ТИПОВОЙ ПРОЕКТ 902-2-393.85

ВЕРТИКАЛЬНЫЕ ОТСТОЙНИКИ ДИАМЕТРОМ 9 М СО ВСТРОЕННОЙ КАМЕРОЙ ХДОПЬЕОБРАЗОВАНИЯ

AILPOW I

поиснительная записка

ТИПОВОЙ ПРОЕКТ

902-2-393.85

Вертикальные отстойники лиаметром 9 м оо встроенной камерой хлопьеобразования

COCTAB IIPOEKTA

Альбон I - Пояснительная записка

Альбом II— Технологическая, строительная части. Автоматизация, КИП

Акьбом Ш - Строительные изделия

Альбом ІУ - Ведомости потребности в материалах

Акьбом У - Сметы

Разработан проектным институтом ЦНИИЭП инженерного оборудования

> Главный инженер института Главный инженер проекта

Утвержжен Госгражданстроем Приказ №252 от 21 августа 1985г. Введен в действие Шимай наменерного обсружования размен в 259 от 5 октября 1986 г.

A. Ketaob

I. Будаева

LEHTPAALHAR HILCTHTYT THROBOTO RECEITHEORAHAR POCETPOR CCCP

AJILISOM I

	Отлавление	CTP.
ı.	Offiar Vacto	3
2.	Технологическая часть	5
3.	Строительная часть	9
4.	Автоматизация, КИП	15
5.	Указания по привязке	16

Авторы пояснительной записки

Общая и технологическая части	Mays-	Л. Будаева
Строительная часть	Melpany	т.Лоуцкер
аток пентротехническая часть	Tyer	Л. Шерстякова

Типовой проект разработан в соответствии с действующими нормами и правилами и предусматривает мероприятия, обеспечивающие взрывобезопасность и пожаробезопасность при эксплуатации осоружений.

Главный инженер проекта

Л. Будаева

I. ОБЩАЯ ЧАСТЬ

І.І. Ввеление

Рабочие чертежи вертикальных отстойников диаметром 9 м с встроенной камерой клопьеобразования для станций физико-химической очистки сточных вод пропускной способностью I,4; 2,7;4,2 м 7.0 тыс.м3/сутки разработаны по плану бъджетных проектных работ Госгражданстроя на 1983-1985 годы.

В состав проекта входят вертикальные отстойники со встроенной камерой хлопьеобразования и камера смешения.

Сооружения предназначены для выделения основной массы загрязнений при помощи реагентной обработки сточных вод, прошедших решетки и песколовки.

При физико-химической очистке сточных вод эффект осветления в отстойниках составляет: по взвешенным веществам и БПК_{ПОЛН} на 75%, ХПК на 60%, по растворимым фосфетам на 80%. Влажность осадка 96%.

Технологические расчеты приведены в альбоме I типовых проектных решений 902-

Технико-экономические показатели

Наименование	Един. изм.			тойников при	Показатели для камеры смешения
I	2	3	4	5	6
Строительный объем общий	M 3	814,26	1221,39	1628,52	91,0

2093	1-01
------	------

902-2	_282	9.5	(T
JUN-2	-333	.no	\

	2	3	4	5	
в том числе					
камеры хлоньеобразования	"	56,26	84,39	112,52	-
отстойников	_#_	758,0	1137,0	1516,0	
Пропускная способность отстойников при времени отстаивания I,5 ч	м3/ч	302,6	454,0	605,0	-
Сметная стоимость строительства	тис.руб.	43,18	62,9	82,63	2,55
в том числе:					
строительно-монтажных работ	тис. руб	39,97	58,19	76,43	2,55
оборудования	тис.руб	3 ,2 I	4,7I	6,2	-
Стоимость I м3 строительного объема	руб	53,03	51,5	50,74	28,02
Стоимость на I м3 часовой производительности	руб	142,7	138,55	136,58	-

Примечание: Эксплуатационные расходы расчитаны и включены в эксплуатационную смету по комплексам очистных сооруженый, приведенную в типовых проектных решениях, т.п.р. 902—03— Альбом I.

