
ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Н А Ц И О Н А Л Ь Н Ы М
С Т А Н Д А Р Т

Р О С С И Й С К О Й
Ф Е Д Е Р А Ц И И

ГОСТ Р исо
10303-11—
2009

Системы автоматизации производства
и их интеграция

ПРЕДСТАВЛЕНИЕ ДАННЫХ
ОБ ИЗДЕЛИИ

И ОБМЕН ЭТИМИ ДАННЫМИ
Ч а с т ь 11

Методы описания.
Справочное руководство по языку EXPRESS

ISO 10303-11:2004
Industrial automation systems and integration — Product data representation and

exchange — Part 11: Description methods.
The EXPRESS language reference manual

(IDT)

Издание официальное

Ю
h-

Стандартинформ
2010

программа энергетической эффективности

https://meganorm.ru/Data2/1/4293802/4293802363.htm

ГОСТ Р И С 010303-11 — 2009

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от
27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стан­
дартов Российской Федерации — ГОСТ Р 1.0 — 2004 «Стандартизация в Российской Федерации. Основ­
ные положения»

Сведения о стандарте

1 ПОДГОТОВЛЕН Государственным научным учреждением «Центральный научно-исследователь­
ский и опытно-конструкторский институт робототехники и технической кибернетики» на основе собственного
аутентичного перевода на русский язык стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК459 «Информационная поддержка жизнен­
ного цикла изделий»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регули­
рованию и метрологии от 14 сентября 2009 г. № 366-ст

4 Настоящий стандарт идентичен международному стандарту ИСО 10303-11:2004 «Системы авто­
матизации производства и их интеграция. Представление данных об изделии и обмен этими данными.
Часть 11. Методы описания. Справочное руководство по языку EXPRESS» (ISO 10303-11:2004 «Industrial
automation systems and integration — Product data representation and exchange — Part 11: Description methods.
The EXPRESS language reference manual»).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных междуна­
родных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о
которых приведены в дополнительном приложении ДА

5 ВЗАМЕН ГОСТ Р ИСО 10303-11— 2000

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом инфор­
мационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно
издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены)
или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежеме­
сячно издаваемом информационном указателе «Национальные стандарты». Соответствующая ин­
формация, уведомление и тексты размещаются также в информационной системе общего пользова­
ния — на официальном сайте Федерального агентства по техническому регулированию и метрологии
в сети Интернет

© Стандартинформ, 2010

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распро­
странен в качестве официального издания без разрешения Федерального агентства по техническому регу­
лированию и метрологии

ГОСТ Р И С 010303-11 — 2009

Содержание

1 Область прим енения ... 1
2 Нормативные с с ы л к и ... 1
3 Термины и определения... 2

3.1 Термины, определенные в ИСО 10303-1 ... 2
3.2 Термины, определенные в ИСО/МЭК 10646-1 ... 2
3.3 Другие о п р е д е л е н и я .. 2

4 Требования соответствия.. 3
4.1 Формальные спецификации, написанные на языке E X P R E S S ... 3

4.1.1 Лексический я з ы к ... 3
4.1.2 Графическая ф о р м а .. 4

4.2 Реализации языка E X P R E S S .. 4
4.2.1 Синтаксический анализатор языка E X P R E S S .. 4
4.2.2 Графический р е д а к т о р ... 4

5 Фундаментальные п р и н ц и п ы .. 4
6 Синтаксис спецификации я з ы к а ... 5

6.1 Синтаксис специф икации... 5
6.2 Обозначение специальных си м во л о в .. 6

7 Основные элементы я з ы к а .. 6
7.1 Набор с и м в о л о в .. 7

7.1.1 Ц и ф р ы ... 7
7.1.2 Б у к в ы ... 7
7.1.3 Специальные с и м в о л ы ... 7
7.1.4 П одчеркивание... 7
7.1.5 Пустое пр о стр а н ство ... 8
7.1.6 К о м м е н та р и и ... 8

7.2 Зарезервированные слова ... 10
7.2.1 Ключевые с л о в а ... 10
7.2.2 Зарезервированные слова, обозначающие операторы ... 10
7.2.3 Встроенные констан ты .. 11
7.2.4 Встроенные ф у н к ц и и ... 11
7.2.5 Встроенные процед уры ... 11

7.3 З н а к и ... 11
7.4 И дентиф икаторы .. 12
7.5 Л и те р а л ы ... 12

7.5.1 Двоичный л и т е р а л .. 12
7.5.2 Целочисленный л и те р а л .. 12
7.5.3 Действительный л и те р а л ... 12
7.5.4 Строковый л и те р а л .. 13
7.5.5 Логический л и т е р а л .. 14

8 Типы д а н н ы х ... 14
8.1 Простые типы д а н н ы х .. 14

8.1.1 Числовой тип д а н н ы х ... 14
8.1.2 Действительный тип д а н н ы х .. 15
8.1.3 Целочисленный тип д а н н ы х .. 15
8.1.4 Логический тип д а н н ы х ... 15
8.1.5 Булев тип д а н н ы х ... 15
8.1.6 Строковый тип д а н н ы х ... 16
8.1.7 Двоичный тип д а н н ы х .. 16

8.2 Агрегированные типы д а н н ы х .. 17
8.2.1 Тип данных A R R A Y ... 17
8.2.2 Тип данных L IS T ... 18
8.2.3 Тип данных B A G ... 19
8.2.4 Тип данных S E T .. 19
8.2.5 Уникальность значений в агрегированных структурах... 20

III

ГОСТ Р И С 010303-11 — 2009

8.3 Именованные типы д а н н ы х .. 21
8.3.1 Объектный тип д а н н ы х .. 21
8.3.2 Определенный тип д а н н ы х .. 21

8.4 Конструкционные типы д а н н ы х ... 21
8.4.1 Перечисляемый тип д а н н ы х .. 22
8.4.2 Выбираемый тип д а н н ы х .. 24

8.5 Обобщенные типы д а н н ы х .. 25
8.6 Классификация применения типов д а н н ы х ... 26

8.6.1 Конкретизирующие типы д а н н ы х .. 26
8.6.2 Параметрические типы д а н н ы х .. 27
8.6.3 Базисные типы д а н н ы х ... 27

9 О бъ явления .. 27
9.1 Объявление т и п а ... 28
9.2 Объявление о б ъ е кта .. 29

9.2.1 А т р и б у т ы .. 29
9.2.2 Локальные п р а в и л а ... 33
9.2.3 Подтипы и супертипы .. 35
9.2.4 Абстрактный объектный тип д а н н ы х .. 40
9.2.5 Ограничения подтипов/супертипов.. 41
9.2.6 Неявные о б ъ я в л е н и я ... 44
9.2.7 Конкретизация.. 45

9.3 С х е м а ... 46
9.4 К он ста нта .. 47
9.5 А л го р и тм ы ... 47

9.5.1 Ф у н кц и я .. 47
9.5.2 П роцед ура ... 48
9.5.3 П арам етры .. 48
9.5.4 Локальные перем енны е.. 53

9.6 П р а в и л о ... 53
9.7 Ограничения п о д т и п о в ... 55

9.7.1 Ограничение абстрактного супертипа ... 56
9.7.2 Подтипы полного п о кр ы ти я .. 56
9.7.3 Перекрывающиеся подтипы и их специф икация.. 57

10 Область видимости и в и д и м о с т ь ... 58
10.1 Правила области вид им ости ... 58
10.2 Правила вид им ости .. 59
10.3 Правила для явных эл ем ентов ... 60

10.3.1 Оператор альтернативных имен A L IA S ... 61
10.3.2 А т р и б у т .. 61
10.3.3 К о н станта .. 61
10.3.4 Элемент перечисления.. 61
10.3.5 О б ъ е к т ... 61
10.3.6 Ф у н кц и я ... 62
10.3.7 П ара м е тр .. 62
10.3.8 П роцед ура ... 62
10.3.9 Выражение Q U E R Y .. 62
10.3.10 Оператор ц и к л а ... 63
10.3.11 П р а в и л о .. 63
10.3.12 Метка п р а в и л а ... 63
10.3.13 С х е м а .. 63
10.3.14 Ограничение п о д ти п а .. 64
10.3.15 Т и п .. 64
10.3.16 Метка т и п а .. 64
10.3.17 П ерем енная .. 64

IV

ГОСТ Р И С 010303-11 — 2009

11 Спецификация интерф ейсов.. 65
11.1 Спецификация интерфейса U S E .. 65
11.2 Спецификация интерфейса R EFE R E N C E .. 65
11.3 Взаимодействие интерфейсов USE и R EFE R E N C E .. 66
11.4 Импорт объектов посредством неявных интерф ейсов... 66

11.4.1 Импорт ко н ста н т .. 67
11.4.2 Импорт определенных типов д а н н ы х ... 67
11.4.3 Импорт объектных типов д а н н ы х ... 67
11.4.4 Импорт ф у н кц и й .. 68
11.4.5 Импорт п р о ц е д у р .. 68
11.4.6 Импорт п р а в и л ... 68
11.4.7 Импорт ограничений п о д ти по в .. 68

12 В ы раж ения ... 68
12.1 Арифметические о п е р а т о р ы .. 69
12.2 Операторы отн ош ени й .. 70

12.2.1 Операторы сравнения з н а ч е н и й ... 71
12.2.2 Операторы сравнения э кзе м п л я р о в ... 74
12.2.3 Оператор принадлежности... 75
12.2.4 Интервальные вы раж ения ... 76
12.2.5 Оператор сопоставления с т р о к .. 76

12.3 Двоичные операторы ... 77
12.3.1 Индексирование двоичных ч и с е л ... 77
12.3.2 Оператор двоичной конкатенации... 78

12.4 Логические о п ераторы ... 78
12.4.1 Оператор N O T ... 78
12.4.2 Оператор A N D ... 78
12.4.3 Оператор O R .. 79
12.4.4 Оператор X O R ... 79

12.5 Строковые операторы .. 80
12.5.1 Индексирование с т р о к ... 80
12.5.2 Оператор конкатенации с т р о к ... 80

12.6 Операторы агрегированных с тр у кту р .. 80
12.6.1 Индексирование агрегированных с т р у к т у р ... 81
12.6.2 Оператор п е р е се ч е н и я ... 81
12.6.3 Оператор о б ъ е д и н е н и я .. 82
12.6.4 Оператор р а з л и ч и я ... 83
12.6.5 Оператор подмножества... 84
12.6.6 Оператор супермножества.. 84
12.6.7 Оператор за п р о с а ... 84

12.7 С с ы л ки ... 85
12.7.1 Простые с с ы л к и ... 85
12.7.2 Префиксные с с ы л к и ... 86
12.7.3 Ссылки на а тр и б уты ... 86
12.7.4 Групповые с с ы л к и ... 87

12.8 Вызов ф у н кц и и ... 88
12.9 Инициализатор агрегированных с тр у кту р ... 89
12.10 Оператор построения экземпляра сложного о б ъ е кта ... 90
12.11 Совместимость т и п о в .. 90
12.12 Выбираемые типы данных в вы раж ениях.. 91

12.12.1 Выбираемые типы данных в унарных вы раж ениях... 91
12.12.2 Выбираемые типы данных в бинарных вы раж ениях.. 91
12.12.3 Выбираемые типы данных в тернарных вы ражениях... 92

13 Исполняемые операторы ... 92
13.1 Пустой о п е р а то р .. 92
13.2 Оператор A L IA S ... 92

V

ГОСТ Р ИС010303-11 — 2009

13.3 Присваивание... 93
13.3.1 Оператор присваивания.. 93
13.3.2 Совместимость по присваиванию.. 93

13.4 Оператор C A S E .. 95
13.5 Составной оператор... 96
13.6 Оператор ESCAPE... 96
13.7 Оператор IF...THEN...ELSE.. 97
13.8 Оператор вызова процедуры... 97
13.9 Оператор REPEAT.. 97

13.9.1 Инкрементное управление.. 98
13.9.2 Управляющее условие W H ILE .. 99
13.9.3 Управляющее условие U N T IL .. 99

13.10 Оператор RETURN.. 99
13.11 Оператор S K IP .. 99

14 Встроенные константы... 100
14.1 Константа е .. 100
14.2 Неопределенность.. 100
14.3 Константа FALSE... 100
14.4 Константа P I ... 100
14.5 S E L F .. 100
14.6 Константа T R U E .. 100
14.7 Константа UNKNOWN... 100

15 Встроенные ф ункции.. 101
15.1 Арифметическая функция A B S ... 101
15.2 Арифметическая функция A C O S .. 101
15.3 Арифметическая функция A S IN .. 101
15.4 Арифметическая функция A TA N .. 101
15.5 Двоичная функция BLENGTH... 101
15.6 Арифметическая функция C O S .. 102
15.7 Универсальная функция EX ISTS... 102
15.8 Арифметическая функция E X P ... 102
15.9 Универсальная функция FORMAT... 102

15.9.1 Символьное представление.. 102
15.9.2 Представление шаблоном... 103
15.9.3 Стандартное представление.. 104

15.10 Арифметическая функция HIBOUND... 104
15.11 Арифметическая функция H IINDEX... 104
15.12 Строковая функция L E N G T H ... 105
15.13 Арифметическая функция LOBOUND.. 105
15.14 Арифметическая функция L O G ... 105
15.15 Арифметическая функция LO G 2 .. 106
15.16 Арифметическая функция LO G 10.. 106
15.17 Арифметическая функция LOINDEX... 106
15.18 Функция пустого значения N V L .. 106
15.19 Арифметическая функция O D D ... 106
15.20 Универсальная функция ROLESOF.. 107
15.21 Арифметическая функция S IN .. 107
15.22 Агрегированная функция S IZEO F... 108
15.23 Арифметическая функция S O R T .. 108
15.24 Арифметическая функция T A N ... 108
15.25 Универсальная функция TYPEO F.. 108
15.26 Универсальная функция USEDIN ... 110
15.27 Арифметическая функция VA LU E.. 111
15.28 Функция принадлежности V A LU E JN ... 111
15.29 Функция уникальности VALUEJJNIQUE.. 111

VI

ГОСТ Р И С 010303-11 — 2009

16 Встроенные процед уры .. 112
16.1 Процедура IN S E R T ... 112
16.2 Процедура R E M O V E .. 112

Приложение А (обязательное) Синтаксис языка E X P R E S S .. 113
А.1 Лексические эл е м е н ты .. 113

А.1.1 Ключевые с л о в а ... 113
А.1.2 Классы с и м в о л о в ... 115
А.1.3 Лексические эл е м е н ты ... 116
А.1.4 Ком м ентарии... 116
A . 1.5 Интерпретированные идентиф икаторы ... 116

А.2 Грамматические п р а в и л а .. 116
A. 3 Список перекрестных с с ы л о к .. 121

Приложение В (обязательное) Определение допустимых реализаций объ ектов 127
B. 1 Формализованный п о д х о д .. 127
В.2 Операторы ограничения супертипов и под ти по в ... 128

B. 2.1 O N E O F ... 128
В.2.2 A N D .. 128
В.2.3 A N D O R .. 128
В.2.4 Приоритет операторов ... 128

В.3 Интерпретация возможных типов данных сложных о б ъ е кто в .. 128
Приложение С (обязательное) Ограничения на экземпляры, налагаемые спецификацией интерфейса 138
Приложение D (обязательное) Графическое подмножество языка EXPRESS — EXPRESS-G........... 141

D.1 Введение и о б з о р ... 141
D.2 Обозначения определений .. 141

D.2.1 Обозначения простых типов д а н н ы х .. 141
D.2.2 Обозначения конструкционных типов д а н н ы х ... 142
D.2.3 Обозначение определенных типов д а н н ы х .. 143
D.2.4 Обозначение объектных типов д а н н ы х ... 144
D.2.5 Обозначение ограничений п о д ти по в .. 144
D.2.6 Обозначение функций и п р о ц е д ур .. 144
D.2.7 Обозначение п р а в и л .. 144
D.2.8 Обозначение с х е м ... 144

D.3 Обозначение взаим освязей... 144
D.4 Обозначение компоновки д и а гр а м м .. 145

D.4.1 Ссылки между стран ицам и ... 146
D.4.2 Ссылки между с х е м а м и ... 146

D.5 Диаграммы уровня о б ъ е кто в ... 146
D.5.1 Имена р о л е й .. 146
D.5.2 Мощности м н о ж е ств ... 146
D.5.3 О гр а н и ч е н и я .. 147
D.5.4 Конструкционные и определенные типы д а н н ы х .. 147
D.5.5 Объектные типы д а н н ы х .. 148
D.5.6 Ссылки между с х е м а м и ... 151

D.6 Диаграммы уровня с х е м ... 151
D. 7 Полные EXPRESS-G д и аграм м ы ... 152

D.7.1 Полная диаграмма уровня о б ъ е кто в .. 152
D.7.2 Полная диаграмма уровня с х е м .. 153

Приложение Е (обязательное) Заявка о соответствии реализации протоколу (З С Р П)...................... 154
E. 1 Синтаксический анализатор языка E X P R E S S .. 154
E. 2 Средство редактирования E XP R ES S -G ... 154

Приложение F (обязательное) Регистрация информационного об ъ е кта ... 156
F. 1 Обозначение д о кум е н та ... 156
F. 2 Обозначение синтаксиса .. 156

Приложение G (обязательное) Генерация одной схемы из нескольких с х е м 157
G. 1 В ве д е н и е ... 157
G.2 Основные п о н я т и я .. 157

VII

ГОСТ Р И С 010303-11 — 2009

G.3 Изменение и м е н ... 158
G.3.1 Конфликты и м е н .. 158
G.3.2 Идентификаторы, представленные стр о ка м и .. 158

G.4 Этап 1 — преобразование нескольких схем в промежуточную с х е м у 158
G.4.1 В ве д е н и е ... 158
G.4.2 Первичное содерж им ое... 159
G.4.3 Вторичное содерж им ое ... 160
G.4.4 С окращ ение .. 165
G.4.5 Имена и версии с х е м ... 169

G. 5 Этап 2 — преобразование промежуточной схемы в схему по ИСО 10303-11:1994 . . . 170
G.5.1 В ве д е н и е ... 170
G.5.2 И нициализация.. 170
G.5.3 Преобразование наращиваемых конструкционных типов д а н н ы х 170
G.5.4 Преобразование ограничений п о д ти по в ... 173
G.5.5 Преобразование абстрактных объектных и обобщенных типов д а н н ы х 175
G. 5.6 Преобразование атрибутов, переименованных при повторном объявлении............ 176

Приложение Н (справочное) В заим освязи.. 178
H. 1 Взаимосвязи через а тр и б уты ... 178

H. 1.1 Простая взаим освязь ... 179
Н.1.2 Групповая взаим освязь.. 180
Н.1.3 Дистрибутивная взаим освязь ... 181
Н.1.4 Инверсный а тр и б у т ... 182

Н.2 Взаимосвязи подтип/супертип.. 182
Приложение J (справочное) Модели на языке EXPRESS для примеров, иллюстрирующих

E X P R E S S -G ... 183
J.1 Пример модели единой с х е м ы .. 183
J.2 Модель взаим освязей.. 184
J.3 Простое дерево подтипов/супертипов.. 184
J.4 Повторное объявление атр и буто в .. 185
J.5 Модели, состоящие из нескольких с х е м ... 185

Приложение К (справочное) Возможность языка EXPRESS, не рекомендуемые к использованию . . 187
Приложение L (справочное) Пример использования новых конструкций языка E XP R ES S 188

L.1 Пример управления разработкой и зд е л и й ... 188
Приложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов

ссылочным национальным стандартам Российской Ф едерации..................................... 190
Библиограф ия... 191

VIII

ГОСТ Р И С 010303-11— 2009

Введение

Стандарты комплекса ИС0 10303 распространяются на компьютерное представление информации об
изделиях и обмен данными об изделиях. Их целью является обеспечение нейтрального механизма, спо­
собного описывать изделия на всем протяжении ихжизненного цикла. Этот механизм применим не только
для нейтрального обмена файлами, но является также основой для реализации и совместного доступа к
базам данных об изделиях и организации архивирования.

Стандарты комплекса ИС0 10303 представляют собой набор отдельно издаваемых стандартов (час­
тей). Структура комплекса ИС0 10303 определена в ИС0 10303-1. Стандарты данного комплекса относятся
к одной из следующих тематических групп: методы описания, методы реализации, методология и основы
аттестационного тестирования, интегрированные обобщенные ресурсы, интегрированные прикладные ре­
сурсы, прикладные протоколы, комплекты абстрактных тестов, прикладные интерпретированные конструк­
ции и прикладные модули. Настоящий стандарт входит в тематическую группу методов описания.

Полный перечень стандартов комплекса ИСО 10303 доступен в Интернете на сайте
http://www.td 84-sc4.org/titles/.

Настоящий стандарт определяет элементы языка EXPRESS. Каждый элемент языка представлен в
собственном контексте с примерами. Сначала представлены простые элементы, а далее с нарастающей
сложностью определяются более сложные конструкции. Настоящая вторая редакция И С0 10303-11 вклю­
чает в себя небольшой пересмотр положений первой редакции (И С 0 10303-11:1994), за которой временно
сохранен статус действующего стандарта для поддержки основанных на ней реализаций языка EXPRESS
и нормативных ссылок в других стандартах комплекса И С 0 10303. Во вторую редакцию включена также
Техническая поправка И С 0 10303-11:1994/Кор.1:1999.

Изменения, которые привели к необходимости выпуска настоящей второй редакции, были вызваны
требованиями мультисхемных спецификаций. Новые положения определяют архитектуру расширяемых
моделей данных. В настоящий стандарт были добавлены следующие ключевые слова:

-BASED_ON;
- END_SUBTYPE_CONSTRAINT;
- EXTENSIBLE;
- GENERIC_ENTITY;
-RENAMED;
- SUBTYPE_CONSTRAINED;
-TOTALJDVER;
-WITH.
Схемы, содержащие данные слова в качестве идентификаторов языка EXPRESS, становятся

недействительными для области применения настоящего стандарта. Кроме того, изменения, включенные
в настоящую редакцию стандарта, являются совместимыми снизу вверх по отношению к предыдущей
редакции.

Обзор языка
EXPRESS — это название формального языка спецификации информационных требований. Язык

EXPRESS применяется для определения информационныхтребований других стандартов комплекса
ИСО 10303. Язык EXPRESS создавался для решения следующих задач:

- объем и сложность стандартов комплекса ИСО 10303 требуют наличия языка, обеспечивающего
восприятие содержащейся в них информации как компьютерами, так и людьми. Представление информа­
ционных объектов из стандартов комплекса ИС0 10303 в нестрого формализованном виде исключило бы
возможность применения вычислительной техники для проверки несоответствий в представлениях инфор­
мационных объектов или создания произвольного числа их вторичных представлений, включая представ­
ления реализаций информационных объектов;

- язык EXPRESS разработан для обеспечения возможности структурирования разнообразных дан­
ных, относящихся к стандартам комплекса ИС0 10303. В данном языке EXPRESS-схема является основой
для структурирования и взаимосвязи элементов представления данных об изделии;

- посредством языка определяются логические объекты, представляющие объекты реального мира.
Определение объекта дается через его свойства, задаваемые областью ихзначений и накладываемыми на
нее ограничениями;

- язык, насколько это возможно, не должен быть привязан к конкретным реализациям. Тем не менее,
имеется возможность создания представлений реализации (например, обмен статическими файлами) авто­
матическим и прямым способом.

IX

https://meganorm.ru/Index2/1/4293798/4293798879.htm

ГОСТ Р И С 0 10303-11 — 2009

В языке EXPRESS объекты определяются через их атрибуты, характеризующ ие признаки или харак­
теристики объектов, имеющие большое значение для их понимания и использования. Атрибуты могут быть
представлены простыми данными (например, целым числом) или другими объектами. Геометрическая точ­
ка может быть определена тремя действительными числами. Имена, присвоенные атрибутам, включают­
ся в определение объекта. Так, для геометрической точки три действительных числа могут быть названы X,
Y и Z. В языке установлена взаимосвязь между определяемым объектом и определяющ ими его атрибута­
ми, а также между атрибутом и его представлением.

П р и м е ч а н и я
1 При разработке языка EXPRESS были учтены особенности ряда языков, в частности, Ada, Algol, С, C++,

Euler, Modula-2, Pascal, PL/I и SQL. Некоторые возможности были добавлены в язык EXPRESS, чтобы сделать его
более пригодным для описания информационных моделей.

2 В настоящем стандарте примеры текстов на языке EXPRESS не соответствуют правилам какого-либо
конкретного стиля. Действительно, в примерах иногда используется плохой стиль для того, чтобы сэкономить
место или показать гибкость языка. Приведенные примеры не предназначены для того, чтобы отразить
содержание информационных моделей, установленных в других стандартах комплекса ИСО 10303. Примеры
приведены для того, чтобы продемонстрировать конкретные особенности языка EXPRESS. Не следует
придавать значение какому-либо сходству между примерами, приведенными в настоящем стандарте, и норма­
тивными информационными моделями, установленными в других стандартах комплекса ИСО 10303.

X

ГОСТ Р ИСО 10303-11— 2009

Н А Ц И О Н А Л Ь Н Ы Й С Т А Н Д А Р Т Р О С С И Й С К О Й Ф Е Д Е Р А Ц И И

Системы автоматизации производства и их интеграция

ПРЕДСТАВЛЕНИЕ ДАННЫХ ОБ ИЗДЕЛИИ И ОБМЕН ЭТИМИ ДАННЫМИ

Ч а с т ь 11
Методы описания.

Справочное руководство по языку EXPRESS

Industrial automation systems and integration. Product data representation and exchange.
Part 11. Description methods. The EXPRESS language reference manual

Дата введения — 2010 — 07— 01

1 Область применения

В настоящем стандарте определен язык, посредством которого могут быть описаны данные об изде­
лии. Данный язык называется EXPRESS.

В настоящем стандарте также определено графическое представление для подмножества конструк­
ций языка EXPRESS. Данное графическое представление называется EXPRESS-G.

EXPRESS является языком определения данных, как это установлено в И С 0 10303-1. Данный язык
состоит из элементов, которые позволяют однозначно определять данные и устанавливать ограничения на
эти данные.

Область применения настоящего стандарта распространяется на:
-типы данных;
- ограничения на экземпляры типов данных.
Область применения настоящего стандарта не распространяется на:
- определение форматов баз данных;
- определение форматов файлов;
- определение форматов передачи;
- управление процессами;
- обработку информации;
- обработку исключительных ситуаций.
Язык EXPRESS не является языком программирования.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие международные стандарты:
ИСО 10303-1:1994 Системы автоматизации производства и их интеграция. Представление данных

об изделии и обмен этими данными. Часть 1. Общие представления и основополагающие принципы
(ISO 10303-1:1994, Industrial automation systems and integration — Product data representation and exchange —
Part 1: Overview and fundamental principles)

ИСО/МЭК 8824-1:2002 Информационные технологии. Взаимосвязь открытых систем. Абстрактная син­
таксическая нотация версии один (АСН.1). Часть 1. Спецификация основной нотации (ISO/IEC 8824-1:2002,
Information technology — Abstract Syntax Notation One (ASN.1): Specification of basic notation)

ИСО/МЭК 10646:2003 Информационные технологии. Универсальный многооктетный набор закодиро­
ванных символов (UCS) [ISO/IEC 10646:2003, Information technology— Universal Multiple-Octet Coded Character
Set (UCS)]

Издание официальное

1

ГОСТ Р И С 0 10303-11— 2009

3 Термины и определения

3.1 Термины, определенные в ИСО 10303-1
В настоящем стандарте применены следующие термины:
- требование соответствия (conformance requirement);
- контекст (context);
-данные (data);
- язык определения данных (data specification language);
- информация (information);
- информационная модель (information model);
- форма ЗСРП (PICS proforma).
3.2 Термины, определенные в ИСО/МЭК10646-1
В настоящем стандарте применен следующий термин:
графический символ (graphic character).

П р и м е ч а н и е — Данное определение охватывает только те символы из ИСО/МЭК 10646, которые
имеют установленное визуальное представление; тем самым исключаются любые пустые или заштрихован­
ные позиции в таблице символов.

3.3 Другие определения
В настоящем стандарте также применены следующие термины с соответствующими определе­

ниями:
3.3.1 сложный объектный тип данных (complex entity data type): Представление объекта. Слож­

ный объектный тип данных устанавливает область значений, определяемую общими атрибутами и ограни­
чениями допустимой комбинации объектных типов данных в конкретном графе подтипов/супертипов.

3.3.2 экземпляр сложного объекта (сложного объектного типа данных) [complex entity (data
type) instance]: Именованное значение сложного объектного типа данных. Имя экземпляра сложного объек­
та используется для ссылок на данный экземпляр.

3.3.3 значение сложного объекта (сложного объектного типа данных) [complex entity (data
type) value]: Элемент данных, представляющий элемент информации в рамках класса, определяемого слож­
ным объектным типом данных. Данный элемент принадлежит области определения, установленной данным
сложным объектным типом данных.

3.3.4 константа (constant): Именованный элемент данных из заданной области определения, значе­
ние которого не может быть изменено.

3.3.5 тип данных (data type): Область значений.
3.3.6 объект (entity): Класс информации, определенный общими свойствами.
3.3.7 объектный тип данных (entity data type): Представление объекта. Объектный тип данных уста­

навливает область значений, определяемую общими атрибутами и ограничениями.
3.3.8 экземпляр объекта (объектного типа данных) [entity (data type) instance]: Именованное

значение объектного типа данных. Имя экземпляра объекта используется для ссылок на данный
экземпляр.

3.3.9 значение (отдельного) объекта (объектного типа данных) [(single) entity (data type) value]:
Элемент данных, представляющий элемент информации в рамках класса, определенного объектным ти­
пом данных. Данный элемент принадлежит области определения, установленной данным объектным типом
данных.

3.3.10 экземпляр (instance): Именованное значение.
3.3.11 многолепестковый сложный объект (многолепестковый сложный объектный тип дан­

ных) [multi-leaf complex entity (data type)]: Сложный объектный тип данных, состоящий из нескольких объек­
тных типов данных, которые не имеют последующих подтипов в рамках данного сложного объектного типа
данных.

3.3.12 экземпляр многолепесткового сложного объекта (многолепесткового сложного объек­
тного типа данных) [multi-leaf complex entity (datatype) instance]: Именованное значение многолепестко­
вого сложного объектного типа данных. Имя экземпляра многолепесткового сложного объекта использует­
ся для ссылок на данный экземпляр.

3.3.13 значение многолепесткового сложного объекта (многолепесткового сложного объект­
ного типа данных) [multi-leaf complex entity (data type) value]: Элемент данных, представляющий элемент
информации в рамках класса, определяемого многолепестковым сложным объектным типом данных.

2

ГОСТ Р И С 010303-11 — 2009

Данный элемент принадлежит области определения, установленной данным многолепестковым сложным
объектным типом данных.

3.3.14 частичный сложный объектный тип данных (partial complex entity datatype): Потенциаль­
ное представление объекта. Частичный сложный объектный тип данныхявляется группировкой объектных
типов данных в графе подтипов/супертипов, которая может частично или полностью формировать сложный
объектный тип данных.

3.3.15 значение частичного сложного объекта (partial complex entity value): Значение частичного
сложного объектного типа данных. Данное значение само по себе не имеет смысла и должно объединяться
с другими значениями частичного сложного объекта и с именем для формирования экземпляра сложного
объекта.

3.3.16 совокупность (population): Множество экземпляров объектного типа данных.
3.3.17 основная схема (primary schema): Схема в группе взаимосвязанных схем, образующая ори­

ентированный граф, возможно, циклический. Основная схема является предметом интереса. В графе могут
существовать одна или несколько основных схем, тогда как остальные схемы графа служат только для
поддержки основных схем. Основная схема играет особую роль в преобразовании из короткой формы
схемы в длинную форму (см. приложение G).

3.3.18 корневая схема (root schema): Схема в группе взаимосвязанных схем, образующая ориенти­
рованный граф, возможно, циклический. Корневая схема не является целью в какой-либо спецификации
интерфейса, но все другие схемы должны быть достижимы из корневой схемы. Корневая схема может
рассматриваться в качестве представителя графа. Корневая схема играет особую роль в преобразовании
из короткой формы схемы в длинную форму (см. приложение G).

3.3.19 экземпляр простого объекта (простого объектного типа данных) [simple entity (data type)
instance]: Именованный элемент данных, представляющий блок информации в рамках класса, определен­
ного объектом. Данный элемент принадлежит области определения, установленной отдельным объектным
типом данных.

3.3.20 граф подтипов/супертипов (subtype/supertype graph): Объявленная совокупность объектных
типов данных. Объектные типы данных, объявленные в графе подтипов/супертипов, связаны через форму­
лировку подтипов. Граф подтипов/супертипов определяет один или несколько сложныхобъектныхтипов
данных.

3.3.21 лексема (token): Не подлежащий декомпозиции лексический элемент языка.
3.3.22 значение (value): Элемент данных.

4 Требования соответствия

4.1 Формальные спецификации, написанные на языке EXPRESS
4.1.1 Лексический язык
Формальная спецификация, написанная на языке EXPRESS, должна быть согласована с заданным

уровнем, как определено ниже. Формальная спецификация считается согласованной с заданным уровнем,
если все проверки, установленные для данного уровня и всех более низких уровней, верифицированы для
данной спецификации.

Уровни проверки
Уровень 1 — проверка ссылок. Данный уровень состоит из проверки формальной спецификации для

подтверждения ее синтаксической и ссылочной корректности. Формальная спецификация синтаксически
корректна, если она соответствует синтаксису, сформированному посредством расширения основного син­
таксического правила (syntax), установленного в приложении А. Формальная спецификация корректна в
отношении ссылок, если все ссылки на элементы языка EXPRESS соответствуют области применения и
правилам видимости, установленным в разделах 10 и 11.

Уровень 2 — проверка типов. Данный уровень включает в себя проверку формальной спецификации
для подтверждения ее соответствия следующим требованиям:

- выражения должны удовлетворять правилам, установленным в разделе 12;
- присваивания должны удовлетворять правилам, установленным в 13.3;
- объявления инверсных атрибутов должны удовлетворять правилам, установленным в 9.2.1.3;
- повторные объявления атрибутов должны удовлетворять правилам, установленным в 9.2.3.4.
Уровень 3 — проверка значений. Данный уровень состоит из проверки формальной спецификации

для подтверждения ее соответствия утверждениям типа «А должно быть больше В», установленным

3

ГОСТ Р И С 010303-11 — 2009

в разделах 7 — 16. Данная проверка ограничена случаями, когда значения А и В могут быть выражены
литералами и/или константами.

Уровень 4 — полная проверка. Данный уровень включает в себя проверку формальной спецификации
для подтверждения ее соответствия формулировкам требований, установленных в настоящем стандарте.

Пример — В настоящем стандарте установлено, что функции должны содержать оператор воз­
врата для каждой из возможных ветвей, по которым может пойти процесс при вызове данной функции,
что и должно быть проверено.

4.1.2 Графическая форма
Формальная спецификация, представленная в формате EXPRESS-G, должна быть согласована с за­

данным уровнем, как определено ниже. Формальная спецификация считается согласованной с заданным
уровнем, если все проверки, установленные для данного уровня и всехболее низких уровней, верифици­
рованы для данной спецификации.

Уровни проверки
Уровень 1 — проверка символов и области видимости. Данный уровень включает в себя проверку

формальной спецификации для подтверждения ее соответствия спецификации уровня объекта или специ­
фикации уровня схемы, которые определены в приложении D, разделы D.5 и D.6, соответственно. Данная
проверка предусматривает проверку использования в формальной спецификации символов в соответствии
с приложением D, разделы D.2, D.3 и D.4. Формальная спецификация также должна быть проверена на
соответствие страничных ссылок и повторно объявленных атрибутов требованиям приложения D, подраз­
делы D.4.1 и D.5.5, соответственно.

Уровень 2 — полная проверка. Данный уровень включает в себя проверку формальной спецификации
на предмет установления в ней мест, не соответствующих требованиям уровня полного объекта или уровня
полной схемы, установленным в приложении D, а также требованиям, установленным в разделах? — 16.

4.2 Реализации языка EXPRESS
4.2.1 Синтаксический анализатор языка EXPRESS
Реализация синтаксического анализатора языка EXPRESS должна обеспечивать синтаксический раз­

бор любой формальной спецификации, написанной на языке EXPRESS, в соответствии с ограничениями,
установленными в приложении Е и связанными сданной реализацией. Синтаксический анализатор языка
EXPRESS должен считаться соответствующим конкретному уровню проверки (см. 4.1.1), если он может
выполнять все требуемые для данного (и любого нижележащего) уровня проверки формальной специфика­
ции, написанной на языке EXPRESS.

Разработчик синтаксического анализатора языка EXPRESS должен точно определить все ограниче­
ния, которые реализация накладывает на число и длину идентификаторов, диапазон обрабатываемыхчи-
сел и максимальную точность представления действительных чисел. Данные ограничения должны быть
документально оформлены в виде, установленном в приложении Е, необходимом для проведения аттеста­
ционного тестирования.

4.2.2 Графический редактор
Реализация редактора для графической нотации EXPRESS-G должна обеспечивать создание и ото­

бражение формальных спецификаций, представленных в формате EXPRESS-G, в соответствии сограниче-
ниями, установленными в приложении Е и связанными сданной реализацией. Редактор EXPRESS-G дол­
жен считаться соответствующим конкретному уровню проверки, если он может создавать и отображать
формальные спецификации в формате EXPRESS-G, соответствующие заданному (и любому нижележаще­
му) уровню проверки.

Разработчик редактора EXPRESS-G должен точно определить любые ограничения, которые реализа­
ция накладывает на число и длину идентификаторов, число доступных символов на странице модели и
максимальное число страниц. Данные ограничения должны быть документально оформлены в виде, уста­
новленном в приложении Е, необходимом для проведения аттестационного тестирования.

5 Фундаментальные принципы

Для использования настоящего стандарта необходимо знание представленных ниже понятий.
Схема, написанная на языке EXPRESS, описывает совокупность условий, устанавливающих область

ее определения. Экземпляры объектов могут быть оценены на их принадлежность к данной области опре­
деления. Если экземпляры объектов соответствуют всем условиям, то они объявляются принадлежащими
данной области определения. Если экземпляры объектов не соответствуют каким-либо из условий, то они

4

ГОСТ Р И С 010303-11 — 2009

нарушают данные условия и поэтому не принадлежат данной области определения. В случае если экзем­
пляры объектов не содержат значения для необязательных атрибутов, а при некоторых условиях данные
необязательные атрибуты используются, то может оказаться невозможным определить, соответствуют ли
экземпляры объектов всем условиям. В таком случае считается, что экземпляры объектов принадлежат
данной области определения.

Многим элементам языка EXPRESS присвоены имена. Имя позволяет другим элементам языка ссы­
латься на связанное с этим именем представление. Использование имени в определении других элемен­
тов языка создает ссылку на базовое представление. Хотя в соответствии с синтаксисом языка для обозна­
чения имени используется идентификатор, базовое представление должно быть изучено для понимания
его структуры.

Спецификация объектного типа данных в языке EXPRESS описывает область определения. Предпо­
лагается, что отдельные элементы области определения различаются некоторыми связанными с ними уни­
кальными идентификаторами. Язык EXPRESS не определяет содержание или представление этих иденти­
фикаторов.

Объявление постоянного экземпляра объекта определяет идентифицируемый элемент области опре­
деления, представленный объектным типом данных. Такие экземпляры объектов не должны изменяться
или уничтожаться операциями, выполняемыми в данной области определения.

Процедурные описания ограничений в языке EXPRESS могут объявлять или делать ссылки на допол­
нительные экземпляры объекта как на локальные переменные, которые принимаются как временные иден­
тифицируемые элементы области определения. Данные процедурные описания могут изменять дополни­
тельные экземпляры объекта, но не могут изменять постоянные элементы области определения. Такие
временные элементы области определения доступны только в процессе выполнения процедуры, в которой
они объявлены, и прекращают свое существование после завершения ее выполнения.

Язык EXPRESS не описывает среду реализации. В частности язык EXPRESS не определяет:
- как реализуются ссылки на имена;
- какие другие схемы становятся известными;
- как и когда проверяются ограничения;
- что должна делать реализация, если ограничение нарушено;
- имеют или не имеют право на существование в реализации экземпляры объектов, которые не соот­

ветствуют EXPRESS-схеме;
- когда и как в реализации создаются, изменяются и удаляются экземпляры объектов.

6 Синтаксис спецификации языка

В настоящем разделе определена нотация, используемая для представления синтаксиса языка
EXPRESS.

Полный синтаксис языка EXPRESS приведен в приложении А. Части этих синтаксических правил
воспроизведены в различных разделах настоящего стандарта для иллюстрации синтаксиса конкретных
операторов. Эти части не всегда полны. Поэтому иногда необходимо руководствоваться приложением А в
отношении недостающих в данном примере правил. Части синтаксических правил в тексте настоящего
стандарта представлены в рамках. Каждое синтаксическое правило внутри рамки обозначено слева уни­
кальным номером для использования его в перекрестных ссылках в других синтаксических правилах.

6.1 Синтаксис спецификации
Синтаксис языка EXPRESS определен как производная от синтаксической нотации Вирта (СНВ) [3].
Соглашения об обозначениях и самоопределенная СНВ приведены ниже.

syntax = { production} .
production = identifier ' = ' expression ' . ' .
expression = term { ' | ' te rm } .
term = factor { factor} .
factor = identifier | literal | group | option | repetition
identifier = character { cha rac te r}.
literal = ' " ' character { character} ' " ' .
group = ' (' expression ') ' .
option = ' [' expression '] ' .
repetition = ' { ' expression ' } ' .

