединения, как правило, выполняются со сплошным проваром по технологии, предусматривающей операцию зачистки корня шва и его сварку с обратной стороны. Могут применяться другие способы односторонней сварки, позволяющие исключить операцию зачистки и подварки корня шва. Все параметры такого технологического процесса односторонней сварки подлежат детальному подтверждению путем испытаний по одобрению. Объем испытаний и количество проб в таких случаях подлежат дополнительному согласованию с Регистром.

2.6.1.3 Если требования и рекомендации, упомянутые в 2.6.1.2, не могут быть удовлетворены (например, в случае одностороннего доступа к сварному шву), допускается выполнение односторонних стыковых соединений на остающейся подкладке или односторонних замков. При этом величина зазора в корне шва должна назначаться с учетом гарантированного обеспечения провара и отсутствия дефектов, а угол скоса свариваемых кромок рекомендуется уменьшить по сравнению с обычно применяемыми значениями.

Данный тип соединения не следует применять в специальных конструкциях, а для основных конструкций возможность его использования подлежит отдельному рассмотрению Регистром с учетом обеспечения требований по усталостной прочности.

2.6.1.4 Рекомендуемые формы подготовки кромок для стыковых соединений плакированных сталей приведены на рис. 2.6.1.4.

2.6.2 Угловые, тавровые и крестообразные соединения с полным гарантированным проваром.

2.6.2.1 В зависимости от толщины соединяемых элементов, способа сварки и пространственного положения, а также доступности для выполнения угловые, тавровые и крестообразные соединения с полным гарантированным проваром выполняются с одно- или с двусторонним скосом кромок. Конструктивные элементы подготовки кромок и размеры швов принимаются в соответствии с требованиями национальных стандартов для соответствующих способов сварки. Если предусматривается нестандартная форма подготовки кромок или особые требования к форме шва, то они должны быть отдельно приведены на чертежах и в спецификации на выполнение работ по сварке.

2.6.2.2 Как правило, выполнение швов с полным гарантированным проваром должно предусматривать операцию зачистки корня шва и его сварку с противоположной стороны. Для способов сварки, позволяющих исключить эти операции (электроды с обратным формированием корня шва, различные типы гибких подкладок и т. п.), все параметры технологии, включая конструктивные элементы подготовки кромок,
Часть XIII. Сварка

337

подлежат отдельному подтверждению путем проведения испытаний по одобрению технологических процессов сварки.

2.6.2.3 В том случае, если угловое соединение требуется выполнять заподлицо (без выпуска свободной кромки), для равноценных соединений специальных элементов, следует применять двухсторонний несимметричный скос кромок в соответствии с указанными на рис. 2.6.2.3-1. При этом для предотвращения вероятности сплошного разрушения основного металла предусматривается увеличенный угол скоса разделки кромок в сторону от теоретической линии совмещения пластин.

Аналогичная подготовка кромок должна применяться для монтажных тавровых соединений (или крестообразных без выпуска неразрезной пластины), когда стыкующий под углом лист находится между прилегающими (рис. 2.6.2.3-2).

2.6.2.4 Угловые, тавровые и крестообразные соединения, которые имеют доступ для выполнения сварки только с одной стороны, допускается выполнять с односторонним скосом кромок на остающемся подкладке. При этом действуют ограничения и рекомендации, перечисленные в 2.6.1.3.

2.6.3 Угловые, тавровые и крестообразные соединения с негарантированным проваром.

2.6.3.1 Данный тип сварных соединений по форме разделки кромок идентичен соединениям, указанным в 2.6.2, и отличается от последних наличием допустимого неполного проплавления шва (рис. 2.6.3.1). Технология выполнения соединений с негарантированным проваром не предусматривает операции зачистки корня шва перед сваркой с противоположной стороны, что и обуславливает вероятность появления неполного проплавления.

2.6.3.2 В обычной практике неполное проплавление корня шва ограничивается значением \(f \leq 0.2t \), но не более 3 мм, где \(t \) — толщина стыкующей пластины (с разделкой кромок). Эффективная толщина сварного шва в этом случае принимается равной толщине \(t \) стыкующей пластины, и неполное проплавление корня шва \(f \) должно компенсироваться за счет дополнительного увеличения высоты угловых швов а не менее чем на \(f \) для каждой стороны соединения.

2.6.3.3 Соединения с полным негарантированным проваром не должны применяться в специальных конструкциях, а для основных конструкций возможность их использования подлежит отдельному рассмотрению Регистром с учетом обеспечения требований по усталостной прочности. В любом случае, вопрос о применении в конструкции соединений с полным негарантированным проваром может быть принят Регистром к рассмотрению только при наличии подтвержденных гарантий от предприятия по проведению контроля величины \(f \) неразрушающими методами в процессе производства, а также при приемочном контроле соединений.

2.6.3.4 Односторонние соединения с негарантированным полным проваром не должны применяться в специальных конструкциях, а для основных конструкций возможность их использования подлежит отдельному рассмотрению Регистром с учетом обеспечения требований по усталостной прочности. В любом случае, вопрос о применении в конструкции соединений с негарантированным полным проваром может быть принят Регистром к рассмотрению только при наличии подтвержденных гарантий от предприятия по проведению контроля величины \(f \) неразрушающими методами в процессе производства, а также при приемочном контроле соединений.
Правила к классификации, постройки и оборудования ПБУ/МСП

Приложение 3 Правил классификации морских судов, построенных на стапелях, и правила МСП по их контролю и регулированию.

Примечание: В табличных данных приведены значения, соответствующие требованиям действующих норм и стандартов.

2.6.4 Угловые, тавровые и крестообразные соединения с разделкой кромок и конструктивным непроваром.

2.6.4.1 Соединения с конструктивным непроваром (рис. 2.6.4.1) характеризуются тем, что скос разделки кромок захватывает только часть толщины присоединяемой пластины. В результате этого, после выполнения сварки в корне шва образуется непровар с номинальным значением \(d = c + f \), где \(c \) — значение конструктивного непровара корня шва, принимаемое равным значением притупления разделки; \(f \) — значение допустимого неполного проплавления в корне шва, обусловленное отсутствием зачистки и подварки.

Рис. 2.6.4.1 Примеры двухсторонних тавровых соединений с конструктивным непроваром

Конструктивные элементы подготовки кромок, размеры шва и характеристики соединения \(c, d, f \) должны быть приведены на чертежах и в спецификации на выполнение работ по сварке (пример, см. рис. 2.6.4.1).

2.6.4.2 Неполное проплавление корня шва ограничивается значением \(f \leq 0,02 \), но не более 3,0 мм, а значение \(c \), как правило, не должно превышать 1/3t. Для данного типа соединений эффективная толщина углового шва принимается равной толщине присоединяемой пластины т за вычетом номинального неполного проплава \(d = c + f \).

2.6.4.3 Применение соединений с конструктивным непроваром ограничивается только двухсторонним типом и является предметом отдельного рассмотрения Регистром.

При этом их применение должно быть ограничено основными и второстепенными конструкциями, не испытывающими значительных динамических или усталостных нагрузок. Предприятие должно гарантировать посредством приемочного контроля соответствие фактических и расчетных значений параметра \(d \), а также приемлемый уровень дефектности в сечении угловых швов.

2.6.5 Угловые, тавровые и крестообразные соединения, выполняемые угловым швом без разделки кромок.

2.6.5.1 Соединения угловым швом без разделки кромок, как правило, должны применяться в конструкциях с двухсторонним исполнением. Применение соединений с односторонними угловыми швами (например, для коробчатых балок закрытого профиля) является предметом отдельного рассмотрения Регистром.

Расчетная высота угловых швов \(a \) должна определяться согласно требованиям 1.7 части II «Корпус» Правил классификации и постройки морских судов.

2.6.5.2 В зависимости от провара в корне углового шва различают соединения с нормальным и глубоким проваром. В последнем случае проникновение шва в основной металл значительно глубже теоретической точки корня шва (рис. 2.6.5.2), что при выполнении соответствующих требований может быть учтено в расчете высоты \(a \) углового шва.

Рис. 2.6.5.2 Тавровое соединение, выполненное угловым швом с глубоким проваром

2.6.5.3 Применение и одобрение технологических процессов сварки, обеспечивающих получение угловых швов с глубоким проваром, является предметом отдельного рассмотрения Регистром.

В случае успешного проведения испытаний по одобрению технологических процессов, Регистр может досутить определение расчетного значения толщины \(a_d \) углового шва с глубоким проваром на основании (рис. 2.6.5.2):

\[
a_d = a + 2e_{min}/3,
\]

(2.6.5.3)
Часть XIII. Сварка

где \(a \) — расчетная высота углового шва, определенная по размерам усиления (от теоретической точки корня);

\(t_{\text{min}} \) — минимальная глубина проплавления, установленная индивидуально на основе испытаний по одобренной технологической форме сварки.

2.6.5.4 Допускаемые отклонения от теоретической формы и расчетных размеров угловых швов должны соответствовать требованиям национальных стандартов или других руководящих документов и приводиться в документации на сварку, подлежащей одобрению Регистром.

2.7 СВАРКА КОРПУСОВ И ОБОРУДОВАНИЯ ПБУ/МСП

2.7.1 Требования к подготовке соединений под сварку.

2.7.1.1 Детали, поступающие на сборку соединений для последующей сварки, должны быть обработаны, выправлены и однозначным образом идентифицированы в соответствии с требованиями технической документации на изготовление сварных конструкций.

2.7.1.2 Применяемые способы резки и обработание должны обеспечивать соответствие размеров и чистоты поверхности подготовки кромок деталей под сварку требованиям, указанным в документации, одобренной Регистром.

2.7.1.3 Дополнительная зачистка кромок и поверхности деталей под сварку механическим способом после тепловой резки или для удаления защитных покрытий должна производиться перед сборкой в тех случаях, когда это предусмотрено спецификацией процесса сварки, согласовано требованиям настоящего раздела, а также технической документацией на изготовление сварных конструкций.

2.7.1.4 Поверхности свариваемых деталей и конструкций должны быть чистыми и сухими. Окалина, ржавчина, остатки града от тепловой резки, заусенцы, масло, краска и грязь должны быть зачищены шлифовальным или режущим инструментом до полного восстановления первоначальной формы кромки.

Качество очистки кромок под сварку должно контролироваться и приниматься ответственным лицом предприятия.

2.7.1.5 Допускается выполнять сварку стальных деталей, которые покрыты межоперационным защитным грунтом без его удаления при условии выполнения следующих требований:

1. защитный грунт прошел испытания и одобрен Регистром для применения;

2. при проведении испытаний и подтверждении их результатов, установленные в Свидетельстве об одобрении, остаются справедливыми и при сварке (особенно угловыми швами) отсутствует чрезмерное порообразование, которое неблагоприятно влияет на качество сварных швов;

3. отсутствуют дополнительные ограничения на применение не удаленных перед сваркой защитных грунтов в соответствии с требованиями настоящего раздела или документации, признанной Регистром.

Примечания: 1. Для полностью механизированных процессов двухсторонней сварки угловых швов (например, на линиях групповой приварки набора), разрешение на применение сварки без удаления защитного грунта, при наличии Свидетельства об одобрении, может быть дано Регистром только после специальной процедуры испытаний непосредственно на предприятии (изготовителе сварных конструкций).

2. Контрольные проверки, которые выполняются в ходе изготовления конструкций, должны включать измерение толщины покрытия на образцах-свидетелях, а также сварку тавровых соединений для оценки склонности к порообразованию путем испытаний на излом.

2.7.1.6 Зазор в соединениях, собранных под сварку деталями, должен соответствовать нормативным требованиям (допускам), указанным в Спецификации процесса сварки и/или технической документации, одобренной Регистром.

2.7.1.7 Допускается, с предварительного разрешения инспектора Регистра, производить исправление увеличенных зазоров наплавкой, если отклонение от допускаемого номинального зазора (без учета допуска) не превышает наименьшей толщины стыкуемых элементов и при этом не более 10 мм. Исправление недопустимых зазоров наплавкой допускается на длине не более 500 мм на 1 м шва, при этом суммарная длина наплавляемых участков не должна превышать 30 % длины технологически самостоятельного сварного соединения. При длине участка сварки до 500 мм наплавка допускается по всей длине этого участка.

Примечания: 1. Исправленные наплавкой участки должны приниматься ответственным лицом предприятия и после этого предъявляться инспектору Регистра.

2. Для полуавтоматической и ручной сварки допускается вместо наплавки использовать местную наплавку одиночных валиков "гребешков". Наплавку в тавровом соединении допускается производить на любую из соединяемых деталей.

3. Для автоматической сварки и полностью механизированных способов сварки исправленные наплавкой участки должны быть зачищены планировочным или режущим инструментом до полного восстановления первоначальной формы подготовки кромок.

2.7.1.8 Свариваемые кромки, исправленные наплавкой в соответствии с требованиями 2.7.1.7, следует проконтролировать внешним осмотром и измерением, а при необходимости, подходящими неразрушающими методами. При этом инспектор Регистра может назначить дополнительные участки контроля сварных швов в местах, соответствующих исправленному зазору наплавкой.
2.7.1.9 В тех местах, где увеличенные зазоры были исправлены наплавкой, ширина усиления шва или калибр углового шва должны быть увеличены на сумму превышение наплавки. Замер высоты нанавки на торце кромок следует производить параллельно поверхности детали.

2.7.1.10 По отдельному разрешению инспектора Регистра, зазоры, многократно превышающие размеры, указанные в 2.7.1.7, допускается исправлять посредством вварки полос пластин с шириной не менее 200 мм (рис. 2.7.1.10, в).

Для специальных элементов исправление увеличенных зазоров с применением вариантов рис. 2.7.1.10, б и 2.7.1.10, в не допускается.

Приложение: Дополнительные работники выполнять ограничивающие размеры зазора в указанных в 2.7.1.7, допускается исправление зазора путем приварки на основную деталь наплавляемой компенсирующей полосы шириной 3t \leq h \leq 4t, где t — толщина присоединяемой детали (рис. 2.7.1.10, б).

2.7.1.11 При сборке конструкций под сварку особое внимание должно быть обращено на соблюдение прочности конструкции и соединяемых свариваемых кромок.

Рис. 2.7.1.11-1 Нарушение соосности деталей для стыковых соединений:
- e \leq 0,1t, но не более 2,0 мм — для специальных и основных конструкций;
- e \leq 0,15t, но не более 3,0 мм — для второстепенных конструкций

Для стыковых соединений допустимым считается несовпадение вершин разделки кромок e (или кромок деталей при отсутствии разделки) на значение e \leq 0,1t, но не более 2 мм, где t — наименьшая толщина стыкуемых деталей. Для трещин свыше 20 мм допускается местное носкование вершин разделки кромок до 3 мм протяженностью не более 300 мм на 1 м длины шва.

Для крестообразных соединений допустимым считается нарушение соосности соединяемых деталей соответствующее указаниям рис. 2.7.1.11-2. Для контроля соосности допускается выполнять контрольное сверление отверстий в поперечных связях, которые подлежат последующей заварке.

Рис. 2.7.1.11-2 Нарушение соосности деталей для крестообразных соединений:
- a) для узлов с углами стыковки от 90° до 75°:
 - e \leq 0,1t/3 и e_1 \leq (0,1s_{2min} - 0,1s_{3min})/6 — для специальных и основных конструкций;
 - e \leq 0,1t/2 и e_1 \leq (0,1s_{2min} - 0,1s_{3min})/6 — для второстепенных конструкций;
- b) для узлов с углами стыковки менее 75°:
 - e \leq e_{t1}/3 — для специальных и основных конструкций;
 - e \leq e_{t1}/2 — для второстепенных конструкций

2.7.1.12 Закрепление деталей при сборке конструкций под сварку следует выполнять в специальных сборочных приспособлениях или при помощи эластичных креплений (гребенки, струбцины, талрепы и др.), или при помощи жесткого крепления (прихватки).

Применение временных сборочных приспособлений и прихваток должно быть ограничено до минимума. Работы по установке временных сборочных приспособлений и сварке прихваток должны выполняться лицами, прошедшими соответствующее обучение и имеющими квалификационное свидетельство на соответствующий способ сварки.

Приложение: В тех случаях, когда сборочные прихватки не подлежат удалению и полностью не переплавляются при выполнении основного шва (например, для ручной сварки покрытыми электродами или полуавтоматической сварки в защитных газах), требования к квалификации лиц, выполняющих установку прихваток в сварных соединениях с полным проваром, аналогичны требованиям к сварщикам, допускаемым Регистром к сварке.

2.7.1.13 Работы по установке временных сборочных приспособлений и прихваток должны выполняться с применением сварочных матери-
алов, которые допускаются Регистром для сварки данных конструкций. Условия выполнения сварочных работ (например, подогрев или просушка кромок), а также режимы сварки должны соответствовать требованиям соответствующих спецификаций процесса сварки для аналогичных конструкций.

П р и м е ч а н и е: Для постановки прихваток на специальных и основных конструкциях из сталей повышенной прочности рекомендуется, а для конструкций из сталей высокой прочности требуется в обязательном порядке наличие спецификаций процесса сварки на выполнение этих работ и их одобрение Регистром в установленном порядке.

2.7.1.14 В собранных под сварку соединениях прихватки не должны располагаться со стороны установки подкладок.

В местах пересечения сварных швов не допускается расположение прихваток на расстоянии менее 50 мм от шва, выполняемого в первую очередь.

Не допускается установка временных креплений и выравнивающих приспособлений на поверхности деталей и сварных швов, воспринимающих высокие напряжения (специальные конструкции и районы конструктивной концентрации напряжений основных конструкций). В этом случае рекомендуется применение механических зажимов и других приспособлений, не требующих приварки для установки.

2.7.1.15 Прихватки должны быть зачищены от шлака, металлических брызг и подвергнуты контролю внешним осмотром. В том случае, если качество прихваток не удовлетворяет требованиям, применяемым для подлежащих сварке соединений, они должны быть тщательно удалены перед выполнением основного сварного шва. Прихватки с трещинами, а при каких обстоятельствах они могут быть допущены под дальнейшую сварку и подлежат удалению.

П р и м е ч а н и е: В том случае, если прихватки полностью переплавляются при выполнении основного шва (например, для автоматической сварки под флюсом), а также для двухсторонних стыковых или тавровых соединений, подвергаемых строжке корня шва со стороны прихваток (см. 2.7.1.14), в металле шва прихваток может быть допущено наличие неопасных дефектов типа подрезов или пор.

2.7.1.16 Для автоматической сварки под флюсом стыковых швов, а также для других способов сварки с высокой степенью к образованию кратеров и дефектов в начале и конце сварного шва, должны применяться выводные планки, предотвращающие повреждение основного металла и шва согласно требованиям 2.7.4.11.

2.7.1.17 Собранные под сварку конструкции и изделия должны быть проконтролированы и приняты службой технического контроля предприятия, а после этого предъявлены инспектору Регистра для освидетельствования.

2.7.1.18 Перед выполнением сварки тонколистовых конструкций, в особенности из легированных высокопрочных сталей, имеющих зажигательное сечение, рекомендуется проверить наличие магнитных полей. Для нормального выполнения процесса сварки напряженность магнитных полей не должна превышать 790 А/м — для ручной дуговой сварки, 950 А/м — для полуавтоматической дуговой сварки в защитных газах, 1400 А/м — для автоматической дуговой сварки под флюсом. Конструкции, имеющие напряженность магнитного поля выше указанных значений, следует подвергать размагничиванию.

2.7.1.19 После выполнения сварки временные крепления и выравнивающие приспособления подлежат удалению способами, исключающими повреждение основного металла. В случае возникновения выхватов и других повреждений основного металла, образующихся при удалении временных креплений, они должны быть ликвидированы заваркой и зачисткой с обеспечением плавного перехода к основному металлу.

При зачистке утонение или утолщение основного металла не должно превышать допустимых отклонений по толщине листов, регламентируемых 3.2.7 части XIII «Материалы» Правил классификации и постройки морских судов.

П р и м е ч а н и е: Полному удалению с последующей зачисткой до основного металла подлежат остатки швов крепежных деталей на специальных и основных конструкциях. На остальных конструкциях допускается оставлять наварки высотой до 10 мм без зачистки, если последние не оговариваются технической документацией.

2.7.2 Сварка на открытых площадках и при низких температурах.

2.7.2.1 Сварку конструкций следует, по возможности, производить в закрытых помещениях, отапливаемых в зимний период. При необходимости выполнения работ на открытых площадках, должны быть приняты меры для защиты зоны сварки от ветра, влаги и холода.

При дуговой сварке в защитных газах особое внимание должно быть обращено на исключение возможности нарушения газовой защиты от ветра и сквозняков. Как правило, для обеспечения надежной газовой защиты скорость воздушных потоков в зоне сварки не должна превышать 0,5 м/с.

Технологические процессы дуговой сварки в защитных газах, позволяющие выполнять качественную сварку при больших значениях скоростей воздушных потоков, подлежат отдельному одобрению Регистром по этому параметру.
2.7.2.2 При выполнении работ на открытых площадках в неблагоприятных погодных условиях рекомендуется всегда производить просушку свариваемых кромок путем подогрева.
2.7.2.3 Если сварка конструкций выполняется при отрицательных температурах, должны быть приняты меры, гарантирующие удовлетворительное качество сварных швов. Такие меры в зависимости от свариваемого металла, его толщины и других факторов (см. 2.7.2.5) могут включать:
.1 контроль и очистку свариваемых кромок от снега, илея и льда;
.2 просушку свариваемых кромок путем подогрева по меньшей мере до 20 °C;
.3 применение теплоизолирующих средств;
.4 применение технологических приемов, обеспечивающих повышенную межпроходную температуру в процессе сварки (например, сварку одного шва несколькими сварщиками одновременно, т.н. блючным способом и т.п.).
.5 применение технологических приемов, обеспечивающих постоянную температуру в процессе сварки (например, сварку одного шва несколькими сварщиками одновременно, т.н. блючным способом и т.п.).
Выбор конкретных мер, применяемых при выполнении работ по сварке при отрицательных температурах, определяется предприятием и согласуется с Регистром в процессе одобрения технологических процессов сварки.
2.7.2.4.4 При обеспечении должного качества сварных соединений, сварочные и все связанные с ними работы на конструкциях, подлежащих наблюдению Регистра из судостроительных сталей нормальной и повышенной прочности толщиной до 20 мм включительно, допускается производить при температуре наружного воздуха до минус 25 °C при условии, что сварочные материалы были испытаны при этой температуре согласно требованиям 4.2.2.4 части XIV «Сварка» Правил классификации и постройки морских судов. В противном случае, минимально допустимая температура сварки без подогрева должна быть установлена по стандартам, согласно рекомендациям изготовителей сварочных и основных материалов, и подлежит согласованию с Регистром на основании испытаний по одобрению технологических процессов сварки.
2.7.2.5 При понижении в процессе сварки температуры, ниже указанной в 2.7.2.4, работы по сварке соединений следует прекратить после заполнения разделки с одной стороны соединения и выполнения подварочного шва или первого валика с другой стороны соединения. Перед сваркой после перерыва в работе следует, в случае необходимости, провести повторный подогрев или просушку кромок, согласно требованиям 2.7.2.3 и 2.7.2.4.
2.7.2.6 Тепловую строжку и постановку прихваток следует выполнять при тех же температурах воздуха, при которых допускается сварка этих конструкций.
2.7.3 Предварительный подогрев и термообработка.
2.7.3.1 Необходимость и температура подогрева перед сваркой, а также минимальная межпроходная температура должны назначаться с учетом следующих основных факторов:
.1 химического состава основного металла и металла шва;
.2 толщины свариваемых деталей и типа соединения;
.3 способа и режимов сварки (погонной энергии);
.4 уровня и распределения рабочих и остаточных напряжений в конструкции;
.5 температурной зависимости механических свойств металла шва и зоны термического влияния;
.6 содержания диффузионного водорода в металле шва.
2.7.3.2 При выполнении сварочных работ на конструкциях из судостроительных сталей нормальной и повышенной прочности, как правило, не требуется применение предварительного подогрева и контроля межпроходной температуры в процессе сварки. Для данных материалов требуется дополнительно согласовать с Регистром возможность проведения сварочных работ без применения подогрева и/или контроля межпроходной температуры в следующих случаях:
.1 сварка конструкций из сталей повышенной прочности в толщинах свыше 30 мм при отрицательных температурах;
.2 сварка конструкций из сталей повышенной прочности при толщине свариваемых кромок 50 мм и выше для любой температуры окружающего воздуха;
.3 сварка тавровых соединений из сталей повышенной прочности в толщинах 20 мм и выше однопроходным угловым швом (калибром) при отрицательных температурах;
.4 применение для сварки массивных изделий и конструкций с высоким уровнем остаточных напряжений сварочных материалов с повышен-
Часть XIII. Сварка

ным содержанием диффузионного водорода (на уровне индекса Н, см. 4.2.1.4 части XIV «Сварка» Правил классификации и постройки морских судов);

при наличии особых требований к свойствам зоны термического влияния, которые не могут быть реализованы без применения подогрева и/или контроля межпроходной температуры (ограничение максимальной твердости, нормирование характеристик критического раскрытия трещины)

2.7.3.3 При изготовлении конструкций из сталей высокой прочности, соответствующей требованиям разд. 3.13 части XIII «Материалы» Правил классификации и постройки морских судов, температурные условия выполнения сварочных работ (включая минимально допустимую температуру проведения работ, необходимость и температуру предварительного подогрева, межпроходную температуру, необходимость и параметры сопутствующего и последующего подогрева) устанавливаются в соответствии с требованиям 2.8.16 и являются предметом специального рассмотрения Регистром. При этом, в перечисленных ниже случаях, разрешение Регистра на применение технологии сварки высокопрочных сталей без предварительного подогрева требует обязательного проведения испытаний по отдельной программе:

1. выполнение сварочных работ на открытых площадках;
2. сварка при температурах окружающего воздуха ниже +5 °C;
3. сварка сталей категорий прочности (A/F)550 и выше при любой температуре окружающего воздуха;
4. сварка изделий с толщиной свариваемых кромок свыше 70 мм;
5. применение сварочных материалов с уровнем диффузионного водорода свыше 5 мл/100 г н.м. (индекс ННН, см. 4.3.2.4 части XIV «Сварка» Правил классификации и постройки морских судов).

Программа таких испытаний должна включать оценку склонности к образованию холодных трещин с применением соответствующих лабораторных и/или технологических проб, а также сварку опытных конструкций или натурных образцов.

2.7.3.4 При сварке судостроительных сталей повышенной и высокой прочности категорий до (A/F)550 включительно, особенно в толщинах свыше 50 мм, метод предварительного подогрева и способ поддержания минимальной межпроходной температуры устанавливается индивидуально и подлежит согласованию с Регистром в каждом конкретном случае. При этом, для массивных изделий с большим объемом сварочных работ Регистр может потребовать применения общего предварительного подогрева всей детали.

2.7.3.5 Если технология сварочных работ предусматривает применение предварительного подогрева и контроля межпроходной температуры, то их параметры должны надлежащим образом поддерживаться постоянными, а температура контролироваться и фиксироваться в процессе сварочной операции. Применяемые для измерения температуры технические средства должны обеспечивать соответствующую точность измерения.

2.7.3.6 При сварке корпусных конструкций термообработка после сварки должна применяться в тех случаях, когда необходимо устранить остаточные напряжения. Режимы термической обработки устанавливаются предприятием-изготовителем сварных конструкций или проектантом на основе стандартов с учетом рекомендаций или ограничений производителей основного материала. Одобрение Регистром применяемых режимов термической обработки производится на основании испытаний по одобрению технологических процессов сварки.

2.7.3.7 Оборудование и технические средства, применяемые для термической обработки конструкций, должны обеспечивать равномерность нагрева, а также должны быть снабжены приборами, обеспечивающими заданные скорости нагрева, охлаждения изделия и поддержания температуры в пределах заданного диапазона. Параметры термообработки каждого изделия должны тщательно контролироваться и фиксироваться.

2.7.3.8 Если размеры конструкции не позволяют провести термообработку целиком, то она может выполняться в отдельных зонах по частям. Технические средства, применяемые для термической обработки, и ее методика подлежат в этом случае отдельному рассмотрению Регистром.

2.7.4 Общие требования к выполнению работ по сварке.

2.7.4.1 Сварку конструкций и изделий следует выполнять в соответствии с требованиями чертежей и соответствующих спецификаций процесса сварки, одобренных Регистром.

2.7.4.2 При проектировании и изготовлении сварных конструкций следует предусматривать
возможность проведения сварки в оптимальных, с точки зрения обеспечения качества и удобства выполнения, пространственных положениях.

2.7.4.3 Применяемые в производстве технологические процессы сварки, а также операционный технологический контроль и мониторинг, должны обеспечивать высокую стабильность качества сварных соединений в реальных условиях производства. В этой связи, Регистр может потребовать от производителя сварных конструкций дополнительных доказательств стабильности качества сварных соединений для технологических процессов с повышенной степенью риска (см. 2.2.3). В качестве таких доказательств могут применяться испытания в процессе производства в сочетании с назначением дополнительных участков неразрушающего контроля по требованию инспектора Регистра.

2.7.4.4 Для особо ответственных конструкций (специальные, а также основные по согласованию с проектантом и Регистром) мониторинг на предприятии должен включать для каждого сварного соединения регистрацию следующей информации:

.1 идентификацию технологически самостоятельного сварного соединения с указанием его протяженности;

.2 идентификационный номер СПС;

.3 рабочий номер (сертификат) сварщика;

.4 идентификацию персонала, осуществляющего контрольные операции по приемке на всех стадиях изготовления и для всех методов контроля;

.5 сведения о наличии несоответствий качества сборки и сварки требованиям нормативной документации, в том числе об именях место исправлениях;

.6 результаты приемочного контроля с указанием номеров протоколов испытаний.

2.7.4.5 Технология сборки и сварки должна быть разработана таким образом, чтобы, по возможности, свести к минимуму угловые деформации, коробление конструкций, а также остаточные напряжения.

При необходимости вварки листов, пластин и т.п. в жесткий контур должны быть приняты технологические меры, снижающие напряжения от сварки. Жестким контуром считается замкнутый по периметру вырез, один из размеров которого меньше 60 толщины листов в данном месте. В сложных конструкциях контур может считаться жестким и при больших отношениях размеров выреза.

2.7.4.6 Конструкции и детали не должны подвергаться каким-либо перемещениям и вибрациям в течение процесса сварки. Секции, подлежащие сборке на плаву или подвешенные на кранах, должны быть надежно зафиксированы на временных сборочных приспособлениях или прихватках с тем, чтобы исключить возможность их перемещения при сварке.

2.7.4.7 Правка конструкций может производиться только в ограниченном объеме. Для судостроительных сталей нормальной и повышенной прочности допускается тепловая правка с механическим воздействием и без него. При этом повреждения поверхности шва или листа не допускаются. Температура нагрева при тепловой правке не должна превышать 650 °С, но в любом случае нагрев должен приводить к структурным превращениям в металле.

2.7.4.8 Выборку корня шва в сварных соединениях с полным проваром допускается производить тепловой газовой строжкой, электродуговой (газоэлектрической) строжкой, а также механическим способом с соблюдением указанных ниже требований.

После тепловой газовой строжки поверхность канавки и прилегающие к ней поверхности на ширине 100 мм в обе стороны от кромки детали соединения подлежат зачистке от шлака, окалины, наплывов и брызг металла. Поверхность канавки должна быть чистой и гладкой без резких переходов по глубине и ширине на всей длине соединения.

После электродуговой строжки поверхность канавки и места замыкания электрода следует зачищать до чистого металла. Зачистку поверхности канавок, образующихся при строжке, и прилегающих к ним поверхностей, а также мест замыкания электродов на металле следует выполнять с применением абразивного инструмента. Приемку простроганных поверхностей рекомендуется производить с применением эталонных образцов внешнего вида.

Форма разделки кромок после удаления корня шва должна соответствовать действующей нормативной документации, указанной на чертежах, и/или спецификации процесса сварки. Тепловую строжку следует выполнять при тех же температурах воздуха, при которых допускается сварка этих деталей и с соблюдением соответствующих требований по применению предварительного подогрева.

2.7.4.9 Автоматическую дуговую сварку под флюсом (сочетание проволока-флюс) применяют для выполнения соединений в нижнем положении. Допускается угол наклона соединения к горизонту вдоль шва до 8° и поперек шва до 15°.

Для способов сварки, позволяющих производить сварку в различных пространственных положениях, диаметр электрода должен удовлетво-
вторять соответствующим рекомендациям и/или ограничениям изготовителя сварочных материалов для конкретных условий применения.

2.7.4.10 Перед выполнением автоматической или полуавтоматической дуговой сварки конструкций или изделий, режимы сварки, предусмотренные технологическим процессом согласно СПС, следует проверять на пробных планках. Толщина пробных планок должна соответствовать минимальной толщине свариваемых деталей соединения.

2.7.4.11 При сварке соединения начало шва длиной от 20 до 30 мм и конец шва длиной от 30 до 40 мм следует выводить на технологические планки, устанавливаемые перед сваркой. При наличии припуска по концам соединения размером не менее 30 мм установка технологических планок не требуется, а начало и конец шва выводится на металл припуска.

Допускается не устанавливать технологические планки для соединений, выполняемых ручной дуговой сваркой и полуавтоматической в среде защитных газов.

Размеры технологических планок должны соответствовать толщине свариваемых деталей (t) и способу сварки:

1. Толщина планок должна быть равна толщине свариваемых деталей. Для соединений толщиной более 20 мм, выполняемых двусторонним швом, допускается применение меньшей толщины;
2. Для соединений, выполняемых односторонней автоматической сваркой под флюсом на медном ползунке, начальная выводная планка должна иметь размеры 200 × 100 × t мм, а концевая выводная планка должна быть равна 600 × 400 × t мм;
3. Для соединений, выполняемых газоэлектрической вертикальной сваркой с принудительным формированием шва, размер выводной планки должен быть равен 700 × 450 × t мм;
4. Для соединений, выполняемых способами, кроме указанных выше, размер выводных (начальной и концевой) планок принимается 100 × 100 мм.

В выводных планках, устанавливаемых для соединений с разделкой кромок, должны быть предусмотрены аналогичные разделка, если применение выводных планок без разделки, если выполнение соединения предусмотрено с двух сторон.

2.7.4.12 При сварке без выводных планок не допускается возбуждать дугу или выводить кратер на поверхность основного металла соединения вне зоны расположения шва. По окончании сварки обрывать дугу следует после заполнения кратера металлом.

2.7.4.13 При выполнении двухсторонних швов начинать сварку следует со стороны, противоположной поставленным сборочным прихваткам. Допускается начинать сварку со стороны расположения прихваток в тех случаях, когда при сборке соединений выполнение прихваток со второй стороны было затруднено и имеется соответствующее указание в СПС.

2.7.4.14 При многолистовой сварке начало и конец каждого слоя должны быть смешены относительно предыдущего на 20 — 30 мм в сторону, противоположную направлению сварки. При выполнении криволинейных соединений в местах поворотов не следует наносить и заканчивать сварку.

2.7.4.15 После выполнения каждого слоя и шва в целом необходимо произвести зачистку металла шва и околошовной зоны с целью удаления шлака и металлических брызг. Зачистку следует выполнять после остывания шлаковой корки.

В случае обрыва дуги в процессе сварки, кратер шва и прилегающий к нему участок на длине от 10 до 15 мм должен быть очищен от шлака. Возбуждать дугу следует на зачищенной поверхности шва.

2.7.4.16 Для получения необходимых размеров шва при изготовлении конструкции с пересекающимися сварными соединениями, необходимо перед автоматической дуговой сваркой в участках пересечения шов первого соединения удалить с последующим восстановлением конструктивных элементов подготовки кромок, если соединение со скосом кромок, или удалить усиление шва, если соединение без скоса кромок.

2.7.4.17 Ручную и полуавтоматическую сварку следует выполнять симметрично от середины конструкции к ее краям при длине соединения ≥ 2 м и напроход при длине соединения ≤ 2 м.

Тавровые соединения без разделки кромок, как правило, допускается выполнять за один проход при катете углового шва, не превышающем 8 мм.

2.7.4.18 Сварка деталей из судостроительной стали, изготовленных холодной гибкой, допускается без термической обработки, если внутренний радиус изгиба соответствует стандартам. При отсутствии таких стандартов он должен быть не менее трех толщин листа.

2.7.4.19 При производстве сварочных работ должны соблюдаться и подтверждаться, путем постоянного мониторинга, условия хранения, прокалки, контроля перед запуском в производство (если требуется) и повторной выдачи неиспользованных сварочных материалов, которые устанавливаются требованиями соответствующей технической документации и рекомендациями изготовителя сварочных материалов. Особое
внимание должно уделяться материалам, склонным к поглощению влаги из окружающей среды: покрытым электродам, сварочным флюсам, порошковым проволокам, применяемым для сварки сталей повышенной и высокой прочности.

2.7.4.20 Применяемые для сварки защитные газы и их смеси должны иметь контролируемую чистоту и точку росы, соответствующие требованиям национальных стандартов и/или требованиям документации на технологию сварки. Если с Регистром не согласовано другого, то должны соблюдаться указания табл. 2.7.4.20.

Таблица 2.7.4.20

<table>
<thead>
<tr>
<th>Группа</th>
<th>Точка росы при 1,013 бар, °С, не более</th>
<th>Влажность, не более</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>-50</td>
<td>40</td>
</tr>
<tr>
<td>H</td>
<td>-50</td>
<td>40</td>
</tr>
<tr>
<td>M1</td>
<td>-44</td>
<td>80</td>
</tr>
<tr>
<td>M2</td>
<td>-40</td>
<td>120</td>
</tr>
<tr>
<td>M3</td>
<td>-35</td>
<td>200</td>
</tr>
<tr>
<td>C</td>
<td>-50</td>
<td>40</td>
</tr>
<tr>
<td>Кислород</td>
<td>-35</td>
<td>200</td>
</tr>
<tr>
<td>Водород</td>
<td>-50</td>
<td>40</td>
</tr>
</tbody>
</table>

2.7.4.21 Для выполнения работ по сварке может применяться оборудование, обеспечивающее заданные технологическим процессом параметры режима. Для установления и контроля правильности показаний параметров режима сварки сварочное оборудование должно быть укомплектовано исправными измерительными приборами:
- автоматы — амперметром, вольтметром, указателем скорости или ретарировочной шкалой по установлению скорости;
- полуавтоматы — амперметром и вольтметром;
- посты для механизированной сварки в защитном газе — приборами для контроля расхода газа;
- посты ручной сварки — амперметром.

При ручной дуговой сварке необходимое значение силы тока допускается устанавливать по указателям тока на балластных реостатах с периодическим контролем переносным амперметром.

2.7.5 Сварка конструкций, имеющих контакт с водой с одной стороны. Сварка под водой.

2.7.5.1 Сварка конструкций, с обратной стороны которых находится вода, является в каждом конкретном случае предметом специального рассмотрения Регистром и должна выполняться с учетом изложенных ниже положений и требований.

Основным фактором риска, который имеет место при сварке в рассматриваемых условиях, является повышенная вероятность образования холодных трещин в ниве и околовповой зоне, что обусловлено:
- высокой скоростью охлаждения шва и околошовной зоны, вызывающей образование структуры с более высокой твердостью;
- возможностью наличия конденсата и других видов влаги на свариваемых кромках.

В этой связи, при выполнении сварочных работ на конструкциях, с обратной стороны которых находится вода, должны быть приняты следующие меры:

.1 следует применять сварочные материалы с контролируемым содержанием диффузионного водорода, удовлетворяющие требованиям для индексов H10 и H5 табл. 4.2.14 части XIV «Сварка» Правил классификации и постройки морских судов;
.2 при сварке сталей нормальной прочности необходимо принять меры по удалению конденсата и других следов влаги на свариваемых кромках тепловой просушкой кромок перед сваркой;
.3 при сварке сталей повышенной прочности во всех случаях необходимо выполнять просушку и подогрев свариваемых кромок газовой горелкой. Данная операция должна выполняться с минимально возможным интервалом времени между просушкой и сваркой;
.4 при сварке сталей повышенной прочности с эквивалентом углерода Сequiv > 0,45% требуется проведение дополнительных испытаний по одобрению технологического процесса сварки на пробах, которые имитируют реальные условия выполнения сварных соединений. Программы испытаний подлежит отдельному рассмотрению Регистром в каждом конкретном случае;
.5 сварка сталей высокой прочности на конструкциях, имеющих контакт с водой с обратной стороны шва, не допускается.

2.7.5.2 Выполнение работ по резке и сварке конструкций под водой является в каждом случае предметом специального рассмотрения Регистром. При этом следует руководствоваться следующим:

.1 тепловая резка и сварка конструкций под водой «мокрым способом» (без изоляции зоны сварки от окружающей среды) может применяться в экстренных случаях. О проведении таких работ незамедлительно должно быть сообщено Регистру, а сварные соединения, выполненные данным способом, подлежат удалению и замене в возможно короткие сроки по технологии, одобренной Регистром;
.2 при необходимости выполнения работ по сварке конструкций под водой, должен применяться «сухой способ» сварки, который предусматривает полную изоляцию района выполнения сварного соединения с помощью различных устройств (кессоны, накидные или обитаемые камеры и т.п.);

.3 сварка сталей повышенной прочности с эквивалентом углерода Cequiv > 0,45% требует проведения дополнительных испытаний по одобрению технологического процесса сварки на пробах, которые имитируют реальные условия выполнения сварных соединений. Программа испытаний подлежит рассмотрению Регистром в каждом конкретном случае;
.4 сварка сталей высокой прочности на конструкциях, имеющих контакт с водой с обратной стороны шва, не допускается.

2.7.5.3 Выполнение работ по резке и сварке конструкций под водой является в каждом случае предметом специального рассмотрения Регистром. При этом следует руководствоваться следующим:

.1 тепловая резка и сварка конструкций под водой «мокрым способом» (без изоляции зоны сварки от окружающей среды) может применяться в экстренных случаях. О проведении таких работ незамедлительно должно быть сообщено Регистру, а сварные соединения, выполненные данным способом, подлежат удалению и замене в возможно короткие сроки по технологии, одобренной Регистром;
.2 при необходимости выполнения работ по сварке конструкций под водой, должен применяться «сухой способ» сварки, который предусматривает полную изоляцию района выполнения сварного соединения с помощью различных устройств (кессоны, накидные или обитаемые камеры и т.п.);
3 технологические процессы сварки, применяемые для такого рода работ, подлежат одобрению Регистром на основании проведения испытаний по отдельной программе. Эта программа должна предусматривать проведение испытаний в условиях, максимально приближенных к реальным, в том числе должны быть учтены состав и давление среды в изолирующим устройстве, длина токоподводящих кабелей, особенности теплоотвода и охлаждения, методы осушки свариваемых кромок и подогрева и т. д.

2.8 ОСОБЕННОСТИ СВАРКИ КОНСТРУКЦИЙ ИЗ СТАЛЕЙ ВЫСОКОЙ ПРОЧНОСТИ

2.8.1 Требования настоящего раздела распространяются на изготовление конструкций из сталей высокой прочности, отвечающих требованиям 3.13 части XIII «Материалы» Правил классификации и постройки морских судов, а также могут применяться для сталей, поставляемых по международным или национальным стандартам и имеющих аналогичный уровень свойств и близкие требования к химическому составу.

2.8.2 Сварочные материалы, применяемые для изготовления конструкций из сталей высокой прочности, должны удовлетворять требованиям разд. 4 настоящей части, а также 4.6 части XIV «Сварка» Правил классификации и постройки морских судов, а применяемые технологические процессы быть одобрены Регистром согласно требованиям разд. 6 части XIV «Сварка» Правил классификации и постройки морских судов.

2.8.3 При сварке конструкций из сталей высокой прочности должны выполняться требования 2.7 с учетом перечисленных ниже особых требований.

2.8.4 Рекомендуется применять сварные соединения симметричной формы, как по размерам усиления, так и по форме разделки кромок. Симметричная форма сварного соединения обеспечивается путем разделки кромок симметричной формы или путем предварительной разделки кромок несимметричной формы с последующим оформлением соединения до симметричной формы разделки.

Сварные соединения несимметричной формы применяются при необходимости, вызванной конструктивными особенностями изделия.

2.8.5 В стыковых соединениях деталей разной толщины следует предусматривать односторонний или двухсторонний скос на кромке детали большей толщиной с уклоном не более 1:5.

Примечание: Допускается не предусматривать скос, если превышение одной кромки относительно другой не более:
1.5 мм — для деталей толщиной менее 20 мм;
2.5 мм — для деталей толщиной >20 до 30 мм;
3.5 мм — для деталей толщиной >30 до 40 мм;
4.0 мм — для деталей толщиной >40 до 50 мм;
для больших толщин — не более 0,08t.

Снятие скоса рекомендуется производить механическим способом. Размеры шва в случае снятия скоса следует принимать по детали меньшей толщины. При отсутствии оборудования для снятия скоса механическим способом, допускается снятие скоса производить тепловой резкой с последующей зачисткой абразивным инструментом.

При расположении границы усиления от начала лыски 10 мм и менее необходимо предусмотреть минимальное перекрытие лыски на 2 мм с обеспечением плавного перехода на основной металл.

2.8.6 С целью повышения надежности и работоспособности сварных конструкций, швы следует распологать на возможно максимальном расстоянии между собой.

Рекомендуемое минимальное расстояние между границами швов для деталей толщиной до 40 мм приведено в табл. 2.8.6.

<table>
<thead>
<tr>
<th>100 мм</th>
<th>60 мм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Для прямолинейных швов между собой</td>
<td>Для криволинейных швов с радиусом менее 250 мм между собой</td>
</tr>
<tr>
<td>Для криволинейных швов с радиусом более 250 мм и менее 500 мм</td>
<td>Для криволинейных швов с радиусом менее 250 мм и более 500 мм</td>
</tr>
</tbody>
</table>

Для деталей толщиной более 40 мм минимальное расстояние между границами швов должно составлять во всех случаях более 2,5 толщины деталей.

2.8.7 Для специальных и основных элементов конструкций при их высокой циклической нагрузженности обеспечение требуемой долговечности может достигаться за счет применения специальных конструктивно-технологических мероприятий:

1. запиливка стыкового сварного соединения с двух сторон заподлицо с основным металлом или механическая обработка под радиус таврового шва;
2. поверхностная пластическая обработка зон сопряжения сварного шва с основным металлом;
3. аргонодуговое наплавление с присадкой зоны сопряжения сварного шва с основным металлом.

Детали оформления сварных углов, выполненные с применением указанных мероприятий,
должны быть приведены на чертежах и подлежат одобрению Регистром на стадии рассмотрения технической документации на изготовление сварных конструкций.

Необходимость применения упомянутых выше мероприятий устанавливается по результатам оценки усталостной прочности в соответствии с одобренной Регистром методикой.

2.8.8 При выполнении угловых сварных соединений наиболее предпочтительной является сварка с выпуском свободной кромки на величину не менее двух толщин привариваемой детали согласно рис. 2.8.8-1. При невозможности выполнить угловые соединения согласно рис. 2.8.8-1 следует предусматривать перекрытие торцов кромок усиливением сварного шва. При этом расстояние от зоны сопряжения шва с основным металлом до края свободной кромки должно быть не более 1/3 или 8 мм (что меньше) согласно рис. 2.8.8-2 (см. также 2.6.2.3).

2.8.9 При выполнении крестообразных сварных соединений (разрезных Т-образных) наиболее предпочтительным является выпуск основной (неразрезной) детали на величину не менее трех толщин привариваемой детали (рис. 2.8.9-1). При невозможности выполнения крестообразного (разрезного Т-образного) соединения в соответствии с рис. 2.8.9-1, кромка основной неразрезной детали должна лежать в одной плоскости с деталями, привариваемыми с разных сторон. При этом усиление сварного шва должно перекрывать каждую из разделок не менее 2 мм, согласно рис. 2.8.9-2 (см. также 2.6.2.3).

2.8.10 Подготовку кромок под сварку и снятие скоса (в соединениях деталей разной толщины) рекомендуется производить механическим способом. При применении для подготовки кромок тепловой резки или при наличии на кромках и прилегающей поверхности стыкуемых под сварку деталей межоперационных защитных покрытий, должна быть выполнена их зачистка абразивным инструментом согласно требованиям рис. 2.8.10.

2.8.11 Торцы свободных кромок основных и специальных конструкций, не подлежащих сварке, после тепловой резки должны быть защипыены нажддачным кругом или обработаны механическим способом до шероховатости Rₐ ≤ 80 мкм.

При этом наличие острых углов на свободных кромках не допускается, и они должны быть скруглены в соответствии с требованиями конструкторской документации на изготовление конструкций.

2.8.12 Приварка рымов, обухов и временных креплений должна выполняться с применением метода "отжигающего валика" ручной сваркой покрытыми электродами, ручной аргонодуговой сваркой неплавящимся электродом или механизированной в защитном газе. Применяемые для этой цели сварочные материалы и условия выполнения сварочных работ должны удовлетворять требованиям, предъявляемым к сварке конструкций из стали соответствующей категории (см. также 2.7.1.13).

2.8.13 Удаление швов временных креплений следует производить путем газовой резки или воздушно-дуговой строжки, оставляя "пенек" высотой 0,5 — 3,0 мм выше поверхности основного металла, с последующей зачисткой его абразивным инструмен-
Часть XIII. Сварка

349

том заполняют с поверхностью металла и контролем на отсутствие трещин. Контроль выполняется внешним осмотром с применением лупы не менее чем двукратного увеличения. В сомнительных случаях, а также по требованию инспектора Регистра, контроль должен производиться с применением капиллярного или магнитопорошкового методов.

2.8.14 Устранение отдельных дефектов поверхности основного металла, образовавшихся в результате удаления временных креплений, должно выполняться с соблюдением требований 3.2.7 части XIII «Материалы» Правил классификации и постройки морских судов, а также изложенных ниже требований.

Местной зачисткой допускается исправление дефектов глубиной до 1,0 мм при толщине металла до 20 мм включительно и до 1,5 мм при толщине металла более 20 мм.

При исправлении дефектов глубиной более 3 мм заваркой с последующей зачисткой требуется представление в Регистр для одобрения технологии их исправления, включая СПС.

Исправление дефектов глубиной до 3 мм включительно заваркой с последующей зачисткой может выполняться по согласованию с инспектором Регистра.

Заварку дефектов следует производить только после их зачистки абразивным инструментом с последующим контролем мест зачистки на отсутствие трещин. Для заварки применяют сварочные материалы, допущенные Регистром для сварки стали соответствующей категории, с соблюдением всех необходимых требований по выполнению сварочных работ. Места заварки после зачистки до номинальной толщины подлежат контролю на отсутствие трещин с применением капиллярной дефектоскопии.

2.8.15 Для сварки конструкций из сталей высокой прочности предпочтительным является использование многопроходной технологии с применением операции зачистки корня шва для соединений с полным проваром. Применение одно- и двухпроходной технологии, электрошлаковой и электрогазовой сварки, а также многодуговой и односторонней сварки является предметом отдельного рассмотрения Регистром (см. также 2.5.5).

2.8.16 При выполнении работ по сварке конструкций из сталей высокой прочности должны быть в полной мере выполнены соответствующие указания 2.7.2 и 2.7.3 с учетом следующего:
1. Минимальная температура подогрева и межпроходная температура должны соответствовать указаниям табл. 2.8.16;

<table>
<thead>
<tr>
<th>Категория свариваемой стали</th>
<th>Толщина металла, мм</th>
<th>Температура окружающего воздуха, °C</th>
<th>Содержание диффузионного водорода в нан. металле, см³/100 г</th>
<th>Минимальная температура подогрева, °C</th>
<th>Минимальная межпроходная температура, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A/F) 690 (A/F) 620 и (A/F) 550</td>
<td>До 130</td>
<td>От 0 и выше</td>
<td>До 3,0 (НЗ)</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Свыше 3,0 до 5,0 (Н5)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>От 0 до —10</td>
<td>До 3,0 (НЗ)</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Свыше 3,0 до 5,0 (Н5)</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>От —11 до —15</td>
<td>До 3,0 (НЗ)</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Предмет отдельного рассмотрения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>До 40</td>
<td>От 0 и выше</td>
<td>До 3,0 (НЗ)</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Свыше 3,0 до 5,0 (Н5)</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>От 0 до —15</td>
<td>До 3,0 (НЗ)</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Свыше 3,0 до 5,0 (Н5)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>От —16 до —20</td>
<td>До 3,0 (НЗ)</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Предмет отдельного рассмотрения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>От 0 и выше</td>
<td>До 3,0 (НЗ)</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Свыше 3,0 до 5,0 (Н5)</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>От 0 до —15</td>
<td>До 3,0 (НЗ)</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Свыше 3,0 до 5,0 (Н5)</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>От —16 до —20</td>
<td>До 3,0 (НЗ)</td>
<td>Предмет отдельного рассмотрения</td>
<td></td>
</tr>
<tr>
<td>Категория свариваемой стали</td>
<td>Толщина металла, мм</td>
<td>Температура окружающего воздуха, °C</td>
<td>Содержание диффузионного водорода в наплавленном металле, см³/100 г</td>
<td>Минимальная температура подогрева, °C</td>
<td>Минимальная межпроходная температура, °C</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>(A/F) 500</td>
<td>До 40 вкл.</td>
<td>От 0 и выше</td>
<td>До 3,0 (Н3)</td>
<td>Без подогрева</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Нижнее 0 до —15</td>
<td>Свыше 3,0 до 5,0 (Н5)</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Свыше 5,0 до 10,0 (Н10)</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ниже —15 до —20</td>
<td>До 3,0 (Н3)</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Свыше 3,0 до 5,0 (Н5)</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ниже —15 до —20</td>
<td>До 3,0 (Н3)</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Свыше 40 до 100 вкл.</td>
<td>От 0 и выше</td>
<td>До 3,0 (Н3)</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ниже —15 до —15</td>
<td>Свыше 3,0 до 5,0 (Н5)</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ниже —15 до —20</td>
<td>До 3,0 (Н3)</td>
<td>100</td>
<td>80</td>
</tr>
</tbody>
</table>

Примечания:
1. Таблица устанавливает минимальный уровень требований к температуре подогрева и межпроходной температуре для закаленной и отпущенной стали по показателю склонности к образованию холодных трещин. При выполнении этих требований Регистр принимает к рассмотрению спецификации процесса сварки.
2. Для сталей категорий (A/F) 500, (A/F) 460 и (A/F) 420, изготовленных с применением термомеханической обработки с ускоренным охлаждением и имеющих Смакс<0,41%, допускаются более низкие температуры подогрева и межпроходные температуры.
3. Фактические значения температур подогрева и межпроходной температуры подлежат одобрению Регистром на основании испытаний по одобрению технологических процессов сварки, включающих контроль всех ограничивающих параметров для конкретного проекта (максимальная твердость зоны термического влияния, CTOD по зоне термического влияния и шву и т. п.).

.2 при сварке на открытых площадках зону сварки и прилегающую к ней поверхность на ширине не менее 100 мм в обе стороны от кромок деталей соединения требуется просушить пламенем газовой горелки до полного удаления влаги. После перерывов в работе при многопроходной сварке перед выполнением очередного валика производится повторная просушка зоны сварки.

.3 подогрев следует производить нагревателями сопротивления, газовыми или электрическими нагревателями инфракрасного излучения, индукционными нагревателями. Допускается также в отдельных случаях производить нагрев с использованием открытого пламени газовой горелки.

.4 температура, в процессе сварки между проходами, может поддерживаться на заданном
уровне путем внесения тепла непосредственно за счет сварки, т.е. автоподогрева или за счет посторонних источников подогрева;

5 температура подогрева перед сваркой и температура в процессе сварки подлежат обязательному мониторингу контрольными службами предприятия с регистрацией результатов в установленном порядке;

6 при выполнении сварки покрытыми электродами в условиях абсолютной влажности воздуха 12 г/м³ и более требуется применять подогрев зоны сварки до температуры не менее 50 °С, если он не предусмотрен, или увеличить минимальные температуры подогрева и межпроходную на 20 °С (см. табл. 2.8.16);

7 в случае вынужденного перерыва при сварке многопроходных швов с подогревом должно быть обеспечено замедленное охлаждение сварного соединения, а перед продолжением сварки должен быть повторно произведен подогрев свариваемых кромок до установленной температуры;

8 при выполнении сварки стали различных категорий и толщины необходимые температуры подогрева и межпроходную необходимо назначать по стали, для которой эта температура является наиболее высокой.

2.8.17 Эффективный автоподогрев свариваемых кромок в процессе ручной (покрытыми электродами и аргонодуговой неплавящимся электродом) и полуавтоматической сварки в защитных газах может быть обеспечен путем применения блочного метода. Последний заключается в разделении технологически самостоятельного сварного соединения на несколько равных по длине участков-блоков, свариваемых одновременно несколькими сварщиками. Длина блока зависит от толщины свариваемых деталей и рекомендуется:

— до 2000 мм — при сварке стали толщиной до 40 мм включительно;
— до 1500 мм — при сварке стали толщиной свыше 40 до 70 мм включительно;
— до 1200 мм — при сварке стали толщиной свыше 70 мм.

Сварку всех блоков следует выполнять одновременно по всему участку участка без перерывов до заполнения разделки или полного сечения шва. Наложение валиков в пределах одного блока следует производить напорох. При этом для двухсторонних соединений, при наличии соответствующих возможностей, сварка должна выполняться одновременно с двух сторон шва.

Начало и конец каждого слоя в блоке должны быть смешены относительно предыдущего слоя от 20 до 30 мм. Не допускается стыковать блоки в местах пересечения швов.

2.8.18 При выполнении корневых валиков ручной дуговой сваркой (покрытыми электродами и аргонодуговой неплавящимся электродом), а также полуавтоматической сваркой в среде защитных газов должны быть приняты дополнительные меры, обеспечивающие отсутствие образования трещин.

В качестве таких мер рекомендуется применение метода «перевязки валиков» (рис. 2.8.18), а также увеличение размера валиков по высоте сечения до 6 — 8 мм с каждой стороны соединения.

2.8.19 При сварке специальных конструкций, а также основных, имеющих контакт с морской водой, последний проход шва рекомендуется выполнять по методу «отжигающего валика» согласно рис. 2.8.19. Отжигающий валик должен выполняться таким образом, чтобы перекрывать примерно две трети ширины крайнего, относительно поверхности основного металла, валика (прохода).
Правила классификации, постройки и оборудования ПБУ/МСП

При этом для временных сборочных креплений (см. 2.8.12), привариваемых угловым швом без разделки кромок, допускается выполнять отжигающий валик в качестве дополнительного с соответствующим несимметричным увеличением размера углового шва (рис. 2.8.19).

2.8.20 При выполнении работ по сварке на открытых площадках допускается, по отдельному разрешению Регистра, применять специальные меры, позволяющие проводить сварку конструкций без подогрева или при значительном снижении его температуры. К таким мерам относятся:

1. Применение специальных типов высоколегированных сварочных материалов аустенитного или аустенитно-ферритного класса;
2. Предварительная наплавка (с последующей обработкой) свариваемых кромок в цеховых условиях, в том числе с применением сварочных материалов более низкой категории прочности (но не по температуре испытания на ударный изгиб).

2.8.21 При термической обработке (отпуске для снятия остаточных напряжений) сварных конструкций из сталей высокой прочности следует учитывать возможность появления дополнительных неблагоприятных факторов:

1. Образование в сварном соединении трещин отпуска (перво­го и второго рода);
2. Склонность к охрупчиванию при отпуске зоны термического влияния для отдельных типов микролегированных ниобием и ванадием сталей, особенно при их сварке на больших погонных энергиях (свыше 35 — 40 кДж/см).

П р и м е ч а н и е: Признаком наличия склонности сталей к образованию трещин отпуска является одновременное положительное значение параметров AG и P_σR, вычисленных по формулам:

\[AG = Cr + 3,3Mo + 8,1V + 10C - 2; \]
\[P_σR = Cr + Сi + 2Мо + 10V + 7Nb - 5Ti - 2, \]
где Cr, Сi, Mo, V, Nb, Ti, C — процентное содержание в стали соответствующих элементов.

В этой связи, неразрушающий контроль сварных соединений должен проводиться после термической обработки, в том числе с применением методов контроля, обеспечивающих высокую выявляемость плоскостных дефектов.

2.8.22 Возможность проведения и технологии тепловой правки сталей высокой прочности должны определяться на основании рекомендаций изготовителя стали.

Разрешение на выполнение тепловой правки дается Регистром на основании результатов испытаний, выполненных по отдельной программе. Методика проведения испытаний должна учитывать комплексное влияние всех неблагоприятных факторов, имеющих место при изготовлении конструкций в производственных условиях. Результаты испытаний считаются положительными в том случае, если свойства основного металла и сварного соединения после проведения операции тепловой правки находятся на уровне соответствующих требований Правил для основного металла и шва в исходном состоянии.

