# TANCSON DECENT

902-2-345

ЗДАНИЕ РЕШЕТОК ДЛЯ СТАНЦИЙ ЕИОЛОГИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД ПРОПУСКНОЙ СПОСОБНОСТЫВ 1,4; 2,7; 4,2; 7 тыс.м 3/сутки

ANDEOM I

пояснительная записка



**ЦЕНТРАЛЬНЫЯ ИНСТИТУТ ТИПОВОГО ПРОЕКТИРОВАНИЯ** POCCTPOR CCCP

McCorra, A-445, Cosabbook ya., 28
Coses o coses II 1982 2.
Books 14 /955 Topick 510 std.

# TUIOBON TIPOEKT

17668-01

ЗДАНИЕ РЕШЕТОК ДЛЯ СТАНЦИЙ БИОЛОГИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД ПРОПУСКНОЙ СПОСОБНОСТЬЮ I.4: 2.7: 4.2; 7 тыс.м3/сутки

#### СОСТАВ ПРОЕКТА

Альбом I Пояснительная записка.

Альбом П Технологическая, санитарно-техническая, электротехническая

части, связь и сигнализация, нестандартизированное оборудование.

Bhis.

Альбом Ш Архитектурно-строительная часть.

Альбом ІУ Строительная часть. Изделия.

Альбом У Заказные спецификации

Альбом УІ Сметы.

#### ANLIBOM I

Разработан проектным институтом ЦПИИЭП инженерного оборудования

Утвержден Госгражданстроем Приказ № 59 от 20.2.81 г. Рабочие чертежи введены в действие ЦНИИЭП инженерного оборудования

Приказ # 70 от 8.07 .812.

Главный инженер института Главный инженер проекта А.Кетаов

В. Локтюшин

902- 2-345

|    | оглавление                          | 17868-01 |
|----|-------------------------------------|----------|
|    | OIARDAERNE                          | Crp.     |
| ţ. | Общая часть                         | 4        |
| 2. | Технологическая часть               | 6        |
| 3, | Архитектурно-строительная часть     | 8        |
| 4. | Санитарно-техническая часть.        | 10       |
| 5. | Электротехническая часть            | 31       |
| 6. | Связь и сигнелизация                | 14       |
| 7. | Мероприятия по технике безопасности | 15       |
| 8. | Указения по привязке                | 16       |
|    | Записка составлена:                 |          |

Общая и технологическая часть Архитектурно-строительная часть Санитарно-техническая часть Электротехническая часть

Связь и сигнализация

В. Локтомин
Т. Лоуцтер
М. Наримсовва
И. Павлова

А.Толмасов

Типовой проект разработан в соответствии с действующими нормами и правилами и предусматривает мероприятия, обеспечивающие вэрывную, вэрыво-пожарную и пожарную безопасность при эксплуатации зда-HNA.

Главный инженер проекта

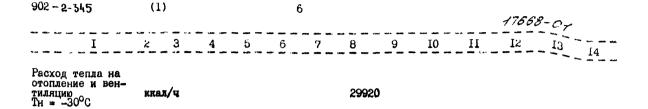
B. JORTOWH

**(I)** 

## I. ORWAN YACTЬ

Рабочие чертежи типового проекта здания решеток с 2 механизированными решетками РМУ-1 разработаны по плану типового проектирования Госгражданстроя на 1979—1980 г.г.

Здание решеток применяется в составе станций биологической очистки сточных вод пропускной способностью 1,4; 2,7; 4,2; 7 тыс.м3/сутки.


Оборудование здания решеток обеспечивает задержание отбросов из поступающей сточной воды и подочу технической воды к гидроэлеваторам песколовок.

Зданяе зентровитировано с расположением его на уровне земли и при высоте насыпи 1, 2, 3, 4 к 5 м.