5

ГОСТ Р И С 0 10303-11— 2009

Знак равенства '=' обозначает порождающее правило. Элемент слева от знака равенства
определяется как комбинация элементов, расположенных справа от него. Любые пробелы между
элементами правой части не имеют значения, если только они не входят в состав литерала. В конце
порождающего правила ставится точка

Использование идентификатора в любом элементе обозначает нетерминальный символ, который при­
сутствует в левой части другого порождающего правила. Идентификатор состоит из букв, цифр и символа
подчеркивания. Ключевые слова языка представлены порождающими правилами, идентификаторы кото­
рых состоят только из прописных букв.

Литерал используется для обозначения терминального символа, который не может быть раскрыт
в дальнейшем. Литерал представляется последовательностью не зависящих от регистра символов,
заключенной в апострофы. Под символом в данном случае понимается любой символ, определенный
в ИСО /М ЭК10646 в позициях21 — 7Е группы 00, плоскости 00, строки 00. Чтобы апостроф был включен
в литерал, он должен быть записан дважды.

Семантика разных видов скобок определена следующим образом:
-ф игурные скобки '{ }' обозначают ни одного или несколько повторений;
-квадратные скобки ' [] ' обозначают необязательные параметры;
- круглые скобки ' () ' обозначают, что группа порождающих правил, заключенная в круглые скобки,

должна использоваться как единое порождающее правило;
- вертикальная линия ' | ' обозначает, что в выражении должен использоваться только один из

элементов, разделенных вертикальными линиями.

Примеры
1 Синтаксис строкового типа данных определяется следующим образом:

Синтаксис:
311 string_type = STRING [w idth_spec] .
341 width_spec = ' (' width ') ' [FIXED] .
340 width = numeric_expression .

Полное определение синтаксиса, представленное в приложении А, содержит определения лексем
STRING, numeric_expression и FIXED.

2 В соответствии с синтаксисом, приведенном в примере 1, возможны следующие варианты:
string;
string (22) ;
string (19) fixed.
Правило для numeric_expression является достаточно сложным и позволяет представить

много других вариантов.

6.2 Обозначение специальных символов
Следующая нотация используется для представления полных наборов символов и некоторых специ­

альных символов, которые трудно визуально отобразить:
\а — представляет символы в позициях 21-7Е строки 00, плоскости 00, группы 00 из ИСО/МЭК

10646;
\п — представляет символ новой строки (newline), зависящий от системы (см. 7.1.5.2);
\q — представляет символ одиночной кавычки (апострофа) (') и входит в \а;
\s — представляет символ пробела;
\х9, \хА и \xD — представляют символы, расположенные соответственно в позициях 9,10 и 13

строки 00, плоскости 00, группы 00 из ИСО/МЭК 10646.

7 Основные элементы языка

В данном разделе определены основные элементы, из которых формируется EXPRESS-схема: набор
символов, комментарии, знаки, зарезервированные слова, идентификаторы и литералы.

Из основных элементов языка формируется текстовая структура, обычно разделяемая на физические
строки. Физическая строка представляет собой последовательность из любого числа (включая ни одного)
символов, заканчивающуюся символом новой строки (см. 7.1.5.2).

П р и м е ч а н и е — Схема более удобна для восприятия, если операторы разбиты на строки, а для
выделения разных конструкций использованы пробелы.

ГОСТ Р И С 0 10303-11 — 2009

Пример — Следующие форматы записи эквивалентны:
entity point; х, у, z : real; end_entity;
ENTITY point;

x,
У,
Z : REAL;

END_ENTITY;

7.1 Набор символов
В схемах, представленны х на языке EXPRESS, должны использоваться только символы из набора,

включающего символы, расположенные в позициях 0 9 ,0А, 0D, графические символы, лежащ ие в диапазо­
не от 20 до 7Е из И С О /М Э К 10646, а также специальный символ \п , обозначающ ий новую строку. Данный
набор сим волов называется набором символов языка EXPRESS. На символы данного набора можно
ссылаться по позиции, на которой расположен данный символ; номера этих позиций определены в ш ест­
надцатеричной системе. Символы из данного набора, которые могут быть воспроизведены при печати (по­
зиции 2 1 -7 Е из ИСО /М ЭК 10646), комбинируются для формирования лексем языка EXPRESS. Лексемами
EXPRESS являются ключевые слова, идентификаторы, знаки или литералы. Более подробно классифика­
ция набора символов языка EXPRESS рассмотрена ниже.

Таким образом, данный набор символов определен как абстрактный набор символов; он не зависит от
его представления в конкретной реализации.

П р и м е ч а н и я
1 В ИСО/МЭК 6429 [5] установлена семантика символов, расположенных в позициях 09, 0А, 0D из

ИСО/МЭК 10646. Для настоящего стандарта семантика, установленная в ИСО/МЭК 6429, не требуется, но она и не
противоречит ему.

2 В данном разделе приводятся только ссылки на символы, используемые для определения EXPRESS-
схемы, но не определяется область значений символов, допустимых для строкового типа данных.

7.1.1 Цифры
В языке EXPRESS используются арабские цифры 0 — 9 (позиции 30 — 39 из набора символов языка

EXPRESS).

Синтаксис:
124 d ig it = ' 0 ' | ' 1 ' | ' 2 ' | ' 3 ' | ' 4 ' | ' 5 ' | ' 6 ' | ' 7 ' | ' 8 ' | ' 9 ' .

7.1.2 Буквы
В языке EXPRESS используются буквы верхнего и нижнего регистров английского алф авита (позиции

41— 5А и 61— 7 А из набора сим волов язы ка EXPR ESS). Регистр букв имеет значение только в явны х
строковых литералах.

П р и м е ч а н и е — В структурах языка EXPRESS могут использоваться буквы верхнего, нижнего или обоих
регистров (см. пример в 7).

Синтаксис:
128 le tte r = ' а ' | ' Ь ' ■ С | ' (Г ' е ■ I ' Г ЧГ I ' h ' | v | Т I ' к ' |

' I ' | ' т ' ' п ' | 'О ' ' Р ' I 'q ' • г ' I ' s ' I ' f I V I ' v ' I
' w ' | 'X ' • у | ' Z ' .

7.1.3. Специальные символы
С пециальные символы (воспроизводимые при печати символы, не являющ иеся буквами и цифрами)

используются главным образом для пунктуации и в качестве операторов. С пециальные символы соответ­
ствуют позициям 21 — 2F, ЗА — 3F, 40, 5В — 5Е, 60 и 7В — 7Е набора символов язы ка EXPRESS.

Синтаксис:
137 specia l = no t_paren_sta r_quo te_spec ia l | ' (' I T Г

* 1 1 1 1

132 not_paren_star_quote_specia l = ' ! ' i n i
1 ■ # ' 1 ' $ ' 1 ' % ' 1 ' &' 1 ■ + ■ 1

i i i 1 1 ■/■ 1 1 V 1 ' <■ 1
i _ i

■>' 1 ' ? ' 1 1 ' [' 1 ■V 1 '] ' 1
* Л *

Г * ' I T 1 T 1 ■}■ 1 .

7.1.4 Подчеркивание
Символ подчеркивания (' _ ' , позиция 5F из набора символов языка EXPRESS) может использоваться

в идентиф икаторах и клю чевых словах, но не в качестве первого символа.

7

ГОСТ Р И С 0 10303-11— 2009

7.1.5 Пустое пространство
Пустое пространство в тексте образуется посредством символов, определенных в 7.1.5.1 — 7.1.5.3 и

7.1.6. Пустое пространство должно использоваться для разделения лексем в EXPRESS-схемах.

П р и м е ч а н и е — Свободное и последовательное использование пустого пространства может
улучшить структуру и удобочитаемость схемы.

7.1.5.1 Символ пробела
Один или несколько пробелов (позиция 20 из набора символов EXPRESS) могут располагаться меж­

ду двумя лексемами. Обозначение \s может использоваться для представления символа пробела в синтак­
сических структурах языка.

7.1.5.2 Новая строка
Символом новой строки заканчивается каждая строка в формальной спецификации на языке EXPRESS.

Обычно символ новой строки трактуется как пробел, но он является значимым символом, если им заканчи­
вается комментарий или анормально заканчивается строковый литерал. В синтаксических структурах язы­
ка символ новой строки представляется обозначением \п.

Представление символа новой строки зависит от конкретной реализации.
7.1.5.3 Другие символы
Символы из позиций 09 ,0А и 0D должны трактоваться как пустое пространство, кроме случаев, когда

они встречаются в строковом литерале. Для представления этих символов в синтаксических структурах
языка должно использоваться обозначение \хп, где п является одним из символов 9, А или D.

7.1.6 Комментарии
Комментарий используется для документирования и должен интерпретироваться синтаксическим ана­

лизатором языка EXPRESS как пустое пространство. Существуют две формы комментария - встроенный
комментарий и заключительный комментарий. Обе формы комментария могут быть ассоциированы с иден­
тифицированной конструкцией посредством метки комментария.

7.1.6.1 Встроенный комментарий
Пара символов (* обозначает начало встроенного комментария, а пара символов *) обозначает его

окончание. Встроенный комментарий может располагаться между любыми двумя лексемами.
Любой символ из набора символов языка EXPRESS может присутствовать между началом и концом

встроенного комментария, включая символ новой строки, поэтому встроенные комментарии могут содер­
жать несколько физических строк.

Синтаксис:
145embedded_remark= '(* ' [rem ark_tag] { (not_paren_star{ not_paren_star}) |

lparen_then_not_lparen_star | (' * ' { ' * ' }) |
not_rparen_star_then_rparen | embedded_remark } ' .

147 remark_tag = ' remark_ref { ' . ' rem ark_ref} ' " ' .
148remark_ref= attribute_ref | constant_ref | entity_ref | enumeration_ref |

function_ref | parameter_ref | procedure_ref | rule_label_ref |
rule_ref | schema_ref | subtype_constraint_ref | type_label_ref |
type_ref | variable_ref.

131 not_paren_star = letter | digit | not_paren_star_special.
128 l e t t e r = ' a ' | ' b ' | ' c ' | ' d ' | ' e ' | T | ' g ' | ' h ' | ' i ' | ' j ' I ' k ' l

' I ' | ■ m, | ' n ' | ' o ' | ' p ' | ' q ' | ' r ' | ' s ' | ' t ' | ' u ' | ' v ' |
■w ' | ' x ' | ' у ' | ' z ' .

124 digit = ' O' Г 1 ' Г 2 ' Г 3 ' Г 4 ' Г 5 ' Г 6 ' Г 7 ' Г 8 ' Г 9' ■
133not_paren_star_special = not_paren_star_quote_special |
132not_paren_star_quote_special= ' | | | | | | | ' |

| I ' / ' I | | ' < ’ | ' = ' | ’ > ' |

' ? ' | '@ ' | ' [' I ' V I '] ' | ' л ' I ' _ ' I ' ' ' I
T I T I ' } ' I

129 lparen_then_not_lparen_star= ' (' { ' (' } not_lparen_star{ not_lparen_star}.
130 not_lparen_star= not_paren_star | ') ' .
138 not_rparen_star_then_rparen = not_rparen_star{ not_rparen_star } ') ' { ') ' } ■
135 not_rparen_star= not_paren_star | ' (' .

8

ГОСТ Р И С 0 10303-11— 2009

Встроенные комментарии могут быть вложенными.

П р и м е ч а н и е — При формировании вложенных комментариев необходимо обратить внимание на
наличие согласованных пар символов, обозначающих начало и конец комментария.

Пример — Следующая строка демонстрирует пример встроенного комментария:
(* Символы '(* ' начинают комментарий, а символы '*) ' его заканчивают*)

7.1.6.2 Заключительный комментарий
Заключительный комментарий записывается в конце физической строки. Два последовательныхде-

фиса «— » начинают заключительный комментарий, а первый встреченный символ «новая строка» закан­
чивает его.

Синтаксис:
149 ta il_rem ark = '— ' [rem ark_tag] { \а | \s | \х9 | \хА | \x D } \п .
147 remark_tag = ' " ' rem ark_ref { ' . ' rem ark_re f} ' " ' .
148 rem ark_ref = attribute_ref | constant_re f | entity_re f | enum eration_ref |

function_ref | param eter_ref | procedure_ref | ru le_label_ref |
ru le_re f | schem a_ref | subtype_constra int_ref | type_labe l_re f |
type_re f | va riab le_re f.

Пример--------это комментарий, заканчивающийся символом «новая строка».

7.1.6.3 Метка комментария
Комментарий может быть соотнесен с именованным элементом, то есть с элементом, обозначенным

идентификатором, посредством размещения метки комментария в качестве первой последовательности
символов. Метка комментария должна следовать непосредственно за парой символов, идентифицирую­
щих комментарий. Сама метка комментария состоит из ссылки на идентификатор, определенный последо­
вательностью символов, заключенной в кавычки.

Синтаксис:
147 remark_tag = ' rem ark_ref { r emar k_ r ef } ' .
148 rem ark_ref= attribute_ref | constant_re f | entity_re f | enum eration_ref |

function_ref | param eter_ref | procedure_ref | ru le_label_ref |
ru le_ref | schem a_ref | subtype_constra int_ref | type_labe l_re f |
type_ref | va riab le_re f.

Правила и ограничения:
a) Элемент rem ark_re f должен соответствовать правилам видимости, определенным в 10.2.
b) В составной ссылке комментария правила видимости, определенные в 10.2, должны использовать­

ся следующим образом: ссылка слева от символа должна идентифицировать область видимости, в
которой определена ссылка, расположенная справа от символа

П р и м е ч а н и е — Составная ссылка комментария представляет собой ссылку комментария, в которой
используется нотация с символом 1.1 (см. синтаксическое правило 147).

c) Если ссылка комментария не найдена в соответствии с указанными выше правилами видимости, то
комментарий не должен ассоциироваться с каким-либо элементом.

d) Помеченный комментарий, содержащий другие помеченные комментарии (посредством вло­
женности), должен ассоциироваться целиком (включая вложенные комментарии) с указанным
элементом.

e) Если вложенный комментарий и комментарий, в который он вложен, оба ссылаются на один и тот
же идентифицированный элемент, то вложенный комментарий должен быть связан с этим элементом дваж­
ды: один раз в составе комментария, в который он вложен, и второй раз непосредственно.

Примеры
1 Помеченный комментарий в данном примере ссылается на атрибут attr в области

видимости объекта ent;
ENTITY ent;

attr: INTEGER;
END_ENTITY;
(*" ent.attr” Атрибут a tt r . . . *)

9

ГОСТ Р И С 010303-11 — 2009

2 За ссылкой на схему my_second_schema в помеченном комментарии может следовать любой
идентификатор, объявленный непосредственно в области видимости данной схемы, например,
имя функции a_complicated_function, как в данном примере:

SCHEMA my_second_schema;

FUNCTION a_complicated_fu notion;

END_FUNCTION;
(*"my_second_schema.a_complicated_function" Данная сложная функция . . . *)

END_SCHEMA;
7.2 Зарезервированные слова
Зарезервированны м и словам и язы ка EXP R ES S являю тся клю чевы е слова и им ена встроенны х кон­

стант, ф ункций и процедур. З арезервированны е слова не долж ны использоваться в качестве идентиф ика­
торов. З арезервированны е слова язы ка EXPR ESS описаны ниже.

7.2.1 Ключевые слова
Клю чевы е слова язы ка EXP R ES S представлены в таблице 1.

П р и м е ч а н и е — Ключевые слова представляются литералом, состоящим из заглавных букв. Это
сделано для облегчения чтения синтаксических конструкций.

Т а б л и ц а 1 — Ключевые слова языка EXPRESS

ABSTRACT AGGREGATE ALIAS ARRAY
AS BAG BASED_ON BEGIN
BINARY BOOLEAN BY CASE
CONSTANT DERIVE ELSE END
END_ALIAS END_CASE END_CONSTANT END_ENTITY
END_FUNCTION EN D JF END_LOCAL END_PROCEDURE
END_REPEAT END_RULE END_SCHEMA END_SUBTYPE_CONSTRAINT
END_TYPE ENTITY ENUMERATION ESCAPE
EXTENSIBLE FIXED FOR FROM
FUNCTION GENERIC GENERIC_ENTITY IF
INTEGER INVERSE LIST LOCAL
LOGICAL NUMBER OF ONEOF
OPTIONAL OTHERWISE PROCEDURE QUERY
REAL RENAMED REFERENCE REPEAT
RETURN RULE SCHEMA SELECT
SET SKIP STRING SUBTYPE
SUBTYPE_CONSTRAINT SUPERTYPE THEN TO
TOTAL_OVER TYPE UNIQUE UNTIL
USE VAR WHERE WHILE
WITH

7.2.2 Зарезервированные слова, обозначающие операторы
О ператоры , обозначенны е зарезервированны м и словам и, представлены в таблице 2. О пределения

этих операторов даны в разделе 12.

Т а б л и ц а 2 — Зарезервированные слова, обозначающие операторы языка
EXPRESS

ANDOR
MOD

DIV IN
NOT OR

10

AND
LIKE
XOR

ГОСТ Р И С 0 10303-11— 2009

7.2.3 Встроенные константы
Имена встроенных констант представлены в таблице 3. Определения этих констант даны в

разделе 14.

Т а б л и ц а 3 — Зарезервированные слова, обозначающие константы языка EXPRESS

? SELF CONST E PI
FALSE TRUE UNKNOWN

7.2.4 Встроенные функции
Имена встроенных функций представлены в таблице 4. Определения этих функций даны в

разделе 15.

Т а б л и ц а 4 — Зарезервированные слова, являющиеся именами функций языка EXPRESS

ABS ACOS ASIN ATAN
BLENGTH COS EXISTS EXP
FORMAT HIBOUND HIINDEX LENGTH
LOBOUND LOG LOG2 LOG 10
LOINDEX NVL ODD ROLESOF
SIN SIZEOF SORT TAN
TYPEOF USEDIN VALUE VALUE IN
VALUE UNIQUE

7.2.5 Встроенные процедуры
Имена встроенных процедур представлены в таблице 5. Определения этих процедур даны в

разделе 16.

Т а б л и ц а 5 — Зарезервированные слова, являющиеся именами процедур языка
EXPRESS

INSERT REMOVE

7.3 Знаки
Знаки являются специальными символами или группами специальных символов, имеющими осо­

бое значение в языке EXPRESS. Знаки используются в языке EXPRESS как разделители и операторы.
Разделители используются для начала, разделения или завершения смежных лексических или синтакси­
ческих элементов. Интерпретация этих элементов была бы невозможна без разделителей. Операторы
обозначают выполнение действий над операндами, связанными с оператором. Описание операторов дано
в разделе 12. Знаки языка EXPRESS представлены в таблице 6.

Т а б л и ц а 6 — Знаки языка EXPRESS

*
f
+

■

% l \ /
< > []
{ } i e
() <= < >
> = <* := и** (* *)

11

ГОСТ Р И С 010303-11— 2009

7.4 Идентификаторы
Идентификаторы являются именами, присвоенными объявленным в схеме элементам (см. 9.3), вклю­

чая саму схему. Идентификатор не должен совпадать с зарезервированными словами языка EXPRESS.

Синтаксис:
143 simple id = letter { letter | digit |
128 letter = 'a ' I ' b ' l ' c ' | ' d ' ' e ' I ' f I ' g ' I ' h ' I ' i ' I ' j ' I ' k' |

' I ' | ' m' | ' n ' | ' o' ' P ' I ' q ' I ' r' | ' s ' I ' t ' I ' u ' I ' V' I
•w' | ' x ' | ' y ' ' z ' .

124digit = 'O ' | '1 ' | '2 ' | '3 ' '4 ' I '5 ' I '6' i '7 ' | '8 ' I ' 9 ' .

Первый символ идентификатора должен быть буквой. Остальные символы (при их наличии) могут
являться любой комбинацией букв, цифр и символа подчеркивания.

При разработке синтаксического анализатора языка EXPRESS необходимо задать максимальное
число символов в идентификаторе, распознаваемых данным анализатором, используя в качестве руко­
водства приложение Е.

7.5 Литералы
Литерал является самоопределяемой константой. Тип литерала зависит от композиции символов, фор­

мирующих лексему. Литералы могут быть следующихтипов: двоичный, целочисленный, действительный,
строковый и логический.

Синтаксис:
251 literal = b inary jite ra l | in tegerjite ra l | re a ljite ra l |

s tr ing jite ra l | log ica ljite ra l.

7.5.1 Двоичный литерал
Двоичный литерал представляет значение двоичного типа данных и состоит из символа «%», за кото­

рым следует один или более битов (0 или 1).

Синтаксис:
139 b ina ry jite ra l = '% ' bit { bit } .
123 bit = ' 0 ' | ' 1 ' .

При разработке синтаксического анализатора языка EXPRESS необходимо задать максимальное
число битов в двоичном литерале, распознаваемое данным анализатором, используя в качестве руковод­
ства приложение Е.

Пример — Правильная запись двоичного литерала:
%0101001100

7.5.2 Целочисленный литерал
Целочисленный литерал представляет значение целого типа данных и состоит из одной или более

цифр.

Синтаксис:
141 in tege rjite ra l = digits .
125 digits = digit { di gi t } .
124 digit = ' O' | ' 1 ' | ' 2 ' | ' 3 ' | ' 4 ' | ' 5 ' | ' 6 ' | ' 7 ' | ' 8 ' | ' 9 ' .

П р и м е ч а н и е — Знак целочисленного литерала не моделируется в синтаксисе, так как в языке
EXPRESS в синтаксисе выражений используется концепция унарных операторов.

При разработке синтаксического анализатора языка EXPRESS необходимо задать максимальное це­
лое значение для целочисленного литерала, распознаваемое данным анализатором, используя в качестве
руководства приложение Е.

Пример — Правильная запись целочисленных литералов:
4016
38

7.5.3 Действительный литерал
Действительный литерал представляет значение действительного типа данных и состоит из мантиссы

и необязательного показателя степени; мантисса должна содержать десятичную точку.

12

ГОСТ Р И С 0 10303-11 — 2009

П р и м е ч а н и е — Знак действительного литерала не моделируется в синтаксисе, так как в языке EXPRESS
в синтаксисе выражений используется концепция унарных операторов.

Синтаксис:
142 re a ljite ra l = in tege rjite ra l |

(digits [digits] ['е ' [sign] digits]) .
125 digits = digit { d ig i t } .
124 digit = ' O' | ' 1 ' | ' 2 ' | ' 3 ' | ' 4 ' | ' 5 ' | ' 6 ' | ' 7 ' | ' 8 ' | ' 9 ' .
304 sign = ' + ' | .

При разработке синтаксического анализатора языка EXPRESS необходимо задать максимальную
точность и максимальный показатель степени действительного литерала, распознаваемые данным анали­
затором, используя в качестве руководства приложение Е.

Примеры
1 Правильная запись действительных литералов:
1 ,Е6 Символ «Е» может быть введен на верхнем или на нижнем регистре.
3.5е-5
359.62
2 Неправильная запись действительных литералов:
.001 По крайней мере одна цифра должна предшествовать десятичной точке.
1 е10 Десятичная точка должна быть частью литерала.
1. е10 Пробел не является частью действительного литерала.

7.5.4 Строковый литерал
Строковый литерал представляет значение строкового типа данных. Существуют две формы строко­

вого литерала: простой строковый литерал и кодированный строковый литерал. Простой строковый литерал
состоит из последовательности символов из набора символов языка EXPRESS (см. 7.1), заключенной в
апострофы ('). Апостроф в составе простого строкового литерала представляется двумя последовательны­
ми апострофами. Кодированный строковый литерал состоит из четырехокгетного кодированного представ­
ления каждого символа в последовательности символов И С О /М Э К10646-1, заключенной в кавычки (").
Кодирование определяется следующим образом:

- первый октет — группа ИСО/МЭК 10646-1, в которой определен символ;
- второй октет — плоскость ИСО/МЭК 10646-1, в которой определен символ;
- третий октет — строка ИСО/МЭК 10646-1, в которой определен символ;
- четвертый октет — позиция ИСО/МЭК 10646-1, в которой определен символ.
Последовательность октетов должна определять один из допустимых символов ИСО/МЭК 10646-1.
Строковый литерал никогда не должен выходить за границу физической строки, то есть символ «но­

вая строка» не должен встречаться между апострофами, ограничивающими строковый литерал.

Синтаксис:
310 string_literal = simple_string_literal | encoded_string_literal.
144 simple_string_literal = \q { (\q \q) | not_quote | \s | \x9 | \xA | \xD } \q .
134 not_quote = not_paren_star_quote_special | letter | digit | ' (' I ') ' I ' *'■
132 not_paren_star_quote_special =

\ ' / ' | | | ■<■ | ' = ■ | ’ >■ |
' ?' ' [' | ' \ ' | T | , Л' | ' ' \ " ' |
' { ' T 1 ' } ' 1

128 letter = ' a ' | ' b ' | ' c ' | ' d I ' e ' г f ' | ' g ' | ' h ' | ' i ' I T 1 ' k ' 1 ' 1' 1
' m ' | ' n ' | ' o ' I ' P I ' q ' | • r ' | ' s ' | ' t ' | ' u ' | ' v ' | ' w ' j ' x ' j
' у ' | ' z \

124 digit = ' O' | ' 1 ' | ' 2 ' ' 3 ' | ' 4 ' ' 5 ' | ' 6 ' | ' 7 ' | ' 8 ' | ' 9 ' .
140 encoded_string_literal = '"'encoded_cha racte r{ encoded_character} .
126 encoded_character = octet octet octet o c te t.
136 octet = hex digit hex d ig it.
127 hex_digit = digit | ' a ' | ' b ' | ■c | ' d ' | ' e ' | ' f ' .

При разработке синтаксического анализатора языка EXPRESS необходимо задать максимальное число
символов простого строкового литерала, распознаваемое данным анализатором, используя в качестве ру­
ководства приложение Е.

13

ГОСТ Р И С 0 10303-11 — 2009

При разработке синтаксического анализатора языка EXPRESS необходимо задать максимальное число
октетов (которое должно быть кратно четырем) кодированного строкового литерала, распознаваемое дан­
ным анализатором, используя в качестве руководства приложение Е.

Примеры
1 Правильная запись простых строковых литералов:
' Baby needs a new pair o f shoes!'
Значением данного литерала является Baby needs a new pair o f shoes!
' Ed " s Computer S to re '
Значением данного литерала является Ed's Computer Store
2 Неправильная запись простых строковых литералов:
'E d 's Computer Store'
Литерал всегда должен содержать четное число апострофов.
' Ed " s Computer
Store'
Литерал выходит за границы физической строки.
3 Правильная запись кодированных строковых литералов:
"00000041"
Значением данного литерала является А.
"000000С5"
Значением данного литерала является А.
"0000795Е00006238"
Значением данного литерала являются японские иероглифы ДОр , обозначающие Kobe.
4 Неправильная запись кодированных строковых литералов:
"000041"
Октеты должны быть сгруппированы по четыре.
"00000041 000000С5"
Между кавычками разрешены только шестнадцатеричные символы.

7.5.5 Логический литерал
Логический литерал представляет значение логического или булевого типа данных и является одной

из встроенных констант TRUE, FALSE или UNKNOWN.

П р и м е ч а н и е — Константа UNKNOWN несовместима с булевым типом данных.

Синтаксис:
255 lo g ica ljite ra l = FALSE | TRUE | UNKNOWN .

8 Типы данны х

В данном разделе определены типы данных, используемые в языке EXPRESS. Каждый атрибут,
локальная переменная или формальный параметр имеет связанный с ним тип данных.

Типы данных подразделяются на простые, агрегированные, именованные, конструкционные и обоб­
щенные. Кроме того, типы данных подразделяются, в соответствии с их применением, на конкретизирую­
щие, параметрические, базисные и именованные типы данных. Взаимосвязь между этими двумя класси­
фикациями определена в 8.6.

Операции, которые могут выполняться над значениями этих типов данных, определены в
разделе 12.

8.1 Простые типы данных
Простые типы данных определяют области определения элементарных единиц данных в языке

EXPRESS. То есть они не могут быть разделены на элементы, распознаваемые в языке EXPRESS. Просты­
ми типами данны х являются NUMBER (числовой), R EAL (действительный), INTEGER (целочисленный),
STRING (строковый), BOO LEAN (булев), LO G IC AL (логический) и BINARY (двоичный).

8.1.1 Числовой тип данных
Областью определения типа данных NUMBER являются все числовые значения в языке EXPRESS.

Числовой тип данныхдолжен использоваться, когда не важно более конкретное представление чисел.

Синтаксис:
261 number_type = N U M B E R .

14

ГОСТ Р И С 0 10303-11— 2009

Пример — Поскольку контекст параметра size (размер) может быть неизвестен, то и не
известно как его правильно представить. Например, численность толпы на футбольном матче
может выражаться целым числом (тип данных INTEGER), а площадь поля — действительным (тип
данных REAL;.

s ize: NUMBER;

П р и м е ч а н и е — В последующих редакциях настоящего стандарта могут быть введены новые конкрети­
зации типа данных NUMBER, например, комплексные числа.

8.1.2 Действительный тип данных
Областью определения типа данных REAL являются все рациональные, иррациональные и

экспоненциально представленные числа. Данный тип данных является конкретизацией типа данных
NUMBER.

Синтаксис:
278 геаП уре = REAL [' (' precision_spec ') '] ■
268 precision_spec= num eric_expression.

Рациональные и иррациональные числа имеют неограниченное разрешение и являются точными.
Числа в экспоненциальной форме представляют величины, известные лишь с определенной точностью.
Объект precis ion_spec выражается в терминахзначащихцифр.

Действительное число представляется мантиссой и необязательным показателем степени. Число
цифр, составляющих мантиссу после удаления всех стоящих впереди нулей, является числом
значащих цифр. Известная точность значения определяется числом первых цифр, необходимых для
конкретного приложения.

Правила и ограничения:
a) Объект precision_spec задает необходимое минимальное число цифр разрешения. Значением

соответствующего этому объекту выражения должно быть положительное целое число.
b) Если спецификация разрешения не задана, то точность действительного числа не ограничена.
8.1.3 Целочисленный тип данных
Областью определения типа данных INTEGER являются все целые числа. Данный тип данных

является конкретизацией типа данных REAL.

Синтаксис:
241 in te g e rjyp e = INTEG ER.

Пример— В данном примере целочисленный тип данных использован для представления атрибута
с именем nodes. Областью определения данного атрибута являются все целые числа без каких-либо
ограничений.

ENTITY foo;
nodes: INTEGER;

END_ENTrTY;

8.1.4 Логический тип данных
Областью определения типа данных LOGICAL являются три литерала: TRUE, FALSE и UNKNOWN.

Синтаксис:
256 logical_type = LO G IC AL.

Значения логического типа данных упорядочены следующим образом: FALSE < UNKNOWN < TRUE.
Тип данных LOGICAL совместим стипом данных BOOLEAN, за исключением того, что булевой перемен­
ной не может быть присвоено значение UNKNOWN.

8.1.5 Булев тип данных
Областью определения типа данных BOOLEAN являются два литерала: TRUE и FALSE. Тип данных

BOOLEAN является конкретизацией типа данных LOGICAL.

Синтаксис:
182 boolean_type = BOOLEAN .

Для значений типа данных BOOLEAN установлен тот же порядок, что и для значений типа данных
LOGICAL: FALSE < TRUE.

15

ГОСТ Р И С 0 10303-11 — 2009

Пример — В данном примере атрибут с именем planar, представлен типом данных BOOLEAN.
Значением для planar, связанным с экземпляром surface, может быть либо TRUE, либо FALSE.

ENTITY surface;
planar: BOOLEAN;

END_ENTITY;

8.1.6 Строковый тип данных
Областью определения типа flaHHbixSTRING являются последовательности символов. Символами,

допустимыми в строковых значениях, являются символы И С О /М Э К10646-1 из позиций 0 9 ,0А, 0D и графи­
ческие символы, расположенные в позициях от 20 до 7Е и от АО до 10FFFE.

Синтаксис:
311 string_type = STRING [w id th _ s p e c].
341 w idth_spec = ' (' w idth ') ' [FIXED] .
340 width = numeric_expression .

Тип flaHHbixSTRING может иметь как фиксированную, так и переменную длину (число символов).
Если фиксированная длина строки конкретно не указана (посредством зарезервированного слова FIXED
в определении), то строка имеет переменную длину.

Областью определения типа данных STRING фиксированной длины является множество всех после­
довательностей символов длины, точно указанной в определении типа.

Областью определения типа flaHHbixSTRING переменной длины является множество всех после­
довательностей символов длины, меньшее или равное максимальной длине, указанной в определе­
нии типа.

Если длина не указана, то областью определения является множество всех последовательностей
символов без ограничения на длину этих последовательностей.

Адресация к подстрокам и отдельным символам может осуществляться посредством подстрочных
индексов, как описано в 12.5.

В пределах строки имеет значение регистр ввода букв (верхний или нижний).
Правило: значением выражения w id th должно быть положительное целое число.

Примеры
1 В данном примере определена строка переменной длины, значения которой не имеют

заданной максимальной длины:
stringl: STRING;
2 В данном примере определена строка с максимальной длиной равной десяти символам, значения

которой могут иметь длину от нуля до десяти символов:
string2: STRING(10);
3 В данном примере определена строка фиксированной длины равной десяти символам,значения

которой должны содержать ровно десять символов:
string3: STRING(10) FIXED;

8.1.7 Двоичный тип данных
Областью определения типа данных BIN AR Y являются последовательности битов, каждый из кото­

рых представляется 0 или 1.

Синтаксис:
181 binary_type = BINARY [w idth_spec] .
341 w id th_spec = ' (' w idth ') ' [FIXED] .
340 width = numeric_expression .

Тип данны х BIN AR Y может иметь как фиксированную, так и переменную длину (число битов). Если
конкретно не указана фиксированная длина (посредством зарезервированного слова FIXED в определе­
нии), то тип данных BINARY имеет переменную длину.

Областью определения типа данных BINARY фиксированной длины является множество всех после­
довательностей битов длины, точно указанной в определении типа.

Областью определения типа данных BINARY переменной длины является множество всех последо­
вательностей битов длины меньшей или равной максимальной длине, указанной в определении типа. Если
длина не указана, то областью определения является множество всех последовательностей битов без
ограничения на длину этих последовательностей.

16

ГОСТ Р И С 0 10303-11— 2009

Адресация к частям последовательности битов и отдельным битам может осуществляться посред­
ством подстрочных индексов, как описано в 12.3.

Правило: значением выражения width должно быть положительное целое число.

Пример— Данный фрагмент может быть использован для хранения информации о шрифте
символов:

ENTITY character;
representation : ARRAY [1:20] OF BINARY (8) FIXED;

END_ENTITY;

8.2 Агрегированные типы данных
Областями определения агрегированных типов данных являются совокупности значений заданного

базисного типа данных (см. 8.6.1). Эти значения базисного типа данных называются элементами агрегиро­
ванной совокупности. В языке EXPRESS определены четыре вида агрегированных типов данных: ARRAY
(массив), LIST (список), BAG (пакет) и SET (набор). Значения каждого вида агрегированного типа данных
имеют разные свойства. Тип данных AGGREGATE является обобщением этих четырех видов агрегирован-
ны хтипов данных (см. 9.5.3.1).

Тип данных ARRAY представляет упорядоченное множество фиксированного размера, индексиро­
ванное последовательностью целых чисел.

Пример — Матрица преобразования (в геометрии) может быть определена как массив массивов
(чисел).

Тип данных LIST представляет последовательность элементов, доступ к которым осуществляется по
их позициям. Число элементов в списке может изменяться и быть ограничено в определении типа данных.

Пример — Операции технологического маршрута могут быть представлены списком. Операции
упорядочены и могут быть добавлены или удалены из технологического маршрута.

Тип данных BAG представляет неупорядоченное множество, в котором разрешены повторяющиеся
элементы. Число элементов в пакете может изменяться и быть ограничено в определении типа данных.

Пример — Совокупность крепежных деталей, используемых при сборке, может быть представле­
но пакетом. В состав его элементов может входить некоторое число одинаковых болтов, но неважно,
который из них используется в конкретном отверстии.

Тип данных SET представляет неупорядоченное множество элементов, в котором нет двух
одинаковых элементов. Число элементов в наборе может изменяться и быть ограничено в определении
типа данных.

Пример — Множество людей во всем мире является набором.

П р и м е ч а н и е — Агрегированные типы данных в языке EXPRESS являются одномерными. Объекты,
обычно рассматриваемые как многомерные (например, математические матрицы), могут быть представлены
агрегированным типом данных, базисным типом которого является другой агрегированный тип данных. Таким
образом, агрегированные типы данных могут быть вложенными на произвольную глубину, обеспечивая представ­
ление структур данных любой размерности.

Пример — Можно определить структуру LIST [1:3] OF ARRAY [5:10] OF INTEGER, которая в
действительности является двумерной.

8.2.1 Тип данных ARRAY
Областью определения типа данных ARRAY являются индексированные совокупности подобных эле­

ментов фиксированного размера. Нижняя и верхняя границы, задаваемые выражениями, имеющими цело­
численные значения, определяют диапазон значений индекса и, следовательно, размер массива. В опре­
делении типа данных ARRAY может факультативно устанавливаться, что в массиве не могут присутство­
вать одинаковые элементы. Кроме того, может быть установлено, что элементы массива могут не присут­
ствовать на всех индексированных позициях.

Синтаксис:
175 array_type = ARRAY bound_spec OF [OPTIONAL] [UNIQUE] instantiable_type .
185 bound_spec = ' [' bound_1 bound_2 '] ' .
183 bound_1 = numeric_expression .
184 bound_2 = numeric_expression .

17

ГОСТ Р И С 0 10303-11 — 2009

Пусть т является нижней границей, а п — верхней, тогда в массиве имеется ровно п — т + 1
элементов. Эти элементы проиндексированы подстрочными индексами от т д о п включительно (см. 12.6.1).

П р и м е ч а н и е — Границы массива могут быть положительными, отрицательными или равными нулю, но
не могут быть неопределенными (?) (см. 14.2).

Правила и ограничения:
a) Оба выражения в спецификации границ (b o u n c M и bound_2) должны иметь целочисленные значе­

ния. Ни одно из них не должно иметь неопределенного (?) значения.
b) Выражение b o u n c M задает нижнюю границу массива. Оно задает наименьшее значение индекса,

допустимое для элементов массива этого типа данных.
c) Выражение b o u n d _2 задает верхнюю границу массива. Оно задает наибольш ее значение индек­

са, допустимое для элементов массива этого типа данных.
d) Значение выражения bound_1 должно быть меньше или равно значению выражения bound_2 .
e) Если указано ключевое слово O PTIO NAL, то массив этого типа данны х может иметь неопределен­

ное (?) значение в одной или нескольких индексированных позициях.
f) Если ключевое слово O P T IO N A L не указано, то массив этого типа данны х не должен содержать

неопределенных (?) значений ни в одной индексированной позиции.
д) Если указано ключевое слово UNIQUE, то каждый элемент массива этого типа данны х должен

отличаться (то есть не быть эквивалентным экземпляром) от любого другого элемента того же массива.

П р и м е ч а н и е — Оба ключевых слова OPTIONAL и UNIQUE могут использоваться в одном и том же
определении типа данных ARRAY. Это не исключает многократного появления неопределенных (?) значений
элементов массива, поскольку сравнение неопределенных (?) значений дает результат UNKNOWN и, следова­
тельно, условие уникальности не нарушается.

Пример — Данный пример показывает, как объявляется многомерный массив.
sectors : ARRAY [1 :10] OF - - первое измерение

ARRAY [11 :14] OF - - второе измерение
UNIQUE something;

Первый массив содержит 10 элементов типа данных ARRAY [11:14] OF UNIQUE something.
Атрибут с именем sectors содержит всего 40 элементов типа данных something. В каждом из
массивов ARRAY [11:14] не может быть повторяющихся элементов. Однако один и тот же
экземпляр объекта something может присутствовать в двух разных массивах ARRAY [11:14] одного
экземпляра атрибута sectors.

8.2.2 Т ип д а н н ы х L IS T
О бластью определения типа дан ны х L IS T являю тся последовательности подобны х элементов.

Необязательные нижняя и верхняя границы, задаваемые выражениями, имеющими целочисленные значе­
ния, определяют минимальное и максимальное число элементов в совокупности, определенной типом дан­
ны х LIST. В определении типа данны х L IST может быть ф акультативно установлено, что в списке не могут
присутствовать одинаковые элементы.

Синтаксис:
250 lis t_type = LIST [bound_spec] OF [U NIQ UE] instan tiab le_type .
185 bound_spec = ' [' bound_1 bound_2 '] ' .
183 bound_1 = num eric_expression .
184 bound_2 = num eric_expression .

Правила и ограничения:
a) Выражение bound_1 должно иметь целочисленное значение, большее или равное нулю. Оно зада­

ет нижнюю границу, определяю щ ую минимальное число элементов, которое может содержаться в списке
этого типа данных. Выражение bound_1 не должно иметь неопределенного (?) значения.

b) Выражение b o u n d _ 2 долж но иметь целочисленное значение, больш ее или равное значению
b o u n d _ 1 , либо неопределенное (?) значение. Оно задает верхнюю границу, определяющ ую максимальное
число элементов, которое может содержаться в списке этого типа данных. Если значение данного выраже­
ния является неопределенным (?), то число элементов в списке этого типа данны х не ограничено сверху.

c) Если элемент b o u n d _ s p e c опущ ен, то границы списка определяю тся как [0 :?].
d) Если указано клю чевое слово UNIQUE, то каждый элем ент в списке этого типа дан ны х должен

отличаться (то есть не являться эквивалентны м экземпляром) от лю бого другого элемента того же
списка.