При этом моделирование реального теплового и деформационного воздействия на металл при тепловой правке реальных конструкций допускается производить с применением крупногабаритных проб-имитаторов.

2.9 СВАРКА ПЛАКИРОВАННОЙ СТАЛИ

2.9.1 Требования настоящей главы распространяются на сварку плакированной стали различных способов производства, а также ее соединений с нержавеющими или низколегированными сталями.

2.9.2 Сварочные материалы, применяемые для изготовления деталей и конструкций из плакированных сталей, должны быть одобрены Регистром и в зависимости от назначения отвечать перечисленным ниже требованиям:

1. выполнение сварки основного слоя должно, как правило, выполняться низколегированными материалами, одобренными Регистром и в зависимости от назначения отвечать перечисленным ниже требованиям;
2. выполнение сварки плакирующего слоя должно выполняться материалами, одобренными для сварки нержавеющей стали соответствующего по составу и свойствам основному слою;
3. выполнение сварки переходного слоя (от низколегированного металла шва к высоколегированному шву плакирующего слоя) должно выполняться специальными материалами, одобренными Регистром и в зависимости от назначения отвечать перечисленным ниже требованиям;
Часть XIII. Сварка

для сварки соответствующего типа нержавеющей стали (соответствующей плакирующему слою) — при предварительной облицовке свариваемых кромок на основном слое. При этом подразумевается, что весь шов целиком выполняется сварочными материалами, соответствующими плакирующему слою.

Примечание: Для сварки переходного слоя и разнородных соединений, как правило, применяются высоколегированные присадочные материалы типа XCrNi2412 (AISI: 309L), X10CrNi2412 (AISI: 309S) и X10CrNiCb2412 (AISI: 309Sc).

2.9.3 Сварщики, выполняющие сварку плакированной стали, должны пройти соответствующее обучение и быть допущены Регистром на основании проведения практических испытаний по отдельной программе.

Примечание: Для сварки переходного слоя и разнородных соединений, как правило, применяются высоколегированные присадочные материалы типа X2CrNi2412 (AISI: 309L), X10CrNi2412 (AISI: 309S) и X10CrNiCb2412 (AISI: 309Sc).

2.9.4 Одобрение технологических процессов сварки плакированной стали проводится Регистром по отдельным программам. Объем испытаний при этом устанавливается индивидуально в каждом конкретном случае с учетом:

.1 типа соединения и деталей подготовки кромок (в том числе со снятием или без металл плакировки);
.2 применяемых технологических процессов сварки и очередности сварки основного и плакирующего слоев;
.3 наличия у изготовителя сварных конструкций одобрения Регистра для технологических процессов, в которых применяются аналогичные сварочные и основные материалы (раздельно для основного и плакирующего слоя);
.4 требований по коррозионной стойкости для металла шва плакирующего слоя по видам коррозионных повреждений (МКК, питтиг коррозия, сероводородное растрескивание)

2.9.5 При выборе конструктивных элементов подготовки кромок под сварку следует учитывать следующие особенности технологии сварки плакированных сталей:

.1 в первую очередь, как правило, должен быть сварен шов со стороны основного слоя и, во вторую очередь, — со стороны плакирующего слоя;
.2 при выполнении шва со стороны основного слоя низколегированными материалами должна исключаться возможность частичного расплавления плакирующего слоя;
.3 для сварки плакирующего слоя корень шва должен быть зачищен механическим способом; .4 перед сваркой плакирующего слоя, как правило, должен быть выполнен промежуточный переходной слой с применением специального типа высоколегированных присадочных материалов;
.5 шов со стороны плакирующего слоя должен быть выполнен по меньшей мере в два слоя. В отдельных случаях, для процессов с незначительным участком основного металла в металле шва (например, типа плазменной наплавки) и соответствующим уровне легирования присадочного материала допускается по согласованию с Регистром выполнять плакирующий шов в один слой при его толщине не менее таковой для плакирующего слоя основного металла;
.6 при сварке шва со стороны плакирующего и основного слоя следует, по возможности, предусмотреть возможность выполнения отжигающих валиков. Для этого в стыковых соединениях возможно частичное удаление металла плакировки, прилегающего к свариваемым кромкам (на ширину 4 — 8 мм в обе стороны), или увеличение угла разделки кромок;
.7 при выполнении сварки шва основного слоя со стороны плакировки низколегированными сварочными материалами стыковых соединений с двухсторонним скосом кромок должны быть приняты меры, исключающие возможность частичного расплавления или повреждения плакирующего слоя основного металла. С этой целью допускается снятие плакирующего слоя основного металла на ширину 4 — 8 мм в обе стороны разделки; .8 в тавровых и крестообразных соединениях со сплошным проваром и с высоким уровнем растягивающих напряжений (обычно при динамических нагрузках) рекомендуется выполнять сварку с частичным удалением плакирующего слоя основной (неразрезной) детали.

Примеры выполнения сварных соединений с учетом перечисленных выше требований и рекомендаций приведены на рис. 2.9.5-1 — 2.9.5-3.

2.9.6 При изготовлении конструкций и деталей из плакированной стали следует принять соответствующие меры для защиты от повреждений, а также загрязнения поверхности плакирующего слоя.

Прихватки и временные сборочные приспособления, используемые при сборке конструкций из плакированной стали под сварку, должны располагаться со стороны основного слоя. Установка временных сборочных и выравнивающих приспособлений (посредством сварки) со стороны плакирующего слоя не допускается.
Правила классификации, постройки и оборудования ПБУ/МСП

2.9.7 Подготовка кромок под сварку должна выполняться механическим способом.

В случае применения тепловой резки (например, плазменная или лазерная), кромки в обязательном порядке следует подвергать дополнительной зачистке. При этом со стороны плакирующего слоя глубина механической зачистки должна составлять 1,0 — 1,5 мм. Снятие скоса при выполнении сварки деталей разной толщины следует выполнять механическим способом со стороны основного слоя.

2.9.8 Технология и режимы сварки плакированных сталей должны соответствовать требованиям соответствующих нормативных документов и инструкциям изготовителей сварочных материалов. При этом следует руководствоваться следующими требованиями и рекомендациями:

1. Выборку корня шва со стороны плакирующего слоя допускается выполнять только с применением механической обработки или шлифовки;

2. Для сварки плакирующего слоя должны, по возможности, применяться электроды и сварочная проволока малого диаметра, а сварка должна выполняться на малой погонной энергии;

3. Для выполнения плакирующего шва в два слоя допускается проводить предварительное выравнивание поверхности металла предыдущего слоя механическим способом или шлифовкой (применяется для переходного слоя и для первого слоя плакировки).

2.9.9 Технология сварки плакированных труб с односторонним доступом (со стороны основного слоя) допускает применение следующих схем, обеспечивающих приемлемые характеристики качества сварных соединений:

1. Выполняется односторонняя сварка на весу плакирующего слоя с обратным формированием корня шва (как правило, наилучшие результаты обеспечивает способ сварки неплавящимся электродом в среде инертного газа с дополнительной газовой защитой корня шва). Присадочный материал рекомендуется подбирать с более высокой степенью легирования по отношению к плакирующему слою (соответственно и с более высокой коррозионной стойкостью), так как неизбежно частичное расплавление металла основного слоя. Заполнение разделки по основному слою выполняется высоколегированными присадочными материалами, пригодными для сварки разнородных соединений (например, типа AISI: 309, 309L, 309SCb);

2. Выполняется односторонняя сварка на весу плакирующего слоя аналогично 2.9.9.1. Заполнение разделки по основному слою выполняется сварочными материалами для сварки нержавеющей стали по предварительно облицованным кромкам. Облицовка кромок производится сва-
Часть XIII. Сварка

3 выполняется односторонняя сварка на весу плацирования слоя аналогична 2.9.9.1. На корневой проход производится двухслойная наплавка присадочными материалами на основе технически чистого железа с обеспечением минимального перемешивания металла слоев. Заполнение разделки по основному слою производится низколегированными сварочными материалами, которые полностью соответствуют категории или марке стали основного слоя плацированной стали; 4 производится сварка всего сечения шва, включая корневую часть и заполнение разделки, высоколегированными присадочными материалами на никелевой основе (например, сплавы типа Inconel 625: 62Ni-22Cr-9Mo и т. п.). Предварительной облицовки кромок по основному слою при этом не требуется.

Выбор конкретного варианта сварки плацированной стали имеет смысл с учетом прочностных характеристик основного слоя и толщины стенки. Например, для толстостенных плацированных труб с основным слоем из стали высокой прочности наиболее приемлемым может являться вариант, соответствующий 2.9.9.3.

2.9.10 Технология сварки стыковых соединений плацированной стали с нержавеющей допускает применение следующих схем заполнения разделки (рис. 2.9.10):

.1 выполняется сварка со сторон основного слоя с применением низколегированных сварочных материалов, отвечающих требованиям 2.5 настоящей части для соответствующих категорий стали;

.2 выполняется механическая зачистка корня шва со стороны плацировки и в соединениях с односторонним окрасом кромок его подварка присадочными материалами для сварки разнородных соединений. В случае соединений с двухсторонней разделкой кромок предварительно выполняется заполнение разделки низколегированными материалами до нижней кромки плацировки и далее производится одно-двухслойная наплавка материалами для сварки разнородных соединений.

П р и м е ч а н и е: В двухсторонних соединениях большой толщины допускается выполнять сварку облицовочных валиков со стороны плацировки не по всей ширине разделки (рис. 2.9.11).

2.9.11 При сварке стыковых соединений плацированной стали с низколегированной рекомендуется применять следующую последовательность операций (рис. 2.9.11):

.1 производится сварка с стороны основного слоя с применением низколегированных сварочных материалов, отвечающих требованиям 2.5 настоящей части для соответствующих категорий стали;

.2 производится механическая зачистка корня шва со стороны плацировки и в соединениях с односторонним окрасом кромок его подварка присадочными материалами для сварки разнородных соединений.
Правила классификации, постройки и оборудования ПБУ/МСП

2.10 СВАРКА КОНСТРУКЦИЙ МЕХАНИЗМОВ И МЕХАНИЧЕСКИХ УСТАНОВОК

2.10.1 Настоящие требования распространяются на сварку конструкций и изделий машиностроения, изготовленных с применением основных и сварочных материалов, отвечающих требованиям части XIII «Материалы» Правил классификации и постройки морских судов, части XII «Материалы» Правил ПБУ/МСП, а также настоящей части. Изготовление конструкций из материалов, не регламентируемых Правилами, должно выполняться по согласованию с Регистром.

2.10.2 Выбор сварочных материалов для сварки конструкций механизмов и механических установок производится исходя из конкретных марок стали, применяемых для изготовления с учетом требований 2.5.4 — 2.5.6.

Если конструкция работает при повышенной температуре или в химически активной среде, сварочные материалы должны выбираться с учетом этих условий.

2.10.3 Для сварки деталей механизмов и механических установок из стали толщиной 30 мм и более должны применяться сварочные материалы, обеспечивающие стойкость сварного соединения против образования холодных трещин, либо изготовитель должен предпринять технологические меры (подогрев, термическую обработку, ограничение минимальной температуры окружающего воздуха при сварке и т. п.) для предотвращения образования холодных трещин.

2.10.4 Сварные швы конструкций, работающих в динамических нагрузках, должны быть выполнены с полным проваром. Переход от основного металла к шву должен быть плавным.

2.10.5 Применение сварки при изготовлении валопровода и коленчатых валов является в каждом случае предметом специального рассмотрения Регистром.

Необходимые условия для этого — выполнение неразрушающего контроля всех сварных швов и гарантированный предел усталостной прочности сварных соединений, принятый в расчетах.

Объем необходимой опытной сварки и программы испытаний должны быть согласованы с Регистром до начала работ.

2.10.6 Применение сварки, наплавки, металлизации распылением и других подобных методов при изготовлении и ремонте изделий машиностроения может быть допущено при положительных результатах испытаний, выполненных по методике, согласованной с Регистром, и подтверждающих возможность применения данного метода на конкретном предприятии.

Восстановление валопроводов из углеродистой стали (содержащей до 0,45% углерода), изношенных или имеющих поверхностные трещины, может допускаться наплавкой, если износ или глубина трещин составляет не более 5% диаметра вала, но не более 15 мм.

2.11 СВАРКА ПАРОВЫХ КОТЛОВ И СОСУДОВ, РАБОТАЮЩИХ ПОД ДАВЛЕНИЕМ

2.11.1 Сварные швы котлов должны иметь маркировку, по которой можно установить, какой сварщик производил сварку.

Продольные и кольцевые швы корпусов котлов должны выполняться с подваркой, за исключением случаев, когда коэффициент прочности сварного шва, согласно 2.1.6 части Х «Котлы, теплообменные аппараты и сосуды под давлением» Правил классификации и постройки морских судов, принят ≤0,7.

Вырезы и отверстия в корпусе котла, по возможности, не должны перерезать кольцевые и продольные швы корпуса котла.

Допустимость приварки к корпусу котлов монтажных креплений, захватов и прочих деталей является в каждом случае предметом специального рассмотрения Регистром.

Продольные и поперечные швы коллекторов, корпусов котлов и сосудов, работающих под давлением, должны выполняться встык. Если выполнение стыковых швов невозможно, конструкция шва является предметом специального рассмотрения Регистром.

2.11.2 Выбор сварочных материалов для сварки котлов и сосудов под давлением производится исходя из конкретных марок стали, применяемых для их изготовления с учетом требований 2.5.4 — 2.5.6.

2.11.3 Применение электродов с рутиловым и кислым покрытием для сварки котлов и сосудов класса I (см. 1.3.1.2 части Х «Котлы, теплообменные аппараты и сосуды под давлением» Правил классификации и постройки морских судов) не допускается; для котлов и сосудов классов II и III допускается при условии, если эти конструкции изготавливаются из углеродистой стали, и толщина свариваемых деталей не превышает 20 мм.
Часть XIII. Сварка

2.11.4 Термическая обработка котлов и сосудов выполняется по стандартам или принимаются во внимание рекомендации изготовителей стали.

Сварные соединения деталей, которые в связи с их размерами или специальной конструкцией нельзя подвергать термической обработке для снятия напряжений в целом, но согласовано с Регистром могут быть обработаны по частям. При этом обработка должна производиться равномерным нагревом достаточно широкого участка шва (около шести толщин листа на обеих сторонах сварного шва) таким образом, чтобы распространение тепловых напряжений в другие районы деталей было исключено. Местная обработка сварочной горелкой не допускается.

2.11.5 При заделке отверстий в котлах вварными заглушками должны выполняться требования национальных стандартов.

2.11.6 Ремонт изношенных стенок котлов и сосудов наплавкой допускается только по согласованию с Регистром. Площадь наплавки должна быть не более 500 см², а глубина — не более 30 % толщины листа. Если эти условия не выполнимы, дефектный участок следует заменить новым листом.

2.11.7 При изготовлении котлов, теплообменных аппаратов и сосудов под давлением, относящихся к классам I и II (см. 1.3.1.2 части X «Котлы, теплообменные аппараты и сосуды под давлением» Правил классификации и постройки морских судов), для проверки механических свойств шов сварных соединений должен быть сварен контрольный планк по изготовлении единичных изделий, серийного изготовления на головном образце изделия, при изменении конструкции основных узлов и деталей изделия и применении новых материалов и способов сварки.

Контрольные планки для изделий, относящихся к классу III, могут изготовляться по требованию Регистра.

2.11.8 Контрольные планки должны прикрепляться к продольному шву котла или сосуда таким образом, чтобы сварной шов планки являлся продолжением шва изделия. Шов планки должен свариваться при тех же технологических условиях, что и шов изделия.

Из этой пробы должны быть изготовлены и испытаны: один покрытый образец — на растяжение, два поперечных образца — на изгиб, три образца — на ударный изгиб, вырезанные согласно рис. 4.2.4.2 части XIV «Сварка» Правил классификации и постройки морских судов.

Образцы для конструкции класса III должны изготавливаться по требованию инспектора Регистра. Условия вырезки образцов из проб и проведения испытаний должны соответствовать 4.2.3.2 и 4.2.3.3 части XIV «Сварка» Правил классификации и постройки морских судов.

2.12 СВАРКА ТРУБОПРОВОДОВ

2.12.1 Тип сварных соединений трубопроводов должен соответствовать стандартам.

2.12.2 Выбор сварочных материалов для сварки трубопроводов производится исходя из конкретных марок стали, применяемых при изготовлении с учетом требований 2.5.4 — 2.5.6.

2.12.3 Сварные стыковые соединения труб должны быть выполнены с полным проваром корня шва. Допускается сварка на удалаемых подкладных кольцах.

2.12.4 Применение оставшихся подкладных колец в стыковых соединениях труб допускается в тех трубопроводах, где они не влияют отрицательно на эксплуатационные свойства. Стыковые соединения фланцев с трубами не должны выполняться на оставшихся подкладных кольцах.

2.12.5 Сварные соединения труб подвергаться термической обработке на трубах из низколегированной стали и при газовой сварке главных паропроводов, работающих при температуре свыше 350 °С.

2.12.6 При сварке труб из хромомолибденовой стали, содержащей 0,8 % или более хрома и более 0,16 % углерода, свариваемые кромки должны подогреваться до температуры 200 — 230 °С. Эта температура должна поддерживаться в процессе сварки.

2.12.7 Свариваемые кромки медных труб с толщиной стенок 5 мм и более перед началом сварки должны подогреваться до температуры 200 — 230 °С. Эта температура должна поддерживаться в процессе сварки.

2.12.8 Возможность ремонта трубопроводов заваркой поврежденных мест является в каждом случае предметом специального рассмотрения Регистра.

2.13 СВАРКА ОТЛИВОК И ПОКОВОК

2.13.1 В следующих случаях сварка стальных отливок и поковок должна производиться независимо от температуры окружающего воздуха с предварительным подогревом либо должна быть приняты другие меры, обеспечивающие выполнение требований к сварным соединениям:
Правила классификации, постройки и оборудования ПБУ/МСП

.1 при содержании углерода в стали отливок или поковок более 0,25 %;
.2 при содержании углерода в стали отливок или поковок более 0,23 %, если отливки и поковки входят в состав корпусных конструкций ПБУ и МСП.

2.13.2 Температура подогрева и режим термической обработки отливок и поковок определяется в зависимости от конструкции, размеров и условий эксплуатации согласно 2.7.2.4, 2.7.3.1 и 2.7.3.6.

2.13.3 Дефекты на стальных поковках и отливках допускается исправлять сваркой только в тех случаях, когда была предварительно проверена свариваемость данной стали и учтены условия работы литой или кованой детали.

Сварка дефектов сваркой, как правило, должна производиться до окончательной термической обработки. Заварка после нее допускается только в исключительных случаях. Дефекты, систематически появляющиеся в поковках и отливках, не допускается исправлять сваркой.

2.13.4 Заварка дефектов в отливках должна производиться после удаления литников и прибылей и тщательной очистки отливок от формовочных материалов, окалины, посторонних включений. Места, подлежащие заварке, должны быть разделаны до здорового металла так, чтобы во всех местах была возможность обеспечить провар.

Стенки подготовленных под заварку мест должны быть пологими, а поверхность подготовленного углубления не должна иметь острых углов.

2.14 СВАРКА ЧУГУНА

2.14.1 Исправление дефектов отливок из чугуна сваркой допускается по согласованию с инспектором Регистра способом, получившим одобрение Регистра на основании результатов испытаний по программе, согласованной с Регистром.

2.15 СВАРКА АЛЮМИНИЯ И ЕГО СПЛАВОВ

2.15.1 Сварочные работы должны производиться наиболее целесообразным способом, обеспечивающим качественное соединение, максимальную его прочность, химический состав, приближающийся к составу основного материала, и достаточную стойкость против коррозии.

2.15.2 Сварные швы должны быть в состоянии располагаться в районах наиболее низких напряжений.

Сварка должна производиться, как правило, в нижнем положении. Снятие усиления сварных швов допускается только по согласованию с Регистром.

2.15.3 Непосредственно перед сваркой (прихваткой) свариваемые кромки деталей из алюминия и его сплавов должны обезжириваться специальными растворителями (ацетон, спирт и др.) и зачищаться стальными проволочными щетками. Прихватки перед сваркой также должны быть зачищены стальной щеткой. При многопроходной сварке должна производиться зачистка щетками каждого предыдущего слоя перед наложением последующего.

2.15.4 Сварочные материалы из аллюминия и его сплавов перед сваркой должны быть зачищены для удаления загрязнений и оксидной пленки.

2.15.5 Допускается сварка алюминиевых сплавов на остающихся или удаляемых подкладках. Подкладки, удаляемые после сварки, должны изготавливаться из нержавеющей стали. Оставшиеся подкладки должны изготавливаться из сплава того же марки, что и свариваемые детали.

2.15.6 При двусторонней сварке после наложением шва с обратной стороны необходимо удалить корень шва до чистого металла рубкой, строгой или фрезерованием. Удаление корня шва абразивными кругами не допускается.

2.15.7 Допускается горячая правка конструкций из алюминия и его сплавов. Температура нагрева при правке должна соответствовать свойствам данного сплава.

2.15.8 Если при сварке применяется флюс, он должен быть по возможности нейтральным. Если же в виде исключения применялся не нейтральный флюс, после сварки он должен быть тщательно удален.

2.15.9 В районе соединения конструкций из алюминиевых сплавов на заклепках все основные сварочные работы должны быть закончены до начала клепки.

2.16 СВАРКА МЕДИ И ЕЕ СПЛАВОВ, ТЯЖЕЛЬНЫХ МЕТАЛЛОВ И ДРУГИХ НЕЖЕЛЕЗНЫХ МАТЕРИАЛОВ

2.16.1 Сварка меди и ее сплавов, тяжелых металлов и других нежелезных материалов производится согласно требованиям национальных стандартов, а при отсутствии последних является в каждом случае предметом специального рассмотрения Регистром.
3 КОНТРОЛЬ СВАРНЫХ SOEDEINENII

3.1 ОБЩИЕ ТРЕБОВАНИЯ

3.1.1 Применяемые методы испытаний.

3.1.1.1 Неразрушающий контроль сварных швов и соединений может выполняться с применением следующих методов:

1. визуального осмотра и измерения;
2. магнитопорошкового (магнитопорошковый контроль);
3. капиллярного (капиллярный контроль, включающий люминесцентный и цветной метод);
4. радиографического (радиографический контроль, включающий рентген- и гаммарадиографический метод);
5. ультразвукового (ультразвуковой контроль);
6. контроль непроницаемости и герметичности.

Применение конкретного метода неразрушающего контроля регламентируется требованиями 3.2 и устанавливается в схеме контроля проекта, подлежащей одобрению Регистром.

3.1.1.2 При составлении схемы контроля должны быть также в полной мере учтены следующие факторы, влияющие на выявляемость дефектов и соответственно достоверность контроля:

1. характер и расположение типичных для данного технологического процесса сварки дефектов;
2. характеристики различных методов неразрушающего контроля по выявляемости дефектов конкретного вида с учетом их расположения и размера;
3. геометрические параметры соединения, ограничивающие возможности применения конкретных методов контроля;
4. доступность контролируемого соединения для дефектоскопии, а также для выполнения ремонта в процессе эксплуатации.

3.1.1.3 Применение радиографического и/или ультразвукового методов контроля для обнаружения и классификации внутренних дефектов должно обязательно предшествовать обнаружению и, при необходимости, исправлению всех поверхностных и подповерхностных дефектов, которые выявляются методами визуального контроля и измерения в сочетании с магнитопорошковым контролем или капиллярной дефектоскопией.

3.1.1.4 Радиографический и ультразвуковой методы контроля имеют существенные различия по характеристикам выявляемости для дефектов различного типа и расположения. Радиографический метод наиболее эффективен для обнаружения таких объемных (трехмерных) несплошностей, как пористость и шлаковые включения, и менее эффективен при обнаружении таких плоскостных (двухмерных) несплошностей, как трещины и несплавления, особенно если плоскость их раскрытия не совпадает с направлением просвечивания.

Ультразвуковой контроль, напротив, наиболее эффективен для обнаружения плоскостных дефектов, которые являются наиболее опасными и недопустимыми в конструкции независимо от линейных размеров.

Ввиду различий в физических основах и характеристиках радиографического и ультразвукового методов контроля могут иметь место случаи расхождения оценки одного и того же участка сварного шва («годен» по одному методу и «не годен» по другому). В этом случае решение о контрольном вскрытии и исправление дефектов должно приниматься с учетом разъяснений 3.1.4.8.

3.1.2 Требования к испытательным лабораториям к персоналу.

3.1.2.1 Неразрушающие испытания и оценка качества сварных соединений ПБУ и МСП должны выполняться испытательными лабораториями (центрами), компетентность и статус удовлетворяют требованиям к аккредитации в соответствии с национальными или международными стандартами. Документом, подтверждающим компетентность испытательной лаборатории, является Свидетельство о признании, выданное Регистром или другим уполномоченным национальным органом. В последнем случае копия Свидетельства о признании с приложениями должна быть представлена инспектору Регистра до начала производства сварочных работ.

3.1.2.2 Неразрушающие испытания сварных соединений и оценка их качества должны выполняться специалистами, прошедшими соответствующее обучение, аттестацию и имеющими опыт практической работы по конкретному методу контроля, который может быть подтвержден документально. Определение уровня квалификации и сертификации персонала в области неразрушающего контроля должны выполняться в соответствии с требованиями национальных стандартов, унифицированных с EN 473. При этом должны соблюдаться следующие требования:

1. область признания Регистром квалификации специалистов по неразрушающему контролю...
для каждого метода ограничивается только теми методическими документами (стандартами), в соответствии с которыми они проходили специальные и практические испытания в процессе освидетельствования (согласно протоколу испытаний);

2 к проведению контроля сварных соединений допускаются специалисты не ниже 1 уровня квалификации для радиографического метода (без права выдачи заключения) и не ниже II уровня для других методов;

3 выдача заключения о контроле конкретным методом, проверка работоспособности аппаратуры, а также составление технологических карт контроля в соответствии с действующими нормативными документами должны выполняться специалистами не ниже II уровня квалификации;

4 согласование технологических карт контроля, разработка методики контроля конкретным методом и/или схем контроля продукции несколькими методами, а также выдача заключения по результатам контроля несколькими методами должны выполняться специалистами III уровня квалификации (см. также 3.1.3.3).

3.1.3 Схема контроля и отчет об испытаниях.

3.1.3.1 Как правило (если это дополнительно не оговорено другими документами, одобренными Регистром), должна быть разработана и представлена Регистру на рассмотрение и одобрение схема (ведомость) контроля сварных соединений корпусных конструкций и трубопроводов (или отдельного изделия, изготавливаемого под наблюдением Регистра), которая должна содержать следующую информацию:

1 детали и сварные соединения, подлежащие контролю на стадии приемки сварных конструкций;

2 объем и методы контроля;

3 расположение контролируемых участков по длине сварного шва;

4 требования по оценке качества сварных соединений;

5 стандарты на проведение испытаний или письменные спецификации на проведение контроля.

3.1.3.2 После окончания сварочных работ на данной конструкции контрольный орган предприятия определяет места (участки) контроля неразрушающим методом согласно одобренной Регистром схеме контроля. При этом Регистр оставляет за собой право изменить расположение отдельных участков, подлежащих неразрушающим испытаниям, или расширить объем испытаний (потребовать проведения контроля дополнительных участков сварных швов), после того как схема контроля была рассмотрена и одобрена.

3.1.3.3 Документы о проведенных испытаниях должны быть подготовлены на все виды проверок (первоначальные, дополнительные и повторные после исправления) и представлены инспектору Регистра вместе с другими документами, подтверждающими результаты испытаний (например, гамма- или рентгеновскими снимками).

Заключения о результатах неразрушающих испытаний должны содержать всю информацию, необходимую согласно требованиям Регистра для конкретных видов неразрушающих испытаний.

3.1.3.4 Результаты повторного контроля (после исправления) должны быть отдельно выделены в отчете об испытаниях.

Заключения об испытаниях должны быть подписаны лицом, непосредственно выполняющим контроль (дефектоскопистом) и ответственным за проведение испытаний, от имени испытательного центра, имеющего квалификацию III уровня для соответствующего метода контроля.

3.1.3.5 Документация о результатах контроля качества сварных соединений должна храниться на предприятии не менее 5 лет и предъявляться, в случае необходимости, по требованию Регистра.

3.1.4 Общие требования к порядку проведения приемочного контроля сварных соединений.

3.1.4.1 Неразрушающий приемочный контроль сварных соединений должен обычно проводиться (если нет других указаний) после завершения всех сварочных и рихтовочных работ до их окраски или грунтовки, или до нанесения гальванических и других покрытий.

При сварке конструкций из стали повышенной прочности, где возможно образование холодных трещин по механизму замедленного разрушения (в том числе под воздействием диффузионного водорода), время после завершения работ по сварке до начала проведения приемочного контроля должно составлять не менее 48 ч. В случае сварки стали высокой прочности этот промежуток времени необходимо увеличить по крайней мере до 72 ч, а по отдельному требованию Регистра, для конструкций большой толщины — до 7 суток.

П р и м е ч а н и е: Данное требование не распространяется на операционный технический контроль, который производится в процессе изготовления продукции согласно требованиям технологического процесса или другой документации. Например, послойный контроль сварных соединений внешним осмотром и измерением, контроль сварных соединений с частично заполненной разделкой кромок и т. п.

3.1.4.2 Все сварные соединения должны первоначально подвергаться приемке по результатам контроля внешним осмотром и измерением в объеме 100 % протяженности с обеих сторон соединения (в случае технической возможности проведения). При этом все недопустимые дефекты
и несовершенства формы шва, а также другие искажения, мешающие проведению контроля другими методами. Неразрушающие испытания должны быть устранены, и место испытаний повторно приняты контрольными органами предприятия-изготовителя сварных конструкций. Регистр оставляет за собой право потребовать назначения дополнительных участков контроля соответствующими методами испытаний в тех местах, где по результатам визуального контроля были обнаружены поверхностные дефекты, свидетельствующие о грубых нарушениях технологического процесса сварки.

3.1.4.3 Если предусмотрена термическая обработка сварных узлов, то приемочный неразрушающий контроль должен производиться после завершения.

П р и м е ч а н и е: Перед проведением термической обработки для снятия остаточных напряжений рекомендуется, а для узлов специальных конструкций из сталей высокой прочности — требуется выполнить предварительный контроль сварных соединений с целью выявления и устранения недопустимых дефектов.

3.1.4.4 Регистр может потребовать проведения повторных неразрушающих испытаний перед вводом сварных соединений в эксплуатацию или при их окончательной приемке в том случае, если эти конструкции были подвергнуты нагрузкам, непредусмотренным расчетом для нормальной эксплуатации (например, при транспортировке к месту монтажа, при испытаниях пробной нагрузкой или давлением, превышающими расчетные эксплуатационные). Виды и объем таких испытаний являются предметом отдельного рассмотрения Регистром в каждом конкретном случае.

3.1.4.5 Недопустимые дефекты, выявленные на всех стадиях контроля сварных соединений, подлежат обязательному исправлению. При этом повторное исправление одного и того же участка сварного соединения допускается проводить только на основании отдельного разрешения Регистра. Исправление дефектов сваркой на одном участке шва, как правило, более двух раз не допускается.

3.1.4.6 Радиографический и ультразвуковой методы неразрушающих испытаний могут применяться как самостоятельно, так и в сочетании согласно 3.1.1, требованиям табл. 3.2.1-1, 3.2.1-2, а также изложенным ниже дополнительным указаниям:

- радиографическому контролю в объеме не менее 10 % от общего количества назначенных участков контроля;
- при использовании ультразвуковой дефектоскопии, как самостоятельного метода приемочных испытаний, для сварных соединений основных и второстепенных конструкций должен проводиться дополнительный радиографический контроль в объеме не менее 10 % от общего количества назначенных участков контроля;
- для сварных соединений, выполненных с применением бесшлаковых методов сварки (например, замедленного газа), в качестве основного метода контроля, как правило, требуется применение ультразвуковой дефектоскопии с дополнительным радиографическим контролем согласно 3.1.4.6.2;
- при сварных соединениях, выполненных по технологии сварки сверху вниз, должны контролироваться с применением в качестве основного метода ультразвуковой дефектоскопии с дополнительным радиографическим контролем в объеме 10 — 20 % от общего числа назначенных участков контроля;
- для соединений, которые были выполнены способами сварки, потенциально опасными с точки зрения возникновения объемных дефектов типа пористости или шлаков (например, сварка покрытыми электродами в монтажных условиях), должен применяться радиографический метод контроля как основной или в дополнение к ультразвуковому в объеме, подлежащему согласованию с Регистром в индивидуальном порядке.

3.1.4.7 Если при первичном или дополнительном контроле сварных соединений любой категории ответственности обнаружены трещины (плоскостные отражатели для ультразвукового контроля), то должны быть приняты следующие меры:

- проведено контрольное вскрытие шва с целью уточнения природы выявленных дефектов с их последующим устранением;
- приостановлены сварочные работы, которые выполняются с применением СПС, по которым был допущен брак;
- выявлены и устранены причины образования трещин с представлением инспектору Регистра исчерпывающей информации о мерах, принятых по их устранению;
- при необходимости внесены коррективы в спецификацию процесса сварки с повторным представлением документа Регистра для одобрения.

При применении для первичного контроля только радиационной дефектоскопии инспектор Регистра может потребовать применения ультразвукового метода для контроля дополнительных или узлов проконтролированных участков.

Решение о возобновлении работ по сварке принимается инспектором Регистра в индивидуаль-
Правила классификации, постройки и оборудования ПБУ/МСП

ном порядке при условии, что меры, принятые предприятием-изготовителем по устранению причин трещинообразования, будут сочтены достаточными.

3.1.4.8 При получении неадекватных результатов оценки качества одного и того же участка сварного соединения для радиографического и ультразвукового методов (например, для специальных конструкций) следует руководствоваться следующими положениями:

1. Для плоскостных дефектов типа трещин, непроваров и несплавлений основанием для контрольного вскрытия и исправления обнаруженных дефектов является заключение «не годен» по результатам контроля любым из применяемых методов;

2. Для объемных дефектов типа пор и шлаков определяющим является заключение по результатам радиографического контроля. При этом с применением радиографического метода контроль должен быть дополнительно проконтролирован два соседних участка, приымкающих к дефектному, и два дополнительных — в пределах технологически самостоятельно сварного соединения или четырех швов малой протяженности (менее 1 м) — в пределах той же секции: по два шва, выполненных непосредственно до и после дефектного.

3.1.4.9 Если при первичном или дополнительному выборочном контроле сварных соединений основных и второстепенных конструкций обнаружены плоскостные дефекты типа трещин, непроваров и несплавлений, то должна быть проконтролирована вся длина технологически самостоятельного сварного соединения или четыре шва малой протяженности (менее 1 м) — в пределах той же секции: по два шва, выполненных непосредственно до и после дефектного.

3.1.4.10 Если при первичном или дополнительном контроле сварных соединений основных и второстепенных конструкций обнаружены плоскостные дефекты типа трещин, непроваров и несплавлений, то должна быть проконтролирована вся длина технологически самостоятельно сварного соединения, выполненного допустимым брак сварщиком.

Для швов малой протяженности (менее 1 м) проверке подлежат все однотипные соединения в составе секции или монтажного соединения, выполненные по единому с дефектным технологическому процессу сварки.

П р и м е ч а н и я: 1. Технологически самостоятельным считается сварное соединение непрерывной длины, имеющее по всей протяженности одинаковую толщину и разделку кромок, выполненное одним способом сварки с применением одних и тех же сварочных материалов на одном режиме сварки в одном и том же или непрерывно меняющемся пространственном положении.
2. К соединениям малой протяженности относятся стыковые соединения деталей полособулавового и таврового профиля (стыковые соединения ребер жесткости и т. п.), а также тавровые соединения (со сплошным проваром) патрубков на настилах, налубках или переборках.

3.2.1 Сварные соединения конструкций ПБУ и МСП всех категорий должны подвергаться контролю внешним осмотром и измерением по всей длине с учетом указаний 3.1.4.2. Объем применения физических методов неразрушающего контроля должен соответствовать указаниям табл. 3.2.1-1 для ПБУ и табл. 3.2.1-2 для МСП.
Часть XIII. Сварка

Таблица 3.2.1-1

Минимальный объем неразрушающего контроля швов сварных соединений ПБУ в % к общей длине швов конструкций

<table>
<thead>
<tr>
<th>Категория конструкции</th>
<th>Типы соединений</th>
<th>Сварные соединения, находящиеся в атмосферной зоне</th>
<th>Сварные соединения, находящиеся в зоне переменного смещивания и под водой</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>визуальный контроль</td>
<td>радиограfический контроль</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td>Специальные</td>
<td>Стыковые</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Тавровые</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Угловым швом</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Основные</td>
<td>Стыковые</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Тавровые</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Угловым швом</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Второстепенные</td>
<td>Стыковые</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Тавровые</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Угловым швом</td>
<td>100</td>
<td>5</td>
</tr>
</tbody>
</table>

П р и м е ч а н и е: Расположение участков контроля сварных соединений, подвергаемых неразрушающему контролю в объеме менее 100 %, определяется по согласованию с Регистром в каждом отдельном случае, с учетом требований 3.2.2, 3.2.4, 3.2.5, 3.2.6 и 3.2.7.

1 Требования к неразрушающему контролю сварных швов, соединяющих конструкции различных категорий, должны устанавливаться как для более высокой категории.

2 Сварные соединения, не обеспечивающие общую прочность, которые станут недоступными или трудно контролируемыми в процессе эксплуатации, должны подвергаться неразрушающим испытаниям (ультразвуковым или радиографическим), по всей длине.

3 Ультразвуковой и радиографический методы неразрушающих испытаний могут применяться как взаимозаменяемые и дополняющие друг друга в зависимости от типа, типа дефектов и технических возможностей их применения. При этом, суммарный минимальный объем контроля, выполнимый одновременно этими двумя методами, должен оставаться неизменным относительно значений, установленных в таблице. Например, для стыковых соединений специальных конструкций ПБУ, находящихся под водой, суммарный объем контроля должен быть не менее 120 %.

4 Для немагнитных материалов можно применять метод капиллярной дефектоскопии.

5 Ультразвуковой контроль соединений, выполненных угловым швом, а также тавровых и/или угловых соединений, подвергаемых неразрушающему контролю, осуществляется при расчётной толщине углового шва более 12 мм.

Применяется следующая схема назначения объемов контроля:

- 10 % — для соединений, воспринимающих статические нагрузки;
- 20 % — для соединений, воспринимающих переменные нагружен.

7 'По месту' означает контроль в объеме от 0 до 5 % по усмотрению инспектора Регистра или проектировщика.

Таблица 3.2.1-2

Минимальный объем неразрушающего контроля швов сварных соединений МСП в % к общей длине швов конструкций

<table>
<thead>
<tr>
<th>Категория конструкции</th>
<th>Типы соединений</th>
<th>Визуальный контроль</th>
<th>Ультразвуковой и радиографический контроль</th>
<th>Магнитопорошковый контроль</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>120</td>
<td>20 — 100</td>
<td>20 — 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Не регламентируется</td>
<td>—</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Специальные</td>
<td>Стыковые</td>
<td>100</td>
<td>60</td>
<td>10 — 50</td>
</tr>
<tr>
<td></td>
<td>Тавровые</td>
<td>100</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Угловым швом</td>
<td>100</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Основные</td>
<td>Стыковые</td>
<td>100</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Тавровые</td>
<td>100</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Угловым швом</td>
<td>100</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

1 Требования к неразрушающему контролю сварных швов, соединяющих конструкции различных категорий, должны устанавливаться как для более высокой категории.

2 Ультразвуковой и радиографический методы неразрушающих испытаний могут применяться как взаимозаменяемые и дополняющие друг друга в зависимости от типа дефектов и технических возможностей их применения (см. 3.1.4.6).

3 По требованию Регистра объем радиографического контроля стыков обшивки элементов специальных конструкций может быть увеличен до 100 % за счет соответствующего уменьшения объема ультразвукового контроля.
4 Для сварных соединений, выполняемых в монтажных условиях, а также полностью недоступных при эксплуатации, суммарный объем применения радиографического и ультразвукового контроля может быть увеличен по требованию Регистра до 150 % для специальных конструкций и до 120 % для основных конструкций (с учетом примечания 1).

5 Для немагнитных материалов должны применяться методы капиллярной дефектоскопии.

По требованию Регистра, согласно указаниям 3.2.4, а также при начале изготовления сварных конструкций, объем контроля магнитопорошковым методом может быть увеличен до 100 % протяженности сварных соединений.

Продолжение табл. 3.2.1-2

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Правила классификации, постройки и оборудования ПБУ/МСП</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Для сварных соединений, выполняемых в монтажных условиях, а также полностью недоступных при эксплуатации, суммарный объем применения радиографического и ультразвукового контроля может быть увеличен по требованию Регистра до 150 % для специальных конструкций и до 120 % для основных конструкций (с учетом примечания 1).</td>
</tr>
<tr>
<td>5</td>
<td>Для немагнитных материалов должны применяться методы капиллярной дефектоскопии.</td>
</tr>
</tbody>
</table>

При выполнении сварных соединений на строительных объектах объем контроля радиографическим или ультразвуковым методом может быть снижен до 20 % при стабильном уровне качества сварных соединений, с применением отчета Регистра о снижении объемов контроля.
3.3 ОЦЕНКА КАЧЕСТВА СВАРНЫХ СОЕДИНЕНИЙ

3.3.1 Критерии оценки качества сварных швов конструкций ПБУ и МСП должны соответствовать требованиям согласованных Регистром норм или признанных стандартов, а также требованиям 3.3 части XIV «Сварка» Правил классификации и постройки морских судов.

При отсутствии других требований качество сварных соединений должно соответствовать требованиям табл. 3.3.1.

<table>
<thead>
<tr>
<th>Категория конструкции</th>
<th>Таблица 3.3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Наименьший допускаемый балл по 5-балльной системе¹</td>
</tr>
<tr>
<td>Специальные</td>
<td>2</td>
</tr>
<tr>
<td>Основные</td>
<td>2</td>
</tr>
<tr>
<td>Второстепенные</td>
<td>3</td>
</tr>
</tbody>
</table>

¹Согласно признанным стандартам.
²Согласно 3.3.2 части XIV «Сварка» Правил классификации и постройки морских судов.

4 СВАРОЧНЫЕ МАТЕРИАЛЫ

4.1 ОБЩИЕ ТРЕБОВАНИЯ

4.1.1 Для сварки конструкций ПБУ и МСП должны применяться допущенные Регистром сварочные материалы, изготавливаемые признанными Регистром предприятиями.

Общие положения по допуску сварочных материалов, а также методам испытаний в зависимости от способа сварки устанавливаются согласно разд. 4 части XIV «Сварка» Правил классификации и постройки морских судов с учетом изложенного ниже.

4.1.2 При допуске сварочных материалов, предназначенных для сварки стали толщиной 50 мм и более для специальных конструкций, должны быть выполнены испытания, подтверждающие стойкость металла шва и сварного соединения против хрупких разрушений при температуре, указанной в 3.2 части XII «Материалы».

Методика, объем, условия проведения и критерии оценки результатов этих испытаний должны быть согласованы с Регистром в каждом конкретном случае.

4.1.3 Временное сопротивление разрыву сварного соединения должно быть не ниже временного сопротивления разрыву стали, используемой для данного элемента конструкции.

Для металла шва и зоны термического влияния значение работы удара и температура испытаний должны быть аналогичны требуемым для основного металла.

4.1.4 Электроды, соединения проволока-флюс и проволока-газ, предназначенные для сварки специальных и основных конструкций из стали повышенной и высокой прочности, должны обеспечивать в наплавленном металле содержание диффузионного водорода, отвечающие индексам H10 или H5. При этом электроды должны быть только с основным покрытием.

Для сварки второстепенных конструкций из стали толщиной до 20 мм, не испытывающих воздействия динамических нагрузок, могут быть использованы электроды с рутиловым покрытием.

4.2 ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К СВАРОЧНЫМ МАТЕРИАЛАМ

4.2.1 Сварочные материалы, применяемые для изготовления специальных и основных конструкций в толщинах, превышающих 30 мм, по требованию Регистра могут подвергаться испытаниям для определения параметра трещиностойкости СТОД согласно изложенным ниже указаниям.

Испытания на СТОД металла стыкового сварного соединения могут выполняться как дополнительные при первоначальном получении Сертификата об одобрении сварочных материалов. Если предприятие-изготовитель сварочных материалов не выполнило этого вида испытаний, либо проводило их при меньших, чем требуется толщинах основного металла, то они должны быть проведены на стадии одобрения Регистром технологических процессов сварки.

4.2.2 При предъявлении требований к параметру трещиностойкости СТОД металла сварного шва, минимальное количество корректных образцов, испытанных при расчетной температуре эксплуатации Тₜₘ, должно быть не менее трех. Значение СТОД, определяемое как среднее из трех результатов испытаний, должно быть не ниже требований табл. 4.2.2-1 при использовании материала для сварки специальных конструкций, и не ниже требований табл. 4.2.2-2 при использовании материала для сварки основных конструкций.
Правила классификации, постройки и оборудования ПБУ/МСП

Таблица 4.2.2-1

<table>
<thead>
<tr>
<th>Толщина, не более мм</th>
<th>Группа прочности норм.</th>
<th>Y32 и Y36</th>
<th>Y40</th>
<th>Y42</th>
<th>Y46</th>
<th>Y50</th>
<th>Y55</th>
<th>Y62</th>
<th>Y69</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>—</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,15</td>
<td>0,15</td>
<td>0,20</td>
</tr>
<tr>
<td>50</td>
<td>0,10</td>
<td>0,10</td>
<td>0,15</td>
<td>0,15</td>
<td>0,15</td>
<td>0,15</td>
<td>0,20</td>
<td>0,20</td>
<td>0,25</td>
</tr>
<tr>
<td>70</td>
<td>0,10</td>
<td>0,15</td>
<td>0,20</td>
<td>0,20</td>
<td>0,20</td>
<td>0,20</td>
<td>0,25</td>
<td>0,25</td>
<td>0,30</td>
</tr>
</tbody>
</table>

Таблица 4.2.2-2

<table>
<thead>
<tr>
<th>Толщина, не более мм</th>
<th>Группа прочности норм.</th>
<th>Y32 и Y36</th>
<th>Y40</th>
<th>Y42</th>
<th>Y46</th>
<th>Y50</th>
<th>Y55</th>
<th>Y62</th>
<th>Y69</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>—</td>
<td>—</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,15</td>
<td>0,15</td>
</tr>
<tr>
<td>50</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
<td>0,15</td>
<td>0,15</td>
<td>0,15</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>70</td>
<td>0,10</td>
<td>0,15</td>
<td>0,20</td>
<td>0,20</td>
<td>0,20</td>
<td>0,20</td>
<td>0,20</td>
<td>0,25</td>
<td>0,25</td>
</tr>
</tbody>
</table>

.1 при испытании трех корректных образцов ни один из полученных результатов не должен быть менее 70 % от среднего;
.2 при испытании пяти и более корректных образцов допускается снижение минимального полученного результата до 50 % от среднего.

Для материала сварных соединений толщиной свыше 70 мм возможность его применения для специальных и основных элементов определяется по согласованным с Регистром методам расчета крупной прочности и на основании специально определяемых характеристик вязкости разрушения К1с или Jс.

4.2.3 Испытание на CTOD металла сварных соединений производится в соответствии с 2.2 части XII «Материалы» со следующими дополнениями:

4.2.3.1 Типы образцов:
.1 образцы прямоугольного сечения на трехточечный изгиб,
.2 образцы квадратного сечения на трехточечный изгиб,
.3 компактные образцы на внешцентренное растяжение.

Ориентация образцов в сварной пробе определяется требованиями Регистра.

При испытаниях сварного соединения толщиной до 50 мм, при распространении трещины вдоль шва рекомендуется применять образцы прямоугольного сечения. При направленных рас пространении трещины поперек шва применяются образцы квадратного сечения. Толщина образцов должна быть по возможности приближена к натурной толщине сварного соединения. Для толщины свыше 50 мм рекомендуется применение компактных образцов. Толщина компактных образцов должна выбираться максимально возможной для конкретного сварного соединения из следующего рекомендуемого ряда: 50 мм, 75 мм, 100 мм.

4.2.3.2 При определении трещинностойкости металла сварных соединений надрез следует выполнять так, чтобы вершина трещины по возможно большей длине ее фронта располагалась в требуемой зоне сварного соединения, определяемой по требованию Регистра (центр шва, металл вблизи линии сплавления и др.). Технологические параметры сварочного процесса и вид разделки должны соответствовать контролируемому сварному соединению. Перед разметкой и нанесением надреза необходимо выполнить травление и исследование структуры металла. Точность результатов следует обеспечивать увеличением количества испытываемых образцов (до 8 — 10 на температуру испытания) и отборкой после испытания тех, где трещина выпала за пределы исследуемой зоны.

4.2.3.3 Разрешается испытывать образцы, изготовленные из сварных заготовок, имеющих угловые деформации, после правки. Правка применяется так же, как для образцов из основного металла.

4.2.3.4 Для образцов с остаточными сварочными напряжениями, а также подвергнутых правке, допускается механическое снятие остаточных напряжений. Рекомендуемый метод механического снятия остаточных напряжений приведен в 2.2 части XII «Материалы».

4.2.3.5 Для испытаний с расположением надреза по линии сплавления или какой-либо другой целевой микроструктуры считается достаточным наличие по фронту начальной усталостной трещины участка целевой микроструктуры протяженностью 15 % толщины образца, если другого не указано Регистром. Для испытаний с расположением надреза по центру шва считается достаточным 70 % металла шва по фронту начальной трещины.
ЧАСТЬ XIV. АВТОМАТИЗАЦИЯ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования разд. 1 — 5 и 8 — 10 распространяются на оборудование автоматизации, подлежащее техническому наблюдению независимо от знака автоматизации в символе класса ПБУ или МСП.

Требования разд. 6, 7 распространяются на установки, к основному символу класса которых в соответствии с 2.4 части I «Классификация» добавляется один из знаков автоматизации AUT, в соответствии с 6.1.1, и/или один из знаков DYNPOS, с указанием соответствующего класса системы динамического позиционирования, в соответствии с 7.1.2.

Требования разд. 6 применимы также к установкам, не имеющим знака автоматизации в символе класса, но оборудованным центральным постом управления и системами дистанционного управления и контроля механизмов и устройств.

1.1.2 Настоящая часть Правил содержит технические требования к указанному в 1.1.1 оборудованию автоматизации и определяет минимально необходимый объем дистанционного автоматизированного управления, защиты, аварийно-предупредительной сигнализации и индикации.

1.1.3 Для установок с атомными энергетическими установками объем автоматизации для получения знака автоматизации в символе класса является предметом специального рассмотрения Регистром.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

1.2.1 Определения и пояснения, относящиеся к общей терминологии Правил, указаны в части I «Классификация».

В настоящей части приняты следующие определения.

АВТОМАТИЗИРОВАННАЯ УСТАНОВКА — совокупность механизмов и устройств, оборудованных системами или устройствами автоматизации, обеспечивающими дистанционное автоматическое или автоматизированное управление и контроль установки.

БЕСПЕРЕБОЙНОЕ ПИТАНИЕ — вид электрического питания ответственных устройств, реализуемый совместной работой основного, аварийного и резервного источников, при котором обеспечивается непрерывность питания в случае выхода из строя основного источника электроэнергии.

КВИТИРОВАНИЕ — подтверждение вручную сигнала аварийно-предупредительной сигнализации или вызова.

ОБОРУДОВАНИЕ АВТОМАТИЗАЦИИ — контрольно-измерительные приборы, датчики, исполнительные устройства и другие оборудование, предназначенные для автоматического или дистанционного автоматизированного управления, защиты и аварийно-предупредительной сигнализации, т. е. дистанционного контроля (мониторинга) за механизмами или установками.

ПОСТ УПРАВЛЕНИЯ И КОНТРОЛЯ — специальное помещение или пространство, в котором сосредоточены органы управления и/или контроля, предназначенные для: управления и контроля пропульсивной установкой или системой динамического позиционирования ПБУ; электроэнергетической установкой; управления и контроля аварийной электроэнергетической установкой; управления и контроля другими механизмами, системами и устройствами, обеспечивающими функционирование ПБУ или МСП в нормальных или аварийных условиях, например, системой остановки технологического оборудования, системой дистанционной аварийной остановки механизмов, системой радиосвязи и внутренней громкоговорящей связи и командной телефонии и т. п.

РЕЗЕРВНЫЙ ИСТОЧНИК ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ — источник электрической энергии, независимый от основного и аварийного источников энергии. Резервный источник может быть использован для обеспечения бесперебойного питания определенных видов ответственного оборудования.

СИСТЕМА ДИСТАНЦИОННОГО АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ (СИСТЕМА ДАУ) — оборудование автоматизации, предназначенное для управления механизмом с удаленного поста, обеспечивающее автоматическое
выполнение промежуточных операций сбора и обработки информации об объекте и выработку команд для исполнительных устройств, реализующих задаваемый оператором режим работы механизма.

Система аварийно-предупредительной сигнализации (Система АПС) — вид одновременно действующей световой и звуковой сигнализации для привлечения внимания персонала и обязывающий его к определенным действиям. Система АПС механической установки предназначена для представления персоналу необходимой информации о достижении контролируемыми параметрами установленных предельных значений и об изменении нормальных режимов работы механизмов и устройств.

Система обобщенной АПС — часть системы АПС, в которой выполнено объединение отдельных сигналов аварийно-предупредительной сигнализации для формирования одного обобщенного сигнала на главном посту дистанционного управления и/или в общественных и жилых помещениях. Каждый обобщенный сигнал АПС должен иметь обозначение, характеризующее обобщаемые сигналы, например, «Параметры электростанции», «Параметры котельной установки» и т. п.

Система защиты — оборудование, предназначенное для определенного автоматического воздействия на управляемую установку с целью предупреждения аварии или ограничения ее последствий.

Система индикации — оборудование, предназначенное для получения информации о значениях определенных физических параметров, или об изменении определенных состояний механизмов и устройств.

Устройство автоматизации — часть системы автоматизации, составленная из элементов, соединенных в одно конструктивное и функциональное целое.

Элемент системы (или устройства) автоматизации — самостоятельное в конструктивном отношении изделие, например, усилитель, датчик, реле, логический элемент, используемое в устройствах и системах автоматизации.

1.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

1.3.1 Общие положения о порядке классификации, техническом наблюдении за проектированием и постройкой ПБУ или МСП, изготовлением оборудования и деталей оборудования, освидетельствовании, а также требования к технической документации, предъявляемой на рассмотрение и одобрение Регистру по ПБУ или МСП в целом, изложены в части I «Классификация» Правил ПБУ /МСП и в Общих положениях о классификационной и иной деятельности.

1.3.2 Техническому наблюдению при изготовлении, а также на ПБУ или МСП, подлежат устройства и системы автоматизированного управления и контроля:

1.1 механизмов и движителей пропульсивной установки, подруливающих и рулевых устройств самоходных ПБУ;
2.2 аппаратуарной и другим оборудованием электростанций;
3.3 приводных механизмов генераторов и преобразователей;
4.4 приводных механизмов системы подъема и спуска самоподъемных ПБУ;
5.5 балластных систем погружения и всплытия погружных и полуподвных ПБУ;
6.6 брашиллей, лебедок и других палубных механизмов;
7.7 вспомогательных механизмов (насосов, компрессоров и т. п.);
8.8 главных и вспомогательных котлов;
9.9 холодильных установок;
10.10 аварийно-предупредительной сигнализации, сигнализации обнаружения пожара и т. д.;
11.11 измерительных и регистрирующих устройств осадки, крена, дифферента ПБУ и т. д.;
12.12 других систем по требованию Регистра.

1.4 ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

1.4.1 Для каждого вида указанного в 1.3.2 оборудования автоматизации Регистру должна быть представлена следующая техническая документация:
1.1 функциональное описание с указанием технических параметров и условий эксплуатации (пояснительная записка);
2.2 блок-схемы систем управления и контроля;
3.3 чертежи лицевых панелей пультов с указанием функциональных элементов;
4.4 чертеж общего вида (расположение основных компонентов);
5.5 перечень контролируемых параметров установки для системы АПС и подсистемы обобщенных сигналов АПС;
6.6 описание источников питания систем автоматизации и схемы их подключения;
7.7 руководства по монтажу и эксплуатации;
8 схемы прокладки кабельных трасс и средства защиты от электромагнитных помех;
9 программа заводских испытаний и нормы испытаний;
10 анализ видов отказов и их последствий (для сложных систем автоматизации, как например, систем управления динамическим позиционированием класса 2 и 3, или интегрированных комплексных компьютерных систем);
11 документация по программному обеспечению и информация о его тестировании у разработчика.

2 КОНСТРУКЦИЯ СИСТЕМ АВТОМАТИЗАЦИИ

2.1 ОБЩИЕ ТРЕБОВАНИЯ

2.1.1 Конструкция элементов и устройств должна обеспечивать средний межремонтный ресурс систем автоматизации не менее 5000 ч.

2.1.2 Системы автоматизации и их элементы и устройства должны надежно работать при следующих температурах окружающей среды:
 от 0 до +45 °С в закрытых помещениях;
 от −25 до +45 °С на открытой палубе.

Электронные элементы и устройства, предназначенные для установки (монтажа) в распределительные штиты, пульты или отдельные оболочки, должны надежно работать при температуре окружающей среды до 55 °С.

Температура до 70 °С не должна вызывать повреждений систем автоматизации и их элементов и устройств.

2.1.3 Системы автоматизации должны надежно работать при относительной влажности воздуха 75 % и температуре 45 °С, или при относительной влажности воздуха 80 ± 3 % и температуре 40 ± 2 °С, а также при относительной влажности воздуха 95 ± 3 % и температуре 25 ± 2 °С.

2.1.4 Системы автоматизации должны надежно работать при вибрациях с частотами от 2 до 100 Гц; при частотах от 2 до 13,2 Гц с амплитудой перемещений ± 1 мм и при частотах от 13,2 до 100 Гц с ускорением 0,7 g.

Системы автоматизации, установленные на источниках вибрации (дизели, компрессоры и т.п.) или в румпельном отсеке, должны надежно работать при вибрациях с частотами от 2 до 100 Гц; при частотах от 2 до 25 Гц с амплитудой перемещений ± 1,6 мм и при частотах от 25 до 100 Гц с ускорением 4,0 g.

Оборудование автоматизации должно надежно работать также при ударамах с ускорением 5,0 g и частоте в пределах 40 — 80 ударов в минуту.

2.1.5 Системы автоматизации должны надежно работать при длительных кранах до 22,5° и при качке 22,5° с периодом качки 8 ± 1 с.

2.1.6 Степень защиты оболочек систем автоматизации и их элементов и устройств должна быть выбрана в соответствии с местом установки согласно 2.4 части X «Электрическое оборудование».

2.1.7 Электрические и электронные элементы и устройства должны надежно работать при отклонениях от номинальных значений параметров питания, указанных в табл. 2.1.7.

Оборудование автоматизации, получающее питание от аккумуляторных батарей, должно надежно работать при отклонениях напряжения от номинального значения:
от +30 до −25 % — для оборудования, не отключаемого от батареи во время зарядки;
от +20 до −25 % — для оборудования, отключаемого от батареи во время зарядки.

2.1.8 Пневматические и гидравлические элементы и устройства должны быть работоспособными при колебаниях давления рабочей среды ±20 % от номинального значения.

2.1.9 Должны быть приняты меры по обеспечению электромагнитной совместимости оборудования автоматизации (см. 2.2 части X «Электрическое оборудование»), а также по обеспечению допустимого уровня создаваемых им радиопомех.

<table>
<thead>
<tr>
<th>Параметр питания</th>
<th>Отклонение от номинальных значений</th>
</tr>
</thead>
<tbody>
<tr>
<td>Напряжение</td>
<td>Длительное</td>
</tr>
<tr>
<td>Частота</td>
<td>+6 — 10 *</td>
</tr>
<tr>
<td></td>
<td>± 10</td>
</tr>
<tr>
<td></td>
<td>± 10</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Для постоянного тока ±10 %.

Трехкратное исчезновение питания с интервалом в 30 с не должно оказывать влияния на работоспособность систем автоматизации.

2.1.8 Пневматические и гидравлические элементы и устройства должны быть работоспособными при колебаниях давления рабочей среды ±20 % от номинального значения.

2.1.9 Должны быть приняты меры по обеспечению электромагнитной совместимости оборудования автоматизации (см. 2.2 части X «Электрическое оборудование»), а также по обеспечению допустимого уровня создаваемых им радиопомех.
2.1.10 Оборудование автоматизации должно надежно работать при отклонениях формы питающего напряжения от идеальной синусоиды, указанных в 3.2.1.4 части X «Электрическое оборудование».