# Основные технологические и технико-экономические показатели приведены в таблице ${\bf I}$

|                                                        |               |                |                   |                |                   |                         |                           |                 |                   | Tag                            | лица 1         |                | entr ette ann  |
|--------------------------------------------------------|---------------|----------------|-------------------|----------------|-------------------|-------------------------|---------------------------|-----------------|-------------------|--------------------------------|----------------|----------------|----------------|
| Наименование                                           | Един.<br>изм. | Проп           | ускная<br>гыс.мЗ, | спосо          | бность            | 1,4                     | и                         | Ilpony<br>7 THO | /скная<br>с.м3/су | способно<br>Т.                 | ость 4,        | 2 M            | **             |
|                                                        | -             | Выс            | ота на            | сыпи в         | метра             | X                       | ~~~                       | E               | Высота            | насыпи                         | в метра        | X              |                |
|                                                        | •             | 0              | ī                 | 2 .            | 3                 | 4                       | 5                         | 0 -             | ī                 | 2                              | 3              | 4              | 5              |
| I                                                      | 2             | 3              | 4 -               | 5              | 6                 | 7                       | 8                         | 9               | 10                | ĪĪ                             | 12             | I3             | I4             |
| Строительный объек<br>(без учета подзем-<br>ной части) | м<br>-<br>мЗ  |                |                   |                | - CO 4111 E-      |                         | 473,                      | 2               |                   |                                |                |                |                |
| Сметная стоимость<br>общая                             | тыс.<br>руб.  | 21,66<br>21,81 | 22,II<br>22,26    | 22,29<br>22,44 | 23,1 <sup>4</sup> | 7 <u>24,8</u><br>2 25,0 | 5 <u>26,27</u><br>0 26,42 | 21,95<br>22,10  | 22,40<br>22,55    | 22, <u>58</u><br>22, <b>73</b> | 23,46<br>23,6I | 25,14<br>25,29 | 26,56<br>26,7I |

| 902-2-345 (I)                                                        |            |                | 5                     |                |                |                |                |                |                |                |                |                |    |
|----------------------------------------------------------------------|------------|----------------|-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----|
|                                                                      |            |                |                       |                |                |                |                |                |                |                | 17608          | 8-01           |    |
|                                                                      | 2          | 3              | 4                     | 5              | 6              | 7              | 8              | 9              | IO             | ĪI             | IZ             | Ī3             | 14 |
| в том числе:                                                         |            |                |                       |                |                |                |                |                |                |                |                |                |    |
| строительно-<br>монтажных<br>работ                                   | т.<br>pyб. | 15,80<br>15,95 | $\frac{16,25}{16,40}$ | 16,43<br>16,58 | 17,31<br>17,46 | 18,99<br>19,14 | 20,4I<br>20,56 | 16,09<br>16,24 | 16,54<br>16,69 | 16,72<br>16,87 | 17,60<br>17,75 | 19,28<br>19,43 |    |
| оборудования                                                         | T.<br>pyd. |                |                       |                |                |                | 5,86           |                |                |                |                |                |    |
| Стонмость I<br>куб.м здания                                          | руб.       |                |                       |                |                |                | 43,13<br>43,45 |                | 34,95<br>35,27 |                | 37,19<br>37,5I |                |    |
| Установленная<br>мощность электро-<br>оборудования                   | кВт        |                |                       |                |                |                | 47,4           |                |                |                |                |                |    |
| Потребляемая<br>мощность уста-<br>новленного обору-<br>дования       | кВт        |                |                       |                |                |                | 43,6           |                |                |                |                |                |    |
| Рьсход воды на<br>производстванные<br>нужды и необходи⊷<br>мый напор | л/с<br>(м) |                |                       |                |                |                | 0 4<br>(10)    |                |                |                |                |                |    |



В числителе приведена стоимость здания решеток для варианта с централизованным теплоснабжением, в знаменателе - для варианта от местной котельной.

#### 2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

# 2.1. Технологическая схема и установленное оборудование

Сточная вода, поступающая в здание решеток, проходит механизированные решетки типа РМУ-I с прозорами I6 мм (одна рабочая и одна резервная) и поступает в песколовки. Максимальный уровень воды в канале решеток не менее чем на 50 см ниже уровня пола здания.

Задержанные отбросы периодически удаляются граблиной, совершающей возвратно-поступательное движение и сбрасываются в контейнеры, установленные у каждой решетки. Заполненные контейнеры периодически не реже одного раза в 2 суток вывозятся мусоровозами.

Вывоз отбросов производится на специальные площадки, согласованные с местными санитарными органами или на площадки компостирования.

Предусмотрена установка 5 контейнеров емкостью каждого 0.55 м3.