18

ГОСТ Р И С 0 10303-11— 2009

Пример — В данном примере определен список массивов. Список может содержать от нуля до
десяти массивов. Каждый массив из десяти целых чисел должен отличаться от других массивов в
данном списке.

complexjist: LIST[0:10] OF UNIQUE ARRAY[1:10] OF INTEGER;

8.2.3 Тип д а н н ы х BAG
Областью определения типа данных BAG являются неупорядоченные совокупности подобных эле­

ментов. Необязательные нижняя и верхняя границы, задаваемые выражениями, имеющими целочислен­
ные значения, определяют минимальное и максимальное число элементов в совокупности, определенной
типом данных BAG.

Синтаксис:
180 bag_type = BAG [bound_spec] OF instantiable_type .
185 bound_spec = ' [' bound_1 bound_2 '] ' .
183 bound_1 = numeric_expression .
184 bound_2 = numeric_expression .

Правила и ограничения:
a) Выражение bound_1 должно иметь целочисленное значение, большее или равное нулю. Оно зада­

ет нижнюю границу, определяющую минимальное число элементов, которое может содержаться в экземп­
ляре пакета этого типа данных. Выражение bound_1 не должно иметь неопределенного (?) значения.

b) Выражение bound_2 должно иметь целочисленное значение, большее или равное значению
b o u nd_1 , либо неопределенное (?) значение. Оно задает верхнюю границу, определяющую максимальное
число элементов, которое может содержаться в экземпляре пакета этого типа данных. Если значение дан­
ного выражения является неопределенным (?), то число элементов в экземпляре пакета этого типа данных
не ограничено сверху.

c) Если элемент b o u nd_spec опущен, то границы пакета определяются как [0 :?].

Пример — В данном примере атрибут a_bag_of_points определен как пакет объектов point
(объекты point относятся к именованному типу данных, который объявлен в другом месте).

a_bag_of_points : BAG OF point;
Экземпляр атрибута a_bag_of_points может содержать ни одного или несколько объектов

point. Один и тот же экземпляр объекта point может появиться несколько раз в экземпляре
a_bag_of_points.

Если требуется, чтобы экземпляр атрибута a_bag_of_points содержал, по крайней мере, один
элемент, то в спецификации нижняя граница должна быть определена следующим образом:

a_bag_of_points: BAG [I:?] OF point;
Экземпляр атрибута a_bag_of_points теперь должен содержать, по крайней мере, один объект

point.

8.2.4 Тип д а н н ы х SET
Областью определения типа данных SET являются неупорядоченные совокупности подобных эле­

ментов. Тип д ан ны хвЕ Т является конкретизацией типа данных BAG. Необязательные нижняя и верхняя
границы, задаваемые выражениями, имеющими целочисленные значения, определяют минимальное и
максимальное число элементов в совокупности, определенной типом данны хвЕ Т . Определенная типом
дан ны хвЕ Т совокупность не должна содержать двух или более одинаковых элементов.

Синтаксис:
303 set_type = SET [bound_spec] OF instantiable_type .
185 bound_spec = ' [' bound_1 bound_2 '] ' .
183 bound_1 = numeric_expression .
184 bound_2 = numeric_expression .

Правила и ограничения:
a) Выражение bound_1 должно иметь целочисленное значение, большее или равное нулю. Оно зада­

ет нижнюю границу, определяющую минимальное число элементов, которое может содержаться в экземп­
ляре набора этого типа данных. Выражение bound_1 не должно иметь неопределенного (?) значения.

b) Выражение bound_2 должно иметь целочисленное значение, большее или равное значению
bound_1 , либо неопределенное (?) значение. Оно задает верхнюю границу, определяющую макси­
мальное число элементов, которое может содержаться в экземпляре набора этого типа данных. Если

19

ГОСТ Р И С 0 10303-11 — 2009

значение данного выражения является неопределенным (?), то число элементов в экземпляре набора это­
го типа данны х не ограничено сверху.

c) Если элемент bound_spec опущен, то границы набора определяются как [0:?].
d) Каждый элемент в экземпляре типа данны х SET должен отличаться (то есть не являться эквива­

лентным экземпляром) от любого другого элемента того же экземпляра набора.

Пример — В данном примере атрибут a_set_of_points определен как набор объектов point
(объекты point относятся к именованному типу данных, который объявлен в другом месте).

a_set_of_points : SET OF point;
Атрибут a_set_of_points может содержать ни одного или несколько объектов point. Каждый

экземпляр объекта point (в экземпляре набора) должен отличаться от любого другого объекта
point в наборе.

Если требуется, чтобы набор содержал не более 15 объектов point, то в спецификации верхняя
граница должна быть определена следующим образом:

a_set_of_points : SET [0:15] OF point;
Теперь экземпляр атрибута a_set_of_points может содержать не более 15 точек.

8.2.5 Уникальность значений в агрегированных структурах
Уникальность среди элементов агрегированны х структур основана на сравнении экземпляров (см.

12.2.2). К агрегированным структурам может быть предъявлено требование уникальности значений их эле­
ментов посредством использования функции VALUEJJNIQUE (см. 15.29).

Пример — Определение набора с уникальными значениями:
TYPE value_unique_set = SET OF a;
WHERE

w rl: value_unique(SELF);
END_TYPE;

П р и м е ч а н и е — Определяемая разработчиком уникальность значений может быть задана
посредством двух функций с именами, например, my_equal и myunique, как показано в следующем
псевдокоде:

FUNCTION my_equal (v1,v2: GENERIC: gen): LOGICAL;
(‘ Функция my_equal возвращает значение TRUE, если vl «равно» v2 *)

END_FUNCTION;
FUNCTION my_unique (c: AGGREGATE OF GENERIC): LOGICAL;

(‘ Функция my_unique возвращает значение FALSE, если два элемента из с имеют одинаковое «значение»,
или возвращает значение UNKNOWN, если любой из сравниваемых элементов имеет значение
UNKNOWN, в противном случае возвращает значение TRUE *)

LOCAL
result : LOGICAL;
unknownp: BOOLEAN := FALSE;

END_LOCAL;
IF (SIZEOF(c) = 0) THEN

RETURN(TRUE); ENDJF;
REPEAT i := LOINDEX(c) TO (HIINDEX(c) -1);

REPEAT j := (i+1) TO HIINDEX(c);
result := my_equal(c[i], c[j]);
IF (result = TRUE) THEN

RETURN(FALSE); ENDJF;
IF (result = UNKNOWN) THEN

unknownp := TRUE; END IF;
END REPEAT;

END_REPEAT;
IF unknownp THEN

RETURN(UNKNOWN);
ELSE

RETURN(TRUE);
ENDJF;
END_FUNCTION;

Функция my_equal должна иметь следующие свойства, позволяющие формировать классы эквивален­
тности. Ниже через S обозначен рассматриваемый набор объектов, a my_equal(i, j), где i и j принадлежат
S, возвращает одно из значений [FALSE, UNKNOWN, TRUE]:

20

ГОСТ Р И С 0 10303-11— 2009

my_equal(i, i) имеет значение TRUE для всех i из S (так как в S нет неопределенных (?) значений, то не
требуется, чтобы значением my_equal (?, ?) было TRUE);

my_equal(i, j) = my_equal(j, i) для всех i и j из S;
(m y_equal(i,j) = TRUE) AND (my_equal(j, k) = TRUE) влечет за собой (my_equal(i, k) = TRUE) для Bcexi,

j, k из S.

8.3 Именованные типы данных
Именованными типами данныхявляются типы данных, которые могут быть объявлены в формальной

спецификации. Существуют два вида именованных типов данных: объектный и определенный. В данном
подразделе определено обращение к именованным типам данных; объявление этих типов данных опреде­
лено в разделе 9.

8.3.1 Объектный тип данных
Объектные типы данных устанавливаются объявлениями посредством ключевого слова ENTITY

(см. 9.2). Объектный тип данных задается назначаемым пользователем идентификатором объекта. Обра­
щение к объектному типу данных осуществляется посредством данного идентификатора.

Синтаксис:
152 entity_re f = e n tity jd .

Правило: элемент entity_ref должен быть ссылкой на объект, видимый в текущей области видимости
(см. раздел 10).

Пример — В данном примере объектный тип данных point использован для представления
атрибута.

ENTITY point;
х, у, z : REAL;

END_ENTrTY;
ENTITY line;

pO, p 1 : point;
END_ENTrTY;
Объект line имеет два атрибута с именами рО и р1. Типом данных каждого из этих атрибутов

является point.

8.3.2 Определенный тип данных
Определенные типы данных устанавливаются объявлениями посредством ключевого слова TYPE

(см. 9.1). Определенный тип данныхзадается назначаемым пользователем идентификатором типа. Обра­
щение к определенному типу данных осуществляется посредством данного идентификатора.

Синтаксис:
162 type_re f = type_id .

Правило: элемент type_ref должен быть именем определенного типа данных, видимым в текущей
области видимости (см. раздел 10).

Пример — В данном примере определенный тип данных использован для указания единиц
измерения, связанных с атрибутом.

TYPE volume = REAL;
END_TYPE;
ENTITY PART;

b u lk : volume;
END_ENTITY;
Атрибут с именем bulk представлен действительным числом, но использование определенно­

го типа данных volume помогает пояснить смысл и контекст данного действительного числа.
В данном примере действительное число определяет объем, а не какое-либо другое понятие,
значение которого может также определяться действительным числом.

8.4 Конструкционные типы данных
Существуют два вида конструкционных типов данных в языке EXPRESS: перечисляемый

(ENUMERATION) и выбираемый (SELECT). Эти типы данных имеют сходную синтаксическую структуру
и могут использоваться только для задания базисных представлений определенных типов данных
(см. 9.1).

21

ГОСТ Р И С 0 10303-11 — 2009

8.4.1 П еречисл яем ы й ти п д а н н ы х
Областью определения перечисляемого типа данныхявляется множество имен. Размер данного мно­

жества имен определяется в зависимости от типа перечисляемого типа данных. Различают следующие
перечисляемые типы данных:

- наращиваемый перечисляемый тип данных;
- перечисляемый тип данных, расширяющий наращиваемый перечисляемый тип данных, другими

словами, основанный на наращиваемом перечисляемом типе данных;
- перечисляемый тип данных, который не является ни наращиваемым, ни расширяющим.
Имена, объявляемые посредством ключевого слова ENUMERATION, могут быть только допустимыми

значениями перечисляемого типа данных. Каждое имя из данной области определения называется эле­
ментом перечисления и обозначается enum era tion_ id .

Областью определения перечисляемого типа данных, который не является ни наращиваемым, ни
расширяющим, задаваемой при его объявлении, является упорядоченное множество элементов перечис­
ления, указанных при его объявлении.

Областью определения наращиваемого перечисляемого типа данны х является множество эле­
ментов перечисления, указанных при его объявлении, плюс объединение множеств элементов перечис-
лений, заключающее в себе области определения всех расширяющ их перечисляемых типов данных.
Наращиваемый перечисляемый тип данны хявляется обобщением основанных на нем перечисляемых
типов данных. Наращиваемый перечисляемый тип данных задается посредством ключевого слова
EXTENSIBLE.

Областью определения расширяющего перечисляемого типа данныхявляется множество элементов
перечисления, указанных при его объявлении, плюс элементы перечисления, указанные непосредственно
(а не через расширение) в наращиваемом перечисляемом типе данных, на котором он основан. Расширя­
ющий перечисляемый тип данных задается посредством ключевого слова BASED_ON.

Перечисляемый тип данны х может быть как наращиваемым, так и расширяющим перечисляемым
типом данных. Наращиваемый перечисляемый тип данных может быть задан без элементов перечисления,
а также основан на другом наращиваемом перечисляемом типе данных без задания элементов перечисле­
ния, расширяющих данное базисное перечисление. Взаимосвязь «основан на» является транзитивной, то
есть расширяющее перечисление остается основанным на наращиваемом перечислении самого верхнего
уровня даже при наличии нескольких уровней взаимосвязей «основан на»; расширяющее перечисление
включает все элементы, как промежуточных наращиваемых перечислений, так и наращиваемого перечис­
ления самого верхнего уровня.

П р и м е ч а н и я
1 Наращиваемое перечисление, расширенное два или более раза в одном контексте, может иметь боль­

шую область определения, чем его расширения, и в этом случае оно действительно является обобщением.
2 В первой редакции настоящего стандарта упорядочение элементов перечисления определяло упорядо­

чение значений. В настоящем стандарте не определено никакого упорядочения, за исключением указанного
ниже в правиле по перечислению d). Это сделано, чтобы обеспечить существование наращиваемых перечисляе­
мых типов данных, в которых упорядочение расширений не может быть определено.

Синтаксис:
213 enum era tion jype = [EXTENSIBLE] ENUMERATION [(OF

e n u m e ra tio n jte m s) | enumeration_extension] .
211 enum era tion jtem s = ' (' en u m e ra tio n jd { ' , ' enu m e ra tio n jd } ') ' .
209 enumeration_extension = BASEDJDN type_re f [WITH enum era tion jtem s] .

Правила и ограничения:
a) Перечисляемый тип данных должен использоваться только в качестве базисного типа данных для

определенного типа данных.
b) Перечисляемый тип данных может быть расширен, только если в его определении указано ключе­

вое слово EXTENSIBLE.
c) Элемент ty p e _ re f в enum era tion_ex tens ion должен быть ссылкой на наращиваемый перечисляе­

мый тип.
d) В целях сравнения, упорядочение значений перечисляемого типа данных, который не является

ни наращиваемым, ни расширяющим, может быть определено их относительной позицией в списке
e n u m e ra t io n jd ; первый встретившийся элемент должен быть меньше второго, второй — меньше
третьего ит.д.

22

ГОСТ Р И С 010303-11— 2009

e) Не сущ ествует упорядочения значений для наращ иваемого перечисления или расш иряю щ его
перечисления.

f) Для перечисления, не являющ егося ни наращ иваемым, ни расш иряю щ им, в качестве его области
определения должны быть заданы элементы перечисления.

д) Для перечисления, не являю щ егося наращ иваемым, но являю щ егося расш иряю щ им, должны
быть заданы элементы перечисления, расширяющ ие область определения наращиваемого перечисления,
на котором оно основано.

h) Два разны хперечисляем ы хтипа данны х могут содержать одинаковый элемент enumeration_id
в своих множествах имен. Если перечисляемые типы данны х не являются расш ирениями одного наращ и­
ваемого типа данных, то их элементы enumeration_id относятся к разным понятиям, даже если их локаль­
ные имена совпадают. В данном случае, любая ссылка на элемент enumeration_id (например, в выраже­
нии) должна быть уточнена посредством идентификатора типа данных, чтобы обеспечить однозначность
ссылок. С сылка при этом выглядит следую щ им образом: type_id.enumeration_id.

П р и м е ч а н и е — Элемент type_id, используемый для уточнения элемента enumeration_id, всегда
определяется как перечисляемый тип данных.

Пример — В данном примере перечисляемые типы данных использованы для демонстрации
того, как могут двигаться различные виды транспортных средств.

TYPE car_can_move = ENUMERATION OF
(left, right, backward, forward);

ENDTYPE;
TYPE plane_can_move= ENUMERATION OF

(left, right, backward, forward, up, down);
ENDTYPE;
Элемент перечисления left имеет два независимых определения, задаваемых каждым типом

данных, компонентом которого он является. Не существует никакой связи между этими двумя
определениями идентификатора left. Сама по себе ссылка на left или right является неоднозначной.
Для того, чтобы разрешить данную неоднозначность, ссылка на любое из этих значений должна
быть уточнена посредством указания имени типа данных, например, car_can_move.left.

i) Н аращ иваемое перечисление и его расш ирения задаю т область определения, состоящ ую из
элементов enumerationjd. В пределах данной области определения все появления одного и того же
элемента enumerationjd обозначаю т одно и то же значение, даже если элемент enumerationjd
определен в нескольких перечисляемых типах данных, относящ ихся к данной области определения.

Пример — В данном примере один элемент перечисления с именем red используется в двух
расширениях stopjight и canadianjlag области определения перечисляемого типа данных colour.

TYPE colour = EXTENSIBLE ENUMERATION; END_TYPE;
TYPE stopjight = ENUMERATION BASED_ON colour WITH (red, yellow, green); END_TYPE;
TYPE canadianjlag = ENUMERATION BASED_ON colour WITH (red, white); END_TYPE;

j) Объявление типа, в котором объявляется перечисляемый тип данных, не должно содержать прави­
ла для области определения (WHERE).

П р и м е ч а н и е — Приведенные выше правила обеспечивают то, что определенный тип данных дает
имя перечисляемому типу данных, и определенный тип данных не является конкретизацией перечисляемого
типа данных.

Пример — В данном примере показано, как наращиваемое перечисление может быть исполь­
зовано для моделирования контекстно-зависимого понятия «одобрение». Элемент general_approval
представляет наиболее общее понятие одобрения, однозначно определяя только два значения.
Объявление general_approval как наращиваемого перечисления позволяет ему принимать контекст­
но-зависимые значения в схемах, в которых объявляются его расширения. При использовании
данного элемента для представления области определения атрибута, допустимые значения атри­
бута становятся контекстно зависимыми.

SCHEMA s1;
TYPE general_approval = EXTENSIBLE ENUMERATION OF (approved, rejected);
ENDJYPE;
END_SCHEMA;
SCHEMA s2;
USE FROM s1 (general approval);

23

ГОСТ Р ИС 010303-11— 2009

TYPE domain2_approval = EXTENSIBLE ENUMERATION BASED_ON general_approval WITH (pending);
ENDTYPE;
END_SCHEMA;
SCHEMA s3;
USE FROM s1 (general_approval);
TYPE domain3_approval = EXTENSIBLE ENUMERATION BASED_ON general_approval WITH (cancelled);
END_TYPE;
END_SCHEMA;
SCHEMA s4;
USE FROM s2 (domain2_approval);
REFERENCE FROM s3 (domain3_approval);
TYPE specific_approval = ENUMERATION BASED_ON domain2_approval WITH (rework);
END_TYPE;
END_SCHEMA;
SCHEMA s5;
USE FROM s1 (general_approval);
TYPE redundant_approval = ENUMERATION BASED ON generalapproval WITH (approved);
ENDTYPE;
END_SCHEMA;
В контексте схемы s1: general approval имеет область определения (approved, rejected).
В контексте схемы s2: general approval имеет область определения (approved, rejected, pending);

domain2_approval имеет область определения (approved, rejected, pending).
В контексте схемы s3: general approval имеет область определения (approved, rejected, cancelled);

domain3_approval имеет область определения (approved, rejected, cancelled).
В контексте схемы s4: general approval имеет область определения (approved, rejected, pending,

cancelled, rework); domain2_approval имеет область определения (approved, rejected, pending, rework);
domain3_approval имеет область определения (approved, rejected, cancelled); specific_approval имеет
область определения (approved, rejected, pending, rework).

В контексте схемы s5: general approval имеет область определения (approved, rejected);
redundant_approval имеет область определения (approved, rejected).

8.4.2 Выбираемый тип данных
Выбираемый тип данных определяет тип данных, позволяющий выбирать среди нескольких имено-

ванныхтипов данных. Выбираемый тип данныхявляется обобщением именованных типов данных в своей
области определения. Определенный тип данных, для которого выбираемый тип данныхявляется базис­
ным представлением, может добавлять ограничения на свою область определения посредством объявле­
ния локальных правил. Выбираемый тип данных может быть или не быть наращиваемым.

Областью определения выбираемого типа данных, который не является ни наращиваемым, ни рас­
ширяющим, является объединение областей определения именованных типов данных из его списка
выбора.

Областью определения наращиваемого выбираемого типа данныхявляется объединение областей
определения именованныхтипов данных из его собственного списка выбора плюс объединение областей
определения всех расширяющих выбираемых типов данных. Наращиваемый выбираемый тип данных за­
дается посредством ключевого слова EXTENSIBLE.

Областью определения расширяющего выбираемого типа данных являются именованные типы дан­
ных из его собственного списка выбора плюс именованные типы данных, указанные непосредственно (а не
через расширение) в наращиваемом выбираемом типе данных, на котором он основан. Расширяющий
выбираемый тип данных задается посредством ключевого слова BASED_ON.

Выбираемый тип данных может быть как наращиваемым, так и расширяющим выбираемым типом
данных. Наращиваемый выбираемый тип данных может быть задан без списка выбора, а также основан на
другом наращиваемом выбираемом типе данных без задавания списка выбора, расширяющего данный
базисный список выбора.

Только наращиваемый выбираемый тип данных может быть ограничен наличием в своей области
определения только экземпляров объектов посредством ключевого слова GENERIC_ENTITY. В данном
случае все элементы списка выбора должны быть элементами обобщенного объекта, где элемент обоб­
щенного объекта определяется как относящийся к объектному типу данных либо к списку выбора из эле­
ментов обобщенного объекта. Все расширения данного выбираемого типа данныхдолжны быть выбирае­
мыми типами данных обобщенного объекта и должны задаваться посредством ключевого слова
GENERIC ENTITY.

24

ГОСТ Р И С 010303-11— 2009

Синтаксис:
302 s e le c tJ y p e = [EXTENSIBLE [G EN ER IC _EN TITY]] SELEC T

[s e le c t j is t | se lect_extension] .
301 s e le c t j is t = ' (' n a m e d jy p e s { ' , ' n a m e d jy p e s } ') ' .
300 se lect_extension = BASED _O N typ e _ re f [W ITH s e le c t j is t] .

Правила и ограничения:
a) Все элементы в списке выбора должны относиться к объектному или определенному типу данных.
b) Только выбираемый тип данны х должен использоваться в качестве базисного типа для определен­

ного типа данных.
c) Выбираемый тип данны х может быть расширен, только если в его определении указано ключевое

слово EXTENSIBLE.
d) Элемент type_ref в select_extension должен быть ссылкой на наращ иваемый выбираемый тип.
e) Для вы бираемого типа данны х, не являю щ егося ни наращ иваемым, ни расш иряю щ им, должен

быть задан в качестве его области определения непустой список выбора.
1) Для выбираемого типа данных, не являю щ егося наращ иваемым, но являю щ егося расш иряющ им,

должен быть задан непустой список выбора, расширяющий область определения наращиваемого выбира­
емого типа данных, на котором он основан.

П р и м е ч а н и е — Значение выбираемого типа данных может быть значением нескольких именованных
типов данных, указанных в списке выбора для данного выбираемого типа данных.

Примеры
1 Если а и Ь являются подтипами с, и они связаны выражением AN DOR, и существует тип

данных, определенный как SELECT (а, Ь), то может оказаться, что значением выбираемого типа
данных будут одновременно а и Ь.

2 Должен быть сделан выбор среди нескольких типов предметов в заданном контексте:
TYPE attachment_method = EXTENSIBLE SELECT(nail, screw);
END_TYPE;
TYPE permanent_attachment = SELECT BASEDJDN attachment_method WITH (glue, weld);
ENDJYPE;
ENTITY nail;

length : REAL;
head_area : REAL;

END_ENTITY;
ENTITY screw;

length : REAL;
pitch : REAL;

END ENTITY;
ENTITY glue;

composition : material_composition;
solvent : material_composition;

END_ENTITY;
ENTITY weld;

composition : material_composition;
END_ENTITY;
ENTITY wall_mounting;

mounting : product;
on : wall;
using : attach ment_method;

END ENTITY;
Элемент wall_mounting описывает соединение изделия product со стеной wall с использованием

способа соединения attach ment_method. Исходный способ соединения описывает способы разборного
соединения. Эти способы затем расширяются, добавляя способы неразборного соединения
permanent_attachment. При определении значения элемента wall_mounting будет использоваться
значение атрибута using, то есть nail, screw, glue или weld.

8.5 Обобщенные типы данных
Синтаксис:

223 gene ra lizedJypes = a g g re g a te jy p e | gene ra l_aggrega tionJypes | g e n e ric _ e n tity jy p e | g e n e r ic jy p e .

25

ГОСТ Р И С 0 10303-11 — 2009

Обобщенные типы данных используются для определения обобщения некоторых другихтипов дан­
ных и могут быть использованы только в некоторых очень специфичных контекстах. Тип GENERIC является
обобщением всех типов данных. Тип данных AGGREGATE является обобщением всех агрегированных
типов данных. Общий агрегированный тип данных является обобщением агрегированных типов данных,
смягчающим некоторые ограничения, обычно применяемые к агрегированным типам данных. Все эти типы
данных определены в 9.5.3.

8.6 Классификация применения типов данных
В разделе 8 типы данных языка EXPRESS систематизированы по их сущности: простые типы данных,

агрегированные типы данных, конструкционные типы данных, именованные типы данных и обобщенные
типы данных. В настоящем подразделе определена классификация типов данных в соответствии с их
применением.

В языке EXPRESS типы данных применяются шестью разными способами в качестве:
- типов данных элементов агрегированных типов данных;
- элементов списка выбора при определении или расширении выбираемого типа данных;
- базисныхтипов для типов данных;
- типов данных атрибутов объектныхтипов данных;
- типов данных констант;
- типов данных формальных параметров и локальных переменных в функциях и процедурах.
Кроме того, существует несколько специальных применений объектныхтипов данных, определенных

в разделе 9, которые применяются не к другому классу типов данных, и поэтому в настоящем подразделе
не рассматриваются.

Типы данных классифицируются в соответствии с их применением следующим образом:
- конкретизирующие типы данных применяются для представления элементов агрегированных струк­

тур и типов данных констант;
- параметрические типы данных применяются для представления явных и производных атрибутов,

формальных параметров, результатов функций и локальных переменных в функциях и процедурах;
- базисные типы данных применяются для представления определенных типов данных;
- именованные типы данных применяются в качестве элементов списка выбора, то есть для возмож­

ных представлений значения выбираемого типа данных.
Некоторые классы типов данных могут применяться разными способами, в то время как другие могут

применяться только в определенных контекстах. Данные различия представлены в таблице 7.

Т а б л и ц а 7 — Применение типов данных

a) К о н к р е т и з и р у ю щ и е т и п ы д а н н ы х — п р е д с т а в л е н и е э л е ­
м е н т о в а г р е г и р о в а н н ы х с т р у к т у р и к о н с т а н т .

b) П а р а м е т р и ч е с к и е т и п ы д а н н ы х — п р е д с т а в л е н и е я в н ы х и
п р о и з в о д н ы х а т р и б у т о в , ф о р м а л ь н ы х п а р а м е т р о в , л о к а л ь н ы х
п е р е м е н н ы х и л и р е з у л ь т а т а ф у н к ц и и .

c) Б а з и с н ы е т и п ы д а н н ы х — п р е д с т а в л е н и е о п р е д е л е н н о г о
т и п а (с м . 9.1).

d) И м е н о в а н н ы е т и п ы д а н н ы х — в о з м о ж н ы е п р е д с т а в л е н и я
в ы б и р а е м о г о т и п а д а н н ы х .

*) И з и м е н о в а н н ы х т и п о в д а н н ы х т о л ь к о о п р е д е л е н н ы й т и п
м о ж е т п р и м е н я т ь с я в к а ч е с т в е б а з и с н о г о т и п а д а н н ы х .

Т и п ы д а н н ы х а Ь с d

П р о с т ы е ♦ ♦ ♦

А г р е г и р о в а н н ы е ♦ ♦ •

И м е н о в а н н ы е ♦ ♦ •

К о н с т р у к ц и о н н ы е •

О б о б щ е н н ы е ♦

Именованные типы данных определены в 8.3. Конкретизирующие, параметрические и базисные
типы данных определены в 8.6.1 — 8.6.3.

8.6.1 Конкретизирующие типы данных
Конкретизирующие типы данных используются для представления констант, элементов агрегирован­

ных типов данных и атрибутов неабстрактных объектныхтипов данных (см. 9.2.1).
К конкретизирующим типам данных относятся простые, агрегированные и именованные типы данных.

Синтаксис:
240 instantiable_type = concrete_types | entity_ref.
193 concrete_types = aggregation_types | simple_types | type_re f.

26

ГОСТ Р И С 0 10303-11 — 2009

Правила и ограничения:
a) Тип данных константы не должен быть абстрактным объектным типом данных (см. 9.4).
b) Тип данных любого атрибута неабстрактного объектного типа данныхдолжен быть конкретизирую­

щим типом данных или переобъявлен кактаковой (см. 9.2.1).
8.6.2 Параметрические типы данных
Параметрические типы данных применяются для представления атрибутов объектных типов данных

или формальных параметров алгоритмов (функций и процедур). Параметрические типы данных могут
также применяться для представления результатов функций и локальных переменных, объявленных
в алгоритмах.

К параметрическим типам данных относятся конкретизирующие и обобщенные типы данных. Други­
ми словами, все типы данных языка EXPRESS являются параметрическими типами данных (при этом
конструкционные типы данных могут применяться только в качестве основанных на них определенных
типахданных).

Синтаксис:
266 parameter_type = generalized_types | named_types | simple_types .
223 generalized_types = aggregate type | general_aggregation_types | generic_entity_type | generic_type .

Правила и ограничения:
a) Любой параметрический тип данных, соответствующий спецификациям конкретизирующего типа

данных, считается конкретизирующим типом данныхдля применений, в которых требуется конкретизирую­
щий тип данных.

b) Общий агрегированный тип данных (см. 9.5.3.5), базовым типом которого является конкретизирую­
щий тип данных, считается конкретизирующим типом данных.

П р и м е ч а н и е — С и н т а к с и ч е с к а я к о н с т р у к ц и я , т а к а я к а к ARRAY[1:3] OF REAL, с о о т в е т с т в у е т д в у м
с и н т а к с и ч е с к и м п о р о ж д е н и я м — aggregation_type и general_aggregation_type. О н а с ч и т а е т с я к о н к р е т и з и р у ­
ю щ е й н е з а в и с и м о о т т о г о , к а к о е и з п о р о ж д е н и й т р е б у е т с я д л я с о о т в е т с т в и я с и н т а к с и с у .

8.6.3 Базисные типы данных
Базисные типы данных применяются для представления определенныхтипов данных.
К базисным типам данных относятся простые, агрегированные, конструкционные и определенные

типы данных.

Синтаксис:
332 underlying_type = concrete_types | constructed_ types .
193 concrete_types = aggregation_types | simple_types | type_ref.

9 Объявления

В данном разделе определены объявления, установленные в языке EXPRESS. Объявление в языке
EXPRESS создает новый элемент языка EXPRESS и связывает с ним некоторый идентификатор. На эле­
мент языка EXPRESS можно ссылаться в любом месте посредством имени связанного с ним идентифика­
тора (см. раздел 10).

Основные возможности языка EXPRESS обеспечиваются посредством следующих объявлений:
-типа;
-объекта;
- ограничения на подтипы;
- схемы;
- константы;
-функции;
- процедуры;
- правила.
Объявления могут быть явными или неявными. В данном разделе описаны явные объявления. Неяв­

ные объявления описаны в данном разделе и последующих подразделах, наряду с элементами и услови­
ями, при которых они устанавливаются.

27

ГОСТ Р И С 010303-11 — 2009

9.1 Объявление типа
Объявление типа создает определенный тип данных (см. 8.3.2) и задает идентификатор для ссылки

на данный тип. В частности, имя определенного типа данных объявляется как type_id. Представлением
данного типа данных является underlying_type. Область определения определенного типа данных совпа­
дает с областью определения базисного типа underlying_type, но может быть дополнительно ограничена
конструкцией where_clause (при ее наличии). Определенный тип данных является конкретизацией базис­
ного типа данных и, следовательно, совместимым с базисным типом. Исключением являются конструкци­
онные типы данных, когда определенный тип данных используется для задания имени конструкционного
типа данных, и фактически не является конкретизацией конструкционного типа данных даже в случае, если
выбираемый тип данныхЗЕЬЕСТограничен правилом WHERE.

П р и м е ч а н и е — Н е с к о л ь к о о п р е д е л е н н ы х т и п о в д а н н ы х м о г у т б ы т ь с в я з а н ы с о д н и м и т е м ж е
п р е д с т а в л е н и е м . И м е н а м о г у т п о м о ч ь п о л ь з о в а т е л ю в п о н и м а н и и н а з н а ч е н и я (и л и к о н т е к с т а) п р и м е н е н и я
б а з и с н о г о т и п а д а н н ы х underlying_type.

Синтаксис:
327 type_decl = TYPEtype_id '= ' underlying_type ' [where_clause] END_TYPE
332 underlying_type = concrete_types | constructed_types .

Правило: результатом объявлений типа TYPE не должны быть циклические определения типа.

Пример — Следующее объявление задает определенный тип данных с именем person_name и
базовым представлением STRING. Определенный тип person_name после данного объявления
доступен для использования в качестве представления атрибутов, локальных переменных и
формальных параметров. Это придает ему большую осмысленность, чем простое использование
типа STRING.

TYPE person_name = STRING;
END TYPE;

Правила области определения (условие WHERE).
Правила области определения устанавливают ограничения для области определения определен­

ного типа данных. Область определения определенного типа данных является областью определения
его базисного представления, ограниченного правилом (или правилами) области определения. Прави­
ла области определения указываются после ключевого слова WHERE.

Синтаксис:
338 where_clause = W HEREdom ain_rule {dom ain rule } .

Для каждого объекта domain_rule может быть задана метка правила.

П р и м е ч а н и е — Е с л и м е т к и п р а в и л з а д а н ы , т о о н и м о г у т и с п о л ь з о в а т ь с я в м е т к а х к о м м е н т а р и я
(с м . 7.1.6.3) и л и д л я и д е н т и ф и к а ц и и п р а в и л в р е а л и з а ц и я х , н а п р и м е р в д о к у м е н т а ц и и , с о о б щ е н и я х о б о ш и б к а х
и с п е ц и ф и к а ц и я х п р и м е н е н и я . З а д а н и е м е т о к п р а в и л д л я у к а з а н н ы х ц е л е й я в л я е т с я ж е л а т е л ь н ы м .

Правила и ограничения:
a) Результатом оценки каждого правила области определения должно быть логическое (TRUE, FALSE

или UNKNOWN) или неопределенное (?) значение.
b) Ключевое слово SELF (см. 14.5) должно присутствовать в каждом правиле области определения,

по крайней мере, один раз. Правило области определения должно оцениваться для конкретного значения
из области определения базисного типа путем подстановки данного значения вместо каждого ключевого
слова SELF, присутствующего в правиле.

c) Правило области определения должно быть применено, если оценкой выражения является TRUE;
правило должно быть отклонено, если оценкой выражения является FALSE; правило не должно быть
ни применено, ни отклонено, если оценкой выражения является UNKNOWN или неопределенное (?)
значение.

d) Область определения определенного типа данных состоит из всехзначений области определения
базисного типа, не нарушающих ни одного правила области определения.

e) Метки правил области определения должны быть уникальными в рамкахданного объявления
типа TYPE.

Пример — Может быть создан определенный тип данных, ограничивающий базисный целочис­
ленный тип данных только положительными целыми числами.

28

ГОСТ Р И С 010303-11— 2009

TYPE positive = INTEGER;
WHERE

notnegative: SELF > 0;
ENDTYPE;
Любой атрибут, локальная переменная или формальный параметр, объявленный принадлежащим

к типу positive, при этом будет ограничен только положительными целочисленными значениями.

9.2 Объявление объекта
Объявление объекта ENTITY создает объектный тип данных и задает идентификатор для ссылок

на него.
Каждый атрибут представляет свойство объекта и может быть ассоциирован со значением в каждом

экземпляре объекта. Тип данных атрибута устанавливает область определения его возможныхзначений.
Каждое ограничение представляет одно из следующих свойств объекта:
a) Ограничения на число, вид и структуру значений атрибутов, задаваемые в объявлениях атрибутов.
b) Необходимые взаимосвязи между значениями атрибута или ограничения на допустимые значения

атрибута для данного экземпляра, задаваемые условием WHERE и рассматриваемые как правила области
определения.

c) Необходимые взаимосвязи между значениями атрибута для всех экземпляров объектного типа
данных, задаваемые в следующих конструкциях:

1) в условии уникальности, где они рассматриваются как ограничения на уникальность;
2) в условии инверсии, где они рассматриваются как ограничения на мощность множества;
3) в глобальных правилах (см. 9.6).
d) Необходимые взаимосвязи между экземплярами нескольких объектных типов, задаваемые не в

самом объявлении объекта, а в форме глобальных правил (см. 9.6).
Экземпляр объекта в языке EXPRESS может быть создан только посредством конструктора объекта

(см. 9.2.6) или оператора построения сложного объекта (см. 12.10).

Синтаксис:
206 entity_decl = entity_head entity_body END_ENTITY .
207 entity_head = E N TITYentity jd s u b s u p e r .
204 entity_body = { explicit_attr} [derive_clause] [inverse_clause] [unique_clause] [where_clause] .

Правила и ограничения:
a) Каждый идентификатор атрибута и метка, указанная в объявлении объекта, должны быть уникаль­

ными в рамках объявления.
b) Подтип не должен объявлять атрибут, имеющий такой же идентификатор, что и атрибут одного из

супертипов, за исключением случая, когда подтип повторно объявляет атрибут, унаследованный от одного
из его супертипов (см. 9.2.3.4).

9.2.1 Атрибуты
Атрибуты типа данных ENTITY представляют особенности, качества или свойства присущие объекту.

Объявление атрибутов устанавливает взаимосвязь между типом данных ENTITY и типом данных, пред­
ставляемым атрибутом.

Имя атрибута представляет роль, исполняемую ассоциированным с ним значением в контексте объекта,
в котором оно используется.

Существуют три вида атрибутов:
- явный атрибут, то есть атрибут, значение которого должно быть определено реализацией при созда­

нии экземпляра объекта;
- вычисляемый атрибут, то есть атрибут, значение которого вычисляется некоторым способом;
- инверсный атрибут, то есть атрибут, значение которого состоит из экземпляров объекта, использую-

щихданный объект в определенной роли.
Каждый атрибут устанавливает взаимосвязь между экземпляром объявляющего объектного типа

данных и некоторым другим экземпляром или экземплярами. Атрибут, представленный не агрегированным
типом данных, устанавливает простую взаимосвязь с этим типом данных. Атрибут, представленный агреги­
рованным типом данных, устанавливает как групповые взаимосвязи со значениями агрегированной струк­
туры, так и дистрибутивные взаимосвязи с элементами данныхзначений агрегированной структуры. Кроме
того, каждый атрибут устанавливает неявную инверсную взаимосвязь между основным типом данных и
объявляющим объектным типом данных.

П р и м е ч а н и е — Д а л ь н е й ш е е о б с у ж д е н и е д а н н ы х в з а и м о с в я з е й п р и в е д е н о в п р и л о ж е н и и G.

29

ГОСТ Р И С 0 10303-11 — 2009

9.2.1.1 Явный атрибут
Явный атрибут представляет свойство, значение которого должно быть обеспечено реализацией

при создании экземпляра. Каждый явный атрибут определяет отдельное свойство. Объявление явного
атрибута создает один или несколько явных атрибутов, имеющихуказанную область определения, и назна­
чает каждому из них идентификатор.

Синтаксис:
215 explicit_attr = attribute_decl{ attribute_decl} [OPTIONAL] parameter_type
177 attribute_decl = attributejd | redeclared_attribute .
266 parameter_type = generalized_types | named_types | simple_types .

П р и м е ч а н и е — Синтаксис объекта redeclared_attribute обеспечивает повторное определение
атрибута, установленное в 9.2.3.4.

Правила и ограничения:
a) Если явный атрибут не объявлен как OPTIONAL, то каждый экземпляр объектного типа данных

должен иметь значение для данного атрибута.
П р и м е ч а н и е — Если типом данных явного атрибута является наращиваемый перечисляемый тип

данных, для которого не заданы элементы перечисления, то такой объект не может быть реализован, если
только какое-нибудь расширение перечисляемого типа, содержащее, по крайней мере, один элемент перечис­
ления, не будет объявлено. Если типом данных явного атрибута является наращиваемый выбираемый тип
данных, для которого не заданы элементы списка выбора, то такой объект не может быть реализован, если
только какое-нибудь расширение выбираемого типа, содержащее, по крайней мере, один именованный тип,
не будет объявлено.

b) Ключевое слово OPTIONAL указывает на то, что в конкретном экземпляре объекта данный атрибут
не обязательно должен иметь значение. Если атрибут не имеет значения, то считается, что он имеет нео­
пределенное (?) значение.

c) Явный атрибут не должен объявляться ни явно, ни косвенно как имеющий тип данных
GENERIC.

П р и м е ч а н и я
1 Данное правило справедливо, несмотря на то, что такое объявление допускается синтаксисом.
2 Ключевое слово OPTIONAL указывает, что данный атрибут всегда является значимым для экземпля­

ров данного объектного типа, но при этом для некоторых экземпляров он может не иметь значения, соответ­
ствующего роли, определяемой данным атрибутом. Ключевое слово OPTIONAL не указывает на то, что атрибут
является значимым только для некоторых экземпляров объектного типа данных. Ситуация, при которой
атрибут не является значимым для некоторых экземпляров, должным образом моделируется путем опреде­
ления подтипов (см. 9.2.3).

3 Необходимо обратить внимание на ссылки на необязательные атрибуты, особенно в правилах,
поскольку такие атрибуты могут не иметь значения. Встроенная функция EXISTS может использоваться для
определения существования значения атрибута, а встроенная функция NVL позволяет обеспечить значение
по умолчанию для вычислений. Если ни одна из данных функций не используется, то могут получиться непред­
сказуемые результаты.