2.1.11 Элементы и устройства, предназначенные к установке в местах с особыми рабочими условиями (с повышенной или пониженной температурой, интенсивным механическим воздействием и т. д.), должны быть рассчитаны и испытаны на эти условия.

2.1.12 Для датчиков, предназначенных для замера температуры сред, находящихся под давлением, должны предусматриваться карманы, прочность которых должна быть рассчитана на максимальное давление, как и корпус или трубопровод оборудования, в котором установлен датчик.

2.1.13 На измерительных трубопроводах перед датчиками давления должны предусматриваться трехходовые клапаны, или другие аналогичные устройства, для возможности функциональной проверки датчиков без их демонтажа и для пропуска. Доступ к операциям с этими клапанами должен быть возможен только уполномоченному персоналу посредством специального инструмента.

2.1.14 Системы автоматизации должны быть выполнены таким образом, чтобы при выходе из строя световых или звуковых устройств сигнализации в одной цепи не нарушалась работоспособность остальных цепей.

2.2 ТРЕБОВАНИЯ К ЭЛЕМЕНТАМ И УСТРОЙСТВАМ

2.2.1 Конструкция элементов и устройств, используемых в системах автоматизации, должна предусматривать удобство их монтажа, настройки и замены. Винтовые соединения должны иметь средства против самоотворачивания. Механический резонанс элементов и устройств в условиях вибрации с коэффициентом усиления более 5 не допускается.

2.2.2 Пневматические и гидравлические элементы и устройства не должны выходить из строя при кратковременных полутонкогатых превышениях давления рабочей среды.

2.2.3 Контактные поверхности электрических штепсельных соединений должны быть сконструированы и расположены так, чтобы предотвращалось повышение контактного сопротивления, ограничивающее работоспособность.

2.2.4 Подвод кабелей к шкафам или соединительным коробкам в машинных помещениях должен быть выполнен снизу или сбоку. В случае подвода сбоку кабель должен иметь направленную вниз петлю. Ввод кабелей сверху допускается только через герметичные сальники, или специальные конструкции, предотвращающие попадание жидкостей внутрь устройства. В местах ввода кабелей, особенно в местах присоединения их к подвижным элементам и устройствам, должны быть предусмотрены приспособления для разгрузки кабелей от натяжения.

2.2.5 Печатные платы должны покрываться изолирующим лаком со стороны, на которой располагаются соединительные проводники.

2.2.6 Регулирующие элементы, предназначенные для начальной настройки, должны быть защищены от самопроизвольного изменения приведенной настройки. Должно быть возможным повторное отопление регулирующих элементов.

2.2.7 Серводвигатели должны быть такого исполнения, которое исключает возможность самопроизвольного бесконтрольного изменения их положения.

2.2.8 Все модули, клеммные платы, кабельные подключения и точки контроля на элементах и устройствах должны иметь четкую маркировку. Маркировка датчиков, блоков логики и исполнительных механизмов должна содержать информацию об их функциональном назначении с тем, чтобы можно было идентифицировать их на чертежах и в перечнях устройств и систем.

2.2.9 Информационные (сигнальные) цепи должны быть выполнены таким образом, чтобы не допускать повреждений модуля или связанных с ним элементов при их неисправностях. Не должно возникать повреждений модуля или соседнего элемента в случае короткого замыкания, замыкания на землю или обрыва линии, передающей сигнал от измерительного элемента к другим устройствам. Такие неисправности должны приводить к относительно безопасному состоянию модуля или элемента, с подачей сигнала АПС.

2.2.10 Трубопроводы гидравлических и пневматических устройств автоматизации должны быть изготовлены из металлических материалов. В пневматических устройствах допускается применение пластмассовых трубопроводов при выполнении следующих требований к ним. Трубопроводы и другие элементы, изготовленные из пластмасс должны иметь достаточную механическую прочность, низкую термопластичность, высокую маслостойкость и огнестойкость, что должно быть подтверждено соответствующими испытаниями.
2.3 ОБЩИЕ ТРЕБОВАНИЯ К АВТОМАТИЗИРОВАННЫМ СИСТЕМАМ УПРАВЛЕНИЯ МЕХАНИЗМАМИ И УСТАНОВКАМИ

2.3.1 Заменяемые элементы, имеющие возможность их регулирования, а также точки контрольных измерений (гнезда, клеммы) должны быть расположены таким образом, чтобы к ним был обеспечен свободный доступ.

2.3.2 Должны быть приняты меры для предотвращения возможности неправильной замены съемных блоков (кассет), имеющих штепсельные соединения, а также меры по их надежному фиксированию в рабочем положении. Если этого требуют функциональные или конструктивные особенности элементов и устройств, то их расположение, обеспечивающее правильный монтаж, должно быть четко обозначено, или их исполнение должно быть таким, чтобы была исключена возможность монтажа в другом положении.

2.3.3 Конструкция устройств должна быть такой, чтобы она позволяла производить контрольные измерения (контроль исправности) во время их работы.

2.3.4 Системы автоматизированного управления должны быть выполнены так, чтобы замена элементов и устройств другим типом не влияла на работоспособность и не требовала сложной подрегулировки. Необходимое регулирование должно быть возможно при помощи простых средств.

2.3.5 Электрические и электронные системы автоматизированного управления должны быть снабжены защитными устройствами, обеспечивающими селективное отключение поврежденных частей системы.

2.3.6 Системы управления должны быть выполнены на принципе выхода из строя в безопасную сторону.

2.3.7 Возможность автоматического или дистанционного включения механизмов и установок, остановленных срабатыванием защитного устройства, должно осуществляться только после ручного возврата защитного устройства в исходное положение. Иное решение подлежит специальному рассмотрению Регистром.

2.3.8 Применяемые в гидравлических схемах управления жидкости должны длительное время сохранять свои физические свойства при всех условиях эксплуатации, иметь достаточное смазочное свойство, температуру воспламенения паров не ниже 60 °С, не вызывать повреждений элементов и трубопроводов и не быть токсичными.

2.3.9 Должна быть обеспечена возможность очистки фильтров во время работы.

2.3.10 Гидравлические системы автоматизированного управления не должны быть соединены с другими системами и должны питаться от отдельных цистерн. В исключительных случаях по согласованию с Регистром для исполнительных устройств может использоваться жидкость из других систем при наличии очистительных устройств.

2.3.11 Питательные трубопроводы, относящиеся к цистерн для гидравлических устройств, должны быть расположены в нижних частях цистерн с учетом изменений уровня жидкости при эксплуатации и при качке для исключения возможности образования воздушных пробок.

2.3.12 Пневматические системы автоматизированного управления должны быть снабжены устройствами, обеспечивающими требуемую степень очистки и допускаемое влагосодержание рабочего воздуха.

2.3.13 Пневматические системы автоматизации главных энергетических установок и электростанций, как правило, должны иметь два устройства для очистки и осушки воздуха, соединенных между собой таким образом, чтобы работа одного из них была возможна, когда другое отключено.

Одно устройство для очистки и осушки воздуха может быть допущено, если его очистка производится автоматически, или конструкция обеспечивает возможность быстрой замены фильтрующих элементов без необходимости прекращения подвода воздуха.

2.3.14 Питательные трубопроводы пневматических систем автоматизированного управления должны иметь предохранительные клапаны, срабатывающие при превышении рабочего давления более чем на 10 % от номинального. Редукционные клапаны (если имеются) должны быть дублированными.

2.3.15 Гидравлические, пневматические и электрические или электронные элементы и устройства, устанавливаемые совместно в пультах, шкафах и блоках, должны быть так отделены друг от друга, чтобы проникнуть в трубопроводах и пластинах и в их соединениях не могли вызвать повреждения пневматических, электронных и электрических элементов и устройств.

Пульты, шкафы и блоки, в которых размещается оборудование, содержащее жидкую рабочую среду, должны снабжаться устройствами для возврата собранной от утечки жидкости.

2.3.16 Полная или частичная потеря питания в системах автоматизированного или дистанционного управления не должна приводить к опасным состояниям.
2.3.17 Загрязнение воздуха не должно оказывать влияния на работоспособность устройств с воздушным охлаждением. При применении принудительного охлаждения должны быть приняты меры, предотвращающие выход из строя охлаждаемого оборудования в случае отказа системы охлаждения с подачей сигнала АПС.

2.4 СИСТЕМЫ АВАРИЙНО-ПРЕДУПРЕДИТЕЛЬНОЙ СИГНАЛИЗАЦИИ, ЗАЩИТЫ, ИНДИКАЦИИ И РЕГИСТРАЦИИ

2.4.1 Система аварийно-предупредительной сигнализации (АПС).

2.4.1.1 Система аварийно-предупредительной сигнализации должна быть независима от систем управления и защитных устройств, т. е. неисправности и повреждения этих устройств не должны оказывать влияния на работу системы АПС.

2.4.1.2 Должны быть приняты меры по обеспечению системы АПС самоконтролем; по крайней мере при таких повреждениях, как короткое замыкание, обрыв цепи и замыкание на корпус.

2.4.1.3 Система АПС должна одновременно подавать световые и звуковые сигналы. При этом должна быть обеспечена возможность одновременного указания более чем одной неисправности.

2.4.1.4 Световые сигналы в ЦПУ, или на местных постах должны быть индивидуальными и указывать причину срабатывания системы АПС и, как правило, должны быть выполнены в виде мигающего света. При подтверждении (квитировании) мигающий световой сигнал должен переходить в постоянный.

Полное погасание светового сигнала должно быть возможным лишь после устранения неисправности, или после отключения от АПС неисправной части контролируемой системы.

2.4.1.5 Для звуковых сигналов допускается применение обычных устройств, однако не менее двух для всей системы АПС. При квитировании звуковой сигнализация должна отключаться и после его отключения система должна быть немедленно готова к приему вновь поступающих сигналов о неисправностях даже в случае, если причины имеющихся неисправностей еще не устранены. Одновременно с квитированием звукового сигнала в ЦПУ должны отключаться звуковые и световые сигналы в машинных помещениях и на блоках обобщенной сигнализации в жилых и общественных помещениях. Однако квитирование сигнала АПС на блоках обобщенной сигнализации (БОС) в ГПУ и в районе жилых помещений не должно вызывать отключения звукового сигнала в ЦПУ и/или в машинном помещении. В машинных помещениях должны быть предусмотрены дополнительные световые и звуковые устройства (колонки) идентификации сигналов АПС. Для них должны применяться цвета и символы, приведенные в табл. 2.4.1.5. Проблесковые сигналы должны излучать светодиодный свет в течение не менее 50 % времени цикла и иметь частоту импульсов в диапазоне от 0,5 до 1,5 Гц. Звуковой сигнал АПС в машинных помещениях должен быть четко слышен, несмотря на выход из строя одного из подающих сигнал устройств.

<table>
<thead>
<tr>
<th>Сигнал</th>
<th>Цвет</th>
<th>Символ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сигнализация обнаружения пожара в местах, иных чем машинные помещения</td>
<td>Красный</td>
<td></td>
</tr>
<tr>
<td>Сигнализация обнаружения пожара в машинных помещениях</td>
<td>Красный</td>
<td></td>
</tr>
<tr>
<td>Сигнал АПС</td>
<td>Желтый</td>
<td></td>
</tr>
<tr>
<td>Неисправность рулевого устройства</td>
<td>Желтый</td>
<td></td>
</tr>
<tr>
<td>Уровень воды пожарных колодцев</td>
<td>Желтый</td>
<td></td>
</tr>
<tr>
<td>Сигнализация контроля дееспособности машинного персонала</td>
<td>Желтый</td>
<td></td>
</tr>
<tr>
<td>Телефон</td>
<td>Белый</td>
<td></td>
</tr>
<tr>
<td>Машинный телеграф. Подача команды</td>
<td>Белый</td>
<td></td>
</tr>
</tbody>
</table>

2.4.1.6 Самоустранившиеся неисправности должны восприниматься системой АПС таким...
образом, чтобы сигнал сохранялся до момента его подтверждения (квитирования). Звуковые сигналы АПС должны быть отличны от звуковых сигналов других систем. Звуковые сигналы (за исключением колокола) должны иметь частоту от 200 до 2500 Гц. Могут быть предусмотрены средства регулировки частоты звуковых сигналов в указанных пределах. Формы звуковых сигналов АПС должны соответствовать табл. 2.4.1.6. Уровень звукового давления в одном метре от источника звука должен быть не ниже 75 дБ и более чем на 10 дБ выше уровня окружающего шума, существующего при нормальной работе оборудования в МО. Уровень звукового давления сигнала в помещении не должен превышать 120 дБ. Уровень звукового давления должен измеряться в полосе частот 1/3 октав относительно частоты основной гармоники сигнала. Для обеспечения требуемого уровня звучания сигналов АПС в больших помещениях и помещениях с повышенным уровнем шума должны устанавливаться несколько звуковых сигнальных устройств.

<table>
<thead>
<tr>
<th>№</th>
<th>Форма сигнала</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td></td>
<td>- сигнал общесуточной тревоги</td>
</tr>
<tr>
<td>1.2</td>
<td>Специальные сигналы для расписания по тревогам</td>
<td>- сигнал обнаружения пожара в местах отличных от машинных помещений</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>- сигнал обнаружения пожара в местах отличных от машинных помещений; - сигнал обнаружения пожара в машинных помещениях; - сигнал предупреждения о пуске системы объемного пожаротушения; - машинный телеграф (подача команды)</td>
</tr>
<tr>
<td>3.1</td>
<td></td>
<td>- сигнал АПС; - неисправность руевого устройства; - уровень воды льяльных колодцев; - сигнализация контроля дееспособности машинного персонала; - телефон; - машинный телеграф (подача команды)</td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td>- сигнал АПС; - неисправность руевого устройства; - уровень воды льяльных колодцев; - сигнализация контроля дееспособности машинного персонала</td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td>- сигнал АПС; - неисправность руевого устройства; - уровень воды льяльных колодцев; - сигнализация контроля дееспособности машинного персонала</td>
</tr>
<tr>
<td>3.4</td>
<td></td>
<td>- сигнал АПС; - неисправность руевого устройства; - уровень воды льяльных колодцев; - сигнализация контроля дееспособности машинного персонала</td>
</tr>
</tbody>
</table>
Правила классификации, постройки и оборудования ПБУ/МСП

2.4.1.7 Полное или частичное отключение системы АПС должно четко распознаваться в ЦПУ с выдачей сигнала. Световые сигналы и/или индикация параметров в компьютерных системах АПС не должны утрачиваться (теряться) из-за кратковременных провалов напряжения питания или колебаний напряжения и частоты сети.

Должны быть предусмотрены конструктивные средства защиты от случайного или несанкционированного вмешательства, которое может привести к изменениям в программах или величинах предельных значений контролируемых параметров (установок).

2.4.1.8 Система АПС должна быть выполнена так, чтобы можно было производить проверку ее функций во время нормальной работы механизмов.

2.4.1.9 Кратковременное прекращение питания системы АПС не должно приводить к потере поступивших перед этим сигналов.

2.4.1.10 Независимо от объема автоматизации установок, а также порядка контроля за их работой система АПС должна подавать сигнал при:

1. достижении контролируемыми параметрами предельных значений;
2. срабатывании систем защиты;
3. отсутствии энергии для питания отдельных систем автоматизации, или включения отдельных источников энергии;
4. изменениях других параметров или состоянии, сигнализация о которых предписывается требованиями настоящей части.

Сигнализация о неисправности механизмов должна быть предусмотрена на пультах дистанционного управления этими механизмами.

2.4.1.11 Система АПС должна быть выполнена так, чтобы относящиеся к механической или электрозергетической установке сигналы поступали в первую очередь на пульты (ниты) в машинные помещения и ЦПУ, а также на блоки обобщенной сигнализации и индикации в жилые, служебные и общественные помещения, где может находиться обслуживающий механическую установку персонал. Затем, если эти сигналы не будут подтверждены в течение определенного периода времени (например, 2 мин), они должны поступать на главный пульт управления и контроля (ГПУ) ПБУ или МСП.

2.4.1.12 В системе АПС должны быть приняты меры против ложных срабатываний, вызываемых кратковременными изменениями параметров, связанных с качкой, включением и отключением механизмов и т. п.

2.4.1.13 Сигнализация вызова персонала в машинное помещение.

Должна быть предусмотрена сигнализация вызова персонала, обслуживающего механическую установку, в МО или ЦПУ, приводимая в действие:

1. вручную из ЦПУ или с местного пульта управления главными механизмами;
2. автоматически, системой АПС, если аварийно-предупредительный сигнал по механической установке не был подтвержден на пульте в МО или ЦПУ в течение определенного периода времени (например, 2 мин). Эта сигнализация должна быть выведена на блоки обобщенной сигнализации в жилые, служебные и общественные помещения, где может находиться обслуживающий механическую установку персонал.

2.4.1.14 Сигнализация «Персонал в машинном помещении».

Для периодически необслуживаемых машинных помещений должна быть предусмотрена сигнализация «Персонал в машинном помещении», подтверждающая на главный пульт управления (ГПУ) безошибочное работоспособное состояние дежурного механика, находящегося в машинном помещении без сопровождения.

Эта сигнализация включается в режим ожидания на определенный период времени, но не более 30 мин:

1. вручную дежурным механиком при периодическом посещении машинного помещения для осмотра механизмов и вызывается им при выходе;
2. автоматически, при срабатывании АПС механической установки, когда дежурный механик должен явиться в машинное помещение для принятия мер по сигналу АПС. Отключение сигнализации «Персонал в машинном помещении» в этом случае должно быть возможным только после квитирования сигнала АПС.

За 3 мин до срабатывания на ГПУ аварийного сигнала «Персонал в машинном помещении» должен подаваться предупредительный сигнал дежурному механику, находящемуся в машинном помещении, о необходимости заблаговременного квитирования указанного выше сигнала, которое должно производиться в конце каждого (например, 30-минутного) периода в течение всего времени нахождения дежурного механика в машинном помещении.

2.4.2 Системы защиты.

2.4.2.1 Системы защиты автоматизированных механизмов должны предусматриваться только для параметров, отклонения которых могут привести к серьезному повреждению, полному выходу из строя или взрыву. В системе защиты должны быть предусмотрена индикация, указывающая параметр, по которому сработала защита.

2.4.2.2 Системы защиты должны быть независимыми от систем управления и систем АПС, включая датчики, таким образом, чтобы неисправности и повреждения этих систем, включая
Часть XIV. Автоматизация

3 ПИТАНИЕ СИСТЕМ АВТОМАТИЗАЦИИ

3.1 ОБЩИЕ ТРЕБОВАНИЯ

3.1.1 Если для установок или механизмов ответственного назначения предусматривается питание от основного и от аварийного источников энергии, то системы или устройства автоматизации этих установок должны также получать питание от указанных источников энергии. Различающиеся по напряжению виды электрического питания должны быть осуществлены отдельными фидерами.

3.1.2 Питание систем управления пропульсивных установок должно осуществляться двумя независимыми фидерами. Один из этих фидеров должен быть подключен к главному распределительному щиту, а другой может быть подключен к щиту для ответственных потребителей или, как исключение, к ближайшему распределительному щиту. Переключение на основной фидер на резервный должно осуществляться автоматически с подачей сигнала на пост управления.

3.1.3 При питании систем автоматизации отдельных вспомогательных механизмов от фидеров питания их приводов должна быть обеспечена возможность включения резервного вспомогательного механизма и подключения питания системы автоматизации к его фидеру питания в случае потери питания в цепи привода работающего вспомогательного механизма.
3.1.4 Питание гидравлических и пневматических систем автоматизации должно осуществляться от двух источников. Второй источник должен автоматически включаться при падении давления с подачей сигнала АПС.

Снабжение систем автоматизации рабочим воздухом от системы пускового воздуха допускается, если обеспечивается автоматическое заполнение воздуходеякнорожителей и выполняются требования 2.3.15, 2.3.16.

3.1.5 Воздух для пневматических систем автоматизации не должен содержать масла, влаги и других загрязнителей. Для исключения образования конденсата воздух должен иметь систему подогрева или иные средства, обеспечивающие исключение образования конденсата во всем диапазоне рабочих температур.

3.1.6 Системы АПС и защиты должны иметь основное и резервное питание. Для резервного питания должен быть предусмотрен независимый резервный источник энергии (например, аккумуляторная батарея), переключение на который должно осуществляться автоматически при обесточивании основного питания с подачей сигнала АПС.

Емкость резервного источника энергии должна быть рассчитана на питание систем АПС и защиты в течение 30 мин.

3.1.7 Питание системы управления приводных механизмов генераторов должно быть независимым от наличия напряжения на шинах ГРЩ.

4 АВТОМАТИЗИРОВАННЫЕ МЕХАНИЗМЫ И УСТАНОВКИ

4.1 ОБЩИЕ ТРЕБОВАНИЯ

4.1.1 Механизмы и установки должны быть построены в соответствии с применимыми к ним требованиями соответствующих частей Правил и оборудованы местными постами управления и устройствами АПС и индикации.

4.1.2 Механизмы и установки, имеющие возможность автоматического или дистанционного пуска, на местных постах управления должны иметь устройства для отключения автоматического или дистанционного управления.

В случае неисправности в системе автоматического или дистанционного управления должна сохраняться возможность местного управления.

4.1.3 Переключение режимов работы с местного управления на автоматическое управление или дистанционное управление должно быть возможно только на местных постах управления. Переключение с дистанционного управления на автоматическое управление допускается производить на постах дистанционного управления.

4.1.4 При нарушении заданной последовательности операций система программного автоматического управления должна прекратить выполнение программы и привести механизмы в безопасное состояние с обязательной подачей аварийно-предупредительного сигнала в местах управления, где предусмотрена постоянная вахта.

4.1.5 При наличии системы топливного газа для питания электроэнергетической установки должна быть предусмотрена блокировка между системой подачи газа и вентиляцией защитного кожуха газопровода. При подаче газа в зону, где возможно образование взрывоопасных концентраций, система автоматического управления должна включать устройство для отключения автоматического или дистанционного управления.

4.1.6 Автоматическое прекращение подачи газа должно предусматриваться при:

- обнаружении газа в рабочей зоне с концентрацией более 60 % от нижнего предела взрывчатости;
- обнаружении газа в зоне, где возможен взрыв;
- прекращении вентиляции газопровода;
- обнаружении пожара в машинном помещении.

4.2 АВТОМАТИЗИРОВАННЫЕ ПРОПУЛСИВНЫЕ УСТАНОВКИ

4.2.1 Система дистанционного автоматизированного управления пропульсивной установкой ПБУ должна производить пуск и остановку, а также управление частотой вращения движителей, величиной и направлением упора в пределах всей области работы пропульсивной установки.

4.2.2 Система дистанционного автоматизированного управления должна обеспечивать следующее:
Часть XIV. Автоматизация

.1 при вводе различных команд в быстрой последовательности должна быть выполнена команда, введенная последней, независимо от рабочего состояния установки;

.2 установка частоты вращения или величины и направления упора должна быть возможна одним органом управления;

.3 в процессе задания частоты вращения пропульсивной установки должна быть предусмотрена функция автоматического прохождения зон критической частоты вращения, независимо от заданного режима;

.4 система дистанционного автоматизированного управления и машинных телеграфов должны быть независимы друг от друга так, чтобы неисправность одной системы не оказывала влияния на работу другой системы; допускается для обеих систем использовать один и тот же орган управления;

.5 должна быть предусмотрена сигнализация о потере питания и неисправностях в системе дистанционного автоматизированного управления;

.6 для механизмов пропульсивной установки, которые обслуживаются автономными вспомогательными электрическими двигателями, которые останавливаются при потере напряжения на ГРЩ, должна быть предусмотрена возможность дистанционного или автоматического программного их запуска при восстановлении электрической энергии;

.7 сохранение заданного режима работы механизмов пропульсивной установки и движителей при выходе из строя дистанционного автоматизированного управления до момента перехода на управление с местного поста управления, или вывод установки в безопасную сторону (остановка движителей), если сохранение заданного режима практически неосуществимо или непоследовательно;

.8 дистанционное автоматизированное управление должно обеспечивать выполнение аварийных маневров, при которых изменение скорости самоходной ПБУ и движение в противоположном направлении должны быть достигнуты за возможно короткое время. При этом автоматически должны быть сняты ограничения мощности, которые были отрегулированы на значения мощности меньше номинальной.

4.2.3 При наличии нескольких постов управления пропульсивной установкой пост в ЦПУ должен быть доминирующим по отношению к посту управления на ходовом мостике (ГПУ).

Таким же должен быть пост управления в машинном помещении у механизмов пропульсивной установки по отношению к посту управления в ЦПУ.

Перевод управления на доминирующий пост и обратно должен быть возможен только с доминирующего поста, причем в любой момент времени и вне зависимости от положения органов дистанционного управления (перевод управления должен осуществляться персоналом по возможности без значительных изменений частоты вращения и упора пропульсивной установки).

Перевод управления должен сопровождаться подачей звукового и светового сигнала на всех постах управления. На постах должна быть предусмотрена световая сигнализация (индикация), укаzuющая, с какого поста осуществляется управление.

Возможность одновременного управления с разных постов должна быть исключена. Если на постах предусматривается несколько органов управления (например, на крыльях ходового мостика и в центре), то эти органы управления должны быть механически или электрически синхронизированы.

На всех постах управления, включая отключенные, должна быть предусмотрена неотключаемая индикация заданных машинным телеграфом команд.

4.2.4 Устройство для экстренной остановки механизмов пропульсивной установки должно быть независимым от системы дистанционного автоматизированного управления, систем аварийно-предупредительной сигнализации и защиты, а также от судовой сети, если для работы этого устройства требуется электрическая энергия.

4.2.5 Система защиты может быть выполнена так, чтобы при неисправностях, не вызывающих непосредственного повреждения пропульсивной установки, происходило автоматическое уменьшение мощности.

4.2.6 У пропульсивных установок с двигателями внутреннего сгорания должна поддерживаться автоматически в допустимых пределах температура рабочих сред:

- охлаждающей воды цилиндров;
- охлаждающей воды (среды) поршней;
- охлаждающей среды форсунок;
- смазочного масла;
- топлива при работе на тяжелом тонале, если отсутствует регулирование вязкости.

У пропульсивных установок с другими приводными механизмами автоматическое регулирование температуры рабочих сред должно быть согласовано с Регистром.

4.2.7 Количество последовательных удачных пусков пропульсивной установки, выполняемых системой ДАУ от неполноценного источника энергии для пуска должно быть не менее требуе-
мых в 3.2.4 части VIII «Системы и трубопроводы», причем нормальное функционирование ДАУ не должно ограничиваться в случае снижения давления пускового воздуха, или снижения емкости пусковых аккумуляторных батарей, ниже пределов срабатывания аварийно-предупредительной сигнализации.

Количество неудачных автоматических попыток пуска должно быть ограничено двумя - тремя, чтобы после последней неудачной попытки пуска, осуществляемой ДАУ, запас пускового воздуха, или емкости пусковых аккумуляторных батарей, было бы достаточно для выполнения вручную половины числа пусков, требуемых в 3.2.4 части VIII «Системы и трубопроводы», или 13.7.2 части X «Электрическое оборудование».

4.2.8 Установки с дизель-редукторными агрегатами (с двумя двигателями и более) должны быть спроектированы таким образом, чтобы при срабатывании защиты одного двигателя другие оставались в работе на режимах, исключающих их перегрузку.

4.2.9 На пультах управления должна быть предусмотрена постоянная индикация о выполнении системой управления задаваемых оператором команд. Контролируемые параметры механизмов автоматизированных пропульсивных установок, места замера, предельные значения параметров и виды автоматической защиты и индикации параметров, представляемой в ЦПУ, приведены в табл. 4.2.9.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Контролируемый параметр</th>
<th>Место замера</th>
<th>Предельные значения параметров (АПС)</th>
<th>Автоматическая защита механизмов</th>
<th>Индикация параметров в ЦПУ</th>
<th>Пояснения</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Двигатели внутреннего сгорания</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Система смазки</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.1</td>
<td>Давление смазочного масла</td>
<td></td>
<td>Мин.</td>
<td>Стоп</td>
<td>Постоянная</td>
<td>Авт. старт резервного насоса</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Перепад давления смазочного масла</td>
<td></td>
<td>Макс.</td>
<td></td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>1.1.3</td>
<td>Температура смазочного масла</td>
<td></td>
<td>Макс.</td>
<td></td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>1.1.4</td>
<td>Поток смазочного масла из дублирующих</td>
<td></td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.5</td>
<td>Концентрация масляного тумана</td>
<td></td>
<td>Макс.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.6</td>
<td>Уровень масла</td>
<td></td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Система смазки турбонасосителя</td>
<td></td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.1</td>
<td>Давление смазочного масла турбонасосителя</td>
<td></td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.2</td>
<td>Температура смазочного масла подшипников ГТН</td>
<td></td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.3</td>
<td>Уровень масла смазки турбонасосителя</td>
<td></td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Система охлаждения забортной воды</td>
<td></td>
<td>Мин.</td>
<td>Авт. старт резервного насоса</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.3.1</td>
<td>Давление забортной воды</td>
<td></td>
<td>Мин.</td>
<td>Авт. старт резервного насоса</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Система охлаждения пресной воды</td>
<td></td>
<td>Мин.</td>
<td>Авт. старт резервного насоса</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.4.1</td>
<td>Давление или поток в системе охлаждения цилиндров</td>
<td></td>
<td>Мин.</td>
<td>Авт. старт резервного насоса</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.4.2</td>
<td>Температура охлаждаемой воды</td>
<td></td>
<td>Мин.</td>
<td></td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>1.4.3</td>
<td>Уровень охлаждаемой воды</td>
<td></td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>Система продувочного воздуха</td>
<td></td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5.1</td>
<td>Температура продувочного воздуха</td>
<td></td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>№ п/п</td>
<td>Контролируемый параметр</td>
<td>Место замера</td>
<td>Предельные значения параметров (АПС)</td>
<td>Автоматическая защита механизмов</td>
<td>Индикация параметров в ЦПУ</td>
<td>Пожелания</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>-------------------------------------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>1.6</td>
<td>Система топлива</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6.1</td>
<td>Давление топлива после фильтра</td>
<td>На входе</td>
<td>Мин.</td>
<td>Авт. старт резервного насоса</td>
<td></td>
<td>Постоянная</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Вязкость топлива после фильтра или температура топлива</td>
<td>Перед ТНВД</td>
<td>Макс.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6.3</td>
<td>Уровень топлива</td>
<td>В расходной цистерне</td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6.4</td>
<td>Утечка топлива из трубопроводов в.д.</td>
<td>После ТНВД</td>
<td>Наличие</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6.5</td>
<td>Концентрация газа</td>
<td>Масляные помещений</td>
<td>Макс. 5</td>
<td>Остановка двигателя</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6.6</td>
<td>Концентрация газа</td>
<td>Подпоршневые пространства</td>
<td>Макс.</td>
<td>Активация с блокированных клапанов</td>
<td>Действительно при использование установок с двухтопливными (газ — жидкое топливо) двигателями</td>
<td></td>
</tr>
<tr>
<td>1.6.7</td>
<td>Концентрация газа</td>
<td>Картер</td>
<td>Макс.</td>
<td>Активация с блокированных клапанов</td>
<td>Для тройных двухтопливных (газ — жидкое топливо) двигателей</td>
<td></td>
</tr>
<tr>
<td>1.6.8</td>
<td>Давление инертного газа</td>
<td>Между концентрическими трубами трубопровода</td>
<td>Мин.</td>
<td>Активация с блокированных клапанов</td>
<td>Требуется при использовании установок с двухтопливными (газ — жидкое топливо) двигателями при наличии трубопровода с двойными стенками, пространство между которыми заполнено инертным газом под давлением, превышающим давление газового топлива</td>
<td></td>
</tr>
<tr>
<td>1.6.9</td>
<td>Концентрация газа</td>
<td>Вентиляционный канал или вентиляционная труба</td>
<td>Макс.</td>
<td>Активация с блокированных клапанов</td>
<td>Требуется при использовании установок с двухтопливными (газ — жидкое топливо) двигателями при наличии трубопровода, проложенных в каналах или трубах с искусственной вентиляцией</td>
<td></td>
</tr>
<tr>
<td>1.6.10</td>
<td>Неисправность зажигания</td>
<td>В калюм цилиндра</td>
<td>Отсутствие воспламенения язычка</td>
<td>Активация с блокированных клапанов</td>
<td>Для двухтопливных (газ — жидкое топливо) двигателей. Контроль за воспламенением топлива может быть заменен контролем за давлением в каждом цилиндре</td>
<td></td>
</tr>
<tr>
<td>1.6.11</td>
<td>Неисправность форсунок газового топлива и вспомогательных форсунок жидкого топлива</td>
<td>Каждая форсунка</td>
<td>Неисправность</td>
<td>Активация с блокированных клапанов</td>
<td>Для двухтопливных (газ — жидкое топливо) двигателей</td>
<td></td>
</tr>
<tr>
<td>№ п/п</td>
<td>Контролируемый параметр</td>
<td>Место замера</td>
<td>Предельные значения параметров (АПС)</td>
<td>Автоматическая защита механизмов</td>
<td>Индикация параметров в ЦПУ</td>
<td>Пояснения</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>--------------</td>
<td>--------------------------------------</td>
<td>--------------------------------</td>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1.7</td>
<td>Система выхлопных газов</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7.1</td>
<td>Температура отходящих газов</td>
<td></td>
<td>Макс.</td>
<td>Снижение нагрузки</td>
<td>Постоянная</td>
<td>При мощности > 500 кВт/цил.</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Отклонение от среднего значения температуры отходящих газов</td>
<td></td>
<td>Макс.</td>
<td>Снижение нагрузки</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>Система пускового воздуха и воздуха управления</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8.1</td>
<td>Давление пускового воздуха</td>
<td></td>
<td>Мин.</td>
<td></td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.8.2</td>
<td>Давление воздуха управления</td>
<td></td>
<td>Мин.</td>
<td></td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>Нагрузка двигателя</td>
<td></td>
<td>Макс.</td>
<td></td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td>Частота вращения двигателя</td>
<td></td>
<td>Мин.</td>
<td></td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.11</td>
<td>Сверхобороты (разное) двигателя</td>
<td></td>
<td>Мин.</td>
<td></td>
<td>Стоп</td>
<td></td>
</tr>
<tr>
<td>1.12</td>
<td>Питание систем управления, защиты и АПС</td>
<td></td>
<td></td>
<td></td>
<td>Потери питания</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Паровые турбины</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Давление смазочного масла</td>
<td></td>
<td>Мин.</td>
<td>Стоп турбины</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Перепад давления смазочного масла</td>
<td></td>
<td>Мин.</td>
<td></td>
<td>Стоп турбины</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Температура смазочного масла</td>
<td></td>
<td>Мин.</td>
<td></td>
<td>Стоп турбины</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Уровень смазочного масла</td>
<td></td>
<td>Мин.</td>
<td>Стоп турбины</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Температура пара</td>
<td></td>
<td>Мин.</td>
<td>Стоп турбины</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Давление пара</td>
<td></td>
<td>Мин.</td>
<td>Стоп турбины</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Давление пара</td>
<td></td>
<td>Мин.</td>
<td>Стоп турбины</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Давление</td>
<td></td>
<td>Мин.</td>
<td>Стоп турбины</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Уровень воды</td>
<td></td>
<td>Мин.</td>
<td>Стоп турбины</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Уровень воды</td>
<td></td>
<td>Мин.</td>
<td>Стоп турбины</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>Давление воды</td>
<td></td>
<td>Мин.</td>
<td>Стоп турбины</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>Соленость конденсата</td>
<td></td>
<td>Мин.</td>
<td>Стоп турбины</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>Вибрация турбины</td>
<td></td>
<td>Мин.</td>
<td>Стоп турбины</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>Осевой сдвиг ротора</td>
<td></td>
<td>Мин.</td>
<td>Стоп турбины</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>Давление пара</td>
<td></td>
<td>Мин.</td>
<td>Стоп турбины</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td>Давление забортной воды</td>
<td></td>
<td>Мин.</td>
<td>Стоп турбины</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Газотурбинные двигатели (главные и вспомогательные)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Давление смазочного масла</td>
<td></td>
<td>Мин.</td>
<td>Остановка ГТД</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Температура смазочного масла</td>
<td></td>
<td>Мин.</td>
<td>Остановка ГТД</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Температура подшипников</td>
<td></td>
<td>Мин.</td>
<td>Остановка ГТД</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Температура газа</td>
<td></td>
<td>Мин.</td>
<td>Остановка ГТД</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Обрыв факела или неисправность системы зажигания или перекос температур по жаровым трубам</td>
<td></td>
<td>Мин.</td>
<td>Остановка ГТД</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>№ п/п</td>
<td>Контролируемый параметр</td>
<td>Место замера</td>
<td>Предельные значения параметров (АПС)</td>
<td>Автоматическая защита механизмов</td>
<td>Индикация параметров в ЦПУ</td>
<td>Пожелания</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>--------------------------------------</td>
<td>----------------------------------</td>
<td>---------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>3.6</td>
<td>Система автоматического запуска</td>
<td></td>
<td>Сигнал по факту</td>
<td>Мин.</td>
<td>Постоянная</td>
<td>При работе на газе остановка ГТД</td>
</tr>
<tr>
<td>3.7</td>
<td>Давление топлива</td>
<td>Перед форсунками</td>
<td>Мин.</td>
<td>Постоянная</td>
<td>При работе на газе остановка ГТД</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Давление топлива</td>
<td>На входе в ГТД</td>
<td>Мин.</td>
<td>Постоянная</td>
<td>При работе на газе остановка ГТД</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Температура топлива</td>
<td>Перед форсункой</td>
<td>Макс., мин. Макс.</td>
<td>По вызову</td>
<td>При работе на вязких топливах</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>Перепад давления</td>
<td>На входном воздухоподводном фильтре</td>
<td>Макс.</td>
<td>Остановка ГТД</td>
<td>По вызову</td>
<td>Для вспомогательных ГТД только сигнализация</td>
</tr>
<tr>
<td>3.11</td>
<td>Выборка ГТД</td>
<td>На каждом роторе</td>
<td>Макс.</td>
<td>Остановка ГТД</td>
<td>По вызову</td>
<td>Для вспомогательных ГТД только сигнализация</td>
</tr>
<tr>
<td>3.12</td>
<td>Осевой сдвиг ротора</td>
<td></td>
<td>Макс.</td>
<td>Остановка ГТД</td>
<td>По вызову</td>
<td>Остановка по частоте вращения силовой турбины</td>
</tr>
<tr>
<td>3.13</td>
<td>Частота вращения турбины</td>
<td>На каждом роторе</td>
<td>Макс.</td>
<td>Постоянная</td>
<td>Постоянно</td>
<td></td>
</tr>
<tr>
<td>3.14</td>
<td>Уровень масла</td>
<td>В цистерне смазочного масла</td>
<td>Мин.</td>
<td>По вызову</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>Автоматическая остановка ГТД</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.16</td>
<td>Загазованность машинного отделения</td>
<td>Машинное отделение</td>
<td>Макс.</td>
<td>Остановка ГТД</td>
<td>Постоянная</td>
<td>При работе на газе</td>
</tr>
<tr>
<td>3.17</td>
<td>Температура под кожухом</td>
<td>Под кожухом</td>
<td>Макс.</td>
<td>Постоянная</td>
<td>Постоянно</td>
<td></td>
</tr>
<tr>
<td>3.18</td>
<td>Температура газа за ГТД</td>
<td>За ГТД</td>
<td>Макс.</td>
<td>Постоянная</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.19</td>
<td>Притяжение систем управления, защиты и АПС</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Валопроводы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Температура упорного подшипника (или смазочного масла на выходе)</td>
<td></td>
<td>Макс.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Температура опорных подшипников (или смазочного масла на выходе)</td>
<td></td>
<td>Макс.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Температура подшипника дейдвуда (или наличие потока смазочного масла)</td>
<td></td>
<td>Макс.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Уровень смазочного масла в цистерне для смазки или поток охлаждающей среды дейдвуда</td>
<td></td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ВРШ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Давление гидравлического масла</td>
<td>За фильтром</td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Уровень гидравлического масла</td>
<td>Банк</td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Электрическое питание</td>
<td>Силовое и в системах управления</td>
<td>Потеря</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Редукторы и муфты</td>
<td>На входе</td>
<td>Мин.</td>
<td>Стоп</td>
<td>Постоянная</td>
<td>Вместо «Стоп» двигатель допускается отключение муфты (при ее наличии)</td>
</tr>
<tr>
<td>6.2</td>
<td>Температура смазочного масла</td>
<td>На выходе</td>
<td>Макс.</td>
<td>Снижение нагрузки</td>
<td></td>
<td>При мощности 2250 кВт и более</td>
</tr>
<tr>
<td>6.3</td>
<td>Температура подшипников</td>
<td></td>
<td>Макс.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

П р и м е ч а н и е: По согласованию с Регистром вместо снижения нагрузки для двигателей внутреннего сгорания допускается предусматривать специальный световой и звуковой сигналы.
4.3 АВТОМАТИЗИРОВАННЫЕ КОТЕЛЬНЫЕ УСТАНОВКИ

4.3.1 Требования настоящей главы распространяются на котельные установки с топочными устройствами, работающими на жидким топливе.

4.3.2 Паровые котлы должны быть снабжены автоматическими регуляторами уровня воды и горения, т. е. автоматического поддержания давления пара в установленном диапазоне.

4.3.3 Автоматизированные котлы должны иметь по меньшей мере два независимых друг от друга датчика уровня воды с различно расположенными по высоте точками замера, один из которых должен быть предусмотрен только для защиты от аварий вследствие предельно низкого уровня воды.

Второй датчик может быть использован дополнительно для защиты по низкому уровню воды, а также для сигнализации и для системы регулирования.

4.3.4 Должна быть обеспечена возможность дистанционного отключения автоматизированных котельных установок из ЦПУ или поста управления, в котором предусмотрена постоянная вахта.

4.3.5 Автоматические топочные устройства должны иметь блокировки, позволяющие подавать топливо в топочное пространство котла только тогда, когда выполнены следующие условия:

1. топливо обладает необходимой для хорошего распыления вязкостью (температурой);

2. топочное пространство вентилировано так, что обеспечивается нормальное воспламенение факела форсунки и обеспечивается достаточный обмен воздуха в топочном пространстве;

3. отрегулирована минимально допустимая подача топлива к горелкам, обеспечивающая устойчивое горение факела.

4.3.6 У автоматических топочных устройств подача топлива к форсункам должна прекращаться автоматически в следующих случаях:

1. при отсутствии пламени в течение не более 5 с с момента начала подачи топлива;

2. при недостаточной для распыления вязкости (температуре) топлива;

3. при снижении параметров пара или воздуха, предназначенных для распыления топлива;

4. при снижении подачи топлива ниже уровня устойчивого горения факела.

4.3.7 Приведение в действие котельных установок из холодного состояния и после срабатывания защиты должно быть возможно только с местного поста управления.

4.3.8 В случае неудавшегося зажигания топлива вторичное включение форсунок должно быть возможным только с местного поста управления после соответствующей процедуры предварительного вентилирования топочного пространства.

4.3.9 Контролируемые параметры автоматизированных котельных установок, места замера, предельные значения параметров и виды автоматической защиты и индикации параметров приведены в табл. 4.3.9.

Таблица 4.3.9

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Контролируемый параметр, место замера</th>
<th>Предельные значения параметров АПС</th>
<th>Автоматическая защита</th>
<th>Индикация в ЦПУ</th>
<th>Пояснения</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Паровые котлы</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Давление пара в барабане котла</td>
<td>Макс.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Температура пара за пароперегревателем</td>
<td>Макс.</td>
<td>Остановка</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Температура пара за пароохладителем</td>
<td>Макс.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Уровень воды в барабане котла</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>Давление питательной воды за насосом</td>
<td>Мин.</td>
<td>Остановка</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>Давление топлива перед форсункой</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>Уровень воздуха или пара для распыла</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>Вязкость (температура) топлива перед форсункой</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>Давление воздуха и пара и температура перед топочным устройством</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td>Соединительной топлива</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.11</td>
<td>Факел</td>
<td>Обрыв</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.12</td>
<td>Уровень топлива в расходной цистерне</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.13</td>
<td>Температура топлива в расходной цистерне</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>1.14</td>
<td>Электрическое питание для управления котлом</td>
<td>Потеря</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Котлы с органическими теплоносителями</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Давление теплоносителя на выходе</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Температура теплоносителя на выходе</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Уровень теплоносителя на выходе</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
</tbody>
</table>

Примечание: В ЦПУ допускается обобщенная сигнализация, если на местном посту управления предусмотрена расшифровка.
4.4 АВТОМАТИЗИРОВАННЫЕ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ

4.4.1 Электростанции на ПБУ или МСП должны обеспечивать электрической энергией потребителей согласно следующим требованиям.

4.4.1.1 На ПБУ или МСП, где нагрузка основных технологических режимов обеспечивается одним генератором, должны быть предусмотрены системы автоматизации, обеспечивающие:

1. автоматический пуск резервного генератора, автоматическую синхронизацию, прием и распределение нагрузки в случаях:
 достижения работающим генератором установленной предельно допустимой нагрузки (например, 85 %), или
 неисправности работающего агрегата, позволяющей выполнить автоматическую синхронизацию генераторов и перевод нагрузки на резервный генератор без потери напряжения на ГРЩ;

2. автоматический пуск резервного генератора и включение его на шины ГРЩ в пределах 30 с при выходе из строя работающего генератора и обесточивании ГРЩ.

После восстановления напряжения на ГРЩ должно быть обеспечено автоматическое повторное включение ответственных вспомогательных механизмов, как указано в 4.4.2.

4.4.1.2 На ПБУ или МСП, на которых нормальное снабжение электрической энергией обеспечивается двумя или более генераторами, работающими параллельно, следует применять устройства (например, автоматическое отключение потребителей менее ответственного назначения), не допускающие при аварии одного из генераторов перегрузки оставшихся и обесточивания шин ГРЩ для обеспечения безопасного функционирования буровой установки.

4.4.2 При восстановлении напряжения на ГРЩ после обесточивания включение ответственных механизмов, необходимых для нормального функционирования ПБУ, должно осуществляться автоматически по заданной программе, причем не должно возникать перегрузка электростанции.

4.4.3 В тех случаях, когда при снижении нагрузки электростанции предусматривается автоматическое отключение агрегатов, необходимо, чтобы оно не происходило также и при кратковременных колебаниях нагрузки.

4.4.4 Приводные механизмы генераторов с автоматическим пуском должны быть подготовлены к немедленному пуску, при этом должна быть предусмотрена световая сигнализация о готовности.

При неготовности пуска должна быть предусмотрена световая сигнализация, предупреждающая о невозможности автоматического пуска агрегата.

4.4.5 Если предусмотрен автоматический пуск находящихся в резерве электрических агрегатов при перегрузке работающих, должно быть обеспечено следующее:

1. автоматическая синхронизация и подключение;
2. автоматическое распределение нагрузки;
3. предварительный выбор очередности пуска агрегатов и их подключение к сборным шинам ГРЩ.

4.4.6 Если для охлаждения генераторов предусмотрены водяной насос и/или вентилятор с независимым приводом, должна быть предусмотрена аварийно-предупредительная сигнализация о выходе системы охлаждения из строя, а также автоматическая защита генератора от перегрева, путем отключения неответственных потребителей.

4.4.7 Автоматизированные электростанции должны обеспечивать автоматическое или дистанционное включение электрических агрегатов с автоматической синхронизацией, принятием и автоматическим распределением нагрузки.

4.4.8 Контролируемые параметры автоматизированных судовых электростанций (кроме аварийных), предельные значения параметров АПС и виды автоматической защиты и индикации параметров приведены в табл. 4.4.8.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Контролируемый параметр</th>
<th>Место замера</th>
<th>Предельные значения</th>
<th>Автоматическая защита</th>
<th>Индикация ЦПУ</th>
<th>Пояснения</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Судовая сеть</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Напряжение ГРЩ</td>
<td>Мин.</td>
<td>Отключение генератора</td>
<td>Постоянная</td>
<td>Если ГРЩ в ПБУ то дополнительной индикации не требуется</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Частота тока ГРЩ</td>
<td>Мин.</td>
<td>Постоянная</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Сопротивление изоляции ГРЩ</td>
<td>Мин.</td>
<td>Постоянная</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Генераторы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Нагрузка (ток) ГРЩ</td>
<td>Макс.</td>
<td>a) Сигнал АПС</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b) Отключение неответственных потребителей</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 4.4.8
Продолжение табл. 4.4.8

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Контролируемый параметр</th>
<th>Место замера</th>
<th>Пределенные значения</th>
<th>Автоматическая защита</th>
<th>Индикация ЦПУ</th>
<th>Пояснения</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Обратная мощность ГРЩ (ток)</td>
<td>Макс.</td>
<td>в) Отключение генератора</td>
<td></td>
<td>Постоянная</td>
<td>При мощности 5000 кВт и выше</td>
</tr>
<tr>
<td>2.3</td>
<td>Температура обмоток генераторов</td>
<td>Макс.</td>
<td>Остановка</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Двигатели внутреннего сгорания для привода генераторов</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Давление смазочного масла</td>
<td>На входе</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Температура смазочного масла</td>
<td>На входе</td>
<td>Макс.</td>
<td>Остановка</td>
<td>По вызову</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Концентрация масляного тумана</td>
<td>На входе</td>
<td>Макс.</td>
<td>Остановка</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Давление или поток охлаждающей воды</td>
<td>Мин.</td>
<td>По вызову</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Температура охлаждающей воды</td>
<td>На входе</td>
<td>Макс.</td>
<td>По вызову</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Давление или поток забортной воды</td>
<td>На входе</td>
<td>Мин.</td>
<td>Запуск</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Давление топлива</td>
<td>На входе</td>
<td>Мин.</td>
<td>Отключение</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Вязкость (температура) топлива</td>
<td>-</td>
<td>Макс. (мин.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Углекислота из газов, выделяющихся при температуре выхода газов</td>
<td>Мин.</td>
<td>По вызову</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>Уровень смазочного масла</td>
<td>На входе</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>3.11</td>
<td>Уровень охлаждающей воды в расширительном насосе</td>
<td>На входе</td>
<td>Макс.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>3.12</td>
<td>Давление топлива</td>
<td>Мин.</td>
<td>По вызову</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.13</td>
<td>Давление охлаждающей воды перед пуском компрессора</td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Давление природного газа</td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Давление природного газа</td>
<td>На входе</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Температура природного газа</td>
<td>В подшипниках</td>
<td>Макс.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Давление пара перед турбиной</td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Давление пара в конденсаторе</td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Уровень воды в конденсаторе</td>
<td>Мин.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.5 АВТОМАТИЗИРОВАННЫЕ КОМПРЕССОРНЫЕ УСТАНОВКИ

4.5.1 Автоматизированные компрессорные установки

Автоматизированные компрессорные установки должны иметь ручной дистанционный и автоматический режимы работы. В автоматическом режиме в воздухохранителях должно поддерживаться номинальное давление сжатого воздуха таким образом, чтобы:

при снижении давления воздуха до предуста новленного значения, например 90 %, происходит автоматический пуск заранее выбранного компрессора и его автоматическое отключение по достижении давления воздуха, равного номинальному;

в случае интенсивного расхода и дальнейшего снижения давления воздуха, например до 80 %, происходит автоматический пуск второго, находящегося в автоматическом режиме компрессора, и оба компрессора продолжали бы работать до достижения номинального давления.

Иная методика работы автоматизированных компрессоров подлежит специальному рассмотрению Регистром.

4.5.2 У компрессоров должна быть предусмотрена возможность регулировки давления включений и отключений агрегатов.

4.5.3 Системы сжатого воздуха должны иметь устройства для автоматического его осушения.

4.5.4 Автоматизированные компрессорные установки должны поддерживать такое давление в баллонах пускового и технологического воздуха, которое по крайней мере обеспечивает выполнение требований, изложенных в части VIII «Системы и трубопроводы».

4.5.5 Контролируемые параметры автоматизированных компрессорных установок, предельные значения параметров АПС и виды автоматической защиты и индикации параметров приведены в табл. 4.5.5.
Часть XIV. Автоматизация

Таблица 4.5.5

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Контролируемый параметр</th>
<th>Место замера</th>
<th>Предельные значения параметров АПС (^1)</th>
<th>Автоматическая защита</th>
<th>Индикация в ЦПУ</th>
<th>Пояснения</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Давление смазочного масла</td>
<td>На входе</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Поток охлаждающей среды</td>
<td>На входе</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Температура воздуха</td>
<td>На выходе</td>
<td>Макс.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Давление пускового воздуха</td>
<td>В баллоне</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Давление воздуха управл.</td>
<td>За редукц. клапаном</td>
<td>Мин.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
</tbody>
</table>

В ЦПУ допускается обобщенная сигнализация, если на местном посту управления предусмотрена расшифровка.

4.6 АВТОМАТИЗИРОВАННЫЕ НАСОСНЫЕ УСТАНОВКИ

4.6.1 Система автоматизированного управления насосами при неисправностях насосов или при предельно допустимых отклонениях параметров в ответственных циркуляционных системах должна автоматически включать резервные насосы и выполнять необходимые переключения в системах. При этом неисправный насос должен выводиться из эксплуатации из ЦПУ только после запуска резервного насоса.

4.6.2 У насосов одинаковой мощности электрическая схема должна быть выполнена таким образом, чтобы любой из них мог быть использован в качестве основного насоса.

4.6.3 Автоматический пуск пожарных насосов рекомендуется предусматривать по следующим сигналам:
от системы пожарной сигнализации — при достоверном сигнале «Пожар».
при снижении давления в пожарной магистрали, находящейся под давлением постоянно.

4.6.4 Дистанционный пуск пожарных насосов должен быть предусмотрен:
из центрального поста управления;
из резервного поста управления;
из аварийного поста.

4.7 АВТОМАТИЗИРОВАННЫЕ ОСУШИТЕЛЬНЫЕ УСТАНОВКИ

4.7.1 Автоматизированные осушительные установки в зависимости от уровня воды в колодцах автоматически должны вводить в действие соответствующие осушительные насосы. При этом должна быть предусмотрена сигнализация о работе насосов.

4.7.2 Должен быть предусмотрен сигнал АПС, если и после включения осушительных насосов уровень воды поднимается или не падает в течение определенного времени.

4.7.3 Для сигнализации максимально допустимого уровня воды в колодцах должен быть установлен отдельный датчик, независимый от датчиков, установленных для управления осушительными насосами.

4.7.4 Расположение датчиков должно обеспечивать определение уровня воды при нормальных и аварийных кренах и дифференциальных платформах.

4.7.5 Контролируемые параметры АПС автоматизированных осушительных установок, предельные значения параметров, виды защиты и индикация параметров приведены в табл. 4.7.5.

Таблица 4.7.5

<table>
<thead>
<tr>
<th>Контролируемый параметр</th>
<th>Место замера</th>
<th>Предельные значения</th>
<th>Автоматическая защита</th>
<th>Индикация параметров в ЦПУ</th>
<th>Пояснения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Уровень воды</td>
<td>Льяльные колодцы</td>
<td>Макс.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
<tr>
<td>Аварийный уровень воды</td>
<td>Льяльные колодцы, туннели, валопроводы</td>
<td>Макс.</td>
<td>Остановка</td>
<td>Постоянная</td>
<td></td>
</tr>
</tbody>
</table>

4.8 АВТОМАТИЗИРОВАННЫЕ ХОЛОДИЛЬНЫЕ УСТАНОВКИ

4.8.1 В соответствии с требованиями 1.1 части XII «Холодильные установки» Правил классификации и постройки морских судов, автоматизированные холодильные установки должны соответствовать требованиям 7.2.
4.8.2 Должна быть предусмотрена индикация о работе, а также обобщенная сигнализация о неисправности и аварии автоматизированной холодильной установки.

4.8.3 Контрольные параметры автоматизированных холодильных установок, места замера, предельные значения параметров, виды защиты и индикация параметров приведены в табл. 4.8.3.

<table>
<thead>
<tr>
<th>Контрольный параметр</th>
<th>Место замера</th>
<th>Предельные значения параметров</th>
<th>Автоматическая защита</th>
<th>Индикация параметров в ЦПУ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Состояние холодильной установки</td>
<td>Компрессор</td>
<td>Неисправность</td>
<td>Авария</td>
<td>Остановка компрессора</td>
</tr>
</tbody>
</table>

5 КОМПЬЮТЕРЫ И КОМПЬЮТЕРНЫЕ СИСТЕМЫ АВТОМАТИЗАЦИИ

5.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

5.1.1 Настоящие требования распространяются на компьютеры и компьютерные системы, связанные с выполнением следующих ответственных функций:

- управление пропульсивной (двигательной установкой) ПБУ;
- управление рулевой установкой (авторулевой);
- автоматизированное управление электроэнергетической установкой;
- системы пожарной сигнализации и сигнализации взрывоопасных концентраций газовоздушных смесей;
- системы аварийной сигнализации;
- системы аварийно-предупредительной сигнализации (АПС) механической установки или интегрированные системы контроля и управления;
- системы, связанные с обеспечением остойчивости ПБУ и процедурами погружения и всплытия ППБУ;
- системы якорного и динамического позиционирования ПБУ;
- другие подобные системы автоматизации.

5.1.2 Настоящие требования распространяются также на компьютерные системы, неотвественного назначения, например, водогрейные хозяйственные котлы, если потеря управления ими может привести к аварии ПБУ или МСП, механизмов, или к травмированию персонала.

5.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

5.2.1 В настоящем разделе приняты следующие определения и пояснения.

Компьютер — программируемое электронное устройство для математической обработки и хранения данных в цифровой форме, производства расчетов и/или выработки логики управляющих функций.

Компьютерная система — система, состоящая из одного или нескольких компьютеров с соответствующим программным обеспечением, периферийными устройствами и интерфейсами, реализующими связи с задающими органами, датчиками и исполнительными устройствами.

Интегрированная система — сочетание компьютеров или компьютерных систем, объединенных системой общих информационных шин для обеспечения централизованного доступа к информации с целью реализации функций управления и контроля механизмами и устройствами.

Интерфейс — аппаратно-программное устройство, в котором происходит обмен информацией, выраженной в цифровых кодах.

Узел — точка подключения к системе информационных шин.

Программное обеспечение — программы, данные и документация, связанные с обеспечением работы компьютерной системы.

5.3 КОНСТРУКЦИЯ КОМПЬЮТЕРНЫХ СИСТЕМ КОНТРОЛЯ И УПРАВЛЕНИЯ

5.3.1 Компьютеры и компьютерные системы должны соответствовать функциональным требованиям, предъявляемым к ним во всех условиях эксплуатации, включая аварийные, с учетом:

- обеспечения безопасности для персонала;
- исключения вредного воздействия на окружающую среду;
- исключения повреждений или аварий оборудования;
обеспечения удобства обслуживания;
обеспечения работоспособности не компьютеризированных механизмов устройств и систем.

5.3.2 Если время отработки функций компьютерной автоматической системы управления короче, чем время реакции оператора, из-за чего авария не может быть предотвращена путем перевода на ручное управление, должны предусматриваться резервные автоматические средства корректировки процесса управления.

5.3.3 Компьютерная система должна обла-дать достаточными возможностями (аппаратными и программными) для того, чтобы во всех условиях эксплуатации, включая аварийные:
выполнять необходимые автономные операции;
принимать команды оператора (пользователя); правильно и своевременно информировать оператора (пользователя);
5.3.4 Система должна быть способна обес-печить реализацию всех функций в течение заданного времени с учетом максимальной информационной нагрузки и максимального числа одновременно решаемых задач и с учетом скорости передачи данных по сети в нормальных и аварийных условиях процесса.

5.3.5 Компьютерные системы должны быть спроектированы так, чтобы не требовалось специальных предварительных знаний для их нормальной эксплуатации. Для эксплуатации особо сложных систем изготовителем должна быть обеспечена соответствующая техническая поддержка и обучение персонала.
5.3.6 Системы должны быть защищены от непреднамеренных и несанкционированных изменений программ и данных.

5.4 АППАРАТНОЕ ОБЕСПЕЧЕНИЕ (HARDWARE)

5.4.1 Аппаратура компьютеров и периферийных устройств должна надежно работать в судовых условиях и выдерживать колебания напряжения питания, связанные с переходными режимами, изменения температуры и влажности окружающего воздуха, вибрационные нагрузки, электромагнитные помехи, коррозию и т. д. указанные в 2.1.
5.4.2 Конструкция аппаратуры должна обеспечивать легкий доступ к заменяемым элементам и блокам для ремонта и технического обслуживания.
5.4.3 Каждый заменяемый элемент (печатная плата, блок) должен быть так выполнен, чтобы его можно было легко и безопасно заменить и обслуживать. Элементы должны быть выполнены так, чтобы исключался их неправильный монтаж и электрические соединения. В случаях, когда это невозможно выполнить конструктивно, должна быть предусмотрена соответствующая четкая маркировка.