Технико-экономические показатели камери смешения дани для реагента железный купорос.

(I)

2. TEXHOJOIWYECKAR YACTL

2. І. Технологическая схема

В проекте разработана компановка узла из 4 отстойников с распределительной камерой. Возможны также схемы с меньшим числом единиц.

Сточная вода после песколовки поступает в камеру смешения, куда вводят IO—ный раствор коагулянта и далее в распределительную камеру, из которой по лоткам поступает в центральную трубу отстойников. Разностью отметок уровней воды над входом в трубу и в отстойнике создается напор, обеспечивающий скорость движения воды в центральной трубе 0,5-0,7 м/с, необходимую для эжекции воздука из атмосферы,

Водовоздушная смесь из центральной трубы отражательным щитом направляется вверх в камеру жлопьеобразования, где происходит усиленное перемешивание воды, способствующее оптимальным условиям жлопьеобразования.

В распределительную камеру отстойников подавт 0, І-ный раствор ПАА.

Сточная вода через решетку-успокоитель поступает в отстойник и движется в вертикальном направлении, где происходит осаждение взвешенных веществ. Из отстойника осветденная вода изливается через зубчатый водослив в сборный кольцевой лоток и через сборные приямки отводится из сооружения. Сборные приямки оборудованы защитными сетками с размером ячеек IOxIO мм с целью исключения возможностипопадания в последующие сооружения крупных плавающих загрязнений, например листьев, бумаги и т.д.

Всплывающие вещества при повышении уровня воды в отстойнике щитом на отводящем лотке собираются в лоток и далее направляются в иловой колодец.

Осадок из отстойников под гидростатическим напором удаляется в иловой колодец. Регулирование выпуска осадка осуществляется задвижной, управляемой с поверхности земли.

При использовании в качестве реагента сернокислого алиминия в камеру смешения насосами-дозаторами подается 5%-инй раствор коагулянта.

2.2. Описание сооружений

Вертикальные отстойники диаметром 9,0 м с встроенной камерой жлопьеобразования представляют собой круглый в плане резервуар с коническим днищем и водосборным периферийным лотком. В отстойни- ке установлена полупогруженная цилиндрическая перегородка для задерживания плавающих веществ, которые собираются в лоток, установленный на внешней стороне камеры жлопьеобразования.

Камера хлопьеобразования с естественной аэрацией диаметром 3,0 м, глубиной 3,0 м расположена в центральной части отстойника. Нижняя часть камеры оборудована деревянной решеткой-успокоителем.

Объем иловой части отстойника принят с учетом объема выпадающего осадка за период не более 2 суток.

Подная строительная висота (глубина) отстойника Н стр. определена как сумма висоти рабочей (проточной) части, нейтрального слоя, иловой части и висоти борта над уровнем води. Глубина проточной части отстойника принята равной висоте цилиндрической части.

2.3. Гидравлический расчет сооружений

Расчет отстойников со встроенной камерой хлонъеобразования ведется в соответствии со СНиП 2.04. 03-85 и на основании технического задания НИИ коммунального водоснабжения и очистки воды (НИИ КВиОВ) АКХ им. К.Д.Памфилова.

Расчетное время пребывания воды в камере клопьеобразования принято IO мин, в отстойниках - I,5 ч, скорость осаждения 0,8 - I мм/с.

На входе сточной воды в центральную трубу создается напор воды, равний 0,4-0,6 м, который обеспечивается разностью уровней воды над входом в трубу и в отстойнике.

Водовоздушная смесь из камеры клопьеобразования через решетки-успокоитель с размером ячеек 0,520,5 м поступает в отстойник.

Расход сточной воды через одну ячейку

$$Q = \frac{Q}{D} M^3/c$$

тде 0 - мексимельно-секундный расход м3/с,

П - КОЛИЧЕСТВО ЯЧЕЕК.