Пример — Следующие объявления эквивалентны:
ENTITY point;

х, у, z : REAL;
END ENTITY;
ENTITY point;

x : REAL;
у : REAL;
z : REAL;

END ENTITY;

9.2.1.2 Вычисляемый атрибут
Вычисляемый атрибут представляет свойство, значение которого определяется посредством вычис­

ления значения выражения. Вычисляемые атрибуты объявляются после ключевого слова DERIVE. Объяв­
ление состоит из идентификатора атрибута, типа его представления и выражения, которое должно исполь­
зоваться для вычисления значения атрибута.

30

ГОСТ Р ИС010303-11 — 2009

Синтаксис:
200 derived_attr = attribute_dec£ ':' parameter_type expression
177 attribute_dec£ = attributejd | redeclared_attribute .
266 parameter_type = generalized_types | named_types | simple_types .

П р и м е ч а н и е — С и н т а к с и с э л е м е н т а qualified_attribute о б е с п е ч и в а е т п о в т о р н о е о б ъ я в л е н и е
а т р и б у т а , у с т а н о в л е н н о е в 9.2.3.4.

Выражение может ссылаться на любой атрибут, константу (включая SELF) или идентификатор функ­
ции, принадлежащий к области видимости.

Правила и ограничения:
a) Элемент expression должен быть совместимым стипом данных атрибута, которому присваивается

его вычисленное значение (см. 13.3).
b) Для конкретного экземпляра объекта значение вычисляемого атрибута определяется путем вычис­

ления значения выражения с заменой каждого ключевого слова SELF данным экземпляром и каждой
ссылки на атрибут — значением соответствующего атрибута.

c) Вычисляемый атрибут не должен объявляться ни явно, ни косвенно как имеющий тип данных
GENERIC.

П р и м е ч а н и е — Д а н н о е п р а в и л о с п р а в е д л и в о , н е с м о т р я н а т о , ч т о т а к о е о б ъ я в л е н и е д о п у с к а е т с я
с и н т а к с и с о м .

Пример — В данном примере, круг (circle) определяется центром (centre), осью (axis) и
радиусом (radius). Помимо этих явных атрибутов, необходимо знать значения таких важных пара­
метров, как площадь (area) и периметр (perimeter). Данное требование может быть реализовано
посредством определения данных параметров как вычисляемых атрибутов, значения которых
определены выражениями.

ENTITY circle;
centre : point;
radius : REAL;
axis : vector;

DERIVE
area : REAL : = Pl*radius**2;
perimeter : REAL : = 2.0*PI*radius;

END_ENTrTY;

9.2.1.3 Инверсный атрибут
Если другой объект установил взаимосвязь с данным объектом посредством явного атрибута, то

инверсный атрибут может быть использован для описания этой взаимосвязи в контексте данного объекта.
Данный инверсный атрибут может также быть использован для того, чтобы ограничить эту взаимосвязь в
дальнейшем.

Инверсные атрибуты объявляются после ключевого слова INVERSE. Каждый инверсный атрибут дол­
жен быть определен отдельно.

Ограничения мощности множества, применяемые к инверсной взаимосвязи, устанавливаются специ­
фикацией границ для инверсного атрибута так же, как и для явных атрибутов.

П р и м е ч а н и е — Б о л е е п о д р о б н а я и н ф о р м а ц и я о в з а и м о с в я з и м е ж д у я в н ы м и и и н в е р с н ы м и
а т р и б у т а м и п р и в е д е н а в п р и л о ж е н и и Н .

Инверсный атрибут представляется объектным типом данных либо типами данных BAG или SET,
базисным типом которых является объектный тип данных. Обращение к объектному типу данных осуще­
ствляется как на ссылочный объект.

В объявлении инверсного атрибута также указывается явный атрибут ссылочного объекта. Для конк­
ретного экземпляра данного объектного типа данныхзначение инверсного атрибута состоит из экземпляра
или экземпляров типов данных ссылочного объекта, использующих данный экземпляр в определенной
роли. В случае неоднозначности, возникшей из-за идентичности имен атрибутов в графе подтипов/суперти-
пов ссылочного объекта, имени явного атрибута должно предшествовать имя объекта, который первона­
чально объявляет данный атрибут.

Каждый из трех возможных типов данных для представления инверсного атрибута устанавливает
некоторые ограничения на взаимосвязь между двумя объектами, представленные ниже.

31

ГОСТ Р И С 0 10303-11 — 2009

Тип данных BAG:
Спецификация границ, если она задана, определяет минимальное и максимальное число экземпля­

ров ссылочного объекта, которое может использовать экземпляр данного объекта. Поскольку неупорядо­
ченное множество (пакет), представляемое типом данных BAG, может содержать отдельный экземпляр
несколько раз, то один или несколько экземпляров могут ссылаться на данный экземпляр, а конкретный
экземпляр может ссылаться на данный экземпляр несколько раз.

П р и м е ч а н и я
1 Е с л и и н в е р т и р о в а н н ы й а т р и б у т п р е д с т а в л е н н е у н и к а л ь н ы м а г р е г и р о в а н н ы м т и п о м д а н н ы х , т о е с т ь с п и с ­

к о м и л и м а с с и в о м , д л я к о т о р о г о н е з а д а н о к л ю ч е в о е с л о в о UNIQUE, л и б о п а к е т о м , т о к о н к р е т н ы й э к з е м п л я р
д а н н о г о о б ъ е к т а м о ж е т б ы т ь и с п о л ь з о в а н к о н к р е т н ы м э к з е м п л я р о м с с ы л о ч н о г о о б ъ е к т а н е с к о л ь к о р а з .

2 Е с л и и н в е р т и р о в а н н ы й а т р и б у т п р е д с т а в л е н у н и к а л ь н ы м а г р е г и р о в а н н ы м т и п о м д а н н ы х , т о е с т ь с п и с ­
к о м и л и м а с с и в о м , д л я к о т о р о г о з а д а н о к л ю ч е в о е с л о в о UNIQUE, л и б о н а б о р о м , т о к о н к р е т н ы й э к з е м п л я р д а н н о ­
г о о б ъ е к т а м о ж е т б ы т ь и с п о л ь з о в а н к о н к р е т н ы м э к з е м п л я р о м с с ы л о ч н о г о о б ъ е к т а т о л ь к о о д и н р а з .

Представление инверсного атрибута с нижней границей равной нулю указывает на то, что на данный
экземпляр данного объекта не обязательно должен ссылаться любой экземпляр ссылочного объекта.

Тип данныхвЕТ:
Справедливо все сказанное выше для типа данных BAG, но с дополнительным ограничением, опре­

деляющим уникальность ссылочных экземпляров. Данное ограничение также означает, что конкретный
ссылочный экземпляр может использовать данный экземпляр в инвертированной роли только один раз.

П р и м е ч а н и е — Е с л и и н в е р т и р о в а н н ы й а т р и б у т п р е д с т а в л е н у н и к а л ь н ы м а г р е г и р о в а н н ы м т и п о м
д а н н ы х , т о е с т ь с п и с к о м и л и м а с с и в о м , д л я к о т о р о г о з а д а н о к л ю ч е в о е с л о в о UNIQUE, л и б о н а б о р о м , т о и н в е р с и я
н е д о б а в л я е т н о в ы х о г р а н и ч е н и й о т н о с и т е л ь н о у н и к а л ь н о с т и .

Объектный тип данных:
Инверсный атрибут содержит точно тот один экземпляр ссылочного объектного типа данных, который

использует данный экземпляр в определенной роли. В данном случае мощность множества инверсной
взаимосвязи имеет соотношение 1:1.

Синтаксис:
248 inverse_attr = attribute_deci ': ' [(SET | BAG) [bound_spec] OF]

entity_ref FOR [entity_ref '.'] attribute_ref ' .
177 attribute_dectf = attributejd | rediclared_attribute .
185 bound_spec= ' [' bound_1 bound_2 '] ' .
183 bound_1 = numeric_expression .
184 bound_2 = numeric_expression .

Правила и ограничения:
a) Объект, в котором определяется объявление прямой взаимосвязи сданным объектом, должен

реализовать данное объявление в форме явного атрибута.
b) Типом данныхявного атрибута в объекте, определяющем прямую взаимосвязь, должен быть один

из следующих:
1) тип объявляемого объекта;
2) супертип объявляемого объекта;
3) определенный тип данных, основанный на выбираемом типе данных, содержащем один из пере­

численных выше типов;
4) агрегированный тип данных, основным типом которого является один из перечисленных выше.

c) Объект, на который имеется ссылка в объявлении инверсного атрибута, может быть подтипом объекта,
объявившего прямую взаимосвязь. В данном случае инверсный атрибут содержит только экземпляры дан­
ного подтипа. Подтипы, на которые даются ссылки подобным образом, не должны повторно объявлять
явный атрибут как вычисляемый атрибут.

d) Если имя явного атрибута в объекте, определяющем прямую взаимосвязь, не уникально в графе
подтипов/супертипов данного объекта, то для уточнения имени данного явного атрибута после ключевого
слова FOR должно быть использовано имя объектного типа данных.

e) Инверсный атрибут не должен объявляться ни явно, ни косвенно как имеющий тип данных GENERIC.
П р и м е ч а н и е — Д а н н о е п р а в и л о с п р а в е д л и в о , н е с м о т р я н а т о , ч т о т а к о е о б ъ я в л е н и е д о п у с к а е т с я

с и н т а к с и с о м .

32

ГОСТ Р ИС010303-11— 2009

Пример — Предположим, что имеется следующее объявление для определения двери (объект
door):

ENTITY door;
handle : knob;
hinges : SET [1: ?] OF hinge;

END_ENTITY;
Мы можем ограничить объявление шарообразной ручки (объект knob) так, чтобы шарообраз­

ные ручки могли существовать только, если они используются в роли поворотной ручки (объект
handle) в одном экземпляре двери.

ENTITY knob;

INVERSE
opens: door FOR handle;

END ENTITY;
С другой стороны, мы можем просто указать, что шарообразная ручка используется в одной две­

ри или не используется (например, она уже установлена на двери или еще только должна быть к ней
присоединена).

ENTITY knob;

INVERSE
opens : SET [0:1] OF door FOR handle;

END ENTITY;

9.2.2 Локальные правила
Локальные правила являются формальными утверждениями для области определения экземпляров

объекта и, таким образом, применимы ко всем экземплярам данного объектного типа данных. Существуют
два вида локальных правил. Правила уникальности контролируют уникальность значений атрибутов среди
всех экземпляров заданного объектного типа данных. Правила области определения описывают другие
ограничения на значения или между значениями атрибутов каждого экземпляра заданного объектного типа
данных.

Каждому из локальных правил может быть присвоена метка правила.

П р и м е ч а н и е — М е т к и п р а в и л , е с л и о н и з а д а н ы , м о г у т б ы т ь и с п о л ь з о в а н ы в м е т к а х к о м м е н т а р и я
(с м . 7.1.6.3) и л и д л я и д е н т и ф и к а ц и и п р а в и л в р е а л и з а ц и я х , н а п р и м е р , в д о к у м е н т а ц и и , с о о б щ е н и я х о б

о ш и б к а х и с п е ц и ф и к а ц и я х п р и м е н е н и я . З а д а н и е м е т о к п р а в и л д л я у к а з а н н ы х ц е л е й я в л я е т с я ж е л а т е л ь н ы м .

9.2.2.1 Правило уникальности
В правиле уникальности может быть определено ограничение уникальности для отдельных атрибутов

или комбинаций атрибутов. Правила уникальности записывают после ключевого слова UNIQUE, указывая
имя одиночного атрибута или список имен атрибутов. Правило, в котором указано имя одиночного атрибу­
та, называется правилом простой уникальности и устанавливает, что никакие два экземпляра объектного
типа данных из области определения не должны использовать один и тот же экземпляр именованного
атрибута. Правило, в котором указаны два или более имен атрибутов, называется правилом совместной
уникальности и устанавливает, что никакие два экземпляра объектного типа данных не должны иметь оди­
наковую комбинацию экземпляров именованных атрибутов.

П р и м е ч а н и е — П р и с р а в н е н и и о ц е н и в а е т с я р а в е н с т в о э к з е м п л я р о в , а н е р а в е н с т в о з н а ч е н и й

(с м . 12.2.2).

Правило: если явный атрибут, который отмечен как OPTIONAL (см. 9.2.1.1), появляется в правиле
уникальности, и если при этом атрибут не имеет значения для конкретного экземпляра объекта, то правило
уникальности не является ни нарушенным, ни доказанным, и поэтому данный экземпляр объекта принад­
лежит области определения.

Синтаксис:
333 unique_clause = UNIQUE unique_rule ' ; ' { unique rule ' ; ' } .
334 unique_rule = [r u le ja b e l jd ' : '] referenced_attribute { ' , '

re fe renced_attribu te} .
280 referenced_attribute = attribute_ref | qualified_attribute .

33

ГОСТ Р ИС010303-11 — 2009

Примеры
1 Если объект не имеет три атрибута а, b и с, то следующий фрагмент на языке EXPRESS

означает, что два экземпляра объявленного объектного типа данных не могут иметь одинаковые
значения для а, b или с.

ENTITY е;
а, Ь, с : INTEGER;
UNIQUE
ur1 : а;
ur2 : b;
ur3 : c;
END_ENTITY;
2 Объект person_name может быть определен следующим образом:
ENTITY person name;

last : STRING;
first : STRING;
middle : STRING;
nickname : STRING;

END ENTITY;
Данный объект может быть использован следующим образом:
ENTITY employee;

badge : NUMBER;
name : person_name;

UNIQUE
ur1 : badge, name;

END_ENTITY;
В данном примере два экземпляра объекта person_name могли бы иметь одинаковый набор

значений для четырех атрибутов. Однако для объекта employee введено требование, чтобы
совместное использование атрибутов badge и name было уникальным. Таким образом, два экземп­
ляра объекта employee могут иметь одинаковое значение атрибута badge и одинаковое значение
атрибута name. Однако никакие два экземпляра объекта employee не могут иметь одинаковый
экземпляр атрибута badge и одинаковый экземпляр атрибута name, поскольку при совместном
использовании данная комбинация экземпляров должна быть уникальной (см. 9.6 по поводу способа
описания уникальности значений атрибутов).

9.2.2.2 Правила области определения (условие WHERE)
Правила области определения ограничивают значения отдельных атрибутов или комбинаций атрибу­

тов для каждого экземпляра объекта. Все правила области определения указывают после ключевого слова
WHERE.

Синтаксис:
338 where_clause = WHERE domain_rule '; ' { domain_rule ' ; ' }.

Правила и ограничения:
a) Результатом оценки выражения, описывающего правило области определения, должно быть

логическое значение (TRUE, FALSE или UNKNOWN) или неопределенное (?) значение.
b) Каждое выражение, описывающее правило области определения, должно содержать ключевое

слово SELF или атрибуты, объявленные в определении объекта или любого его супертипа.
c) Появление ключевого слова SELF должно означать ссылку на экземпляр объявляемого объекта.
d) Правило области определения должно считаться доказанным, если оценкой выражения является

значение TRUE; правило должно считаться нарушенным, если оценкой выражения является значение
FALSE; правило будет считаться ни доказанным, ни нарушенным, если оценкой выражения является
неопределенное (?) значение или значение UNKNOWN.

e) Все правила должны выполняться для допустимого экземпляра объекта (в данной области
определения).

Пример — Для объекта unit_vector требуется, чтобы его длина была равна точно единице. Это
ограничение может быть определено следующим образом:

ENTITY unit_vector;
a, b, с : REAL;

34

ГОСТ Р ИС010303-11 —2009

WHERE
length_1 : а**2 + b**2 + с“ 2 = 1.0;

END ENTITY;

Необязательные атрибуты в правилах области определения:
Правило области определения, содержащее необязательный атрибут, должно трактоваться в соответ­

ствии с описанными ниже правилами и ограничениями.
Правила и ограничения:
a) Если атрибут имеет значение, то правило области определения должно оцениваться как любое

другое правило области определения.
b) Если атрибут не имеет значения, то в качестве значения атрибута при оценке выражения, описыва­

ющего правило области определения, используется неопределенное (?) значение. Оценка выражений, со­
держащих неопределенное (?) значение, рассмотрена в разделе 12.

Пример — Рассмотрим следующий вариант предыдущего примера:
ENTITY unit_vector;

a, b : REAL;
с : OPTIONAL REAL;

WHERE
length_1 : a**2 + b**2 + c**2 = 1.0;

END ENTITY;
Целью правила области определения является обеспечение того, чтобы объект unit_vector

сделать единичным. Однако если атрибут с имеет неопределенное (?) значение, то оценкой
правила области определения всегда является значение UNKNOWN, независимо от значений аргумен­
тов а и Ь.

Стандартная функция NVL (см. 15.18) может быть использована для обеспечения приемлемого
значения в случае, если необязательный атрибут имеет неопределенное (?) значение. Если необяза­
тельный атрибут имеет значение, то функция NVL возвращает данное значение; в противном случае
она возвращает подстановочное значение.

ENTITY unit_vector;
a, b : REAL;
с : OPTIONAL REAL;

WHERE
length_1 : a**2 + b**2 + NVL(c, 0.0)**2 = 1.0;

END_ENTITY;

9.2.3 Подтипы и супертипы
Язык EXPRESS допускает определение объектов как подтипов других объектов, где подтип объекта

является конкретизацией его супертипа. Тем самым устанавливается наследственная взаимосвязь (под-
тип/супертип) между объектами, в которых подтип наследует свойства (то есть атрибуты и ограничения)
своего супертипа. Последовательные взаимосвязи подтип/супертип определяют граф наследования, в ко­
тором каждый экземпляр подтипа является экземпляром его супертипа (или супертипов).

Граф наследования, определенный взаимосвязями подтип/супертип, должен быть ациклическим.
Если в объявлении объекта полностью определены все значимые свойства данного объекта, то это

означает, что объявлен простой объектный тип данных. Если в объявлении объекта установлены наслед­
ственные взаимосвязи с супергипами, то эго означает, что объявлен сложный объектный тип данных. Сложный
объектный тип данных в рамках графа наследования использует характеристики своего супертипа (или
супертипов). Сложный объектный тип данных может иметь дополнительные характеристики, не содержа­
щиеся в его супертипе (или супертипах).

Синтаксис:
312subsuper = [supertype_constraint] [subtype_declaration] .

Следующие положения относятся к взаимосвязям подтип/супертип и основываются на графе подти-
пов/супертипов. Граф подтипов/супертипов является многокорневым направленным ациклическим графом,
в котором узлы представляют объектные типы данных, а ребра представляют взаимосвязи подтип/супер­
тип. Следующие за ключевыми словами SUBTYPE OF связи ведут к супертипам, тогда как следующие за
ключевыми словами SUBTYPE OF связи ведут от супертипов к подтипам.

Правила и ограничения:
а) Ограничение супертипа, при его наличии, должно предшествовать ограничению подтипа, если

оно присутствует.

35

ГОСТ Р ИС010303-11 — 2009

b) Подтип может иметь более одного супертипа.
c) Супертип может иметь более одного подтипа.
d) Супертип может сам быть подтипом одного или нескольких других объектных типов данных. То

есть пути в графе подтипов/супертипов могут проходить через несколько узлов.
e) Взаимосвязь подтип/супертип должна быть транзитивной. То есть, если А является подтипом В, а В

является подтипом С, то А является подтипом С. Объекты, являющиеся супертипами некоторого объектно­
го типа данных, должны быть такими объектами, к которым можно найти путь на графе, начиная сданного
объектного типа данных и следуя по связям SUBTYPE OF.

f) Подтип не должен быть супертипом любого из типов, указанных в списке всех его супертипов, то
есть граф подтипов/супертипов должен быть ациклическим.

9.2.3.1 Определение подтипов
Объект является подтипом, если он содержит объявление с ключевым словом SUBTYPE. В объявле­

нии подтипа должны указываться все непосредственные супертипы объекта. Экземпляр объектного типа
данных, определенный как подтип, является экземпляром каждого из его супертипов.

Синтаксис:
318subtype_declaration = SUBTYPEOF '(' entity_ref { entity_ref } ') ' .

9.2.3.2 Определение супертипов
Объект может быть объявлен супертипом посредством явного или неявного определения. Объект

объявлен супертипом в явной форме, если он содержит объявление с ключевым словом ABSTRACT
SUPERTYPE. Объект объявлен супертипом в неявной форме, если его имя задано в объявлении
SUBTYPE, по крайней мере, одного другого объекта.

Синтаксис:
319 supertype_constraint = abstract_entity_declaration | abstract_supertype_declaration | supertype_rule.
164 abstract_entity_declaration = ABSTRACT.
166 abstract_supertype_declaration = ABSTRACT SUPERTYPE [subtype_constraint].
313 subtype_constraint = O F '(' supertype_expression') ' .
320 supertype_expression = supertype_factor { ANDOR supertype_factor} .
321 supertype_factor = supertype_term { AND supertype_term}.
323 supertype_term = entity_ref | one of | '(' supertype_expression') ' .
263one_of=ONEOF'('supertype_expression { supertype_expression}')'.
322 supertype_rule = SUPERTYPE subtype_constraint.

Правило: все подтипы, указанные в выражении для супертипа, должны содержать объявление подти­
па, идентифицирующее данный объект как супертип.

Пример — Нечетные числа являются подтипом целых чисел, следовательно, целые числа явля­
ются супертипом нечетных чисел.

ENTITY integer_number;
val : INTEGER;

END_ENTITY;
ENTITY odd_number

SUBTYPE OF (integer_number);
WHERE

not_even : ODD(val);
END_ENTITY;

9.2.3.3 Наследование атрибутов
Идентификаторы атрибутов в супертипе определены в рамках области видимости подтипа (см. раз­

дел 10). Таким образом, подтип наследует все атрибуты своего супертипа. Это позволяет подтипам опреде­
лять ограничения или свои собственные атрибуты с использованием унаследованного атрибута. Если под­
тип имеет несколько супертипов, то подтип наследует все атрибуты от всех своих супертипов. Это называ­
ется множественным наследованием.

Правила и ограничения:
a) Объект не должен объявлять атрибут с таким же именем, как у атрибута, унаследованного от

одного из его супертипов, если только он не объявляет унаследованный атрибут повторно (см. 9.2.3.4).
b) Если подтип наследует атрибуты от двух супертипов, не имеющих общих элементов, то допускает­

ся, чтобы они имели отличающиеся атрибуты с одинаковыми идентификаторами. Неоднозначность имен
36

ГОСТ Р ИС010303-11— 2009

должна разрешаться посредством добавления к идентификатору префикса с именем супертипа, от которо­
го унаследован каждый из атрибутов.

Пример — В данном примере показано, как объект е12 наследует два атрибута с одинако­
выми именами attr, а для того, чтобы указать, для какого из двух атрибутов задается ограниче­
ние, к его имени добавляется префикс.

ENTITY е1;
attr : REAL;

END_ ENTITY;

ENTITY e2;
attr : BINARY;

END_ENTITY;

ENTITY e12
SUBTYPE OF (e1,e2);

WHERE
positive : SELF\e1.attr > 0.0 ; — атрибут attr, объявленный в е1

END_ENTITY;

Подтип может наследовать один и тот же атрибут от разных супертипов, которые в свою очередь
унаследовали его от одного супертипа. Это называется повторным наследованием. В данном случае под­
тип наследует атрибут только один раз, то есть существует только одно значение для данного атрибута в
экземпляре данного объектного типа данных.

9.2.3.4 Повторное объявление атрибута
Атрибут, объявленный в супертипе, может быть повторно объявлен в подтипе. Атрибут остается в

супертипе, но допустимая область значений для данного атрибута определяется повторным объявлением,
заданным в подтипе.

Первоначальное объявление может быть изменено тремя основными способами:
- атрибуту может быть присвоено другое имя;
- тип данных атрибута может быть изменен конкретизацией исходного типа данных (см. 9.2.7).

Пример — Атрибут типа данных NUMBER может быть изменен на тип данных INTEGER или REAL;

- если исходным типом данных атрибута является определенный тип данных, основанный на выбира­
емом типе данных, то он может быть изменен другим списком выбора, определяющим подмножество или
конкретизацию элементов исходного списка выбора, либо конкретизацией одного из элементов исходного
типа выбора;

- необязательный атрибут в супертипе может быть изменен на обязательный атрибут в подтипе;
- явный атрибут в супертипе может быть изменен на вычисляемый атрибут в подтипе;
- атрибуту в супертипе может быть присвоен новый идентификатор в подтипе. Новый идентификатор

подчиняется всей области видимости и правилам видимости, определенным в разделе 10, для идентифика­
тора атрибута подтипа, объявление которого содержит данное повторное объявление; но данный идентифи­
катор всегда относится также и к исходному атрибуту в супертипе.

П р и м е ч а н и е — Объявление нового идентификатора не удаляет старый идентификатор из области
видимости имен. Старый идентификатор остается доступным в своем объектном типе данных и в любых подти­
пах, объявленных для данного объектного типа данных.

Синтаксис:
279 redeclared_attribute = qualified_attribute [RENAMED a ttr ib u te jd] .
275 qualified_attribute = SELF group_qualifierattribute_qualifier.
232group_qua lifie r = ' V e n tity_ re f.
179attribute_qualifie r = ' . ' a ttribu te_re f.

Правила и ограничения:
а) Тип данных в повторном объявлении должен совпадать или являться конкретизацией типа данных

атрибута, объявленного в супертипе. Применяются правила конкретизации по 9.2.7.

37

ГОСТ Р ИС010303-11— 2009

b) Имя повторно объявленного атрибута должно быть задано с использованием синтаксиса элемента
q ual if ied_attri bute.

c) Если тип данных, использованный при определении исходного атрибута, был ограничен правилом
WHERE, то тип данных, используемый для определения повторно объявленного атрибута, должен быть
ограничен так, чтобы область определения повторно объявленного атрибута являлась подмножеством об­
ласти определения исходного атрибута.

d) Элемент group_qualifier в синтаксисе элемента qualified_attribute должен идентифицировать
объектный тип данных, в котором данный атрибут был первоначально объявлен, либо объектный тип дан­
ных, который повторно объявляет атрибут из другого супертипа.

e) Если атрибут супертипа повторно объявлен в двух не взаимоисключающих подтипах, то экземп­
ляр, содержащий оба подтипа, должен иметь единственное значение для атрибута, являющегося допусти­
мым для обоих повторных объявлений.

1) Если атрибуту присвоен новый идентификатор, то данный идентификатор не должен совпадать
с идентификатором любого атрибута в любом супертипе данного объектного типа данных.

П р и м е ч а н и е — Правило WHERE, заданное для исходного атрибута, остается в силе и для повторных
объявлений данного атрибута (см. 9.2.3.5).

Примеры
1 В некоторых геометрических системах используются координаты с плавающей точкой,

в то время как другие системы работают в целочисленном координатном пространстве.
Понятия GENERIC_ENTITY и RENAMED обеспечивают спецификации общей применимости и конкрети­
зации для специфической области применения.

ENTITY point;
х : NUMBER;
у : NUMBER;

END_ENTITY;
ENTITY integer_point

SUBTYPE OF (point);
SELF\point.x RENAMED integer_x : INTEGER;
SELF\point.y RENAMED integer_y : INTEGER;

END_ENTITY;
ENTITY line ABSTRACT;

start : GENERIC_ENTITY;
end : GENERIC_ENTITY;

END_ENTITY;
ENTITY integer_point_line;

SUBTYPE OF (line);
SELFMine.start RENAMED integer_start : INTEGER_point;
SELFMine.end RENAMED integer_end : INTEGER_point;

END_ENTITY;
2 Данный пример демонстрирует изменение элементов агрегированного типа данных на

уникальные, уменьшение числа элементов агрегированного типа данных и изменение необязатель­
ного атрибута на обязательный.

ENTITY super;
th ings : LIST [3 :?] OF thing;
items : BAG [0 : ?] OF widget;
may_be : OPTIONAL stuff;

END_ENTITY;
ENTITY sub

SUBTYPE OF (super);
SELF\super.things : LIST [3 :?] OF UNIQUE thing;
SELF\super.items : SET [1 :10] OF widget;
SELF\super.may_be : stuff;

END_ENTITY;
3 В данном примере круг задан центром, осью и радиусом. Вариант круга задан центром и

двумя точками, через которые он проходит. Эти три точки представляют данные, посредством
которых задан данный вариант круга. В дополнение к этим данным необходимо учесть и другие
важные параметры — радиус и ось. Это осуществляется посредством их повторного объявления
как вычисляемых атрибутов с заданием их значений выражениями.

38

ГОСТ Р И С 010303-11— 2009

FUNCTION distance(p1, р2 : point) : REAL;
(* Вычисляет кратчайшее расстояние между двумя точками *)

END_FUNCTION;
FUNCTION normal (р1, р2, рЗ : point) : vector;

(*Вычисляет нормаль к плоскости, заданной тремя точками на ней *)
END_FUNCTION;
ENTITY circle;

centre : point;
radius : REAL;
axis : vector;

DERIVE
area : REAL := Pl*radius**2;

END_ENTITY;
ENTITY circle_by_points

SUBTYPE OF (circle);
p2 : point;
p3 : point;

DERIVE
SELF\circle.radius : REAL := distance (centre, p2);
SELF\circle.axis : vector := normal (centre, p2, p3);

WHERE
not coincident : (centre <> p2) AND

(p2<> p3) AND
(p3 <> centre);

is_circle : distance (centre,p3) =
distance (centre,p2);

END_ENT1TY;
5 подтипе три определяющие точки (centre, р2 и рЗ) являются явными атрибутами, а объекты

radius, axis и area являются вычисляемыми атрибутами. Значения вычисляемых атрибутов опре­
деляются выражением, следующим за оператором присваивания. Значения объектов radius и axis
получаются посредством вызова функции; заодно вычисляется значение объекта area.

9.2.3.5 Наследование правил
Каждое локальное или глобальное правило, относящееся ко всем экземплярам супертипа, примени­

мо и ко всем экземплярам его подтипов. Таким образом, подтип наследует все правила своего супертипа.
Если подтип имеет несколько супертипов, то подтип должен наследовать все правила, ограничиваю щ ие
супертипы.

Нельзя изменить или удалить какое-либо из правил, связанных с подтипом, через наследование пра­
вил, но можно добавить новые правила, еще более ограничивающ ие подтип.

Правило: на экземпляр объекта распространяются все ограничения, установленные для каждого из
его объектны хтипов данных.

П р и м е ч а н и е — Е с л и о г р а н и ч е н и я , у с т а н о в л е н н ы е в д в у х (и л и б о л е е) о б ъ е к т н ы х т и п а х д а н н ы х ,
п р о т и в о р е ч а т д р у г д р у г у , т о н е м о ж е т с у щ е с т в о в а т ь д о п у с т и м о г о э к з е м п л я р а , с о д е р ж а щ е г о э т и о б ъ е к т н ы е т и п ы
д а н н ы х .

Пример — В данном примере выпускником (объект graduate) является лицо (объект person),
которое и учит, и учится. Объект graduate наследует атрибуты и ограничения от своих супертипов
(объектов teacher (преподаватель) и student (студент)) вместе с атрибутами и ограничениями из
их общего супертипа (объекта person). Но выпускнику, в отличие от преподавателя, не разрешено
преподавать на старших курсах.

SCHEMA s;
ENTITY person;

ss_no: INTEGER;
born : date;

DERIVE
age: INTEGER := years_since (born);

UNIQUE
un1:ss_no;

END_ENTITY;

39

ГОСТ Р ИС010303-11— 2009

ENTITY teacher
SUBTYPE OF (person);
teaches : SET [1 : ?] OF course;

WHERE
old : age >=21;

END_ENTITY;
ENTITY student

SUBTYPE OF (person);
takes : SET[1 : ?] OF course;

WHERE
young : age>=5;

END_ENTITY;
ENTITY graduate

SUBTYPE OF (student, teacher);

WHERE
limited : NOT (GRAD_LEVEL IN teaches);

END_ENTITY;
TYPE course = ENUMERATION OF (. . . , GRAD_LEVEL, ...);
END TYPE;

END_SCHEMA; — конец схемы S
П р и м е ч а н и е — Е с л и п о д т и п н а с л е д у е т в з а и м н о п р о т и в о р е ч а щ и е о г р а н и ч е н и я о т с в о и х с у п е р т и п о в , т о

н е м о ж е т с у щ е с т в о в а т ь с о о т в е т с т в у ю щ и й э к з е м п л я р д а н н о г о п о д т и п а , п о с к о л ь к у л ю б о й э к з е м п л я р б у д е т н а р у ­
ш а т ь о д н о и з о г р а н и ч е н и й .

9.2.4 Абстрактный объектный тип данных
Язык EXPRESS позволяет объявлять объектные типы данных, не предназначенные для непосред­

ственной реализации, а только для реализации через свои подтипы. Абстрактный объектный тип данных
может объявить явные или вычисляемые атрибуты, типами данных которых являются обобщенные типы
данных (см. 8.5). Эти обобщенные типы данных могут затем быть повторно объявлены как реализуемые
типы данных в подтипах абстрактного объектного типа данных. Если подтип абстрактного объектного типа
данных сам является абстрактным объектным типом данных, то он не должен повторно объявлять нереали­
зуемые унаследованные атрибуты как реализуемые типы данных. В подтипе абстрактного объектного типа
данных, который не является абстрактным объектным типом данных, никакие унаследованные или явно
объявленные атрибуты не должны иметь нереализуемый тип данных.

Метки типа (см. 9.5.3.4) могут быть использованы для обеспечения того, что два или более атрибута,
типами данных которых являются обобщенные типы данных, имеют одинаковые типы данных на момент
обращения.

Правила и ограничения:
a) Объявление абстрактного объектного типа данных содержит ключевое слово ABSTRACT в объяв­

лении объектного типа данных ENTITY, но не содержит ключевое слово SUPERTYPE (понятие ABSTRACT
SUPERTYPE определено в 9.5.2.1).

b) Абстрактный объектный тип данных не является реализуемым, если только он не является частью
сложного объектного типа данных, все атрибуты которого, имеющие обобщенные типы данных, были объяв­
лены повторно как имеющие реализуемый тип данных.

П р и м е ч а н и я
1 П р а в и л о п о п е р е ч и с л е н и ю Ь) о б е с п е ч и в а е т с о о т в е т с т в и е л ю б о г о а б с т р а к т н о г о о б ъ е к т н о г о т и п а д а н н ы х

о г р а н и ч е н и ю а б с т р а к т н о г о с у п е р т и п а (с м . 9.2.5.1).
2 П о в т о р н о е о б ъ я в л е н и е м о ж е т б ы т ь о с у щ е с т в л е н о н е п о с р е д с т в е н н о в р е а л и з у е м о м п о д т и п е и л и в о д н о м

и з е г о с у п е р т и п о в (с м . 9.2.4).

Пример — В обобщенной модели согласования может потребоваться определить, что может
быть согласована группа объектов. Данная модель затем может быть использована в ряде других
схем и уточнена в части определения согласования реальных объектов.

ENTITY general_approval ABSTRACT;
approvedjtems : BAG OF GENERIC_ENTITY;
status : approval_status;

END_ENTITY;

40

ГОСТ Р ИС010303-11 — 2009

9.2.5 Ограничения подтипов/супертипов
Экземпляр объектного типа данных, объявленный явно или неявно как супертип (см. 9.2.3.2), может

также являться экземпляром одного или нескольких из его подтипов (см. Н.2).

Синтаксис:
319 supertype_constraint= abstract_entity_declaration |

abstract_supertype_declaration | supertype_rule.
164 abstract_entity_declaration = ABSTRAC T.
166 abstract_supertype_declaration = ABSTRACT SUPERTYPE [subtype_constraint].
313 subtype_constraint = OF ' (' supertype_expression ') ' .
320 supertype_expression = supertype_factor{ ANDOR supertype_factor}.
321 supertype_factor = supertype_term { AND supertype_term }.
323 supertype_term = entity_ref | one_of | ' (' supertype_expression ') ' .
263 one_of = ONEOF ' (' supertype_expression { ', 's u p e rty p e _ e x p re s s io n } ') '.
322 supertype_rule = SUPERTYPE subtype_constraint.

Имеется возможность определить ограничения, в соответствии с которыми могут быть реализованы
графы подтипов/супертипов. Данные ограничения могут быть определены в объявлении супертипа посред­
ством условия SUPERTYPE. Они могут также быть определены как отдельные правила посредством объяв­
лений SUBTYPE_CONSTRAINT (см. 9.7).

П р и м е ч а н и е — Д л я т о г о , ч т о б ы с у щ е с т в у ю щ и е с х е м ы , р а з р а б о т а н н ы е в с о о т в е т с т в и и с п е р в о й
р е д а к ц и е й с п р а в о ч н о г о р у к о в о д с т в а п о я з ы к у EXPRESS, о с т а в а л и с ь д о п у с т и м ы м и , о б ъ я в л е н и е о г р а н и ч е н и й
н а п о д т и п ы / с у п е р т и п ы , в к о т о р о м п р и о б ъ я в л е н и и о б ъ е к т а и с п о л ь з у ю т с я к л ю ч е в ы е с л о в а ONEOF, ANDOR
и л и AND, о с т а е т с я д о п у с т и м ы м п о о т н о ш е н и ю к н а с т о я щ е м у с т а н д а р т у . О д н а к о , д а н н ы й с п о с о б о б ъ я в л е н и я
н е ж е л а т е л е н , п о с к о л ь к у в п о с л е д у ю щ и х р е д а к ц и я х с т а н д а р т а п л а н и р у е т с я е г о з а п р е т . Р е к о м е н д у е т с я
и с п о л ь з о в а т ь о б ъ я в л е н и е SUBTYPE_CONSTRAINT.

Объявление SUBTYPE_CONSTRAINT содержит совокупность ограничений, установленных в выра­
жении supertype_expression. Объявление SUBTYPE_CONSTRAINT может содержать любое число огра­
ничений AND и ONEOF, каждое из которых интерпретируется как отдельное ограничение.

Кроме того, при включении в формулировку какого-либо более сложного ограничения каждое выра­
жение ONEOF, AND и ANDOR интерпретируется как совокупность экземпляров супертипа. При интерпре­
тации выражения supertype_expression применяют следующие правила:

- имя объектного типа данных, встретившееся где-либо в выражении supertype_expression, интер­
претируется как множество экземпляров объекта, образующих полную совокупность данного типа данных,
как и в глобальном правиле (см. 9.6);

- результат вычисления выражения supertype_expression интерпретируется как множество экземпля­
ров супертипа в соответствии с определенными ниже ограничениями ONEOF, AND и ANDOR.

Несмотря на то, что конечным результатом вычисления выражения supertype_expression для объяв­
ления SUBTYPE_CONSTRAINT является множество экземпляров объекта, данное множество не имеет
значения. То есть результат всего выражения supertype_expression не устанавливает никакого ограниче­
ния, поскольку он не обязательно содержит все экземпляры супертипа и может содержать экземпляры, к
которым не применяется ни одно из установленных ограничений.

П р и м е ч а н и е — С л е д о в а т е л ь н о , н е з а в и с и м ы е о г р а н и ч е н и я м о г у т б ы т ь с в я з а н ы о п е р а т о р о м ANDOR,
к о т о р ы й т о л ь к о д о б а в л я е т э к з е м п л я р ы к о б щ е м у (н е и м е ю щ е м у з н а ч е н и я) р е з у л ь т а т у в ы р а ж е н и я
supertype_expression.

Формальный подход к определению возможных комбинаций подтипов/супертипов, которые могут
быть реализованы с учетом некоторых возможныхограничений, определенных ниже, представлен в прило­
жении В.

9.2.5.1 Абстрактные супертипы
Язык EXPRESS допускает объявление супертипов, не предназначенных для непосредственной

реализации. Для этого объектный тип данных должен содержать ключевые слова ABSTRACT SUPERTYPE
в ограничении супертипа. Абстрактный супертип не должен быть реализован, кроме как в сочетании, по
крайней мере, с одним из его подтипов.

П р и м е ч а н и е — Э т о о з н а ч а е т , ч т о с х е м а , с о д е р ж а щ а я о п р е д е л е н и е а б с т р а к т н о г о с у п е р т и п а б е з
к а к и х - л и б о п о д т и п о в , я в л я е т с я н е п о л н о й и н е м о ж е т б ы т ь р е а л и з о в а н а , е с л и т о л ь к о п о д т и п ы н е о б ъ я в л е н ы
в с с ы л о ч н о й с х е м е .

41

ГОСТ Р ИС010303-11 — 2009

Пример — В модели перевозок транспортное средство (объект vehicle,) может быть представ­
лено абстрактным супертипом, поскольку все экземпляры данного объектного типа данных
предназначены быть его подтипами (например, наземное или водное транспортное средство).
Объектный тип данных для транспортного средства не должен реализовываться независимо.

ENTITY vehicle
ABSTRACT SUPERTYPE;

END ENTITY;
ENTITY land_based

SUBTYPE OF (vehicle);

END ENTITY;
ENTITY water_based

SUBTYPE OF (vehicle);

END ENTITY;

9.2.52 ONEOF
Ограничение ONEOF устанавливает, что совокупности операндов из списка ONEOF являются взаи­

моисключающими. Никакой экземпляр любой совокупности операндов из списка ONEOF не должен при­
сутствовать в совокупности любого другого операнда из списка ONEOF.