5.4.4 Конструкция компьютерных систем должна быть спроектирована так, чтобы исключалась возможность без использования вентиляторов принудительно- го охлаждения процессоров и других термически напряженных элементов. В случае применения принудительной вентиляции должна предусматриваться АПС по превышению температуры сверх допустимой при выходе из строя вентилятора.

5.5 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ (SOFTWARE)

5.5.1 В ходе жизненного цикла программного обеспечения, т. е. в процессе разработки, установки, отладки, нормальной работы и последующей модернизации, должны выполняться систематические процедуры контроля правильности его функционирования.
5.5.2 Все предусматриваемые функции программного обеспечения должны быть подробно указаны в технической документации, проверены и зафиксированы в протоколах испытаний. Испытания должны включать не только все отдельные функции, но и важные логические и временные сочетания функций, контроль требований к рабочим характеристикам, в том числе к надежности, удобству в эксплуатации в нормальных и аварийных режимах работы и поведение программ в неисправном состоянии.
5.5.3 Любые изменения в программном обеспечении и в данных должны быть выполнены компетентными специалистами и отражены в технической документации.

5.6 КОНФИГУРАЦИЯ КОМПЬЮТЕРНЫХ СИСТЕМ

5.6.1 Общие требования.
5.6.1.1 Для обеспечения необходимой отказоустойчивости аппаратное и программное обеспечение компьютерных систем должно иметь модульную иерархическую структуру.
5.6.1.2 Выбор компьютерного оборудования должен осуществляться с учетом обеспечения полноты и достаточности реализуемых функций, связанных с требуемым безопасными функциони-
5.6.2 Система самоконтроля.
5.6.2.1 Компьютерные системы должны иметь систему встроенного самоконтроля, обеспечивающую аварийно-предупредительную сигнализацию на пультах постов управления и контроля в случае отказов или неправильного функционирования.

5.6.3 Система электрического питания.
5.6.3.1 Все виды электрического питания системы должны иметь контроль их исправного состояния. В случае отклонений параметров или исчезновения любого из видов питания должен быть предусмотрен аварийно-предупредительный сигнал.

5.6.3.2 Программы и данные компьютерной системы должны быть защищены от их повреждений или утраты из-за потери электрического питания.

5.6.3.3 Резервированные компьютерные системы должны получать питание по отдельным фидерам и должны быть защищены от коротких замыканий и перегрузок отдельными устройствами защиты.

5.6.4 Установка (монтаж).
5.6.4.1 Аппаратура системы и ее кабельные трассы должны быть так установлены, чтобы были сведены к минимуму взаимные электромагнитные помехи и помехи от другого установленного излучающего оборудования.

5.6.5 Кабельная сеть.
5.6.5.1 Кабели, предназначенные для передачи данных, должны быть достаточно прочными, соответствующим образом закреплены и защищены от механических повреждений.

5.6.6 Каналы передачи данных (система информационных шин).
5.6.6.1 Канал передачи данных должен иметь систему самоконтроля с целью обнаружения отказов в нем самом и сбое передачи данных в узлах. При обнаружении отказов или сбоя должна срабатывать сигнализация.

5.6.6.2 Если канал передачи данных используется для двух и более ответственных функций он должен быть резервирован. Резервный канал передачи данных должен прокладываться отдельно и на возможно большем удалении от основного.

5.6.6.3 Переключение с основного канала передачи данных на резервный и обратно не должно вызывать нарушений в передаче данных и нарушать нормальное функционирование системы.

5.6.6.4 Для обеспечения обмена данными между различными системами должны использоваться стандартные интерфейсы.

5.6.7 Принцип выхода из строя в безопасную сторону.
5.6.7.1 Компьютерная система должна быть построена таким образом, чтобы в случае выхода ее из строя объекты управления автоматически приводились в наименее опасное состояние.

5.6.7.2 Отказ или сбой системы и последующий ее перезапуск не должен приводить объекты управления в неопределенное (неуправляемое) состояние.

5.6.7.3 Системы управления, аварийно-предупредительной сигнализации и защиты должны быть выполнены таким образом, чтобы единичный отказ в компьютерной системе мог повлиять на более чем одну из указанных функций.

5.6.8 Интегрированные компьютерные системы.
5.6.8.1 Функционирование объектов управления в рамках интегрированной системы должно быть не менее эффективным и надежным, чем их функционирование в автономных условиях. Если в интегрированной системе используются многофункциональные средства отображения информации и управления, они должны быть дублированными и взаимозаменяемыми.

5.6.8.2 Отказ одного элемента интегрированной системы (модуля, блока аппаратуры или подсистемы) не должен влиять на функционирование других частей или подсистем, исключая те функции, которые непосредственно зависят от информации отказавшего элемента.

5.6.8.3 Полный отказ в связях между частями интегрированной системы не должен влиять на функционирование частей системы в независимом режиме.

5.6.8.4 Для реализации надежного выполнения особо ответственных функций управления или контроля должны быть предусмотрены альтернативные (иного принципа), или резервные средства, независимые от интегрированной системы.

5.6.8.5 Если требуется дублирование объектов управления (например, силовых агрегатов) и размещение их в различных помещениях, то это требование следует применить и к их компьютерным системам управления и контроля.

5.7 ИНТЕРФЕЙС ПОЛЬЗОВАТЕЛЯ

5.7.1 Общие требования.
5.7.1.1 Компьютерные системы должны быть выполнены с учетом требований эргономики таким образом, чтобы персоналу было обеспечено понятное и удобное управление и контроль.
5.7.1.2 Состояние компьютерной системы (включено, выключено, исправное, неисправное состояние и т. п.) на постах управления и контроля должно быть легко распознаваемым.

5.7.1.3 Для системы должно быть разработано руководство пользователя, в котором должно предусматриваться описание, как минимум, следующих элементов:

- назначение функциональных клавиш;
- меню графических средств отображения информации;
- руководство по выполнению процедуры диалога оператора с системой и т. п.

5.7.1.4 В случаях отказов или отключения подсистем на соответствующих мониторах или операторских станциях постов управления должно срабатывать аварийно-предупредительная сигнализация.

5.7.2 Устройства ввода.

5.7.2.1 Устройства ввода должны иметь четко определенные функции, быть надежными и безопасными во всех условиях эксплуатации. Индикация, подтверждающая задаваемые команды должна быть понятна персоналу.

5.7.2.2 Для часто повторяемых команд и команд срочного исполнения должны предусматриваться отдельные клавиши или специальные органы управления. Если клавиши предназначены для задания нескольких функций, то должна быть предусмотрена индикация, указывающая, какая из предусмотренных функций находится в активном состоянии.

5.7.2.3 Панели управления компьютерной системы на ходовом мостике должны быть оборудованы отдельной подсветкой. Уровень интенсивности подсветки и яркость экранов мониторов должны регулироваться.

5.7.2.4 В тех случаях, когда алгоритм функционирования системы или ее параметры могут быть изменены посредством клавиатуры, доступ к клавиатуре должен быть ограничен с тем, чтобы такие операции мог выполнить только компетентный уполномоченный персонал.

5.7.2.5 Если посредством клавиатуры существует возможность задать опасные условия работы оборудования (объекта управления), то должны быть предусмотрены, как минимум, следующие меры для блокировки исполнения опасной команды не уполномоченным на то персоналом:

- использование специального замка для клавиатуры, или
- использование для такой команды двух или более ключей, или
- использование специальных паролей для доступа.

5.7.2.6 Противоречивые вмешательства оператора в управление должны быть предотвращены посредством соответствующих блокировок или системы предупреждений. Действующее (активное) состояние заданной команды или режима системы должно быть представлено на мониторе понятными оператору символами или текстом.

5.7.3 Устройства вывода.

5.7.3.1 Размер, цвет и плотность текста и графической информации на мониторах должны быть такими, чтобы обеспечивалось легкое считывание информации с рабочего места оператора при всех условиях освещенности в помещении. Диапазон регулирования яркости и контрастности изображения на мониторах должен быть преобладающим и обеспечивать нормальное восприятие информации в условиях меняющегося окружающего освещения.

5.7.3.2 Информация на мониторах должна выводиться в соответствии с логическими приоритетами, т. е. наиболее важная информация должна быть сосредоточена в наиболее легко воспринимаемых оператором частях экрана.

5.7.3.3 Если на цветных мониторах представляется информация аварийного характера, она должна быть выделена красным цветом, ясна и понятна также в условиях, когда основной цвет монитора может быть нарушен.

5.7.4 Графический интерфейс пользователя.

5.7.4.1 Графическая информация на мониторах должна быть четкой, понятной и представлена в соответствии с ее функциональным назначением и связями. Содержание страницы экрана должно быть логически обосновано и ограничено данными, которые имеют непосредственное отношение к оператору с соответствующими полномочиями.

5.7.4.2 Если используются графические интерфейсы общего назначения, то для соответствующих процессов оператору должны быть доступны только соответствующие необходимые функции.

5.7.4.3 Звуковая и световая аварийно-предупредительная сигнализация должна отличаться от других видов сигнализации и иметь приоритет перед другой выводимой на экран информацией в каждом рабочем режиме системы.

5.7.4.4 Все мониторы и функции управления на постах (станциях управления), обслуживаемых одними и теми же операторами, должны иметь один и тот же графический интерфейс. Особое внимание должно быть обращено на обязательную идентичность:

- символов;
- применяемых цветов;
- органов управления;
- приоритетов представляемой информации;
- компоновки оборудования.
5.8 ОБУЧЕНИЕ ПЕРСОНАЛА (ТРЕНИНГ)

5.8.1 Для сложных компьютерных систем управления и контроля должен предусматриваться режим обучения персонала на уровне, обеспечивающем эффективную безопасную эксплуатацию и техническое обслуживание системы. Режим обучения должен охватывать нормальные условия эксплуатации, ненормальные условия и аварийные условия. Интерфейс пользователя для системы обучения (тренинга) должен соответствовать всем характеристикам реальной системы.

5.8.2 Должна быть предусмотрена техническая документация по поддержке процесса обучения и она должна быть доступна для многократного ее использования на борту ПБУ.

5.8.3 Если режим обучения непосредственно встроен в компьютерную систему, то он должен быть четко обозначен на мониторах в случае его активизации (включения).

5.8.4 Нормальное функционирование системы не должно прекращаться в случаях, когда включен режим обучения и ни один сигнал аварийно-предупредительной сигнализации или индикации не должен быть блокирован.

5.9 ИСПЫТАНИЯ И ПРОВЕРКИ КОМПЬЮТЕРНЫХ СИСТЕМ

5.9.1 Компьютерные системы должны быть спроектированы, изготовлены и испытаны на соответствие требованиям настоящего раздела и других требований Правил, что должно быть подтверждено соответствующим свидетельством Регистра. В случае, если система является интегрированной, полнота выполнения функциональных требований по компьютерной системе должна быть указана в технической документации и свидетельстве на интегрированную систему.

5.9.2 В дополнение к требованиям настоящего раздела изготовители компьютерных систем должны иметь освидетельствованную Регистром или другим классификационным обществом систему качества, подтверждающую, что изготовленная система обладает необходимым уровнем качества изготовления.

5.9.3 Испытания и проверки компьютерной системы должны выполняться с целью подтверждения правильности функционирования и качества изготовления.

5.9.4 Модификация программного обеспечения и данных, равно как и изменения конструктивного характера системы должны быть до введения в эксплуатацию проверены и испытаны.

6 УСТАНОВКИ СО ЗНАКОМ АВТОМАТИЗАЦИИ В СИМВОЛЕ КЛАССА

6.1 ОБЩИЕ ТРЕБОВАНИЯ

6.1.1 Требования настоящего раздела распространяются на ПБУ и МСП, которым в соответствии с 2.4.1 части I «Классификация» присваивается один из знаков автоматизации в символе класса (AUT1, AUT2, AUT1-C, AUT2-C, AUT1-ICS, AUT2-ICS).

Такие ПБУ/МСП должны быть оборудованы системами автоматизации их механических (пропульсивных) и/или электроэнергетических установок в объеме, обеспечивающем их безопасность при всех условиях плавания (эксплуатации) без постоянного присутствия обслуживающего персонала в машинных помещениях.

Требования настоящего раздела могут быть применены также к ПБУ/МСП без знака автоматизации в символе класса, но имеющим ЦПУ, системы дистанционного автоматизированного управления пропульсивными установками, а также автоматизированную электроэнергетическую установку и централизованную систему аварийно-предупредительной сигнализации.

6.1.2 Применяемые системы и устройства автоматизации должны отвечать требованиям соответствующих разделов настоящей части, а также применимым требованиям других частей Правил ПБУ/МСП.

6.1.3 Должна быть предусмотрена автоматизация, как минимум, следующих установок: пропульсивной установки (при ее наличии), отвечающей требованиям 4.2; электроэнергетической установки, отвечающей требованиям 4.4; котельной установки, отвечающей требованиям 4.3; компрессорной установки, отвечающей требованиям 4.5; насосных установок, отвечающих требованиям 4.6, 4.7;
других установок ответственного назначения, связанных с обеспечением основных технологических процессов ПБУ или МСП.

6.1.4 Должна быть предусмотрена система АПС, в которой объединены все контролируемые параметры и рабочие состояния, указанные в разд. 4 и в настоящем разделе.

6.1.5 Все оборудование, установленное в машинном помещении, должно быть приспособленным к работе без постоянной вахты в машинном помещении. По согласованию с Регистром допускается выполнение отдельных операций (пополнение цистерн, очистка фильтров и т. п.) с местных постов управления, если они выполняются с определенной периодичностью (не чаще одного раза за 12 ч) и обеспечиваются соответствующим обслуживанием.

6.1.6 Меры по обеспечению противопожарной защиты содержатся в части VI «Противопожарная защита».

6.2 УСТРОЙСТВА НА ГЛАВНОМ ПОСТУ УПРАВЛЕНИЯ (ГПУ)

6.2.1 На ГПУ должны быть установлены устройства управления пропульсивной установкой, при ее наличии, а также система обобщенной аварийно-предупредительной сигнализации механической (электроэнергетической) установки, предусматривающая отдельные сигналы: «Вода в машинном помещении»; «Пожар в машинном помещении»; «Выход из строя системы АПС».

6.2.2 Должна быть предусмотрена сигнализация, заблаговременно (5 — 10 с) предупреждающая о возникновении неисправности, которая вызывает автоматическую остановку пропульсивной установки.

6.2.3 Должно быть предусмотрено устройство сигнализации «Dead man».

6.2.4 Должны быть предусмотрены устройства аварийного отключения механизмов и устройств, требуемые 9.6 части X «Электрическое оборудование».

6.3 УСТРОЙСТВА В МАШИННЫХ ПОМЕЩЕНИЯХ

6.3.1 Должен быть предусмотрен закрытый центральный пост управления, оборудованный: устройствами управления и приборами, указанными в 3.2 части VII «Механические установки»; централизованной системой аварийно-предупредительной сигнализации, индикации и регистрации, а также устройствами сигнализации о срабатывании систем защиты механизмов и устройств механической установки; устройствами световой сигнализации (индикации) режимов работы механизмов и установок; отключающими устройствами топочных устройств котлов, вентиляторов машинных помещений, топливопереходящих и масло-перекачивающих насосов; отдельными сигналами «Вода в машинном помещении» и «Пожар в машинном помещении»; а также следующими дополнительными устройствами: 1 дистанционного управления вспомогательными механизмами, обслуживающими механизмы пропульсивной установки, если они не автоматизированы; 2 сигнализации, показывающими, какие механизмы и установки были включены в момент обесточивания ГРЩ, которые должны быть включены дистанционно после восстановления напряжения; 3 индикации и сигнализации автоматизированной холодильной установки; 4 индикации и сигнализации автоматизированных технологических механизмов и устройств.

6.3.2 Должно быть предусмотрено устройство вызова персонала, связанное с отдельными районами машинных помещений.

6.3.3 У входов в периодически необслуживаемые машинные помещения должны быть предусмотрены знаки безопасности с текстом: "Внимание! Механизмы запускаются автоматически".

6.4 УСТРОЙСТВА В ЖИЛЫХ ПОМЕЩЕНИЯХ МЕХАНИКОВ

6.4.1 В жилых помещениях механизмов и общественных помещениях должны быть предусмотрены устройства (блоки) обобщенной системы АПС (БОС), извещающие о неисправностях механизмов и установок машинного помещения, включающие отдельные сигналы «Вода в МО» и «Пожар в МО». Квитирование каждого сигнала на этих устройствах с отключением только звукового сигнала должно индицироваться на ГПУ.

6.4.2 Устройства, указанные в 6.4.1 могут быть переключаемыми в нерабочее состояние, однако по крайней мере одно из них (для дежурного персонала) должно оставаться включенным состоянии.
6.4.3 Устройства обобщенной сигнализации должны предусматриваться также в других помещениях, в которых может находиться персонал, обслуживающий механическую установку.

6.5 ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА

6.5.1 Если не предусмотрена автоматизированная электростанция согласно 4.4, должно быть предусмотрено следующее:

.1 поддержание неработающих приводных механизмов генераторов в готовности к немедленному пуску;

.2 дистанционный пуск и остановка приводных механизмов генераторов с центрального поста управления;

.3 дистанционная синхронизация, подключение и распределение нагрузки из центрального поста управления. Допускается синхронизация, подключение и распределение нагрузки с ГРЩ, если он находится в центральном посту управления.

6.5.2 Если отдельные функции электростанции автоматизированы, должны быть выполнены соответствующие требования 4.4.

6.6 ПРОПУЛЬСИВНЫЕ УСТАНОВКИ

6.6.1 Системы автоматизированного дистанционного управления пропульсивными установками плавучих самоходных буровых установок (ПБУ), должны обеспечивать необходимую скорость хода, управляемость и безопасность ПБУ при всех условиях плавания (эксплуатации) без постоянного присутствия обслуживающего персонала в машинных помещениях.

6.6.2 Пропульсивные установки должны отвечать требованиям, изложенным в 4.2 и другим применимым требованиям, изложенными в других разделах настоящей части и других частях Правил ПБУ/МСП.

6.7 КОТЕЛЬНАЯ УСТАНОВКА

6.7.1 Автоматизация функций котельной установки и объем ее контролируемых параметров, выводимый в ЦПУ, должен соответствовать требованиям, изложенным в 4.3.

6.7.2 При наличии местного поста управления с полным объемом требуемых функций управления и контроля котельной установки на ЦПУ может быть выведена обобщенная АПС (группированная по наиболее важным однотипным группам параметров) и устройства дистанционной аварийной остановки.

6.8 КОМПРЕССОРНЫЕ УСТАНОВКИ

6.8.1 Автоматизированная система управления компрессорами сжатого воздуха должна предусматривать как местное, так и дистанционное из ЦПУ и автоматическое по параметрам сжатого воздуха управление;

6.8.2 Объем контролируемых параметров компрессоров и сжатого воздуха, представляемый в ЦПУ, должен соответствовать требованиям, изложенным в 4.5.

6.9 НАСОСНЫЕ УСТАНОВКИ

6.9.1 Автоматизированное управление электрическими приводами насосов ответственных систем платформы должно соответствовать требованиям, изложенным в 4.4.

6.9.2 Должно предусматриваться дистанционное из ЦПУ управление пуском и остановкой насосов, а также дистанционное управление клапанами систем ответственного назначения с соответствующей индикацией в ЦПУ их открытого или закрытого состояния.

6.9.3 Автоматизированные насосные установки системы погружения — всплытия ППБУ должны отвечать требованиям, изложенным в 9.3.

6.10 ОСУШИТЕЛЬНЫЕ СИСТЕМЫ

6.10.1 Дистанционное управление арматурой осушительных систем якорных колодцев машинных помещений должно осуществляться из центрального поста управления, если не предусмотрена автоматизированная осушительная система согласно 4.7.

6.10.2 Для осушительных систем машинных помещений должны быть выполнены требования, приведенные в 4.7.2 — 4.7.5.
7 СИСТЕМЫ ДИНАМИЧЕСКОГО ПОЗИЦИОНИРОВАНИЯ

7.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ И ЗНАКИ В СИМВОЛЕ КЛАССА

7.1.1 Настоящие требования распространяются на электрическое и электронное оборудование и автоматизированные системы управления пропульсивными механизмами систем динамического позиционирования.

7.1.2 Выполнение требований настоящего раздела и применимых требований других разделов настоящей части обязательно для ПБУ, к основному символу класса которых, в соответствии с 2.4 части I «Классификация», добавляется один из следующих знаков: DYNPOS-1, DYNPOS-2 или DYNPOS-3.

7.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

7.2.1 В настоящем разделе приняты следующие определения:

Система динамического позиционирования — комплекс, предназначенный для автоматического и дистанционного автоматизированного управления пропульсивными механизмами ПБУ с целью динамического удержания ее над точкой позиционирования с заданной точностью в условиях воздействия возмущающих внешних сил.

Комплекс при этом должен состоять по крайней мере из следующих систем:
электроэнергетической, обеспечивающей питание системы;
пропульсивных механизмов, обеспечивающих необходимый вектор и величину упора, компенсирующие внешние воздействия;
управления, состоящей из компьютерной вычислительной системы с соответствующим программным обеспечением, информационными мониторами, комплексом датчиков внешних воздействий и датчиков положения объекта, а также задающих органов.

Электроэнергетическая система — система, предназначенная для обеспечения электрическим питанием комплекса во всех условиях эксплуатации, включая аварийные и состоящая из:
первичных двигателей генераторов с их вспомогательными механизмами, устройствами и трубопроводами;
генераторов;
распределительных шин;
кабельной сети.

Электроэнергетическая система может быть как специализированной, так и единой электроэнергетической системой платформы.

Система пропульсивных устройств (механизмов) — система, предназначенная для выработки и поддержания в каждый момент времени соответствующих гидродинамических вектора и упора, способных компенсировать внешние воздействия на ПБУ.

Система должна состоять из:
подруливающих электромашинных механизмов с их приводами и вспомогательными устройствами, включая трубопроводы и цистерны гидравлики (при наличии);
главной пропульсивной установки ПБУ и рулей, если они управляются системой динамического позиционирования;
электрического и электронного оборудования индивидуального управления пропульсивными механизмами;
органов ручного и автоматизированного управления всеми пропульсивными устройствами совместно;
связанной со всеми механизмами и системами кабельной сети.

Система управления динамическим позиционированием — электрическая и электронная программируемая система, предназначенная для управления пропульсивными механизмами ПБУ и состоящая из:
системы компьютеров, их программного обеспечения и интерфейсов;
системы автоматизированного управления пропульсивными механизмами с применением одного органа управления (джойстика), или нескольких органов управления;
системы датчиков положения ПБУ и воздействующих на нее внешних сил и датчиков обратных связей;
системы операторских пультов с органами управления и информационными мониторами;
системы выработки параметров управляющих воздействий пропульсивными механизмами на объект (ПБУ) и контроля заданного положения;
кабельной силовой, информационной и управляющей сети.

Резервирование (избыточность) системы динамического позиционирования — дублирование или многократное резервирование ее элементов, при котором комплекс, состоящий из электроэнергетической сис-
Правила классификации, постройки и оборудования ПБУ/МСП

... темы питания и пропульсивных механизмов с их индивидуальными системами управления, работает под управлением компьютерной системы таким образом, что выход из строя отдельных систем управления, отдельных пропульсивных механизмов, или элементов электроэнергетической системы питания, не влияет на выполнение задачи удержания ПБУ над точкой позиционирования.

Единичный отказ в системе динамического позиционирования — отказ либо одного активного элемента (подруливающего устройства, его локальной системы управления, генератора системы питания, автоматизированного клапана), либо одного пассивного элемента (трубопровода, кабеля питания или управления, управляемого вручную клапана и т. п.).

7.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

7.3.1 Техническому наблюдению при изготовлении и в эксплуатации подлежит следующее оборудование систем динамического позиционирования:
- электрические машины и электромашино-трансформаторы;
- силовые статические полупроводниковые преобразователи и трансформаторы;
- распределительные щиты;
- устройства бесперебойного питания;
- кабельная сеть;
- пульты управления и контроля;
- компьютеры и компьютерные системы с программным обеспечением;
- системы датчиков положения платформы и их связей с системой управления;
- другие виды оборудования — по требованию Регистра.

7.4 ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

7.4.1 До начала технического наблюдения за изготовлением электрического и электронного оборудования системы динамического позиционирования должна быть представлена на рассмотрение Регистру следующая документация:
- пояснительная записка с описанием принципа действия и обоснованием уровня резервирования системы;
- спецификация (перечень применяемого оборудования) с указанием используемых приборов и устройств и их технических характеристик;
- чертежи размещения пропульсивных агрегатов системы и схем кабельных трасс, с указанием способов прокладки и прохождения через водоупорные и противопожарные перегородки;
- чертежи общего расположения пультов и щитов управления с указанием доминирующих и подчиненных постов управления;
- принципальные и функциональные схемы управления силовыми агрегатами;
- функциональные схемы компьютеризированной системы управления, с указанием входных и выходных сигналов и обратными связями;
- система самоконтроля и система аварийно-предупредительной сигнализации;
- чертежи расположения и схемы комплекта датчиков положения платформы и их связей с системой управления;
- программа испытаний системы управления;
- номенклатура запасных частей.

7.5 КОНСТРУКЦИЯ СИСТЕМ ДИНАМИЧЕСКОГО ПОЗИЦИОНИРОВАНИЯ, КЛАССЫ

7.5.1 Конструкция систем управления динамическим позиционированием должна соответствовать общим требованиям, изложенным в разд. 2 настоящей части.

7.5.2 Если основные механизмы (пропульсивная установка) и рулевая установка самоходной ПБУ входят в состав системы динамического позиционирования, то на них кроме требований, относящихся к механизмам пропульсивной установки и рулевой установки, в полной мере распространяются требования настоящей главы.

7.5.3 Системы динамического позиционирования должны подразделяться на классы, исходя из тяжести последствий потери стабилизации положения платформы над точкой.

7.5.4 Система динамического позиционирования класса 1, соответствующая по своим характеристикам знаку в символе класса DYNPOS-1, является системой с минимальным резервированием, как указано в 7.5.8.

При этом потеря положения ПБУ над точкой может произойти при единичном отказе, указанном в 7.2.6.

7.5.5 Система динамического позиционирования класса 2, соответствующая по своим характеристикам знаку в символе класса DYNPOS-2, должна иметь резервирование, которое обеспечивает удержание объекта (платформы) над точкой позиционирования при единичном отказе в любом активном элементе.
При этом имеется в виду, что отказ в любом пассивном элементе системы исключен за счет наличия соответствующей защиты от механических повреждений и свойств элемента, подтвержденных свидетельством Регистра.

7.5.6 Система динамического позиционирования класса 3, соответствующая по своим характеристикам знаку в символе класса DYNPOS-3, должна иметь резервирование, которое обеспечивает удержание объекта над точкой позиционирования при единичном отказе элементов в следующих вариантах:
отказ в любом одном активном и пассивном элементе, как указано в 7.2.6, находящихся в разных водонепроницаемых отсеках;
отказ активных и пассивных элементов, находящихся в любом одном из водонепроницаемых отсеков в результате затопления или пожара;
отказ активных и пассивных элементов, находящихся в любой из противопожарных зон, в результате пожара или взрыва.

7.5.7 Для систем динамического позиционирования классов 2 и 3 определение отказа или его некомпетентность должны рассматриваться как единичный отказ, и этот отказ не должен приводить к потере стабилизации положения объекта над точкой позиционирования.

7.5.8 Система динамического позиционирования класса 1 должна иметь резервирование следующих элементов:
исполнительных подруливающих устройств с их локальными системами управления;
системы управления комплексом (одна ручная система управления, вторая компьютеризированная);
sистемы датчиков положения.

7.5.9 Система динамического позиционирования класса 2 должна иметь резервирование следующих элементов:
eлектроэнергетической системы питания;
исполнительных подруливающих устройств с их локальными системами управления;
компьютеризированной системы управления комплексом;
sистемы датчиков положения.

7.5.10 Система динамического позиционирования класса 3 должна иметь резервирование элементов, как указано для класса 2, но дополнительно все резервированные элементы должны быть разделены водонепроницаемыми или противопожарными переборками класса A-60.

7.5.11 Резервные элементы, обеспечивающие необходимую надежность системы, должны либо постоянно функционировать, либо включаться в работу при необходимости немедленно. При этом переключение на резервный элемент должно быть либо автоматическим, либо посредством простых операций оператора. Переключение не должно вызывать чрезмерных колебательных процессов режима позиционирования.

7.6 ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ СИСТЕМА

7.6.1 Система питания для пропульсивных агрегатов должна обладать достаточной мощностью и своевременно реагировать на изменения, вызываемые необходимыми в данный период режимами работы.

7.6.2 Для систем динамического позиционирования класса 1 система питания может быть не резервируемой.

7.6.3 Для систем динамического позиционирования класса 2 система питания должна иметь возможность разделения, как минимум, на две независимые системы, каждая из которых должна обладать мощностью, достаточной для обеспечения всех режимов работы пропульсивных механизмов. При этом в процессе эксплуатации она может функционировать как единая система энергоснабжения.

7.6.4 Для систем динамического позиционирования класса 3 система питания должна обладать характеристиками, указанными в 7.6.3, но в дополнение к ним должна быть физически разделена огнестойкой конструкцией (переборкой) класса A-60 на две независимые системы. Если электроэнергетические системы питания располагаются ниже эксплуатационной ватерлинии, они должны быть разделены водонепроницаемыми переборками. В процессе эксплуатации такие системы питания должны функционировать раздельно, за исключением случаев, являющихся предметом особого рассмотрения Регистром.

7.6.5 Если предусматривается автоматизированная система управления электроэнергетической системой питания, то она должна быть резервирована.

7.6.6 Питание для систем управления должно быть выполнено как от основного, так и от аварийного источников электрической энергии. В случае потери питания от одного из источников энергии, на местах управления должна предусматриваться аварийно-предупредительная сигнализация.

7.6.7 Питание для программируемых электронных систем (компьютерных или микро-процессорных (PLC) систем) должно быть выполнено таким образом, чтобы были сведены к минимуму вслески напряжения, гармонические помехи и была обеспечена защита от ошибочного (противополярного) подключения.
7.6.8 Для систем динамического позиционирования, имеющих в зависимости от класса, соответственно резервирование (избыточность), должно быть предусмотрено следующее:

1. Система питания должна быть оборудована устройством автоматического переключения на резервный источник, имеющий соответствующие характеристики качества в том числе и в отношении стабилизации;

2. Операции по переключению на резервные источники энергии не должны прерывать или нарушать процедуры, связанные с обеспечением безопасности установки;

3. Должно быть обращено особое внимание на:
 - достаточность емкости аккумуляторных батарей;
 - соответствие оборудования зарядных устройств;
 - оборудование инверторов;
 - системы контроля нагрузки;
 - устройства заземления;
 - распределительные устройства;
 - устройства синхронизации, обеспечивающие переключения на резервные источники энергии или резервные системы питания.

7.7 СИСТЕМА ПРОПУЛЬСИВНЫХ (ПОДРУЛИВАЮЩИХ) МЕХАНИЗМОВ

7.7.1 Каждый электрический привод подруливающих устройств должен получать питание по индивидуальной цепи питания без использования общих фидеров или общих устройств защиты и иметь независимое устройство аварийной остановки электродвигателя, приводимое в действие с поста управления.

7.7.2 Каждый электрический привод должен иметь собственную систему управления, получающую питание по индивидуальной цепи без использования общих фидеров питания или общих устройств защиты.

7.7.3 Положение лопастей винта и азимут (направление) упора поворотных подруливающих устройств при выходе из строя электропривода должны оставаться прежними, без значительных отклонений. Восстановление управления подруливающим устройством должно выполняться вручную.

7.7.4 Для исключения взаимного электромагнитного влияния между командными сигналами, сигналами обратных связей локальных систем управления и электронной (компьютерной) системой управления динамическим позиционированием, указанные системы управления должны удовлетворять требованиям, изложенным в 2.2 части X «Электрическое оборудование».

7.7.5 Каждая электрическая и гидравлическая система управления должна быть обеспечена дублированным питанием посредством индивидуальных цепей без использования общих фидеров питания или общих устройств защиты.

7.7.6 Должны быть предусмотрены цепи резервного питания автоматическим переключением на них при выходе основного питания не только для системы управления, но и для силового питания подруливающих устройств.

7.7.7 Операции по переводу питания систем управления с основных фидеров на резервные не должны приводить к потере питания оборудования и устройств.

7.7.8 Для локальной системы управления подруливающим устройством и для компьютерной системы управления должны быть предусмотрены раздельные датчики обратных связей. Каналы обратных связей не должны иметь общих элементов, выход из строя которых приведет к потере управления как от одной, так и от другой систем управления. Например, два канала обратных связей должны иметь два независимых датчика, приводимые в действие раздельными механическими связями, и кабельные линии этих датчиков должны проходить на максимальном удалении друг от друга.

7.7.9 Сигналы обратных связей разных параметров, характеризующих состояние объекта, информация о потребляемой энергии для удержания ПБУ над точкой и некоторые другие параметры являются важнейшими. Система динамического позиционирования должна быть способна сравнивать эти сигналы, инициировать систему АПС при их неисправностях и продолжать удерживать объект над точкой позиционирования, используя сигналы обратных связей от других датчиков.

7.8 ПОСТЫ УПРАВЛЕНИЯ

7.8.1 Главный пост управления системой динамического позиционирования должен быть, как правило, совмещён с главным постом управления на ходовом мостике, откуда имеется достаточный обзор оконечностей ПБУ и окружающего пространства.

На лицевые панели пультов управления динамическим позиционированием должна выводиться постоянная световая сигнализация и индикация нормального функционирования следующих элементов:
часть XIV. Автоматизация 397
электроэнергетической системы питания (количество работающих генераторов и преобразователей, их нагрузка, готовность резервных агрегатов); системы силовых подруливающих устройств (их количество, режим работы, нагрузка, состояние локальных систем управления);
системы управления динамическим позиционированием (состояние основного и резервного питания, величины и направления упоров подруливающих устройств относительно осей платформы, индикация ее позиции на точке позиционирования, состояние вычислительной компьютерной системы и состояние системы датчиков о положении платформы, другая необходимая для обеспечения безопасности функционирования СДП информация).
Информация по другим параметрам отдельных устройств и механизмов должна представляться оператору по его вызову.
7.8.2 Система переключения мониторов, и органы управления должны быть выполнены с учетом требований национальных стандартов эргономики. Выбор режимов управления подруливающими устройствами должен осуществляться простыми действиями оператора, при этом выбранный режим управления должен быть четко отличим из числа следующих предусматриваемых режимов:
ручного дистанционного управления пропульсивными механизмами с локальных постов;
управления системой джойстиков с главного поста управления;
автоматического (компьютерного) управления.
7.8.3 Для систем динамического позиционирования классов 2 и 3 конструкция органов управления и электронная логика управления должны быть такими, чтобы несанкционированные или некомпетентные действия оператора не могли стать причиной нарушений нормального режима позиционирования.
7.8.4 Аварийно-предупредительная сигнализация (АПС) системы динамического позиционирования должна отвечать общим требованиям, изложенным в настоящей части.
7.8.5 Система АПС СДП кроме звуковых и световых сигналов, относящихся к механизмам и устройствам системы динамического позиционирования, должна содержать текстовую и графическую информацию о типовых выходах из строя элементов системы и рекомендации оператору по необходимым мероприятиям для удержания ПБУ над точкой позиционирования.
7.8.6 Система управления динамическим позиционированием должна обладать логикой, обеспечивающей невозможность развития неисправностей и их переход с одной системы на другую. Резервированные элементы системы должны взаимодействовать таким образом, чтобы в случае выхода из строя одного из них, он был изолирован (отключен), а другой вступил в действие. При этом на мониторах должна быть представлена достаточная как визуальная, так и звуковая информация о процессе перехода на резервный элемент.
7.8.7 Система управления должна предусматривать возможность быстрого перехода с автоматического управления на дистанционное ручное управление подруливающими устройствами, как при помощи нескольких джойстиков (по количеству подруливающих устройств), так и при помощи одного общего джойстика. Таким же быстрым должен быть и переход с ручного управления на автоматическое (компьютерное).
7.9 КОМПЬЮТЕРНЫЕ СИСТЕМЫ УПРАВЛЕНИЯ СДП
7.9.1 Для компьютерных систем, применяемых в системах управления динамическим позиционированием класса 1, требования к резервированию не предъявляются.
7.9.2 Компьютерные системы, применяемые в системах управления динамическим позиционированием класса 2, должны быть дублированы и независимы друг от друга. Неисправности общих устройств, таких как устройства сопряжения, передачи данных, информационные шины и программное обеспечение, в том числе самоконтроля, не должны выводить из строя обе системы.
7.9.3 Компьютерные системы, применяемые в системах управления динамическим позиционированием класса 3, должны быть дублированы, как указано в 7.9.2, и кроме того должна быть предусмотрена одна независимая резервная система управления динамическим позиционированием, располагаемая в особом помещении, отделенном от главного поста управления огнеопасной конструкцией класса А-60. В ходе процесса нормального управления динамическим позиционированием резервная система должна находиться в режиме постоянной готовности во включенном состоянии и в режиме автоматического введения данных от датчиков системы контроля координат положения платформы, датчиков обратной связи подруливающих устройств и т. д. Переключение на резервную систему должно быть возможным в любой момент и производиться вручную с резервного поста управления.
7.9.4 Для компьютерных систем управления классов 2 и 3 должна быть предусмотрена программа анализа последствий отказов, осуществляющая проверку возможности сохранения положения объекта (ПБУ) над точкой позиционирования.
Правила классификации, постройки и оборудования ПБУ/МСП

7.9.5 Если программа анализа последствий подтверждает невозможность сохранения положения судна над точкой позиционирования, то в этом случае должна включаться аварийно-предупредительная сигнализация.

7.9.6 При проведении операций, для безопасного окончания которых требуется длительное время, программа анализа последствий должна иметь функцию моделирования величины упора и необходимой мощности, которые будут обеспечены после отказа, могущего привести установку в наиболее тяжелые аварийные условия, при вводе данных о погодных условиях вручную.

7.9.7 В резервированных компьютерных системах должно быть предусмотрено автоматическое переключение функций управления при выходе из строя одной из компьютерных систем. Переход управления с одной системы на другую должен быть без особых возмущающих воздействий на подруливающие устройства, находящиеся в режиме позиционирования.

7.9.8 Для каждой компьютерной системы управления должна быть предусмотрена система независимого непрерывного питания, обеспечивающая питание компьютеров в течение не менее 30 мин в случае потери питания от судовой сети.

7.10 СИСТЕМЫ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ (ТОЧКИ) ПОЗИЦИОНИРОВАНИЯ

7.10.1 Системы определения местоположения позиционирования для систем динамического позиционирования класса 1 должны проектироваться исходя из требований эксплуатации с учетом приемлемых рабочих характеристик.

7.10.2 Для систем динамического позиционирования классов 2 и 3 должны быть предусмотрены по крайней мере три независимых системы определения местоположения, работающие на различных принципах, которые должны одновременно и согласованно функционировать в действующей системе управления динамическим позиционированием.

7.10.3 Системы определения местоположения должны обеспечивать достаточную точность дан- ных, должна быть предусмотрена световая и звуковая сигнализация об отклонении данных от достоверных, или чрезмерном ослаблении информационных сигналов.

7.10.4 Для систем динамического позиционирования класса 3 одна из систем определения местоположения должна быть соединена с резервной системой управления и расположена в особом помещении, отделенном от помещений других систем определения местоположения огнестойкой конструкцией А-60.

7.11 ДАТЧИКИ ПАРАМЕТРОВ ВОЗДЕЙСТВИЯ НА ПБУ ВНЕШНИХ СИЛ

7.11.1 Для системы динамического позиционирования должны быть предусмотрены как минимум следующие датчики, измеряющие влияние воздействующих на объект сил, или сами воздействующие силы: курс; величина качки; скорость ветра; направление ветра.

7.11.2 Для систем динамического позиционирования классов 2 и 3 сигналы от датчиков внешних сил должны быть предусмотрены как минимум от трех независимых систем по каждому параметру (по курсу, например, должно быть предусмотрено три гирокомпаса).

7.11.3 Для систем динамического позиционирования класса 3 одна группа датчиков каждого типа должна удовлетворять, кроме требований, указанных в 7.11.2, требование по отделению их от других датчиков противоположной конструкции класса А-60.

7.12 СИСТЕМА АВАРИЙНО-ПРЕДУПРЕДИТЕЛЬНОЙ СИГНАЛИЗАЦИИ (АПС)

7.12.1 В дополнение к требованиям, изложенным в 2.4, система АПС должна иметь средства, обеспечивающие сохранение и индикацию информации по «первой неисправности».

7.12.2 Контролируемые параметры системы АПС должны быть структурно разделены на параметры, которые в определенной мере являются информационными, и на параметры, по которым при их срабатывании требуется принятие персоналом немедленных действий. Перечень параметров представлен в табл. 7.12.2.
Таблица 7.12.2

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Параметр</th>
<th>АПС</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Компьютерная СУ</td>
<td>Неправильность<sup>1</sup></td>
<td>Автоматическое переключение на резервную</td>
</tr>
<tr>
<td>2</td>
<td>Курс</td>
<td>Отклонение за допустимый предел</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Положение над точкой позиционирования</td>
<td>Отклонение за допустимый предел</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Система питания</td>
<td>Неправильность</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Комплекс определения местоположения позиционирования</td>
<td>Неправильность</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Гирокомпас</td>
<td>Ошибка</td>
<td>Автоматическое переключение на резервный</td>
</tr>
<tr>
<td>7</td>
<td>Система определения местоположения позиционирования</td>
<td>Ошибка</td>
<td>Автоматическое переключение на резервную</td>
</tr>
<tr>
<td>8</td>
<td>Датчик ветрового давления</td>
<td>Ошибка</td>
<td>Автоматическое переключение на резервный</td>
</tr>
<tr>
<td>9</td>
<td>Давление масла гидравлической системы «Натянутый трос»<sup>2</sup></td>
<td>Минимальное</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Температура масла гидравлической системы «Натянутый трос»<sup>2</sup></td>
<td>Максимальная</td>
<td>Регулируемая в пределах 50 — 100%</td>
</tr>
<tr>
<td>11</td>
<td>Уровень масла в танке гидравлической системы «Натянутый трос»<sup>2</sup></td>
<td>Минимальный</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Сигнал отклонения системы «Натянутый трос»</td>
<td>Предельное отклонение</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Суммарная потребляемая электрическая мощность</td>
<td>Превышение</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Система кондиционирования воздуха для компьютеров</td>
<td>Максимальная</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Рабочее состояние основных блоков (подсистем)<sup>2</sup></td>
<td>Изменение состояния</td>
<td></td>
</tr>
</tbody>
</table>

¹ Компьютерная система должна быть способна использовать последнюю информацию о позиции в случае, если одна или более систем определения точки позиционирования будут неисправны или не включены.

² Параметры могут быть обобщенными.

7.13 КАБЕЛЬНЫЕ ТРАССЫ И ТРУБОПРОВОДЫ МЕХАНИЗМОВ И УСТРОЙСТВ СДП

7.13.1 Для систем динамического позиционирования классов 1 и 2 кабельные трассы электрического оборудования и систем управления, а также трубопроводы гидравлики, топлива, масла и т. п., должны прокладываться с учетом требований, изложенных в 16.8.4 части X «Электрическое оборудование» и 1.6 части VIII «Системы и трубопроводы».

7.13.2 Для систем динамического позиционирования класса 3 кабельные трассы резервного электрического и электронного оборудования и трубопроводы резервных обслуживающих систем и систем управления не должны проходить совместно с кабельными трассами и системами основного оборудования через один и те же помещения (отсеки). Такая прокладка допустима только в случае, если кабельные трассы резервного оборудования будут проложены в огнезащитных кабельных каналах класса А-60. Соединительные коробки для кабелей в таких каналах не допускаются.
8 ЯКОРНЫЕ СИСТЕМЫ ПБУ

8.1 ОБЩИЕ ТРЕБОВАНИЯ

8.1.1 В случае, если якорные устройства являются единственными средствами, обеспечивающими удержание платформы в ее рабочем положении, они должны быть спроектированы с учетом обеспечения удержания платформы в ее рабочем положении во всех условиях эксплуатации. Якорное оборудование должно быть таким, чтобы неисправность в любом одном компоненте (устройстве) не приводила к прогрессивному распространению неисправности на остающиеся в работе якорные устройства.

8.1.2 Каждая якорная лебедка должна обслуживаться только свое якорное устройство за исключением пассивных швартовных устройств, обслуживаемых переносными приводами, обслуживающими несколько лебедок.

8.1.3 Каждая якорная лебедка должна иметь собственную независимую систему управления, получающую питание от собственного фидера с индивидуальным устройством защиты.

8.1.4 Конструкция лебедки должна обеспечивать соответствующий динамический тормозной момент для управления нормальными сочетаниями нагрузок от якоря, якорной цепи и судна — завозчика якорей в процессе завозки, при максимальной расчетной скорости лебедки.

8.1.5 При потере питания якорной лебедки автоматически должна срабатывать система тормозов, обеспечивая не менее чем 50 % общего статического момента лебедки.

8.2 СИСТЕМЫ УПРАВЛЕНИЯ

8.2.1 Каждая лебедка должна иметь пост управления, расположенный таким образом, чтобы с него был обеспечен достаточный обзор при операциях с якорем, с учетом его завозки судном-завозчиком.

8.2.2 На каждом посту управления якорной лебедкой должны быть предусмотрены приборы, контролирующие натяжение якорной цепи или троса, нагрузку лебедки и длину вытянутой якорной цепи или троса.

8.2.3 Пост управления якорными операциями, в котором находится обслуживающий персонал, должен быть оборудован приборами, индицирующими величину натяжения якорных цепей, скорость и направление ветра. Там же должны быть предусмотрены средства связи со всеми постами управления, связанными с обеспечением якорных операций.

8.2.4 На местных и дистанционных постах управления должны быть предусмотрены устройства аварийного отсоединения якорей от ПБУ, действующие также в случае потери питания ПБУ от основного источника электрической энергии, путем автоматического переключения их на независимый резервный источник. При этом не требуется, чтобы и цепи управления якорным устройством получали питание от независимого источника. Действие переключающего устройства не должно вызывать неисправностей в системе питания.

8.3 ВСПОМОГАТЕЛЬНЫЕ ПОДРУЛИВАЮЩИЕ УСТРОЙСТВА ДЛЯ ЯКОРНЫХ СИСТЕМ

8.3.1 Если для сохранения рабочей позиции ПБУ в дополнение к якорным системам используются вспомогательные подруливающие устройства, то они (их силовое оборудование и системы управления) подлежат специальному рассмотрению Регистром.

8.3.2 При этом на их системы управления, включая централизованное микропроцессорное управление, распространяются применимые требования, относящиеся к системам динамического позиционирования, изложенные в 18.7, 18.8 и 18.12.
9 БАЛЛАСТНЫЕ СИСТЕМЫ ПОЛУПОГРУЖНЫХ И ПОГРУЖНЫХ ПБУ

9.1 ОБЩИЕ ТРЕБОВАНИЯ

9.1.1 На полупогруженной буровой платформе должна быть предусмотрена эффективная балластная насосная система, обеспечивающая заливку и откачку любых балластных танков в нормальных и экстремальных условиях эксплуатации.

9.2 БАЛЛАСТНЫЕ НАСОСЫ

9.2.1 Электрические двигатели балластных насосов должны соответствовать требованиям, указанным в 5.5 части X «Электрическое оборудование» и получать питание по двум фидерам — один от ГрЩ, другой от АрЩ.

9.2.2 Балластная система должна быть способна функционировать после повреждения любого одного компонента (генератора, трансформатора) в системе питания.

9.2.3 Балластная система должна оставаться в работоспособном состоянии в условиях, когда ППБУ находится в поврежденном состоянии, имеет крен и/или дифферент, достигающий предельных значений, указанных в 2.1.2.2, и получает питание от аварийного источника электрической энергии.

9.3 СИСТЕМЫ УПРАВЛЕНИЯ И КОНТРОЛЯ

9.3.1 На ППБУ должен быть предусмотрен центральный пост управления балластной системой, расположенный выше наиболее высокой расчетной ватерлинии установки в поврежденном состоянии. Пульт управления должен быть в исполнении не ниже IP-23 и оборудован следующими системами управления, АПС и индикации балластной системы:

.1 управление балластными насосами;
.2 индикация состояния балластных насосов;
.3 управление клапанами балластной системы;
.4 индикация состояния клапанов балластной системы;
.5 индикация уровня в танках балластной системы;
.6 индикация осадки платформы;
.7 индикация углов крена и дифферента платформы;
.8 наличие и потеря электрического питания (основного и аварийного) системы управления, АПС и индикации;
.9 индикация давления в пневматических и гидравлических системах.

9.3.2 В дополнение к дистанционному управлению балластными насосами и клапанами из центрального поста, все балластные насосы и клапаны должны быть оборудованы независимыми местными системами управления, способными функционировать в случае выхода из строя дистанционного управления. Независимая местная система управления каждого балластного насоса и соответствующих клапанов балластных танков должна быть расположена в одном помещении.

9.3.3 Системы управления и индикации состояния балластных насосов должны быть взаимно независимыми или иметь соответствующее резервирование так, чтобы неисправность в одной системе не влияла на функционирование другой.

9.3.4 Дистанционно управляемые клапаны балластной системы должны автоматически закрываться при потере питания в их устройствах управления. Другая конструкция клапанов (остающихся в открытом положении при потере питания) может быть допущена только в случае, если это не будет приводить к неконтролируемым переливам балласта, могущим привести к опасным ситуациям.

9.3.5 Система индикации уровня в танках, требуемая в 9.3.1.5, должна предусматривать:

.1 индикацию уровня жидкости в палубных и породных танках, обеспечивающие вручную через зачерненные трубопроводы. Датчики давления воды (находящихся в танках, не подлежащих использованию) должны устанавливаться в трубопроводах, предназначенных для заполнения или откачки из которых может влиять на остойчивость ПБУ.

9.3.6 Система индикации осадки должна быть предусмотрена на каждой носовой и кормовой платформах, или на оконечностях, характерных для соответствующих форм корпуса ПБУ.

9.3.7 Оболочки электрических элементов (блоков) управления и контроля балластной системы, неисправность которых может привести к проникновению воды и повлиять на безопасность
Правила классификации, постройки и оборудования ПБУ/МСБ

функционирования системы, должны соответствовать требованиям, изложенными в 2.4.4.2 части Х «Электрическое оборудование».

9.3.8 Индикация закрытого и открытого состояния клапанов должна быть предусмотрена на каждом посту управления, с которого осуществляется управление клапанами. Индикаторы должны получать информацию об открытом и закрытом состоянии клапана от перемещения его подвижной части (штока или шпинделя).

9.3.9 На центральном посту управления балластной системой должны быть предусмотрены устройства отключения цепей управления балластными насосами и устройств управления клапанами от источников электрического, гидравлического или пневматического питания.

9.4 СИСТЕМА ВНУТРЕННЕЙ СВЯЗИ

9.4.1 Между центральным постом управления балластной системой и помещениями, в которых находятся балластные насосы или клапаны, или другим помещениям, в которых находится оборудование для управления балластной системой, должны быть предусмотрены стационарные средства связи, независимые от основного источника электрической энергии.

9.5 ЗАЩИТА ПРОТИВ ЗАТОПЛЕНИЯ

9.5.1 На всех полупогруженных (стабилизируемых колоннами) ПБУ и других ПБУ, на которых помещения, где расположены клапаны забортной воды, являются необслуживаемыми, и в которых отсутствует аварийно-предупредительная сигнализация о высоком уровне воды в льялах, каждый вход и выход трубопроводов забортной воды, расположенный ниже конструктивной ватерлинии, должен быть оборудован клапанами, дистанционно управляемыми с постов управления, расположенных выше помещений, в которых установлены клапаны.

9.5.2 Системы управления и индикаторы положения водонепроницаемых дверей и крышек люков должны быть работоспособными как в нормальных условиях, так и при потере питания от основного источника электрической энергии. Система питания указанных устройств должна соответствовать требованиям, изложенным в 5.9.2.

9.5.3 Осушительная система должна быть оборудована системой дистанционного управления и индикации состояния (открыт — закрыт) ее клапанов, а также системой АПС о высоком уровне воды в сливных колодцах или отсеках платформы. Сигнализация о максимальном уровне воды в каждом колодце должна обеспечиваться двумя независимыми датчиками. Один из этих датчиков может быть использован кроме сигнализации также для управления автоматизированным осушительным насосом.

10 УСТРОЙСТВА ПОДЪЕМА И СПУСКА САМОПОДЪЕМНЫХ ПБУ

10.1 ОБЩИЕ ТРЕБОВАНИЯ К УСТРОЙСТВАМ ПОДЪЕМА И СПУСКА

10.1.1 Устройства подъема самоподъемной ПБУ (СППБУ) должны быть способны осуществлять подъем и поддержание СPPBU в ее рабочем состоянии.

10.1.2 Устройства подъема должны быть выполнены с соответствующим резервированием таким образом, чтобы в случае выхода из строя одного любого компонента (блока, агрегата, электрической и гидравлической системы питания, системы управления), они сохраняли бы способность продолжать подъем или удержание платформы на прежнем уровне.

10.2 КОНСТРУКЦИЯ

10.2.1 Устройство подъема должно быть спроектировано таким образом, чтобы перегрузки его частей, узлов и механизмов при любых операциях с платформой были исключены. Это относится, в частности, к следующим элементам электрического оборудования:

- контроллерам (пусковым устройствам) электродвигателей;
- характеристикам электродвигателей (номинальная мощность, момент и т. п.);
- характеристикам тормозов;
- блокировкам между электродвигателями и системой фиксации опорных колонн платформы.
10.2.2 При потере питания механизмов подъема система тормозов должна срабатывать автоматически.

10.3 УДЕРЖИВАЮЩИЕ УСТРОЙСТВА

10.3.1 Для СПБУ без системы фиксации опорных колонн расчет удерживающей силы тормозов должен быть выполнен с учетом максимальной нагрузки, определяемой как максимальное усилие (взаимодействие) между колонной и самоподъемным механизмом в штормовых условиях (максимальная масса платформы плюс соответствующая составляющая воздействия шторма). Статический тормозной момент должен быть принят не менее чем 1,3 максимальной нагрузки, с учетом КПД механической передачи.

10.3.2 Для СПБУ с системой фиксации опорных колонн расчет удерживающей силы тормозов должен быть выполнен с учетом расчетной нагрузки. Статический тормозной момент должен быть принят не менее чем 1,2 расчетной нагрузки.

10.4 ЭЛЕКТРОДВИГАТЕЛИ ПОДЪЕМНО-СПУСКОВОГО УСТРОЙСТВА

10.4.1 Мощность электродвигателей привода подъемного устройства должна выбираться с учетом возможного, в допустимых пределах, неравномерного распределения расчетной нагрузки платформы, с учетом расчетного допустимого времени подъема платформы, а также с учетом потерь на трение между колоннами и направляющими и КПД редукторной передачи.

10.4.2 Характеристики вращающего момента электродвигателей (механические характеристики) должны быть такими, чтобы электродвигатель не был бы способен повредить любую часть (деталь) редукторной передачи или шестеренчатой рамы механизма подъема платформы в случае механической блокировки подъемной системы.

10.5 СИСТЕМЫ УПРАВЛЕНИЯ И КОНТРОЛЯ

10.5.1 Для обеспечения управления подъемом или спуском платформы на постах управления должна быть предусмотрена соответствующая система контроля, которая должна предусматривать аварийно-предупредительную сигнализацию (при отклонениях от допустимых значений) и индикацию, как минимум, следующих параметров:
- готовность к операции подъема или спуска (питание на все необходимое оборудование включено);
- положение фиксирующих устройств (захватов) опорных колонн (при наличии);
- нагрузка на опорные колонны;
- отклонение от горизонтального положения платформы;
- давление рабочей жидкости в гидроцилиндрах;
- давление рабочей жидкости в системе управления;
- температура рабочей жидкости в гидравлической системе;
- нагрузка (ток) электродвигателей;
- перегрузка электродвигателей.

10.5.2 С целью выравнивания нагрузки между подъемными механизмами опорных колонн разгибающие моменты электродвигателей должны контролироваться и при необходимости выравниваться. Эта процедура должна выполняться после подъема платформы, а также в штормовых условиях, когда распределение нагрузок на колонны может быть нарушено. Эта процедура не применяется при наличии автоматической системы распределения нагрузок.

10.5.3 В электроприводах каждой опорной колонны от одного фидера допускается питание двух или более двигателей. При этом фидер должен иметь уставку защиты от коротких замыканий не превышающую 10-кратное значение суммарного тока полной нагрузки совместно включенных двигателей.

10.5.4 Контроль нагрузки двигателей, требуемый 10.5.1, должен быть выполнен трехфазными ваттметрами с центральной шкалой. Установка таких ваттметров допускается не для каждого двигателя, а для фидера, к которому подключено два и более двигателей подъемного устройства.

10.5.5 Система снабжения забортной водой должна предусматривать контроль, как минимум, следующих параметров:
- давление воды в системе (АПС по минимальному давлению и индикация давления в ЦПУ);
- уровень воды в промежуточной цистерне (танке);
- автоматическая остановка механизма подъема и спуска погружных насосов в конечных положениях.

10.5.6 Должен быть предусмотрен автоматический пуск резервного погружного насоса забортной воды при снижении давления воды в системе с подачей сигнала в ЦПУ.
1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящей части распространяются на ПБУ самоподъемного и полупогружного типов, а также стационарные платформы, включая ледостойкие и платформы с натяжными опорами.

1.1.2 Правила распространяются на аварийные ситуации следующих видов:
- экстремальные гидрометеоусловия;
- землетрясения;
- столкновения с судами и другими плавающими объектами;
- аварии вертолета;
- падение предметов;
- взрывы;
- пожары;
- выбросы;
- сочетание этих аварий;
- нарушение правил техники безопасности, плохое руководство при изменении условий, плохое техническое обслуживание;
- другие возможные ситуации.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

1.2.1 Определения и пояснения, относящиеся к общей терминологии, приведены в части I «Классификация».

1.2.2 В настоящей части приняты следующие определения.

Безопасность — свойство сохранять возможность выполнять заданные функции в заданных условиях эксплуатации в течение заданного периода времени, при котором исключено или снижено до допустимых значений воздействие опасных и вредных факторов на платформу, ее элементы, окружающую среду и обслуживающий персонал.

Опасность — явление (природное или техносферы), при котором возможно возникновение явлений или процессов, способных поражать людей, наносить материальный ущерб, разрушительно действовать на окружающую человека среду.

Идентификация опасности — процесс выявления и признания, что опасность существует, а также определение характеристик опасности.

Авария — нештатное событие (происшествие), возникновение которого не ожидается во время обычного функционирования платформы, и которое может вызвать существенные повреждения конструкции, если оно не учтено при проектировании.

Аварийная ситуация — эксплуатационная ситуация, во время которой может реализоваться авария.

Сценарий аварии — полное и формализованное описание следующих событий: фазы инициирования аварии, аварийного процесса и чрезвычайной ситуации, потеря при аварии, включая специфические количественные характеристики событий аварии, их пространственно-временные параметры и причинные связи.

Катастрофа — исключительное по своим последствиям явление (авария), носящее характер массовых бедствий, приводящее к гибели платформы, человеческим жертвам или ущербу окружающей среде.

Риск — частота реализации опасностей (определенного класса). Риск может быть определен как частота или вероятность возникновения события в при наступлении события А (безразмерная величина, лежащая в пределах 0 — 1).

Анализ риска — процесс идентификации опасностей и оценки риска для людей, платформы или окружающей среды. Анализ риска заключается в использовании всей доступной информации для идентификации опасностей и оценки риска заранее определенного события (аварии и связанных с ней ситуаций), обусловленного этими опасностями.

Индивидуальный риск — риск (частота возникновения) поражающих воздействий определенного вида, возникающих при реализации определенных опасностей на определенной платформе. Характеризует распределение риска.

ГИР — годовой индивидуальный риск.

Социальный риск — зависимость риска (частоты возникновения событий), состоящего в поражении определенного числа людей, подвергаемых поражающим воздействиям определенного вида при реализации определенных опасностей, от этого числа людей. Характеризует масштаб катастрофичности опасности для платформы.

Рисующие — человек или социальная группа, на которых может быть оказано воздействие.
Часть XV. Оценка безопасности ПБУ/МСП

определяемого вида при реализации определенной опасности или определенных опасностей, т.е. для которых индивидуальный или социальный риски не являются нулевыми или же достигают определенного уровня.

КОР — количественная оценка риска.

«Непрерывно или часто» означает, что событие происходит непрерывно или может часто происходить в течение срока службы данной платформы.

«Не часто» означает, что событие может произойти несколько раз в течение срока службы данной платформы.