В здании решеток установлены насосы технической воды марки ФГ 144/46 (Q = 144 м3/ч; H = 46 м) с электродвигателем AO2-BI-4, мощностью N = 40 кВт для подачи воды к гидроэлеватору песколовок.

Выгрузка песка из песколовок производится периодически. Для запуска насоса предусмотрена вакууыная установка состоящая из вакуум-насоса ВВНІ-0,75 с электродвигателем A02-3I-4 мощностью 2,2 квт и циркуляционного бачка емкостью 80 л.

К установке приняты по одному рабочему насосу. Резервные насосы хранятся на складе.

Для отключения решеток на период ремонтных работ в лотках до и после здания решеток предусмотрены щитовые затворы с ручным приводом.

Для монтажа и ремонта решеток и транспортировки контейнеров внутри здания установлен кран ручной подвесной грузоподъемностью I тонна; для перемещения контейнеров из здания и погрузки их в автотранспорт запроектирована тележка и таль ручная передвижная грузоподъемностью I т.

Для предотвращения проникновения в здание холодного наружного воздуха на подводящих и отводящих иотках установлены заслонки, открывающиеся потоком воды.

Лотки внутри здания перекрыты съемными рифлеными щитами. Размеры лотков в зависимости от пропускной способности станций приведены в таблице 2.

Таблица 2

| Пропускная способность станций тыс. м3/сутки | Размер подводящих и отводящих лотков |
|----------------------------------------------|--------------------------------------|
| I,4                                          | 300 x 450                            |
| 2,7                                          | <b>300</b> x <b>4</b> 50             |
| 4,2                                          | 450 x 600                            |
| 7                                            | <b>450</b> x 600                     |

Для уборки помещений и полива зеленых насаждений предусмотрен производственный водопровод с поливочными кранами 6 25 мм. Подача воды в здание осуществляется через ввод 6 65 мм.

#### 3. АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ ЧАСТЬ

# Природные условия строительства и технические условия на проектирование

Природные условия и исходные данные для проектирования приняты в соответствии с "Инструкцией по типовому проектированию для промышленного строительства" СН-227-70, изменениями и дополнениями к ней, утвержденными приказом Госстроя СССР № 201 от 26 сентября 1974 г., опубликованными в бюллетене строительной техники № 12 за 1974 г.

расчетная зимняя температура наружного воздуха -30°C; скоростной напор ветра для I географического района 27 кгс/м2; вес снегового покрова для II района 100 кгс/м2.

Рельеф территории спокойный, грунтовые воды отсутствуют.

Грунты в основном непучинистые, непросадочные, со следующими нормативными жарактеристиками:  $\zeta = 1.8$  тыс/м3;  $\varphi = 30^{\circ}$ ;  $C^{H} = 0.02$  кгс/см2; E = 150 кгс/см2.

Сейсмичность района строительства не выше 6 баллов, территория без подработки горными выработками.

Также разработаны дополнительные варианты проекта применительно к следующим природно-климатическим условиям;

расчетная зимняя температура воздуха -20°C; скоростной напор ветра для I географического района 27 кгс/м2; вес снегового покрова для второго района 70 кгс/м2;

17668-01

расчетная температура воздуха  $-40^{\circ}\text{C}$ ; скоростной напор ветра для I географического района 27 кгс/м2; вес снегового покрова I50 кгс/м2

Проектом не предусмотрены особенности строительства в районах вечной мерэлоты, на макропористых водонасьщенных грунтах, в условиях оползней, осыпей, карстовых явлений и т.п.

9

## 3.2. Характеристика здания

Класс П

Степень отнестойкости П

Степень долговечности П

Кетегория производств по пожарной опасности "Д"

## 3.3. Объемно-планировочные решения

Здание прямоугольное в плане с размерами I2 х б м. Одноэтажное. Высота до плит покрытия 4,8 м. В состав помещения входят электрощитовая, помещение решеток, венткамеры. Помещение решеток оборудовано краном грузоподъемностью I,0 т. Остекление из отдельно стоящих оконных проемов. Здание запроектировано с расположением его на уровне земли и при высоте насыпи I, 2, 3, 4, 5 м.

# 3.4. Конструктивные решения

Здание выполнено из обыкновенного глиняного кирпича пластического прессования M 75 ма растворе M 25.

Плиты перекрытия по ГОСТ 22701.1-27г.