Синтаксис:
263one_of = ONEOF '(' supertype_expression { ' , ' supertype_expression} ') ' .
320 supertype_expression = supertype_factor{ ANDOR supertype_factor}.
321 supertype_factor = supertype_term { AND supertype_term}.
323 su perty pe_term = entity_ref | one_of | ' (' supertype_expression ')' .

Ограничение ONEOF может комбинироваться с другими ограничениями супертипов, чтобы дать воз­
можность записывать сложные ограничения. Когда ограничение ONEOF присутствует как операнд в дру­
гом ограничении, оно представляет множество экземпляров объектов, являющееся объединением сово­
купностей операндов из списка ONEOF.

П р и м е ч а н и е — Н а е с т е с т в е н н о м я з ы к е ф р а з а ONEOF (а, Ь, с) о з н а ч а е т , ч т о « э к з е м п л я р о б ъ е к т а
д о л ж е н с о с т о я т ь т о л ь к о и з о д н о г о и з о б ъ е к т н ы х т и п о в д а н н ы х а, Ь, с».

Пример — Экземпляр супертипа может быть установлен посредством реализации только
одного из его подтипов. Данное ограничение объявляется с использованием ключевого слова ONEOF.
Существует множество видов домашних животных (объект pet), но ни одно домашнее животное не
может одновременно принадлежать к двум или более видам.

ENTITY pet
ABSTRACT SUPERTYPE OF (ONEOF (cat,

rabbit,
dog,
■ ■■));

name: pet name;

END ENTITY;
ENTITY cat

SUBTYPE OF (pet);

END ENTITY;
ENTITY rabbit

SUBTYPE OF (pet);

END ENTITY;
ENTITY dog

SUBTYPE OF (pet);

END ENTITY;

9.2.5.3 ANDOR
Экземпляр совокупности, определяемой выражением с ключевым словом ANDOR, может быть эк­

земпляром совокупности любого из операндов или обоих. Таким образом, ANDOR не определяет огра-
42

ГОСТ Р ИС 010303-11 — 2009

ничение. В сложном ограничении AIMDOR представляет множество экземпляров объектов, являющееся
объединением совокупностей выражений, определяющих операнды.

П р и м е ч а н и е — ANDOR и с п о л ь з у е т с я т о л ь к о п р и п о с т р о е н и и с о в о к у п н о с т е й д л я б о л е е с л о ж н о г о

о г р а н и ч е н и я . Н а е с т е с т в е н н о м я з ы к е ф р а з а «Ь ANDOR с» о з н а ч а е т « в с е э к з е м п л я р ы т и п а b и в с е э к з е м п л я р ы
т и п а с, в к л ю ч а я т е , к о т о р ы е я в л я ю т с я э к з е м п л я р а м и о б о и х т и п о в » .

Пример — Человек (объект person) может быть служащим, посещающим вечерние занятия,
и поэтому являться одновременно и служащим (объект employee), и студентом (объект student).

ENTITY person
SUPERTYPE OF (employee ANDOR student);

END_ENTITY;
ENTITY employee

SUBTYPE OF (person);

END ENTITY;
ENTITY student

SUBTYPE OF (person);

END ENTITY;

9.2.5.4 AND
Ключевое слово AND определяет ограничение, что совокупности, заданные двумя операндами, дол­

жны быть идентичными. То есть любой экземпляр совокупности левого операнда должен также быть экзем­
пляром совокупности правого операнда, а любой экземпляр совокупности правого операнда должен также
быть экземпляром совокупности левого операнда.

Когда выражение с ключевым словом AND присутствует в качестве операнда в сложном ограниче­
нии, оно представляет любую из совокупностей своих операндов, поскольку они идентичны.

П р и м е ч а н и е — Н а е с т е с т в е н н о м я з ы к е ф р а з а «Ь AND с» о з н а ч а е т , ч т о « э к з е м п л я р д о л ж е н

о д н о в р е м е н н о с о с т о я т ь и з т и п о в b и с».

Пример - Человек (объект person) может быть классифицирован как лицо мужского (объект
male) или женского (объект female) пола, либо как гражданин (объект citizen) или иностранец (объект
alien).

ENTITY person
SUPERTYPE OF (ONEOF (male, female) AND

ON EOF (citizen, alien));

END_ENTITY;
ENTITY male

SUBTYPE OF (person);

END_ENTITY;
ENTITY female

SUBTYPE OF (person);

END_ENTITY;
ENTITY citizen

SUBTYPE OF (person);

END_ENTrTY;
ENTITY alien

SUBTYPE OF (person);

END_ENTrTY;

9.2.5.5 Приоритеты операторов супертипов
Оценка выражений супертипов проводится слева направо, при этом сначала определяются значе­

ния операторов с наивысшим приоритетом. Правила приоритетов для операторов выражений супертипов

43

ГОСТ Р ИС010303-11 — 2009

представлены в таблице 8. Операторы, расположенные в одной строке, имеют равный приоритет, а строки
упорядочены по уменьшению приоритета.

Т а б л и ц а 8 — П р и о р и т е т о п е р а т о р а в ы р а ж е н и я с у п е р т и п а

П р и о р и т е т О п е р а т о р ы

1 (JONEOF

2 AND

3 ANDOR

Пример — Следующие два выражения не эквивалентны:
ENTITY х

SUPERTYPE OF (a ANDOR b AND c);
END_ENTITY;
ENTITY x

SUPERTYPE OF ((a AN DOR b) AND c);
END_ENTITY;

9.2.5.6 Ограничения между подтипами по умолчанию
Если в объявлении объекта не указано никаких ограничений на супертипы, то подтипы (при их нали­

чии) должны быть взаимно инклюзивными, то есть, как если бы все подтипы были бы неявно представлены
в конструкции AN DOR.

Если ограничение на супертипы задано для подмножества подтипов данного объекта, то оно
должно включать в себя ограничения, установленные для этих подтипов, и ограничение ANDOR для
других подтипов.

Пример — Модель из примера в 9.2.5.3 эквивалентна использованию следующей конструкции по
умолчанию:

ENTITY person

END ENTITY;
ENTITY employee

SUBTYPE OF (person);

END ENTITY;
ENTITY student

SUBTYPE OF (person);

END ENTITY;

9.2.6 Неявные объявления
При объявлении объекта, одновременно неявным образом объявляется конструктор. Идентификатор

конструктора совпадает с идентификатором объекта и область видимости объявления конструктора совпа­
дает с областью видимости объявления объекта.

При запуске конструктора он должен возвращать в точку вызова значение частичного сложного
объекта для данного объектного типа данных. Каждый атрибут данного значения частичного сложного
объекта задается фактическим параметром, заданным в вызове конструктора мнимой копией. Мнимая
копия представляет собой объект, в который экземпляр объекта копируется посредством ссылки, то
есть атрибут является ссылкой на экземпляр, используемый в качестве фактического параметра, простой
тип данных имеет скопированное значение, а агрегированные структуры имеют элементы, скопированные
в мнимую копию. Конструктор должен обеспечивать только явные атрибуты из объявления конкретного
объекта.

Синтаксис:
205 entity_constructor = entity_ref ' (' [expression { ' , ' expression}] ') ' .

44

ГОСТ Р ИС010303-11 — 2009

При создании экземпляра сложного объекта (экземпляра объекта, присутствующего в графе подти-
пов/супертипов) конструкторы всех составляющих его объектов должны объединяться посредством опе­
ратора || (см. 12.10).

Правила и ограничения:
a) Конструктор должен иметь один формальный параметр для каждого явного атрибута, объявленного

в данном объектном типе данных. Это не относится к атрибутам, унаследованным от супертипов и повторно
объявленным в данном объектном типе данных.

b) Порядок формальных параметров должен быть идентичен порядку объявления явных атрибутов в
объекте.

c) Параметрический тип данных каждого из формальных параметров должен быть идентичен типу
данных соответствующего атрибута.

d) Если объект не имеет явных атрибутов, то должен быть указан пустой список параметров (то есть
круглые скобки всегда должны присутствовать).

П р и м е ч а н и е — О б я з а т е л ь н о е п р и с у т с т в и е к р у г л ы х с к о б о к о т л и ч а е т с я о т я в н о о б ъ я в л е н н ы х ф у н к ц и й .

e) Необязательные атрибуты могут быть заданы неопределенным (?) значением при вызове неявно
определенного конструктора. Это указывает на то, что явное значение не было задано.

f) Если в экземпляре сложного объекта имеется подтип, содержащий вычисляемые атрибуты, являю­
щиеся повторно объявленными явными атрибутами супертипа, то конструктор супертипа должен задавать
значения для данных повторно объявленных атрибутов. Вместо этихзначений используется вычисленное
значение.

Пример — Допустим, имеется следующее объявление объекта:
ENTITY point;

х, у, z : REAL;
END_ENTITY;
Тогда неявно объявленный конструктор объекта point может быть представлен следующим

образом:
FUNCTION point(х,у,z : REAL):point;
Данный конструктор затем может использоваться при присваивании значений экземпляру данно­

го объектного типа данных:
CONSTANT

origin : point := point(0.0, 0.0, 0.0);
END.CONSTANT;

9.2.7 Конкретизация
Конкретизация является более ограниченной формой исходного объявления. Существуют следую­

щие варианты определения конкретизации:
- объект, относящийся к подтипу данных, является конкретизацией любого из своих супертипов;
- тип данных ENTITY является конкретизацией типа данных GENERIC_ENTITY;
- тип данных EXTENSIBLE GENERIC_ENTITY SELECT является конкретизацией типа данных

GENERIC_ENTITY;
- тип данных SELECT, содержащий только типы данных ENTITY, является конкретизацией типа дан­

ных GENERIC_ENTITY;
- агрегированные типы данных являются конкретизациями типа данных AGGREGATE;
-тип flaHHbixSELECT, состоящий из объектов а, Ь, с, является конкретизацией типа данныхЭЕЕЕСТ,

состоящего из объектов d, е, f, если объекты а, Ь, с являются конкретизациями объектов d, е, f;
- тип flaHHbixSELECT, состоящий из объектов а, Ь, с, является конкретизацией супертипа, если а, Ь, с

являются подтипами данного супертипа;
- типы данных INTEGER и REAL оба являются конкретизациями типа данных NUMBER;
- тип данных INTEGER является конкретизацией типа данных REAL;
- тип данных BOOLEAN является конкретизацией типа данных LOGICAL;
- выражение LIST OF UNIQUE item является конкретизацией выражения LIST OF item;
- выражение ARRAY OF UNIQUE item является конкретизацией выражения ARRAY OF item;
- выражение ARRAY OF item является конкретизацией выражения ARRAY OF OPTIONAL item;
- выражение SET OF item является конкретизацией выражения BAG OF item;
- пусть AGG обозначает один из типов данных ARRAY, BAG, LIST или SET, тогда выражение

AGG OF item является конкретизацией выражения AGG OF orig ina l при условии, что item является
конкретизацией original;

45

ГОСТ Р ИС010303-11— 2009

- пусть AGG обозначает один из типов данных BAG, LIST или SET, тогда выражение AGG [b : t]
является конкретизацией выражения AGG [I : и] при условии, что b < t и l < b < u и l < t < u ;

- пусть BSR обозначает один из типов данных BINARY, STRING или REAL, тогда BSR(length)
является конкретизацией BSR;

-BSR(short) является конкретизацией BSR(long) при условии, что short меньше чем long;
- тип данных BINARY, в котором используется ключевое слово FIXED, является конкретизацией типа

данных BINARY переменной длины;
-ти п данных STRING, в котором используется ключевое слово FIXED, является конкретизацией

типа данных STRING переменной длины;
- конструкционный тип данных, основанный на расширяемом конструкционном типе данных, является

конкретизацией данного расширяемого конструкционного типа данных;
- определенный тип данных является конкретизацией базисного типа данных, использованного для

объявления данного определенного типа данных.
9.3 Схема
Объявление схемы (SCHEMA) определяет общую область видимости для совокупности относящихся

к нему объявлений объектных и другихтипов данных. Схема может подвергаться изменениям в рамках
среды разработки или стандартизации. Для поддержки возможности идентификации конкретной версии
схемы определяется идентификатор версии схемы. В настоящем стандарте не определяется формат иден­
тификатора версии схемы, за исключением того, что он должен быть строковым литералом. Ни в одной
конструкции, определенной в настоящем стандарте, нет ссылок на идентификатор версии схемы. Кроме
того, в настоящем стандарте не определен способ управления изменениями в схемах с использованием
идентификаторов версии схемы. Если две схемы с одинаковым именем имеют разные идентификаторы
версии схемы, то они не должны рассматриваться как одна и та же схема.

П р и м е ч а н и е — Д л я схем, у с т а н о в л е н н ы х в с т а н д а р т а х комплекса ИСО 10303, определено использова­
н и е и д е н т и ф и к а т о р а и н ф о р м а ц и о н н о г о о б ъ е к т а , в к л ю ч а ю щ е г о в с е б я идентификатор версии. Смысл идентифи­
к а т о р а о б ъ е к т а у с т а н о в л е н в ИСО/МЭК 8824-1 и о п и с а н в И С О 10303-1. Данный идентификатор объекта рекомен­
д у е т с я и с п о л ь з о в а т ь в к а ч е с т в е и д е н т и ф и к а т о р а в е р с и и с х е м ы .

Примеры
1 Идентификатор geometry может быть именем схемы, содержащей объявления точек, кривых,

поверхностей и других, связанных с ними, типов данных.
2 Может существовать множество версий схем, идентификаторы которых могут включать

также идентификатор версии языка. В данном примере в схеме support_resource_schema использу­
ется идентификатор информационного объекта, соответствующий определению ИСО/МЭК 8842-1 и
описанию в ИСО 10303-1.

SCHEMA geometry_schema 'version_1';
END_SCHEMA;
SCHEMA geometry_schema 'version_2';
END_SCHEMA;
SCHEMA support_resource_schema '{ISO standard 10303 part(41) object(1)

version(8)}';
END_SCHEMA;
SCHEMA support_resource_schema'{ISO standard 10303 part(41) object(1)

version(9)}';
END_SCHEMA;
Порядок, в котором объявления появляются в объявлении схемы, значения не имеет.
Объявления, сделанные в одной схеме, могут быть сделаны видимыми в области видимости другой

схемы посредством спецификации интерфейса в соответствии с разделом 11.

Синтаксис:
296 schem a_decl = SCHEMA s c h e m a jd [schem a_version_id] '; ' schema _body

E N D _S C H E M A ';'.
298 schema_version_id = s tr ing_ lite ra l.
295 schem a_body = { in terface_specifica tion} [constant_decl]

{ declaration | ru le_dec l} .
242 interface_specification = reference_clause | use_clause .
199 declaration = entity_decl | function_decl | procedure_decl |

subtype_constraint_decl | typ e _d e c l.

46

ГОСТ Р И С 0 10303-11 — 2009

9.4 Константа
Объявление константы используется для объявления именованных констант. Областью видимости

идентификатора константы должна быть функция, процедура, правило или схема, в которых происходит
объявление константы. Именованная константа, появляющаяся в объявлении CONSTANT, должна иметь
явную инициализацию, значение которой вычисляется посредством оценивания выражения. Именованная
константа может присутствовать в объявлении другой именованной константы. Объявление констант долж­
но быть ациклическим.

П р и м е ч а н и е — Т р е б о в а н и е а ц и к л и ч н о с т и о б ъ я в л е н и й к о н с т а н т н е о б х о д и м о д л я о б е с п е ч е н и я д о с т о ­
в е р н о с т и и н и ц и а л и з а ц и и в л ю б о м с л у ч а е , п о с к о л ь к у и н и ц и а л и з а ц и я н е о б я з а т е л ь н о р е а л и з у е т с я в п о р я д к е
о б ъ я в л е н и я .

Синтаксис:
195 constant_decl = CONSTANT constant_body { constant_body} E N D _C O N STAN T';'.
194 constant_body = co ns tan tjd instantiable_type exp ress ion ';'.
240 instantiable_type = concrete_types | en tity_re f.

Правила и ограничения:
a) Значение константы не должно изменяться после инициализации.
b) Любое появление именованной константы вне ее объявления должно быть эквивалентно появле­

нию ее инициализированного значения.
c) Выражение expression в синтаксическом правиле 194 должно возвращать значение соответству­

ющее указанному базовому типу.

Пример — Ниже приведены допустимые объявления констант:
CONSTANT

thousand : NUMBER := 1000;
million : NUMBER := thousand**2;
origin : point := point(0.0,0.0,0.0);

END.CONSTANT;

9.5 Алгоритмы
Алгоритм является последовательностью операторов, выполнение которых приводит к некоторому

желаемому конечному состоянию. Существуют два вида алгоритмов — функции и процедуры.
Формальные параметры определяют исходные данные для алгоритма. Обращение к алгоритму осу­

ществляется с фактическими параметрами, обеспечивающими фактические значения или экземпляры.
Фактические параметры должны соответствовать формальным параметрам по типу данных, порядку сле­
дования и числу.

Если в алгоритме необходимо сделать локальные объявления, то они приводятся непосредственно
после заголовка алгоритма. Локальными объявлениями могут быть объявления типов данных, локальных
переменных, других алгоритмов и т.д.

После локальных объявлений следует тело алгоритма.
9.5.1 Функция
Функция является алгоритмом, который обрабатывает параметры и выдает единственное результиру­

ющее значение установленного типа данных. При обращении к функции (см. 12.8) в выражении вычисляет­
ся результирующее значение в точке вызова.

Функция должна завершаться выполнением оператора RETURN. Значение выражения, связанного с
оператором RETURN, определяет результат, полученный при вызове функции.

Синтаксис:
2 2 0 function_decl =function_head algorithm_head stmt {s tm t} E N D _ F U N C T IO N .
221 function_head = FUNCTION func tion jd [' (' formal_parameter

{ '; ' form al_param eter} ') '] ': ' parameter_type
218 formal_parameter = param eterjd { ' , ' p a ra m e te rjd } ': ' parameter_type .
266 parameter_type = generalized_types | named_types | simple_types .
173 algorithm_head = { declaration } [constant_decl] [local_decl] .
199 declaration = entity_decl | function_decl | procedure_decl |

subtype_constraint_decl | type_dec l.

47

ГОСТ Р ИС010303-11 — 2009

Правила и ограничения:
a) Оператор RETURN должен быть определен в теле функции для каждой из возможных ветвей вы­

числительного процесса, активизируемого при обращении кданной функции.
b) Для каждого оператора RETURN, присутствующего в функции, должно быть задано выражение, по

которому вычисляется значение, возвращаемое в точку вызова.
c) Выражения, заданные для операторов RETURN, должны соответствовать объявленному типу дан­

ных возвращаемого функцией значения.
d) Функции не должны иметь побочных эффектов. Поскольку формальные параметры функции не

должны определяться ключевым словом VAR, изменения этих параметров внутри функции не показывают­
ся в точке вызова функции.

П р и м е ч а н и е — Л о к а л ь н ы м п е р е м е н н ы м , о б ъ я в л е н н ы м о б ъ е к т н ы м и т и п а м и д а н н ы х , м о г у т б ы т ь
н а з н а ч е н ы э к з е м п л я р ы ф о р м а л ь н ы х п а р а м е т р о в . И з м е н е н и е э т и х л о к а л ь н ы х п е р е м е н н ы х б у д е т в л и я т ь н а ф о р ­
м а л ь н ы й п а р а м е т р , п о с к о л ь к у н а з н а ч е н и е о с у щ е с т в л я е т с я п о с с ы л к е . В с о о т в е т с т в и и с п р и в е д е н н ы м в ы ш е п р а ­
в и л о м , и з м е н е н и я ф о р м а л ь н ы х п а р а м е т р о в н е п о к а з ы в а ю т с я в т о ч к е в ы з о в а ф у н к ц и и , п о э т о м у о с о б о е в н и м а н и е
н е о б х о д и м о о б р а т и т ь н а п о п ы т к у в о з в р а т а э т и х л о к а л ь н ы х п е р е м е н н ы х .

e) Функции могут модифицировать локальные переменные или параметры, объявленные во внешней
области видимости, то есть если данная функция объявлена в заголовке (элемент algorithm_head в опре­
делении синтаксиса) оператора FUNCTION, PROCEDURE или RULE.

9.5.2 Процедура
Процедура является алгоритмом, который получает параметры в точке вызова и обрабатывает их

некоторым образом для получения желаемого конечного состояния. Изменения параметров внутри проце­
дуры показываются в точке вызова только в том случае, если формальному параметру предшествует клю­
чевое слово VAR.

Синтаксис:
271 procedure_decl = procedure_headalgorithm _head{stm t} END_PROCEDURE
272 procedure head = PROCEDURE procedure jd [' (' [VAR] formal_parameter

{ ' ; ' [VAR] formal_parameter
218 formal_parameter= param ete rjd { ' , ' p a ra m e te rjd } parameter_type .
266 parameter_type = generalized_types | named_types | simple_types .
173 algorithm_head = {dec la ra tion } [constant_decl] [local_decl] .
199 declaration = entity_decl | function_decl | procedure_decl |

subtype_constraint_decl | type_dec l.

Правило: процедуры могут модифицировать локальные переменные или параметры, объявленные во
внешней области видимости, то есть если данная функция объявлена в заголовке (элемент algorithm_head
в определении синтаксиса) оператора FUNCTION, PROCEDURE или RULE.

9.5.3 Параметры
Функция или процедура может иметь формальные параметры. Каждый формальный параметр уста­

навливает имя и тип параметра. Имя является идентификатором, который должен быть уникальным в обла­
сти видимости функции или процедуры. Формальный параметр процедуры может, кроме того, быть объяв­
лен с ключевым словом VAR (изменяемый), которое означает, что если данный параметр изменяется внут­
ри процедуры, то данное изменение должно быть передано в точку вызова процедуры. Параметры, не
объявленные как VAR, также могут изменяться, но такое изменение не будет видимым после возврата
управления вызвавшей структуре.

Синтаксис:
218 formal_parameter = param ete rjd { p a ra m e te rjd } ' : ' p a ra m e te rjyp e .
266 param ete rjype = generalizedJypes | nam edJypes | s im p le jy p e s .

Пример — Следующие объявления показывают, как могут быть объявлены формальные пара­
метры.

FUNCTIONdist(p1,p2 : point) : REAL;

PROCEDURE midpt(p1, p2 : point; VAR result : point);

Обобщенные типы данны х (AGGREGATE, общий агрегированный тип данных, GENERIC и
GENERIC_ENTITY) (см. 8.5) используются для того, чтобы обеспечить обобщение типов данных, использу-

48

ГОСТ Р И С 0 10303-11 — 2009

емых для представления формальных параметров функций и процедур. Тип данных AGGREGATE, общий
агрегированный тип данных (см. 9.5.3.5) и родовой объектный тип данных (GENERIC_ENTITY) могут, кроме
того, использоваться для объявления явных или вычисляемых атрибутов абстрактных объектных типов
данных. Общий агрегированный тип данных может также использоваться, чтобы обеспечить обобщение
базисныхтипов данных, разрешенное для конкретных агрегированныхтипов данных.

9.5.3.1 Тип данных AGGREGATE
Тип данных AGGREGATE является обобщением всех агрегированныхтипов данных.
При вызове процедуры или функции, формальный параметр которой определен типом данных

AGGREGATE, передаваемый фактический параметр должен иметь тип данных ARRAY, BAG, LIST или SET.
При этом операции, которые могут быть выполнены, должны зависеть от типа данных фактического пара­
метра.

П р и м е ч а н и е — М е т к и т и п о в (с м . 9.5.3.4) м о г у т и с п о л ь з о в а т ь с я д л я о б е с п е ч е н и я т о г о , ч т о б ы п р и
в ы з о в е д в а и л и б о л е е п а р а м е т р о в , п р е д с т а в л е н н ы х т и п о м д а н н ы х AGGREGATE, и м е л и о д и н а к о в ы й т и п
д а н н ы х , и л и ч т о б ы т и п д а н н ы х в о з в р а щ а е м о г о р е з у л ь т а т а б ы л т а к и м ж е , к а к и у о д н о г о и з п е р е д а н н ы х
п а р а м е т р о в , н е з а в и с и м о о т п е р е д а н н ы х ф а к т и ч е с к и х т и п о в д а н н ы х .

Если явный или вычисляемый атрибут в объявлении типа данных ABSTRACT ENTITY представлен
типом данных AGGREGATE, то данный атрибут должен быть объявлен в подтипахданного абстрактного
объекта как ARRAY, BAG, LIST или SET.

Синтаксис:
171 aggregate_type = AGGREGATE ty p e ja b e l] OF parameter_type .
329 typ e ja b e l = ty p e ja b e ljd | type_label_re f.
266 pa ram ete rjype = genera lized jypes | n am ed jypes | s im p le jyp e s .

Правила и ограничения:
a) Тип данных AGGREGATE должен использоваться только в качестве типа формального пара­

метра функции или процедуры, либо типа результата функции, либо типа локальной переменной внутри
функции или процедуры, либо представления явного или вычисляемого атрибута в объявлении типа
данных ABSTRACT ENTITY.

b) Если тип данных AGGREGATE используется в качестве типа данных результата функции или типа
данных локальной переменной внутри функции или процедуры, то для такого применения требуются ссыл­
ки меток типов. Ссылки меток типов должны ссылаться на метки типов, объявленные формальными пара­
метрами (см. 9.5.3.4).

c) Если тип данных AGGREGATE используется в качестве представления явного или вычисля­
емого атрибута в объявлении типа данных ABSTRACT ENTITY, то данный атрибут должен быть
повторно объявлен как ARRAY, BAG, LIST или SET в неабстрактных подтипахданного объектного типа
данных.

Пример — Данная функция получает агрегированную структуру чисел. Функция должна возвра­
щать результат того же типа, что и у переданной ей агрегированной структуры, содержащий
масштабированные числа.

FUNCTION scale (input : AGGREGATE: intype OF REAL;
scalar : REAL): AGGREGATE: intype OF REAL;

LOCAL
result : AGGREGATE: intype OF REAL := input;

END_LOCAL;
IFSIZEOF(['BAG,'SET'] * TYPEOF(input)) > OTHEN

REPEAT i:= LOINDEX(input) TO HIINDEX (input);
result := result-input[i]; — удалить исходный
result := result + scalar*input[i]; — вставить масштабированный

END_REPEAT;
ELSE

REPEAT i := LOINDEX(input) TO HIINDEX(input);
result [I] := scalar*input[i];

END_REPEAT;
ENDJF
RETURN (result);

END_FUNCTION;

49

ГОСТ Р ИС010303-11— 2009

9.5.3.2 Обобщенный тип данных
Тип данных GENERIC является обобщением всехдругих типов данных.
При вызове процедуры или функции с типом данных формального параметра GENERIC, передавае­

мый фактический параметр может не иметь тип данных GENERIC. Операции, которые при этом могут быть
выполнены, зависят от типа данных фактического параметра.

П р и м е ч а н и е — Метки типов (см. 9.5.3.4) могут быть использованы для обеспечения того, чтобы при
вызове два или более параметров, представленных типом данных GENERIC, имели одинаковый тип данных, или
чтобы тип данных возвращаемого результата был таким же, как и у одного из переданных параметров, независи­
мо от переданных фактических типов данных.

Синтаксис:
231 generic_type = GENERIC [typejabel].
329 typejabel = type jabe ljd | type_label_ref.

Правила и ограничения:
a) Тип данных GENERIC должен использоваться только в качестве типа формального параметра

функции или процедуры, типа результата функции либо типа локальной переменной внутри функции или
процедуры.

b) Если тип данных GENERIC используется в качестве типа данных результата функции или типа
данных локальной переменной внутри функции или процедуры, то для такого применения требуются
ссылки меток типов. Ссылки меток типов должны ссылаться на метки типов, объявленные формаль­
ными параметрами (см. 9.5.3.4).

Пример — В данном примере показана универсальная функция, осуществляющая сложение чисел
или векторов:

FUNCTION add (a,b: GENERIC: intype): GENERIC: intype;
LOCAL

nr : NUMBER; — целое или действительное число
vr : vector;

END_LOCAL;
IF ('NUMBER' IN TYPEOF(a)) AND ('NUMBER' IN TYPEOF(b)) THEN

nr := a+b;
RETURN (nr);

ELSE
IF ('THIS_SCHEMA.VECTOR' IN TYPEOF(a)) AND

('THIS_SCHEMA.VECTOR' IN TYPEOF(b)) THEN
vr := vector (a.i + b.i,

a.j + b.j,
a.k + b.k);

RETURN (vr);
ENDJF;

END IF;
RETURN (?); — если получен неправильный входной параметр, то

— возвращается неопределенное значение
END FUNCTION;

9.5.3.3 Обобщенный объектный тип данных
Тип данных GENERIC_ENTITY является обобщением всех объектных типов данных.
При вызове процедуры или функции с формальным параметром, имеющим тип данных

GENERIC_ENTITY, передаваемый фактический параметр должен быть экземпляром объекта. Операции,
которые при этом могут быть выполнены, зависят от типа данных фактического параметра.

П р и м е ч а н и е — Метки типов (см. 9.5.3.4) могут быть использованы для обеспечения того, чтобы
при вызове двух или более параметров, представленных типом данных GENERIC_ENTITY, имели одинаковый
тип данных или чтобы тип данных возвращаемого результата был таким же, как и у одного из переданных пара­
метров, независимо от переданных фактических типов данных.

Если в объявлении типа данных ABSTRACT ENTITY явный или вычисляемый атрибут представлен
типом данных GENERIC_ENTITY, то данный атрибут должен быть объявлен в подтипах данного объекта
конкретным объектным типом данных.

50

ГОСТ Р И С 0 10303-11 — 2009

Синтаксис:
230 generic_entity_type = GENERIC_ENTITY [': ' typ e ja b e l] .
329 typ e ja b e l = ty p e ja b e ljd | typ e Jabe l_ re f.

Правила и ограничения:
a) Тип данных GENERIC_ENTITY должен использоваться только в качестве типа формального пара­

метра функции или процедуры либо типа результата функции, либо типа локальной переменной внутри
функции или процедуры, либо представления явного или вычисляемого атрибута в объявлении типа дан­
ных ABSTRACT ENTITY.

b) Если тип данных GENERIC_ENTITY используется в качестве типа данных результата функции или
типа данных локальной переменной внутри функции или процедуры, то для такого применения требуются
ссылки метоктипов. Ссылки меток типов должны ссылаться на метки типов, объявленные формальными
параметрами (см. 9.5.3.4).

Пример — Приведенная ниже функция проверяет, имеется ли ссылка на конкретный экземпляр
sample от двух экземпляров typel и type2 известных объектных типов данных. Объявление формаль­
ного параметра sample, как имеющего тип данных GENERIC_ENTITY, позволяет рассматривать экзем­
пляры любых объектных типов данных как допустимые входные параметры данной функции.

FUNCTION check_relating (typel : instance_of_type_1;
type2 : instance_of_type_2;
sample : GENERIC_ENTITY): BOOLEAN;

RETURN ((ty p e l IN USEDIN (sample,"))
AND
(type2 IN USEDIN (sample, "))) ;

END_FUNCTION;

9.5.3.4 Метки типов
Метки типов должны использоваться для установления связи между типом данных атрибута или фак­

тического параметра в момент обращения с типами данных других атрибутов или фактических параметров,
локальных переменных или возвращаемого значения функции. Метки объявляются для следующих типов
данных:

-для типов данных AGGREGATE,GENERIC_ENTITY и GENERIC метки объявляются в объявле­
нии формальных параметров функции или процедуры. Впоследствии на них могут ссылаться типы
данных AGGREGATE, GENERIC_ENTITY и GENERIC в объявлении формальных параметров или
локальных переменных функции или процедуры либо в объявлении типа данных возвращаемого значения
функции;

-для типов данных AGGREGATE и GENERIC_ENTITY метки объявляются в объявлении явных
или вычисляемых атрибутов абстрактных объектов. Впоследствии на них могут ссылаться типы
данных AGGREGATE и GENERIC_ENTITY в оставшейся части объявления объектных типов данных.

Синтаксис:
329 typ e ja b e l = ty p e ja b e ljd | type_label_re f.

Правила и ограничения:
a) Первое появление метки типа в объявлении формального параметра либо явного или вычисляемо­

го атрибута объявляет метку данного типа; последующие случаи употребления данной метки типа являют­
ся ссылками на ее первое употребление.

b) Параметры, переданные функции или процедуре, в которых используется ссылка на метку типа,
должны быть совместимы с типом данных переданного параметра, в котором объявлена данная метка
типа.

c) Типы данных локальных переменных и возвращаемых значений функций, которые ссылаются по­
средством метки типа на тип данных параметра, должны быть идентичны типу данных параметра, в кото­
ром объявлена данная метка типа.

d) Типы данных атрибутов, которые ссылаются посредством метки типа на тип данных атрибута, дол­
жны быть идентичны типу данных атрибута, в котором объявлена данная метка типа.

Пример — В данном примере показано, как метки типов могут использоваться для проверки
совместимости типов данных при вызове функции.

ENTITY а;

END ENTITY;

51

ГОСТ Р ИС010303-11 — 2009

ENTITY b SUBTYPE OF (а);

END_ENTITY;
ENTITY с SUBTYPE OF (b);

END_ENTITY;

FUNCTION test (pi: GENERIC:x; p2: GENERIC:x): GENERIC:x;
____ Л Л Л

— о б ъ я в л е н и е с с ы л к а с с ы л к а
END_FUNCTION;

LOCAL
v_a : a := a (. ..);
v_b : b := a (. . .) | |b(. . — о п е р а т о р || о п р е д е л е н в 12.10

v_c : c := a (. . .) | |b (. . .) | | c (. . .) ;
v_x : b;

END LOCAL;
v_x := test(v_b, v_a); - - н е в е р н ы й v_a, н е с о в м е с т и м ы й с т и п о м b
v_x := test(v_a, v_b); — н е в е р н о е п р и с в а и в а н и е , ф у н к ц и я в е р н е т т и п а

Другие примеры использования меток типов приведены в разделе 15.
9.5.3.5 Общие агрегированные типы данных
Общие агрегированные типы данных образуют часть класса типов данных, называемых обоб­

щенными типами данных. Общий агрегированный тип данных представляют обобщение соответству­
ющих агрегированных типов данных (ARRAY, BAG, LIST и SET), позволяющее представлять тип
данных элемента схемы обобщенным типом данных. То есть элемент general_list_type в приведен­
ном ниже определении синтаксиса является обобщением элемента list_type так же, как и для типов
данных ARRAY, BAG и SET.

Синтаксис:
224general_aggregation_types = general_array_type | general_bag_type |

general_list_type | general_set_type.
225 general_array_type = ARRAY [bound_spec] OF [O P TIO N A L] [UNIQUE]

para mete r_ type .
185 bound_spec = '[' bound_1 bound_2 '] ' .
183bound_1 = num eric_expression.
184bound_2 = num eric_expression.
266 parameter_type = generalized_types | named_types | s im ple_types.
226 general_bag_type = BAG [bound_spec] OF parameter_type .
227 general_list_type = LIST [bound_spec] OF [UNIQUE] parameter_type .
229 general_set_type = SET [bound_spec] OF parameter_type .

Общий агрегированный тип данных обобщает соответствующий агрегированный тип следующим
образом:

-обобщенный массив может быть определен без указания значений индексов. При этом в специ­
фикации формального параметра не указываются границы массива (элемент синтаксиса bound_spec).

П р и м е ч а н и е — Д л я о п р е д е л е н и я р е а л ь н о й с и с т е м ы и н д е к с и р о в а н и я м а с с и в а в а л г о р и т м и ч е с к о й ч а с т и
д о л ж н ы и с п о л ь з о в а т ь с я ф у н к ц и и HIINDEX и LOINDEX;

- базисным типом данных может быть GENERIC, GENERIC_ENTITY, AGGREGATE или общий
агрегированный тип данных при использовании в качестве формального параметра функции или проце­
дуры либо GENERIC_ENTITY, AGGREGATE или общий агрегированный тип данных при использовании
в абстрактном объектном типе данных. Это определено в формализованной форме ниже.

Пусть G является общим агрегированным типом данных, a EG — (обобщенным) типом данных
его элементов. Пусть для формального параметра функции или процедуры А является типом данных
соответствующего фактического параметра; пусть для атрибута абстрактного объектного типа данных
А является типом данных повторно объявленного атрибута неабстрактного подтипа и пусть для
любого случая ЕА является типом данных элементов А.

52

ГОСТ Р И С 010303-11— 2009

Если G является обобщенным массивом,то А должно быть типом данных ARRAY. Если для G задан
диапазон индексов, то диапазон индексов А должен быть таким же.

Если G является обобщенным пакетом, то А должно быть типом данных BAG. Если для G заданы
границы, то границы А должны быть такими же.

Если G является обобщенным списком, то А должно быть типом данны х LIST. Если для G заданы
границы, то границы А должны быть такими же.

Если G является обобщенным набором, то А должно быть типом данных SET. Если для G заданы
границы, то границы А должны быть такими же.

Если G является любым обобщенным типом данных, то ЕА должно соответствовать EG, как опреде­
лено в 9.5.

Если EG не является обобщенным типом данных, то ЕА должно быть присваиванием, совместимым
с EG, как определено в 13.3.

Пример — В данном примере показано, как набор (тип данных SET) может быть описан в
объявлении формального параметра. Он не может быть описан в объявлении атрибута, поскольку
базисный тип данных для SET не включает тип данных GENERIC.

FUNCTION dimensions(input: SET [2 :3] OF G E N E R IC): INTEGER;
9.5.4 Локальные переменные
Переменные, локальные по отношению к данному алгоритму, объявляются после ключевого слова

LOCAL. Локальная переменная видима только в области видимости алгоритма, в котором она объявлена.
Локальным переменным могут быть присвоены значения, и они могут присутствовать в выражениях.

Синтаксис:
252 local_decl = LOCAL local_variable { loca l_variab le } E N D _LO C A L' ; ' .
253 local_variable = v a r ia b le jd { ' , ' v a r ia b le jd } param eter_type

[' : =' expression] .
266 param eter_type = generalized_types | nam ed_types | s im p le_ types .

Инициализация локальных переменных:
Локальная переменная может появиться при инициализации другой зависимой локальной перемен­

ной. Объявление зависимых локальных переменных должно быть ациклическим. Если никакого начально­
го значения не задано, то локальной переменной присваивается неопределенное (?) значение.

П р и м е ч а н и я
1 Т р е б о в а н и е ацикличности объявлений л о к а л ь н ы х п е р е м е н н ы х н е о б х о д и м о , ч т о б ы в с е г д а о б е с п е ч и ­

вать с у щ е с т в о в а н и е допустимого н а ч а л ь н о г о з н а ч е н и я , п р и с в а и в а е м о г о в п о р я д к е с л е д о в а н и я о б ъ я в л е н и я .
2 П о с к о л ь к у неопределенное (?) з н а ч е н и е с о в м е с т и м о с о в с е м и т и п а м и д а н н ы х , т о д о п у с т и м а я в н а я

и н и ц и а л и з а ц и я с неопределенным (?) з н а ч е н и е м .

Пример — Переменная r_result инициализируется со значением 0.0:
LOCAL

r_result : REAL := 0.0;
i_result : INTEGER;

END_LOCAL;

EXISTS(r_result) — TRUE
EXISTS(i_result) — FALSE поскольку никакого значения не присвоено

9.6 Правило
Правила позволяют определить ограничения, применяемые к одному или нескольким типам данных

в пределах области видимости схемы. Локальные правила (к которым относятся ограничения уникаль­
ности и правила области видимости в объявлении объектов) объявляют ограничения, применяемые инди­
видуально к каждому экземпляру объектного типа данных. Объявление RULE позволяет определить
ограничения, применяемые в совокупности ко всей области определения объектного типа данных или
к экземплярам нескольких объектных типов данных. Одним из применений объявления RULE являет­
ся скоординированное ограничение значений атрибутов разных объектов.

В объявлении правила ему присваивается имя и указываются объекты, на которые оно
распространяется.

Тело правила состоит из локальных объявлений, исполняемых операторов и правил области опре­
деления. Конечное состояние правила показывает, удовлетворяется или нет некоторое глобальное

53

ГОСТ Р ИС010303-11— 2009

ограничение. Правило оценивается посредством выполнения операторов с последующей оценкой каждого
из правил области определения. Если правило нарушено для совокупности экземпляров объектных типов
данных, переданных в качестве параметров, то данные экземпляры не соответствуют EXPRESS-схеме.

Синтаксис:
291 rule_decl = rule_head algorithm_head { s tm t} where_clause END_RULE ' ; ' .
292 rule_head = RULE ru le jd FOR ' (' entity_re f { ' , ' e n tity_ re f} ' .
173 algorithm_head = { dec la ra tion } [constant_decl] [local_decl] .
199 declaration = entity_decl | function_decl | procedure_decl |

subtype_constraint_decl | typ e _d e c l.

Правила и ограничения:
a) Результатом оценки любого правила области определения должно быть логическое (LOGICAL) или

неопределенное (?) значение.
b) Выражение принимается, если оценкой его значения является TRUE; выражение отвергается, если

оценкой его значения является FALSE; и выражение ни отвергается, ни принимается, если оценкой выра­
жения является неопределенное (?) значение или значение UNKNOWN.

c) Ни одно из правил области определения не должно быть отвергнуто для допустимой совокупности
экземпляров объектов объектных типов данных, указанных в заголовке правила.

d) Для совокупности экземпляров, принадлежащ ихдопустимой области определения, все глобаль­
ные правила, заданные для данной области определения, должны быть приняты. Данное правило относит­
ся и к принятию правил для объектных типов данных, для которых не существует экземпляров в совокуп­
ности тестируемых экземпляров.