«Редко» означает, что событие не должно произойти в течение срока службы одной платформы, но может случиться на отдельных однотипных платформах в течение их срока службы.

Дерево событий — графический прием, обеспечивющий качественное описание потенциальных аварийных ситуаций, а также их количественную оценку для каждой ветви дерева; является индуктивным методом.

Дерево ошибок и неполадок — графический прием, позволяющий проследить все логические взаимосвязи между техническими неполадками, внешними условиями и человеческими ошибками, приводящие к рассматриваемому событию; является дедуктивным методом.

Кривые FN — связь уровня частоты аварий и числа смертельных случаев при аварии.

Эксплуатационный стандарт — документ, определяющий параметры функционирования, требуемые от конструкции, систем, оборудования, персонала, процедуры для управления безопасностью.

1.3.1 Предполагается, что проектирование, расчеты, конструкция, эксплуатация и техническое обслуживание платформы удовлетворяют всем действующим нормативным документам Регистра.

1.3.2 Оценка безопасности по предэскизному проекту платформы должна быть включена в генеральный план разработки проекта и постройки платформы.

1.3.3 В качестве основы для оценки безопасности проектант должен представить следующую информацию: описание окружающей платформу среды; описание функционирования и особенностей эксплуатации платформы; чертежи расположения, показывающие устройства и системы, выполняющие наиболее важные функции. Особое внимание должно быть уделено местам, в которых производятся работы и установлено оборудование, имеющее значительный разрушительный потенциал, а также пожарной безопасности, жилищным комплексам, путям эвакуации, защитным зонам и системам эвакуации; основные силовые конструктивные схемы; описание важнейших мер, предусмотренных для снижения вероятности аварий; описание мер, предусмотренных для уменьшения последствий аварий; описание эвакуационных путей; описание степени безопасности, связанной с новыми технологиями и техническими новинками, которые планируется использовать; указанные аварийные случаи, соответствующие расчетным аварийным воздействиям на части платформы, описанным в разд. 2 настоящей части; расчет, показывающий, что последствия расчетных экстремальных внешних условий и аварийных воздействий удовлетворяют критериям достаточной безопасности, изложенными в разд. 5 настоящей части.

1.3.4 Оценка безопасности платформы должна выполняться, прежде всего, на уровне концепции проекта при выборе типа платформы. Предполагается, что проектировщик выбрал наиболее благоприятное проектное решение, удовлетворяющее общим принципам безопасности.

Смысл этой оценки состоит в том, чтобы на ранней стадии проектирования убедиться, что выбранная концепция платформы не приведет к необходимости внесения принципиальных изменений при проектировании и постройке из-за требований безопасности. Целью оценки безопасности является обеспечение приемлемой безопасности в соответствии с установленными критериями.

1.3.5 Регламентируемые в Правилах ПБУ/МСП оценки безопасности должны подтвердить достаточную низкую вероятность человеческих жертв, оцениваемых с помощью годовых индивидуальных рисков, а также социальных рисков (см. 3.2 и 5.3), больших убытков (см. 4.2), и неприемлемого загрязнения окружающей среды, могущего произойти в результате аварии (см. 4).

Следует полагать, что платформа, удовлетворяющая оценкам, выполненными в предэскизном проекте, а также критериям достаточной безопасности, приведенным в настоящих Правилах, будет иметь необходимую степень безопасности.
2 ИДЕНТИФИКАЦИЯ РИСКОВ

2.1 КОНЦЕПЦИЯ АНАЛИЗА АВАРИЙНЫХ СИТУАЦИЙ

2.1.1 Анализ аварийных ситуаций делится на два главных направления. Первое направление — анализ аварийных ситуаций через соответствие стандартам (Правилам ПБУ/МСП, Руководству по техническому наблюдению за ПБУ в эксплуатации и др.). Второе — анализ аварийных ситуаций либо для малоизученных сценариев, либо для сценариев, представляющих повышенный риск.

Анализ возможности аварийных ситуаций является дополнительным шагом, предназначенным для оценки новых или значительно отличающихся мероприятий, оборудования, процессов или технологий, несоответствие которых со стандартной практикой может быть значительным. Этот анализ должен использоваться для определения и оценки непредвиденных аварийных ситуаций и непреднамеренных действий, которые могут привести к авариям.

Анализ возможности аварийных ситуаций представляет собой ряд мер, направленных на сведение к минимуму вероятности и последствий аварии для платформы. Обычный порядок мер таков:

.1 определение потенциальных аварийных ситуаций;
.2 оценка принятия степени риска;
.3 устранение или профилактика аварийных ситуаций.

Задачей первой и наиболее важной меры является определение типов аварийных ситуаций (см. 2.2). Задачей второй меры является оценка риска выявленной аварийной ситуации для персонала, платформы, окружающей среды (см. 2.3, 2.4, 3.1, 3.2). Задачей третьей меры является устранение или профилактика аварийной ситуации в том случае, когда степень риска была признана неприемлемой (см. разд. 4, 5).

2.2 ТИПЫ АВАРИЙНЫХ СИТУАЦИЙ НА ПЛАТФОРМАХ

2.2.1 Общие положения.

2.2.1.1 Анализ аварийных ситуаций проводится регулярно для идентификации, оценки и управления потенциальными аварийными ситуациями на платформах. Тщательная и точная оценка потенциальных аварий на платформах сведет к минимуму травмы персонала, потерь оборудования и угрозу окружающей среде.

Сам по себе анализ аварийных ситуаций не обеспечивает должного уровня безопасности на платформе. Он лишь является частью общей системы безопасности. Другими областями, относящимися к этой системе, являются техника безопасности, обучение персонала и реагирование на аварию.

Анализ аварийных ситуаций применяется при проектировании (начиная с концепции проекта), строительстве и эксплуатации платформы. При этом следует рассматривать все расчетные режимы эксплуатации: транспортировки, установки на точку, рабочий, выживания или экстремального нагружения, снятия с точки и т. п.

Анализ аварийных ситуаций должен также применяться к существующим платформам при их принципиальных модификациях.

2.2.1.2 Общим направлением анализа аварийной ситуации является стремление определить возможные опасности, связанные с ее развитием, и действий по детальной оценке риска, сопряженного с аварией. Большинство из этих методов являются сложными, дорогими и занимают много времени, но они могут быть оправданы степенью опасности и последствий аварий.

2.2.1.3 Анализ возможных аварийных ситуаций должен быть одобрен Регистром и включать следующее:

.1 описание условий в начале аварийной ситуации, исходные данные для анализа;
.2 описание мер борьбы с аварией, указание об оборудовании и системах платформы, привлекаемых для нейтрализации последствий аварии;
.3 сведения о методах анализа, физических и статистических моделях;
.4 описание процесса развития аварии, включая его расчетное представление;
.5 меры защиты персонала и лиц, находящихся на платформе во время аварии.

2.2.2 Потенциальные аварийные ситуации для всех ПБУ/МСП.

2.2.2.1 При экстремальных внешних условиях: различные конструктивные нарушения в рабочем положении благодаря нештатному развитию событий; сдвиг, опрокидывание и просадка платформ на грунте при неблагоприятном сочетании внешних условий и изменявшихся свойств грунта; значимые усталостные повреждения при интенсивных воздействиях волнения, ветра, льда, сейсмике; хрупкие разрушения в условиях низких температур и импульсных нагрузок.

2.2.2.2 При столкновении с судном или плавающим объектом.
Процесс формирования усилия взаимодействия судна с платформой при столкновении описывается формулой

\[N = N_s + N_d, \]

где

- \(N \) — суммарное воздействие;
- \(N_s \) — статическое усилие (навал);
- \(N_d \) — динамическое усилие (удар);

\[N_d = M \times X + \Delta X, \]

где \(M \) и \(\Delta \) — инерционный и демпфирующий коэффициенты при столкновении с судном;
\(\times, X \) — ускорение и скорость судна относительно платформы, зарегистрированные в момент столкновения.

Ударный импульс, если не оговорены дополнительные требования, составляет

\[N_d = \Delta X, \]

где \(\Delta \) — время соударения, которое зависит от степени и эффективности защиты объектов столкновения от удара.

Следует рассматривать два типа столкновения:
- навал судна или плавающего объекта — касание наружной поверхности платформы судном или плавающим объектом на малых скоростях, обычно \(\leq 0,3 \text{ узла} \), коэффициенты при скоростной и инерционной составляющих удара пренебрежимо малы (ударный импульс отсутствует); воздействие может быть определено статическим приложением внешней силы;
- столкновение с судном или плавающим объектом — удар судна или плавающего объекта в наружную поверхность платформы судном или плавающим объектом на малых скоростях, обычно \(\leq 0,3 \text{ узла} \), коэффициенты при скоростной и инерционной составляющих удара пренебрежимо малы (ударный импульс отсутствует); воздействие может быть определено статическим приложением внешней силы;
- столкновение с судном или плавающим объектом — удар судна или плавающего объекта в наружную поверхность платформы, коэффициенты при скоростной и инерционной составляющих воздействия достаточно для формирования ударного импульса.

2.2.2.3 При взрывах, падающих и летящих предметах.

2.2.2.3.1 Основными внешними и внутренними источниками, связанными с воздействием на платформу взрывов, падающих и летящих предметов (осколков) являются:
- авария вертолета;
- авария вблизи платформы на обеспечивающих судах и танкерах, приводящие к взрывам и/или возникновению летящих предметов на них;
- соеди (баллоны) и трубопроводы, находящиеся (работающие) под давлением и содержащие газ или жидкое взрывоопасное среды;
- конструкции и оборудование, обладающие значительной потенциальной энергией.

2.2.2.3.2 Летящих (падающих) предмет окажет механическое воздействие на объект (конструкцию, оборудование, персонал). Степень его опасности (поражающего действия) характеризуется, в первую очередь, массой предмета и скоростью его удара. Кроме того, поражающее действие летящего предмета зависит от его формы, угла между направлением вектора скорости и плоскостью удара и др.

Действие взрыва на объект обусловлено быстрым изменением избыточного воздушного давления, в частном случае, в виде воздушной ударной волны. Степень опасности воздушного взрыва характеризуется величиной максимального избыточного давления. Однако, для оценки реакции объекта на действие взрыва должны быть определены время нарастания и спада избыточного давления. Разрушение (отказ) некоторых потенциальных источников взрыва может сопровождаться одновременным формированием избыточного воздушного давления и образованием летящих предметов (осколков). Это характерно, например, для взрываемых разрушений сосудов (баллонов), находящихся под давлением.

Авария вертолета, наряду с механическим (ударным) воздействием фюзеляжа (или других частей вертолета) по конструкциям и оборудованию платформы, может сопровождаться взрывом паров топлива. Следует учитывать возможность взрыва как спаруции, так и внутри помещений платформы. Взрыв внутри, как правило, приводит к существенно большим масштабам аварии.

2.2.2.3.3 Возможные первичные эффекты (факторы), связанные с действием взрыва, падающих (летящих) предметов и аварией вертолета:
- деформация, повреждение, разрушение конструкций и оборудования;
- повреждение (травма) и гибель персонала;
- движение (соприкосновение) конструкций;
- образование летящих предметов;
- появление едких токсичных газов и аэрозолей;
- возникновение пожара.

Первичные эффекты, в свою очередь, могут порождать новый комплекс аналогичных вторичных факторов. Так, например, соприкосновение конструкций может приводить к повреждению оборудования, падению незакрепленных предметов, травмам персонала в результате падения и др.

2.2.2.3.4 Устанавливаются три степени опасности взрыва и летящего (падающего) предмета:
- I — характеризуется максимально возможными для данного источника значениями параметров и характеристик поражающих факторов;
- II — характеризуется значениями параметров и характеристик поражающих факторов, не относящихся к I и III степеням;
- III — характеризуется значениями параметров и характеристик поражающих факторов, не вызывающих ощутимых последствий для конструкций, оборудования и персонала платформы, а, следовательно, и для окружающей природной среды.

Если есть с достаточной степенью достоверности определить значения параметров и характеристик поражающих факторов данного источника, то для оценок безопасности следует использовать консервативный подход, полагая, что реализуется опасность I степени.
2.2.2.3.5 Опасность III степени определяется предельно допустимыми уровнями нагрузок на конструкции, оборудование и персонал.

В качестве предельно допустимых уровней нагрузок на персонал могут приниматься следующие:
- предельно допустимые уровни ускорений (в положении сидя или стоя) — 0,9g (по всем осьям координат);
- при ударе головой о преграду скорость соударения не должна превышать 2,3 м/с;
- при удах предметами с массой 1, 2, 3, 4 и 5 кг скорость удара не должна превышать 5; 3,7; 3; 2,5 и 2,2 м/с, соответственно;
- величина избыточного давления в ударной волне не должна превышать 35 кПа.

2.2.2.4 При пожарах и выбросах.

2.2.2.4.1 Пожары на ПБУ/МСП принципиально подразделяются на две категории:
- на открытой палубе, вызванный выбросом фонтана нефти и (или) газов из скважины;
- во внутренних помещениях.

2.2.2.4.2 Для идентификации риска пожаров ПБУ/МСП в зависимости от выполняемых функций (то есть характеризует потенциальную степень опасности сооружения) подразделяют на три группы: платформа-нефтехранилище; добычная платформа; разведочная буровая установка.

Соответственно, с учетом 2.2.2.4.1 может быть рекомендована к применению качественная матрица рисков, изображенная на рис. 2.2.2.4.2.

2.2.2.4.3 Пожар на открытой палубе, вызванный выбросом фонтана нефти и (или) газов из скважины, следует классифицировать как наиболее опасный (см. рис. 2.2.2.4.2). Особая опасность этого пожара состоит в том, что, во-первых, происходит разлив нефти на большой площади; во-вторых, приток горючей жидкости и (или) газа достаточно велик и практически не поддается регулировке, особенно на начальной стадии пожара; в-третьих, в атмосфере над установкой образуется газообразная горючая смесь, состоящая из воздуха, газов, поступающих из скважины, а также паров нефти. Источниками воспламенения такой горючей смеси могут быть:
- неисправное палубное освещение;
- открытые пламя;
- искры любого происхождения;
- выхлопные горючие газы;
- горючие части оборудования.

Данный пожар может развиваться по различным сценариям, и достаточное количество различных

<table>
<thead>
<tr>
<th>вероятность</th>
<th>несущественные</th>
<th>малозначительные</th>
<th>значительные</th>
<th>катастрофические</th>
</tr>
</thead>
<tbody>
<tr>
<td>частая</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>умеренно вероятная</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>маловероятная</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>крайне маловероятная</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рис. 2.2.2.4.2
Качественная матрица рисков при пожарах:
1 — пожары на платформе-нефтехранилище, вызванные выбросом нефти.
2 — пожары на добычной платформе, вызванные выбросом нефти.
3 — пожары на ПБУ, вызванные выбросом нефти.
4 — пожары во внутренних помещениях

1 См. ПНАЭ Г-06-035-94 «Учет внешних воздействий природного и техногенного происхождения на ядерно- и радиационно опасные объекты».
факторов может повлиять на распространение огня. В связи с указанным для оценки риска при пожаре следует использовать логические схемы развития аварии, базируясь, например, на построении деревьев событий. При построении логической схемы в первую очередь следует учитывать:

- степень опасности сооружения (см. 2.2.2.4.2);
- химический состав потенциально возгораемого вещества (нефт/газоконденсат);
- внешние условия района эксплуатации (в первую очередь, ветровые);
- реальные возможности по заглушению скважины;
- наличие вблизи платформы других сооружений (в первую очередь, постоянно обитаемых);
- возможность последующего взрыва;
- техническое состояние корпуса ПБУ/МСП;
- эффективность работы противопожарной защиты и т. п.

Следует также учитывать, что данный пожар может вызвать пожар разлития и огненный шар.

В отношении воздействия на человека следует рассматривать такие поражающие факторы, как: непосредственное воздействие огня, избыточное давление, тепловое излучение.

2.2.2.4 Пожары во внутренних помещениях ПБУ/МСП можно разделить на три основные группы: пожары в энергетических отсеках (кроме чисто электротехнических отсеков и помещений); пожары электрооборудования; пожары в служебных, бытовых и жилых помещениях.

Основными причинами возникновения пожаров во внутренних помещениях являются:
- нарушение режимов работы и правил эксплуатации оборудования и приборов;
- аварии и поломки оборудования, машин, механизмов и приборов, а также обслуживающих их систем.

Источником возникновения пожаров во внутренних помещениях могут быть:
- искры любого происхождения;
- открытые пламя;
- поверхности, нагретые до температуры воспламенения ГСМ (неизолированные части газовых хлопков, перегретые подшипники, электрооборудование);
- несправная электропроводка.

2.3 Специфические аварийные ситуации для платформ.

2.3.1 Установки самоподъемного типа (СПБУ).
2.3.1.1 В отношении СПБУ могут быть реализованы все виды аварийных ситуаций согласно 2.2.2.

2.3.1.2 Специфическими потенциальными аварийными ситуациями для платформ самоподъемного типа могут являться:
- просадка колонн при задавливании в грунт;
- заклинивание опорно-подъемного устройства при подъеме корпуса платформы в рабочее положение;
- размык грунта при действиях донных течений;
- разжижение грунта при переменных нагрузках;
- опрокидывание и сдвиг платформы, а также просадка колонн при ветровых нагрузках и ударе судна или другого плавающего объекта в опорную колонну;
- перекосы и нарушение целостности колонн при выдергивании их из грунта;
- разъединение колонн в грунте в распор при неблагоприятном сочетании внешних нагрузок и особенностей реакций грунта;
- катастрофические последствия повреждения одной из колонн трехопорной установки;
- выбросы газа, сопровождающиеся грифоном, в районе опорных колонн;
- застревание корпуса платформы на полпути подъема или спуска на опорных колоннах;
- потеря работоспособности механизмов подъема;
- потеря конструктивных элементов опорных колонн вследствие соударения с судном или другим плавающим объектом;
- катастрофические последствия в результате землетрясения в связи с изменяющимися свойствами основания.

2.3.2 Платформы полупогружного типа (ППБУ).
2.3.2.1 В отношении ППБУ могут быть реализованы все типы аварийных ситуаций согласно 2.2.2. Спецификой данных платформ является то, что для них не следует рассматривать аварийные ситуации, связанные с землетрясениями.

2.3.2.2 Специфическими потенциальными аварийными ситуациями для платформ полупогружного типа могут быть:
- повреждения (остаточные деформации, нарушения целостности) конструктивных элементов понтонов, стабилизирующих колонн, раскосов, верхнего корпуса и их соединений;
- затопление пустого отсека;
- утечка нефтепродуктов;
- разрыв якорных цепей;
- сочетание указанных аварийных ситуаций.

2.3.3 Платформы стационарного типа.
2.3.3.1 В отношении МСП могут быть реализованы все типы аварийных ситуаций согласно 2.2.2.

2.3.3.2 В зависимости от архитектурно-конструктивного типа МСП специфическими потенциальными аварийными ситуациями для них могут являться:
- повреждения (остаточные деформации, нарушения целостности) конструктивных элементов корпуса и их соединений;
- нарушение целостности корпуса МСП;
- утечка нефтепродуктов;
- размык грунта при действиях донных течений;
Правила классификации, постройки и оборудования ПБУ/МСП

наползание оконечности судна на наклонный борт платформы;
столкновение МСП, работающей в северных морях, с айсбергом или стамухой;
сочетание указанных аварийных ситуаций, потеря устойчивости на грунте в результате землетрясения.

2.3 МЕТОДЫ АНАЛИЗА АВАРИЙНЫХ СИТУАЦИЙ

2.3.1 Опросный лист.
Использование опросных листов является обычным методом выявления соответствия со стандартами. Примерный опросный лист для анализа аварийной ситуации на морской буровой платформе приведен в Приложении 1.
Опросный лист прост в применении и может использоваться во время проектирования, строительства, эксплуатации, аварийной обстановки. С помощью опросного листа определяется минимально допустимый уровень опасности.
Опросные листы при необходимости могут составляться для специфических ситуаций и применяться для оценки правильности выполнения стандартных технологических операций и определения проблем, которые нуждаются в повышенном внимании.
Опросный лист является самым быстрым и простым методом анализа аварийной ситуации и очень эффективен в процессе управления стандартными аварийными ситуациями.

2.3.2 Анализ ситуации «Что, если...».
Этот метод вплотную примыкает к методу использования опросных листов. Этот метод основывается на вопросах, которые начинаются с «Что, если...». Метод рассматривает развитие ситуации после «Что, если...». Составители анализа должны быть осторожными и в достаточной степени реалистичными, чтобы не придумывать невероятных схем развития событий.
Анализ типа «Что, если...» может применяться при проектировании, модификации или эксплуатации буровой платформы. Его результатом является список проблемных участков, в которых могут возникнуть аварии, и предполагаемые методы предупреждений и профилактики аварий.

2.3.3 Изучение работоспособности платформ при аварийных ситуациях (IAC).
В этом анализе должна принимать участие группа специалистов разных профилей, которые определяют аварийные ситуации и работоспособность платформы, используя структурную форму анализа типа «Что, если...».
Конструктивное решение каждой составляющей технологической схемы анализируется в том виде, в котором оно представлено в проектной документации.
Метод IAC может использоваться во время проектирования, модификации и эксплуатации платформы. Результатом анализа является список проблем, связанных с потенциальными авариями или снижением работоспособности платформы, а также типа неисправностей и последствия каждой неисправности.

2.3.4 Анализ дерева событий.
Этот метод является индуктивным методом, предназначенным для исследования корней аварии и нахождения основных ошибок, которые ее вызвали. Он также дает основу аналитикам для определения риска аварии.
Анализ дерева событий заключается в построении последовательности событий (ветвей дерева), приводящих к главному событию (ветвию в вершине дерева). В Приложении 2 приведены некоторые примеры деревьев событий.
Этот метод используется при проектировании, модификации и эксплуатации платформы. Он особенно полезен при анализе новых технологий, конструктивных решений, эксплуатационных условий, которые еще не прошли апробацию на практике. Метод обеспечивает:
качественное описание потенциальных проблем, включая комбинации потенциальных событий;
количественные оценки частоты событий для каждой ветви дерева, позволяющие определить вклад каждого события в оценку риска.

2.3.5 Анализ цепи ошибок (дерева неполадок).
Этот метод является дедуктивным методом, в центре которого лежит определенное событие, повлекшее аварию, которое называется главным событием, и построение логической схемы всех взаимосвязей, которые могут привести к этому событию. Цепь ошибок является графической иллюстрацией различных конструктивных ошибок, неисправностей оборудования, влияния внешних условий и человеческих ошибок, которые могут приводить к аварии.
В Приложении 3 приведены некоторые примеры деревьев ошибок и неполадок.

2.3.6 Изучение работоспособности платформ при аварийных ситуациях.
Этот метод может использоваться во время проектирования, модификации и эксплуатации платформы. Результатом анализа является список проблем, которые могут привести к потенциальной аварии или к снижению работоспособности платформы, а также список рекомендуемых изменений, предложений или действий, направленных на улучшение безопасности или работоспособности. Время и эффективность этого метода напрямую зависят от размера и сложности платформы и от опыта экспертов, которые определяют аварийные ситуации и
работоспособность платформы, используя структурную форму анализа типа «Что, если...» (см. 2.3.2).

2.3.7 Анализ неисправностей и их последствий.

Этот анализ применяется при определении единичных типов неисправностей, которые могут служить причиной или способствовать возникновению аварии. Анализ типа неисправностей и их последствий может применяться вместе с другими способами определения опасностей, как например, описанный в 2.3.5.

Назначение этого анализа — определение типов неисправностей и последствий каждой неисправности для платформы. На стадии проектирования этот метод может использоваться для определения потребностей в дополнительных защитных мерах или в их сокращении. Во время модификации платформы анализ неисправностей используется для определения ее влияния на существующие конструкции и оборудование. Этот метод применяется также во время эксплуатации для определения единичных неисправностей, которые могут привести к значительным по масштабу последствиям. Поскольку этот метод субъективен, его исполнение требует как минимум двух экспертов, знающих процессы и оборудование.

При включении в анализ уровня критичности каждого типа неисправностей метод переходит в критический анализ типов неисправностей и их последствий.

3 МЕТОДЫ КОЛИЧЕСТВЕННЫХ ОЦЕНОК РИСКА (QAR)

3.1 СТАТИСТИЧЕСКИЕ МОДЕЛИ АВАРИЙНЫХ СИТУАЦИЙ

3.1.1 Целью оценок риска является фокусированное внимание на областях наиболее высоких уровней риска, а также определение факторов, оказывающих на них значительное влияние. Кроме того, целью оценок риска является установление взаимосвязи между режимами IMO с последствиями аварий для возможности установления регулируемых мероприятий по снижению риска.

3.1.2 В число рассматриваемых аварийных ситуаций должны войти те, которые позволяют определить различные типы рисков (для людей, для окружающей среды, для конструкций и оборудования).

3.1.3 Обычные в 3.1.1 цели оценок риска могут быть достигнуты, в первую очередь, построением так называемых деревьев событий (см. 2.3.4) и деревьев ошибок (см. 2.3.5). Кроме этого могут быть использованы другие подходящие методы (см. 2.3).

3.1.4 Количественное определение вкладов в риски, как правило, состоит из трех стадий, базирующихся на статистике аварий:

- категории и подкатегории аварий определяются в зависимости от их повторяемости (частоты);
- значимость результата аварии выражается в терминах риска;
- распределение результатов определяется подкатегориями аварий.

3.1.5 Математическая технология QAR может включать в себя различные статистические модели, включая Байесовскую статистику, метод Монте-Карло, формулу полной вероятности и другие адекватные статистические методы.

Например, формула полной вероятности при определении QAR записывается следующим образом

\[QAR_{i} = \sum_{j=1}^{n} Q_{ij} Q_{ik}, \]

где

- \(Q_{ij} \) — повторяемость рассматриваемой \(i \)-й ситуации (аварийного случая);
- \(Q_{ik} \) — риск аварии (как пример, вероятность реализации \(i \)-й ветви дерева событий в случае использования метода 2.3.4);
- \(n \) — число рассматриваемых сценариев (случаев) на данном виде аварии (либо число ветвей деревьев событий);
- \(k \) — соответствует данному виду аварии.

3.1.6 Статистические модели, соответствующие описанию реакций платформ на внешние воздействия (ветер, волнение, течение, лед, сейсмика) не должны противоречить используемым в Правилах ПБУ/МСП.

3.1.7 Диаграмма влияния.

Чаще всего она используется для сопоставления каких-то вариантов решения. Наибольшее внимание здесь должно быть сосредоточено на районе повышенного риска. В этих случаях может использоваться диаграмма, реализующая предложение, основанное на матрице рисков.

Таблица 3.1.7

<table>
<thead>
<tr>
<th>Типовая матрица рисков*</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Частая</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Умеренно вероятная</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Маловероятная</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Крайне маловероятная</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>верхность</td>
<td>Неусмотрит</td>
<td>Малозначитель</td>
<td>Значитель</td>
<td>Катастрофич</td>
</tr>
</tbody>
</table>

*Определение терминов — см. 5.2.
Правила классификации, постройки и оборудования ПБУ/МСП

На базе этой таблицы можно получать как количественные, так и качественные результаты.

3.1.8 В результате оценки риска производятся:
идентификация областей повышенного риска;
идентификация факторов, принципиально влияющих в регулируемом режиме на уровень риска;
переоценка риска для каждого варианта контроля риска, выбранного на следующем третьем шаге формальной оценки безопасности (см. разд. 4).

3.2 ОЦЕНКА ИНДИВИДУАЛЬНЫХ И СОЦИАЛЬНЫХ РИСКОВ

3.2.1 При анализе аварийных ситуаций определяются индивидуальные риски, характеризующие частоту возникновения поражающих воздействий определенного вида.

Значение годового индивидуального риска (AIR) при каком-либо воздействии, аварийном случае определяется по формуле

$$AIR_k = \sum_{i=1}^{n} Q_i Q_k,$$

(3.2.1)

где Q_i, Q_k — согласно 3.1.5;

Q_k — условная вероятность поражения человека при реализации k-й ветви дерева событий.

3.2.2 Значение суммарного годового индивидуального риска (AIRS) при различных воздействиях (например от землетрясения, при пожаре, взрывах, падении предметов и т. д.) определяется как сумма AIR для отдельных воздействий, т. е.

$$AIRS = \sum_{k=1}^{m} AIR_k,$$

(3.2.2)

где m — принятое во внимание число возможных поражающих факторов.

3.2.3 Социальный риск определяется с помощью FN-кривых, связывающих уровень частоты аварий (F) с числом смертельных случаев при аварии (N).

Социальный риск оценивает масштаб возможных катастроф. Он является интегральной характеристикой последствий реализации определенного вида. Значение социального риска (т. е. риска со смертельным исходом) при $N = 1$ используется для определения годового индивидуального риска. Пример построения FN-кривых приведен в Приложении 4.

3.3 РЕКОМЕНДАЦИИ ПО ОЦЕНКЕ РИСКА КАТАСТРОФЫ ПОСЛЕ ПОЛУЧЕНИЯ КОНСТРУКЦИЕЙ ПОВРЕЖДЕНИЯ

3.3.1 Настоящие рекомендации следует рассматривать как дополнение к анализу риска аварии (см. 3.1). Предпочтение должно отделяться аварийным событиям, которые могут привести к катастрофическим последствиям (см. 5.2).

Рекомендации могут быть использованы для анализа уже произошедших событий с целью накопления опыта, при эксплуатации платформы, а также при проектировании в качестве прогноза.

3.3.2 Риск катастрофы P может быть определен следующим образом:

$$P = P_1 + (1 - P_1)P_2,$$

(3.3.2-1)

где P_1 — риск аварии (соответствует Q_k из 3.1.5, если риск последствий аварии P_2 в соответствии с рекомендациями 3.3.4, не учтен в этой величине);

P_2 — риск последствий аварии, определенный на основе нижеприведенных рекомендаций.

При определении количественных характеристик катастрофы QAR_k (см. 3.1.5) и AIR_k (см. 3.2.1) следует полагать:

$$QAR_k = P.$$

(3.3.2-2)

3.3.3 Алгоритм строится следующим образом: полагается, что авария произошла, конструкция получила повреждение (повреждения) и далее анализируются последствия этих повреждений. В основе алгоритма — конструктивная достаточность (см. 4.1.6), так как, в конечном итоге, «гибель» конструкции приведет к человеческим жертвам и ущербу для окружающей среды.

3.3.4 При оценке последствий повреждения рекомендуется рассматривать следующие задачи.

3.3.4.1 Идентификация повреждения. Здесь следует ответить на вопрос: принималось ли во внимание данное повреждение при проектировании платформы (т. е. насколько оно является расчетным)? На практике реализация именно проектных повреждений весьма затруднительна. Весьма будут иметь место какие-либо отклонения.

При решении задачи рекомендуется, по крайней мере, ответить на следующие вопросы: выполнены ли при проектировании платформы прямые расчеты прочности поврежденной конструкции и какие случаи повреждения рассматривались; каким запасом живучести (в смысле конструктивного резервирования) обладает конструкция.

3.3.4.2 Оценка технического состояния конструкции в целом. Основной вопрос: насколько техническое состояние конструкции отвечало требованиям нормативных документов до получения повреждения (практически за «мгновение» до получения повреждения)? Фактическое техническое состояние корпуса морской платформы может оказаться в том числе неблагоприятным влияние на распространение повреждения.

При ответе на данный вопрос следует знать:

возраст морской платформы;

существует ли на платформе активная система по оценке и наблюдению за поведением конструкции (ежедневно за трещинами, деформациями и др.);

когда производилось последнее освидетельствование или дефектация корпуса платформы, результаты освидетельствования (дефектации): остаточные толщины,
часть XV. Оценка безопасности ПБУ/МСП

413

остаточные деформации, трещины, разрывы, есть ли явно ослабленные зоны и особенно в районе повреждения;

при оценке характеристик остаточных толщин и деформаций допускалось ли отступление от требований нормативных документов (если да, то насколько данные отступления обоснованы);

выполнялся ли ремонт конструктивных элементов и качество ремонта;

на какой срок была продлена эксплуатация морской платформы после освидетельствования.

3.3.4.3 Оценка внешних условий. Основной вопрос: будут или нет внешние нагрузки (от волнения, льда, других нагрузок среды) превышать расчетные для поврежденной платформы? Речь идет о периоде времени "жизни" платформы после получения повреждения.

При решении задачи целесообразно учитывать следующее:

период года, во время которого произошло повреждение, ибо вероятность превышения расчетного значения нагрузки изменяется в течение года;

период времени, необходимый для принятия мер по предотвращению возможной катастрофы;

существует ли на платформе активная система оценки внешних условий (ветер, волнение, лед, сейсмика и т. п.). В конечном итоге, следует располагать реалистичным прогнозом внешних условий.

3.3.4.4 Оценка возможности выхода из строя систем или устройств таких как: якорные линии, система динамического позиционирования и т.п. Особенно актуальна данная задача для плавучих морских платформ, а также для платформ, находящихся в режиме транспортировки.

При решении задачи целесообразно располагать следующей информацией:

фактическое техническое состояние систем или устройств;

внешние условия среды после повреждения конструкции платформы.

Решение задачи 3.3.4.4 связано с решением задачи 3.3.4.3 в части оценки внешних условий.

3.3.4.5 Оценка возможности повреждения других элементов корпуса платформы. Решение данной задачи связано с решением задачи 3.3.4.1 (насколько реализовано конструктивное резервирование при проектировании платформы), задачи 3.3.4.2 (техническое состояние конструктивных элементов в районе повреждения и зонах возможного появления других повреждений), задачи 3.3.4.3 (насколько реально превышение расчетных внешних условий).

3.3.5 Реализация алгоритма по оценке последствий повреждения может быть выполнена путем построения дерева событий. Дерево событий, рекомендованное в качестве типового, представлено в табл. 3.3.5. Позиции 1, 2, 3, 4 и 5 дерева событий соответствуют основным задачам, определенным в 3.3.4.1 — 3.3.4.5.

3.3.6 При разработке алгоритма по оценке последствий повреждения учтен имеющийся опыт проектирования и эксплуатации морских платформ. Дальнейшее накопление опыта должно способствовать развитию алгоритма.

Таблица 3.3.5

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Да | Дык | (1) |
Да | Нет | (2) |
Да | Нет | (3) |
Да | Нет | (4) |
Да | Нет | (5) |
Да | Нет | (6) |

Риск последствий аварии = (2)+(3)+(4)+(5)+(6)
3.4 МЕТОДЫ ЭКСПЕРТНЫХ ОЦЕНКИ

3.4.1 Метод Делфи.
С помощью метода Делфи (Delphi technique) реализуется «информированное интуитивное суждение», и для этого формулируется задача (проблема); отбирается группа специалистов-экспертов, способных всесторонне охватить сформулированную задачу (проблему);

создаются условия, при которых группа экспертов может работать наиболее продуктивно, для чего во главе группы ставится опытный аналитик, хорошо знакомый с методом Делфи;

вся группа получает максимум имеющейся информации по рассматриваемой проблеме.

Организационно последовательность условий при использовании метода Делфи выглядит следующим образом:

1. ведущий аналитик или кто-нибудь по его поручению подготавливает исходную информацию по проблеме, и происходит письменная или устная, а в необходимых случаях, и та и другая «презентация» проблемы перед группой отобранных экспертов;

2. эксперты выносят свое суждение, оцениваемое либо ранжированием предложенных вариантов (если нет возможности для количественных оценок), либо, если существует возможность, оценивают количественно рассматриваемое явление;

3. при ведущей роли аналитика происходит сравнение полученных мнений отдельных экспертов и обсуждение комментариев каждого из них;

4. эксперты переоценивают свои первоначальные суждения, если для этого с их точки зрения есть предпосылки;

5. составляется окончательный итог экспертизы.

3.4.2 Коэффициент конкордации.
Степень согласия группы экспертов оценивается с помощью коэффициента конкордации

\[W = \frac{12 \sum_{i=1}^{n} \sum_{j=1}^{n} (x_{ij} - \bar{x}_{i})(y_{ij} - \bar{y}_{j})}{m^2(n^3 - n)} \]

(3.4.2-1)

где

- \(m \) — число экспертов;
- \(n \) — число объектов.

Коэффициент \(W \) изменяется от 0 до 1. \(W = 0 \) означает, что не существует связи между ранжированием экспертов; \(W = 1 \) означает, что все эксперты одинаково ранжируют объекты по данному признаку.

Оценка значимости коэффициента конкордации определяется с помощью параметра \(Z \):

\[Z = \frac{1}{2} \ln \left(\frac{(m-1)W}{1-W} \right) \]

(3.4.2-2)

который имеет распределение Фишера со степенями свободы \(v_1 = n - 1 - \frac{2}{m} \) и \(v_2 = (m-1)v_1 \).

Для величин \(n \geq 7 \) можно использовать критерий \(\chi^2 \) Пирсона. Величина \(m(n-1)W \) имеет \(\chi^2 \)-распределение с \(v = n - 1 \) степенями свободы.

Нормативные значения коэффициента конкордации \(W \) определены в таблице 3.4.2.

<table>
<thead>
<tr>
<th>(W)</th>
<th>Нормативное значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0,7</td>
<td>Хорошее согласие</td>
</tr>
<tr>
<td>0,5 — 0,7</td>
<td>Приемлемое согласие</td>
</tr>
<tr>
<td>< 0,5</td>
<td>Неприемлемое</td>
</tr>
</tbody>
</table>

3.4.3 Коэффициент парной корреляции.
Для решения задач, связанных с обработкой информации, имеющей качественный, сравнительный характер, применяются методы ранговой корреляции.

При систематизации качественной информации используется так называемое ранжирование, под которым понимается расположение объектов в порядке возрастания или убывания какого-либо признака \(X \), количественно неизмеримого. Ранг \(x_i \) указывает то место, которое занимает \(i \)-й объект среди других \(n \) объектов, ранжированных в соответствии с признаком \(X \).

Статистической связи ранжированных объектов является коэффициент ранговой корреляции. Коэффициент ранговой корреляции \(\rho \) оценивает связь между качественными признаками отдельных объектов, не поддающимися точной количественной оценке:

\[\rho = 1 - \frac{6S(d^2)}{m(n^2-1)} \]

(3.4.3-1)

где

- \(n \) — число объектов;

- \(S(d^2) = \sum_{i=1}^{n} (x_i - y_i)^2 \);

(3.4.3-2)

- \(x_i, y_i \) — рассматриваемые свойства.

Свойства коэффициента ранговой корреляции:

-1 \(\leq \rho \leq +1 \).

\(\rho = 0 \) означает, что признаки \(X \) и \(Y \) для объектов \(n \) независимы ранжированием этих объектов по признаку \(Y \).

\(\rho = -1 \) означает, что ранжирование объектов по признакам \(X \) и \(Y \) полностью противоположно.

Если \(x_i \) и \(y_i \) являются случайными величинами, то коэффициент ранговой корреляции превращается в обычный коэффициент парной корреляции:

\[\rho = \frac{\text{cov}(XY)}{\sigma(X)\sigma(Y)} \]

(3.4.3-3)

где \(\sigma(X) \) и \(\sigma(Y) \) — стандартные отклонения \(X \) и \(Y \); \(\text{cov}(XY) \) — ковариация \(X \) и \(Y \).
4 УПРАВЛЕНИЕ РИСКАМИ

4.1 ВЫБОР КОНТРОЛЯ РИСКОВ

4.1.1 Общие положения.

4.1.1.1 Целью управления рисками является предложение эффективного и практически полезного варианта контроля риска, включающего в себя три принципиальных этапа:
- фокусирование на областях риска, нуждающихся в управлении;
- идентификация потенциальных контрольных мер риска;
- группировка контрольных мер риска в практически регулируемые варианты.

4.1.1.2 В процессе реализации 4.1.1.1 должна быть создана процедура выбора варианта контроля риска, приемлемого и для существующих традиционных аварийных ситуаций, и для аварийных ситуаций, вызываемых новыми технологиями или новыми методами операций. На первом этапе производится классификация результатов КОР таким образом, чтобы основные усилия были направлены на области, наиболее нуждающиеся в контроле. Основные аспекты, которые должны быть отражены при этом, следующие:
- аварии с неприемлемым уровнем риска рассматриваются в первую очередь;
- при составлении дерева ошибок и событий, прежде всего, идентифицируются риски, вносящие наибольший вклад в результат.

4.1.1.3 Выбор варианта контроля риска, прежде всего, связан с конкретными мерами по его управлению. Рекомендуется при установлении мер контроля риска строить подробную причинную цепочку: опасность \rightarrow аварийная ситуация \rightarrow авария \rightarrow последствия.

Меры контроля должны быть нацелены:
- на снижение частоты нарушений через качественное проектирование, использование современных технологий, организационную политику, «тренировку»;
- на смягчение эффекта нарушений для предотвращения аварий;
- на смягчение обстоятельств, при которых могут произойти нарушения;
- на снижение уровня последствий аварий.

4.1.1.4 В процессе выбора контроля риска соответствующие меры должны быть сгруппированы в ограниченное количество хорошо продуманных практически регулируемых вариантов.

Рекомендуются два возможных подхода для объединения индивидуальных мер в группы:
- «общий подход», обеспечивающий контроль риска с помощью оценки вероятности начала аварий; этот подход может быть эффективным для предотвращения последовательности нескольких различных аварий;
- «дифференцированный подход», обеспечивающий контроль эскалации аварий вместе с возможностью влияния на дальнейшие стадии развития других, прямо не связанных с ними, аварий.

4.1.1.5 Выбранный способ управления рисками оценивается по своей эффективности в отношении снижения риска с помощью методов, изложенных в разд. 3.

В результате выбранный вариант контроля рисков составляет список мероприятий по его реализации.

4.1.2 При внешних воздействиях.

4.1.2.1 При выборе архитектурно-конструктивного типа платформ должна всемерно учитываться возможность минимизации действующих на нее внешних нагрузок, для чего используются современные методы анализа воздействий и реакций на них платформ.

4.1.2.2 При решении вопросов безопасности платформ при внешних воздействиях должны учитываться все неблагоприятные их сочетания. Для платформ, соединенных с грунтом, должна быть обеспечена безопасность с учетом изменения свойств грунта в процессе эксплуатации.

4.1.2.3 Для экологически ответственных платформ должно быть предусмотрено контрольно-измерительное оборудование, обеспечивающее оповещение персонала о неблагоприятных их сочетаниях. Для платформ, соединенных с грунтом, должна быть обеспечена безопасность с учетом изменения свойств грунта в процессе эксплуатации.

4.1.2.4 Для экологически ответственных платформ должно быть предусмотрено контрольно-измерительное оборудование, обеспечивающее оповещение персонала о неблагоприятных их сочетаниях. Оно может включать в себя контроль за внешней средой и основных реакций платформ на интенсивные воздействия (волнение, лед, сейсмику, реакции грунта).

Регистр приветствует установку на платформах нового типа расширенных комплексов контрольно-измерительного оборудования, дающего возможность его использования в исследовательском варианте с целью накопления информации о поведении платформ в штатных и нештатных ситуациях.

4.1.3 При столкновениях с судами и плавающими объектами.

Наиболее эффективным и действенным средством управления рисками является организация эшелонов безопасности вокруг платформ. На стадии проектирования должна быть создана концепция безопасности, включающая в себя трехступенчатый контроль риска, для чего вводится:
- эшелоны безопасности вокруг платформы;
- эффективная защита корпуса от столкновения;
- ограничения параметров повреждений.
4.1.3.1 Эшелоны безопасности платформ включают в себя два типа:

Наружный эшелон (2 — 6 мильная зона вокруг платформы), где действуют ограничения по скорости и направлению движения судов. Степень ограничений зависит от:
- типов судов, их водоизмещения, осадки;
- маневренных качеств судов;
- их энергоооруженности (ВРШ, подруливающие устройства, поворотные движители, активная система удержания и др.).

В пределах эшелона должны действовать ограничения по буксировке плохо управляемых объектов.

Внутренний эшелон (0,5 — 2 мильная зона вокруг платформы), где действуют строгие ограничения по нахождению судов; скорость по направлению к платформе по радиусу зоны должна быть не более 2-х — 4-х узлов в зависимости от судна, его водоизмещения, энергоооруженности при маневрах, систем судна и платформы от столкновения; в пределах эшелона исключена любая буксировка плохо управляемых объектов.

Радиусы эшелонов безопасности могут быть откорректированы проектантом по согласованию с Регистром и Заказчиком, в зависимости от типа платформы (СПБУ, ППБУ, МСП, ПНО).

Для МСП, являющейся одновременно нефтехранилищем, вводится дополнительная зона отчуждения (0,5 мили), в пределах которой категорически запрещено нахождение любых судов и плавающих объектов после выполнения ими необходимых операций с платформой.

4.1.3.2 Эффективная конструктивная защита корпуса платформы от столкновений с судами должна включать амортизационную защиту и деформационную защиту корпуса.

Амортизационная защита платформы от судов, швартующихся в море, обеспечивается пневматическими кранцами или иными амортизационными средствами, эквивалентными по энергоемкости и удельному контактному усилию.

Деформационная защита платформы обеспечивается смяываемыми конструкциями, рассеивающими при своей невозвратной деформации энергию столкновения и гасящими контактное усилие до величины, воспринимаемой амортизационной защитой.

Допускается, что один тип защиты может устанавливаться на платформах, а другой тип — на судах обеспечения и транспортировки.

4.1.4 При взрывах, падающих и летящих предметах.

4.1.4.1 Мероприятия по управлению рисками, связанными с взрывами, падающими и летящими предметами, а также падением вертолета можно объединить в две группы по признаку их влияния на различные стадии аварии:

мероприятия, влияющие на потенциальный источник аварийной ситуации и обеспечивающие уменьшение вероятности возникновения аварийной ситуации;

мероприятия, влияющие на развитие аварии и обеспечивающие уменьшение ее последствий.

Мероприятия первой группы относятся только к источникам взрывов и падающих (летящих) предметов, находящихся на платформе.

4.1.4.2 К основным мероприятиям первой группы относятся:

консервативный подход при проектировании, базирующийся на широком использовании накопленного положительного опыта проектирования в отношении обеспечения безопасности; проведение периодических инспекций (освидетельствований и т.п.) оборудования и других источников взрыва и падающих (летящих) предметов в процессе эксплуатации; инспекции должны быть достаточно частыми, чтобы обеспечить соответствующий запас во времени между...
обнаружением дефекта (неисправности) и возможным разрушением;
использование для источников, характеризующихся достаточно высокими (ближими к максимальным для данного типа явлений) параметрами и характеристиками поражающих факторов, систем наблюдения; метод наблюдения состоит в том, чтобы контролировать определенные условия, которые могут указывать на начало отказа; примером системы является система вибрационных датчиков на крупном оборудовании, имеющем врачающиеся узлы.
К мероприятиям первой группы следует также относить весь комплекс противопожарных мероприятий.
4.1.4.3 К основным мероприятиям второй группы относятся:
размещение, компоновка и соответствующая ориентация оборудования;
ректирование систем, способных влиять на процесс развития и масштаб последствий аварий;
физическое разделение резервных систем безопасности;
применение специальных защитных конструкций (систем конструктивной защиты);
использование в качестве защитных барьеров штатных конструкций (путем их специального проектирования);
обеспечение предпочтительного (наименьшее опасного по масштабу) развития аварии (распространения поражающих факторов).
4.1.4.4 Для обеспечения необходимого уровня безопасности (приемлемого уровня риска), как правило, требуется реализация комплекса мероприятий первой и второй групп.
Найлучшим следует считать тот подход, который позволяет уменьшить до приемлемо малой величины вероятность возникновения взрыва, летящего или падающего предмета. На это направлены мероприятия первой группы.
Следующим по предпочтительности является подход, обеспечивающий уменьшение или исключение воздействия поражающих факторов на объект (помещение, оборудование, персонал и т. д.), важный для безопасности. И далее следует тот подход, который обеспечивает приемлемый масштаб последствий. На решение последних двух задач направлены мероприятия второй группы.
4.1.5 При пожарах и выбросах.
С целью обеспечения безопасности при пожаре на ПБУ должен быть проведен комплекс противопожарных мероприятий. Все эти мероприятия целесообразно разделить на четыре группы.
4.1.5.1 К первой из них относятся мероприятия организационного характера, а именно:
разработка и официальное оформление инструкций на производство всех работ, выполняемых на ПБУ;
разработка должностных инструкций для всего персонала ПБУ;
строгое соблюдение норм и требований техники безопасности при производстве любых работ на установке, внедрение системы разрешения на проведение всех пожароопасных работ;
разработка и официальное оформление четких указаний по действию персонала при тушении пожара;
разработка и внедрение системы обучения работе на ПБУ с контролем знаний, полученных персоналом.
4.1.5.2 Во вторую группу включаются мероприятия технического характера, направленные на предотвращение возможности возникновения пожара на ПБУ. Важнейшими из них являются:
применение на ПБУ в опасных в пожарном отношении зонах и помещениях оборудования, машин, механизмов, приборов и систем в противовзрывном и противопожарном исполнении;
установка на ПБУ специальной системы, предотвращающей выброс фонтана нефти и (или) газа;
использование на ПБУ систем транспортировки горючих жидкостей, в которых возможность утечки топлива или масла сведена к минимуму;
обеспечение требуемого состава воздуха в помещениях ПБУ путем установки систем газового анализа и вентиляции;
ограничения на использование горючих материалов в служебных, бытовых и жилых помещениях ПБУ.
4.1.5.3 Мероприятия по пассивной защите от огня, направленные на предотвращение его распространения на ПБУ (часть VI «Противопожарная защита» Правил классификации и постройки морских судов) составляют третью группу противопожарных мероприятий. С точки зрения контроля рисков определяющими из них следует признать:
модульное проектирование установки по технологическому принципу;
отделение одного модуля от другого, а также одного пожароопасного помещения от другого с помощью коффердамов либо газонепроницаемых огнестойких перегородок;
реализация специальных мер по обеспечению безопасности эвакуации персонала из любых служебных, бытовых или жилых помещений с помощью проходов, коридоров, палат, оборудованных противопожарной защитой;
устройство на ПБУ специального помещения-убежища, в котором персонал может находиться в безопасности в течение определенного промежутка времени, необходимого либо на ликвидацию пожара, либо для эвакуации людей с борта ПБУ.
4.1.5.4 Четвертая группа включает в себя мероприятия по активной борьбе с огнем, направленные на быстрое тушение пожара и предотвращение его распространения.
Правила классификации, постройки и оборудования ПБУ/МСП

4.1.6 Конструктивная достаточность.

4.1.6.1 Вопросы контроля конструктивной достаточности должны рассматриваться при проектировании, строительстве и эксплуатации морских платформ, а также при модернизации конструкции корпуса.

Обеспечение конструктивной достаточности достигается за счет обеспечения:
- прочности конструкции;
- конструктивной целостности;
- эксплуатационной надежности;
- живучести конструкции.

4.1.6.2 Основное внимание при обеспечении конструктивной достаточности должно уделяться:
- специальным конструктивным элементам;
- основным конструктивным элементам, важность которых обусловлена обеспечением непроницаемости и безопасности обслуживающего персонала платформы (например, такими как: конструкции вертолетной площадки, рабочей палубы, районов ошвартовки судов);
- основным конструктивным элементам, которые отвечают за живучесть конструкции.

4.1.6.3.1 Традиционные меры контроля нацелены на обеспечение прочности конструкции, конструктивной целостности, эксплуатационной надежности и регламентируются требованиями части II «Корпус», Руководства по техническому наблюдению за ПБУ и МСП в эксплуатации и др. (см. 2.1.2).

4.1.6.3.2 Дополнительные меры контроля нацелены, главным образом, на обеспечение конструктивной целостности, эксплуатационной надежности и связаны с использованием нетрадиционных материалов, уникальных конструкций и узлов, нетрадиционных методов контроля.

4.1.6.3.3 Специальные меры контроля нацелены, главным образом, на обеспечение живучести конструкции и обязательно связаны с оценкой возможности аварийных ситуаций (см. 2.1.3).

4.1.6.4 Традиционные меры контроля включают:
.1 при проектировании:
- расчет прочности конструкции на заданные нагрузки в соответствии с принятыми критериями;
- удовлетворение требований к минимальным толщинам;
- разработку специальных инструкций и нормативных документов по обеспечению эксплуатационной надежности сооружения (например, Инструкций по эксплуатации ПБУ, Методических указаний по оценке технического состояния корпуса, Рекомендаций по подводному обследованию и т. п.);
- экспертизу расчетов прочности, другие мероприятия по обеспечению качества проектирования;
.2 при строительстве:
- контроль качества основного материала;
- контроль качества соединений конструктивных элементов;
- контроль изготовления конструкции в целом, другие мероприятия по обеспечению качества изготовления;
.3 при эксплуатации:
- периодическое освидетельствование и дефектацию конструктивных элементов и их соединений, включая обследование подводной части конструкции с использованием современных технических средств подводного контроля;
- выявление конструктивных элементов, не удовлетворяющих требованиям нормативных документов по оценке технического состояния конструкции;
- ремонт конструктивных элементов.

4.1.6.5 Дополнительные меры контроля.

4.1.6.5.1 При проектировании дополнительные меры контроля включают:
- экспериментальные исследования прочности и работоспособности нетрадиционных конструкций корпуса и узлов;
- разработку специальных требований по конструированию уникальных конструкций и узлов;
- экспериментальные исследования нетрадиционных материалов и разработку специальных требований для них;
- в случае необходимости разработку специальных нормативных документов в обеспечение эксплуатационной надежности нетрадиционных конструкций, разработку специальных требований к нетрадиционным системам контроля, таким как: автоматизированный контроль параметров внешней среды, акустико-эмиссионный контроль за распространением усталостных трещин, контроль с использованием образцов-свидетелей и т. п.

4.1.6.5.2 При строительстве дополнительные меры контроля заключаются в использовании нетрадиционных материалов и контроле качества изготовления конструкции из них.

4.1.6.5.3 При эксплуатации дополнительные меры контроля заключаются в использовании...
нетрадиционных систем контроля и обеспечении качества их работы.

4.1.6.6 Специальные меры контроля разрабатываются при проектировании и реализуются при строительстве и эксплуатации платформ.

4.1.6.6.1 В целом удовлетворительная защита от аварийного повреждения достигается двумя способами: низкой вероятностью повреждения, приемлемыми последствиями повреждения.

Специальные контрольные меры нацелены, главным образом, на приемлемые последствия повреждения.

4.1.6.6.2 Контрольные меры по обеспечению живучести конструкции включают:
- конструктивные меры, направленные на то, чтобы выдерживать воздействия аварийных событий или снижать до минимума их последствия;
- организационные меры по снижению аварийности, такие как: разработка специальных аварийных планов и мероприятий в отношении минимизации риска столкновения с судами, айсбергами и других аварийных событий;
- меры технического характера, связанные, например, с использованием систем и устройств для контроля за механизмами, повреждение которых может привести к разрушению корпуса платформы (например, таковым механизмом является механизм спуска-подъема опорных колонн СПБУ).

4.1.6.6.3 Особую роль при обеспечении живучести конструкции играет конструктивное резервирование. Конструктивную схему следует выбирать так, чтобы ее несущая конструкция и наиболее ответственные элементы сохраняли целостность во время и непосредственно после аварии, а другие конструктивные элементы при этом могут быть повреждены. После получения повреждения конструкция должна выдерживать минимальные функциональные нагрузки и нагрузки внешней среды на протяжении определенного времени вплоть до вывода платформы из эксплуатации.

Формула (4.1.6.6.4)
Ф \leq R
где Ф — расчетное значение обобщенного силового воздействия;
R — расчетное значение обобщенной несущей способности (расчетное сопротивление конструкции);
методы расчета могут быть основаны на пластическом анализе поведения конструктивных элементов.

4.1.6.7 Выше охарактеризованные положения по контролю конструктивной достаточности следует воспринимать как минимальные требования общего характера, на базе которых должны определяться индивидуальные требования применительно к морской платформе конкретного типа с учетом оценки возможности аварийных ситуаций.

4.1.6.8 Контрольные меры по конструктивной достаточности будут более убедительными, если использовать имеющуюся информацию в отношении повреждений конструкций платформ вследствие аварийных событий. Накопление такой информации должно выполняться по форме Приложения 4.

4.2 СТОИМОСТНЫЕ ОЦЕНКИ, СВЯЗАННЫЕ С МЕРОПРИЯТИЯМИ ПО СНИЖЕНИЮ РИСКОВ

4.2.1 Целью этого шага является определение пользы и стоимости, связанной с реализацией каждого из вариантов контроля риска, идентифицированных и определенных в 4.1.

4.2.2 Стоимостная полезность оценки состоит из следующих этапов:
- рассмотрение рисков, оцененных в разд. 3, в зависимости от частоты и последствий для выявления базовых причин в зависимости от уровня риска обследуемой ситуации;
- классификация вариантов контроля риска, определенных в 4.1., для ориентировки в понимании стоимостей и выгод в результате применения того или иного варианта контроля риска;
- оценка соответствующих стоимостей и выгод при выборе контроля риска;
- оценка и сравнительная эффективность каждого варианта в зависимости от относительной стоимости на каждую единицу снижения риска;
классификация вариантов контроля риска с точки зрения стоимостно-полезной перспективы для облегчения принятия рекомендаций на следующем этапе (например, отсеванием малоэффективных либо невыполнимых рекомендаций).

4.2.3 Стоимость должна охватывать весь жизненный цикл и может включать начальный цикл, эксплуатацию, тренировку, инспекцию, сертификацию и т.д. Выгоды могут включать снижение стоимостей, связанных с авариями, поражением людей, ущербом, загрязнением окружающей среды, компенсацией за ответственность перед третьими лицами, повышением средней продолжительности жизни сооружения.

Оценка стоимостей и выгод может производиться на основе использования различных методик и технологий. Такая оценка должна быть выполнена для общей ситуации для выявления основных влияний.

Стоимость определяется по отношению к личности, организации, компании, руководству прибрежной зоны и т. д., которые напрямую или косвенно пострадали от аварии. На этом этапе определяется эффективность новых предложений. На начальной стадии выполнения формализованной оценки безопасности (ФОБ) должна быть произведена группировка базовых направлений риска с целью применения методологии ФОБ и идентификации выданных рекомендаций.

В результате этого:

определяется стоимость и выгоды каждого из вариантов контроля риска, определенных в 4.1;

определяется стоимость и выгоды для мероприятий, оказывающих наибольшее влияние на результат;

определяется стоимостная эффективность в зависимости от чистой стоимости каждой единицы снижения риска.

4.2.4 Стоимостную эффективность выбранного мероприятия рекомендуется определять, решая вероятностно-оптимизационную задачу либо на основе минимизации целевой функции P типа:

$$P = S + p\bar{u},$$

(4.2.4-1)

либо на основе метода приращений

$$I = S\Delta - \bar{\delta}p,$$

(4.2.4-2)

где S — начальная стоимость конструкции, оборудования, платформы;

\bar{u} — средний по вероятности убыток в случае отказа;$

p — вероятность отказа (величина риска), отнесенная ко всему сроку службы конструкции, оборудования, платформы;

Δ и δ — соответствующие приращения.

5 КРИТЕРИИ ДОСТАТОЧНОЙ БЕЗОПАСНОСТИ ПЛАТФОРМ

5.1 РЕКОМЕНДАЦИИ ДЛЯ ПРИНЯТИЯ РЕШЕНИЯ ПО СНИЖЕНИЮ РИСКА АВАРИИ

5.1.1 Целью этого шага является определение рекомендаций по снижению риска аварий. Рекомендации должны базироваться на классификации рисков и на лежащих в их основании причинах, сравнении вариантов контроля риска и выполняться в обеспечение снижения риска до наиболее разумного уровня.

В результате этого шага должно быть обеспечено объективное сравнение альтернативных вариантов, базирующихся на потенциальном снижении уровня риска и стоимостной эффективности вариантов контроля риска, в том числе и в областях, где нормы и правила должны быть пересмотрены или дополнены. Рекомендации должны коррелироваться в различных контекстах с рекомендациями IMO и не противоречить подходам МАКО.

Во всей цепочке шагов ФОБ этот шаг является наиболее ответственным и должен быть наиболее взвешенным.

5.1.2 Все решения, принимаемые для снижения риска аварий, должны отвечать действующим правилам Регистра и эксплуатационным стандартам, отраженным в соответствующих инструкциях по эксплуатации, утвержденных Регистром, в целях обеспечения безопасности платформ.

Эксплуатационные стандарты повсеместно используются в течение всего срока службы платформы. Важно, чтобы они относились к системам и процессам, способствующим уменьшению суммарного риска, при этом в соответствии с эксплуатационными стандартами должно способствовать лучшей управляемости безопасностью.