Среженя скорость прохождения водовоздушной смеси через ячейку

тде //- количество ячеек 9 шт.,

ыў - влощадь живого сечения одной ячейки, ы**⊘.**

вотери напора в решетке-успокоителе

где (= 5 - коэффициент сопротивления

(П.Г.Киселев. "Справочник по гидравлическим расчетам. Энергия, 1972 г., стр.43).

Для равномерного распределения води по фронту водослива сфорного лотка отстойника перелинная кромка его выполнена с треугольными вырезами, через которие происходят слив води в лоток.

Ширина и висота водоотводищего лотка отстойника постояние по всей длине и приняти пе расчету, а также из конструктивных сообрежений. Количество водосливов

$$m = \frac{\pi d}{\ell}$$
 m.

Расход сточной воды через один водослив

$$q = \frac{Q}{m}$$
 m3/c

Рабочая висота водослива определена по формуле

$$h_p = \sqrt[5]{\left(\frac{9}{14}\right)^2} M$$

Строительная висота водослива определена по формуле

Потери напора на слияние потока

где 7-3- коэффициент местного сопротивления (гл. IV ст. 301 справочник Н.Н.Павловского); у- скорость в лотке перед слиянием нотока - 0,4 м/с

Расчет потерь в решетке на выходе из отстойника аналогичен расчету в решетке-успокоителе. Количество ячеек сечением IOxIO мм - 2IOO шт. Подводящие и отводящие лотки рассчитаны на максимальный семуниный расход оточных вод с козбёншентом I.4.

Потори напора в лотках следует определять по формуло:

где і - гидравлический уклож,

L - длина лотка в м.

Е h - сумма местних потерь напора в м в зависимости от местних сопротивлений.

Высотная схема движения воды по сооружениям приведена на листе ТК-4 Альбом II для станции вронускной способностью 7,0 тыс.м3/сутки.

3. СТРОИТЕЛЬНАЯ ЧАСТЬ

3.1. Природные условия строительства и технические условия на проектирование

Природние условия и исходние дание для проектирования приняти в соответствии с Инструкцией по типовому проектированию СН 227-82, а также серией 3.900-3 "Сборные железобетоние конструкции емисствих сооружений для водоснабления и канализации".

Расчетная зимняя температура наружного воздуха минус 30°C.

Скоростной напор ветра - для I географического района,

Вес снегового нокрова - для Ш географического района,

Рельеф территории - спокойный,

Грунтовие води отсутствуют,

Грунты непучениютие, непросадочные, со следующим нормативамих характеристиками:

нормативный угол внутреннего трения $U^{+}=0.49$ рад. или 28° нормативное удельное сцепление $C^{H}=2$ нПа (0,02 кгс/см2) модуль деформации нескальных грунтов E=14.7 МПа (150 кгс/см2) илотность грунта y=1.8 т/м3 коэффициент безопасности по грунту K=1.

Проект предназначен для строительства в сухих легкофильтрукцих грунтах.

Проектом не предусмотрены особенности строительства в районах вечной мерэлоты, на макропористых и водонасыщенных грунтах, в условиях ополней, осыпей, карстовых явлений и т.п.

- 3.2. Конструктивные решения
- 3.2.1. Отстойники

Вертикальный отстойник — круглая в плане железобетонная емкость с внутренним диаметром 9 м, внутри которой расположены лотки, струенаправляющая перегородка и камера хлопьеобразования. Днище отстойника — коническое, из монолитного железобетона толщиной 150 мм.

Стены сформые железобетонные из стеновых панелей в опалуфочной форме панелей серии 3.900—3 вып.5 высотой 4,2 м.

Стеновые панеди отстойника жестко заделиваются в паз дница, замоноличиваются бетоном марки 300 на медком заподнителе и соединяются между собой путем приварки накладных элементов к закладным изделиям панедей.