П р и м е ч а н и е — Г л о б а л ь н о е п р а в и л о м о ж е т б ы т ь з а д а н о д л я о б е с п е ч е н и я с у щ е с т в о в а н и я , п о к р а й н е й
м е р е , о д н о г о э к з е м п л я р а у к а з а н н о г о т и п а д а н н ы х . Д а н н о е п р а в и л о н е п р о в е р я е т о т с у т с т в и е э к з е м п л я р о в у к а з а н ­
н о г о о б ъ е к т н о г о т и п а д а н н ы х , п о д д е р ж и в а ю щ и х н е о б х о д и м у ю с е м а н т и к у .

Примеры
1 Следующее правило устанавливает, что в первом и седьмом октантах должно быть

одинаковое число точек:
RULE point_match FOR (point);
LOCAL

first_oct,
seventh_oct : SETOF POINT := []; --пустой набор точек (см. 12.9)

END LOCAL
first_oct := QUERY(temp<* point | (temp.x > 0) AND

(temp.у > 0) AND
(temp.z >0));

seventh_oct := QUERY(temp <* point | (temp.x < 0) AND
(temp.y < 0) AND
(temp.z < 0));

WHERE
SIZEOF(first_oct) = SIZEOF(seventh_oct);

END RULE;
2 Правило может быть использовано для задания совокупной уникальности значений атрибу­

тов объекта:
ENTITY Ь;

а1 : с;
а2 : d;
аЗ : f;

UNIQUE
ur1 : а1, a2;

END_ENTITY;
Ограничение совместной уникальности в b применяется к экземплярам c u d . Следующее

правило вводит дополнительное ограничение, что совокупная уникальность должна основываться на
значениях:

RULE vu FOR (b);
ENTITY temp;

a1 : c;
a2 : d;

END ENTITY;

54

ГОСТ Р И С 010303-11— 2009

LOCAL
s : SET OF temp := [];

END LOCAL;
REPEAT i := 1 TO SIZEOF(b);

s := s + temp(b[i].a1, b[i].a2);
END REPEAT;
WHERE

wrl : VALUE_UNIQUE(s);
END_RULE;

Неявное объявление.
В объявлении RULE каждый синтаксический элемент population неявно объявлен локальной пере­

менной, содержащей множество всех экземпляров именованного объектного типа данных из области опре­
деления. Данное множество экземпляров объекта подчиняется данному правилу.

Синтаксис:
267 population = entity_ref.

Правило: ссылки на конкретный элемент population могут быть сделаны только в глобальном прави­
ле, которое ссылается на соответствующий объектный тип данных в заголовке данного правила.

Пример — При наличии следующего объявления:
RULE coincident FOR (point);
неявно объявленная переменная может выглядеть следующим образом:
LOCAL

point : SET OF point;
END_LOCAL;

9.7 Ограничения подтипов
Понятия подтипа и супертипа определены в 9.2.3. Понятие ограничений подтипов/супертипов опреде­

лено в 9.2.5. Существует возможность определить ограничения, в соответствии с которыми графы подти­
пов/супертипов могут быть реализованы вне объявления объекта. Данная возможность реализуется по­
средством объявления SUBTYPE_CONSTRAINT.

Синтаксис:
315 subtype_constraint_decl = subtype_constraint_head subtype_constraint_body

END_SUBTYPE_CONSTRAINT
316subtype_constraint_head = SUBTYPE_CONSTRAINT subtype_constraint_IDFOR

entity_ref ' .
314 subtype_constraint_body = [abstract_supertype] [total_over]

[supertype_expression
165 abstract_supertype = ABSTRACT SUPERTYPE
326 total_over = TOTAL_OVER ' (' entity_ref { ' , ' entity_ref } ') '
320 supertype_expression = supertype_factor{ANDORsupertype_factor}.
321 supertype_factor = supertype_term {ANDsupertype_term }.
323supertype_term -entity_ref | one_of | ' (' supertype_expression ') ' .
263 one_of = ONEOF ' (' supertype_expression { ' , ' supertype_expression } ') ' .

Объявление SUBTYPE_CONSTRAINT используется для определения следующих ограничений на
возможную реализацию подтипов/супертипов:

- ограничение, что супертип является абстрактным и должен реализовываться только через свои
подтипы;

- ограничение, что совокупность подтипов данного супертипа обеспечивает полное покрытие; то есть
если полное покрытие задано, то экземпляр любого подтипа данного супертипа должен также быть экзем­
пляром, по крайней мере, одного из подтипов, определенных в спецификации TOTAL_OVER;

- ограничение взаимосвязи между некоторыми подтипами.
Каждый из этих видов ограничений более детально рассмотрен в последующих пунктах. Формаль­

ный подход к определению потенциальных комбинаций подтип/супертип, которые могут быть реализованы
при нескольких возможных ограничениях, описанных ниже, представлен в приложении В.

55

ГОСТ Р ИС010303-11— 2009

9.7.1 Ограничение абстрактного супертипа
Объявление ABSTRACT SUPERTYPE, определенное в 9.2.5.1, может также присутствовать в объяв­

лении SUBTYPE_CONSTRAINT.
Правило: абстрактный супертип определяется объявлением SUBTYPE_CONSTRAINT в супертипе

с использованием ключевых слов ABSTRACT SUPERTYPE.
Пример — В общей классификационной модели можел1 потребоваться идентифицировать

объект с именем class, который в данном контексте является реализуемым. В более специфичной
модели может потребоваться использовать объект class, но ограничить его так, чтобы он мог
быть реализован только через свои локально объявленные подтипы.

SCHEMA general_classification_model;
ENTITY class;

name : class_name;
END_ENTITY;
END_SCHEMA;
SCH E MA specific_classification_model;
USE FROM general_classification_model;
ENTITY class_of_facility;

SUBTYPE OF (class);
END_ENTITY;
ENTITY class_of_organization

SUBTYPE OF (class);
END_ENTITY;
SUBTYPE_CONSTRAINT independent_classification FOR class;

ABSTRACT SUPERTYPE;
ONEOF(class_of_facility, class_of_organization);

END_SUBTYPE_CONSTRAINT;
END_SCHEMA;

9.7.2 Подтипы полного покрытия
Ограничение полного покрытия TOTAL_OVER устанавливает, что каждый экземпляр супертипа дол­

жен быть экземпляром одного или нескольких заданных множеств подтипов. Другими словами, для задан­
ного контекста область определения супертипа в точности совпадает с объединением множеств областей
определения именованных подтипов.

Пример — Понятие личность полностью покрывается понятиями мужчина и женщина. Могут
существовать и другие понятия, но любая личность является либо мужчиной, либо женщиной.
Поэтому можно сказать, что супертип person (личность) полностью покрывается подтипами
male (мужчина) и female (женщина).

Если в двух или более ограничениях подтипов заданы ограничения TOTAL_OVER для одного и того
же объектного типа данных, то такие ограничения TOTAL_OVER рассматриваются совместно. Это означа­
ет, что оба ограничения TOTAL_OVER (a,b) и TOTAL_OVER (c,d) должны выполняться.

Правила и ограничения:
a) Все подтипы, указанные в одном или нескольких ограничениях TOTAL_OVER для заданного су­

пертипа, должны быть непосредственными подтипами данного супертипа.
b) Экземпляры других подтипов, как бы эти подтипы ни были определены или ограничены, также

должны быть экземплярами одного или нескольких подтипов, указанных в спецификации TOTAL_OVER.
c) Поскольку супертип может иметь несколько контекстов, то он также может иметь несколько ограни­

чений TOTAL_OVER.
Пример — В данном примере определяется, что объект person может быть объектом male

либо объектом female. В примере ничего не говорится о взаимосвязи между объектами male и
female, поэтому можно создать экземпляр, который является одновременно как male, так и female.
Подтип employee всегда должен сочетаться с понятиями male и female и не может быть реализован
независимо от них.

ENTITY person;
name: personal_name;

END_ENTITY;
ENTITY male

SUBTYPE OF (person);

END_ENTITY;

56

ГОСТ Р И С 010303-11— 2009

ENTITY female
SUBTYPE OF (person);

END_ENTrTY;
ENTITY employee

SUBTYPE OF (person);

END_ENTrTY;
SUBTYPE_CONSTRAINT person_sex FOR person;

ABSTRACT SUPERTYPE;
TOTAL_OVER (male, female);

END_SUBTYPE_CONSTRAINT;

9.7.3 Перекрывающиеся подтипы и их спецификация
Два или несколько непосредственных подтипов конкретного супертипа могут иметь перекрывающ ие­

ся реализации для конкретного контекста. Спецификация SUBTYPE_CONSTRAINT может быть использова­
на для определения того, какие отношения установлены в конкретной группе непосредственных подтипов.

9.7.3.1 ONEOF
О гр а н и ч е н и е ONEOF, о п р е д е л е н н о е в 9.2.5.2, м о ж е т б ы ть о б ъ я в л е н о в о гр а н и ч е н и и

SUBTYPE_CONSTRAINT.
Пример — Экземпляр супертипа может быть порожден посредством реализации только

одного из своих подтипов. Данное ограничение объявляется с использованием ограничений ABSTRACT
и ONEOF. Существует много видов животных (объект pet), но ни один объект pet не может быть
одновременно двумя или более видами животных.

ENTITY pet
name: pet_name;

END_ENTITY;
SUBTYPE_CONSTRAINT separate_species FOR pet;

ABSTRACT SUPERTYPE;
ONEOF(cat, rabbit, dog,...);

END_SUBTYPE_CONSTRAINT;
ENTITY cat

SUBTYPE OF (pet);

END_ENTITY;
ENTITY rabbit

SUBTYPE OF (pet);

END_ENTITY;
ENTITY dog

SUBTYPE OF (pet);

END_ENTITY;

9.7.3.2 ANDOR
Ограничение ANDOR, определенное в 9.2.5.3, может быть объявлено в ограничении

SUBTYPE_CONSTRAINT.
Пример — Личность (объект person) может быть работником (объект employee), посещающим

вечерние курсы, и поэтому может быть одновременно и работником и студентом (объект student).
ENTITY person

END_ENTITY;
SUBTYPE_CONSTRAINT employee_may_be_student FOR person;

employee ANDOR student;
END_SUBTYPE_CONSTRAINT;
ENTITY employee

SUBTYPE OF (person);

END_ENTITY;

57

ГОСТ Р ИС010303-11 — 2009

ENTITY student
SUBTYPE OF (person);

END_ENTITY;

9.7.3.3 AND
Ограничение AND, определенное в 9.2.5.4, может быть объявлено в ограничении

SUBTYPE_CONSTRAINT.

Пример — Личность (объект person) может быть классифицирована как мужчина (объект
male) или как женщина (объект female), но также может быть классифицирована как гражданин
(объект citizen) или иностранец (объект alien).

ENTITY person

END_ENTITY;
SUBTYPE_CONSTRAINT no_mixing FOR person;

SUPERTYPE OF
(ONEOF(male, female) AND
ONEOF(citizen, alien));

END_SUBTYPE_CONSTRAINT;
ENTITY male

SUBTYPE OF (person);

END_ENTITY;
ENTITY female

SUBTYPE OF (person);

END_ENTITY;
ENTITY citizen

SUBTYPE OF (person);

END_ENTITY;
ENTITY alien

SUBTYPE OF (person);

END_ENTITY;

10 Область видимости и видимость

В языке EXPRESS объявление создает идентификатор, который может быть использован для ссылок
на объявленный элемент в других частяхданной схемы (или в других схемах). В некоторых конструкциях
языка EXPRESS неявно объявляются элементы языка с присваиванием им идентификаторов. Считается,
что в тех местах, где может указываться ссылка на идентификатор объявленного элемента, данный объяв­
ленный элемент является вид имым. На элемент может быть дана ссылка только там, где его идентификатор
является видимым. Правила видимости определены в 10.2. Более подробная информация о ссылках на
элементы с использованием их идентификаторов приведена в 12.7.

Совокупность элементов языка EXPRESS образует область (блок) текста, называемый областью ви­
димости данного элемента. Данная область видимости ограничивает видимость объявленных в ней иденти­
фикаторов. Области видимости могут быть вложенными, то есть элемент языка EXPRESS, имеющий свою
область видимости, может быть включен в область видимости другого элемента. Существуют ограничения,
в соответствии с которыми элементы могут появляться в области видимости конкретного элемента языка
EXPRESS. Данные ограничения, как правило, определяются синтаксисом языка EXPRESS (см. приложе­
ние А).

Для каждого из элементов языка, представленных в таблице 9, в последующих подразделах установ­
лены границы его области видимости (при ее существовании) и видимость объявленного идентификатора
как в общ их терминах, так и с конкретными деталями.

10.1 Правила области видимости
Ниже приведены общие правила, применимые ко всем формам определения области видимости,

допустимым в языке EXPRESS. Перечень элементов языка, определяющих области видимости, приведен
в таблице 9.

58

ГОСТ Р И С 0 10303-11— 2009

Правила и ограничения:
a) Все объявления должны существовать в области видимости.
b) В одной области видимости идентификатор может быть объявлен или в явной форе включен (см.

раздел 11) только один раз. Идентификатор объекта или типа данных, который был в явной форме включен
в данную схему по двум или более маршрутам, основанным на одном исходном объявлении, учитывается
только один раз.

c) Области видимости должны быть вложены корректно, то есть области видимости не должны пере­
крываться (это диктуется синтаксисом языка).

Максимально допустимая глубина вложения не устанавливается настоящим стандартом, но в реали­
зациях синтаксических анализаторов языка EXPRESS может задаваться максимальная глубина вложения
областей видимости.

Т а б л и ц а 9 — О б л а с т и д е й с т в и я и и д е н т и ф и к а т о р ы , о п р е д е л я ю щ и е э л е м е н т ы я з ы к а

Элемент языка Область видимости Идентификатор

Оператор альтернативных имен • .1)

Атрибут •

Константа •

Перечисление •

Объект • •

Функция • •

Параметр •

Процедура • ♦

Выражение QUERY • • V

Оператор цикла • • 1), 2)

Правило ♦ .3)

Метка правила •

Схема ♦ •

Ограничение подтипа ♦ •

Тип ♦ •

Метка типа •

Переменная •

1) Идентификатором является неявно объявленная переменная в определенной области видимости
объявления.

2) Переменная объявляется неявно только тогда, когда установлен инкрементный контроль.
3) Неявное объявление переменной осуществляется для всех объектов, ограниченных данным

правилом.

10.2 Правила видимости
Ниже определены правила видимости для идентификаторов. Перечень элементов языка EXPRESS,

объявляющих идентификаторы, представлен в таблице 9.
Правила и ограничения:
a) Идентификатор виден в области видимости, в которой он объявлен. Эта область видимости называ­

ется локальной областью видимости идентификатора.
b) Если идентификатор виден в некоторой области видимости, то он также виден во всех областях

видимости, определенных внутри данной области, с учетом правила по перечислению d).
c) Идентификатор не виден в любой области видимости вне его локальной области видимости, с уче­

том правила по перечислению!).

59

ГОСТ Р ИС010303-11— 2009

d) Если идентификатор /, видимый в области видимости Р, повторно объявлен в некоторой внутренней
области видимости Q, вложенной в Р, то:

- если /, объявленный в Р, ссылается на именованный тип данны х или на метку типа, а /, объявленный
в Q, не ссылается на именованный тип данны х или на метку типа, то, как /, объявленный в Р, так и /,
объявленный в Q, являются видимыми в Q;

- в противном случае, только /, объявленный в Q, является видимым в (Эи в лю бы х областях видимо­
сти, объявленных в Q. И дентиф икатор/, объявленный в Р, будет виден в Р и во всех внутренних областях
видимости, в ко то р ы х /н е объявляется повторно.

e) Встроенные константы , ф ункции, процедуры и типы данны х языка EXPR ESS считаются
объявленными в виртуальной всеобщей области видимости. Все схемы являются вложенными в данную
область видимости. Идентиф икаторы, ссылающ иеся на встроенные константы, функции, процедуры, типы
данны х язы ка EXPR ESS и схемы, являются видимыми во всех областях видимости, определенны х в
языке EXPRESS.

f) Идентификаторы элементов перечисления, объявленные в области видимости определенного типа
данных, являются видимыми там, где данный определенный тип данны х является видимым, за исключени­
ем случая, когда внешняя область видимости содержит объявление того же идентиф икатора для какого-
либо другого элемента.

П р и м е ч а н и е — Если следующая внешняя область видимости содержит объявление того же идентифи­
катора, то элементы перечисления остаются доступными, но к ним должен быть добавлен в качестве префикса
идентификатор определенного типа данных (см. 12.7.2).

д) О бъявления из одной схемы становятся видимыми для элементов другой схемы посредством
специф икации интерфейса (см. раздел 11).

Пример — В следующей схеме показаны примеры идентификаторов и ссылок, являющихся
допустимыми в соответствии с приведенными выше правилами.

SCHEMA example;
CONSTANT

b : INTEGER := 1 ;
c : BOOLEAN := TRUE;

END_CONSTANT;
TYPE enum = ENUMERATION OF (e, f, g);
END_TYPE;
ENTITY entityl;

a : INTEGER;
WHERE

wr1: a > 0 ; — "entityl .wr1" подчиняется правилу по перечислению а):
— идентификатор "а" виден в локальной области видимости

wr2: а <> b ; — "entityl ,wr2" подчиняется правилу по перечислению Ь):
— идентификатор "Ь" виден из внешней области видимости

END_ENTITY;
ENTITY entity2;
с : REAL; — "entity2.c" подчиняется правилу по перечислению с):

— константа "с" не видима здесь
END_ENTITY;
ENTITY d;

attrl : INTEGER;
attr2 : enum;

WHERE
wr1: ODD(attrl); — "d.wr1" подчиняется правилу по перечислению d):

— функция ODD видима везде
wr2: attr2 о е; — "d.wr2" подчиняется правилу по перечислению е):

— идентификатор "е" виден вне области видимости,
— определенной типом данных enum

END_ENTrTY;
END SCHEMA;

10.3 Правила для явных элементов
В данном разделе более подробно определено, как общ ие правила областей действия и видимости

применяются к разным элементам языка EXPRESS.

60

ГОСТ Р И С 010303-11— 2009

10.3.1 Оператор альтернативных имен ALIAS
Определение оператора ALIAS дано в 13.2.
Видимость: идентификатор, неявно объявленный в операторе ALIAS, является видимым в области

видимости, определенной данным оператором.
Область видимости: оператор ALIAS определяет новую область видимости. Данная область видимо­

сти размещается от ключевого слова ALIAS до ключевого слова END_ALIAS, которым завершается дан­
ный оператор альтернативных имен.

10.3.2 Атрибут
Видимость: идентификатор атрибута является видимым в областях видимости объекта, в которой он

объявлен, и всех подтипов данного объекта.
10.3.3 Константа
Видимость: идентификатор константы является видимым в области видимости функции, процедуры,

правила или схемы, в которой он объявлен.
10.3.4 Элемент перечисления
Видимость: идентификатор элемента перечисления является видимым во всех областях видимости,

в которых является видимым определенный тип данных, в котором объявлен данный элемент перечисле­
ния, за исключением случая, когда такая внешняя область видимости содержит объявление такого же
идентификатора для какого-либо другого элемента.

10.3.5 Объект
Видимость: идентификатор объекта является видимым в области видимости функции, процедуры,

правила или схемы, в которой он объявлен. Идентификатор объекта остается видимым при условиях,
определенных в 10.2, во внутренних областях видимости, в которых данный идентификатор объявлен
повторно.

Область видимости: объявление объекта определяет новую область видимости. Данная область ви­
димости размещается от ключевого слова ENTITY до ключевого слова END_ENTITY, которым завершается
объявление данного объекта. Атрибуты, объявленные в супертипе объекта, являются видимыми в объекте
подтипа по принципу наследования.

П р и м е ч а н и е — Область видимости объекта подтипа не считается вложенной в область видимости
супертипа.

Объявления: следующие элементы языка EXPRESS могут объявлять идентификаторы, видимые в
области видимости объявления объекта:

- атрибут (явный, вычисляемый и инверсный);
- метка правила (правил уникальности и области определения).

Примеры
1 Идентификаторы атрибута batt в двух объектах не конфликтуют, поскольку они объявлены

в двух разных областях видимости.
ENTITY entityl;

aatt: INTEGER;
batt: INTEGER;

END_ENTITY;
ENTITY entity2;

a : en tity l;
batt: INTEGER;

END_ENTITY;
2 Приведенная ниже спецификация недопустима, поскольку идентификатор атрибута aatt

одновременно и наследуется, и объявляется в области видимости объекта illegal (см. 9.2.3.3). Метки
правила lab е двух объектах не конфликтуют, поскольку они объявлены в разных областях видимо­
сти; допустимый экземпляр объекта illegal, игнорирующий ошибку с атрибутом aatt, подчиняется
обоим правилам области определения.

ENTITY may_be_ok;
quantity: REAL;
aatt : REAL;

WHERE
lab : quantity >= 0.0;

END_ENTITY;

61

ГОСТ Р И С 010303-11 — 2009

ENTITY illegal
SUBTYPE OF (may_be_ok);
aatt : INTEGER;
batt : INTEGER;

WHERE
lab : batt<0;

END_ENTITY;

10.3.6 Функция
Видимость: идентификатор функции является видимым в области видимости функции, процедуры,

правила или схемы, в которой он объявлен.
Область видимости: объявление функции определяет новую область видимости. Данная область ви­

димости размещается от ключевого слова FUNCTION до ключевого слова END_FUNCTION, которым за­
вершается объявление данной функции.

Объявления: следующие элементы языка EXPRESS могут объявлять идентификаторы, видимые в
области видимости объявления функции:

- константа;
- объект;
- перечисление;
- функция;
- параметр;
- процедура;
-тип;
- метка типа;
- переменная.

Пример — Приведенный ниже фрагмент некорректен, поскольку идентификатор формального
параметра рагт используется одновременно и как идентификатор локальной переменной.

FUNCTION illegal(parm : REAL) : LOGICAL;
LOCAL

parm : STRING;
END_LOCAL;

END_FUNCTION;

10.3.7 Параметр
Видимость: идентификатор формального параметра является видимым в области видимости функции

или процедуры, в которой он объявлен.
10.3.8 Процедура
Видимость: идентификатор процедуры является видимым в области видимости функции, процедуры,

правила или схемы, в которой он объявлен.
Область видимости: объявление процедуры определяет новую область видимости. Данная об­

ласть видимости размещается от ключевого слова PROCEDURE до ключевого слова END_PROCEDURE,
которым завершается объявление процедуры.

Объявления: следующие элементы языка EXPRESS могут объявлять идентификаторы в области ви­
димости объявления процедуры:

- константа;
- объект;
- перечисление;
- функция;
- параметр;
- процедура;
-тип;
- метка типа;
- переменная.
10.3.9 Выражение QUERY
Выражение QUERY определено в 12.6.7.
Видимость: идентификатор, неявно объявленный в выражении QUERY, является видимым в области

видимости, определенной данным выражением.

62

ГОСТ Р И С 0 10303-11 — 2009

Область видимости: выражение QUERY определяет новую область видимости. Данная область види­
мости размещается от открывающей круглой скобки следующей за ключевым словом QUERY, до
закрывающей круглой скобки которой завершается данное выражение QUERY.

10.3.10 Оператор цикла
Оператор цикла REPEAT определен в 13.9.
Видимость: идентификатор, неявно объявленный в инкрементно управляемом операторе цикла, явля­

ется видимым в области видимости данного оператора цикла.
Область видимости: оператор цикла определяет новую область видимости. Данная область видимос­

ти размещается от ключевого слова REPEAT до ключевого слова END_REPEAT, которым завершается
оператор цикла.

10.3.11 Правило
Видимость: идентификатор правила является видимым в области видимости схемы, в которой он

объявлен.

П р и м е ч а н и е — И д е н т и ф и к а т о р п р а в и л а м о ж е т и с п о л ь з о в а т ь с я в р е а л и з а ц и я х и л и в м е т к е к о м м е н т а ­
р и я (с м . 7.1.6.3).

Область видимости: объявление правила определяет новую область видимости. Данная область ви­
димости размещается от ключевого слова RULE до ключевого слова END_RULE, которым завершается
объявление данного правила.

Объявления: следующие элементы языка EXPRESS могут объявлять идентификаторы в области ви­
димости объявления правила:

- константа;
- объект;
- перечисление;
-функция;
- процедура;
- метка правила;
-тип;
- переменная.

Пример — Приведенный ниже фрагмент некорректен, поскольку идентификатор point, относя­
щийся к объекту, на который распространяется правило, неявно объявлен как переменная в данном
правиле и, кроме того, явно объявлен как локальная переменная.

RULE illegal FOR (point);
LOCAL

point : STRING;
END_LOCAL;

END_RULE;

10.3.12 Метка правила
Видимость: метка правила является видимой в области видимости объекта, правила или типа, в кото­

рой она объявлена.

П р и м е ч а н и е — М е т к а п р а в и л а м о ж е т и с п о л ь з о в а т ь с я в р е а л и з а ц и я х и в м е т к е к о м м е н т а р и я
(с м . 7.1.6.3).

10.3.13 Схема
Видимость: идентификатор схемы является видимым для всех других схем.

П р и м е ч а н и е — С о в м е с т и м а я р е а л и з а ц и я м о ж е т о б е с п е ч и в а т ь м е х а н и з м о б о б щ е н и я о б л а с т е й в и д и м о ­
с т и , п о з в о л я ю щ и й р а с с м а т р и в а т ь с о в о к у п н о с т ь с х е м к а к о б л а с т ь в и д и м о с т и .

Область видимости: объявление схемы определяет новую область видимости. Данная область
видимости размещается от ключевого слова SCHEMA до ключевого слова END_SCHEMA, которым
завершается объявление данной схемы.

Объявления: следующие элементы языка EXPRESS могут объявлять идентификаторы в области ви­
димости объявления схемы:

- константа;
- объект;

63

ГОСТ Р И С 010303-11 — 2009

- перечисление;
- функция;
- процедура;
- правило;
- ограничение подтипа;
-тип.

Пример — Приведенный ниже фрагмент некорректен по двум причинам. Во-первых, идентифи­
катор adef импортирован в схему посредством оператора USE, но повторно объявлен как имя типа.
Во-вторых, имя fdef использовано как идентификатор в двух объявлениях (относящихся к объекту и
к функции, хотя тип элемента является несущественным).

SCHEMA incorrect;
USE FROM another_schema (adef);

FUNCTION fdef(parm : NUMBER) : INTEGER;

END_FUNCTION;
TYPE adef = STRING;
END_TYPE;
ENTITY fdef;

END_ENTITY;
END_SCHEMA;

10.3.14 Ограничение подтипа
Видимость: идентификатор ограничения подтипа является видимым в области видимости схемы, в

которой он объявлен.

П р и м е ч а н и е — И д е н т и ф и к а т о р о г р а н и ч е н и я п о д т и п а м о ж е т и с п о л ь з о в а т ь с я в р е а л и з а ц и я х и в
м е т к е к о м м е н т а р и я (с м . 7.1.6.3).

Область видимости: ограничение подтипа расширяет область видимости объекта, для которого он
объявлен. Данное расширение области видимости размещается от ключевого слова SUBTYPE_CONSTRAINT
до ключевого слова END_SUBTYPE_CONSTRAINT, которым завершается объявление данного ограниче­
ния подтипа.

10.3.15 Тип
Видимость: идентификатор типа является видимым в области видимости функции, процедуры,

правила или схемы, в которой он объявлен. Идентификатор типа остается видимым при условиях,
определенных в 10.2, во внутренних областях видимости, в которых данный идентификатор объявляется
повторно.

Область видимости: объявление типа создает новую область видимости. Данная область видимости
размещается от ключевого слова TYPE до ключевого слова END_TYPE, которым завершается объявление
данного типа.

Объявления: следующие элементы языка EXPRESS могут объявлять идентификаторы, видимые в
области видимости объявления типа:

- перечисление;
- метка правила (правило области определения).
10.3.16 Метка типа
Видимость: метка типа является видимой в области видимости объекта и всех подтипов данного

объекта, функции или процедуры, в которой она объявлена. Метка типа неявно объявляется при первом ее
появлении в области видимости. В функциях и процедурах первое появление метки типа должно иметь
место в спецификации формального параметра. На объявленную таким образом метку типа можно ссылать­
ся где-либо в другом месте в спецификации формального параметра или в локальных объявлениях функ­
ции или процедуры. Если метка типа объявлена в функции, то на метку типа можно ссылаться в специфика­
ции типа результата функции.

10.3.17 Переменная
Видимость: идентификатор переменной является видимым в области видимости функции, процедуры

или правила, в которой он объявлен.

64

ГОСТ Р ИС010303-11— 2009

11 Спецификация интерфейсов

В данном разделе определены конструкции, позволяющие элементам, объявленным в одной схеме,
быть видимыми в другой схеме. Существуют две спецификации интерфейсов (USE и REFERENCE), обес­
печивающие видимость элементов. Спецификация интерфейса USE позволяет элементам, объявленным в
одной схеме, получить независимую реализацию в схеме, в которой определена конструкция USE.

Экземпляр объекта считается независимым, если он не играет роль, предписанную атрибутом любого
другого экземпляра объекта, то есть функция ROLESOF (см. 15.20), примененная к независимому экземп­
ляру объекта, выдаст в качестве результата пустое множество. Тип данных объекта, объявленного в схеме
локально или с использованием интерфейса USE, может быть реализован независимо или играть роль,
предписанную атрибутом объекта в данной схеме.

Объект, объявленный посредством интерфейса REFERENCE или неявного интерфейса, должен быть
реализован только для выполнения роли, предписанной атрибутом реализации объекта в схеме.

Синтаксис:
242 interface_specification = reference_clause | use_clause .

Внешним объявлением является любое объявление (например, объекта), присутствующее во
внешней схеме (в любой схеме, отличной отданной схемы).

Другое различие между двумя формами интерфейса состоит в том, что интерфейс USE применим
только к именованным типам данных (объектным типам данных и определенным типам данных), а
интерфейс REFERENCE применим ко всем объявлениям, за исключением правил и схем.

Внешнему элементу языка EXPRESS в данной схеме может быть присвоено новое имя. На внешний
элемент языка EXPRESS в данной схеме следует ссылаться по его новому имени, если оно задано
после ключевого слова AS.

11.1 Спецификация интерфейса USE
Объектный или определенный тип данных, объявленный во внешней схеме, может быть сделан дос­

тупным в данной схеме посредством интерфейса USE. Спецификация интерфейса USE задает имя внеш­
ней схемы и, факультативно, объявленные в ней имена объектных или определенных типов данных. Если
не указан элемент named_types, то все именованные типы данных, объявленные явно или посредством
интерфейса USE во внешней схеме, трактуются как объявленные локально в данной схеме.

Синтаксис:
336 use_clause = USE FROM schema_ref [' (' named_type_or_rename

{ ' , ' nam ed_type_or_renam e} ') '] ' ; ' .
259 named_type_or_rename = named_types [AS (entity_id | t y p e jd)] .

11.2 Спецификация интерфейса REFERENCE
Спецификация интерфейса REFERENCE позволяет сделать видимыми в данной схеме следующие

элементы языка EXPRESS, объявленные во внешней схеме:
- константа;
- объект;
- функция;
- процедура;
-тип.
Спецификация интерфейса REFERENCE задает имя внешней схемы и, факультативно, объявлен­

ные в ней имена элементов языка EXPRESS. Если имена не заданы, то все элементы языка EXPRESS,
объявленные явно или посредством интерфейса USE во внешней схеме, являются видимыми в данной
схеме.

Синтаксис:
281 reference_clause = REFERENCE FROM schema_ref [' (' resource_or_rename

{ ' , ' resource_or_renam e} ') '] ' ; ' .
288 resource_or_rename = resource_ref [AS ren a m e jd] .
289 resource_ref = constant_ref | entity_ref | function_ref | procedure_ref | type_re f.
284 re n a m e jd = co n s ta n tjd | e n tity jd | fu n c tio n jd | p rocedure jd | ty p e jd .

65

ГОСТ Р И С 010303-11— 2009

Внешние объявления, введенные посредством интерфейса REFERENCE, не считаются локальными
объявлениями и поэтому не могут быть реализованы независимо, но могут быть реализованы для выполне­
ния роли, предписанной атрибутом объекта в данной схеме.

11.3 Взаимодействие интерфейсов USE и REFERENCE
Если объектный или определенный тип данны х в данной схеме одновременно указан в специф икаци­

ях интерфейсов USE и REFERENCE, то спецификация интерфейса USE имеет приоритет.

Пример — В следующем фрагменте а1 трактуется как локальное объявление:
USE FROM s1 (а1);
REFERENCE FROM s1 (a1);

Если именованный тип данны х импортирован в данную схему посредством интерфейса USE, то дан­
ный именованный тип данны х может быть импортирован другой схемой из данной схемы посредством
интерф ейсов USE или R EFERENCE (это означает, что специф икации интерф ейсов USE могут связывать
схемы в цепочки).

Пример — Пусть заданы следующие объявления двух схем:
SCHEMA s1;

ENTITY е1;
END_ENTITY;

END SCHEMA;
SCHEMA s2;
USE FROM s1 (e1 AS e2);
END_SCHEMA;
тогда следующие спецификации эквивалентны:
SCHEMA s3; SCHEMA s3;
USE FROM s1 (e1 AS e2); USE FROM s2 (e2);
END_SCHEMA; END_SCHEMA;

Поскольку элементы языка EXPRESS, импортированные посредством интерф ейса REFERENCE,
не трактую тся как локально объявленны е элементы, то связы вание схем в цепочки посредством
интерфейсов REFERENCE невозможно.

11.4 Импорт объектов посредством неявных интерфейсов
Внеш нее объявление может ссылаться на идентиф икаторы , которые не являю тся видимыми в

данной схеме. Такие элементы языка EXPRESS, на которые даны неявные ссылки, требуются для полного
понимания данной схемы, но они не видимы для элементов языка EXPRESS, объявленны х в данной
схеме. Каждый импортированный неявно элемент может в свою очередь ссы латься на другие элементы
языка EXPRESS, которые не являю тся видимыми в данной схеме; такие элементы языка EXPR ESS
также требуются для полного понимания данной схемы.

Пример — Неявно импортированные элементы и связывание неявных интерфейсов в цепочки.
SCHEMA s1;

TYPE t1 = REAL;
END_TYPE;
ENTITY e1;

a:t1;
END_ENTITY;
ENTITY e2;

a1 : e1;
END_ENTITY;

END_SCHEMA;
SCHEMA s2;

REFERENCE FROM s1 (e2);
ENTITY e3;

аЗ: e2;
END_ENTITY;

END_SCHEMA;
Объект e2 используется как тип данных атрибута аЗ. Поскольку в определении объекта е2

требуется e l, то объект е1 неявно импортируется схемой s2. Однако поскольку е1 не был импортиро­
ван в схему s2 в явной форме, то е1 не может использоваться в схеме s2. Аналогично, в определении
объекта el требуется t1; поэтому t1 неявно импортируется схемой s2.

66

ГОСТ Р ИС010303-11— 2009

В последующих пунктахтермин «импортирован» используется для обозначения понятий «импортиро­
ван посредством интерфейса USE», «импортирован посредством интерфейса REFERENCE» или «неявно
импортирован».

11.4.1 Импорт констант
При импорте константы неявно импортируются:
- любые определенные типы данных, использованные в объявлении импортируемой константы;
-лю бы е объектные типы данных, использованные в объявлении импортируемой константы;
-лю бы е константы, использованные в объявлении импортируемой константы;
- любые функции, использованные в объявлении импортируемой константы.
11.4.2 Импорт определенных типов данных
При импорте определенного типа данных неявно импортируются:
- любые определенные типы данных, использованные в объявлении импортируемого типа, включая

наращиваемые определенные типы данных, которые данный импортируемый тип может расширять, ис­
пользуя ключевое слово BASED_ON, но исключая любой из выбираемых элементов, если импортируемым
типом является тип данных8Е1_ЕСТ, а также исключая те выбираемые элементы выбираемыхтипов дан­
ных, на которых может основываться данный импортируемый тип;

- любые константы или функции, использованные в объявлении представления импортируемого опре­
деленного типа данных;

- любые константы или функции, использованные в правилах области определения импортируемого
определенного типа данных;

-лю бы е определенные типы данных, представленные типом данных8Е1_ЕСТ, список выбора которо­
го содержит импортируемый определенный тип данных.

Пример — Неявный импорт определенного типа данных через тип данных SELECT.
SCHEMA s1;

TYPE sell = SELECT (e1,t1);
END_TYPE;
TYPE t1 = INTEGER;
END_TYPE;
ENTITY e1;

END_ENTITY;
END_SCHEMA;

SCHEMA s2;
REFERENCE FROM s1 (t1);
END_SCHEMA;

Схема s2 содержит явную ссылку на t1, а поскольку sell представлен типом данных SELECT,
содержащим t1, то на sell делается неявная ссылка.

11.4.3 Импорт объектных типов данных
При импорте объектного типа данных неявно импортируются:
- все объектные типы данных, являющиеся супертипами данного импортируемого объектного типа

данных.

П р и м е ч а н и е — Подтипы импортируемого объектного типа данных, независимо от того, присутствуют
ли они в выражении SUPERTYPE OF, не будут импортированы неявно в результате установления данного
интерфейса для импорта;

- все правила, ссылающиеся на импортируемый объектный тип данных и, возможно, на другие объек­
тные типы данных, которые все явно или неявно импортированы в данную схему;

- все ограничения подтипов для импортируемого объектного типа данных;
-лю бы е константы, определенные типы данных, объектные типы данных или функции, использован­

ные в объявлении атрибутов импортируемого объектного типа данных;
-лю бы е константы, определенные типы данных, объектные типы данных или функции, использован­

ные в правилах области определения импортируемого объектного типа данных;
- любые определенные типы данных, представленные типом данныхБЕЕЕСТ, содержащем импорти­

руемый объектный тип данных в своем списке выбора.
В графах подтипов/супертипов могут быть отсечены ветви только в результате следования по связям,

задаваемым ключевым словом SUBTYPE OF, при группировке неявных интерфейсов импортируемого

67

ГОСТ Р ИС010303-11—2009

объектного типа данных. Алгоритм, используемый для вычисления допустимых реализаций усеченного
графа подтипов/супертипов, приведен в приложении С.

11.4.4 Импорт функций
При импорте функций неявно импортируются:
- любые определенные типы данных или объектные типы данных, использованные в объявлении па­

раметров для импортируемой функции;
- любые определенные типы данных или объектные типы данных, использованные в определении

возвращаемого типа данных для импортируемой функции;
- любые определенные типы данных или объектные типы данных, использованные в объявлении ло­

кальных переменных в импортируемой функции;
- любые константы, функции или процедуры, использованные в импортируемой функции.
11.4.5 Импорт процедур
При импорте процедуры неявно импортируются:
- любые определенные типы данных или объектные типы данных, использованные в объявлении па­

раметров для импортируемой процедуры;
- любые определенные типы данных или объектные типы данных, использованные в объявлении ло­

кальных переменных в импортируемой процедуре;
- все константы, функции или процедуры, использованные в импортируемой процедуре.
11.4.6 Импорт правил
При импорте правила неявно импортируются:
- любые определенные типы данных или объектные типы данных, использованные в объявлении ло­

кальных переменных в импортируемом правиле;
- все константы, функции или процедуры, использованные в импортируемом правиле.
11.4.7 Импорт ограничений подтипов
При импорте ограничения подтипов объекты не импортируются неявным образом.
Ограничения, заданные в импортируемом ограничении подтипов, преобразовываются после импор­

тирования так, чтобы не допустить реализацию в данной схеме какого-либо сложного объектного типа дан­
ных, который не был разрешен в исходной внешней схеме (см. приложение С).

12 Выражения

Выражения являются комбинациями операторов, операндов и вызовов функций, которые вычисляют­
ся для получения некоторого значения.

Синтаксис:
216 expression = simple_expression [rel_op_extended simple_expression] .
283 rel_op_extended = rel_op | IN | LIKE .
282 rel_op = | | | | | | ' :<> :' |
305 simple_expression = term { add_like_op te rm } .
325 term = factor { multiplication_like_op factor} .
217 factor = simple_factor [' * * ' simple_factor] .
306 simple_factor = aggregatejnitia lizer | entity_constructor |

enumeration_reference | interval | query_expression |
([u n a ry_o p] (' (' expression ') ' | p rim a ry)).

331 unary_op = ' + ' | | N O T .
269 primary = literal | (qualifiable_factor {q u a lif ie r }) .
257 multiplication_like_op = ' * ' | V | DIV | MOD | AND | ' | I ' -
168 add_like_op = ' + ' | | OR | X O R .

Некоторым операторам требуется один операнд, а другим — два операнда. Оператор, которому
требуется только один операнд, должен располагаться перед своим операндом. Оператор, которому
требуются два операнда, должен располагаться между своими операндами. В данном разделе определе­
ны операторы и установлены типы данных операндов, которые могут использоваться каждым оператором.

Существует семь классов операторов:
а) Арифметические операторы принимают числовые операнды и выдают числовые результаты. Тип

данных значения результата арифметического оператора зависит от оператора и типов данных
операндов (см. 12.1).

68

ГОСТ Р И С 010303-11 — 2009

b) Операторы отношения принимают в качестве операндов разные типы данных и выдают результаты,
имеющие тип данных LOGICAL (TRUE, FALSE или UNKNOWN).

c) Двоичные операторы принимают операнды типа данных BINARY и выдают результаты, имеющие
тоже тип данных BINARY.

d) Логические операторы принимают операнды типа данных LOGICAL и выдают результаты, имею­
щие тоже тип данных LOGICAL.

e) Строковые операторы принимают операнды типа данных STRING и выдают результаты, имеющие
тоже тип данных STRING.

f) Агрегированные операторы комбинируют агрегированные значения с другими агрегированными зна­
чениями или с отдельными элементами разными способами и выдают результаты агрегированного типа.