Фундаменты для варианта расположения здания на уровне земли и при высоте насыпи I,0 м - ленточные из бетонных блоков по ГОСТ 13579-78, в остальных случаях столбчатые - из колец по серии 3.900-3, выпуск 7.

## 3.5. Отпелка

Внутренняя отделка производственных помещений принята в зависимости от технологических требований, а также с учетом требований к эстетике производственных помещений в соответствии со СНиП П-32-74.

Цветовая отделка помещений и окраска технологического оборудования должна производиться в соответствии с CH I8I-70.

Долы приняты: цементные, линолиумные, керамические в соответствии со CHall II-B.8-7I. Наружные поверхности стен выполняются с расшивкой швов.

## 4. САНИТАРНО-ТЕХНИЧЕСКАЯ ЧАСТЬ

## 4.1. Общие сведения

Проект отопления и вентиляции здания решеток разработан в соответствии с действукцими нормами. При разработке проекта приняты расчетные температуры наружного воздуха: для отопления  $t_a = -20^{\circ}\text{C}$ ;  $-30^{\circ}\text{C}$ ;  $-40^{\circ}\text{C}$ ; для аентиляции  $t_b = -9.5^{\circ}\text{C}$ ;  $-19^{\circ}\text{C}$ ;  $-28^{\circ}\text{C}$ . Внутренние температуры приняты: помещение решеток — (+16°C). электрощитовая — (+16°C).

#### 4.2. Теплоснабление

В проекта прадусмотрены два варианта систем теплоснабжения: от центральной котельной с параметрами теплоносителя 150°-70°С; от местной котельной с параметрами теплоносителя 95°-70°С. Ввод в зачиме осуществалется в помещение решеток.

#### 4.3. Стопление

Система отопления здания релеток - двухтрубная, тупиковая, с верхней разводкой.

В начестве напревательных приборов приняти радиаторы "М-I40 A0", в помещении электропричовой - регистр из гладких электросварных труб.

Трубопроводы прокладываются с уклоном l = 0.003. Прокладываемые в подпольных каналах трубопроводы изолируются изделиями из стеклоштапельного волокна  $\delta = 40$  мм с последувщим покрытием по изоляции рулонным стеклопластиком.

Все трубопроводы и нагревательные приборы окрашиваются масляной краской за два раза.

#### 4.4. Вентиляция

В помещении решеток запроектирована приточно-вытяжная вентиляция с механическим побуждением. Приток осуществляется системой П-I, вытяжка — системой В-I.

В электрощитовой предусматривается естественная вытяжка, осуществляемая с помощью шахты, обсрудованной дефлектором. Приток — естественный, через открываемые фрамуги окон.

Все металлические и асбестоцементные воздуховоды окрашиваются масляной краской.

 $902 - 2 - 345 \tag{1}$ 

17668-01

Воздуховоды вытяжных систем после вентилятора изолируются изделиями из стеклоштапельного волокна  $\delta$  = 40 мм с последущим покрытием по изоляции рулонным стеклопластиком.

Монтаж отопительно-вентиляционного оборудования вести в соответствии со СНиП Ш-28-75.

#### 5. DJEKTPOTEXHUJECKAS YACTL

## 5. І. Общие сведения

В состав проекта входит: электроснабжение, силовое электрооборудование, автоматизация электропривода, технологический контроль, электрическое освещение.

В здании решеток все помещения приняты с нормальной средой.

# Характеристика потребителя электроэнергии и выбор электродвигателя

Основным потребителем электроэнергии в здании является центробежный насос.

**Электродвигатели** механизмов приняты асинхронными с короткозамкнутым ротором для прямого включения на полное напряжение сети  $\sim$  380В и поставляются комплектно с приводимыми механизмами.

# 5.3. Внешнее электроснабжение

По степени надежности электроснабжения электроприемники здания решеток относятся ко П-ой категории потребителей. Согласно ПУЭ, электроснабжение проектируемого сооружения предусматривается от устанавливаемых в производственно-вспомогательном здании КТП-I (шкаф № I) и КТП-2 (шкаф № I) двумя кабельными вводами напряжением 380/220 В.