Шпоночные стыки стеновых панелей замоноличиваются раствором на напрягающем цементе. Марка раствора по самонапряжению принята Cн 6.

Средняя и нижняя части стен отстойника обжати путем навивки высокопрочной арматуры класса Вр П.

Пристенные лотки — сфорные железобетонные с использованием опалубки серии 3.900—3 выпуск 6. Каркас струенаправляющей перегородки и балки, поддерживающие камеру жлопьеобразования — стальные. Заполнение струенаправляющей перегородки — асбестоцементными плоскими листами толщиной 10 мм.

Вертикальний стик асбестоцементных листов заполняется герметаком "Шагален" (ТУ-21-29-84-81) шли асбестоцементным раствором. Внутренняя поверхность днища отстойников виравнивается однослойной цементной штукатуркой (затиркой).

Преднапряженная арматура навивается на стени после устройства виравищею слоя торкретштукатурки. После навивки арматура защищается торкретштукатуркой в два слоя общей толщиной 25 мм. Наружные поверхности отстойников выше планировочной отметки земли затираются цементным раствором.

Площадка обслуживания, ограждение и лестница - стальние.

Площадка опирается на железобетонные балки, выполняемые в опелубочной форме балок серии I.225.I-3.

Проектные марки бетона приняти по прочности М 200; по водонепроницаемости В 6; по морозостойности лля линина MP3 50; для стен MP3 150; для лотков MP3 200.

Требования к бетону по прочности, водонепроницаемости и виду цемента для его приготовления уточняют при привязке проекта по серии 3.900—3 внп. I/82; СНиП2.04.02-84 Водоснабжение. Наружные сети и сооружения п.I4.24, СНиП П—2I—75 "Бетонные и железобетонные конструкции", таблица 8, в зависимости от расчетной зимней температуры наружного воздуха.

3.2.2. Распределительная камера, иловые колодцы, камеры смешения, подводящие и отводящие лотки

Распределительная камера, камера смещения и общий отводящий лоток приняти из монолитного железобетона. Остальные подводящие и отводящие лотки, а также иловые колодци – из сборных железобетонных изделий. Сфорные железобетонные лотки изготавливаются в опалубие серми 3.900—3, выпуск 8, иловые колодии, а также опоры камер и лотков выполняются из сфорных железобетонных элементов серми 3.900—3, выпуск 7.

Внутренние поверхности стен распределительной камеры, камеры омещения и монолитных лотков штукатурят цементным раствором состава 1:2 толщиной 20 мм. Наружные поверхности стен выше планировочных отметок затирают цементным раствором.

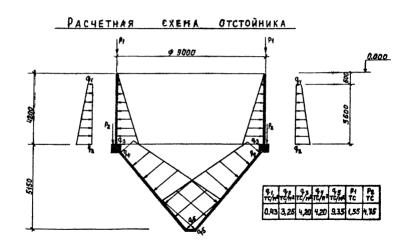
3.3. Основные расчетные положения

Стени отстойников рассчитани на следующие нагрузки:

гидростичноское давление изнутри при навитой кольцевой арматуре и отсутствии обощим; расчетный уровень воли принят по верха стени:

активное давление обсынки снаружи при навитой кольцевой арматуре и отсутствии воды внутри.

Учтена временная нагрузка на новерхность обсынки.


Уровень обсыпки на 0,6 м ниже верха стены.

Указания по расчету стены, нодбору стенових нанелей и навиваемой кольцевой арматуры помещены в серии 3.900-3 выпуск I-I.

3.4. Мероприятия по защите от коррозии

Все металюконструкции, соприкасающиеся с водой, окранивают лаком КС-784 по ГОСТ 7313-75 за 3 раза по грунтовке КС-010 за 2 раза.

Все прочие металические конструкции окранивают массиной преской по ГОСТ 6292-75 за 2 раза по грунтовке.

T4

Навиваемую на стены отстойников высокопрочную арматурную проволоку защилот слоем торкретштукатурии толщиной 25 мм. Нанесение торкретштукатурии на стены производят после их облатия при заполненном водой сооружении.