Эксплуатационные стандарты относятся к конкретной платформе и их рекомендуется формировать на трех уровнях:

эксплуатационные стандарты, основанные на риске, которые определяют количественные параметры и должны выполняться (см. 5.3);

сценарные эксплуатационные стандарты, которые могут быть качественными или количественными с указанием конкретной цели для управления при появлении конкретной опасности или группы опасностей;

системные эксплуатационные стандарты, уточняющие уровень поведения или правомочности, который необходим от системы, требуемой для управления при появлении опасности.
5.2 ПРИНЦИП РАЗУМНО ОСУЩЕСТВИМОГО УРОВНЯ

5.2.1 Идентификация опасностей и анализ последствий их реализации позволяет уже на первом этапе установить некоторую, пусть предварительную, приоритетность опасностей. Для этого используется матрица риска, в соответствии с которой все опасности классифицируются по трем уровням: неприемлемый, практически разумный и приемлемый.

Неприемлемыми опасностями считаются те, риск в отношении которых не может быть оправдан ни при каких, за исключением экстраординарных, обстоятельствах. К таким опасностям относится также, вероятность реализации которых имеет обычный, средний уровень, а последствия являются катастрофическими.

Приемлемыми считаются опасности, реализация которых маловероятна, а последствия несущественные. В отношении таких опасностей не требуется принятия каких-либо мер и они могут быть исключены из дальнейшего рассмотрения.

В 5.3 дается регламентация приемлемых и неприемлемых значений рисков. Междус «приемлемым» и «неприемлемым» уровнями лежит «разумно осуществимый уровень» (уровень ALARP — As Low As Reasonably Practical).

Базовая матрица рисков изображена на рис. 5.2.1. Реализация матрицы рисков осуществляется по идентификации конкретных потенциальных рисков. После определения задачи создается команда (группа) из экспертов, выполняющая экспертизу в рамках методологии ФОБ. Работу рекомендуется выполнять в три стадии: подготовительная работа, работа по идентификации риска, фаза обработки и документирования.

При невозможности количественного определения риска допускается качественная квалификация аварийных обстоятельств с использованием следующих определений для категорий масштаба аварии и ее вероятности согласно табл. 5.2.1-1 5.2.1-5. Качественная квалификация позволяет заполнить матрицу риска, в которой уровень 1 представляет самый высокий риск, а уровень 7 — самый низкий риск. Зона разумно осуществимого уровня соответствует трём — пяти уровням.

Рис. 5.2.1 Матрица рисков
ALARP — принцип разумно осуществимого уровня
<table>
<thead>
<tr>
<th>Масштаб последствий</th>
<th>Таблица 5.2.1-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Очень низкий</td>
<td>Происшествие, не приводящее к существенному вреду для людей, оборудования, окружающей среды.</td>
</tr>
<tr>
<td>Низкий</td>
<td>Произошли разрушения конструкций минимально допустимого уровня, повреждения людей, сопровождаемые оказанием первой помощи.</td>
</tr>
<tr>
<td>Средний</td>
<td>Произошли разрушения, соизмеримые с допустимым уровнем. Имеются ушибы, легкие ранения у людей.</td>
</tr>
<tr>
<td>Значительный</td>
<td>Часть конструкций и креплений имеют заметные повреждения. Имеются повреждения людей, требующие весьма квалифицированной медицинской помощи.</td>
</tr>
<tr>
<td>Катастрофический</td>
<td>Потеря платформы. Могут быть человеческие жертвы.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Таблица 5.2.1-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Частая</td>
</tr>
<tr>
<td>Умеренно вероятная</td>
</tr>
<tr>
<td>Вероятная</td>
</tr>
<tr>
<td>Крайне маловероятная</td>
</tr>
</tbody>
</table>

5.3 ПРЕНЕБРЕЖИМЫЕ И НЕДОПУСТИМЫЕ УРОВНИ РИСКА

5.3.1 В качестве критериев безопасности следует принимать для годовых индивидуальных рисков:
недопустимый уровень риска — 10^{-3}/год,
пренебрежимый уровень риска — 10^{-6}/год.
Диапазон между 10^{-3}/год и 10^{-6}/год является зоной разумно осуществимого уровня.
I. КРАТКОЕ ТЕХНИЧЕСКОЕ ОПИСАНИЕ ОПОРНО-ПОДЪЕМНОГО УСТРОЙСТВА (ОПУ) СПБУ 6500/100

Самоподъемная плавучая буровая установка СПБУ 6500/100 «Мурманская» имеет три трехгранные решетчатые опоры и предназначена для разведочного бурения скважин глубиной до 6500 м при глуобине воды на точке от 20 до 100 м при температуре воздуха от −30 до +40 °C. Допустимый ветер при перегоне платформы — 6 баллов, волнение моря — до 5 баллов.

Основные технические характеристики:
- водоизмещение порожнем на плаву ~ 15000 т;
- длина расчетная ~ 88,2 м;
- ширина расчетная ~ 68,0 м;
- высота борта ~ 9,7 м;
- осадка порожнем ~ 5,3 м;
- длина трехгранный решетчатой опоры ~ 143 м.

На СПБУ использовано опорно-подъемное устройство с реечно-шестеренчатым механизмом шагового действия, которое представляет собой три подъемника, смонтированные на портале у каждого угла опоры, и подвижную траверсу, охватывающую опору, с шарнирно присоединенными к ней тремя зубчатыми рейками. В состав подъемника входят три спаренных редуктора с двумя зубчатыми выходными шестернями, электродвигателями и тормозами.

Устройство перехвата (перештыривания) в составе механизма подъема включает три захвата (по одному у каждого угла опоры), расположенные на траверсе, и три захвата, расположенные аналогично в нижней части портала. Штыри захватов приводятся в действие (вдвигаются и выдвигаются в специальные отверстия узловых соединений вертикальных угловых стоек опорных колонн) пневмоприводами.

Цикл работы подъемника состоит из двух операций:
- рабочий ход — подъем (спуск) понтона (опоры);
- холостой ход — перестановка траверсы на один шаг вниз или вверх.

В конце рабочего хода срабатывают нижние захваты, которые соединяют понтон с опорой. После полной передачи нагрузки на нижние захваты, верхние захваты освобождают траверсу для перестановки — перемещения траверсы с рейками на шаг до срабатывания верхних захватов. Нижние захваты освобождают опору, после чего следует очередной рабочий ход.

С целью снижения напряжений и деформаций вертикальной стойки предусмотрены технологические приливы в ее литьих угловых соединениях, обеспечивающие передачу поперечных нагрузок только в узлах решетки опоры. Подобные контактные упоры — «лыжи» установлены в корпусе СПБУ по 3 штуки у каждой вертикальной стойки. По ним скользят при перестановке траверсы и упираются при работе выступающие узлы вертикальных стоек.

II. ОБЩИЕ РЕКОМЕНДАЦИИ К СОСТАВЛЕНИЮ И ИСПОЛЬЗОВАНИЮ ОПРОСНОГО ЛИСТА АНАЛИЗА АВАРИЙНОЙ СИТУАЦИИ ПРИМЕНЯЕМЫЕ К ОПОРНО-ПОДЪЕМНОМУ УСТРОЙСТВУ (ОПУ) СПБУ

1. Вводная часть

Опросный лист анализа аварийной ситуации на участках платформы со средним и высоким уровнем риска помогает определить ошибки в проекте и потенциальную угрозу безопасности, используя список вопросов, предназначенных для стимулирования мышления и процесса дискутирования.

Вопросы опросного листа обычно касаются тех участков, где имели место ошибки в проекте или при эксплуатации. Значительная часть вопросов является результатом рассмотрения проблем, определенных в предыдущих обзорах или в результате аварий. Опросный лист не касается, как правило, участков, где ошибки редко совершаются проектировщиками. Опросный лист должен использоваться лишь для тщательного и полного обзора проекта, а не в качестве метода проектирования установки или ее отдельных участков.

2. Необходимая информация

Порядок использования опросного листа требует знания базовых основ проекта, расположения оборудования, систем безопасности и защиты от пожара, техники эксплуатации и др. Необходимо, чтобы пакет рассматриваемых документов хранился весь срок эксплуатации установки и ее отдельных участков.

3. Методика

Для проведения анализа аварийных ситуаций создается группа, которая должна состоять из
Правила классификации, постройки и оборудования ПБУ/МСП представителей проектной организации, эксплуатационников и, по крайней мере, одного опытного специалиста, не вовлеченного напрямую в проектирование или эксплуатацию установки. Анализ может проводиться как одним специалистом, так и небольшими группами, каждая по своему профилю.

Опросный лист для облегчения обзора разбивается, как правило, на ряд частей, при этом применительно к ОПУ СПБУ — на следующие части (см. колонку 1 таблицы). В опросном листе нет требований к тому, чтобы ответами на каждый вопрос были «да» или «нет». Эксперты должны использовать вопросы листа в качестве направлений мышления и определения потенциальных проблем.

Вопросы опросного листа не обязательно являются «требованиями безопасности проекта». Во многих случаях они оставляют право выбора участникам опроса. Можно ожидать, что обзор и анализ аварийных ситуаций по опросному листу на уже существующей платформе выльется в большее количество неожиданных ответов, чем обзор нового проекта, потому что дополнительный риск в плане безопасности связан с необходимостью проведения модернизации реально существующей установки.

4. Отчет
Анализ должен быть документирован таким образом, чтобы можно было установить, кто его проводил, когда он был проведен, какая информация была рассмотрена и последующие рекомендации. Выявленные опасности и рекомендации, полученные в результате ответов на вопросы, целеобразно представить в виде сводной таблицы, аналогично той, форма которой приведена в конце настоящего приложения. Каждый пункт должен иметь ссылки на соответствующий вопрос опросного листа, с помощью которого была определена проблема. Эти пункты базируются на оценках группы и дискуссий с проектировщиками и эксплуатационниками платформы. Такие пункты должны вводиться только для тех участков платформы, состояние которых вызвало опасения.

III. ПРИМЕР ОПРОСНОГО ЛИСТА ОПОРНО-ПОДЪЕМНОГО УСТРОЙСТВА СПБУ 6500/1001

1. Общее
1.А. Общие вопросы.
1.А.1. Правильно ли адресованы опасности? Продуман ли метод их устранения и контроля?
1.А.2. Какие новые процессы и оборудование, системы и устройства имеются на установке, что может потребовать более тщательного анализа безопасности (например, НАЗОП)?
1.А.3. Была ли учтена в проекте работоспособность ОПУ? (Сложные системы будут эксклуатироваться, по всей вероятности, с нарушениями, а блокировки будут потом отключены.)
1.А.4. Были ли определены требования к испытанию систем безопасности? Отвечает ли проект этим требованиям?
1.А.5. Были ли рассмотрены и классифицированы все опасные материалы: были ли рассмотрены сертификаты материалов; были ли разработаны меры по защите персонала?
1.Б. Расположение.
1.Б.1. Правильно ли расположены жилые помещения, рубка и посты управления, чтобы уменьшить контакт с оборудованием и устройствами повышенной опасности?
1.Б.2. Была ли предусмотрена установка дополнительного оборудования, которое может препятствовать безопасной работе?
1.Б.3. Было ли продумано размещение и разделение оборудования и устройств между порталом и траверсой?
1.В. Реакция на экстремальную ситуацию.

<table>
<thead>
<tr>
<th>Предмет анализа (обзора)</th>
<th>Содержание</th>
<th>Документация в помощь</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Общее</td>
<td>А. Общие вопросы</td>
<td>Базовые основы проекта</td>
</tr>
<tr>
<td></td>
<td>Б. Расположение</td>
<td>Чертежи общего расположения, расположения оборудования</td>
</tr>
<tr>
<td></td>
<td>В. Реакция на экстремальную ситуацию</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Г. Эвакуация и спасательные работы</td>
<td></td>
</tr>
<tr>
<td>2. Механическая часть</td>
<td>А. Конструкционные материалы</td>
<td>Спецификации материалов, оборудования, устройств</td>
</tr>
<tr>
<td></td>
<td>Б. Система подъема – спуска опор</td>
<td>Чертежи</td>
</tr>
<tr>
<td></td>
<td>В. Механизм подъема</td>
<td>Патенты</td>
</tr>
<tr>
<td></td>
<td>Г. Система задавливания опор в грунт и их освобождения</td>
<td>Технологические схемы подъема – спуска опор, задавливания опор в грунт и др.</td>
</tr>
<tr>
<td></td>
<td>Д. Трубопроводы</td>
<td></td>
</tr>
<tr>
<td>3. Электрическая часть</td>
<td>А. Электрическая классификация зон</td>
<td>Спецификации электрооборудования и устройств, чертежи</td>
</tr>
<tr>
<td>и система управления</td>
<td>Б. Схема прохождения электрических цепей</td>
<td>Спецификации труб и клапанов</td>
</tr>
</tbody>
</table>

1Вопросы опросного листа разбиты на группы в соответствии с рекомендацией раздела 1.3 настоящего приложения.
1. В.1. Предусмотрено ли размещение персонала при возникновении экстремальной ситуации?
1. В.2. Есть ли связь или средства связи с судами и берегом?
1. Г. Эвакуация и спасательные работы.
1. Г.1. Достаточно ли мест на спасательных средствах, спасательных лодках и плотах, чтобы вместить 100 % обслуживающего персонала, включая прикомандированных?
1. Г.2. Ошанена ли платформа спасательными средствами для расширения маршрутов эвакуации?
1. Г.3. Продумано ли использование спасательных канатов в качестве средств эвакуации, когда другие средства окажутся малоэффективными?

2. Механическая часть
2. А. Конструкционные материалы.
2. А.1. Правильно ли произведен выбор конструкционных материалов, не используется ли необоснованно цветной металл вместо черного?
2. А.2. Соответствует ли сочетание материалов требованиям безопасности, действующим на морском флоте?
2. А.3. Продуманы ли зоны дренажана отработавшего материала и продуктов коррозии, нет ли препятствия для их естественной эвакуации?
2. А.4. Отсутствуют ли дополнительные технологические усиления, включая материал сварных швов, препятствующие правильной эксплуатации?
2. Б. Система подъема-спуска опор.
2. Б.1. Позволяет ли система подъема-спуска опор работать при существенно различной просадке опор на слабых грунтах?
2. Б.2. Предусмотрена ли в системе надежная блокировка при работе верхнего и нижнего уровней устройства перехвата?
2. Б.3. Учитывает ли система подъема-спуска аварийный перехват опоры?
2. В. Механизм подъема.
2. В.1. Предусмотрены ли в проекте расположения механизмов подъема планидки обслуживания, проходы и ограждения в соответствии с требованиями техники безопасности, действующими на морском флоте?
2. В.2. Обеспечена ли на проектном уровне безопасная работа механизмов подъема и редукторов при попадании в них продуктов коррозии и жизнедеятельности моря?
2. В.3. Может ли механизм подъема повредить (разрушить) переставную зубчатую рейку, выходящую из шестерни редуктора и т. д. при работе механизма в условиях закрепления верхнего и нижнего пояса штырей на опоре?
2. В.4. Производилась ли оценка безопасной работы механизма с переставной рейкой на стадии проектирования?
2. В.5. Предусмотрены ли стендовые испытания механизма подъема и оценка его надежности на предмет возможности аварийных ситуаций?

2. В.6. Существуют ли ограничения по ветроволновым и другим условиям для ОПУ в режиме перегона СПБУ?
2. Г. Система задавливания опор в грунт и их освобождения.
2. Г.1. Достаточен ли ресурс системы для извлечения из грунта аварийной опоры?
2. Г.2. Продуман ли на проектном уровне план работы системы при перекосе колонны в портale в процессе ее выдергивания-задавливания?
2. Г.3. Предусмотрен ли механизм компенсации избыточных перемещений при перекосе опоры во время спуска-подъема?
2. Г.4. Ошанена ли система эффективной подсистемой смыва и удаления грунта с колонны, обеспечивающей ее безопасную работу при выдергивании-задавливании?
2. Д. Трубопроводы.
2. Д.1. Защищены ли от повреждения и имеют ли достаточный ресурс предохранительные и отсечные клапаны пневмоциллиндов ОПУ?
2. Д.2. Предусмотрены ли опрессовка и продувка трубопроводов?

3. Электрическая часть и система управления
3. А. Электрическая классификация зон.
3. А.1. Соответствует ли разбивка электрооборудования, кабельных сетей и системы управления на электрические зоны существующим государственным стандартам?
3. А.2. Предусмотрено ли аварийное автоматическое отключение электродвигателей редукторов при следующих аварийных ситуациях: при перегреве электродвигателей; при перемещении траверсы за пределы рабочего хода; при превышении времени перехвата; при избыточном сжатии амортизаторов; при превышении допустимого суммарного тока электродвигателей подъемника?
3. А.3. Все ли аварийные ситуации, связанные с электродвигателями подъемника, предусмотрены?
3. Б. Схема прокладки электрических цепей.
3. Б.1. Позволяет ли существующая схема прокладки кабелей обеспечить безопасность цепей системы управления от случайного импульса?
3. Б.2. Предусмотрено ли защитное заземление от поражения электрическим током и статического электричества согласно действующим на морском флоте правилам?
3. Б.3. Обеспечено ли дублирование электрических цепей системы управления и аварийной сигнализации систем опорно-подъемного устройства?
3. Б.4. Существует ли защита от человеческого фактора цепей управления ОПУ?
IV. ФОРМА СВОДНОЙ ТАБЛИЦЫ ПО ОТЧЕТУ ОБ АНАЛИЗЕ АВАРИЙНЫХ СИТУАЦИЙ

<table>
<thead>
<tr>
<th>№ опросного листа</th>
<th>№ чертежа</th>
<th>Проблема</th>
<th>Обсуждение</th>
<th>Рекомендации</th>
<th>Подписи</th>
<th>Дата</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ПРИЛОЖЕНИЕ 2

ПРИМЕРЫ ДЕРЕВЬЕВ СОБЫТИЙ

Таблица 1 Дерево событий при выдергивании опорных колонн СПБУ из грунта

<table>
<thead>
<tr>
<th>Останется ли погода в пределах, допускаемых инструкцией по эксплуатации?</th>
<th>Будет ли степень присоса башмака к грунту находиться в допускаемых пределах?</th>
<th>Останется ли работоспособность механизмов в штатном состоянии?</th>
<th>Не будет ли недопустимых углов крена?</th>
<th>Не произойдет ли распланирование колонн и в связи с этим заклинание механизмов подъема?</th>
<th>КOMBИНИРОВАННАЯ ВЕРОЯТНОСТЬ: Да – авария не произойдет; Нет – риск аварии</th>
</tr>
</thead>
<tbody>
<tr>
<td>Да</td>
<td>Да</td>
<td>Да</td>
<td>Да</td>
<td>Да</td>
<td>9,03 х 10 (^{-1})</td>
</tr>
<tr>
<td>Нет</td>
<td>Нет</td>
<td>Нет</td>
<td>Нет</td>
<td>Нет</td>
<td>9,12 х 10 (^{-1})</td>
</tr>
</tbody>
</table>

Таблица 2 Дерево событий при транспортировках СПБУ и ППБУ

<table>
<thead>
<tr>
<th>Останется ли погода в пределах, допускаемых инструкцией по эксплуатации?</th>
<th>Не будут ли совершенны ошибки в прогнозе погоды в неблагоприятную сторону?</th>
<th>Не выйдет ли из строя в условиях волнения силовая установка или рулевой комплекс?</th>
<th>Не сядет ли транспортное средство на мель?</th>
<th>Не произойдет ли столкновение с другим судном или собственным буксиром?</th>
<th>Не произойдет ли нештатный обрыв крепежного устройства?</th>
<th>КОМБИНИРОВАННАЯ ВЕРОЯТНОСТЬ: Да – авария не произойдет; Нет – риск аварии</th>
</tr>
</thead>
<tbody>
<tr>
<td>Да</td>
<td>Да</td>
<td>Да</td>
<td>Да</td>
<td>Да</td>
<td>Да</td>
<td>9,09 х 10 (^{-1})</td>
</tr>
<tr>
<td>Нет</td>
<td>Нет</td>
<td>Нет</td>
<td>Нет</td>
<td>Нет</td>
<td>Нет</td>
<td>1,39 х 10 (^{-2})</td>
</tr>
</tbody>
</table>

Частота события с точки зрения СПБУ в год

| Да | 0,98 |
| Нет | 0,02 |

| Да | 0,99 |
| Нет | 0,01 |

Проверочная сумма 1,0

Риск аварии 9,66 х 10 \(^{-2}\)

Частота транспортировок ППБУ в год

| Да | 0,97 |
| Нет | 0,03 |

Проверочная сумма 1,0

Риск аварии 9,1 х 10 \(^{-2}\)
Таблица 3 Дерево событий при навале на самоходную установку

<table>
<thead>
<tr>
<th>Останется ли судно в пределах штатной ситуации по отношению к СПБУ?</th>
<th>1</th>
<th>Правдоподобность прогноза метеоусловий: метеообстановка соответствует ли прогнозу?</th>
<th>2</th>
<th>Не будет ли обрыв страховочного троса?</th>
<th>3</th>
<th>Будет ли полностью исправна ЭУ судна?</th>
<th>4</th>
<th>Комбинированная вероятность: Да – авария не произойдет, Нет – риск аварии</th>
</tr>
</thead>
<tbody>
<tr>
<td>Да</td>
<td>0,95</td>
<td>Нет</td>
<td>0,05</td>
<td>Да</td>
<td>0,95</td>
<td>Нет</td>
<td>0,05</td>
<td>2,28 х 10^{-1}</td>
</tr>
<tr>
<td>Частота подхода судна снабжения</td>
<td>2 х 10^{-2}(6/24) = 5 х 10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Нет</td>
<td>0,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Проверочная сумма 1,0
Риск аварии 2,28 х 10^{-1}

Таблица 4 Дерево событий при столкновении танкера со стационарной платформой

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Да</td>
<td>0,98</td>
<td>Нет</td>
<td>0,02</td>
<td>Да</td>
<td>0,98</td>
<td>Нет</td>
<td>0,02</td>
<td>9,67 х 10^{-2}</td>
</tr>
<tr>
<td>Частота подхода танкера</td>
<td>0,2(6/24) = 0,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Нет</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Проверочная сумма 1,0
Риск аварии 9,67 х 10^{-2}
Таблица 5 Дерево событий при пожаре во внутренних помещениях ПБУ

<table>
<thead>
<tr>
<th>Будут ли реализованы меры, направленные на недопущение возгорания?</th>
<th>Будет ли обнаружен момент возникновения пожара?</th>
<th>Не будут ли совершенны ошибки в проведении мероприятий по тушению пожара?</th>
<th>Будут ли эффективны мероприятия по тушению пожара?</th>
<th>Не повлечет ли за собой пожар опустимых повреждений конструкций?</th>
<th>Комбинированная вероятность</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Появление источника возгорания

- **Да**: 0,95
- **Нет**: 0,05

Проверочная сумма

<table>
<thead>
<tr>
<th>Проверочная сумма</th>
<th>1,0</th>
</tr>
</thead>
</table>

Риск аварии

- **1,01 х 10^{-1}**

Таблица 6 Дерево событий при пожаре фонтана на платформе

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Частота выброса

- **2,33 х 10^{-4}**
- **0,02**

Проверочная сумма

<table>
<thead>
<tr>
<th>Проверочная сумма</th>
<th>1,1</th>
</tr>
</thead>
</table>

Риск аварии

- **3,56 х 10^{-1}**
Таблица 7 Дерево событий при сейсмическом воздействии на платформу

<table>
<thead>
<tr>
<th>Бывает ли продолжительность землетрясения в расчетных пределах?</th>
<th>Останутся ли свойства грунта в допустимых пределах?</th>
<th>Не произойдет ли сдвиг установки (угол поворота) на величину большую чем расчетная?</th>
<th>Не произойдет ли нарушения целостности конструкции больше, чем расчетные?</th>
<th>Не произойдет ли авария, сопровождаемой утечкой нефтепродуктов, взрывами, пожарами, гибелью людей?</th>
<th>Комбинированная вероятность: Да – авария не произойдет, Нет – риск аварии</th>
</tr>
</thead>
<tbody>
<tr>
<td>Да</td>
<td>Да</td>
<td>Да</td>
<td>Да</td>
<td>Да</td>
<td>$9.9 	imes 10^{-1}$</td>
</tr>
<tr>
<td>Да</td>
<td>Да</td>
<td>Да</td>
<td>Нет</td>
<td>0.99</td>
<td>$9.0 	imes 10^{-4}$</td>
</tr>
<tr>
<td>Да</td>
<td>Да</td>
<td>Нет</td>
<td>0.01</td>
<td>0.99</td>
<td>$9.5 	imes 10^{-3}$</td>
</tr>
<tr>
<td>Да</td>
<td>Нет</td>
<td>Нет</td>
<td>Нет</td>
<td>0.01</td>
<td>$9.7 	imes 10^{-3}$</td>
</tr>
<tr>
<td>Нет</td>
<td>Нет</td>
<td>Нет</td>
<td>Нет</td>
<td>0.01</td>
<td>$9.91 	imes 10^{-3}$</td>
</tr>
<tr>
<td>Нет</td>
<td>Нет</td>
<td>Нет</td>
<td>Нет</td>
<td>Нет</td>
<td>$1 	imes 10^{-2}$</td>
</tr>
</tbody>
</table>

Проверочная сумма 1.0
Риск аварии $4.0 	imes 10^{-2}$
ПРИЛОЖЕНИЕ 3

ПРИМЕРЫ ДЕРЕВЬЕВ ОШИБОК И НЕПОЛАДОК

Начальное построение дерева ошибок и неполадок

Продолжение построения дерева ошибок и неполадок
Правила классификации, постройки и оборудования ПБУ/МСП

Обозначения ветвей G

$G = A$ или B или C
Ветвь справедлива, если любой из входов имеет место (по сути дела, речь идет о теореме теории вероятностей).

$G = A$ и B и C
Ветвь справедлива, если все события входов имеют место (речь идет о теореме теории вероятностей).

$G = \neg(A)$
3 из N
Ветвь справедлива, если любые 3 из всех событий входов имеют место.

$G = \neg(A)$ или B

$G = A$ и $\neg(B)$

Основное событие
Переход вне
Переход в
Без развития
ДЕРЕВО ОШИБОК И НЕПОЛАДОК (FAULT TREE)

Не седет ли транспортное средство на мель?

Навигационные ошибки

Выход из строя буксира
BE5

Выход из строя силовой установки, рулевого комплекса
BE6

Уход от столкновения с другим судном или собственным буксиром
BE7

Ошибка на навигационной карте
BE1

Неисправность радиолокационного оборудования
BE2

Туман
BE3

Неудачно проложенный курс
BE4
ПОСТРОЕНИЕ \(FN \)-КРИВЫХ

\(FN \)-кривые относятся к социальному риску, а не к индивидуальному. Социальный риск свидетельствует о масштабе катастроф.

Пример. Допустим, речь идет о 10 смертельных случаях на 5 платформах одного типа. Эти 10 смертельных случаев могли случиться и на 5 платформах, на каждой из которых было по 2 жертвы, и на одной платформе, когда сразу бы погибло 10 человек. Для рассматриваемого гипотетического примера десяти смертельных случаев предположим следующее их распределение (таблица 1).

<table>
<thead>
<tr>
<th>Платформа</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число погибших ((\mathcal{N}))</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

В таблице 2 те же данные представлены в виде, удобном для дальнейшего анализа. Данные таблицы 2 позволяют построить график с горизонтальной осью \(N \) — «число смертельных случаев» и вертикальной осью \(F \) — «частота событий, в которых погибло не менее \(N \) человек» (рис. 1).

<table>
<thead>
<tr>
<th>Число погибших (N)</th>
<th>Число событий, в которых погибло (N) человек</th>
<th>Частота событий (число случаев на платформу), в которых погибло не менее (N) человек</th>
<th>Число событий (число случаев на платформу), в которых погибло не менее (N) человек</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2/50 = 0,04</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2/50 = 0,04</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0,50 = 0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1,50 = 0,02</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0,50 = 0</td>
<td>0</td>
</tr>
</tbody>
</table>

Зависимости рассматриваемого типа называются \(FN \)-диagramмами. Социальный риск является интегральной характеристикой последствий реализаций опасностей определенного вида.
ПРИЛОЖЕНИЕ 5

ФОРМА ПРЕДСТАВЛЕНИЯ ИНФОРМАЦИИ О ПОВРЕЖДЕНИЯХ КОНСТРУКЦИЙ МОРСКИХ ПЛАТФОРМ, ПОЛУЧЕННЫХ В РЕЗУЛЬТАТЕ АВАРИИ, И ИНСТРУКЦИЯ ПО ЕЕ ЗАПОЛНЕНИЮ

ФОРМА ПРЕДСТАВЛЕНИЯ ИНФОРМАЦИИ О ПОВРЕЖДЕНИЯХ КОНСТРУКЦИИ МОРСКИХ ПЛАТФОРМ

| Раздел 1. Общий тип морской платформы |
| Раздел 2. Номер проекта |
| Раздел 3. Отличительные признаки конкретного сооружения |
| 3.1 Регистровый номер |
| 3.2 Название сооружения |
| 3.3 Дата постройки (модернизации) |
| Раздел 4. Отличительные признаки организации, которая предоставила информацию |
| 4.1 Наименование организации (инспекции Регистра) |
| 4.2 Дата предоставления информации |
| Раздел 5. Общие сведения об объекте (характеристика конструкции, материал, осадка, глубина моря на точке эксплуатации и т. п.) |
| Раздел 6. Общая характеристика аварийного события и повреждений |
| 6.1 Общая схема конструкции |
| 6.2 Типы повреждений |
| 6.3 Дата, когда произошла авария и, как следствие, появились повреждения |
| 6.4 Режим эксплуатации, при котором произошли повреждения |
| 6.5 Характеристика условий среды (если есть сведения) |
| 6.6 Местоположение платформы во время возникновения повреждений |
| 6.7 Вероятные причины возникновения повреждений |
| 6.8 Указание поврежденных конструктивных элементов |
| 6.9 Общее состояние морской платформы после повреждения |
| 6.10 Загрязнение акватории |
| 6.11 Человеческие жертвы |
| 6.12 Другие сведения |
| Раздел 7. Описание повреждений (приводится схема поврежденного конструктивного элемента, необходимые размеры связей, размеры повреждений, сопутствующая информация и т. п.), количество листов не регламентировано |

Раздел 6. Общая характеристика аварийного события и повреждений

Раздел 7. Описание повреждений (приводится схема поврежденного конструктивного элемента, необходимые размеры связей, размеры повреждений, сопутствующая информация и т. п.), количество листов не регламентировано
ИНСТРУКЦИЯ ПО ЗАПОЛНЕНИЮ ФОРМЫ

Раздел 1. Общий тип морской платформы. Вводятся следующие обозначения:
ППБУ — полупогруженная плавучая буровая установка,
СПБУ — самоподъемная плавучая буровая установка,
МСП — морская стационарная платформа.

Раздел 2. Номер проекта. Пояснения не требуются.

Раздел 3. Отличительные признаки конкретного сооружения. Пояснения не требуются.

Раздел 4. Отличительные признаки организации, которая предоставила информацию. Пояснения не требуются.

Раздел 5. Общие сведения об объекте.
Приводится характеристика конструкции:
перечисляются компоненты корпуса (корпусные конструкции);
указывается их наименование и исполнение, количество (например, опорные колонны СПБУ ферменного типа — 4 шт.);
указываются главные размерения корпуса в целом и характерные размеры корпусных конструкций;
для МСП конкретизируется архитектурно-конструктивный тип (например, платаформа на колоннах, монопод и т. п.), способ удержания на грунте.
Указываются материалы, из которых в основном изготовлены конструкции платформы.
Для плавучих платформ указывается осадка для различных режимов эксплуатации, для МСП и СПБУ — глубина моря на точке эксплуатации. Кроме того, могут быть приведены сведения о клиренсе, ледовом поясе и других характерных особенностях платформы.

Раздел 6. Общая характеристика аварийного события и повреждений.

6.1 Общая схема конструкции.
Указывается — приведена в приложении к форме, не приведена в приложении. Приводится, как правило, в случае, если объект новый, нетрадиционный или в иных случаях, когда по мнению организации, заполняющей форму, это необходимо. Схема может приводиться в виде пространственного эскиза, в различных проекциях, с указанием поврежденных элементов, зон, нумерацией конструктивных элементов и т. п., с целью наиболее полного описания конструкции и повреждений.
Если по мнению организации, заполняющей форму, нет надобности в такой схеме, то она может не приводиться.

6.2 Типы повреждений.
Указываются следующие типы:
остаточные деформации;
нарушение целостности (трещины, разрывы, изломы);
другие типы, обусловленные особенностями конструкции платформы.
Должны быть перечислены все типы повреждений, соответствующие конкретному аварийному событию.

6.3 Дата, когда произошла авария и, как следствие, появились повреждения. Пояснения не требуются.

6.4 Режим эксплуатации, при котором произошли повреждения.
Указывается один из следующих режимов: транспортировка; установка на точку; рабочий; выживания или экстремального нагружения; снятие с точки; любой другой расчетный режим, обусловленный спецификой сооружения.

6.5 Характеристика условий среды (если есть сведения).
Приводятся данные о высоте волн, скорости ветра, по ледовым образованиям, сведения о сейсмической обстановке, температуре воздуха и т. п.

6.6 Местоположение платформы во время возникновения повреждений.
По крайней мере, должен быть указан район эксплуатации, маршрут следования.

6.7 Вероятные причины возникновения повреждений.
Могут быть приведены такие причины как: экстремальные гидрометеоусловия; землетрясения; столкновения с судами, другими плавучими объектами; падение предметов; авария вертолета; взрывы; пожары; выбросы; разжижение грунта; сдвиг или опрокидывание сооружения; накопление усталостных повреждений; ошибки при проектировании и изготовлении конструкции; нарушение требований инструкции по эксплуатации, сочетание или последовательная цепь указанных событий, приводящая к повреждениям, другие причины, обусловленные спецификой сооружения.
6.8 Указание поврежденных конструктивных элементов.
Должны быть перечислены все поврежденные конструктивные элементы без подробного описания поврежденных районов. Например, для СПБУ — элементы опорных колонн, соединения понтона с аутригером, элементы вертолетной площадки и т.п.; для ППБУ — опорные балки верхнего корпуса, горизонтальные раскосы, стабилизирующие колонны, понтоны в районе ширстречного пояса и т.п.
Указание должно быть достаточно общим, поскольку в разд. 7 будет приведено подробное описание повреждений.
6.9 Общее состояние морской платформы после повреждения.
Указывается следующее:
платформа осталась в эксплуатации без ремонта вплоть до плановых мероприятий;
ремонт произведен без вывода платформы из эксплуатации;
платформа выведена из эксплуатации с целью ремонта, утилизации и т.п.
Пункт может дополняться другими позициями.
6.10 Загрязнение акватории. По крайней мере, следует указать: есть или нет.
6.11 Человеческие жертвы. Пояснения не требуются.
6.12 Другие сведения, которые по мнению инспекционных служб, владельца платформы, являются важными.
Раздел 7. Описание повреждений.
Описание должно быть кратким, четким и, по возможности, информативным.
В разделе следует конкретизировать поврежденные районы и типы повреждений, привести схемы поврежденных конструктивных элементов (при необходимости, в определенном порядке со ссылкой на 6.1), размеры (параметры) повреждений, необходимые размеры конструктивных элементов, возможна конкретизация методов ремонта, другой необходимой информации.
Должна быть приведена вся та сопутствующая информация, которая по мнению организации, заполняющей форму, является важной.
В тексте целесообразно каким-либо образом выделить параметры повреждений.
ЧАСТЬ XVI. МОРСКИЕ ОПЕРАЦИИ

1 ОСНОВНЫЕ ПРИНЦИПЫ, КРИТЕРИИ И ТРЕБОВАНИЯ К РАЗРАБОТКЕ И ПРОВЕДЕНИЮ МОРСКИХ ОПЕРАЦИЙ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящей части распространяются на технологические морские операции, выполняемые при строительстве и эксплуатации морских буровых и добывающих сооружений, которые (или их части) обладают собственной плавучестью, и на которые распространяется деятельность Регистра по техническому наблюдению.

1.1.2 Концепции планирования и проведения морских операций, не регламентированные настоящей частью, должны отдельно рассматриваться и согласовываться с Регистром в каждом конкретном случае. При этом Регистру должны быть представлены данные и документация, позволяющие установить эффективность и уровень безопасности выполнения всех рассматриваемых операций.

1.1.3 Положения настоящей части определяют примерный необходимый объем технической документации при планировании морских операций. При необходимости Регистр может потребовать увеличения объема предоставляемой документации.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

1.2.1 В настоящей части приняты следующие определения.

Блок — самостоятельно плавающий элемент опорного основания сооружения.

Модуль — элемент верхнего строения платформы.

Ярус — совокупность горизонтально со- стыкованных блоков.

Колонна — вертикально ориентированный, не обязательно самостоятельно плавающий блок.

Сооружение — любая комбинация элементов недостроенной платформы.

Опорная палуба — несущая палуба для модулей верхнего строения, опирающаяся на опорное основание.

Технологический понтон (башня) плавучести — водонепроницаемая емкость, временно соединяемая с сооружением для обеспечения его плавучести и остойчивости в процессе морской операции.

Строительные технологические операции на плаву — операции по сборке, транспортировке, стыковке и установке на место сооружения и его частей (блоков, ярусов, колонн, модулей, систем удержания и др.), совершаемые при нахождении на плаву сооружения или каких-либо его частей. Различаются два типа операций.

Заводские операции на плаву — ограниченные в пространстве операции на плаву, совершаемые у достроенной набережной (пирса) или на заводской полностью защищенной акватории.

Морские операции — не ограниченные в пространстве операции на плаву, совершаемые в полузащищенной акватории или в открытом море.

Спуск на воду — динамическая операция всплытия сооружения, блока, модуля после всплытия в сухом доке или соскальзывания со слипа или направляющих рельсов баржи.

Стыковка наплавом — вертикальная стыковка ярусов или элементов колонны или опорного основания с верхним строением, при которой нижний элемент погружается, а верхний стыкуемый элемент наводится над ним, затем сборка всплывает.

Опрокидывание — переворот плавающего сооружения на 90° путем соответствующей балластировки.

Транспортировка — морская операция при строительстве сооружения (платформы), включающая все операции, связанные с перемещением платформы в целом или ее отдельных крупногабаритных элементов от места постройки (завода-строителя) до места следующей морской операции, включая окончательную установку на точку функционирования.

Буксировка — транспортировка сооружения или его части, находящегося на плаву.

Короткая буксировка — буксировка, ограниченная по погодным условиям интервалом времени предсказания «окна» хорошей погоды (не более 3 суток).
Длительная буксировка — буксировка, не ограниченная по погодным условиям и по времени.

Балластировка — заполнение или осушение балластных цистерн или отсеков.

Позиционирование — морская операция, выполняемая для наведения и удержания платформы с требуемой ориентацией и точностью над заданной точкой дна акватории.

Отстой — этап морской операции, выполняемый для временного удержания платформы на плаву с постоянными координатами.

Установка — морская операция, включающая процедуры по погружению, установке платформы в точке функционирования и фиксации платформы в соответствии с проектом.

Признаваемые нормы, стандарты, руководящие документы, методы расчета и проектирования — действующие общегосударственные, отраслевые, ведомственные нормы, стандарты, ГОСТы, ОСТы, руководящие документы, а также методы расчетов, разработанные отдельными организациями и авторами, в том числе зарубежными, одобренные Регистром.

Планирование (проектирование) морской операции — обоснование всех технологических процедур и необходимых для их проведения средств обеспечения (устройств, приспособлений, приборов, механизмов, буксирных судов и т.п.), позволяющих на требуемом безопасном уровне достичь поставленной цели эффективно и с минимальными затратами.

1.3 ОСНОВНЫЕ ПРИНЦИПЫ ПЛАНИРОВАНИЯ МОРСКИХ ОПЕРАЦИЙ

1.3.1 Морские операции должны проектироваться (планироваться) и выполняться исходя из условий безопасности, в соответствии с положениями настоящей части, действующих норм, стандартов и руководящих документов.

1.3.2 Планирование морских операций должно учитывать возможность возникновения аварийных ситуаций. При возникновении аварийной ситуации платформа должна оставаться в устойчивом и контролируемом состоянии.

1.3.3 Планирование морских операций должно обеспечивать возможность их выполнения в безопасных условиях, либо прекращение операции в случае превышения расчетных параметров внешних условий и возникновение других аварийных ситуаций. Если морская операция вступает в фазу, при которой она не может быть остановлена или прекращена, такие фазы должны специально рассматриваться в проекте и для них должны определяться безопасные условия.

1.3.4 Проектирование морских операций должно основываться преимущенно на хорошо апробированных принципах, технике, системах и оборудовании. При проектировании морских операций должны анализироваться все возможные случайные ситуации и разрабатываться соответствующие планы мероприятий. Такие планы должны содержать перечень дополнительного запасного (расходуемого) оборудования на платформе и судах обеспечения, действия обеспечивающего персонала, описания процедур предотвращения опасностей и т.п. Безопасные условия проведения морских операций предусматривают:

- исключение потерь и возникновения опасности для конструкций платформы, судов и других объектов, участвующих в операции;
- исключение угрозы для жизни и здоровья персонала;
- исключение загрязнения и других экологических нарушений в отношении окружающей среды.

1.3.5 Все рассматриваемые морские операции должны планироваться, выполняться и контролироваться в соответствии со специально разработанным проектом квалифицированным и компетентным персоналом, обладающим необходимым опытом и хорошей инженерной подготовкой, подтвержденными соответствующими сертификатами и лицензиями.

1.3.6 Фактические условия при проведении конкретных морских операций не должны существенно отличаться от условий, предусмотренных в проекте соответствующих операций.

1.3.7 Проектирование, организация и проведение морских операций должны осуществляться в соответствии с положениями настоящей части, а также с признаваемыми нормами, стандартами, руководящими документами, методами расчета и проектирования, а также, при необходимости, с зарубежными нормами, одобренными Регистром. Правила ПБУ/МСП не запрещают использование других более эффективных методов расчета и технических решений при условии, что они обеспечивают необходимый уровень безопасности, предусмотренный Правилами. Все использованные дополнительные нормы, стандарты и методы должны представляться в Регистр для рассмотрения и согласования.

1.3.8 При планировании и проектировании морских операций рекомендуется следующая последовательность работ:

- анализ и обобщение требований, правил, норм и стандартов, относящихся к рассматриваемой морской операции;
Правила классификации, постройки и оборудования ПБУ/МСП

анализ и обобщение естественных условий;
общее планирование операции, в том числе:
установление основных принципов проведения операции, требуемого оборудования, экономических факторов и т.п.;
opределение внешних условий и ограничений, допускаемых для проведения операции;
краткое описание действий, при проведении операции;
выполнение расчетно-конструкторских разработок;
разработка проекта производства работ.
1.3.9 Состав исходных данных и выходной документации должны быть определены на ранних стадиях проектирования. Определение внешних условий и ограничений, а также краткие описания должны обеспечивать общую основу для проектирования морской операции, а также давать ясное представление по всем этапам проведения и контроля за проведением операции. Описание внешних условий должно содержать основные параметры, характерные условия, расчетные нагрузки и реакции, комбинации нагрузок и т.п. Краткие описания должны содержать планируемые и контролируемые действия, используемые методы расчета и проектирования, исходные спецификации, принятые критерии и т.п.
1.3.10 В общем виде Регистру должна быть представлена документация проекта морской операции: общая пояснительная записка, чертежи, расчеты прочности, описания производства работ, программы испытаний, паспорта и сертификаты используемого оборудования, документы, подтверждающие квалификацию персонала и т.п. Представители Регистра должны быть обеспечены воз можностью присутствовать при проведении наиболее важных испытаний, контроль оборудования и элементов конструкции для подтверждения их характеристик разработанному проекту, а также при проведении морской операции в целом или отдельных ее этапов для оценки соответствия допускаемых внешних условий для начала и проведения операции.
1.4 КАТЕГОРИИ МОРСКИХ ОПЕРАЦИЙ В ЗАВИСИМОСТИ ОТ ИХ ПРОДОЛЖИТЕЛЬНОСТИ И ПОГОДНЫХ УСЛОВИЙ
1.4.1 В настоящей части рассматриваются только технологические операции на плаву: заводские и морские операции, проводимые для морских платформ или их отдельных частей. Рассматриваемые операции включают: спуск блоков или колонн на воду; достройку, сборку и горизонтальную стыковку блоков на плаву; вертикальную стыковку ярусов наплавом; вертикальную стыковку опорного основания и верхнего строения наплавом; буксировку (длинную или короткую) опорного основания или платформы; установку платформы в точке функционирования.
1.4.2 Планирование и проектирование морских операций должно основываться на расчетном времени проведения операции T_{est}, определяемом по формуле:

$$T_{est} = T_p + T_o,$$

где T_p — нормативное (проектное) время выполнения рассматриваемой операции; T_o — превышение нормативного времени, обусловленное случайными природными и техногенными факторами.

В случае, если превышение нормативного времени T_o, обусловленное случайными факторами, неизвестно, оно может приниматься равным нормативному времени проведения операции T_p, но не менее 6 ч.
1.4.3 В зависимости от расчетной продолжительности морские операции подразделяются: на операции, не ограниченные по погодным условиям, — продолжительностью свыше 72 ч; операции, ограниченные по погодным условиям, — операции продолжительностью менее 72 ч.
Операции продолжительностью свыше 72 ч могут рассматриваться как ограниченные по погодным условиям, если операция может быть прервана в процессе выполнения, а платформа может быть отведена в защищенное место при превышении допускаемых критериев, гидрометеослучаев.
Морские операции расчетной продолжительностью менее 12 ч рассматриваются отдельно.
1.4.4 Для морских операций, ограниченных по погодным условиям, расчетные естественные условия могут приниматься независимо от статистических данных для района проведения операции, т.е. устанавливаться в каждом конкретном случае в задании на проектирование, исходя из конструктивных особенностей платформы, технических возможностей имеющихся судов обеспечения и т.п. Начало таких операций обусловлено наличием допускаемых погодных условий и их благоприятным прогнозом.
1.4.5 Учитывая нестабильность гидрометеорологической обстановки и неточность прогнозов погоды, допускаемые критерии погодных условий для фактического начала и проведения морской операции должны приниматься меньше расчетных, принятых в проекте. Допускаемые
Часть XVI. Морские операции

для проведения морской операции критерии погодных условий C_o определяются по формуле:

$$ C_o \leq \alpha C_D, $$

где C_D — проектные критерии погодных условий;

α — понижающий коэффициент, принимаемый равным:

для осредненной (анемометрической) скорости ветра $\alpha = 0.8$;

для высоты волн — см. таблицу 1.4.5.

Таблица 1.4.5

<table>
<thead>
<tr>
<th>Расчетная продолжительность операций $T_{опр}, ч$</th>
<th>Расчетная высота волн 3%-ной обеспеченности, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.3 < h_{3%} < 2.6$</td>
<td>$2.6 < h_{3%} < 5.2$</td>
</tr>
<tr>
<td>< 12</td>
<td>0,68</td>
</tr>
<tr>
<td>< 24</td>
<td>0,63</td>
</tr>
<tr>
<td>< 48</td>
<td>0,56</td>
</tr>
<tr>
<td>< 72</td>
<td>0,51</td>
</tr>
</tbody>
</table>

1.4.6 Для морских операций продолжительностью свыше 72 ч, но которые могут быть отнесены к операциям, ограниченным по погодным условиям, при определении допускаемых проектными погодных условий должна учитываться общая (суммарная) продолжительность всех отдельных этапов.

Критерии допускаемых погодных условий C_o для таких операций устанавливаются отдельно в каждом конкретном случае.

1.4.7 Естественные условия для морских операций, не ограниченных по погодным условиям (продолжительностью свыше 72 ч), должны приниматься исходя из статистических данных по экстремальным условиям для конкретного района проведения операции. Критерии допускаемых погодных условий для проведения операций C_o могут приниматься равными проектным.

1.5 ПРЕДЕЛЬНЫЕ СОСТОЯНИЯ ПРИ ПРОВЕДЕНИИ МОРСКИХ ОПЕРАЦИЙ

1.5.1 Проведение морской операции по транспортировке, позиционированию или установке платформы является небезопасным или недопустимым, если усилия в конструкции платформы, системе ее раскрепления, буксирной линии или перемещения платформы и судов обеспечения достигают соответствующих предельных состояний.

В период проведения морских операций должны быть исключены следующие виды опасного состояния конструкций, устройств и оборудования платформы и судов обеспечения:

- чрезмерные деформации материала;
- потеря устойчивости формы конструкции;
- возникновение усталостных трещин;
- хрупкие разрушения;
- обрывы канатов, цепей и других соединительных элементов.

1.5.2 В качестве предельных состояний при проведении морских операций рассматриваются:

- первое (основное) предельное состояние, соответствующее возникновению разрушающих усилий в конструкции платформы, системе ее раскрепления, якорных, швартовных и отбойных устройствах, а также недопустимых перемещений платформы и судов обеспечения, превышение которых способно вызвать их разрушение или исключить проведение морской операции;

- второе (эксплуатационное) предельное состояние, соответствующее возникновению допускаемых усилий и перемещений в конструкции и системе раскрепления, превышение которых не вызывает каких-либо повреждений или серьезных нарушений нормальных условий проведения морской операции, но свидетельствует о выходе за границы нормальных условий эксплуатации;

- аварийное предельное состояние, соответствующее возникновению (разрушению) одного (любого) из основных (несущих) элементов конструкции или системы ее раскрепления.

При необходимости, в случае большой продолжительности морской операции, и при условии, что количество расчетных нагрузок во время операции может достигать или превышать несколько тысяч, дополнительно рассматривается усталостное предельное состояние, при котором разрушающие усилия, соответствующие первому (основному) предельному состоянию, находятся с учетом усталостных явлений в элементах конструкций платформы (системы раскрепления) с учетом циклической нагрузки.

1.5.3 В ходе проектирования морской операции рассматривается все приведенные выше предельные состояния, за исключением усталостного, которое учитывается при необходимости.

Необходимо соблюдать условия, обеспечивающие недопущение наступления рассматриваемых предельных состояний, приведенных в 2.4 части II «Корпус».

1.6 ЕСТЕСТВЕННЫЕ УСЛОВИЯ, ПРОГНОЗ ПОГОДЫ, ИЗЫСКАНИЯ

1.6.1 Для морских операций расчетная повторяемость внешних воздействий устанавливается в каждом конкретном случае исходя из продолжительности операции, принимая во вни-
Правила классификации, постройки и оборудования ПБУ/МСП

1.6.1 Правила классификации, постройки и оборудования ПБУ1МСП

1.6.2 Для морских операций или их отдельных этапов небольшой продолжительности (до 72 ч), не зависящих от погодных условий, расчетные значения внешних воздействий могут приниматься исходя из реальных технических возможностей используемых судов и оборудования с учетом конкретного прогноза погоды.

1.6.3 При определении расчетных естественных условий необходимо учитывать их сезонные изменения. Расчетные параметры принимаются с учетом конкретного времени года, в который планируется проведение морской операции. Необходимо учитывать местные особенности естественных условий, которые не отражены в общепринятых статистических данных, а именно: изменчивость приливных колебаний уровня моря, волновых и ветровых условий, течений. Для получения такой информации могут использоваться лоции, портовые правила и т.п.

1.6.4 Описание, параметры и способы расчета внешних воздействий приведены в 2.2 части II «Корпус».

1.6.5 При разработке проекта морской операции должны рассматриваться все естественные условия, которые могут влиять на ее проведение. К основным условиям относятся ветер, волны и течение. Необходимо рассматривать лед, колебания уровня моря, температуру, видимость, осадки, туманы и другие опасные метеорологические явления, а также гидрографические (рельеф дна, глубина моря, размеры акватории) и геологические условия в месте установки платформы. При необходимости могут рассматриваться также сейсмические воздействия в период установки платформы (до ее закрепления в проектном положении).

Параметры внешних условий должны приниматься непосредственно для районов проведения морских операций.

1.6.6 Расчетные параметры естественных условий должны приниматься на основе общепринятых и достоверных данных наблюдений достаточной продолжительности и изысканий для рассматриваемого района. Должны использоваться данные наблюдений как минимум за период 3 — 4 года. При отсутствии данных для конкретного рассматриваемого района параметры естественных условий могут определяться на основании расчетов по методам, признанным в Гидрометслужбе. Информация по сбору и происхождению данных по естественным условиям должна представляться на рассмотрение и согласование Регистру.

1.6.7 Для описания естественных условий должны использоваться характерные общепринятые параметры, используемые при определении внешних воздействий, нагрузок и реакций сооружений. При описании внешних воздействий, которые имеют случайную природу, должны использоваться долгосрочные и краткосрочные статистические данные. Особое внимание должно уделяться оценке достоверности используемых статистических методов и их результатов. Долгосрочные (режимные) функции изменения таких естественных условий как ветер, волнение, течение и т.п., должны описываться преимущественно известными статистическими распределениями. В оценке экстремальных значений параметров внешних воздействий могут использоваться признанные методы экстраполяции.

1.6.8 Расчетные параметры внешних условий, статистические распределения их значений и направлений, принятые в проекте морских операций, должны представляться в Регистр на рассмотрение и согласование.

1.6.9 Объем и состав изысканий в районах проведения морских операций, связанных с существенным изменением осадки сооружения (стыковка наплавом, опрокидывание, установка платформы), принимаются в соответствии с типом, размерами, ответственностью платформы и имеющейся информацией по естественным, в том числе геологическим, гидрографическим и другим условиям рассматриваемых районов. Выбор методов и размеры области изысканий должны быть совместимы с естественными условиями исследуемого района. При выборе размеров зоны изысканий необходимо учитывать:

- ошибки в позиционировании плавучих средств, используемых для изысканий;
- ошибки навигационного оборудования, используемого при проведении морских операций;
- возможные отклонения платформы в процессе выполнения морских операций в реальных условиях.

1.6.10 Результаты изысканий должны представляться на рассмотрение в Регистр. Такие сообщения должны включать:

- информацию о времени проведения изысканий и организации-исполнителе;
- исчерпывающие описания оборудования и технологии проведения полевых и лабораторных исследований;
- результаты изысканий;
- оценку погрешностей и ограничений применимости результатов изысканий.

1.6.11 Для всех видов морских операций, кроме длительной буксировки, должна проводиться топографическая съемка морского дна.
Точность промеров глубин в районе установки платформы должна составлять ±0,1 м. Для других видов морских операций (буксировка и т.п.) точность измерений глубин определяется в каждом конкретном случае проведения морской операции. Особое внимание должно уделяться возможным подвижкам морского дна. В дополнение к общепринятым методам промеров глубин рекомендуется проводить сканирование дна многолучевым эхолотом или другим подобным оборудованием в местах, где возможно наличие различных подводных опасностей (валуны, якоря, обломки пород и т.п.).

1.6.12 Геологические изыскания проводятся преимущественно для района непосредственной установки платформы, а также для планируемых мест якорных стоянок (отстоя) платформы на маршруте буксировки. Состав и объем геологических изысканий в месте установки платформы может быть принят на основании материалов общего проекта платформы, так как содержащийся в общем проекте объем информации значительно превышает требуемый при проведении морских операций. Особое внимание должно уделяться геологическим условиям, необходимым для оценки держащей способности судовых якорей и якорей рейдового оборудования при отсто и позиционировании платформы. Результаты детальных геологических изысканий могут потребоваться также при решении вопросов установки платформы, в частности, для посадки платформы на грунт дна.

1.6.13 В проекте морской операции должны предусматриваться мероприятия для получения прогнозов погоды перед и во время проведения операции. Прогнозы должны основываться на надежных источниках. Прогнозы должны учитывать как реальные естественные условия района проведения морской операции, так и продолжительность операции. Прогноз погоды должен регистрироваться.

В дополнение к общему описанию естественных условий и их предсказуемому развитию, прогноз погоды должен включать:
скорость и направление ветра;
высоту, средний или наибольший период и направление ветровых и длиннопериодных волн;
дождь, снег, освещенность, лед и т.п.;
данные о колебаниях уровня моря (приливные, штормовые нагоны и т.п.);
видимость;
температуру;
барометрическое давление.
Перечисленные величины должны прогнозироваться на период 12, 24, 48 и 72 ч. Должен даваться также прогноз на несколько дней.

Особое внимание в прогнозах погоды должно уделяться точности и достоверности определения таких предсказуемых параметров, как осредненная скорость ветра, параметры воли (высота и период). Прогноз должен учитывать наихудший сценарий развития погодных условий. Это особенно важно для районов с нестабильной погодой и для прогнозов с недостаточной надежностью. Прогноз погоды может рассматриваться как благоприятный для начала морской операции в случае, если все параметры, перечисленные выше, не превышают допускаемых критериев.

1.6.14 В зависимости от степени влияния погодных условий на проведение различных видов морских операций рекомендуется выделять три уровня прогнозирования погоды: А, В и С.
Уровень «А» распространяется на морские операции, наиболее чувствительные к погодным условиям. К ним относятся, в частности: стыковка опорного основания с верхним строением платформы, морская длительная буксировка в тяжелых естественных условиях, позиционирование и установка платформы.
Уровень «В» распространяется на операции, зависящие от погодных условий, нарушения которых могут вызывать значительный экономический ущерб, в частности, спуск на воду в открытом море, короткая буксировка, ограниченная по погодным условиям и т.п.
Уровень «С» распространяется на операции, незначительно зависящие от погодных условий, и операции, проводимые на регулярной основе. К таким операциям относятся, в частности, заводские операции: стыковка блоков, буксировка на защищенных акваториях и другие.

1.6.15 Прогнозы погоды, в зависимости от уровня прогнозирования, должны удовлетворять требованиям табл 1.6.15.

1.6.16 В процессе проведения морской операции должен осуществляться мониторинг за внешними условиями, такими как: ветер, волны (ветровые и длиннопериодные), течение, приливы и т.п. Мониторинг должен проводиться систематически. Состав контролируемых параметров и методы контроля должны описываться в проекте операции. В процессе мониторинга целесообразно прогнозировать изменение контролируемых параметров во время выполнения морской операции. Любые непредвиденные результаты мониторинга должны немедленно регистрироваться и учитываться в ходе выполнения операции.

Колебания уровня моря должны контролироваться с учетом времени проведения операции, соответствующей фазы луны.
Правила классификации, постройки и оборудования ПБУ/МСП

Таблица 1.6.15
Уровни предсказания погоды

<table>
<thead>
<tr>
<th>Уровень предсказания погоды</th>
<th>Необходимость наличия данных по естественным условиям непосредственно для района проведения операции</th>
<th>Количество независимых источников, на основе которых осуществляется прогноз погоды</th>
<th>Максимальный интервал предсказания погоды, час</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Да</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>B</td>
<td>Нет</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>Нет</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>

1 Для операций наиболее чувствительных к погодным условиям может рассматриваться меньшая продолжительность интервала.
2 Необходимость гидрометеорологических данных для конкретного места проведения операции рассматривается и устанавливается отдельно в каждом конкретном случае.
3 При соответствующем обосновании прогноз погоды может основываться на одном источнике.

1.7 ПРОЕКТ, ОРГАНИЗАЦИЯ И РУКОВОДСТВО МОРСКИМИ ОПЕРАЦИЯМИ, ДОКУМЕНТАЦИЯ, НАБЛЮДЕНИЯ, ИСПЫТАНИЯ

1.7.1 Морские операции должны проводиться в соответствии с проектом, разработанным в составе общего проекта платформы или самостоятельного проекта, согласованного с Регистром, а также с хорошей морской практикой, исключающей неоправданный риск. Ответственность за соблюдение необходимых условий, правил и требований проекта проведения морской операции несет руководитель операции.

1.7.2 Проект операции, должен подробно описывать детали и порядок осуществления операции, используемые суда, плавсредства, конструкции, устройства и оборудование. В проекте должны быть рассмотрены все важные аспекты операции, как для нормальных условий ее проведения, так и для возможных критических ситуаций. В общем случае проект должен включать, как минимум, следующие разделы:

- организация и схемы проведения каждого этапа операции;
- навигационное обеспечение и связь;
- описание внешних условий и воздействий;
- ограничения, обусловленные внешними условиями;
- ограничения, обусловленные прочностью и остойчивостью платформы и используемых средств и конструкций;
- правила производства работ по осуществлению морской операции;
- расчеты сопротивлений и прочности отдельных элементов, обосновывающие надежность, продолжительность и реальность осуществления операции;
- описание (чертежи и спецификации) конструкций, узлов и деталей.

1.7.3 В ходе проведения любой морской операции должны осуществляться наблюдение и контроль за ее проведением, в том числе: за поведением платформы, работой отдельных узлов, механизмов и т.п. Результаты наблюдений должны регистрироваться. В случаях отклонения от одобренных Регистром проектных условий проведения операций, должны анализироваться причины отклонений, делаться соответствующее заключение и регистрироваться принятые меры по их ликвидации.

1.7.4 Проекты проведения морских операций по буксировке, позиционированию и установке платформы должны разрабатываться и представляться в Регистр на рассмотрение и согласование в обусловленное время перед началом операций.