# 5.4. Силовое электрооборудование

Вводными устройствами проектируемого сооружения являются однофидерные ящики типа ЯБПБУ-4. В качестве распределительного шкафа принят силовой пункт типа СП-62. Пусковая и коммутационная аппаратура всех электродвигателей располагается в зоне видимости механизмов в шкафах типа ЯУ-5100 или в шкафах, комплектуемых с механизмами решеток на заводе-изготовителе.

Питающие и распределительные сети выполняются кабелем марки ABBI, контрольные кабели приняты нарки AKBBI. Прокладка кабелей осуществляется в трубах в полу и по внутренним перегородкам на ско-бах.

# 5.5. Управление и автоматизация

Управление насосами предусмотрено ручное, управление решетками - автоматическое по типовым схемам.

## 5.6. Технологический контроль

Проектом предусматриваются местные измерения следующих технологических нараметров; измерение давления воды в напорных трубопроводах насосов — манометром ОБМІ-100; контроль уровня в подводящем лотке решетки, осуществляемый регулятором-сигнализатором уровня типа ЭРСУ-3;

температуры приточного воздуха; температуры воздуха перед калорифером; температуры обратного теплоносителя.

# 17668-01

## Аварийная сигнализация

В шкаф сигнализации, установленный в производственно-вспомогательном адании, выносится сигнал аварийного состояния решеток.

# 5.7. Электрическое освещение

Проектом выполнено общее рабочее, аварийное и местное освещение.

Напряжение электрической сети 380/220 В.

Лампы рабочего аварийного освещения включаются на 220 В. Сеть местного освещения питается через понизительные трансформаторы 220/36 В.

Величины освещенностей приняты в соответствии с нормами проектирования на естественное и искусственное освещение СНиП  $\Pi$ -4-79.

Питающие и групповые сети выполняются кабелем марки АВВГ с креплением на скобах.

В качестве осветительной арматуры применяются светильники с лампами накаливания.

Осветительные щитки приняты типа ОШВ.

Все металлические нетоковедущие части осветительной арматуры, а также один из выводов вторичной обмотки понижающего трансформатора, зануляются путем присоединения к нулевому рабочему проводу сети освещения.

## 6. CBR3b II CNITHAJIN3ALINR

В здании решеток станции биологической очистки сточных вод запроектирована местная телефонная связь, осуществляемая через коммутатор оперативной связи диспетчера станции.

Телефонная распределительная сеть выполняется кабелем TIB-I0x2x0,4, прокладываемым по стене от места ввода в здание до распределительной коробки КРТП-I0x2, устанавливаемой на стене.

Аоснентская сеть от распределительной коробки выполняется проводом ПТВЖ-2х0,6 открыто по стене Подключение распределительной сети к коммутатору производится при привязке проекта здания к наружным сетям стенции.

# 7. МЕРОПРИЯТИЯ ПО ТЕХНИКЕ ВЕЗОПАСНОСТИ

Для окраны труда обслуживающего персонала проектом предусмотрен ряд мероприятий, в числе которых:

система производственной вентилиции;

заземление всех металлических нетоковедущих частей электрооборудования, силового и осветительного;

парильное ограждение вестикцы и площадки;

щиты из рифисной стали над приямками и каналами в полу;

ножуми для перекрытия всех вращающихся частей агрегатов.

17668-01

## 8. YKABAHVA DO REMBARKE

# 8.I. Texnosourmeeres ucors

Cornection a receivamen whosever and recomme adverture personal expension of the cornection of the cor

В зависимости от процускией сполобности стемири определяются сечение подводащих и отводищих воткох (см. теблицу 2).

В соответствии со сканой движения ото ной води по всем соорущениям определяются отметая вода влания и высота несыпт.

В начества реболей води для информераторов песколовок может быть использована осветления вода после первичных отстойников.

Ро набедание ассленения сточной води в прадохранительный бак на вакуумном трубопроводе от насосных аграгалов прадусматривается устройство петли с расположением верхней точки ее на вмооте но мензо 6,5 и от максилального уколия пирости в призилом резорвуере.

### 8.2. Строительная честь

В ээвтенности от требуемой высети иссиии спраделлется тип фундаментов и конструкция портала ионоролься для уделения контойнеров из здания решеток.

По тоблицом в занисимости от располной зимной тогноратури наружного воздуха подбирается тол-

Проченодится понярольная проворка фунцамонтов на наменанию фланко-маканические свойства грунгов.