3.5. Гидравлическое испитание

Гидравлическое испытание отстойников производят в соответствии с указаниями CHall II—30—74 (раздел 8).

При проведении испытания в отверстиях стен отстойника выполнить загрузку из красного кирпича на цементном растворе М5О, толщиной 250 мм. Кирпичную кладку вести с полным заполнением и расшивкой швов.

Испытание допускается производить при достижении бетоном проектной прочности и не ранее пяти суток после заполнения отстойника водой. Сооружение признают выдержавшим испытание, если убыль води за сутки не превышает 3 л на I м2 смоченной поверхности стен и днища; через сутки не наблюдается выхода струек воды, а также не установлено увлажнение грунта в основании.

3.6. Основные положения по производству работ

До начала производства бетонных и железобетонных работ должен быть разработан общий котлован, отметка дна котлована указана на чертежах отстойников.

Разработку грунта в пределах цилиндрической части отстойника выполняют механизированно с применением экскаватора, оборудованного ковшом "драглайн".

Грунт в консуной части отстойника разрабатывают в два приема: механизированным способом и доработкой откосов вручную до проектного очертания. Зачистку откосов отстойника следует производить непосредственно перед укладкой бетонной подготовки. Обсыпку стен сооружения производят слоями 25— 30 см. Откосы и горизонтальные поверхности обсыпки планируют с покрытием насыпи слоем растительного грунта. Устройство бетонной подготовки и железобетонного днища (конической части отстойника) производят в поярусно установленной опалубке.

Паз пяты днища очищают и его поверхность выравнивают цементным раствором. К монтажу сборных железобетонных панелей разрешается приступить при достижении бетоном днища 70% проектной прочности. Устойчивость панелей обеспечивается подкосами. Не допускается обеспечивать устойчивость деревянными клиньями в пазу днища. Несколько стеновых панелей со сваренными закладными деталями и заделанными отыками образуют устойчивый блок.

Навивку высокопрочной арматуры на стены отстойников производят арматурно-навивочной машиной АНМ-5-2 в соответствии с указаниями, приведенными в паспорте машины. Навивку арматуры на стены следует производить через 2-5 суток после замоноличивания стыков (задержка не рекомендуется). Контролируемое напряжение при натяжении арматурной проволоки G = 10800 кгс/см2.

Контроль удлинения арматуры при натяжении и контроль обжатия бетона производить с номощью тензометров.

При выполнении строительно-монтажных работ и в период эксплуатации не допускается подвеска к поддерживающим балкам грузов весом IOO кгс и приложения к лоткам и струенаправляющим перегородкам дополнительных нагрузок.

4. ABTOMATUSALINS. KUII

4.1. Технологический контроль

В проекте предусмотрено измерение уровня осадка в отстойниках прибором СУ-102, релейный блок которого следует установить в операторской производственно- аспомогательного здания.

5. УКАЗАНИЯ ПО ПРИВЯЗКЕ

Определить количество отстойников. Минимельное количество отстойников надлежит принимельное менее двух, при условии, что все отстойники являются рабочими. При минимельном числе отстойников их расчетный объем следует увеличивать в 1,3 раза.

Произвести поверочный гидравлический расчет подводящих и отводящих лотков.

Принять тип камеры смешения в зависимости от принятого реагента.

Таблица выбора камеры смешения дана на чертеже отстойников лист ТХ-4.

При привязке типового проекта к конкретным климатическим и инженерно-геологическим условиям площадки необходимо в зависимости от расчетной температури наружного воздуха произвести корректировку марки бетона по морозостойкости и марки стали арматуры и стальных изделий.

При наличии на площадке грунтовых вод в пределах конической части дница необходимо произвести расчет и переармирование конической части дница на подпор грунтовой воды и предусмотреть мероприятия, обеспечивающие гидроизоляцию сооружения.