1.7.5 Проекты проведения морских операций должны храниться у владельца и разработчика платформы. В дополнение к проектам у владельца платформы должны храниться акты и протоколы наблюдений за выполнением операций. Перечисленные документы должны представляться Регистру в случае их запроса.

1.7.6 Наблюдение Регистра осуществляется для обеспечения соответствия проекта и условий проведения рассматриваемых операций настоящим Правилам. Наблюдение Регистра включает:

- согласование проекта морской операции;
- контроль в течение проведения рассматриваемой операции.

Наблюдение Регистра проводится в дополнение, а не взамен контроля за выполнением морских операций со стороны проектировщика, исполнителя и владельца платформы.

При необходимости проводится инструментальный контроль условий проведения морских операций (определение перемещений, усилий, параметров естественных условий и т.п.).

1.7.7 В ходе наблюдения Регистром проверяются:

- соответствие размеров сооружения и устройств, использованных материалов согласованному проекту;
- проведение испытаний устройств перед началом операции;
- выполнение морских операций в соответствии с проектом.

1.7.8 Перед проведением морской операции должна быть подробно описана организация
проведения и установлена персональная ответственность основных участников операции, в том числе при возникновении экстремальных и аварийных ситуаций. Проект проведения операции должен включать организационную схему, включающую имена и четкие, ясные функциональные обязанности основного персонала.

1.7.9 Основной персонал, а также наблюдатели и контролирующие организации и специалисты, участвующие в морской операции, должны иметь необходимые знания и опыт в области своей ответственности в рассматриваемой операции.

1.7.10 При организации морской операции особое внимание должно уделяться вопросам обеспечения надежной связи. Линии связи, основные и вспомогательные средства связи должны быть четко определены в специальном разделе проекта морской операции. В проекте должен быть также представлен планируемый поток информации, языки общения и т.п.

1.7.11 Для операций продолжительностью более 12 ч должна быть организована работа персонала в несколько смен и предусмотрены соответствующая численность и состав персонала.

1.7.12 Все конструкции, оборудование, системы, контрольно-измерительная аппаратура, используемые при проведении морской операции, должны быть обследованы, испытаны и тестированы. Испытания должны подтвердить их работоспособность и соответствие проектным спецификациям, функциональным требованиям и назначению, характеристикам. Испытаниям должны подвергаться как основные, так и вспомогательные конструкции, оборудование, системы, детали и узлы.

1.7.13 В проекте морской операции должны разрабатываться программы обследований и испытаний, особенно процедуры тестирования контрольно-измерительной аппаратуры. Результаты обследований и испытаний должны документироваться. Для сложных операций рекомендуется разработка общей программы испытаний, определяющей состав, последовательность и порядок обследований и испытаний отдельных конструкций, оборудования и систем. В программе должны быть отражены контролируемые параметры, характеристики и их значения в соответствии с проектными требованиями.

1.7.14 Для операций со сложными системами коммуникации и связи, и для наиболее важных систем должна предусматриваться предварительная подготовка и тренировка персонала в условиях, аналогичных реальным условиям проведения операции. Основной персонал, участвующий в операции, должен быть подробно ознакомлен с порядком проведения операции в части, их касающейся.

Представители наблюдящих и контролирующих организаций должны быть ознакомлены со всеми аспектами операции и иметь достаточную информацию в отношении проектных ограничений и допущений. Должен быть проведен краткий инструктаж представителей наблюдющих и контролирующих организаций относительно ответственности, связи, рабочих процедур, безопасности и т.п. Остальной персонал, участвующий в операции, должен быть кратко пронструктован об операции в целом и специально по вопросам техники безопасности, борьбы за живучесть, конкретных обязанностей и ответственности.

1.7.15 Непосредственное выполнение морской операции должно проводиться в соответствии с разработанными в проекте правилами проведения операции, отражающими расчетные внешние условия, физические ограничения, проектные положения и т.п. В общем случае такие правила должны включать: организационные вопросы; системы и порядок связи; общее оборудование; порядок и план выполнения операции; особенности проведения операции при случайных и экстремальных опасных ситуациях; допускаемые условия нагружения конструкций, оборудования, устройств, узлов и деталей; критерии внешних естественных условий, допускаемых для проведения операции; допускаемые осадки, дифференциальные крены и соответствующий план балластировки; системы и оборудование позиционирования платформы; инструкции по эксплуатации систем и оборудования; суда обеспечения; маршрут буксировки и порты-убежища; навигационное обеспечение; гидрометеорологическое обеспечение; спасательные средства; порядок приема-передачи документов; отдельные узлы и детали; формы документов и актов регистрации подготовки и проведения операции; планы испытаний и отбраковки устройств и оборудования.

1.7.16 Особое внимание в правилах проведения операции должно уделяться ограничениям условий выполнения операции или отдельных ее этапов.

Разработанная документация должна включать полные описания всех процедур, используемого оборудования и т.п. или содержать ссылки на известные доступные материалы, содержащие необходимые описания. Количество и детализация
документации должны обеспечивать независимое представление и анализ чертежей, описаний процедур и вычислений для всех этапов операций.

1.7.17 Перед началом проектных работ должна быть обобщена и представлена следующая документация:
- действующие правила;
- нормы;
- тактико-технические требования;
- стандарты и коды;
- описание концепции;
- основные инженерные характеристики;
- контракт или часть контракта на разработку проекта.

1.7.18 Выходная документация в общем случае должна включать:
- краткие описания и основные положения проектирования, перечни, концептуальные оценки, чертежи общего расположения и спецификации;
- анализ нагрузок, оценку общей прочности, расчеты местной прочности, балластировки и чертежи конструкции, деталей и узлов;
- проект производства работ, включающий программы и процедуры испытаний, планы и процедуры операций, требования безопасности, соответствующие чертежам, административные процедуры;
- свидетельства, результаты (акты) испытаний, проверок, изготовления и т.п.

1.7.19 Выполнение морских операций должно регистрироваться в вахтенном журнале. Примеры форм соответствующих протоколов должны включаться в правила проведения операций.

1.7.20 Документация должна содержать известные характеристики всех конструкций, элементов и оборудования, в том числе платформы, временных и постоянных конструкций, судов и плавучих средств обеспечения и т.п.

В проект должны включаться классификационные документы и свидетельства на все оборудование и суда, участвующие в операции.

2 ТРЕБОВАНИЯ К ПЛАВУЧЕСТИ И ОСТОЙЧИВОСТИ ПЛАТФОРМЫ, СООРУЖЕНИЯ И ИХ ЭЛЕМЕНТАМ В ПРОЦЕССЕ МОРСКИХ ОПЕРАЦИЙ

2.1 ОБЩИЕ ТРЕБОВАНИЯ К ПЛАВУЧЕСТИ И ОСТОЙЧИВОСТИ

2.1.1 Общие требования.

2.1.1.1 На всех этапах морских операций должна обеспечиваться достаточная плавучесть и остойчивость любых плавучих элементов сооружения и всей платформы в целом. Для всех плавучих объектов и судов на всех этапах проведения морской операции должны быть определены и регламентированы как нормальная, так и аварийная остойчивость. Требования по остойчивости в аварийных ситуациях должны устанавливаться с учетом особенностей проведения операции, внешних нагрузок и реакций, продолжительности операции, последствий возможных повреждений и т.п.

Обеспечение плавучести и остойчивости должно учитывать различные причины возможного попадания воды в платформу и суда, в том числе:
- столкновение судов и падение различных предметов;
- повреждения механических систем, сбои в электропитании водоотливных насосов и т. п.;
- нарушения условий проведения операции и ошибки персонала;
- превышение допускаемых параметров естественных условий.

2.1.1.2 При определении остойчивости, в общем случае, не рекомендуется учитывать части конструкции платформы, расположенные выше ее палубы и которые могут в отдельные моменты (при значительной качке) погружаться в воду. Влияние таких конструкций на остойчивость платформы может допускаться в специально оговоренных случаях при соответствующем обосновании. При использовании для увеличения остойчивости дополнительного твердого балласта или грузов, необходимо учитывать соответствующие усилия в креплении грузов (балласта).
Часть XVI. Морские операции

2.1.1.3 В конструкции платформы в период проведения морских операций должны быть предусмотрены дренажные отверстия, обеспечивающие сток избыточной воды при ее попадании на платформу. В случае невозможности устройства дренажных отверстий остойчивость платформы должна оцениваться с учетом возможного дополнительного объема воды.

2.1.1.4 Временно закрываемые такие элементы платформы, как: люки, глухие фланцы, заглушки, и другие доступные отверстия, которые могут быть подвержены эффектам смещения груза и т.п., должны быть рассчитаны на соответствующие нагрузки. При необходимости должна предусматриваться специальная защита таких устройств.

При подготовке морской операции должны тщательно рассматриваться типы и защита уплотнений, прокладок, сальников и т.п., а также возможные относительные перемещения закрываемых устройств и поддерживающих конструкций.

2.1.1.5 Все отверстия между отсеками платформы, которые могут способствовать распространению воды внутри платформы в процессе проведения операции должны быть закрыты. Во время операции должны проводиться регулярные инспекции или испытания герметичности отсеков давлением воздуха, проверки уровня воды в отсеках и цистернах, осадки, кренов, дифферентов платформы и т.п. с целью выявления возможной водотечности.

2.1.1.6 В расчетах остойчивости и запаса плавучести должны учитываться соответствующие допуски на возможные изменения массы, смещения центра массы платформы, плотность балластной и морской воды. Необходимо учитывать влияние колебаний свободной поверхности воды в балластных танках и других элементах, содержащих жидкость.

2.1.1.7 При планировании операций, для которых вопросы остойчивости и запаса плавучести являются определяющими, должны учитываться: продолжительность критических ситуаций, риск возможных опасностей и время, требуемое для развертывания откачивающих систем и других средств обеспечения живучести.

2.1.1.8 При оценке остойчивости воздействия ветра и волнения должны приниматься в соответствии с 2.3 части II «Корпус». При отсутствии специальных требований при оценке остойчивости в качестве расчетной рекомендуется принимать скорость ветра с одиннадцатым периодом оседания.

2.1.1.9 В процессе строительства платформы и перед проведением морских операций в общем случае должны проводиться испытания плавучих объектов кренованием для определения параметров, влияющих на остойчивость. Необходимость таких испытаний особенно велика в случае, когда расчетная метацентрическая высота близка к минимально допускаемому значению.

2.1.1.10 Методика испытаний кренованием должна учитывать требования, приведенные в 1.5 части IV «Остойчивость». Для плавучих объектов с большой метацентрической высотой испытания кренованием могут не обеспечивать необходимой точности результатов. Оценка остойчивости в этом случае может основываться на расчетных значениях массы и положения центра массы конструкции и данных системы контроля загрузки платформы в процессе ее строительства.

2.1.1.11 При проведении морских операций особое внимание должно уделяться обеспечению водонепроницаемости конструкции платформы. Количество отверстий в водонепроницаемых переборках и палубах должно быть сведено к минимуму. В случае прохождения через палубы, борта и переборок трубопроводов, вентиляции, электрических кабелей, соответствующие устройства должны обеспечивать их водонепроницаемость.

При проведении операций должны соблюдаться требования Международной конференции о грузовой марке в отношении воздуховодов, забортных и впускных трубопроводов, водонепроницаемой защиты дверей, люков и других отверстий.

2.1.2 Плавучесть и надводный борт.
Указанные требования относятся к плавучим сооружениям, блоки которых спускаются на воду, достраиваются и стыкуются на плаву.

Для сооружений и опорного основания в неповрежденном состоянии в периоды нахождения на плаву и при местной буксировке надводный борт должен быть не менее 2 м или равен сумме значительной высоты волны (13%-ной обеспеченности) плюс 0,5 м — принимается большая величина.

Для опорного основания в поврежденном состоянии, при поступлении воды в одну из цистерн или отсек, основание должно оставаться на плаву, имея минимальный надводный борт по всему периметру или минимальный надводный борт как минимум на трех башнях — при плавании на башнях.

2.1.3 Начальная метацентрическая высота.
Для сооружения в неповрежденном состоянии при длительном нахождении на плаву (строительстве, морской длительной) начальная метацентрическая высота (с учетом свободных
Правила классификации, постройки и оборудования ПБУ/МСП

448

Правила классификации, постройки и оборудования ПБУ/МСП

поверхностей и воздушных подушек в цистернах) должна быть не менее 1 м.

Для поврежденного сооружения (с затопленным отсеком или цистерной) метацентрическая высота должна быть положительной при статическом наклонении, соответствующем аварии во всем диапазоне наклонений, определяемом динамическим переходным процессом с добавлением амплитуды качки и наклонения от ветра (для погодных условий, определенных для данной операции и местности) — как правило, принимается скорость ветра, заданная по погодным условиям, рассчитанная при осреднении за 1 мин, и соответствующая амплитуда качки.

При расчетах остойчивости и запаса плавучести необходимо учитывать погрешности в определении масс, центра тяжести, плотности балласта и забортной воды, эффект свободных поверхностей в цистернах и в башнях.

При наличии одной или нескольких систем удержания: якорной системы, буксирных линий, швартовов (от судов, бочек), стропов от ПК — начальная метацентрическая высота должна быть рассчитана с учетом влияния (усилений и моментов) указанных систем связей. При этом может быть использован, например, метод компьютерного кренования по компьютерной программе, одобренной Регистром.

2.1.4 Диаграммы остойчивости.

Диаграммы остойчивости сооружения в процессе нахождения на плаву во всем диапазоне осадок от начальной осадки (в начале строительства) до осадки, соответствующей массе сооружения, должны быть построены в зависимости от указанной системы связей. При этом могут быть использованы, например, метод компьютерного кренования по программе, одобренной Регистром.

Кривая восстанавливающих моментов должна быть положительной от 0 до угла, определяющего второе пересечение указанной кривой с кривой кренящего момента или до угла крена, соответствующего входу в воду ближайшего отверстия, считающегося открытым.

2.1.5 Влияние якорных, швартовных и буксирных связей.

Влияние якорных, швартовных и буксирных связей должно учитываться во всех фазах строительства и морских операций, в том числе и для сооружения в поврежденном состоянии (при затоплении цистерны или башни). При этом должно учитываться как увеличение кренящего момента от усилий в якорных, швартовных или буксирных линиях, так и возможность увеличения осадки сооружения от указанных усилий.

Состав систем, длина и натяжение якорных и швартовных линий должны быть предусмотрены Руководством по проведению морских операций. Методика учета влияния систем на плавучесть и остойчивость должна быть одобрена Регистром.

2.1.6 Требования к системе водяного балласта и части обеспечения остойчивости при погружении-всплытии.

Системы балластировки шельфовых сооружений включают системы водяного балласта, в том числе маневренного, используемого для погружения-всплытия и дифференцировки. Морские операции, связанные со значительным изменением осадки и, соответственно, всех характеристик, влияющих на остойчивость, требуют балластировки. Система балластировки, состоящая из цистерн, клапанов и забортных отверстий должна отвечать ряду требований. Такими требованиями, в частности, должны быть (но не исчерпываться ими): произвольность системы балластировки должна обеспечивать заданное время морской операции;

предпочтение отказа от наружных клапанов заполнения (кингстонов) во избежание потери остойчивости при одновременном открывании кингстонов нескольких цистерн или башен;

указания по расчету диаграммы остойчивости с учетом изменения ватерлинии, центров тяжести и швартовы и поправок на возникающие свободные поверхности при манипуляциях с балластом в различных его состояниях.

2.2 ДОПОЛНИТЕЛЬНЫЕ ТРЕБОВАНИЯ К ПЛАВУЧЕСТИ И ОСТОЙЧИВОСТИ

2.2.1 Свободно плавающее сооружение.

2.2.1.1 Для неповрежденного сооружения:

.1 плечо остойчивости должно оставаться положительным до следующего угла наклонения относительно положения равновесия

\[9 \geq (\theta_{\text{max}} + 15 + 15/h), \]

где \(\theta_{\text{max}} \) — максимальное динамическое наклонение от ветра и волны, град;

\(h \) — начальная метацентрическая высота, м.

Для коротких операций с надежным прогнозом погоды (короткая буксировка, установка на место) допускается ослабление требования (2.2.1.1) до \(9 \geq 15 \);

.2 должно быть выполнено соотношение площадей, образующихся при пересечении кри-
вой восстанавливающего момента и ветрового кренящего момента:

\[(A + B) > 1.4(B + C)\]
\[(2.2.1.1.2)\]

где площади \(A, B\) и \(C\) образуются так, как это принято в части IV «Остойчивость».

2.2.1.2 Для поврежденного сооружения:
1. должно быть выполнено соотношение:

\[(A + B) > (B + C)\]
\[(2.2.1.2.1)\]

2. должна быть обеспечена прочность водонепроницаемых переборок и стенок башен для гидростатического давления, соответствующего погружению конструкции при посадке, возможной после аварии.

Сооружение должно оставаться на плаву с одной затопленной цистерной или башней в положении равновесия с надводным бортом, обеспечивающим отсутствие прогрессивного заливания любой другой цистерны или башни.

2.2.2 Транспортировка и буксировка.
2.2.2.1 Транспортировка на барже.
Для транспортной баржи должны выполняться требования Международной конференции о грузовой марке.
Для неповрежденной баржи должны быть выполнены соотношения (2.2.1.1.1) и (2.2.1.1.2).
Во время погрузки объекта на баржу она должна иметь, как минимум, значение метацентрической высоты 1,0 м.
Поперечная метацентрическая высота баржи при транспортировке должна быть не менее 0,3 м с учетом свободной поверхности воды при нулевом значении угла крена.
Протяженность диаграммы статической остойчивости должна превышать 40°.
Протяженность диаграммы статической остойчивости менее 30° недопустима. В случае если протяженность диаграммы статической остойчивости больше 30°, но меньше 40°, должно быть показано, что минимальный расчетный угол бортовой качки меньше угла при максимальном восстанавливающем плече.
Анализ остойчивости баржи должен учитывать изменение расчетного положения центра тяжести ± 1 м в вертикальном направлении и должен учитывать запас остойчивости, принятый судовладельцем.
В случае повреждения, баржа должна оставаться на плаву с одним затопленным отсеком баржи в положении равновесия с надводным бортом, обеспечивающим отсутствие прогрессивного заливания любого другого отсека или цистерны. Должна быть обеспечена прочность водонепроницаемых переборок и достаточный запас прочности кренения груза (сооружения или его частей) на барже.

При оценке остойчивости транспортной баржи восстанавливающий момент от входящего в воду груза (или сооружения) не должен учитываться. Напротив, должна учитываться возможность затопления водой отсека баржи или груза вследствие удара судов, падающих грузов, ошибок операторов, ухудшения погоды. Для аварийной баржи должно быть выполнено соотношение (2.2.1.2.1).
2.2.2.2 Буксировка на плаву.
Для сооружения или платформы, плавающих как самостоятельно, так и с помощью временных башен плавучести, применяются требования 2.2.1.
Для сооружения в поврежденном состоянии, при поступлении воды в один из отсеков или в одну из цистерн, или одну из башен, сооружение должно оставаться на плаву, имея минимальный надводный борт по всему периметру или как минимум на трех башнях, при этом должно быть исключено прогрессивное затопление цистерн или башен плавучести.
Буксруемый объект должен иметь исправленную начальную метацентрическую высоту не менее 0,3 м и надводный борт не менее 1 м на всех этапах буксировки.
Креняющий и восстанавливающий моменты должны быть рассчитаны с учетом действия ветра, волнения, течения, обледенения и усилий буксиров.
2.2.2.3 Спуск на воду.
Минимальный расчетный надводный борт сооружения после спуска на воду определяется как значительная высота волны (заданной на проведение этой операции), увеличенная на 0,5 м, но не менее 2 м — выбирается большее значение. Кроме того, запас плавучести должен обеспечивать спусковую траекторию, нижняя точка которой должна быть выше дна моря не менее чем на 5 м, в том числе с учетом возможности повреждения одного отсека в момент спуска. После спуска остойчивость должна быть положительной в момент наибольшего заглубления, а затем в равновесном положении плавания удовлетворять требованиям 2.2.1.2 и 2.2.2.1. При этом для кратковременных морских операций продолжительностью менее 3 суток (спуск на воду, короткая буксировка) начальная метацентрическая высота должна быть не менее 0,3 м.
При оценке плавучести и остойчивости при спуске должно быть учтено аварийное затопление одного из отсеков или цистерн или башни. После повреждения сооружение должно иметь минимальный надводный борт по всему периметру или как минимум на трех башнях и положительную метацентрическую высоту. При этом должно быть исключено прогрессивное затопление цистерн или башен плавучести.
Правила классификации, постройки и оборудования ПБУ/МСП

2.2.3 Плавучесть и остойчивость при вертикальной стыковке наплавом и при установке на место.

2.2.3.1 В процессе всплытия при вертикальной стыковке наплавом и погружения при установке на место метацентрическая высота, рассчитанная с учетом влияния башен (понтонов) плавучести и якорных и швартовных связей (а при поддержке с помощью плавучего крана еще и с учетом влияния стропов), должна быть положительной во всем диапазоне осадок, а также удовлетворять требованиям к остойчивости по 2.2.1, в том числе в случае затопления одного отсека, цистерны или башни.

Примечание: Для указанных операций допускается отрицательная начальная метацентрическая высота в небольшом диапазоне (на протяжении 1 — 2 м) изменения текущей осадки, при этом динамическое наклонение не должно превысить 2°, а статическое наклонение при прерванном погружении не должно быть более 1°. Указанное допущение подлежит особому рассмотрению Регистром.

Установка гравитационного или свайного сооружения на дно моря требует обеспечения гидростатической остойчивости в процессе погружения и, затем, устойчивости — после касания днищем грунта во избежание поворота или соскальзывания сооружения под действием природных нагрузок до приема балласта и/или забивки свай. При этом остойчивость должна быть обеспечена за счет начальной метацентрической высоты не менее 1 м в конце погружения (1 — 2 м до грунта). Устойчивость на грунте после касания должна быть подтверждена расчетами на отсутствие сдвига и отрыва периферии от дна для погодных условий, заданных для операции. Должны быть также выполнены те же расчеты для погодных условий, которые могут возникнуть в случае задержек, превышающих своевременное приему основного балласта — заполнению понтона, видах других частей опорного основания.

2.2.3.2 Оценка динамических параметров.

Динамические фазы морских операций должны быть обоснованы компьютерным моделированием, имитирующим поведение сооружения при заданных погодных условиях с учетом возможности их ухудшения, при управлении балластом, как исправного сооружения, так и для различных случаев повреждений. Моделирование должно производиться по компьютерным программам, одобренным Регистром.

Для всех указанных динамических случаев, включая спуск на воду, стыковку наплавом, установку платформы на грунт, одобряется выполнение модельных испытаний для получения гидродинамических исходных данных для расчетов и подтверждения результатов расчетов и моделирования.

3 ТРЕБОВАНИЯ К КОНСТРУКЦИЯМ, СИСТЕМАМ И УСТРОЙСТВАМ, ОБЕСПЕЧИВАЮЩИМ МОРСКИЕ ОПЕРАЦИИ

3.1 УСТРОЙСТВА И ОБОРУДОВАНИЕ

3.1.1 Устройства и оборудование платформы для проведения морских операций включают буксирные, якорные, швартовные, отбойные, подъемные устройства, систему позиционирования, балластную систему, устройства для установки на место, а также электрические, механические, контрольно-измерительные, навигационные и другие специально устанавливаемые системы, приборы и оборудование, необходимые для передвижения, удержания, установки платформы в проектное положение. Перечисленные устройства и оборудование должны обеспечивать сохранение полного контроля за платформой в течение морских операций.

Системы и устройства и соответствующее оборудование должны проектироваться, изготавливаться, устанавливаться и испытываться в соответствии с распространяющимися на них нормами, стандартами и указаниями части III "Устройства, оборудование и снаряжение ПБУ/МСП". Выбор систем и оборудования должен основываться на тщательном анализе их соответствия функциональному назначению и условиям проведения морской операции. Особое внимание должно уделяться надежности и устойчивости в случайных аварийных ситуациях.

Вопросы обеспечения устойчивости платформ на курсе и соответствующего оборудования платформы являются предметом специального рассмотрения Регистром.

3.1.2 Буксирные, якорные, швартовные и отбойные устройства должны рассчитываться на все соответствующие нагрузки, указанные в 2.3 части II «Корпус». При проектировании буксирных, якорных, швартовных и отбойных устройств необходимо использовать принцип «слабого звена», исключающий повреждения основных элементов конструкции (устройства) при случайных перегрузках, превышающих расчетные. Конструкция должна выдерживать местные нагрузки без потери общей прочности и устойчивости.
3.1.3 В зависимости от сложности и продолжительности морской операции для обеспечения ее безопасного проведения может потребоваться особо тщательный контроль за условиями проведения операции и работой различных систем как в нормальных, так и в критических ситуациях. Обычно рекомендуется рассматривать следующие электрические и механические системы: главные силовые установки; резервные силовые установки для энергоснабжения в экстремальных ситуациях; системы контроля машин и механизмов; системы контроля клапанов (задвижек); балластные устройства; контрольно-измерительные системы; топливная система; электрические сети; компрессорные системы; противопожарные системы; навигационные системы; системы связи.

3.1.4 Системы и оборудование должны проектироваться, изготавливаться, устанавливаться и испытываться в соответствии с требованиями Правил ПБУ/МСП, Правил классификации и постройки морских судов.

3.1.5 Все системы, приборы и оборудование должны быть одобренны и испытаны до начала операций. Испытания должны подтверждать надежность систем и их соответствие проектным характеристикам.

3.1.6 Контрольно-измерительные системы и оборудование в общем случае должны обеспечивать контроль:
- нагрузок и деформаций конструкции и отдельных элементов и устройств;
- внешних условий;
- условий балластировки и остойчивости;
- кренов, дифферентов и осадки плавучих объектов;
- местоположения (навигационных параметров) платформы;
- запаса глубины под днищем платформы;
- заглубления платформы в грунт дна.

3.1.7 Наиболее важные системы и оборудование, в том числе компьютерные сети и т.п., должны дублироваться и иметь независимые источники энергоснабжения. Надежность электроснабжения устройств и оборудования должна дублироваться аккумуляторными батареями — на случай выхода из строя основного источника электропитания. Все системы должны быть испытаны в соответствии с Правилами технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов. В правилах проведения морской операции должно быть проанализировано время, необходимое для переключения или замены системы. Требования к проектированию и изготовлению основных и дублирующих систем должны приниматься одинаковыми. Возможно использование дублирующих систем как составной части основной системы. Для систем, включающих много независимых элементов, дублирование может обеспечиваться за счет достаточного количества доступных свободных элементов. Системы автоматического контроля должны обеспечивать возможность ручного управления.

3.1.8 Нетрадиционные устройства и оборудование, специально устанавливаемое на платформе (соединительные элементы и т.п.), должны быть соответствующим образом спроектированы и рассчитаны на нагрузки, действующие на платформу в процессе морской операции. Для рассмотрения и согласования таких устройств в Регистр должна представляться следующая документация:
- описание оборудования;
- чертеж общего расположения;
- расчеты прочности;
- спецификации материалов;
- спецификации по изготовлению и установке.

3.1.9 В отдельных случаях, при проведении морских операций, может потребоваться временное подкрепление или демонтаж отдельных частей конструкции, устройств и оборудования платформы, что должно быть соответствующим образом отражено в проекте проведения операции.

3.2 КОНСТРУКЦИИ

3.2.1 Все нагрузки на конструкцию платформы, устройства и оборудование, перемещения платформы не должны превышать допускаемых пределов, указанных в проекте проведения операций. Нагрузки в течение морских операций должны определяться в соответствии с требованиями 2.3 части II «Корпус».

3.2.2 Конструктивные элементы и детали, используемые в морских операциях, должны, по возможности, обладать гибкостью и податливостью. Не рекомендуется использовать повышенное давление воздуха в плавучих элементах или подводных воздушных кессонах для повышения безопасности при повреждениях конструкции платформы. Однако такие решения допускаются в специальных случаях при рассмотрении таких отдельных систем, как осушение и т.п., с учетом последствий повреждений, продолжительности операции и т.п.
3.2.3 При разработке деталей конструкции для морских операций следует, по возможности, исключать передачу растягивающих напряжений через толщину стального проката (листов, балок и т.п.). Передачу сосредоточенных нагрузок на листовые конструкции следует предусматривать только через промежуточные элементы жесткости (подкрепления).

3.2.4 Выступающие детали конструкции, расположенные над ватерлинией, должны быть сконструированы так, чтобы исключать захват воды в случае погружения под воду при качке платформы и т.п.

3.2.5 Элементы конструкции и их соединения рекомендуется объединять в группы по следующим признакам:
- тип напряжений;
- наличие циклических нагрузок;
- наличие концентрации напряжений;
- наличие сужений;
- темп нарастания нагрузки;
- последствия повреждений.

Рекомендуется рассматривать следующие категории конструктивных элементов:
- специальные — наиболее важные части основных конструктивных элементов, определяющие их прочность, воспринимающие основные нагрузки, испытывающие концентрацию напряжений и т.п.;
- основные — конструктивные элементы, определяющие общую прочность и устойчивость сооружения, повреждения которых могут приводить к опасности для человеческой жизни и т.п.;
- вспомогательные — элементы конструкции относительно небольшой важности, повреждения которых не создают угрозу человеческой жизни или опасность значительных экономических последствий.

Перечисленные категории определяют требования к материалам, контролю и испытаниям элементов.

3.2.6 Качество материалов должно отвечать проектным условиям эксплуатации, обеспечивать необходимые характеристики (прочность, податливость, жесткость, свариваемость, коррозионную устойчивость), отвечать требованиям действующих норм и стандартов, изложенным в 1.4 — 1.6 части II «Корпус».
ОБОРУДОВАНИЕ
ПЛАВУЧИХ БУРОВЫХ УСТАНОВОК
И МОРСКИХ СТАЦИОНАРНЫХ ПЛАТФОРМ
ЧАСТЬ I. СИГНАЛЬНЫЕ СРЕДСТВА

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящей части распространяются на сигнальные средства ПБУ и МСП.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

1.2.1 Определения и пояснения, относящиеся к общей терминологии, приведены в Общих положениях о классификационной и иной деятельности и в части I «Классификация» Правил классификации, постройки и оборудования ПБУ/МСП.

1.2.2 Определения и пояснения, относящиеся к сигнальным средствам, приведены в части III «Сигнальные средства» Правил по оборудованию морских судов.

1.2.3 В настоящей части приняты следующие определения.

Высота над корпусом — расстояние от места установки фонаря до верхней палубы корпуса самоподъемных ПБУ, МСП и буровых судов или до верхней кромки стабилизирующих колонн погружных и полупогружных ПБУ.

Компетентный орган — министерство, правительственное учреждение или другая администрация, уполномоченная издавать правила, распоряжения или другие инструкции, имеющие силу закона.

2 СНАБЖЕНИЕ ПБУ/МСП СИГНАЛЬНЫМИ СРЕДСТВАМИ

2.1 На каждой ПБУ/МСП должны быть установлены следующие сигнальные средства:

.1 сигнально-отличительные фонари в соответствии с 2.2.1 части III «Сигнальные средства» Правил по оборудованию морских судов;

.2 соответствующие свето- и звукосигнальные средства предупреждения и навигационного оборудования (см. 3.2 и 4.2 настоящей части);

.3 переносной фонарь дневной сигнализации;

.4 соответствующее светосигнальное оборудование посадки для вертолетов (см. 3.2 и 4.2 настоящей части);

.5 парашютные ракеты красного огня — 12;

.6 однозвездные ракеты красного огня — 12;

.7 однозвездные ракеты зеленого огня — 12;

.8 звуковые ракеты — 12.

2.2 МСП должны снабжаться сигнальными средствами в соответствии с 2.1 за исключением того, что сигнально-отличительные фонари, требуемые 2.1.1, могут не устанавливаться стационарно, а быть установлены временно на период перегона МСП на место бурения.

3 КОНСТРУКЦИЯ СИГНАЛЬНЫХ СРЕДСТВ

3.1 Сигнально-отличительные фонари, требуемые 2.1.1, для МСП могут быть не электрическими, при этом их устройство и конструкция являются предметом специального рассмотрения Регистром.

3.2 Выбор типов, характеристик и конструкций средств и оборудования, указанного в 2.1.2 и 2.1.4, является предметом технического наблюдения компетентным органом.

1 Далее — Правила ПБУ/МСП.
4 УСТАНОВКА СИГНАЛЬНЫХ СРЕДСТВ

4.1 Бортовые, топовые и кормовые огни должны быть установлены на высоте над уровнем моря не более 30 м.

4.2 Установка средств и оборудования, указанного в 2.1.2 и 2.1.4, является объектом технического наблюдения компетентным органом.
ЧАСТЬ II. СПАСАТЕЛЬНЫЕ СРЕДСТВА

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 Область распространения, определения и пояснения, относящиеся к типам ПБУ и МСП, указаны в разд. 1 части I «Классификация» Правил ПБУ/МСП.

1.2 Оборудование спасательными средствами плавучих установок иного назначения является предметом специального рассмотрения Регистром.

1.3 Если в настоящей части не оговорено иное, на спасательные средства ПБУ/МСП, надводных установок и буровых судов, а также на их размещение, установку и наблюдение, распространяются все применимые требования Общих положений о классификационной и иной деятельности, части I «Положения об освидетельствованиях» и части II «Спасательные средства» Правил по оборудованию морских судов.

1.4 Спасательные средства и спусковые устройства, а также предметы снабжения и оборудования спасательных средств и спусковых устройств должны быть надежны в использовании при эксплуатации в предполагаемых климатических условиях.

1.5 Ледостойкие МСП должны иметь коллективные спасательные средства, обеспечивающие по своим техническим параметрам эвакуацию и спасение персонала в ледовых условиях.

2 КОЛЛЕКТИВНЫЕ СПАСАТЕЛЬНЫЕ СРЕДСТВА

2.1 СНАБЖЕНИЕ НАДВОДНЫХ УСТАНОВОК

2.1.1 Каждая надводная установка должна быть снабжена на каждом борту одной или несколькими спасательными шлюпками, отвечающими требованиям 6.18 части II «Спасательные средства» Правил по оборудованию морских судов, общей вместимостью, достаточной для размещения всех находящихся на установке людей.

2.1.2 Дополнительно к требованиям 2.1.1 на каждой надводной установке должны быть предусмотрены спасательный плот/плоты, отвечающие требованиям 6.8 — 6.12 части II «Спасательные средства» Правил по оборудованию морских судов, с возможностью их спуска с любой стороны надводной установки, общей вместимостью, достаточной для размещения всех находящихся на установке людей.

Если спасательные плоты не могут быть легко перемещены на любую сторону надводной установки, то общая вместимость спасательных плотов на каждом борту должна быть достаточной для размещения всех находящихся на установке людей.

2.1.3 Если расстояние между местом установки спасательных средств и форштевнем или кормой превышает 100 м, то надводная установка в дополнение к спасательным плотам, требуемым в 2.1.2, должна быть снабжена спасательным плотом, установленным как можно ближе к носу или к корме, или по одному спасательному плоту, установленному по направлению к носу или к корме, насколько это целесообразно или практически выполнимо.

Крепление указанных спасательных плотов должно осуществляться так, чтобы их разобучение могло выполняться вручную.

2.2 СНАБЖЕНИЕ САМОПОДЪЕМНЫХ ПБУ, ПБУ СО СТАБИЛИЗИРУЮЩИМИ КОЛОННАМИ И МСП

2.2.1 Каждая ПБУ/МСП должна быть снабжена спасательными шлюпками, удовлетворяющими требованиям 6.18 части II «Спасательные средства» Правил по оборудованию морских судов, расположенными не менее, чем на двух наиболее удаленных друг от друга местах на разных бортах или оконечностях ПБУ/МСП.

Вместимость спасательных шлюпок, установленных в таких местах, должна быть достаточной для размещения всех находящихся на ПБУ/МСП людей в случае:

1 потери всех спасательных шлюпок на любом одном месте или при невозможности их использования;
2 потеря всех спасательных шлюпок на любом борту, на любой оконечности или в любом углу при невозможности их использования.

2.2.2 Дополнительно каждая ПБУ/МСП должна быть снабжена спасательными плотов, отвечающими требованиям 6.6 — 6.12 части II «Спасательные средства» Правил по оборудованию морских судов.
Часть II. Спасательные средства

судов, общей вместимостью, достаточной для размещения всех находящихся на ПБУ/МСП людей.
Если спасательные плоты не могут быть перемещены на любую сторону ПБУ/МСП, обшая вместимость спасательных плотов на каждой стороне должна быть достаточной для размещения всех находящихся на ПБУ/МСП людей.

2.2.3 Если на самоподъемных ПБУ вследствие их размеров и формы спасательные шлюпки не могут быть установлены в соответствии с 2.2.1, то по согласованию с Регистром общая вместимость спасательных шлюпок может быть такой, чтобы обеспечить размещение всех находящихся на ПБУ людей.
При этом спасательные плоты, требуемые 2.2.2, должны обслуживаться спусковыми устройствами, отвечающими требованиям 6.20.5 части II «Спасательные средства» Правил по оборудованию морских судов.

2.2.4 Регистр может разрешить уменьшить общее количество коллективных спасательных средств в случае буксировки ПБУ/МСП с неполной численностью персонала.

В этом случае общее количество коллективных спасательных средств, удовлетворяющих требованиям настоящей части, должно быть достаточным, чтобы вместить всех людей на буксируемой ПБУ/МСП.

2.2.5 На МСП, предназначенных для работы в ледовых условиях, применение спасательных шлюпок, спускаемых методом свободного падения, является предметом специального рассмотрения Регистром.

2.3 СНАБЖЕНИЕ БУРОВЫХ СУДОВ

2.3.1 Буровые суда должны снабжаться коллективными спасательными средствами по нормам нефтяных танкеров, перевозящих грузы с температурой вспышки не выше 60 °C в соответствии с требованиями разд. 4 части II «Спасательные средства» Правил по оборудованию морских судов.

3 СНАБЖЕНИЕ ДЕЖУРНЫМИ ШЛЮПКАМИ

3.1 Каждая ПБУ/МСП, стационарная установка и каждое буровое судно должны быть снабжены не менее чем одной дежурной шлюпкой, удовлетворяющей требованиям 6.19 части II «Спасательные средства» Правил по оборудованию морских судов.

3.2 Спасательная шлюпка может рассматриваться как дежурная шлюпка при условии, что она отвечает требованиям, предъявляемым к дежурным шлюпкам.

4 ИНДИВИДУАЛЬНЫЕ СПАСАТЕЛЬНЫЕ СРЕДСТВА

4.1 СНАБЖЕНИЕ ПБУ/МСП, НАДВОДНЫХ УСТАНОВОК И БУРОВЫХ СУДОВ СПАСАТЕЛЬНЫМИ ЖИЛЕТАМИ

4.1.1 Для каждого человека, находящегося на борту ПБУ/МСП, надводной установки или бурового судна, должен быть предусмотрен спасательный жилет, удовлетворяющий требованиям 6.3 части II «Спасательные средства» Правил по оборудованию морских судов.

4.1.2 Дополнительно к требованию 4.1.1 на каждой установке или на каждом судне должны быть предусмотрены спасательные жилеты для вахтенного персонала экипажа, а также достаточное количество спасательных жилетов должно быть размещено в доступных местах для производственного персонала работающей смены, для которого доступ к их собственным спасательным жилетам затруднен.

4.1.3 В районе вертолетной площадки должны быть предусмотрены дополнительные спасательные жилеты в количестве, обеспечивающем максимально допустимое число пассажиров вертолета.

4.1.4 Каждый спасательный жилет должен быть снабжен огнем, удовлетворяющим требованиям 6.3.3 части II «Спасательные средства» Правил по оборудованию морских судов.
Правила классификации, постройки и оборудования ПБУ/МСП

4.2 СНАБЖЕНИЕ ПБУ/МСП, НАДВОДНЫХ УСТАНОВОК И БУРОВЫХ СУДОВ СПАСАТЕЛЬНЫМИ КРУГАМИ

4.2.1 Каждая ПБУ/МСП, надводная установка или буровое судно должны быть снабжены не менее чем восемью спасательными кругами, удовлетворяющими требованиям 6.2 части II «Спасательные средства» Правил по оборудованию морских судов.

Количество спасательных кругов и их размещение должно быть таким, чтобы они располагались на открытом месте и к ним обеспечивался свободный доступ.

Надводные установки и буровые суда длиной свыше 100 м, а также МСП, один из размеров которой в плане более 100 м, должны быть снабжены спасательными кругами в соответствии с табл. 4.2.1.

Таблица 4.2.1

<table>
<thead>
<tr>
<th>Длина, м</th>
<th>Минимальное количество спасательных кругов</th>
</tr>
</thead>
<tbody>
<tr>
<td>Более 100, но менее 150</td>
<td>10</td>
</tr>
<tr>
<td>150, но менее 200</td>
<td>12</td>
</tr>
<tr>
<td>200 и более</td>
<td>14</td>
</tr>
</tbody>
</table>

4.2.2 Не менее половины от общего количества спасательных кругов должны быть оборудованы самозажигающимися огнями, отвечающими требованиям 6.2.2 части II «Спасательные средства» Правил по оборудованию морских судов, с источником энергии одобренного типа.

Не менее двух из указанных спасательных кругов должны быть снабжены автоматически действующими дымовыми патронами, отвечающими требованиям 6.2.3 части II «Спасательные средства» Правил по оборудованию морских судов, и быстро складываться с ходового мостика, центрального поста управления или с места, легко доступного для экипажа.

Спасательные круги, снабженные огнями, а также спасательные круги, снабженные огнями и дымовыми патронами, должны быть равномерно распределены по обоим бортам установки или судна. Указанные спасательные круги не должны снабжаться спасательными линиями (см. 4.2.3).

4.2.3 Не менее двух спасательных кругов, установленных на максимальном расстоянии друг от друга, должны быть снабжены спасательным линией, длина которого должна быть не менее полуторного расстояния, измеренного между местом установки круга и ватерлиней при наименьшей эксплуатационной осадке, или 30 м, смотря по тому, что больше.

4.2.4 Каждый спасательный круг должен иметь маркировку, нанесенную заглавными буквами латинского алфавита, указывающую название установки или судна и порт приписки.

4.3 СНАБЖЕНИЕ ПБУ/МСП, НАДВОДНЫХ УСТАНОВОК И БУРОВЫХ СУДОВ ГИДРОТЕРМОКОСТЮМАМИ

4.3.1 Каждая ПБУ/МСП и надводная установка должна быть снабжена для всех людей, находящихся на их борту, гидротермокостюмами, отвечающими требованиям 6.4 части II «Спасательные средства» Правил по оборудованию морских судов.

Достаточное количество гидротермокостюмов должно быть дополнительно размещено в доступных местах для людей, находящихся на вахте, а также для людей работающей смены производства, для которых доступ к их собственным гидротермокостюмам затруднен.

4.3.2 По согласованию с Регистром ПБУ/МСП и надводные установки, постоянно эксплуатируемые в теплых климатических условиях, могут не снабжаться гидротермокостюмами.

4.3.3 Буровые суда снабжаются гидротермокостюмами по нормам грузовых судов в соответствии с требованиями части II «Спасательные средства» Правил по оборудованию морских судов.

5 ОБЕСПЕЧЕНИЕ СБОРА И ПОСАДКИ ЛЮДЕЙ В СПАСАТЕЛЬНЫЕ ШЛЮПКИ, ПЛОТЫ И ДЕЖУРНЫЕ ШЛЮПКИ. МЕСТА СПУСКА

5.1 Места сбора следует устраивать насколько возможно ближе к местам посадки. Каждое место сбора должно иметь достаточное пространство, чтобы вместить всех людей, сбор которых предусмотрен в этом месте.

5.2 Места сбора и посадки должны быть легко доступны из жилых помещений и рабочих мест.

5.3 Места сбора и посадки должны быть хорошо освещены от основного и аварийного источников электроэнергии, требуемых частью X «Электрическое оборудование» Правил ПБУ/МСП.

5.4 Коридоры, трапы и выходы, обеспечивающие доступ к местам сбора и посадки, должны быть хорошо освещены от основного и аварийного
Часть II. Спасательные средства
459
источников электроэнергии, требуемых частью X «Электрическое оборудование» Правил ПБУ/МСП.
5.5 Места сбора и посадки в спасательные шлюпки и плоты, спускаемые с помощью шлюп-балок и плотбalk, должны располагаться так, чтобы в спасательные шлюпки и спасательные плоты можно было разместить пострадавших на носилках.
5.6 Устройство мест посадки в спасательные шлюпки и плоты должно быть спроектировано таким образом, чтобы:
.1 посадка в спасательные шлюпки всех расписанных на них людей могла быть произведена в течение 3 мин с момента подачи сигнала об оставлении установки;
.2 посадка в спасательные шлюпки и их спуск могли производиться непосредственно с места их установки;
.3 посадка в спускаемые с помощью плот-балки спасательные плоты и их спуск могли производиться с места, расположенного вблизи места их установки или места, куда в соответствии с 6.6 спасательный плот был перемещен перед спуском;
.4 в случае необходимости, имелись специальные средства для подтягивания спускаемых с помощью плот-балок спасательных плотов и удержания их у борта с целью обеспечения безопасной посадки пострадавших людей.
5.7 Должны быть предусмотрены не менее двух значительно удаленных друг от друга металлических стационарных трапов протяженностью от палубы до поверхности воды. Металлические стационарные трапы и поверхность воды вблизи них должны быть хорошо освещены от основного и аварийного источников электроэнергии, требуемых частью X «Электрическое оборудование» Правил ПБУ/МСП.
5.8 Если стационарные трапы не могут быть установлены, должны быть предусмотрены альтернативные средства эвакуации достаточной пропускной способности, чтобы все люди могли безопасно спуститься до уровня ватерлинии.
5.9 Места спуска должны быть расположены так, чтобы обеспечить безопасный спуск с учетом того, чтобы спасательные шлюпки и плоты были в стороне от выступающих гребных винтов. Насколько это возможно, места спуска должны располагаться так, чтобы спасательные шлюпки и плоты могли быть спущены по отвесному борту установки, за исключением того, что:
.1 коллективные спасательные средства специально предназначены для спуска методом свободного падения;
.2 коллективные спасательные средства установлены на конструкции, которая обеспечивает беспрепятственный спуск на воду.
5.10 Для дежурной шлюпки места посадки и спуска должны быть расположены так, чтобы посадка людей в нее и ее спуск могли быть произведены в возможно короткое время.
5.11 Буровые суда в отношении обеспечения сбора и посадки людей в спасательные шлюпки, спасательные плоты и дежурные шлюпки, а также дежурные шлюпки должны удовлетворять требованиям части II «Спасательные средства» Правил по оборудованию морских судов.

6 УСТАНОВКА СПАСАТЕЛЬНЫХ ШЛЮПОК, ПЛОТНЫ И ДЕЖУРНЫХ ШЛЮПОК

6.1 Коллективные спасательные средства должны устанавливаться таким образом, чтобы обеспечивались свободный доступ к местам посадки в эти средства и во все посадочные люки, а также максимальное удаление от взрывоопасных помещений и пространств.
6.2 Каждая спасательная шлюпка или спасательный плот должны быть установлены так, чтобы:
.1 ни они, ни приспособления для их установки не мешали использованию любой другой спасательной шлюпки или любого другого спасательного плота либо дежурной шлюпки в любом другом месте спуска;
.2 быть настолько близко к поверхности воды, насколько это безопасно и практически возможно;
.3 быть в состоянии постоянной готовности к использованию с тем, чтобы два члена экипажа могли подготовить их к посадке и спуску в течение не более 5 мин;
.4 быть, насколько это практически осуществимо, в безопасном и защищенном месте, исключающим их повреждение в результате пожара и взрыва.
Каждая спасательная шлюпка или спасательный плот должны быть установлены с полным снабжением согласно требованиям 6.8.5 или 6.13.8 части II «Спасательные средства» Правил по оборудованию морских судов. Однако, в случае, если установка эксплуатируется в таком районе, что, по мнению Регистра, некоторые предметы снабжения не являются необходимыми, эти предметы могут быть исключены из объема снабжения.
6.3 Когда это возможно, установка должна быть устроена так, чтобы спасательные шлюпки в закрепленном на спусковом устройстве положении были защищены от повреждений, которые могут быть вызваны сильным волнением моря.
6.4 Спасательные шлюпки должны храниться прикрепленными к спусковому устройству.
6.5 Спасательные плоты должны устанавливаться так, чтобы их крепления можно было отдать вручную в любое время.
6.6 Спускаемые с помощью плот-балки спасательные шлюпки должны устанавливаться в пределах зоны, допускающей использование подъемного гака плот-балки, если не предусмотрены средства для перемещения плотов, которые не выходят из строя при крене и дифференте в пределах значений, указанных в части V «Деление на отсеки» Правил ПБУ/МСП для любого случая повреждения или при качке установки, или прекращении подачи энергии.
6.7 Каждый спасательный плот, за исключением указанных в 2.1.3, должен устанавливаться так, чтобы его фалинь был постоянно прикреплен к установке через слабое звено и устройство, обеспечивающее свободное всплытие, удовлетворяющее требованиям 6.8.6 части II «Спасательные средства» Правил по оборудованию морских судов, таким образом, чтобы спасательный плот мог свободно всплывать и, если он является надувным, то надуваться автоматически, если установка тонет.
6.8 Дежурные шлюпки должны быть установлены:
.1 в состоянии постоянной готовности к спуску в течение не более 5 мин;
.2 в месте, удобном для спуска и подъема;
.3 так, чтобы ни дежурная шлюпка, ни приспособление для ее установки не мешали использованию любого другого коллективного спасательного средства в любом другом месте спуска;
.4 в соответствии с 5.1 — 5.4.
6.9 На буровых судах установка спасательных шлюпок и плотов и дежурных шлюпок должна осуществляться в соответствии с требованиями части II «Спасательные средства» Правил по оборудованию морских судов.

7 ОБЕСПЕЧЕНИЕ СПУСКА И ПОДЪЕМА СПАСАТЕЛЬНЫХ ШЛЮПОК, СПАСАТЕЛЬНЫХ ПЛОТОВ И ДЕЖУРНЫХ ШЛЮПОК

7.1 Спусковые устройства, отвечающие требованиям 6.20.1 и 6.20.2, 6.20.4 или 6.20.5 части II «Спасательные средства» Правил по оборудованию морских судов, насколько они применимы, должны быть предусмотрены для всех спасательных шлюпок и спасательных плотов. Несмотря на требование 6.20.1.1 части II «Спасательные средства» Правил по оборудованию морских судов, для ПБУ со стабилизирующими колоннами спусковые устройства должны быть способны эксплуатироваться при крене и дифференте, возникающих в любом поврежденном состоянии в соответствии с требованиями части V «Деление на отсеки» Правил ПБУ/МСП.
7.2 Устройства спуска и подъема должны быть такими, чтобы нахождящийся на установке оператор, управляющий устройством, мог осуществлять непрерывное наблюдение за спасательной шлюпкой или спасательным плотом во время их спуска, а в отношении спасательной шлюпки — и во время ее подъема.
7.3 Только один тип разобщающего механизма должен применяться для одинаковых имеющихся на установке коллективных спасательных средств.
7.4 Подготовка и использование спасательной шлюпки или спасательного плота в любом одном месте спуска не должны менять быстрой подготовке и использованию любой другой спасательной шлюпки или любого другого спасательного плота либо дежурной шлюпки в любом другом месте спуска.
7.5 Лопари, если они используются, должны быть достаточной длины, чтобы спасательные шлюпки или плоты могли быть спущены на воду с установки при неблагоприятных условиях, как транспортировка при наименьшей осадке или эксплуатация при наименьшей эксплуатационной осадке, или любых случаях повреждений, указанных в части V «Деление на отсеки» Правил ПБУ/МСП.
7.6 Во время подготовки и спуска спасательные шлюпки и плоты, их спусковые устройства, а также поверхность воды в районе спуска должны иметь достаточное освещение от основного и аварийного источников электроэнергии, требуемых частью X «Электрическое оборудование» Правил ПБУ/МСП.
7.7 Должны быть предусмотрены средства, предотвращающие попадание откачиваемой с судна воды на спасательные шлюпки и плоты во время оставления установки.
7.8 Все спасательные шлюпки, которые требуются для обеспечения оставления установки всеми находящимися на ней людьми, должны иметь возможность спуска на воду с их полным комплектом людей и снабжения в течение периода времени, не превышающего 10 мин с момента подачи сигнала об оставлении установки.
7.9 Ручные тормоза спускового устройства должны быть устроены так, чтобы действие тормоза прекращалось лишь тогда, когда оператор или механизм, приводимый в действие оператором, удерживает рукючку управления тормозом в положении, при котором тормоз не действует.
7.10 Каждая спасательная шлюпка или плот должны быть установлены так, чтобы они были в стороне от опор, колонн, башмаков, растяжек, матов или иных конструкций, находящихся ниже корпуса самоподъемной установки и ниже верхнего корпуса установки со стабилизирующими колоннами, когда установка находится в неповрежденном состоянии.

7.11 При любом состоянии повреждения, указанном в части V «Деление на отсеки» Правил ПБУ/МСП, спасательные шлюпки, общая вместимость которых должна составлять не менее 100 % людей, находящихся на борту установки, в дополнение ко всем требованиям настоящей части по их установке и спуску, должны быть установлены так, чтобы они могли быть беспрепятственно спущены.

7.12 Особое внимание при проектировании буровой установки должно быть уделено положению и ориентации спасательных шлюпок и плотов для того, чтобы эффективно и безопасно обеспечивался клиренс установки с учетом возможностей, которыми обладают спасательные средства.

7.13 Несмотря на требование 6.20.2.8 части II «Спасательные средства» Правил по оборудованию морских судов, скорость спуска не должна быть более чем 1 м/с.

7.15 Должен быть обеспечен быстрый подъем, спасательной шлюпки, когда она нагружена полным комплектом людей и снабжения. Если дежурная шлюпка является также и спасательной шлюпкой, то быстрый подъем должен быть обеспечен, когда шлюпка нагружена полным комплектом снабжения и людьми в количестве не менее 6 чел.

8 ЛИНЕМЕТАТЕЛЬНЫЕ УСТРОЙСТВА

8.1 Каждая ПБУ, МСП и надводная установка должна быть снабжена одним комплектом линеметательного устройства, отвечающего требованиям 6.21 части II «Спасательные средства» Правил по оборудованию морских судов.

9 РАДИООБОРУДОВАНИЕ ДЛЯ СПАСАТЕЛЬНЫХ СРЕДСТВ

9.1 Каждая спасательная шлюпка ПБУ/МСП и надводной установке должна быть снабжена комплектом УКВ аппаратуры двухсторонней радиофоновой связи. Дополнительно на каждой ПБУ/МСП и надводной установке должно быть предусмотрено не менее двух таких комплектов, размещенных таким образом, чтобы их можно было бы быстро перенести в любой спасательный плот. Аппаратура двухсторонней радиофоновой связи должна удовлетворять требованиям разд. 12 части IV «Радиооборудование» Правил по оборудованию морских судов.

9.2 Каждая спасательная шлюпка ПБУ/МСП и надводной установке должна быть снабжена радиолокационным ответчиком. Дополнительно на каждой ПБУ/МСП и надводной установке должно быть предусмотрено не менее двух радиолокационных ответчиков, расположенных в таких местах, чтобы их можно было быстро перенести в любой спасательный плот, за исключением плотов, требуемых 2.1.3. Радиолокационный ответчик должен удовлетворять требованиям разд. 10 части IV «Радиооборудование» Правил по оборудованию морских судов.

9.3 На буровых судах снабжение радиооборудованием спасательных средств должно удовлетворять требованиям 2.1.1 части II «Спасательные средства» Правил по оборудованию морских судов.
ЧАСТЬ III. РАДИООБОРУДОВАНИЕ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящей части распространяются на радиооборудование ПБУ/МСП в дополнение к требованиям части IV «Радиооборудование» Правил по оборудованию морских судов.

2 КОМПЛЕКТАЦИЯ ПБУ/МСП РАДИООБОРУДОВАНИЕМ

2.1 ПОДРАЗДЕЛЕНИЕ ПБУ/МСП НА ГРУППЫ

2.1.1 Для определения стандартного состава радиооборудования все ПБУ/МСП подразделяются на три группы:
1) самоходные ПБУ в состоянии самостоятельного перехода или в сопровождении судов;
2) несамоходные ПБУ/МСП в состоянии буксировки;
3) ПБУ/МСП в рабочем состоянии или в состоянии штормового отстоя.

2.2 СОСТАВ РАДИООБОРУДОВАНИЯ

2.2.1 На каждой ПБУ 1-й группы в зависимости от морского района должно быть установлено радиооборудование в соответствии с требованиями разд. 2 части IV «Радиооборудование» Правил по оборудованию морских судов.

2.2.2 На каждой ПБУ/МСП 2-й группы должно быть установлено радиооборудование в зависимости от состава радиооборудования буксирующего или сопровождающего судна.

Если буксирующее или сопровождающее ПБУ/МСП судно не оборудовано в соответствии с требованиями разд. 2 части IV «Радиооборудование» Правил по оборудованию морских судов, то на ПБУ/МСП должен быть установлен полный комплект радиооборудования, соответствующий требованиям разд. 2 части IV «Радиооборудование» Правил по оборудованию морских судов.

2.2.3 На каждой ПБУ/МСП 3-й группы должно быть установлено основное и дублирующее радиооборудование в соответствии с табл. 2.2.1 и 2.6.3 части IV «Радиооборудование» Правил по оборудованию морских судов.

2.2.4 На каждой ПБУ/МСП, обслуживаемой вертолетами, должна быть предусмотрена УКВ-аппаратура двусторонней радиотелефонной связи с воздушными судами.

2.2.5 Каждая ПБУ/МСП должна иметь эффективные средства связи между центральным постом управления, ходовым мостиком (если предусмотрен) и любым постом или постами, которые оборудованы средствами управления радиооборудованием.

2.2.6 ПБУ/МСП, построенные 1 июля 2004 г. или после этой даты, должны быть оборудованы системой охранного оповещения. ПБУ/МСП, построенные до 1 июля 2004 г., должны быть оборудованы системой охранного оповещения не позднее первого освидетельствования радиооборудования после 1 июля 2006 г.

1 Условия снабжения судов радиолокационными отвечиками и УКВ-аппаратуры двусторонней радиотелефонной связи изложены в разд. 9 части II «Спасательные средства» Правил по оборудованию ПБУ и МСП.
2.2.7 Все радиооборудование ПБУ/МСП должно отвечать техническим требованиям, изложенным в части IV «Радиооборудование» Правил по оборудованию морских судов, а радиооборудование, установленное во взрывоопасных зонах или являющееся переносным, должно быть искробезопасного исполнения.

3 РАЗМЕЩЕНИЕ РАДИООБОРУДОВАНИЯ

3.1 Управление радиооборудованием должно осуществляться с места, откуда обычно осуществляется управление ПБУ/МСП в режиме перехода, буксировки и постоянного писения вахты в рабочем состоянии или в состоянии ее штурмового отстоя.

3.2 Дублирующее радиооборудование ПБУ/МСП 3-й группы должно быть размещено в помещении, которым может быть ходовой мостик или аварийный пост, расположенном как можно дальше от места установки основного радиооборудования таким образом, чтобы ни один аварийный случай в любой части ПБУ/МСП не мог вывести из строя все средства радиосвязи.

3.3 Если в условиях эксплуатации ПБУ/МСП уровень акустического шума в помещениях, где установлено радиооборудование, высокий, и он может создавать помехи работе радиооборудования, то должна быть предусмотрена соответствующая защита.

4 АНТЕННЫЕ УСТРОЙСТВА

4.1 Передающие антенны должны размещаться вне взрывоопасных зон.

4.2 Все передающие и приемные антенны не должны размещаться ближе 9 м от буровой вышки, стрел грузоподъемных кранов и других высоких металлических конструкций, способных создавать экранирующее влияние.
ЧАСТЬ IV. НАВИГАЦИОННОЕ ОБОРУДОВАНИЕ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящей части распространяются на навигационное оборудование ПБУ/МСП в дополнение к требованиям части V «Навигационное оборудование» Правил по оборудованию морских судов.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

1.2.1 Определения и пояснения, относящиеся к общей терминологии, приведены в Общих положениях о классификационной и иной деятельности и в части I «Классификация» Правил ПБУ/МСП.

1.2.2 Определения и пояснения, относящиеся к навигационному оборудованию, приведены в части V «Навигационное оборудование» Правил по оборудованию морских судов.