д) Ссылочные и индексные операторы извлекают компоненты из экземпляров объектов и агрегиро-
ванныхзначений.

Вычисление выражений осуществляется в соответствии с приоритетом входящих в выражение опе­
раторов.

Значение выражения, заключенного в круглые скобки, вычисляется до того, как оно будет трактовать­
ся как единый операнд.

Процесс вычисления осуществляется слева направо, при этом операторы с более высоким приорите­
том вычисляются первыми. Правила приоритетов для всех операторов языка EXPRESS установлены в
таблице 10. Операторы в одной строке имеют одинаковый приоритет, а строки упорядочены по уменьшению
приоритета.

Операнд, расположенный между двумя операторами, имеющими разные приоритеты, относится к
оператору, имеющему более высокий приоритет. Операнд, расположенный между двумя операторами с
одинаковым приоритетом, относится к оператору, расположенному слева.

Т а б л и ц а 10 — П р и о р и т е т о п е р а т о р о в

П р и о р и т е т О п и с а н и е О п е р а т о р ы

1 С с ы л к и н а э л е м е н т ы [] • \

2 У н а р н ы е о п е р а т о р ы + - NOT

3 В о з в е д е н и е в с т е п е н ь **

4 У м н о ж е н и е / д е л е н и е * / DIV MOD AND 11

5 С л о ж е н и е / в ы ч и т а н и е - + OR XOR

6 О т н о ш е н и е = < > < = > = < > :=; ;<>; in LIKE

П р и м е ч а н и е — || я в л я е т с я о п е р а т о р о м п о с т р о е н и я с л о ж н о г о о б ъ е к т а .

Пример — Выражение -10**2 вычисляется как (-10)**2, давая в результате значение 100.
Выражение 10/20*30 вычисляется как (10/20)*30, давая в результат значение 15.0.

12.1 Арифметические операторы
Арифметическими операторами, которым требуется один операнд, являются тождество (+) и отрица­

ние (-). Операнд должен иметь числовой тип (NUMBER, INTEGER или REAL). Результат оператора (+) равен
операнду, результат оператора (-) имеет знак, противоположный знаку операнда. Если операнд имеет
неопределенное (?) значение, то результат также будет иметь неопределенное (?) значение для обоих
операторов.

Арифметическими операторами, которым требуются два операнда, являются сложение (+), вычита­
ние (-), умножение (*), деление (/), возведение в степень (**), целочисленное деление (DIV) и деление по
модулю (MOD). Операнды должны иметь числовой тип (NUMBER, INTEGER или REAL).

Операторы сложения, вычитания, умножения, деления и возведения в степень выполняют одноимен­
ные математические операции. За исключением деления, они выдают целочисленный результат, если оба
операнда имеют тип данных INTEGER, и результат типа REAL — в остальных случаях [если при этом ни
один из операндов не имеет неопределенного (?) значения]. Результатом оператора деления (/) является
действительное число [если при этом ни один из операндов не имеет неопределенного (?) значения].

69

ГОСТ Р ИС010303-11 — 2009

Деление по модулю (MOD) и целочисленное деление (DIV) дают целочисленный результат [если при
этом ни один из операндов не имеет неопределенного (?) значения]. Если какой-либо операнд имеет тип
данных REAL, то перед выполнением данного оператора его значение преобразуется в значение типа
INTEGER усечением, то есть его дробная часть отбрасывается. Для любых целых чисел а и b всегда
справедливо равенство (a DIV b)*b + с*(а MOD Ь) = а, где с=1 для Ь>=0 и с=-1 для Ь<0.
Абсолютное значение выражения a MOD b должно быть меньше, чем абсолютное значение Ь, а знак
выражения a MOD b должен совпадать со знаком Ь.

Если какой-либо из операндов арифметического оператора имеет неопределенное (?) значение, то
результат оператора должен иметь неопределенное (?) значение.

Округление действительныхчисел.
Когда требуется округление, оно осуществляется с точностью р (либо заданной в явном виде для

типа данных REAL, либо определяемой ограничением для конкретной реализации, устанавливаемым в
соответствии с приложением Е) по следующему алгоритму:

a) преобразовать представление числа в экспоненциальный формат с удалением всех предшествую­
щих нулей;

b) установить указатель разряда к на р-ю позицию справа от десятичной точки;
c) если действительное число является положительным, то выполняются следующие действия:

-если цифра, расположенная на позиции к, принадлежит к диапазону от 5 до 9, то добавить 1
к цифре, расположенной на позиции к - 1, а цифры, начиная с позиции к\л далее, отбросить. Перейти к шагу
по перечислению е);

- если цифра, расположенная на позиции к, принадлежит к диапазону от 0 до 4, то цифры, начиная
с позиции к и далее, отбросить. Перейти к шагу по перечислению h);

d) если действительное число является отрицательным, то выполняются следующие действия:
- если цифра, расположенная на позиции к, принадлежит к диапазону от 6 до 9, то добавить 1 к

цифре, расположенной на позиции к - 1, а цифры, начиная с позиции к и далее, отбросить. Перейти к шагу
по перечислению е);

- если цифра, расположенная на позиции к, принадлежит к диапазону от 0 до 5, то цифры, начиная
с позиции к и далее, отбросить. Перейти к шагу по перечислению h);

e) присвоить указателю разряда Означение к - 1;
f) если цифра, расположенная на позиции к, принадлежит к диапазону от 0 до 9, то перейти к шагу по

перечислению h);
g) если цифра, расположенная на позиции к, имеет значение 10, то добавить 1 к цифре, расположен­

ной на позиции к - 1, и установить цифру, расположенную на позиции к, в 0. Перейти к шагу по перечисле­
нию е);

h) округление действительного числа завершено.
П р и м е ч а н и е — В р е з у л ь т а т е д е й с т в и я д а н н о г о а л г о р и т м а ч и с л о 0,5 о к р у г л я е т с я д о 1, а ч и с л о -0,5

о к р у г л я е т с я д о 0.

Пример - Данный пример показывает результат задания числа значащих цифр в дробной части
действительного числа, то есть его точности.

LOCAL
distance : REAL(6);
х1, у1, z1 : REAL;
х2, у2, z2 : REAL;

END_LOCAL;

х1 := 0.; у1 := 0.; z1 := 0.;
х2 := 10.; у2:=11.; z2 := 12.;

distance := SQRT((x2-x1) **2 + (У2-у1)**2 + (z2-z1) **2);
Вычисленное значение объекта distance равно 1.9104973 . . . e+1, но, его реальным значением

будет 1.91050е+1, поскольку в спецификации данного объекта задана точность, равная шести знача­
щим цифрам, поэтому будут оставлены только шесть значащих цифр.

12.2 Операторы отношений
К операторам отношений относятся операторы сравнения значений, сравнения экземпляров, принад­

лежности (IN) и сопоставления строк (LIKE). Результатом вычисления выражения отношения является зна­
чение типа LOGICAL (TRUE, FALSE или UNKNOWN). Если хотя бы один из операндов имеет неопределен­
ное (?) значение, то выражению присваивается значение UNKNOWN.

70

ГОСТ Р ИС010303-11—2009

12.2.1 Операторы сравнения значений
К операторам сравнения значений относятся:
- равно (=);
- не равно (<>);
-больше чем(>);
- меньше чем (<);
- больше или равно (>=);
- меньше или равно (<=).
Данные операторы могут применяться к числовым, логическим, строковым и двоичным операндам.

Кроме того, данные операторы могут применяться к элементам перечислений, объявленным в перечисле­
ниях, не являющихся наращиваемыми перечислениями и не основанными на наращиваемых перечисле­
ниях. Помимо этого, операторы = и о могут применяться к значениям агрегированного и объектного типов
данных и к элементам перечислений, объявленным в наращиваемых перечислениях или в перечислениях,
основанных на наращиваемых перечислениях (см. 12.11).

Для двух заданных значений а и b выражения а о b и NOT (а = Ь) эквивалентны для всех типов
данных. Кроме того, если а и b не являются агрегированными или объектными типами данных, то справед­
ливы следующие утверждения:

- одно из следующих выражений имеет значение TRUE: а < b, а = b или а > Ь;
- выражение а <= b эквивалентно выражению (а < b) OR (а = Ь);
- выражение а >= b эквивалентно выражению (а > b) OR (а = Ь).
12.2.1.1 Сравнение чисел
Операторы сравнения значений, примененные к числовым операндам, должны соответствовать мате­

матическому упорядочению действительных чисел.

П р и м е ч а н и е — П р и с р а в н е н и и д в у х д е й с т в и т е л ь н ы х ч и с е л с п е ц и ф и к а ц и я и х т о ч н о с т и н е
у ч и т ы в а е т с я .

Пример — Пусть задано:
а : REAL(3) :=1.23
b : REAL(5) := 1.2300;

тогда значением выражения а = b будет TRUE.

12.2.1.2 Сравнение двоичныхчисел
При сравнении двух двоичных чисел сравниваются биты, расположенные в одинаковых позициях

каждого числа, начиная с первой (самой левой) пары битов, затем — биты во второй позиции и так далее до
тех пор, пока не встретится пара несовпадающих битов или не будут проверены все пары. Если встрети­
лась пара несовпадающих битов, то меньшим считается двоичное число, бит которого равен 0. Никакого
дополнительного сравнения не требуется. Если пара несовпадающих битов не встретилась, то меньшим
считается более короткое двоичное число (длина двоичного числа определяется с помощью функции
BLENGTH). Если сравниваемые двоичные числа имеют одинаковую длину и все пары их битов совпадают,
то данные двоичные числа равны.

12.2.1.3 Сравнение логических значений
При сравнении двухзначений типа LOGICAL (или BOOLEAN) должен соблюдаться следующий поря-

докзначений:
FALSE < UNKNOWN < TRUE.
12.2.1.4 Сравнение строковых значений
При сравнении двух строковых значений сравниваются символы, расположенные в одинаковых по­

зициях каждого строкового значения, начиная с первой (самой левой) пары символов, затем — символы,
расположенные во второй позиции, и так далее до тех пор, пока не встретится пара несовпадающих симво­
лов или не будут проверены все пары символов. Если встретилась пара несовпадающих символов, то
меньшим считается строковое значение, содержащее символ с меньшим значением кода (в соответствии
с определением значений октетов для символов по ИСО/МЭК10646). Никакого дополнительного сравнения
не требуется. Если пара несовпадающих символов не встретилась, то меньшим считается более короткое
строковое значение (длина строкового значения определяется с помощью функции LENGTH). Если срав­
ниваемые строковые значения имеют одинаковую длину, и все пары их символов совпадают, то данные
строковые значения равны.

71

ГОСТ Р И С 010303-11 — 2009

12.2.1.5 Сравнение элементов перечисления
Сравнение значений элементов перечисления, которое не является наращиваемым и не основано на

наращиваемом перечислении, основано на их относительных позициях в объявлении перечисляемого типа
данных. См. правило по перечислению d) в 8.4.1.

Для значений, тип данных которых является наращиваемым перечисляемым типом или перечисляе­
мым типом, основанном на наращиваемом перечисляемом типе, определено только сравнение на равен­
ство или неравенство. Два таких значения равны, если они представляют один и тот же элемент перечисле­
ния, и не равны — в противном случае.

12.2.1.6 Сравнение агрегированных значений
Операторами сравнения значений, установленными для агрегированных значений, являются опе­

раторы «равно» (=) и «не равно» (о) . Два агрегированных значения могут сравниваться только в том
случае, если ихтипы данных совместимы (см. 12.11).

При сравнении агрегированных структур должно проверяться число элементов в каждом из операн­
дов: если справедливо выражение SIZEOF (а) о SIZEOF (Ь), то агрегированные структуры не равны. При
сравнении агрегированных структур сравниваются элементы агрегированного значения путем сравнения
значений. Если результатом какого-либо сравнения элементов является FALSE, то результатом сравнения
агрегированных структур является также FALSE. Если результатом одного или нескольких сравнений эле­
ментов при сравнении агрегированных структур является UNKNOWN, а результатом остальных сравнений
является TRUE, то результатом сравнения агрегированных структур является UNKNOWN. Во всех других
случаях результатом сравнения агрегированных структур является TRUE.

Определение равенства агрегированных структур зависит от их агрегированных типов данных:
- два массива а и b равны тогда и только тогда, когда значение каждого элемента из а равно значе­

нию элемента из Ь, расположенного в той же позиции, то есть а[i] = b [i] (см. 12.6.1);
- два списка а и b равны тогда и только тогда, когда значение каждого элемента из а равно значению

элемента из Ь, расположенного в той же позиции;
- два пакета или набора а и b равны тогда и только тогда, когда каждый элемент VALUE_IN а встреча­

ется в VALUEJN b равное число раз, а каждый элемент VALU EJN b также встречается в VALU EJN а
равное число раз.

12.2.1.7 Сравнение значений объектных типов данных
Значения двух экземпляров объектного типа данных являются равными, если равны значения их

соответствующих атрибутов. Поскольку экземпляры объектного типа данных могут иметь атрибуты, пред­
ставленные также объектными типами данных, для таких экземпляров существует возможность ссылаться
на самих себя. При этом значения экземпляров объектного типа данных являются равными, если все
атрибуты, представленные простыми типами данных, имеют одинаковые значения, и одни и те же атрибуты
в обоих экземплярах объектного типа данных ссылаются сами на себя.

Для более точного определения предположим, что необходимо сравнить два экземпляра * и г.
Если * :=: г, то * =г. Иначе вводят следующие определения:

- определют упорядочение на совокупности рассматриваемых экземпляров. На практике такая сово­
купность конечна, поэтому упорядочение может быть осуществлено;

-для целей данного рассмотрения определяют оператор индексирования агрегированной струк­
туры, соблюдающий данное упорядочение так, чтобы для любой агрегированной структуры agg и для
любых индексов i и j условие i < j было эквивалентно условию a g g [i] < a g g [j];

- определяют ссылочный путь как последовательность одной или нескольких ссылок на атрибуты или
индексы. Применение ссылочного пути s к экземпляру i будет записано как s(i). Тогда s(i) является
вычисляемым, если ни одна из ссылок, за исключением последней, не приводит к неопределенности (?).

Тогда значение выражения* =г определяют по первому выполненному из следующих условий:
a) если TYPEOF(*)<>TYPEOF(r), то * =г имеет значение FALSE;
b) если существует такой ссылочный путь s, что только один из s(*) и s(r) является вычисляемым, то

* = г имеет значение FALSE;
c) если существует такой ссылочный путь s, что результатами как s(*), так и s(r) являются значения

простого типа данных, и если s (*)o s (r) , то * = г имеет значение FALSE;
d) если существует такой ссылочный путь s, что результатами как s(*), так и s(r) являются либо значе­

ния объектного типа данных, либо объявляется, что они должны быть выбираемого типа данных, и если
TYPEOF(s(*))<>TYPEOF(s(r)), то * =г имеет значение FALSE;

72

ГОСТ Р И С 0 10303-11— 2009

e) если существует такой ссылочный путь s, что NOT EXISTS(s(l)) или NOT EXISTS(s(r)), то
£ = г имеет значение UNKNOWN;

f) в ином случае £ = г имеет значение TRUE.
Примеры
1 Представленный ниже алгоритм является одной из возможных реализаций описанной выше

проверки сравнения значений. Данный алгоритм приведен для иллюстрации и не предназначен для
представления какой-либо конкретной реализации.

Пусть в данном алгоритме £ и г являются переменными типа GENERIC:
a) инициализируем £ в качестве экземпляра объекта левой части, a r e качестве экземпляра

объекта правой части;
b) если £ и г представляют один и тот же экземпляр, то есть £ :=: г, то выражение имеет

значение TRUE;
c) инициализируем пустой список pi ist, который будет содержать упорядоченные пары идентифи­

каторов экземпляров объектного типа данных.

П р и м е ч а н и е — Представление идентификаторов экземпляров определяется реализацией;

d) сравним £ и г, используя определенный ниже алгоритм глубинного равенства;
e) выражение будет иметь значение, возвращаемое алгоритмом глубинного равенства,
Алгоритм глубинного равенства:
a) если I, г или оба экземпляра имеют неопределенное (?) значение, то алгоритм возвращает

значение UNKNOWN;
b) если TYPEOF(tf)<>TYPEOF(r), то алгоритм возвращает значение FALSE;
c) если £ и г не являются экземплярами объектного типа данных, то алгоритм возвращает

результат выражения £=г, используя соответствующую проверку равенства;
d) если £ и г представляют один и тот же экземпляр объектного типа данных, то есть

£:=: г, то алгоритм возвращает значение TRUE;
e) если пара экземпляров (£, г) присутствует в списке plist, то алгоритм возвращает значение

TRUE;
f) если пара экземпляров (£, г) не присутствует в списке plist, то выполняются следующие дей­

ствия:
1) в список p lis t добавляется пара (£, г),
2) для каждого атрибута а, определенного для £ и г, сравниваются £.а и г.а с использованием

алгоритма глубинного равенства, полагая, что £=\,а и г=г.а.

П р и м е ч а н и е — При этом используется рекурсивный вызов,

3) если результатом алгоритма глубинного равенства для какого-либо из атрибутов на шаге по
пункту 2) перечисления е) будет FALSE, то в целом алгоритм также возвращает значение FALSE.
В противном случае, если алгоритм возвращает значение UNKNOWN для какого-либо из атрибутов, то
общим результатом также будет значение UNKNOWN. Иначе, алгоритм возвращает значение TRUE.

П р и м е ч а н и е — Данный алгоритм обеспечивает, что если хотя бы один из результатов сравнения имеет
значение FALSE, то общий результат имеет значение FALSE. Если все результаты сравнения имеют значение
TRUE, то общий результат также имеет значение TRUE. Если результат какого-либо сравнения имеет значение
UNKNOWN, а все другие результаты имеют значение TRUE, то общий результат имеет значение UNKNOWN.

2Локальные переменные И и i2 имеют тип loop_of_integer; при выполнении указанных в данном
примере операторов присваивания, значения данных переменных не равны.

ENTITY loop_of_integer;
int : INTEGER;
next : loop_of_integer;

END ENTITY;

LOCAL
i1, i2 : loop_of_integer;

END LOCAL;

И := loop_of_integer(5,loop_of_integer(3,SELF));
i2 := loop_of_integer(3,loop_of_integer(5,SELF));
IF И = i2THEN - - результатом сравнения является FALSE

Сравнение значений объектов может быть применено к экземплярам объектов и экземплярам
сгруппированных объектов (см. 12.7.4). Для экземпляров объектов должны сравниваться атрибуты всех

73

ГОСТ Р И С 010303-11 — 2009

подтипов и супертипов сравниваемых экземпляров. Для экземпляров сгруппированных объектов должны
сравниваться только атрибуты, объявленные как атрибуты в объявлении объектного типа данных, указанно­
го в квалификаторе группы (это не относится к унаследованным атрибутам, которые повторно объявлены в
указанном объектном типе данных).

12.2.2 Операторы сравнения экземпляров
Операторами сравнения экземпляров являются:
- равенство экземпляров (:=:);
- неравенство экземпляров (:<>:).
Данные операторы могут применяться к операндам числового, логического, строкового, двоичного,

перечисляемого, агрегированного и объектного типов данных. Оба операнда оператора сравнения экземп-
ляровдолжны быть совместимы по типу данных (см. 12.11).

Для двух заданных операндов а и Ь, выражение (а :о :Ь) эквивалентно выражению NOT(a:=:b)
для всехтипов данных.

Применение операторов сравнения экземпляров к числовым, логическим, строковым, двоичным и
перечисляемым типам данных эквивалентно применению соответствующих операторов сравнения значе­
ний. То есть (а:=:Ь) эквивалентно (а=Ь), а (а :<>: Ь) эквивалентно (а<>Ь)для указанных типов данных.

12.2.2.1 Сравнение экземпляров агрегированных структур
Операторами сравнения экземпляров, определенными для значений агрегированных структур, явля­

ются операторы равенства (:=:) и неравенства (:<>:). Два значения агрегированных структур могут сравни­
ваться только в том случае, если совместимы их типы данных (см. 12.11).

Все сравнения агрегированных структур должны проверять число элементов в каждом из операндов:
если SIZEOF(a)<>SIZEOF(b), то агрегированные структуры не равны. При сравнении агрегированных структур
проводится сравнение элементов значений агрегированных структур посредством сравнения экземпля­
ров. Если результатом сравнения каких-либо элементов является значение FALSE, то результат сравнения
агрегированных структур также будет иметь значение FALSE. Если результатом одного или нескольких
сравнений элементов для данного сравнения агрегированных структур является значение UNKNOWN, а
результатом всех остальных сравнений является значение TRUE, то результатом сравнения агрегирован­
ных структур будет значение UNKNOWN. В противном случае результат сравнения агрегированных струк­
тур будет иметь значение TRUE.

Определение равенства экземпляров агрегированных структур зависит от сравниваемых агрегиро-
ванныхтипов данных:

- два массива а и b равны тогда и только тогда, когда каждый элемент массива а представлен тем же
экземпляром, что и элемент массива Ь, расположенный на той же позиции, то есть a[i] :=: b[i] (см. 12.6.1);

- два списка а и b равны тогда и только тогда, когда каждый элемент списка а представлен тем же
экземпляром, что и элемент списка Ь, расположенный на той же позиции;

- экземпляры двух пакетов а и b равны тогда и только тогда, когда каждый элемент из пакета а
присутствует такое же число раз в пакете Ь, а каждый элемент из пакета b также присутствует такое же
число раз в пакете а;

- экземпляры двух наборов а и b равны тогда и только тогда, когда каждый элемент из набора а
присутствует в наборе Ь, а каждый элемент из набора b присутствует в наборе а;

- экземпляр пакета равен экземпляру набора тогда и только тогда, когда каждый элемент из набора
присутствует в пакете только один раз, а пакет не содержит элементов, которых нет в наборе.

Пример — Сравнение экземпляров двух массивов:
LOCAL

а1,а2 : ARRAY [1:10] OFb;
END LOCAL;

IF(a1 :=: a2) THEN ...

12.2.22 Сравнение экземпляров объектного типа данных
Операторы равенства (:=:) и неравенства (:<>:) экземпляров объектного типа данных сравнивают

два совместимых экземпляра объектного типа данных и выдают результат типа LOGICAL.
Результатом сравнения а:=: b является значение TRUE, если а представлен тем же экземпляром

объектного типа данных, что и Ь, то есть их зависящие от реализации идентификаторы одинаковы. Резуль­
тат сравнения будет иметь значение FALSE, если а представлен другим экземпляром объектного типа
данных, чем Ь. Результат сравнения будет иметь значение UNKNOWN, если хотя бы один из операндов
имеет неопределенное (?) значение.

74

ГОСТ Р И С 010303-11— 2009

Если не оговорено иное, то сравнение экземпляров объектного типа данных должно использоваться
для сравнения двух экземпляров объектного типа данных, например, при сравнении агрегированных структур
и проверке правила уникальности UNIQUE.

Пример — Все дети имеют матерей, но некоторые дети могут иметь братьев или сестер.
Это моделируется следующим образом:

ENTITY child
SUBTYPE OF (person);

mother : female; — мы не рассматриваем более одного поколения
father : male;

END ENTITY;
ENTITY sibling
SUBTYPE OF (child);

siblings : SET [1:?] sibling;
WHERE

— установим, что текущий экземпляр не является
— одним из своих братьев или сестер

notjdentical : SIZEOF (QUERY (i <* siblings | i :=: SELF)) = 0;
— установим, что каждый из братьев или сестер
— имеет общего отца или мать с текущим экземпляром

same_parent: SIZEOF (QUERY (i <* siblings |
(i.mother :=: SELF.mother) OR
(i.father :=: SELF.father)) =

SIZEOF (siblings));
END_ENTITY;

12.2.3 Оператор принадлежности
Оператор принадлежности IN осуществляет проверку, принадлежит ли данный элемент к какой-

либо агрегированной структуре и возвращает ли результат типа LOGICAL. Операнд, расположенный
справа от оператора, должен иметь значение агрегированного типа данных, а операнд, расположен­
ный слева, должен быть совместим с базисным типом данного значения агрегированного типа данных.
Результат выражения е IN agg определяется следующим образом:

a) если любой из операндов имеет неопределенное (?) значение, то выражение имеет значение
UNKNOWN;

b) если существует такой элемент agg[i], для которого e:=:agg[i], то выражение имеет значение
TRUE;

c) если существует элемент agg[i], имеющий неопределенное (?) значение, то выражение имеет
значение UNKNOWN;

d) в противном случае, выражение имеет значение FALSE.
П р и м е ч а н и е — Для того, чтобы проверить, существует ли в агрегированной структуре элемент, имеющий

конкретное значение, может быть использована функция VALUEJN (см. 15.28).
Проверка принадлежности, определенной разработчиком модели, может быть осуществлена посредством

пары функций, названных для примера my_equal (см. примечание в 8.2.5) и my_in в следующем псевдокоде:
FUNCTION my_in(c:AGGREGATE OF GENERIC: gen; v:GENERIC:gen): LOGICAL;

(*"my_in" возвращает значение UNKNOWN, если v или с имеет неопределенное (?) значение, иначе,
возвращает значение TRUE, если любой элемент из с имеет 'значение' v, иначе, возвращает
значение UNKNOWN, если результатом любого сравнения является UNKNOWN, иначе возвращает
значение FALSE *)

LOCAL
result : LOGICAL;
unknownp : BOOLEAN := FALSE;

END_LOCAL
IF ((NOT EXISTS(v)) OR (NOT EXISTS(c)) THEN

RETURN (UNKNOWN); ENDJF;
REPEAT i := LOINDEX(c)TO HIINDEX(c);

result := my_equal(v, c[i]);
IF (result = TRUE) THEN

RETURN (result); ENDJF;
IF (result = UNKNOWN) THEN

unknownp := TRUE; ENDJF;
ENDJREPEAT;

75

ГОСТ Р ИС010303-11— 2009

IF (unknownp) THEN
RETURN (UNKNOWN);

ELSE
RETURN (FALSE);

ENDJF;
END_FUNCTION;
Это может быть использовано, например, следующим образом:
LOCAL

v : а;
с : SET OF а;

END_LOCAL;

IF my_in(c, v)THEN . . .

12.2.4 Интервальные выражения
Интервальное выражение проверяет, находится ли значение в заданном интервале. Выражение со­

держит три операнда, которые должны быть совместимыми (см. 12.11). Операнды должны принадлежать к
типу данных, имеющему установленное упорядочение, то есть к простым типам (см. 8.1) и определенным
типам данных, базисными типами которых являются простые либо перечисляемые типы данных.

Синтаксис:
243 interval = '{ ' in te rva ljo w interval_op in te rva ljte m interval_op interval_high ' } ' .
246 in te rva ljo w = simple_expression .
247 interval_op = '< ' | '< = '.
245 in te rva ljte m = sim ple_expression .
244 interval_high = sim ple_expression .

П р и м е ч а н и е — Интервальное выражение:
{ intervaljow interval_op intervaljtem interval_op intervaljiigh }
семантически эквивалентно следующему:
(intervaljow interval_op intervaljtem) AND
(intervaljtem interval_op intervaljiigh)
Предполагается, что во втором выражении intervaljtem вычисляется только один раз.

Результатом интервального выражения является значение типа LOGICAL, которое имеет значе­
ние TRUE, если результатом обоих операторов отношения является TRUE. Интервальное выраже­
ние имеет значение FALSE, если результатом любого из операторов отношения является FALSE,
и значение UNKNOWN, если какой-либо из операндов имеет неопределенное (?) значение.

Пример — В данном примере проверяется, имеет ли b значение большее, чем 5.0, и меньшее или
равное 100.0;

LOCAL
b : REAL := 20.0;

ENDJ.OCAL;

IF (5.0 < b <= 100.0 } THEN — результатом является TRUE

12.2.5 Оператор сопоставления строк
Оператор сопоставления строк LIKE сравнивает два строковых значения, используя описанный

ниже алгоритм сопоставления с образцом. Результатом оператора LIKE является значение типа
LOGICAL. Операнд, расположенный слева от оператора, представляет исследуемую строку. Опе­
ранд, расположенный справа от оператора, является эталонной строкой.

Алгоритм сопоставления с образцом определяется следующим образом. Каждый символ эталон­
ной строки сравнивается с соответствующим символом (символами) исследуемой строки. Если любая
пара соответствующих символов не совпадает, то сопоставление дало отрицательный результат и резуль­
татом выражения является значение FALSE.

Некоторые специальные символы в эталонной строке могут сопоставляться с несколькими символа­
ми в исследуемой строке. Данные символы определены в таблице 11. Для того, чтобы результатом
выражения было значение TRUE, все соответствующие символы должны быть идентичными или
совпадать (в соответствии стаблицей 11). Если какой-либо из операндов имеет неопределенное (?) значе­
ние, то выражение имеет значение UNKNOWN.
76

ГОСТ Р И С 0 10303-11— 2009

Если какой-либо из специальных символов сопоставления с образцом сам подлежит сопоставлению,
то образец должен содержать эталонную управляющую последовательность. Эталонная управляющая
последовательность должна содержать символ начала управляющей последовательности (\), за которым
следует специальный символ, подлежащий сравнению.

Пример— Для сопоставления с символом @ используется управляющая последователь­
ность \@.

В приведенных ниже примерах показаны разные символы, сравниваемые с образцом.
Примеры
1 Если а := '\A AA A ', то справедливо следующее:
a LIKE 'WAAAA' - -> TRUE
a LIKE '\AAAA ' - -> FALSE
a LIKE '\\А ?А А ' - -> TRUE
a LIKE 'WIWAAA' - -> TRUE
a L IK E '\ \& ' - - > TRUE
a L IK E '\$ ' - - > FALSE
2 Если a := 'The qu ick red fox ';, то справедливо следующее:
a LIKE '$$$$' - - > TRUE
3 Если a := 'Page 407';, то справедливо следующее:
a L IK E '$ * ' - - > TRUE

П р и м е ч а н и е — Символ отрицания (!) может использоваться перед любым символом, а не только
перед символами сопоставления с образцом, чтобы сопоставить любой символ, отличающийся от данного
символа.

Т а б л и ц а 11 — Символы сопоставления с образцом

Символ Значение

@ Сопоставляет любую букву
Л Сопоставляет любую букву на верхнем регистре

? Сопоставляет любой символ

& Сопоставляет остальную часть строки

Сопоставляет любую цифру

$ Сопоставляет подстроку, заканчивающуюся символом пробела или конца строки
* Сопоставляет любое число символов

\ Начинает эталонную управляющую последовательность

! Символ отрицания (используется с другими символами)

12.3 Двоичные операторы
Помимо операторов отношений, определенных в 12.2.1.2, для типа данных BINARY определены еще

два оператора — индексирования ([]) и конкатенации (+).
12.3.1 Индексирование двоичных чисел
Оператор индексирования двоичных чисел принимает два операнда — индексируемое двоичное число

и спецификацию индексов, а его результатом является двоичное число длиной, определяемой выражени­
ем (index_2 - index_1 +1). Полученное в качестве результата двоичное число эквивалентно последова­
тельности битов, расположенных в индексируемом двоичном числе на позициях от index_1 до index_2
включительно. Если требуется двоичное число единичной длины, то необходимо указать только index_1.
Значение индекса, равное 1, указывает на самый левый бит индексируемого двоичного числа.

Синтаксис:
239 index_qualifier = '[' index_1 index_2] '] ' .
237 index_1 = index .
236 index = numeric_expression .
238 index_2 = index .

77

ГОСТ Р И С 010303-11— 2009

Правила и ограничения:
a) Параметр index_1 должен быть представлен положительным целым числом или неопределенным

(?) значением.
b) Должно выполняться условие l£index_l£BLENGTH(ABOH4Hoe число), в противном случае, бу­

дет возвращено неопределенное (?) значение.
c) Если параметр index_2 задан, то он должен быть представлен положительным целым числом или

неопределенным (?) значением.
d) Должно выполняться условие index_1<index_2<BLENGTH(ABOM4Hoe число), в противном слу­

чае будет возвращено неопределенное (?) значение.
e) Если index_1 или index_2 имеет неопределенное (?) значение, то результатом также будет

неопределенное (?) значение.
f) Если индексируемое выражение имеет неопределенное (?) значение, то результатом также будет

неопределенное (?) значение.

Примеры
1 Четвертый бит двоичной переменной image может быть проверен следующим образом:
image := %01010101
IF image[4] = %1 THEN .. . - - результатом является TRUE
IF image[4:4] = %1 THEN . . . --эквивалентное выражение
2 Биты с четвертого по десятый двоичной переменной image могут быть проверены следу­

ющим образом:
IF image[4:10] = % 1011110 THEN...

12.3.2 Оператор двоичной конкатенации
Оператор двоичной конкатенации (+) является двоичным оператором, который последовательно

соединяет два двоичных числа. Оба операнда должны быть двоичными числами, а результатом выполне­
ния оператора является двоичное число, содержащее конкатенацию двух операндов, при этом первый
операнд расположен слева. Если какой-либо из операндов имеет неопределенное (?) значение, то резуль­
татом будет также иметь неопределенное (?) значение.

Пример— Двоичные числа могут быть соединены следующим образом:
image := %101000101 + %101001 ;
(* переменная image теперь содержит двоичное число %101000101101001 *)

12.4 Логические операторы
К логическими операторами относятся NOT, AND, OR и XOR. Результатом каждого из данных

операторов является логическое значение. Операторам AND, OR и XOR требуются два логических
операнда, а оператору NOT— один логический операнд.

12.4.1 Оператор NOT
Оператору NOT требуется один логический операнд, помещаемый справа от оператора NOT. Резуль­

татом является логическое значение, формируемое в соответствии с таблицей 12.

Т а б л и ц а 12 — О п е р а т о р NOT

О п е р а н д Р е з у л ь т а т

TRUE FALSE

UNKNOWN UNKNOWN

FALSE TRUE

12.4.2 Оператор AND
Оператору AND требуются два логических операнда, а результатом является логическое значе­

ние, формируемое в соответствии с таблицей 13. Оператор AND является коммутативным.

78

ГОСТ Р И С 010303-11 — 2009

Т а б л и ц а 13 — Оператор AND

О п е р а н д 1 О п е р а н д 2 Р е з у л ь т а т

TRUE TRUE TRUE

TRUE UNKNOWN UNKNOWN

TRUE FALSE FALSE

UNKNOWN TRUE UNKNOWN

UNKNOWN UNKNOWN UNKNOWN

UNKNOWN FALSE FALSE

FALSE TRUE FALSE

FALSE UNKNOWN FALSE

FALSE FALSE FALSE

12.4.3 Оператор OR
О ператору OR требую тся два ло ги че ски х операнда, а результатом является л огическое значение,

ф орм ируем ое в соответствии с таблицей 14. О ператор OR является комм утативным .

Т а б л и ц а 14 — Оператор OR

О п е р а н д 1 О п е р а н д 2 Р е з у л ь т а т

TRUE TRUE TRUE

TRUE UNKNOWN TRUE

TRUE FALSE TRUE

UNKNOWN TRUE TRUE

UNKNOWN UNKNOWN UNKNOWN

UNKNOWN FALSE UNKNOWN

FALSE TRUE TRUE

FALSE UNKNOWN UNKNOWN

FALSE FALSE FALSE

12.4.4 Оператор XOR
О ператору XOR требую тся два л о гически х операнда, а результатом является логическое значение,

ф орм ируем ое в соответствии с таблицей 15. О ператор XOR является комм утативным .

Т а б л и ц а 15 — Оператор XOR

О п е р а н д 1 О п е р а н д 2 Р е з у л ь т а т

TRUE TRUE FALSE

TRUE UNKNOWN UNKNOWN

TRUE FALSE TRUE

UNKNOWN TRUE UNKNOWN

UNKNOWN UNKNOWN UNKNOWN

UNKNOWN FALSE UNKNOWN

FALSE TRUE TRUE

FALSE UNKNOWN UNKNOWN

FALSE FALSE FALSE

79

ГОСТ Р ИС010303-11 — 2009

12.5 Строковые операторы
Помимо операторов отношений, определенных в 12.2.1.4 и 12.2.5, для строкового типа данных

определены еще два оператора — индексирования ([]) и конкатенации (+).
12.5.1 Индексирование строк
Оператор индексирования строк принимает два операнда — индексируемую строку и спецификацию

индексов, а его результатом является строка с длиной, определяемой выражением (index_2-index_1+1).
Поученная в качестве результата строка эквивалентна последовательности символов, расположенных
в индексируемой строке на позициях от index_1 до index_2 включительно. Если требуется строка единич­
ной длины, то необходимо указать только index_1. Значение индекса, равное 1, указывает на самый
левый символ индексируемой строки.

Синтаксис:
239 index_qualifier = ' [' index_1 [' : ' index_2] '] ' .
237 index_1 = index.
236 index = numeric_expression .
238 index_2 = index.

Правила и ограничения:
a) Параметр index_1 должен быть представлен положительным целым числом или неопределен­

ным (?) значением.
b) Должно выполняться условие 1<index_1<LENGTH (строковое значение), в противном

случае будет возвращено неопределенное (?) значение.
c) Если параметр index_2 задан, то он должен быть представлен положительным целым числом

или неопределенным (?) значением.
d) Должно выполняться условие index_1<index_2<LENGTH (строковое значение), в противном

случае будет возвращено неопределенное (?) значение.
e) Если index_1 или index_2 имеет неопределенное (?) значение, то результатом также будет

неопределенное (?) значение.
f) Если индексируемое выражение имеет неопределенное (?) значение, то результатом также

будет неопределенное (?) значение.

Примеры
1 Седьмой символ строковой переменной name может быть проверен следующим образом:
IF name[7] = "00125FEI" THEN . . . — используется кодировка по ИС0 10646
IF name[7:7] = "00125FEI" THEN . . . — эквивалентное выражение
2 Символы с седьмого по десятый строковой переменной name могут быть проверены следую­

щим образом:
IF name[7:10] = 'Some' THEM...

12.5.2 Оператор конкатенации строк
Оператор конкатенации строк (+) является строковым оператором, соединяющим две строки вместе.

Оба операнда должны иметь строковое значение, а результатом является строковое значение, содержа­
щее конкатенацию двух операндов, при этом содержимое первого операнда расположено слева. Если
какой-либо из операндов имеет неопределенное (?) значение, то результат будет также иметь неопределен­
ное (?) значение.

Пример — Строковые значения могут быть соединены следующим образом:
name := 'A B C + ' ' + 'DEF' ;
(* переменная name теперь содержит строку 'ABC DEF' *)

12.6 Операторы агрегированных структур
К операторам агрегированных структур относятся операторы индексирования ([]), пересече­

ния (*), объединения (+), различия (-), подмножества (<=), супермножества (>=) и запроса (QUERY).
Определения данных операторов установлены ниже. Ко всем агрегированным значениям применимы
также определенные в 12.2 операторы отношений — «равно» (=), «не равно» (<>), «равенство экземпля­
ров» (:=:), «неравенство экземпляров» (:<>:) и IN.

П р и м е ч а н и е — Д л я н е к о т о р ы х о п е р а ц и й н а д а г р е г и р о в а н н ы м и с т р у к т у р а м и т р е б у ю т с я н е я в н ы е
с р а в н е н и я э л е м е н т о в а г р е г и р о в а н н ы х с т р у к т у р ; п р и э т о м и с п о л ь з у е т с я с р а в н е н и е э к з е м п л я р о в .

80

ГОСТ Р ИС010303-11 — 2009

12.6.1 Индексирование агрегированных структур
Оператор индексирования агрегированных структур принимает два операнда - индексируемую агре­

гированную структуру и спецификацию индексов, а результатом является единственный элемент из агреги­
рованной структуры. Типом данных выбранного элемента является базисный тип данных индексируемой
агрегированной структуры.

Синтаксис:
239 index_qualifier = ' [' index_1 [index_2] '] ' .
237 index 1 = index .
236 index = numeric_expression .
238 index_2 = index .__

Правила и ограничения:
a) Параметр index_2 не должен присутствовать за исключением случая, когда должен быть проин­

дексирован единственный элемент из агрегированной структуры.
b) Параметр index_1 должен быть представлен целым числом
c) Должно выполняться условие LOINDEX (агрегированное значение) <index_1<HIINDEX (агре­

гированное значение), в противном случае будет возвращено неопределенное (?) значение.
d) Если типом агрегированной структуры является ARRAY или LIST, то результатом будет элемент

агрегированной структуры, расположенный на позиции, указанной параметром index_1.
e) Если типом агрегированной структуры является BAG или SET, то для каждого значения

параметра index_1, находящегося в диапазоне от LOINDEX (агрегированное значение) до
HIINDEX (агрегированное значение), результатом должны быть разные элементы агрегированной
структуры.

f) При повторном применении данного оператора к той же агрегированной структуре стем же значе­
нием index_1 результатом должен стать тот же элемент, если только агрегированная структура не была
модифицирована. Если агрегированная структура была модифицирована, то для агрегированных типов
данных BAG или SET результат повторного применения данного оператора к модифицированной агрегиро­
ванной структуре непредсказуем.

д) Если index_1 или index_2 имеет неопределенное (?) значение, то результатом также будет
неопределенное (?) значение.

h) Если индексируемое выражение имеет неопределенное (?) значение, то результатом также
будет неопределенное (?) значение.