2 СОСТАВ НАВИГАЦИОННОГО ОБОРУДОВАНИЯ ПБУ/МСП

2.1 ОБЩИЕ ТРЕБОВАНИЯ

2.1.1 Навигационное оборудование ПБУ/МСП должно быть установлено в таком составе и иметь такие технические характеристики, чтобы обеспечивались:
1. определение собственного местоположения на позиции бурения и наблюдения за окружающей обстановкой;
2. самостоятельное навигационное обеспечение самоходной ПБУ при морских переходах, при следовании на позиции бурения и возвращении в порт приписки.

2.1.2 Для определения состава навигационного оборудования буровые установки подразделяются на следующие группы:
1. самоходные ПБУ;
2. несамоходные (бусярируемые) ПБУ и МСП.

2.2 СОСТАВ НАВИГАЦИОННОГО ОБОРУДОВАНИЯ ПБУ/МСП

2.2.1 В зависимости от группы, к которой отнесены буровые установки, на ПБУ/МСП должно быть установлено навигационное оборудование в соответствии с табл. 2.2.1.
ПБУ/МСП, построенные после 1 июля 1994 г. и оборудованные системами динамического позиционирования 2-го и 3-го класса (см. 7.5 части XIV «Автоматизация» Правил ПБУ/МСП), должны иметь средства для приема информации не менее чем от трех систем местоопределения, базирующихся на различных принципах. На ПБУ, имеющих системы динамического позиционирования 2-го класса, должны быть установлены три гирокомпаса.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование оборудования</th>
<th>Количество по группам</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Самоходные</td>
</tr>
<tr>
<td>1</td>
<td>Компас магнитный основной</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Компас магнитный путевой у основного поста управления рулем</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Компас гирокомпасный³</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Лаг гидродинамический,индукционный или другой донной конструкцией⁴</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Эхолот</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Аппаратура автоматической идентификационной (информационной) системы (АИС)</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Приемоиндикатор системы/систем радионавигации</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Лаг простой (ручной)⁵</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Секстан навигационный</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Хронометр</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Секундомер</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>Бинокль призменный</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>Анемометр</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Барометр</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Компостер</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>Указатель температуры морской воды и воздуха</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Указатель параметров воли</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Указатель скорости и направления морских течений</td>
<td>1</td>
</tr>
</tbody>
</table>

³Только для буровых судов.
2.2.2 Самоходные ПБУ, совершающие международные рейсы и построенные 31 декабря 2008 г. или после этой даты, должны быть оснащены оборудованием системы дальней идентификации и слежения за судами (СДИ).

Самоходные ПБУ, совершающие международные рейсы, построенные до 31 декабря 2008 г. и предназначенные к плаванию в морских районах А1 и А2 или в морских районах А1, А2 и А3, должны быть оснащены оборудованием СДИ не позднее первого освидетельствования радиооборудования после 31 декабря 2008 г. Самоходные ПБУ, совершающие международные рейсы, построенные до 31 декабря 2008 г. и предназначенные к плаванию в морских районах А1, А2, А3 и А4, должны быть оснащены оборудованием СДИ не позднее первого освидетельствования радиооборудования после 1 июля 2009 г. Однако в том случае, если такие ПБУ совершают рейсы в морских районах А1, А2 и А3, оборудование СДИ должно быть установлено на них не позднее первого освидетельствования радиооборудования после 31 декабря 2008 г.

ПБУ, независимо от даты их постройки, оборудованные аппаратурай универсальной автоматической идентификационной системы и предназначенные к плаванию исключительно в пределах морского района А1, освобождаются от оснащения оборудованием СДИ.

3 РАЗМЕЩЕНИЕ НАВИГАЦИОННОГО ОБОРУДОВАНИЯ

3.1 Все навигационные приборы, указанные в табл. 2.2.1, должны быть установлены в посту управления. Все отклонения от указанных требований, вызванные особенностями ПБУ/МСП, являются предметом специального рассмотрения Регистром.

Навигационное оборудование, работа которого обеспечивается электрической энергией, не должно устанавливаться во взрывоопасных помещениях и пространствах, если оно не имеет соответствующего искробезопасного исполнения.
ЧАСТЬ V. ОБОРУДОВАНИЕ ПО ПРЕДОТВРАЩЕНИЮ ЗАГРЯЗНЕНИЯ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

1.1.1 Требования настоящей части распространяются на ПБУ и МСП в постройке.

1.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

1.2.1 В настоящей части приняты следующие определения.

Вредное вещество — любое вещество, которое при попадании в море способно создать опасность для здоровья людей, причинить ущерб живым ресурсам, морской флоре и фауне, ухудшить условия отдыха или помешать другому правомерному использованию моря.

Сброс — любой сброс с судна вредных веществ или стоков, содержащих такие вещества, какими бы причинами он не вызывался, включая любую утечку, слив, удаление, разлив, протекание, откачку, выделение или опорожнение.

Сбросом не считается сброс в значении, предусмотренном Конвенцией по предотвращению загрязнения моря сбросами отходов и других материалов, 1972 г., а именно:

любое преднамеренное удаление в море отходов или других материалов с судов, самолетов, платформ или искусственно сооруженных в море конструкций;

любое преднамеренное захоронение в море судов, самолетов, платформ или искусственно сооруженных в море конструкций;

выброс вредных веществ, происходящих неосущественно вследствие разводки, разработки и связанных с ними процессов обработки в море минеральных ресурсов морского дна;

выброс вредных веществ для проведения правомерных научных исследований по уменьшению или ограничению загрязнения.

Судно — эксплуатируемое в морской среде плавучее средство любого типа, включая суда на подводных крыльях, на воздушной подушке, подводные суда, а также плавучие и стационарные буровые установки и платформы.

1.3 ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ

1.3.1 До начала постройки судна Регистру должна быть представлена на рассмотрение и одобрение проектная техническая документация, содержащая достаточный объем сведений, подтверждающих, что требования Правил, относящихся к данной ПБУ/МСП, выполнены.

1.3.2 В состав технической документации должны входить:

.1 общесудовая техническая спецификация (штамп об одобрении не ставится) и пояснительная записка о выполнении требований МАРПОЛ 73/78;

.2 схема расположения оборудования и устройств по предотвращению загрязнения с судов;

.3 расчет необходимой вместимости сборных и других танков и цистерн для нефтяных остатков, образующихся при сепарации топлива и масла, нефтесодержащих и сточных вод, устройств для сбора мусора и схема их размещения на судне (штамп об одобрении не ставится);

.4 схемы трубопроводов.

2 ТРЕБОВАНИЯ К ОБОРУДОВАНИЮ И УСТРОЙСТВАМ ПО ПРЕДОТВРАЩЕНИЮ ЗАГРЯЗНЕНИЯ НЕФТЬЮ

2.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

2.1.1 Требования настоящего раздела распространяются на конструкцию ПБУ/МСП, устройства и системы, предназначенные для предотвращения загрязнения нефтью.

2.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

2.2.1 В настоящем разделе приняты следующие определения.

Нефть — нефть в любом виде, включая сырую, жидкое топливо, нефтяные остатки, нефтяные осадки и нефтепродукты.
Часть V. Оборудование по предотвращению загрязнения

Нефтеносердающая смесь — смесь с любым содержанием нефти.
Нефтесодержащие отходы — нефтяной шлам и нефтесодержащие льяльные воды.
Нефтяные остатки — отсепарированный шлам, дренаж и утечка нефти, отработанное масло.
Нефтяные осадки — часть нефти, которая в силу своей консистенции не поддаётся обычной откачке и обработке и требует особых приемов или приспособлений для ее удаления с судна.
Отработанное масло — отработанное смазочное масло, масло из цистерн гидравлики или другая жидкость на углеводородной основе, которая более не пригодна для использования в механизмах вследствие износа и загрязнения.
Отсепарированный шлам — шлам, образовавшийся вследствие перфурации топлива и смазочного масла.
Сигнализатор на 15 млн−1 — прибор, сигнализирующий о содержании нефти в сбросе более 15 млн−1.
Танк для льяльных вод — танк для сбора и накопления нефтеносердающих льяльных вод.
Сепаратор на 15 млн−1 — любая комбинация из сепаратора, фильра или коалесцира, или также единая установка, спроектированная на производство сброса с содержанием нефти не более 15 млн−1.
Шламовые танки — танки для накопления отсепарированного шлама, танки для накопления дренажа и утечек нефти, танки для накопления отработанных масел.

2.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

2.3.1 Общие положения о порядке технического наблюдения за оборудованием и устройствами по предотвращению загрязнения нефтью, их изготовлением и освидетельствованием, а также требования к технической документации, предъявляемой на рассмотрение Регистру, и указания о документах, выдаваемых Регистром на это оборудование и устройства, изложены в Общих положениях о классификационной и иной деятельности.

2.3.2 Наблюдению Регистра при изготовлении подлежат:
.1 сепараторы на 15 млн−1;
.2 сигнализаторы;
.3 сливное соединение для сдачи льяльных вод;
.4 система перекачки, сдачи и сброса нефтесодержащих вод.

2.3.3 До начала изготовления Регистру должна быть представлена на рассмотрение и одобрение следующая техническая документация.

2.3.3.1 На фильтрующее оборудование:
.1 техническое описание и принцип работы, инструкция по эксплуатации и техническому наблюдению (штамп об одобрении не ставится);
.2 чертежи общего вида с разрезами (конструкция сепаратора, фильтра, основные размеры, применяемые материалы и покрытия);
.3 сборочные чертежи насосов и других устройств, входящих в сепараторы на 15 млн−1;
.4 чертежи сварных узлов (корпусов, фундаментной рамы и других деталей), содержащие данные по сварке;
.5 схемы обслуживающих систем в пределах сепараторов на 15 млн−1;
.6 принципиальная электрическая схема установки, схема управления, регулирования, контроля, сигнализации и защиты;
.7 программа испытаний головного и серийного образцов;
.8 перечень ответственных деталей с указанием механических характеристик материала и пробного гидравлического давления;
.9 номенклатура запасных частей.

2.3.3.2 На сигнализаторы:
.1 техническое описание и принцип работы, инструкция по эксплуатации и техническому обслуживанию (штамп об одобрении не ставится);
.2 чертежи общего вида;
.3 спецификация с указанием применяемых материалов и комплектующих изделий;
.4 принципиальная и функциональная схемы;
.5 чертежи арматуры для автоматического прекращения сброса (если она имеется);
.6 программа испытаний головного и серийного образцов;
.7 номенклатура запасных частей.

2.3.3.3 На сливное соединение для сдачи льяльных вод:
.1 сборочные чертежи сварного соединения с указанием материалов и пробного гидравлического давления;
.2.3.3.4 На системы трубопроводов нефтесодержащих вод и нефтяных остатков:
.1 принципиальная схема.

2.4 ИСПЫТАНИЯ В ДЕЙСТВИИ

2.4.1 Оборудование, устройства и приборы после окончания сборки регулировки и обкатки, но до установки их на судно, должны быть испытаны на стенде по программе, одобренной Регистром.
Правила классификации, постройки и оборудования ПБУ/МСП

В отдельных случаях, по согласованию с Регистром, испытания на стенде могут быть заменены испытаниями на судне.

2.4.2 Для возможности проверки работы оборудования, указанного в 2.6, 2.7 и 2.8, при закрытом бортовом сливном клапане на участке сливного трубопровода между этим клапаном и устройством автоматического прекращения сброса должен быть предусмотрен отвод с клапаном для слива воды обратно в льяла или сборный танк нефтесодержащих вод.

2.5 ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.5.1 Материалы, применяемые для изготовления оборудования и устройств, должны удовлетворять соответствующим требованиям части XII «Материалы», а применение сварки при изготовлении оборудования и устройств — части XIII «Сварка» Правил ПБУ/МСП.

2.5.2 Детали оборудования и устройств, соприкасающиеся со средой, вызывающей коррозию, должны быть изготовлены из антикоррозионного материала или иметь антикоррозионные покрытия.

2.5.3 Системы автоматического и дистанционного управления и измерения, а также входящие в них устройства аварийно-предупредительной сигнализации, защиты, индикации и регистрации должны удовлетворять требованиям части XIV «Автоматизация» Правил ПБУ/МСП.

2.5.4 Системы и трубопроводы оборудования и устройств должны удовлетворять соответствующим требованиям части VIII «Системы и трубопроводы» Правил ПБУ/МСП.

2.5.5 Электрическое оборудование механизмов, устройств должны удовлетворять требованиям части X «Электрическое оборудование» Правил ПБУ/МСП.

2.5.6 Насосы, перекачивающие нефтесодержащую смесь, должны удовлетворять требованиям части VII «Механические установки и механизмы Правил ПБУ/МСП.

2.5.7 Корпуса сепараторов на 15 млн-1, находящиеся под давлением, подпадающие под требования части IX «Котлы, теплообменные аппараты и сосуды под давлением» Правил ПБУ/МСП, должны удовлетворять требованиям указанных Правил в отношении материалов и прочих размеров.

2.6 ТРЕБОВАНИЯ К СЕПАРАТОРАМ ЛЫЯЛЬНЫХ ВОД НА 15 МЛН-1

2.6.1 Сепараторы льяльных вод на 15 млн-1 (сепараторы) должны иметь одобренную конструкцию в соответствии с положениями применимых Резолюций ИМО (A.393(X)/МЕРС.60(33)/МЕРС.107(49)) и обеспечивать такую фильтрующую способность, чтобы после прохождения через это оборудование любой нефтесодержащей смеси, сбрасываемой в море, содержание нефти в ней не превышало 15 миллионных долей (15 млн-1).

2.6.2 Конструкция сепараторов должна обеспечивать надежную работу в условиях окружающей среды в соответствии с 2.2 части VII и 2.1 части X Правил классификации, постройки и оборудования ПБУ/МСП.

2.6.3 Сепараторы, работающие при избыточном давлении, должны быть снабжены предохранительными устройствами. Предохранительное устройство должно быть отрегулировано на давление \(P_{ореп} = 1,1p \), где \(p \) — рабочее давление.

2.6.4 Сепараторы должны иметь надежную конструцию. Узлы и детали, подлежащие периодическому контролю и обслуживанию, должны быть легко доступны для персонала. Подача насоса сепаратора должна соответствовать пропускной способности сепаратора. В любом случае подача насоса сепаратора не должна превышать более чем в 1,1 раз пропускную способность сепаратора.

2.6.5 Должна быть предусмотрена возможность осушения сепаратора.

2.6.6 Если в конструкции сепаратора предусмотрено подогрев нефтесодержащей смеси, он может осуществляться при помощи паровых или водяных змеевиков. Электроподогрев допускается при условии выполнения требований 15.3 части X «Электрическое оборудование» настоящих Правил.

2.6.7 Сепаратор должен быть сконструирован для работы в автоматическом режиме. Однако должны быть предусмотрены средства, исключающие сброс в море в случае возникновения неисправностей.

Для ввода в работу сепаратора: не должно возникать необходимости в регулировке клапанов или другого оборудования. Оборудование должно работать без наблюдения, по крайней мере, в течение 24 ч.

2.6.8 Изменение среды, подаваемой к сепаратору (от нефтесодержащей воды к нефти, от нефтесодержащей воды к водяной эмульсии или от нефти и/или воды до прохвата воздуха), не должно приводить к сливу за борт любой смеси с нефтесодержанием более 15 млн-1.

2.6.9 Сепараторы, насосы и другое оборудование должны быть оснащены приборами для контроля
давления, температуры и уровня, а также системой аварийно-предупредительной сигнализации и защиты.

2.6.10 Если в состав сепаратора на 15 млн-1 входит сепаратор центробежного типа, он должен отвечать требованиям 3 части VII «Механические установки и механизмы» Правил ПБУ/МСП.

2.6.11 Сепараторы, насосы и другое оборудование в местах возможной утечки нефтеосадков должны быть снабжены устройствами для сбора утечек, удовлетворяющими требованиям 13.5 части VIII «Системы и трубопроводы» Правил классификации и постройки морских судов.

2.6.12 На вертикальном участке трубопровода слива очищенной воды после сепаратора должно быть предусмотрено устройство для отбора пробы как можно ближе к выпускному отверстию сепаратора. Конструкция устройства для отбора проб должна соответствовать конструкции, указанной на рис. 2.6.12.

2.6.16 Трубопроводы слива очищенной воды после сепаратора не должны иметь соединений с трубопроводами системы льяльных вод и балластной системы, за исключением отвода, указанного в 2.6.15, и трубопровода репризации после автоматического запорного устройства. Средства репризации нефтеосадок вод должны исключать любое байпасирование сепаратора.

2.6.17 Приемные трубопроводы сепаратора не должны иметь соединений с трубопроводами систем забортной или пресной воды. Трубопроводы сепаратора могут иметь соединения с вышеуказанными трубопроводами для целей промывки в соответствии с одобренной конструкцией сепаратора.

2.7 ТРЕБОВАНИЯ К СИГНАЛИЗАТОРАМ НА 15 МЛН-1

2.7.1 Сигнализаторы на 15 млн-1 (сигнализаторы) должны иметь одобренную конструкцию в соответствии с положениями применимых Резолюций ИМО (A.393(X)/МЕРС.60(33)/МЕРС.107(49)).

2.7.2 Сигнализатор должен быть стойким к коррозии в условиях морской среды. В конструкции сигнализатора не должны содержаться или применяться какие-либо опасные вещества, если только не будут приняты меры, одобренные Регистром, для устранения опасности при его эксплуатации.

2.7.3 Сигнализатор, предназначенный для установки в местах возможного наличия воспламеняющихся воздушных смесей, должен отвечать требованиям 2.9 части X «Электрическое оборудование» Правил ПБУ/МСП. Любые движущиеся части сигнализатора, установленного в опасной зоне, должны иметь конструкцию, предотвращающую возможность образования статического электричества.

2.7.4 Сигнализатор должен надежно работать в климатических условиях и при механических воздействиях в соответствии с 2.1 части X «Электрическое оборудование» Правил ПБУ/МСП.

2.7.5 Время срабатывания сигнализатора, то есть время, пропущенное между моментом изменения состава пробы воды, поступаемой в сигнализатор, и моментом подачи сигнала в автоматическую систему управления, не должно превышать 5 с.

2.7.6 Сигнализатор должен быть оснащен электрическим/электронным устройством, предварительно настроенным изготовителем на срабативание, когда содержание нефти в стоке превышает 15 млн-1 с одновременной подачей команда на управление автоматическим запорным устройством для прекращения сброса воды на борт. Это устройство также должно автоматически срабатывать каждый раз, когда сигнализатор выйдет из строя, когда будет прогрев

Рис. 2.6.12
Устройство для отбора пробы из напорных трубопроводов
устройства или когда устройство обесточено в силу других причин.

2.7.7 Рекомендуется иметь на борту простые средства для проверки отклонений показаний прибора и способности переустановки прибора на «нуль».

2.7.8 Сигнализатор должен записывать дату, время работы, состояние сигнализации, а также рабочее состояние сепаратора. Записывающее устройство должно также хранить данные, по меньшей мере, в течение восьми месяцев и должно быть способно выводить на экран или распечатывать протокол в официальных проверок в той мере, в которой это требуется. В случае если производится замена сигнализатора, следует принять меры с целью обеспечения сохранности записанных данных в течение 18 месяцев.

2.7.9 В целях предотвращения преднамеренного изменения настроек сигнализаторы должны быть предусмотрены следующие средства:
 - любое вскрытие сигнализатора, за исключением операций в соответствии с 2.7.7, должно сопровождаться снятием пломбы;
 - сигнализатор должен быть сконструирован так, чтобы сигнализация срабатывала всякий раз, когда идет промывка прибора чистой водой или производится настройка на «нуль».

2.7.10 Точность показаний сигнализаторов должна быть в пределах ±5 млн⁻¹ и проверяться при возобновляющих освидетельствованиях в соответствии с инструкциями изготовителей. Акт калибровки сигнализатора, подтверждающий дату его последней проверки, должен быть на борту ПБУ/МСП. Калибровка сигнализаторов может быть выполнена представителями изготовителей или уполномоченными изготовителей.

2.7.11 Сигнализатор должен быть смонтирован на ПБУ/МСП относительно сепаратора таким образом, чтобы общее время срабатывания (включая время срабатывания самого сигнализатора) в промежутке времени между началом слива воды с нефтесодержанием более 15 млн⁻¹ из сепаратора и прекращением слива воды за борт при срабатывании автоматического запорного устройства было бы несолько мальо, насколько это возможно. В любом случае это время не должно превышать 20 с.

Смонтированное на ПБУ/МСП устройство для отвода нефтесодержащей воды из сливного трубопровода сепаратора к сигнализатору должно обеспечивать поток воды с необходимым давлением и расходом с целью обеспечения представительности отбираемых проб.

2.8 УСТРОЙСТВО АВТОМАТИЧЕСКОГО ПРЕКРАЩЕНИЯ СБРОСА

2.8.1 Устройство автоматического прекращения сброса должно обеспечивать прекращение сброса нефтесодержащей воды по сигналу сигнализатора на 15 млн⁻¹, указанного в 2.7.

2.8.2 Устройство автоматического прекращения сброса должно состоять из системы клапанов, установленных на трубопроводе слива очищенной воды после сепаратора на 15 млн⁻¹. В случае превышения нефтесодержания в сбросе более 15 млн⁻¹ устройство автоматически перепускает нефтесодержащую воду в судовые льяла или сборные танки льяльных вод, предотвращая сброс за борт.

2.9 СИСТЕМЫ ПЕРЕКАЧКИ, СДАЧИ И СБРОСА НЕФТЕСОДЕРЖАЩИХ СМЕСЕЙ

2.9.1 Устройство систем, расположение трубопроводов и гидравлические испытания арматуры и трубопроводов систем перекачки, сдачи и сброса нефтесодержащих вод и нефтеостатков должны удовлетворять требованиям части VIII «Системы и трубопроводы» Правил ПБУ/МСП.

2.9.2 Каждая ПБУ/МСП должна быть оборудована трубопроводом для сдачи льяльных вод и нефтеостатков из машинных помещений в приемные сооружения в соответствии с 2.9.1. Трубопровод должен быть выведен на оба борта.

В обоснованных случаях по согласованию с Регистром трубопровод может быть выведен на один борт.

Выходные патрубки должны устанавливаться в удобных для присоединения шлангов местах, оснащаться сливными соединениями с фланцами в соответствии с рис. 2.9.2 и иметь отличительные планки. Выходные патрубки должны быть оборудованы глухими фланцами.

В районе расположения выходных патрубков должно быть оборудовано место наблюдения и дистанционного отключения откачивающих средств или предусмотрена эффективная связь между местом наблюдения за сбросом и местом управления откачивающими средствами.
Часть V. Оборудование по предотвращению загрязнения

471

Примечание: Фланец предназначен для труб с внутренним диаметром до 125 мм, изготавливается из стали или эквивалентного материала с плоской торцевой поверхностью. Этот фланец вместе с прокладкой из нефтестойкого материала рассчитывается на рабочее давление 0,6 МПа. Соединение осуществляется с помощью шести болтов требуемой длины, диаметром 20 мм.

2.10 СБОРНЫЕ ТАНКИ

2.10.1 Танки для сбора льяльных вод.
2.10.1.1 Любая ПБУ/МСП должна быть оборудована танком/танками для сбора льяльных вод машинных помещений, расчет вместимости которых должен быть представлен Регистру на рассмотрение. Вместимость вышеуказанных сборных танков может быть определена по формулам, приведенным в табл. 2.10.1.1.

Таблица 2.10.1.1

<table>
<thead>
<tr>
<th>P, кВт</th>
<th>Вместимость танка, м³</th>
</tr>
</thead>
<tbody>
<tr>
<td>ДО 1000</td>
<td>1,5</td>
</tr>
<tr>
<td>1000 – 20000</td>
<td>1,5 + (P – 1000)/1500</td>
</tr>
<tr>
<td>Свыше 20000</td>
<td>14,2 + 0,6(P – 20000)/1500</td>
</tr>
</tbody>
</table>

где P — мощность главного двигателя ПБУ/бурового судна или суммарная мощность приводных двигателей основного источника электрической энергии МСП.

2.10.1.2 ПБУ/МСП с механическими установками, предназначенными для работы на тяжелом топливе с относительной плотностью выше 0,94 при 15 °C, должны быть снабжены танком (танками) для сбора и накопления льяльных вод с возможностью предварительного подогрева нефтной смеси перед сбросом содержимого танка (танков) через сепаратор на 15 млн⁻¹.

2.10.2 Танки для сбора нефтяных остатков.
2.10.2.1 Любая ПБУ/МСП должна быть оборудована танками для сбора нефтяных остатков (шлама), расчет вместимости которых должен быть представлен Регистру на рассмотрение.

Минимальная вместимость V₁ вышеуказанных сборных танков должна рассчитываться следующим образом:

V₁ = K₁CD,

где K₁ — коэффициент, равный:

0,015 — для ПБУ/МСП, на которых тяжелое топливо для главных двигателей или двигателей основного источника энергии подвергается пурifierации перед применением;

0,005 — для ПБУ/МСП, на которых дизельное или тяжелое топливо не требует пурifierации перед употреблением;

C — суточный расход топлива, м³;

D — максимальный промежуток времени между сдачами нефтеоцистков в приемные устройства судов обеспечения, сут.

2.10.2.2 Система трубопроводов сборного танка или танков, упомянутых в 2.10.2.1, должна быть снабжена насосом, предназначенным для сброса их содержимого в приемные устройства судов обеспечения и удовлетворяющим требованиям 2.10.2.10. Пуск и остановка насоса должны производиться согласно 2.9.2.

2.10.2.3 Напорные трубопроводы насосов системы, указанной в 2.10.2.2, не должны соединяться с трубопроводом льяльных вод, кроме общего трубопровода, ведущего к стандартным сливным соединениям, указанным в 2.9.2.

Однако могут предусматриваться устройства для слива отстоявшейся воды из шламовых танков последовательно самозакрывающихся клапанов с ручным управлением или аналогичными устройствами в сборный танк льяльных вод (при условии расположения шламовых танков над танком льяльных вод).

2.10.2.4 Трубопроводы, ведущие к танкам нефтяных остатков и отходящих от них, не должны иметь прямого соединения с бортовым отсеком, за исключением общего трубопровода, ведущего к стандартным сливным соединениям в соответствии с 2.9.2.

2.10.2.5 Танки для нефтяных остатков должны иметь конструкцию и устройство, облегчающие их очистку и сдачу остатков в приемные устройства.
Правила классификации, постройки и оборудования ПБУ/МСП

2.10.2.6 Отдельный танк (танки) для накопления дренажа и утечек нефти должен иметь вместимость, указанную в табл. 2.10.2.6. Накопившаяся нефть в результате работы сепаратора на 15 млн-1 также может быть сброшена в этот танк.

Таблица 2.10.2.6

<table>
<thead>
<tr>
<th>P, кВт</th>
<th>Вместимость танка, м³</th>
</tr>
</thead>
<tbody>
<tr>
<td>До 10000</td>
<td>$20 \times D \times P / 10^6$</td>
</tr>
<tr>
<td>Свыше 10000</td>
<td>$D [0,2 + 1 (P - 10000) / 10^6]$</td>
</tr>
</tbody>
</table>

где P — мощность главного двигателя ПБУ/бурового судна или суммарная мощность приводных двигателей основного источника электрической энергии МСП;
D — максимальный промежуток времени между сдачами нефтеостатков в приемные устройства судов обеспечения, сут.

2.10.2.7 Вместимость танка (танков) для накопления отработанных масел на ПБУ/МСП определяется из расчета 1,5 м³ на каждые 1000 кВт суммарной мощности главных и вспомогательных двигателей.

2.10.2.8 Танк для накопления шлама должен быть расположен непосредственно под сепаратором тяжелого топлива. Если это невозможно, тогда танк для накопления шлама должен быть расположен вблизи сепаратора тяжелого топлива таким образом, чтобы ведущий в танк сливной трубопровод имел максимально возможный уклон, а также был по возможности прямым или имел колена большого радиуса.

2.10.2.9 Танк для накопления шлама должен быть сконструирован таким образом, чтобы нефтяной шлам имел свободный доступ к всасывающей магистрали. Если это невозможно, отверстие всасывающей магистрали или погружной насос должны быть расположены так, чтобы путь перемещения нефтяного шлама до всасывающего отверстия был как можно короче.

2.10.2.10 Насос, пригодный для перекачки высоковязкого нефтяного шлама, должен быть самовсасывающим, иметь средства для предотвращения работы в режиме сухого трения и иметь давление нагнетания не менее 0,4 МПа.

2.11 ТЕХНОЛОГИЧЕСКОЕ ОБОРУДОВАНИЕ

2.11.1 Технологическое оборудование ПБУ/МСП, используемое для бурения с целью разведки или добычи подземных ресурсов морского дна, не подлежит наблюдению Регистра.
2.12 ЗАЩИТА ТОПЛИВНЫХ ТАНКОВ

2.12.1 Новые самоподъемные ПБУ с общим объемом жидкого топлива 600 м³ и более, которые поставлены 1 августа 2010 года или после этой даты (как они определены в правиле 1.28.9 Приложения I к МАРПОЛ 73/78), должны иметь защиту топливных танков в соответствии с правилом 12А Приложения I к МАРПОЛ 73/78, за исключением требований пункта 6 этого правила (касательно расположения топливных танков над теоретической линией днищевой обшивки). Однако при выполнении любого рейса от места эксплуатации для любой цели междуудные топливные танки должны быть порожными, если они не отвечают требованиям пункта 6 этого правила.

3 ТРЕБОВАНИЯ К ОБОРУДОВАНИЮ И УСТРОЙСТВАМ ПО ПРЕДОТВРАЩЕНИЮ ЗАГРЯЗНЕНИЯ СТОЧНЫМИ ВОДАМИ

3.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

3.1.1 Требования настоящего раздела распространяются на оборудование и устройства ПБУ/МСП, предназначенные для предотвращения загрязнения сточными водами.

3.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

3.2.1 В настоящем разделе приняты следующие определения.

Сборная цистерна — цистерна для сбора и хранения необработанных сточных вод, активного ила и шлама из установки для обработки сточных вод.

Сточные воды:
стоки и прочие отходы из всех типов туалетов, писсуаров и унитазов;
стоки из раковин, ванн и шпигатов, находящихся в медицинских помещениях (амбулатории, лазареты и т. п.);
стоки из помещений, в которых содержатся животные;
прочие стоки, если они смешаны с перечисленными выше стоками.

Установка для обработки сточных вод — установка, в которой сточные воды подвергаются очистке и обеззараживанию.

Хозяйственно-бытовые воды:
стоки из умывальников, душевых, прачечных, ванн и шпигатов;
стоки от мойок и оборудования камбуза и других помещений пиццеблока.

Число людей — экипаж, пассажиры и специальный персонал по числу мест для размещения их на судне.

3.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

3.3.1 Общие положения о порядке технического наблюдения за оборудованием и устройствами, предназначенными для обработки сточных вод, их изготовлением и освидетельствованием, а также требования к технической документации, представляемой на рассмотрение Регистру по судну в целом, и указания о документах, выдаваемых Регистром на суда, изложены в Общих положениях о классификационной и иной деятельности.

3.3.2 При изготовлении наблюдению Регистра подлежат:
.1 установки для обработки сточных вод, включая относящиеся к ним трубопроводы, насосы, электрическое оборудование, дозирующие устройства, устройства для обеззараживания, устройства для управления, регулирования и контроля;
.2 сборные цистерны, включая относящиеся к ним оборудование, устройства для управления, регулирования и контроля.

3.3.3 При монтаже на ПБУ/МСП наблюдению Регистра подлежат:
.1 установки для обработки сточных вод;
.2 сборные цистерны;
.3 насосы и сточные трубопроводы.

3.3.4 До начала изготовления Регистру должна быть представлена на рассмотрение следующая документация на установки:
.1 техническое описание и принцип работы (штамп об одобрении не ставится);
.2 чертежи общего вида с разрезами (конструкция установки, основные размеры, применимые материалы и покрытия);
.3 принципиальная электрическая схема;
Правила классификации, постройки и оборудования ПБУ/МСП

3.4 УСТАНОВКИ ДЛЯ ОБРАБОТКИ СТОЧНЫХ ВОД И СБОРНЫЕ ЦИСТЕРНЫ

3.4.1 Общие требования.
3.4.1.1 На ПБУ/МСП должен быть установлен один из следующих видов оборудования:
.1 установки для обработки сточных вод и сборная цистерна. Сборная цистерна может быть одна и может использоваться для сбора необработанных сточных вод, активного ила или шлама из установки для обработки сточных вод;
.2 сборные цистерны.
3.4.1.2 Трубопроводы, электрическое оборудование и устройства автоматизации должны отвечать требованиям части VIII «Системы и трубопроводы», части X «Электрическое оборудование» и части XIV «Автоматизация» Правил ПБУ/МСП.

3.4.2 Сборные цистерны.
3.4.2.1 Регистру должен быть представлен согласованный с заказчиком расчет суммарной вместимости сборных цистерн с учетом предполагаемого района и режима эксплуатации судна и числа людей на борту.
3.4.2.2 Сборные цистерны могут быть встроенными в корпус или вкладными.
Конструктивные элементы сборных цистерн должны отвечать требованиям части II «Корпус» Правил ПБУ/МСП.
3.4.2.3 Сборные цистерны должны быть изготовлены из стали. Внутренняя поверхность цистерн должна быть гладкой (за исключением встроенных цистерн), защищенной от воздействия среды, с уклоном днища в сторону сливных труб. Сборные цистерны должны иметь горловины, а также должны быть оборудованы устройствами для промывки водой и пропаривания. Рекомендуется устройство для изучивания сточных вод.
3.4.2.4 Сборные цистерны должны быть испытаны пробным давлением, равным 1,5 давления водяного столба, измеренного от днища цистерны до нижнего санитарного прибора, не имеющего запора на отливном трубопроводе, но не ниже 25 кПа.
3.4.3 Установки для обработки сточных вод.
3.4.3.1 Пропускная способность установки для обработки сточных вод, л/сут, должна определяться по формуле:
\[
Q = nq, \tag{3.4.3.1}
\]
где \(n \) — число людей;
\(q \) — суточный расход сточных вод на одного человека, л (принимается по действующим нормам).
3.4.3.2 Конструкция электрических устройств для управления, сигнализации и защиты установок для обработки сточных вод и элементы, применяемые для изготовления этих устройств, должны быть пригодны для длительной работы в условиях вибрации с частотой:
от 2 до 13,2 Гц — при амплитуде \(\pm 1 \text{ мм} \);
от 13,2 до 80 Гц — с амплитудой ускорения \(\pm 0,1g \).
3.4.3.3 Установка для обработки сточных вод, все относящиеся к ней насосы и другое комплектирующее оборудование, трубопроводы и арматура, согласованные со сточными водами, должны быть надежно защищены от их агрессивного воздействия.
3.4.3.4 Установки для обработки сточных вод должны обеспечивать степень очистки согласно действующим международным нормам.
3.4.3.5 Установки для обработки сточных вод должны быть испытаны на плотность в соответствии с 3.4.2.5.
3.4.3.6 Установки для обработки сточных вод должны быть испытаны на заводе-изготовителе или на судне по одобренной Регистром программе.
3.4.3.7 Установку для обработки сточных вод допускается размещать в машинных помещениях или в отдельных помещениях с искусственной вытяжной вентиляцией.
3.4.3.8 Должна быть предусмотрена эффективная система промывки и обеззараживания установки, обслуживающих ее механизмов и трубопроводов для выполнения работ, связанных с проверкой или ремонтом установки.
3.4.3.9 Трубопроводы сточных вод от шпигатов судовых помещений к установкам для обработки сточных вод и сборным цистернам должны быть оснащены устройствами, исключающими проникновение запаха от необработанных сточных вод в судовые помещения.
Часть V. Оборудование по предотвращению загрязнения

3.4.3.10 Конструкция установок сточных вод должна соответствовать требованиям Резолюций MEPC.2(VI) или Резолюции MEPC.159(55) (что применимо). Для монтажа на ПБУ/МСП допускаются установки сточных вод, имеющие свидетельства о типовом одобрении в соответствии с вышеуказанными Резолюциями.

3.5 ОБОРУДОВАНИЕ ДЛЯ УДАЛЕНИЯ СТОЧНЫХ ВОД

3.5.1 Для удаления сточных вод из сборных цистерн следует предусмотреть два насоса.

Взамен одного из насосов допускается установка эжектора.

3.5.2 Каждая ПБУ/МСП должна быть оборудована трубопроводом для сдачи сточных вод в приемные устройства.

Выходные патрубки должны устанавливаться в удобных для присоединения шлангов местах и должны быть оснащены сливыми соединениями с фланцами в соответствии с рис. 3.5.2, а также должны иметь отличительные планки. Выходные патрубки должны быть оборудованы глухими фланцами.

Для бурового судна трубопровод должен быть выведен на оба борта.

Пуск и остановка откачивающих средств должны производиться вручную. В районе расположения выходных патрубков должно быть оборудовано место наблюдения и дистанционного отключения откачивающих средств или предусмотрена эффективная связь (телефонная или радио) между местом наблюдения и местом управления откачивающими средствами.

Рис. 3.5.2

П р и м е ч а н и е: Фланец предназначен для труб с внутренним диаметром до 100 мм, изготавливается из стали или эквивалентного материала с плоской торцевой поверхностью. Этот фланец вместе с соответствующей уплотнительной прокладкой рассчитывается на рабочее давление 0,6 МПа. Для судов, имеющих теоретическую высоту борта 5 м или менее, внутренний диаметр сливающего соединения может быть 38 мм. Соединение осуществляется с помощью четырех болтов требуемой длины, диаметром 16 мм.

3.6 КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ УСТРОЙСТВА

3.6.1 Сборные цистерны должны быть оборудованы световой и звуковой сигнализацией, срабатывающей при заполнении их на 80%.

3.6.2 Установка для обработки сточных вод должна быть оборудована устройством для отбора проб очищенных и обеззараженных вод.
4 ТРЕБОВАНИЯ К ОБОРУДОВАНИЮ И УСТРОЙСТВАМ ПО ПРЕДОТВРАЩЕНИЮ ЗАГРЯЗНЕНИЯ МУСОРОМ

4.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

4.1.1 Требования настоящего раздела распространяются на оборудование и устройства по предотвращению загрязнения мусором.

4.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

4.2.1 В настоящем разделе приняты следующие определения.

Мусор — все виды пищевых, бытовых и эксплуатационных отходов (исключая свежую рыбу и ее остатки), которые образуются в процессе нормальной эксплуатации судна и подлежат постоянному или периодическому удалению, за исключением веществ, определение или перечень которых приводится в других частях Правил.

Установка для сжигания мусора (инсинератор) — установка для уменьшения объема и массы мусора посредством сжигания.

Устройство для обработки мусора — устройство для измельчения и уменьшения объема мусора.

Устройство для сбора мусора — емкости и другие устройства для сбора и хранения мусора.

Число людей — экипаж, пассажиры и специальный персонал по числу мест для размещения на судне.

4.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

4.3.1 Общие положения о порядке технического наблюдения за оборудованием и устройствами, предназначенными для обработки мусора, их изготовлением и освидетельствованием, а также требования к технической документации, представляемой на рассмотрение Регистру, приведены в Общих положениях о классификационной и иной деятельности.

4.3.2 Техническому наблюдению Регистра при изготовлении подлежат инсинераторы и устройства для обработки мусора, включая относящиеся к ним электрическое оборудование, устройства для управления, регулирования и контроля.

4.3.3 При монтаже на судне техническому наблюдению Регистра подлежат инсинераторы, устройства для обработки мусора и устройства для сбора мусора.

4.3.4 До начала постройки Регистру должна быть представлена на рассмотрение следующая документация.

4.3.4.1 На инсинераторы:

.1 техническое описание и принцип работы (шифры об одобрении не ставятся);

.2 чертежи общего вида с разрезами (конструкция, основные размеры, материалы и покрытие);

.3 чертежи форсуночных устройств;

.4 чертежи загрузочного устройства;

.5 схема топливной системы в пределах инсинератора;

.6 принципиальная электрическая схема;

.7 схема управления, регулирования, контроля, сигнализации и защиты;

.8 программа испытаний головного и серийного образцов.

4.3.4.2 На устройства для обработки и сброса мусора:

.1 техническое описание и принцип работы (шифры об одобрении не ставятся);

.2 чертежи общего вида с разрезами (конструкция, основные размеры, материалы и покрытие);

.3 принципиальная электрическая схема;

.4 программа испытаний головного и серийного образцов.

4.3.4.3 На съемные устройства для сбора мусора:

.1 описание установки съемных устройств на ПБУ/МСП;

.2 расчет суммарной вместимости съемных устройств;

.3 чертежи съемных устройств (конструкция, основные размеры, материал).

4.4 ОБОРУДОВАНИЕ ДЛЯ СБОРА И ОБРАБОТКИ МУСОРА И ИНСИНЕРАТОРЫ

4.4.1 Общие требования.

4.4.1.1 На каждой ПБУ/МСП должны быть предусмотрены устройства для сбора и хранения мусора. В зависимости от таких факторов, как условия и район эксплуатации ПБУ/МСП, численность обслуживающего персонала и режим работы
Часть V. Оборудование по предотвращению загрязнения

обслуживающих ПБУ/МСП судов, на которые можно сдать накопившийся мусор, ПБУ/МСП могут оборудоваться инсинераторами, прессователями или другими устройствами для переработки мусора.

4.4.1.2 Устройства для обработки мусора и инсинераторы должны отвечать требованиям части VIII «Системы и трубопроводы» и части X «Электрическое оборудование», а устройства для регулирования, регулирования и контроля — требованиям части XIV «Автоматизация» Правил ПБУ/МСП.

4.4.2 Устройства для сбора и хранения мусора.

4.4.2.1 Устройства для хранения мусора могут быть съемными или стационарными.

4.4.2.2 Регистру должен быть представлен согласованный с заказчиком расчет суммарной вместимости устройств для хранения мусора с учётом суточной нормы образования мусора, численности экипажа и интервала времени между сдачами мусора на суда обеспечения.

Если по результатам этого расчета (с учетом уменьшения объёма мусора в прессователе при его наличии) потребуется большое количество устройств для хранения мусора, разместить которые на ПБУ/МСП не представляется возможным, то в этом случае установка инсинератора на ПБУ/МСП целесообразна. По выбору производительности инсинератор Регистру должен быть представлен согласованный с заказчиком расчет.

4.4.2.3 Съемные устройства для хранения мусора должны иметь гладкие внутренние поверхности и крышки, обеспечивающие плотное закрытие отверстий для приема мусора.

4.4.2.4 Стационарные устройства для хранения мусора должны иметь конструкцию, обеспечивающую легкую их разгрузку и очистку.

4.4.2.5 Съемные устройства для хранения мусора должны иметь приспособления для надежного крепления на ПБУ/МСП.

4.4.2.6 Устройства для сбора и хранения мусора должны быть трех категорий: пластмасса и пластмасса, смешанная с мусором, не являющаяся пластмассой; пищевые отходы (которые включают материалы, загрязненные такими отходами); другой мусор (изделия из бумаги, ветошь, стекло, металл, бутылки, а также сепарационные, обшивочные и упаковочные материалы, которые желательно хранить отдельно от других видов этой категории мусора). Эти устройства каждой из трех категорий должны иметь четкую маркировку и различаться по цвету.

4.4.2.7 Устройства для хранения мусора должны размещаться в местах, удобных для сдачи мусора на суда обеспечения. Устройства могут быть установлены на открытой палубе или в вентилируемых помещениях, изолированных от жилых и служебных помещений. Во всех случаях мусор необходимо хранить таким образом, чтобы не возникало угрозы здоровью человека и безопаснос.

4.4.3 Устройства для обработки и сброса мусора в море.

4.4.3.1 Устройства для измельчения мусора должны обеспечивать размельчение его до частиц, не превышающих 25 мм.

4.4.3.2 Устройства для сброса мусора в море должны проходить под палубой переборок и закрываться запирающимися крышками.

4.4.3.3 Устройства для сбора мусора в море должны быть снабжены табличками с точным указанием условий пользования ими.

4.4.3 Инсинераторы.

4.4.4.1 Настоящие требования применяются к инсинераторам мощностью до 1500 кВт.

4.4.4.2 Инсинераторы должны быть спроектированы и изготовлены в соответствии с требованиями Резолюции MERS.76(40) и иметь типовое одобрение (см. 5.4.4.2).

Использование на ПБУ/МСП инсинераторов, не имеющих типового одобрения в соответствии с требованиями вышеуказанной Резолюции, не допускается.

4.4.4.3 Наружные поверхности камеры сгорания должны быть экранированы в такой степени, чтобы обслуживающий персонал в процессе нормальной работы не подвергался воздействию повышенного теплового излучения (с температурой более чем на 20 °С выше температуры окружающего воздуха) или опасности прямого контакта с поверхностями, температура которых превышает 60 °С.

4.4.4.4 Система подачи топлива к форсункам должна предусматривать возможность их отключения из двух мест, одно из которых должно располагаться за пределами помещения, где размещен инсинератор.

4.4.4.5 Газовыпускная система инсинераторов должна отвечать требованиям части VIII «Системы и трубопроводы» Правил ПБУ/МСП.

Если температура точного газов превышает 430 °С, то для изготовления дымовой трубы должен быть применён специальный жаростойкий материал, выдерживающий такие температуры.

4.5 РАЗМЕЩЕНИЕ ОБОРУДОВАНИЯ И УСТРОЙСТВ

4.5.1 Съемные устройства для хранения мусора должны быть установлены на открытой палубе или в изолированных от жилых и служебных помещений местах, имеющих вентиляцию.

4.5.2 Устройства для прессования мусора должны устанавливаться в помещениях, достаточных
Правила классификации, постройки и оборудования ПБУ/МСП

для хранения мусора, подлежащего обработке, и осуществления технологического процесса. Помещения должны примыкать к районам расположения хозяйственно-предприимательских кладовых. Помещения следует оборудовать средствами для обзывка пресной водой, кюветами, пылесосами, достаточной вентиляцией, а также ручными или автоматическими противопожарными средствами.

4.5.3 Инсинераторы могут устанавливаться в машинных или отдельных помещениях.
Расположение инсинераторов на ПБУ/МСП, помещения для инсинераторов и хранения отходов должны соответствовать «Стандартным требованиям к судовым инсинераторам», принятым Резолюцией МЕРС.76(40), а также требованиям части VII «Механические установки и механизмы» Правил ПБУ/МСП.

4.5.4 При размещении инсинератора в отдельном помещении должны быть предусмотрены:
.1 приречно-вытяжная вентиляция, обеспечивающая достаточный приток воздуха, необходимый для работы инсинератора;
.2 автоматическую пожарную сигнализацию в соответствии с частью VI «Противопожарная защита» Правил ПБУ/МСП;
.3 система пожаротушения в соответствии с частью VI «Противопожарная защита» Правил ПБУ/МСП.

5 ТРЕБОВАНИЯ К ОБОРУДОВАНИЮ И УСТРОЙСТВАМ СУДОВ ПО ПРЕДОТВРАЩЕНИЮ ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ

5.1 ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

5.1.1 Требования настоящего раздела распространяются на оборудование и устройства ПБУ/МСП, предназначенные для предотвращения загрязнения атмосферы с судов.

5.2 ОПРЕДЕЛЕНИЯ И ПОЯСНЕНИЯ

5.2.1 В настоящем разделе приняты следующие определения:
Выброс — любой выпуск с ПБУ/МСП в атмосферу или в море веществ, подлежащих контролю на основании настоящей части Правил.
Озоноразрушающие вещества — контролируемые вещества, определенные в пункте 4 статьи 1 Монреальского протокола по веществам, разрушающим озоновый слой, 1987 года и указанные в Приложениях А, В, С или Е к этому Протоколу, которые находятся в силе во время применения или толкования Приложения VI к МАРПОЛ 73/78.
Озоноразрушающие вещества, которые могут быть обнаружены на ПБУ/МСП, включают, не ограничиваясь нижеследующим:
Галон 1211 бромхлордифторэтан,
Галон 1301 бромтрифторэтан,
Галон 2402 1,2-дибром-1,1,2,2-тетрафторэтан (также известен как галон 114B2),
ХФУ-11 трихлордифторэтан,
ХФУ-12 дихлордифторэтан,
ХФУ-113 1,1,2-трихлор-1,2,2-трифторэтан,
ХФУ-114 1,2-диоксил-1,1,2,2-тетрафторэтан,
ХФУ-115 хлорпентафторэтан.
Новые установки в отношении озоноразрушающих веществ — процесс установки на ПБУ/МСП систем, оборудования, включая новые переносные огнетушители, изоляции или других материалов, после 19 мая 2005 г., за исключением ремонта или зарядки ранее установленных систем, оборудования, изоляции или другого материала либо перезарядку переносных огнетушителей.
ПБУ/МСП построенные ПБУ/МСП, кили которых заложены, или которые находятся в подобной стадии постройки.
Подобная стадия постройки — стадия, на которой начато строительство, которое можно сопоставить с определенными ПБУ/МСП, причем масса использованного материала составляет не менее 50 тонн или один процент расчетной массы материалов всех корпусных конструкций, в зависимости от того, что меньше.
Существенное переоборудование в отношении контроля выбросов окислов азота (NOx) — модификация двигателя, при которой:
.1 существующий двигатель заменяется новым, или устанавливается новый двигатель в дополнение к существующему двигателю, или
.2 двигатель подвергается любой существенной модификации как определено в Техническом кодексе контроля выбросов NOx или
.3 максимальная длительная выходная мощность двигателя увеличена более чем на 10 % (по сравнению с периодом до 1 января 2000 г.)
Новый двигатель в отношении контроля выбросов окислов азота (NOx) — двигатель, отгруженный с завода-изготовителя 1 января 2000 г. или после этой даты.
Установки сжигания топлива в отношении систем очистки выхлопных газов для уменьшения выбросов окислов серы (SO_x) — любые двигатели, вспомогательные котлы, газовые турбины или другие установки, в которых сжигается топливо.

Район контроля выбросов SO_x — район, в котором требуется принятие специальных обязательных мер в отношении выбросов SO_x с ПБУ/МСП с целью предотвращения, сокращения и сохранения под контролем загрязнения атмосферы SO_x и его сопутствующего отрицательного воздействия на сушу и морские районы.

Сжигание на судне — сжигание отходов и других материалов на ПБУ/МСП, если такие отходы или другие материалы образовались в ходе обычной эксплуатации этих ПБУ/МСП.

5.3 ОБЪЕМ ТЕХНИЧЕСКОГО НАБЛЮДЕНИЯ

5.3.1 Общие положения о порядке технического наблюдения за оборудованием и устройствами по предотвращению загрязнения атмосферы с ПБУ/МСП, их изготовлением и освидетельствованием, а так же требования к технической документации, представленной на рассмотрение Регистру, приведены в Общих положениях о классификационной и иной деятельности.

5.3.2 Техническому наблюдению Регистра при изготовлении подлежат:
1. установки и системы, в части применения в них озоноразрушающих веществ (противопожарные системы, холодильное оборудование);
2. дизельные двигатели мощностью более 130 кВт на предмет контроля выбросов окислов азота (NO_x);
3. система очистки выхлопных газов для уменьшения выбросов окислов азота (NO_x);
4. система очистки выхлопных газов для уменьшения выбросов окислов серы (SO_x);
5. топливная система ПБУ/МСП на предмет возможности перевода работы двигателей на низкосернистое топливо при входе ПБУ/МСП в район контроля SO_x (в случае изменения места эксплуатации ПБУ/МСП или их транспортировки) и возможности отбора проб топлива на приемном топливном трубопроводе судна при помощи пробоотборного устройства, одобренной Регистром конструкции;
6. судовые инспекторы.

5.3.3 На рассмотрение Регистру должна быть представлена следующая техническая документация по оборудованию и устройствам:
1. данные по веществам, которые применяются в установках и системах в качестве хладагентов и огнетушащих веществ, на предмет эксплуатации этих установок и систем в части предотвращения выбросов озоноразрушающих веществ;
2. документация дизельных двигателей мощностью более 130 кВт на предмет контроля выбросов окислов азота (NO_x):
 - разработанные изготовителем двигателя Технические файлы, которые должны содержать как минимум следующую информацию:
 - указание тех узлов, регулировочных и эксплуатационных характеристик двигателя, которые влияют на выбросы NO_x;
 - указание всего диапазона допустимых регулировок или альтернативных узлов двигателя;
 - полное описание соответствующих характеристик двигателя, включая номинальную частоту вращения и номинальную мощность;
 - систему процедуры проверки выбросов NO_x на борту ПБУ/МСП для проверки соответствия ограничениям выбросов NO_x во время проверочных освидетельствований на борту ПБУ/МСП;
 - копию протокола испытаний;
 - если применимо, то назначение и ограничения для двигателя, являющегося членом семейства или группы двигателей;
 - спецификации запасных частей/узлов, использование которых на двигателях, согласно этим спецификациям, приводит к дальнейшему соответствие ограничениям на выбросы NO_x;
 - Свидетельство EIAPP, если это применимо;
3. система очистки выхлопных газов для уменьшения выбросов NO_x (если используется):
 - техническое описание и принцип работы;
 - инструкция по эксплуатации и техническому обслуживанию, одобренная Регистром;
 - чертежи общего вида с разрезами;
 - сборочные чертежи механизмов и устройств, входящих в систему очистки выхлопных газов;
 - программа испытаний головного и серийного образцов;
4. система очистки выхлопных газов для уменьшения выбросов SO_x (если используется):
 - техническое описание и принцип работы;
 - инструкция по эксплуатации и техническому обслуживанию, одобренная Регистром;
 - чертежи общего вида с разрезами;
 - сборочные чертежи механизмов и устройств, входящих в систему очистки выхлопных газов;
 - программа испытаний головного и серийного образцов;
5. топливная система ПБУ/МСП на предмет возможности перевода работы двигателей на низкосернистое топливо при входе ПБУ/МСП в район контроля SO_x:
Правила классификации, постройки и оборудования ПБУ/МСП

схемы и чертежи топливной системы, подтверждающие возможность перевода двигателей на низко­сернистое топливо;
.6 пробоотборное устройство, обеспечивающее отбор типичной пробы топлива в период бункеровки; чертеж пробоотборника, демонстрирующий метод отбора пробы топлива;
инструкция изготовителя по эксплуатации пробоотборника;
.7 судовые инсинераторы: технические требования к судовым инсинераторам приведены в пункте 4.4.4 раздела 4 настоящей части Правил.

5.4 ТРЕБОВАНИЯ В ОТНОШЕНИИ КОНТРОЛЯ ЗА ВЫБРОСАМИ С ПБУ/МСП

5.4.1 Озоноразрушающие вещества.
5.4.1.1 Любые преднамеренные выбросы озоноразрушающих веществ, происходящие в ходе операций по перезарядке, обслуживанию и ремонту установок на борту ПБУ/МСП, запрещены (за исключением случаев для целей безопасности судна или сохранения жизни на море или при повреждении судна). Преднамеренные выбросы не включают в себя минимальные утечки, связанные с возвратом или реприкуляцией озоноразрушающих веществ.
5.4.1.2 Эксплуатация новых установок, содержащих озоноразрушающие вещества, запрещается на всех ПБУ/МСП, за исключением эксплуатации новых установок, содержащих гидрохлорфторуглероды, которая разрешается до 1 января 2020 года.
5.4.1.3 Озоноразрушающие вещества и оборудование, содержащие такие вещества, при удалении их с ПБУ/МСП должны доставляться на приемные сооружения.

5.4.2 Окислы азота (NOx)
5.4.2.1 Контроль за выбросами окислов азота применяется к:
- к двигателям мощностью более 130 кВт, установленным на борту ПБУ/МСП, построенным (когда которых заложен или которые находятся в подобной стадии постройки) 1 января 2000 г. или после этой даты;
- двигателям мощностью более 130 кВт, которые подверглись «существенному переоборудованию» 1 января 2000 г. или после этой даты.
Дата начала существенного переоборудования может быть определена:
контрактом на это переоборудование; или
dатой вывода двигателя из эксплуатации в соответствии с судовым журналом (в отсутствие контрактной даты переоборудования).
5.4.2.2 Ограничения по NOx выбросам не применяются:
- к аварийным двигателям; к двигателям, установленным на спасательных шлюпках или в составе любого оборудования, используемого исключительно в аварийных ситуациях; к двигателям, обеспечивающим работу технологического оборудования; к двигателям, установленным на ПБУ/МСП, не совершающих международных рейсов, при условии, что такие двигатели подпадают под альтернативную меру контроля выбросов NOx, установленную Администрацией.
Допускается исключение из применения настоящего раздела Правил для любого дизельного двигателя при условии, что ПБУ/МСП занято исключительно в рейсах в порты или к удаленным от берега терминалам в пределах государства, под флагом которого судно имеет право плавать.
5.4.2.3 Эксплуатация каждого дизеля, к которому применено настоящее правило, запрещается, за исключением случаев, когда выброс окислов азота (рассчитанный как полный взвешенный выброс NO2) из дизеля находится в следующих пределах: 17,0 г/кВтч, при n менее 130 об/мин; 45 х n(0,2) г/кВтч, при n, равном или более 130, но менее 2000 об/мин; 9,8 г/кВтч, при n, равном или более 2000 об/мин, где n — номинальная частота вращения двигателя.
5.4.2.4 Двигатели, на которые распространяются требования данного правила, должны пройти первичное освидетельствование на заводе-изготовителе в соответствии с «Техническим кодексом контроля выбросов окислов азота судовыми дизелями» (Техническим кодексом по NOx). По результатам освидетельствования для базовых двигателей и для каждого двигателя группы или семейства двигателей Регистром по поручению Администрации должны быть выданы Международные свидетельства по предотвращению загрязнения атмосферы двигателем (EIAPP) с Дополнениями.
Несмотря на положения подпункта настоящего правила, эксплуатация дизеля разрешается, если:
- для уменьшения выбросов NOx, на меньшей основе, до пределов, установленных в данном правиле, в двигатель применяется система очистки выхлопных газов, одобренная Регистром по поручению Администрации в соответствии с Техническим кодексом по NOx, или
- для этой же цели применяется другой эквивалентный метод, одобренный Регистром по поручению Администрации, принимая во внимание соответствующее руководство, которое должно быть разработано ИМО.
5.4.3 Окислы серы (SOx)
5.4.3.1 Содержание серы в любом жидким топливе, используемом на ПБУ/МСП, не должно превышать 4,5 % массы.
5.4.3.2 При нахождении ПБУ/МСП в пределах районов контроля выброса окислов серы (SO₂) должно выполняться одно из следующих условий:

- содержание серы в жидким топливе, используемом на ПБУ/МСП в пределах районов контроля выброса окислов серы (SO₂), не превышает 1,5 % массы;
- применяется система очистки выхлопных газов, одобрённая Администрацией с учетом руководства, разработанного ИМО, для уменьшения общего выброса окислов серы до величины 6,0 г SO₂/кВтч или менее, рассчитанной как полный вес двуокиси серы.

5.4.3.3 Сведения о жидкое топливе, поставленном и используемом на борту, регистрируются посредством накладных на поставку бункерного топлива, которые должны сопровождаться типичной пробой, отобранной на приемном топливном коллекторе судна одним из следующих методов:
- пробоотборник непрерывного действия капельного типа с ручным клапаном; или
- автоматический пробоотборник, действующий через регулярные промежутки времени; или
- автоматический пробоотборник, срабатывающий в зависимости от скорости подачи топлива.

5.4.3.4 В связи с изложенным выше топливные системы ПБУ/МСП должны обеспечивать:
- возможность отбора проб топлива на приемном судовом коллекторе при помощи пробоотборного устройства, одобренного Регистром;
- возможность обеспечения безопасного перехода на топливо с содержанием серы менее 1,5 % до входа в район контроля выбросов SO₂. Система подачи топлива должна быть полностью промыта от всех видов топлива с содержанием серы более 1,5 % массы.

5.4.4 Сжигание на ПБУ/МСП.

5.4.4.1 Сжигание на ПБУ/МСП твердых отходов допускается только в одобренных судовых инсинераторах.

Сжигание нефтяных остатков допускается в следующих одобренных установках:
- в инсинераторах с соответствующей системой подготовки нефтеостатков для сжигания;
- во вспомогательных паровых котлах с соответствующей системой подготовки нефтеостатков для сжигания;
- в нагревателях системы термальной жидкости с соответствующей системой подготовки нефтеостатков для сжигания.

5.4.4.2 Каждый судовой инсинератор, установленный на ПБУ/МСП 1 января 2000 года или после этой даты, должен иметь одобрение Регистра по поручению Администрации с учетом стандартных требований к судовым инсинераторам в соответствии с Резолюцией МЕРС.76(40).

5.4.4.3 Технические требования к судовым инсинераторам приведены в 4.4.4 разд. 4 настоящей части Правил.

5.5 ДРУГИЕ ТРЕБОВАНИЯ

5.5.1 Требования по предотвращению загрязнения атмосферы от выбросов технологического оборудования ПБУ/МСП, используемого для разведки или добычи минеральных ресурсов морского дна, к ПБУ/МСП не предъявляются.