Пример — Применение оператора индексирования к пакетам и наборам может быть использо­
вано для итерационного обращения ко всем значениям в данной агрегированной структуре.

FUNCTION set_product (a_set : SET OF INTEGER): INTEGER;
LOCAL

result: INTEGER := 1;
END_LOCAL;

REPEAT index := LOINDEX(a_set) TO HIINDEX(a_set);
result := result* a_set[index];

END_REPEAT;
RETURN (result);

END_FUNCTION;
После выхода из оператора REPEAT переменная result будет содержать произведение всех целых

чисел из агрегированной структуры a_set.

12.6.2 Оператор пересечения
Оператор пересечения (*) принимает два операнда агрегированного типа данных и выдает результат

также агрегированного типа данных. Допустимые типы данных операндов и соответствующие им типы
данных результата приведены в таблице 16. Результирующая агрегированная структура является неявно
объявленной агрегированной структурой с типом данных, соответствующим таблице 16, и страницами
[0 .. ?]. Базисные типы данных операндов должны быть совместимыми (см. 12.11). Если пересечение двух
операндов не содержит элементов, то размер значения результирующей агрегированной структуры дол­
жен быть нулевым.

Если одним из операндов является набор, то результат должен быть набором, содержащим все эле­
менты, присутствующие в обоих операндах.

81

ГОСТ Р И С 010303-11— 2009

Если оба операнда являются пакетами и некоторый элемент е присутствует в одном пакете m раз,
а в другом пакете — п раз (где m меньше или равно п), то результат должен m раз содержать элемент е.
Если какой-либо из операндов имеет неопределенное (?) значение, то результат будет также иметь неопре­
деленное (?) значение.

Т а б л и ц а 16 — О п е р а т о р п е р е с е ч е н и я : т и п ы д а н н ы х о п е р а н д о в и р е з у л ь т а т а

П е р в ы й о п е р а н д В т о р о й о п е р а н д Р е з у л ь т а т

BAG BAG BAG

BAG SET SET

SET SET SET

SET BAG SET

12.6.3 Оператор объединения
Оператор объединения (+) принимает два операнда, один из которых должен быть агрегированной

структурой, и выдает результат агрегированного типа данных. Допустимые типы данных операндов и соот­
ветствующие им типы данных результата приведены в таблице 17. Результат оператора объединения опре­
деляется по первому выполненному из следующих условий:

a) Если левый операнд является пакетом, а правый операнд — пакетом, списком или набором, эле­
менты которого совместимы с базисным типом данны х левого операнда, то результатом является левый
операнд плюс все элементы правого операнда.

b) Если левый операнд является набором, а правый операнд — пакетом, списком или набором, эле­
менты которого совместимы с базисным типом данных левого операнда, то результат формируется следу­
ющим образом: сначала результату присваивается значение левого операнда, затем по очереди рассмат­
риваются элементы правого операнда и, если очередного элемента нет в результирующем наборе, то
данный элемент добавляется в результирующий набор.

c) Если оба операнда являются совместимыми списками, то результирующий список представляет
собой левый операнд с добавленным к его концу правым операндом.

П р и м е ч а н и е — Результирующий список может содержать повторяющиеся элементы даже если оба
операнда были объявлены как LIST OF UNIQUE.

d) Если тип данных одного из операндов (Е) совместим с базисным типом данных другого операнда
(А), то операнд Е добавляется к А следующим образом:

- если А является набором, то результирующим набором является А, к которому добавлен набор Е,
если только Е уже не содержится в А;

- если А является списком, то результирующим списком является А со списком Е, вставленным на
позицию 1, если Е был левым операндом, или на позицию SIZEOF(A+1), если Е был правым операндом.

П р и м е ч а н и е — Результирующий список может содержать повторяющиеся элементы, даже если
операнд, являющийся списком, был объявлен как LIST OF UNIQUE;

- если А является пакетом, то результат будет пакетом, содержащим А и Е.
e) Если какой-либо из операндов имеет неопределенное (?) значение, то результат будет также иметь

неопределенное (?) значение.

Т а б л и ц а 17 — О п е р а т о р о б ъ е д и н е н и я : т и п ы д а н н ы х о п е р а н д о в и р е з у л ь т а т а

П е р в ы й о п е р а н д В т о р о й о п е р а н д Р е з у л ь т а т

BAG BAG BAG

BAG Э л е м е н т BAG

Э л е м е н т BAG BAG

BAG SET BAG

82

ГОСТ Р И С 0 10303-11 — 2009

Окончание таблицы 17

П е р в ы й о п е р а н д В т о р о й о п е р а н д Р е з у л ь т а т

BAG LIST BAG

SET SET SET

SET Э л е м е н т SET

Э л е м е н т SET SET

SET BAG SET

SET LIST SET

LIST LIST LIST1»

Э л е м е н т LIST LIST2)

LIST Э л е м е н т LIST3»

1) П е р в ы й э л е м е н т в т о р о г о с п и с к а с л е д у е т з а п о с л е д н и м э л е м е н т о м п е р в о г о
с п и с к а .

2) Н о в ы й э л е м е н т с т а н о в и т с я п е р в ы м в р е з у л ь т и р у ю щ е м с п и с к е .
3) Н о в ы й э л е м е н т с т а н о в и т с я п о с л е д н и м в р е з у л ь т и р у ю щ е м с п и с к е .

12.6.4 Оператор различия
Оператор различия (-) принимает два операнда, левый из которыхдолжен быть агрегированной струк­

турой, и выдает результат агрегированного типа данных. Допустимые типы данных операндов и соответ­
ствующие им типы данных результата приведены в таблице 18. Результирующая агрегированная структура
содержит элементы первого операнда за исключением элементов, совпадающ их с элементами второго
операнда. Другими словами, каждый элемент второго операнда, который присутствует и в первом операн­
де, удаляется из первого операнда. Результирующая агрегированная структура является неявно объяв­
ленной агрегированной структурой с типом данных, соответствующим таблице 18, и границами [0 . . ?].
Базисные типы операндов должны быть совместимы (см. 12.11). Тип данных возвращаемой агрегирован­
ной структуры должен совпадать с типом данных первого операнда. Если оба операнда являются пакета­
ми, и некоторый элемент е присутствует m раз в первом операнде и п раз во втором операнде, то элемент
е должен присутствовать в результирующей агрегированной структуре m -n раз, если m больше п, и ни
одного раза, если m меньше или равно п. Если второй операнд содержит элементы, которых нет в первом
операнде, то такие элементы игнорируются и не включаются в результирующую агрегированную структу­
ру. Если какой-либо из операндов имеет неопределенное (?) значение, то результат будет также иметь
неопределенное (?) значение.

Т а б л и ц а 18 — О п е р а т о р р а з л и ч и я : т и п ы д а н н ы х о п е р а н д о в и р е з у л ь т а т а

П е р в ы й о п е р а н д В т о р о й о п е р а н д Р е з у л ь т а т

BAG BAG BAG

BAG SET BAG

BAG Э л е м е н т BAG

SET SET SET

SET BAG SET

SET Э л е м е н т SET

Пример — Если А является пакетом целых чисел [1,2,1,3], то выражение А - 1
имеет значение [1,2,3], которое эквивалентно значению [2,1,3].

83

ГОСТ Р ИС 010303-11— 2009

12.6.5 Оператор подмножества
Оператор подмножества (<=) принимает два операнда, определенных в таблице 19, и выдает

результат типа LOGICAL. Результат принимает значение TRUE тогда и только тогда, когда какой-либо эле­
мент е, присутствующий п раз в первом операнде, присутствует не менее п раз во втором операнде.
Результат принимает значение UNKNOWN, если какой-либо из операндов имеет неопределенное (?) значе­
ние. В противном случае результат принимает значение FALSE.

Типы данных операндов должны быть совместимы (см. 12.11).

Т а б л и ц а 19 — О п е р а т о р ы п о д м н о ж е с т в а и с у п е р м н о ж е с т в а : т и п ы д а н н ы х о п е р а н ­
д о в

П е р в ы й о п е р а н д В т о р о й о п е р а н д

BAG BAG

BAG SET

SET BAG

SET SET

12.6.6 Оператор супермножества
Оператор супермножества (>=) принимает два операнда, определенных в таблице 19, и выдает

результат типа LOGICAL. Результат принимает значение TRUE тогда и только тогда, когда какой-либо эле­
мент е, присутствующий п раз во втором операнде, присутствует не менее п раз в первом операнде.
Результат принимает значение UNKNOWN, если какой-либо из операндов имеет неопределенное (?) значе­
ние. В противном случае результат принимает значение FALSE.

Типы данных операндов должны быть совместимы (см. 12.11).
Выражение b >= а должно быть полностью эквивалентно выражению а <= Ь.
12.6.7 Оператор запроса
Оператор запроса QUERY применяет логическое выражение logical_expression по отдельности к

каждому элементу агрегированной структуры и формирует в качестве результата агрегированную структу­
ру, содержащую элементы, для которых значением logical_expression было TRUE. В результате форми­
руется подмножество исходной агрегированной структуры, все элементы которого соответствуют условию,
представленному логическим выражением.

Синтаксис:
277query_expression = QUERY '(' va riab le jd '< * ' aggregate_source ' | '

logical_expression ') ' .
170 aggregate_source = simple_expression .
254 logical_expression = expression .

Правила и ограничения:
a) Элемент variablejd является неявно объявленной переменной в области видимости оператора

запроса.
П р и м е ч а н и е — Д а н н а я п е р е м е н н а я н е д о л ж н а б ы т ь о б ъ я в л е н а г д е - л и б о е щ е и н е с у щ е с т в у е т в н е

о п е р а т о р а з а п р о с а .

b) Элемент aggregate_source должен быть представлен агрегированной структурой (ARRAY,
BAG, LIST или SET).

c) Если элемент aggregate_source имеет неопределенное (?) значение, то оператор возвращает
также неопределенное (?) значение.

d) Третий операнд (logical_expression) должен быть выражением, результат которого имеет тип
данных LOGICAL.

Элементы поочередно извлекают из исходной агрегированной структуры, подставляют в
logical expression вместо variab le jd и вычисляют значение logical_expression. Если
logical_expression имеет значение TRUE, то данный элемент добавляют к результату; в противном
случае — не добавляют. Если logical_expression принимает неопределенное (?) значение, то данный
элемент не включают в результирующую агрегированную структуру. Данные действия повторяют для каж-

84

ГОСТ Р ИС 010303-11 — 2009

дого элемента исходной агрегированной структуры. Содержимое результирующей агрегированной струк­
туры зависит от конкретного вида агрегированного типа данных:

a) Тип данны х ARRAY: результирующий массив имеет такие же границы и базисный тип, что и исход­
ный массив, но элементы данного массива объявлены как OPTIONAL. Изначально каждый элемент имеет
неопределенное (?) значение. Каждый элемент исходного массива, для которого logical_expression име­
ет значение TRUE, помещ ается на такую же индексную позицию в результирующ ем массиве.

b) Тип данны х BAG: результирующ ий пакет имеет такие же базисный тип и верхнюю границу, что и
исходный пакет. Нижняя граница равна нулю. Изначально результирующ ий пакет является пустым. Каж­
дый элемент исходного пакета, для которого logical_expression имеет значение TRUE, добавляется в
результирующий пакет.

c) Тип данны х LIST: результирующ ий список имеет такие же базисный тип и верхнюю границу, что и
исходный список. Нижняя граница равна нулю. Изначально результирующ ий список является пустым.
Каждый элемент из исходного списка, для которого logical_expression имеет значение TRUE,
добавляется в конец результирующего списка. Порядок следования элементов исходного списка сохра­
няется.

d) Тип данны х SET: результирующ ий набор имеет такие же базисный тип и верхнюю границу, что и
исходный набор. Нижняя граница равна нулю. Изначально результирующий набор является пустым. Каж­
дый элемент из исходного набора, для которого logical_expression имеет значение TRUE, добавляется
в результирующий набор.

П р и м е ч а н и е — Если исходная агрегированная структура является пустой, то результатом будет
пустая агрегированная структура.

Примеры
1 Пусть colour является определенным типом данных, имеющим в качестве базисного типа

ENUMERATION, включающий элементы pink и scarlet. В приведенном ниже фрагменте показано, как из­
влечь из массива colour элементы, являющиеся либо pink, либо scarlet.

LOCAL
colours : ARRAY OF colour;
reds : ARRAY OF OPTIONAL colour;

END_LOCAL;

reds := QUERY (element< *colours | (element = pink) OR
(element = scarlet)) ;

2 В данном примере оператор запроса используется для проверки всех экземпляров объектного
типа данных point. Результирующий набор содержит все экземпляры объекта point, расположенные в
начале координат.

RULE two_points_at_origin FOR (point);
WHERE

SIZEOF (QUERY(temp <* point | temp = point(0.0,0.0,0.0))) = 2;
END_RULE;
В данном примере показаны три неявных объявления. Первым является переменная point,

которая неявно объявлена в заголовке RULE как набор всех экземпляров point. Вторым является
переменная temp, в которую собираются последовательные элементы агрегированной структуры
point при выполнении оператора запроса. Третьим является конструктор point, объявление которого
следует из объявления его объекта.

12.7 Ссылки
Когда элемент, видимый в локальной области видимости, должен использоваться локально, ссылки

на данный элемент должны осущ ествляться по идентификатору, объявленному для данного элемента.
12.7.1 Простые ссылки
Простая ссылка представляет собой просто имя (идентиф икатор), присвоенное элементу в текущ ей

области видимости.
Данны м способом можно ссы латься на следую щ ие элементы , причем на элементы , помеченные

одной звездочкой (*), данны м способом можно ссылаться внутри выражения, а на объекты , помеченные
двумя звездочками (**), можно ссылаться как на конструктор (см. 9.2.6) или как на локальную переменную
в глобальном правиле (см. 9.6):

- атрибуты в объявлении объекта*;
- константы *;

85

ГОСТ Р ИС010303-11 — 2009

- элементы из перечисляемого типа данных*;
- объекты**;
- функции*;
- локальные переменные в теле алгоритма*;
- параметры в теле алгоритма*;
- процедуры;
- правила;
- схемы в спецификации интерфейсов;
-типы данных.

Пример — Допустимые простые ссылки:
line (*объектный тип данных*)
Circle (‘ объектный тип данных*)
RED (* элемент перечисления *)
z_depth (‘ атрибут*)

12.7.2 Префиксные ссылки
В случае, когда одно и то же имя элемента перечисления объявлено в нескольких определенных

типах данных, видимых в одной и той же области видимости (см. раздел 10), для обеспечения
однозначной идентификации элемента перечисления его имя должно иметь префикс, представляющий
собой идентификатор определенного типа данных, соответствующего данному элементу. Префиксная ссылка
представляет собой имя определенного типа данных, за которым следует точка (.), за которой следует имя
элемента перечисления.

Пример — В данном примере показано, как элемент перечисления red может быть однозначно
идентифицирован для использования в объекте stop_signal.

TYPE trafficjight = ENUMERATION OF (red, amber, green);
END_TYPE;
TYPE rainbow = ENUMERATION OF

(red, orange, yellow, green, blue, indigo, violet);
END_TYPE;
stop_signal : traffic light := traffic light.red;
ink_colour : rainbow := blue;

12.7.3 Ссылки на атрибуты
Ссылка на атрибут (.) является ссылкой на отдельный атрибут экземпляра объекта. Выражение, рас­

положенное слева от ссылки на атрибут, должно представлять экземпляр объекта или значение частичного
сложного объекта. Идентификатор атрибута, на который дается ссылка, указывают после точки (.).

Синтаксис:
179 attribute_qualifier = a ttribu te_re f.

Ссылка на атрибут, используемая в выражении, возвращает значение указанного атрибута экземпля­
ра объекта или частичного сложного объекта. Если выражение, расположенное слева от ссылки на атрибут,
имеет неопределенное (?) значение, то выражение, в котором использована ссылка на атрибут, также име­
ет неопределенное (?) значение. Если выражение, расположенное слева от ссылки на атрибут, представля­
ет значение частичного сложного объекта, то имя атрибута, указанное справа от ссылки на атрибут, должно
присутствовать в объявлении объекта для данного частичного сложного объектного типа данных. Если
объявленный тип данных выражения, расположенного слева от ссылки на атрибут, является объектным
типом данных, то имя атрибута, указанное справа от ссылки на атрибут, должно быть объявлено в данном
объектном типе данных либо в супертипе или подтипе данного объектного типа данных. Если объявленный
тип данных выражения, расположенного слева от ссылки на атрибут, является выбираемым типом данных,
то имя атрибута, указанное справа, должно быть объявлено в объекте, присутствующем в списке выбора в
супертипе или подтипе объекта, присутствующего в списке выбора. Если указанного атрибута нет в экзем­
пляре объекта или в значении частичного сложного объекта, то возвращается неопределенное (?) значе­
ние. Если два или более атрибутов имеют одно и то же имя, то данная ссылка является неоднозначной, и
возвращается неопределенное (?) значение.

П р и м е ч а н и е — В с и т у а ц и и , к о г д а в о з м о ж н о в о з н и к н о в е н и е н е о д н о з н а ч н о с т и , р е к о м е н д у е т с я и с п о л ь ­

з о в а т ь с п е ц и ф и к а т о р г р у п п о в о й с с ы л к и , ч т о б ы о г р а н и ч и т ь о б л а с т ь в и д и м о с т и с с ы л к и .

86

ГОСТ Р ИС 010303-11 — 2009

Пример— Данный пример демонстрирует использование ссылки на атрибут.
ENTITY point;

х, у, z, : REAL;
END_ENTITY;
ENTITY coloured_point
SUBTYPE OF (point);

colour : colour;
END_ENTITY;

PROCEDURE foo;
LOCAL

first : point := point(1.0, 2.0, 3.0);
second : coloured_point := point(1.0,2.0,3.0) | |coloured_point (red);
x_coord : REAL;

END_LOCAL;

x_coord := first.x; - - "foo" имеет значение 1.0
IF first.colour = red THEN (‘ colour в "foo" является допустимой ссылкой, так как данный атрибут

присутствует в подтипе coloured_point, однако, в данном случае ссылка на
атрибут вернет неопределенное (?) значение, поскольку он не присутствует
в данном экземпляре. *)

IFsecond.colour= red THEN — Значением "foo" является TRUE, так как
— colour является допустимой ссылкой

12.7.4 Групповые ссылки
Групповая ссылка (\) обеспечивает ссылку на значение частичного сложного объекта в экземпляре

сложного объекта. Выражение, расположенное слева от групповой ссылки, должно представлять экземп­
ляр сложного объекта. Объектный тип данныхзначения частичного сложного объекта, на который делается
ссылка, указывается после обратной косой черты (\).

Синтаксис:
232 group_qualifier = 'V entity_ref.

Групповая ссылка, используемая в выражении, возвращает значение частичного сложного объекта,
соответствующее именованному объектному типу данных в экземпляре сложного объекта, на который де­
лается ссылка. Если выражение, расположенное слева от групповой ссылки, имеет неопределенное (?)
значение, то выражение, содержащее групповую ссылку, также имеет неопределенное (?) значение. Если
объявленный тип данных выражения, расположенного слева от групповой ссылки, является объектным
типом данных, то имя объекта, указанное справа от групповой ссылки, должно соответствовать объекту из
того же графа подтипов/супертипов, что и данный объектный тип данных. Если объявленный тип данных
выражения, расположенного слева от групповой ссылки, является выбираемым типом данных, то имя объекта,
указанное справа, должно присутствовать в списке выбора или соответствовать объекту из того же графа
подтипов/супертипов объектного типа данных, представленного в списке выбора. Если указанный объект­
ный тип данных не представлен в экземпляре сложного объекта, на который делается ссылка, то возвра­
щается неопределенное (?) значение. Групповая ссылка может быть далее уточнена посредством ссылки
на атрибут. В этом случае групповая ссылка определяет область видимости ссылки на атрибут.

П р и м е ч а н и е — Данное использование групповой ссылки требуется тогда, когда тип данных экземпляра
сложного объекта имеет несколько атрибутов с одинаковым именем или когда выбираемый тип данных содер­
жит несколько объектов с атрибутами, имеющими одинаковое имя.

Ограничение: групповая ссылка, которая не уточнена ссылкой на атрибут, должна присутствовать
в качестве операнда либо оператора сравнения значений объектов (=), либо конструктора экземпляра слож­
ного объекта (| |).

Примеры
1 В данном примере показано использование групповой ссылки при сравнении значений.
ENTITY Е1
ABSTRACT SUPERTYPE;

attribl : REAL;
attrib2 : REAL;
attrib3 : REAL;

END_ENTITY;

87

ГОСТ Р И С 0 10303-11 — 2009

ENTITY Е2
SUBTYPE OF (Е1);

attribA : INTEGER;
attribB : INTEGER;
attribC : INTEGER;

END_ENTITY;
LOCAL

a : El;
b : E2;

END_LOCAL;
— построим экземпляры сложных объектов а и b,
- - используя оператор конструирования экземпляра сложного объекта

а := Е1 (0.0,1.0,2.0) 11 Е2(1,2,3);
b := Е1 (0.0,1.0,2.0) 11 Е2(3,2,1);

— проверим значения в а и b атрибутов,
- - объявленных в Е1

а\Е1 = b\EI - - TRUE
Г

это эквивалентно следующему:
(a.attribl = b.attribl) AND
(a.attrib2 = b.attrib2) AND
(a.attrib3 = b.attrib3)

*)
2 В данном примере показано использование групповой ссылки для указания конкретного

объектного типа данных, который может быть использован для имени атрибута.
ENTITY fool;

attr : REAL;
END_ENTITY;
ENTITY foo2

SUBTYPE OF (fool);
attr2 : BOOLEAN;

END_ENTITY;
ENTITY t;

attr : BINARY;
END_ENTITY;
TYPE crazy=SELECT(foo2,t);
END_TYPE;

LOCAL
v : crazy;

END_LOCAL;

IF 'THIS.F002'

v\foo1.attr ::

ENDJF;

12.8 Вызов функции
Вызов функции активизирует данную функцию. Вызов функции состоит из идентификатора функции,

за которым может следовать список фактических параметров. Число, тип и порядок следования фактичес­
ких параметров должны соответствовать формальным параметрам, определенным для данной функции.
Вызов функции возвращает значение функции при подстановке в объявлении функции фактических пара­
метров вместо формальных параметров.

П р и м е ч а н и е — Фактические параметры функции могут иметь неопределенное (?) значение. Функция
должна корректно обрабатывать такие значения и может сама возвращать неопределенное значение.

Активизация функции расширяет пространство экземпляров. Любые экземпляры, созданные в про­
цессе выполнения функции, должны быть однозначно идентифицируемыми во всей совокупности извест-

IN TYPEOF(v) THEN — этим обеспечивается отсутствие
— непредсказуемых результатов
— (иногда это называется «защита»).

= 1.5; — присваивает 1,5 атрибуту v attr,
— так как attr определен в fool, в групповой ссылке
— должен использоваться fool.

88

ГОСТ Р И С 010303-11 — 2009

ных экземпляров. Как правило, созданный таким образом экземпляр недоступен вне создающей его фун­
кции и, в частности, не является частью рассматриваемой совокупности экземпляров. Исключением явля­
ется случай, когда такой экземпляр возвращается в качестве результата или в составе результата вызова
функции. В данном случае экземпляр остается доступным в точке вызова функции. Если экземпляр воз­
вращается подобным образом на уровень схемы (то есть как значение вычисляемого атрибута или кон­
станты), он рассматривается как часть общей совокупности экземпляров.

Синтаксис:
219 function_call = (built_in_function | function_ref)

[actual_parameter_list] .
167 actual_parameter_list = '(' parameter { ' , ' parameter } ') ' .
264 parameter = expression .

Ограничение: передаваемые фактические параметры должны быть совместимы по назначению с фор­
мальными параметрами.

Пример — Пример использования вызова функции:
ENTITY point;

х , у , z : number;
END_ENTITY;
FUNCTION midpoint_of_line(l:line):point;

END_FUNCTION;
IF midpoint_of_line(L506).x = 9.0 THEN . . .

— п р и м е н я я о п е р а т о р с с ы л к и н а а т р и б у т
— н е п о с р е д с т в е н н о к р е з у л ь т а т у ф у н к ц и и

ENDJF;

12.9 Инициализатор агрегированных структур
Инициализатор агрегированных структур используется, чтобы установить значение типа

AGGREGATE OF GENERIC, которое может быть задано массиву, пакету, списку или набору.
В квадратных скобках может быть не заключено ни одного или заключено несколько выражений, представ­
ляющих значения, принадлежащие к типу данных, совместимому с базисным типом данных агрегирован­
ной структуры. При наличии двух или более значений, они должны разделяться запятыми. Разреженный
массив может быть инициализирован посредством использования неопределенности (?) вместо отсутству­
ющих символов. Результатом выражения инициализатора агрегированной структуры является агрегиро­
ванное значение, содержащее значения, определенные как его элементы. Число инициализированных
элементов должно соответствовать границам, заданным для данного агрегированного типа данных.

Инициализатор агрегированной структуры, не содержащий ни одного элемента, устанавливает пус­
той пакет, список или набор (данная конструкция не может быть использована для инициализации пустых
массивов).

Синтаксис:
169 aggregatejnitia lizer = '['[e le m e n t { ' , 'e le m e n t }] '] ' .
203 element = expression [' : ' repetition],
287 repetition = numeric_expression .

Пример — Задано объявление:
a : SET OF INTEGER;
его значение может быть задано следующим образом:
а := [1 , 3, 6, 9*8, - 1 2] ; — 9*8 я в л я е т с я в ы р а ж е н и е м с о з н а ч е н и е м 72

Если несколько последовательных значений является одинаковыми, то может быть использовано
выражение повторения, которое представляется двумя выражениями, разделенными символом двоето­
чия (:). Выражение слева от двоеточия представляет значение, которое должно повторяться. Выражение
справа от двоеточия задает число повторений левого значение. Данное выражение вычисляется один раз,
перед инициализацией, и должно иметь неотрицательное целочисленное значение.

Пример — Задано следующее объявление:
а : BAG OF BOOLEAN ;
Следующие два оператора эквивалентны:
а := [TRUE : 5];
а := [TRUE, TRUE, TRUE, TRUE, TRUE];

89

ГОСТ Р ИС010303-11 — 2009

12.10 Оператор построения экземпляра сложного объекта
Оператор построения экземпляра сложного объекта (| |) создает экземпляр сложного объекта по­

средством объединения частичных значений сложного объекта. Частичные значения сложного объекта
могут объединяться в произвольном порядке. Результатом выражения оператора построения экземпляра
сложного объекта является частичное значение сложного объекта либо экземпляр сложного объекта. Час­
тичный сложный объектный тип данных может присутствовать только один раз на одном уровне выражения
оператора построения экземпляра сложного объекта. Частичное значение сложного объекта может присут­
ствовать на разных уровнях, если они являются вложенными, то есть если частичное значение сложного
объекта используется для построения экземпляра сложного объекта, являющегося атрибутом частичного
значения сложного объекта, объединяемого с другими элементами при построении экземпляра сложного
объекта. Если какой-либо из операндов имеет неопределенное (?) значение, то результатом выражения
будет также неопределенное (?) значение. Дополнительная информация об экземплярах сложных объектов
представлена в приложении В.

Пример — Задано:
ENTITY а
ABSTRACT SUPERTYPE;

а1 : INTEGER;
END_ENTITY;
ENTITY b SUBTYPE OF (a);

Ы : STRING;
END_ENTITY;
ENTITY c SUBTYPE OF (a);

c1 : REAL;
END_ENTITY;
Тогда могут быть простроены следующие экземпляры сложных объектов:
LOCAL

v1 = а ;
v2 = с ;

END_LOCAL;
v2 := а(2) || с(7.998е-5); — это экземпляр типа а&с
v1 := v2 11 b('abc'); — это экземпляр типа a&b&c
v1 := v2\a || b("00002639"); — это экземпляр типа a&b
v1 := v1 || v2; — недопустимо, т.к. тип был бы а&Ь&а&с

П р и м е ч а н и е — Назначение v1 копирует экземпляр, созданный оператором построения экземпляра
сложного объекта; данный экземпляр содержит значение v2, но не экземпляр v2.

12.11 Совместимость типов
Операнды оператора должны быть совместимы стипом (типами) данных, необходимых оператору.

Типы данных обоих операндов некоторых операторов также должны быть совместимы друг с другом, что
было определено выше в данном разделе. Типы данных могут быть совместимыми, не будучи идентичны­
ми. Типы данных являются совместимыми при выполнении одно из следующих условий:

- типы данных совпадают;
- один тип данныхявляется подтипом или конкретизацией другого (включая определенные типы дан­

ных, использующие определенный тип данных в качестве базисного типа данных, и конструкционные типы
данных, основанные на наращиваемыхтипахданных);

- оба типа данных являются типами данных ARRAY с совместимыми базисными типами данных и
одинаковыми границами;

- оба типа данных являются типами данных LIST с совместимыми базисными типами данных;
- оба типа данных являются типами данных BAG или SET с совместимыми базисными типами

данных.
Пример — Заданы следующие определения:
TYPE natural = REAL;
WHERE SELF >= 0.0;
ENDTYPE;
TYPE positive = natural;
WHERE SELF > 0.0;
ENDTYPE;

90

ГОСТ Р И С 010303-11 — 2009

TYPE bag_of_natural = BAG OF natural;
END_TYPE;
TYPE set_of_up_to_five_positive = SET [0:5] OF positive;
END_TYPE;
При этом совместимыми являются следующие типы данных:

Тип данных Совместим с типами данных

REAL INTEGER, REAL, NUMBER, natural, positive

natural REAL, NUMBER, natural, positive

positive REAL, NUMBER, natural, positive

bag_of_natural BAG OF REAL, BAG OF NUMBER, BAG OF natural,
BAG OF positive, SET OF REAL, SET OF NUMBER,
SET OF natural, SET OF positive, bag_of_natural,
set_of_u p_to_f i ve_pos iti ve

set_of_up_to_five_positive BAG OF REAL, BAG OF NUMBER, BAG OF natural,
BAG OF positive, SET OF REAL, SET OF NUMBER,
SET OF natural, SET OF positive, bag_of_natural,

12.12 Выбираемые типы данных в выражениях
При проверке схемы парсер уровня 2 должен идентифицировать совместимость типов операндов и

операторов в выражениях. Выражение, содержащее тип данных SELECT, может быть допустимым только
для некоторых типов данных из списка выбора и не допустимым для остальных типов данных из списка
выбора. Ранее в данном разделе были определены допустимые типы данных в выражениях, кроме типов
данных SELECT; установленные ниже правила относятся конкретно к данным типам данных.

Тип данных, возвращаемый выражением, содержащим операнды, объявленный тип данных которых
является выбираемым типом данных, является выбираемым типом данных, содержащим все возможные
типы данных, возвращенные допустимыми выражениями из указанных операндов.

Невыбираемые типы данных в выбираемом типе данны х- это невыбираемые типы данных каждого
типа данных из списка выбора выбираемого типа данных; невыбираемым типом данных в типе данных,
который не является выбираемым, является сам данный тип данных.

12.12.1 Выбираемые типы данных в унарных выражениях
В данном пункте определена обработка выбираемых типов данных в выражениях с одним операн­

дом, к которым относятся операторы: - , +, NOT и QUERY:
a) Если все невыбираемые типы данных в списке выбора объявленного типа операнда допустимы в

контексте данного выражения, то выражение является допустимым и должно возвращать допустимый ре­
зультат.

b) Если некоторые, но не все невыбираемые типы данных в списке выбора объявленного типа операн­
да допустимы в контексте данного выражения, то выражение является допустимым, но может выдать ошибку,
если в выражении вычисляются значения типов данных, являющихся недопустимыми.

c) Если ни один из невыбираемыхтипов данных в списке выбора объявленного типа операнда не
является допустимым в контексте данного выражения, то выражение является недопустимым и всегда
будет возвращать недопустимый результат

12.12.2 Выбираемые типы данных в бинарных выражениях
В данном пункте определена обработка выбираемых типов данных в выражениях с двумя

операндами:
a) Если для каждого невыбираемого типа данных в списке выбора объявленного типа левого операн­

да существует допустимое выражение с каждым невыбираемым типом данных в списке выбора объявлен­
ного типа правого операнда, то данное выражение является допустимым и должно возвращать допусти­
мый результат.

b) Если некоторые, но не все невыбираемые типы данных в списке выбора объявленного типа левого
операнда и, по крайней мере, один невыбираемый тип данных правого операнда допустимы в контексте
данного выражения, то выражение является допустимым, но может выдать ошибку, если в выражении
вычисляются значения типов данных, являющихся недопустимыми.

91

ГОСТ Р ИС010303-11 — 2009

с) Если ни один из невыбираемыхтипов данных в списке выбора объявленного типа левого операн­
да и какой-либо из невыбираемыхтипов данных правого операнда не является допустимым в контексте
данного выражения, то выражение является недопустимым и всегда будет возвращать недопустимый ре­
зультат.

12.12.3 Выбираемые типы данных в тернарных выражениях
В данном пункте определена обработка выбираемых типов данных в выражениях с тремя

операндами.
Единственным выражением в языке EXPRESS, содержащим три операнда, является интервальное

выражение. Оно рассматривается в контексте выбираемыхтипов данных, как если бы существовало два
отдельных выражения, связанных оператором AND.

13 Исполняемые операторы

Исполняемые операторы определяют действия функций, процедур и правил. Данные операторы
воздействуют только на переменные, локальные по отношению к FUNCTION, PROCEDURE или RULE.
Данные операторы используются для определения логики действий, необходимыхдля поддержки опреде­
ления ограничений, которые задаются условиями WHERE и правилами RULE. Данные операторы не оказы­
вают влияния на экземпляры объектов в области определения, как установлено в разделе 5. К исполняе­
мым операторам относятся: пустой оператор, ALIAS, оператор присваивания, CASE, составной оператор,
ESCAPE, IF, вызов процедуры, REPEAT, RETURN и SKIP.

Исполняемые операторы могут присутствовать только внутри FUNCTION, PROCEDURE или RULE.
Синтаксис:

309 stmt = alias_stmt | assignment_stmt | case_stmt | compound_stmt |
escape_stmt | if_stmt | null_stmt | procedure_call_stmt |
repeat_stmt | return_stmt | sk ip_stm t.

13.1 Пустой оператор
Исполняемый оператор, состоящий только из точки с запятой (;), называется пустым оператором.

Никакихдействий пустой оператор не выполняет.
Синтаксис:

260 null_stmt = .
Пример — В данном примере показано возможное использование пустого оператора.
IF а = 13 THEN

; — э т о п у с т о й о п е р а т о р .
ELSE

b := 5;
ENDJF;

13.2 Оператор ALIAS
Оператор ALIAS обеспечивает возможность локального переименования уточненных перемен­

ных и параметров.

Синтаксис:
174 alias_stmt = ALIAS variab le jd FOR general_ref {qua lifie r} stmt {s tm t}

END_ALIAS
228 general_ref = parameter_ref | variable_ref.

В области видимости оператора ALIAS переменная variablejd неявно объявлена имеющей
надлежащий тип данных и содержит значение, на которое ссылается уточняющий идентификатор, следую­
щий за ключевым словом FOR.

П р и м е ч а н и е — П р а в и л а в и д и м о с т и д л я variablejd о п и с а н ы в 10.3.1.

Пример — Предположим, что существует объектный тип данных point с атрибутами x,y,z;
тогда оператор ALIAS может быть использован в функции calculatejength для сокращения длины
возвращаемого выражения.

ENTITY line;
start_point,
end_point : point;

END_ENTITY;

92

ГОСТ Р И С 010303-11— 2009

FUNCTION calculate_length (the line : line) : real;
ALIAS s FOR the_line.start_point;

ALIAS e FOR the_line.end_point;
RETURN (SQRT((s.x - e.x)“ 2 + (s.y - e.y)**2 + (s.z - e.z)**2));

END ALIAS;
END_ALIAS;
END_FUNCTION;

13.3 Присваивание
13.3.1 Оператор присваивания
Оператор присваивания используется для задания экземпляра локальной переменной или парамет­

ру. Если выражение, расположенное справа от оператора присваивания, является экземпляром объекта,
то оператор присваивания задает локальной переменной или параметру ссылку на данный экземпляр объекта.
После исполнения оператора присваивания изменения локальной переменной или параметра отражаются в
исходном экземпляре. Оператор присваивания может также использоваться для копирования значений в
локальную переменную или экземпляр, когда они объявляются принадлежащими к необъектным типам
данных. Тип данных значения, присвоенного переменной, должен быть совместим по присваиванию с
переменной или параметром.

П р и м е ч а н и е — О п е р а т о р п р и с в а и в а н и я н е м о ж е т и с п о л ь з о в а т ь с я д л я с о з д а н и я к о п и и з н а ч е н и я
э к з е м п л я р а в л о к а л ь н о й п е р е м е н н о й и л и п а р а м е т р е .

Синтаксис:
176assignment_stmt = general_ref{ qualifier} ' ' expression
228 general_ref = parameter_ref | variable_ref.

Пример — Следующие фрагменты демонстрируют допустимые присваивания:
LOCAL

a, b : REAL;
р : point;

END LOCAL;

а := 1.1 ;
b := 2.5* а;
р . х := Ь ;

13.3.2 Совместимость по присваиванию
Для значения, присваиваемого вычисляемому атрибуту, локальной переменной или параметру,

должны выполняться два условия.

П р и м е ч а н и е — В п р и в е д е н н о м н и ж е т е к с т е т е р м и н « п е р е м е н н а я » и с п о л ь з о в а н д л я о б о з н а ч е н и я
в ы ч и с л я е м о г о а т р и б у т а , л о к а л ь н о й п е р е м е н н о й и л и п а р а м е т р а .

a) результирующий тип данных присваиваемого выражения должен быть совместимым стипом дан­
ных переменной;

b) результирующее значение, полученное при вычислении выражения, должно удовлетворять всем
ограничениям, установленным для данного типа данных переменной.

Считается, что тип данных присваиваемого выражения и тип данных переменной являются совмести­
мыми, если выполняется одно из следующих условий:

a) типы данныхявляются одинаковыми;
b) результат выражения принадлежит к типу данных, который является подтипом или конкретизацией

типа данных, объявленного для переменной, которой он присваивается;
c) объявленный тип данных переменной, которой присваивается значение, является определенным

типом данных, основным типом данных которого является выбираемый тип данных, а результат выражения
принадлежит к типу данных, совместимому по присваиванию с одним или более типами данных, установ­
ленными в области определения выбираемого типа данных (включая элементы, добавленные к данной
области определения другими выбираемыми типами данных, основанными на данном выбираемом типе
данных).

Основным типом определенного типа данных является основный тип базисного типа данных, а
основным типом типа данных, не являющегося определенным типом данных, является сам данный тип
данных;

93

ГОСТ Р ИС010303-11—2009

d) переменная представлена определенным типом данных, основным типом которого является про­
стой тип данных, а результатом выражения — значение данного простого типа данных;

e) переменная представлена агрегированным типом данных, а выражение является инициализатором
агрегированной структуры, элементы которой, при их наличии, совместимы по присваиванию с базисным
типом данного агрегированного типа данных;

f) если присваиваемый объект является уточненным, то следующие условия должны выполняться
для разных видов уточнения:

1) уточнение атрибутом:
- объявленный тип выражения, расположенного слева от ссылки на атрибут, должен быть

объектным типом данных или выбираемым типом данных, определенным с использованием, по
крайней мере, одного объектного типа данных. Атрибут, имя которого указано справа от ссылки на
атрибут, должен присутствовать в объектном типе данных или в объекте, присутствующем в том
же графе подтипов/супертипов, что и объектный тип данных,

- если результатом выражения, расположенного слева от ссылки на атрибут, является экзем­
пляр, содержащий указанный атрибут, имеющий некоторое значение, то исходное значение заме­
няется выражением, расположенным справа от оператора присваивания, если только уточнение
объекта, которому присваивается значение, не продолжается дальше; в последнем случае ис­
пользуется данное дальнейшее уточнение,

- если результатом выражения, расположенного слева от ссылки на атрибут, является экзем­
пляр, содержащий указанный атрибут, а данный атрибут имеет неопределенное (?) значение
(если он является необязательным или еще не инициализирован), то выражение, расположенное
справа от оператора присваивания, назначается данному атрибуту, если только уточнение объек­
та, которому присваивается значение, не продолжается дальше; в последнем случае фиксирует­
ся ошибка;

2) уточнение группой:
- объявленный тип выражения, расположенного слева от ссылки на группу, должен быть

объектным типом данных или выбираемым типом данных, определенным с использованием, по
крайней мере, одного объектного типа данных. Объект, имя которого указано справа от ссылки на
группу, должен присутствовать в том же графе подтипов/супертипов, что и объектный тип данных,

- если результатом выражения, расположенного слева от ссылки на группу, является экзем­
пляр, содержащий имя объекта, указанное справа от ссылки на группу, то исходное частичное
значение сложного объекта заменяется выражением, расположенным справа от оператора при­
сваивания, если только уточнение объекта, которому присваивается значение, не продолжается
дальше; в последнем случае используется данное дальнейшее уточнение;

3) уточнение элементом:
- объявленный тип выражения, расположенного слева от квалификатора элемента, должен

быть одним из (ARRAY, BINARY, LIST или STRING), либо выбираемым типом данных, определен­
ным с использованием одного из указанныхтипов данных. Параметр index_1 должен иметь цело­
численное значение,

- выражение, расположенное слева от квалификатора элемента, должно быть инициализиро­
вано, то есть иметь значение до того, как его элементам могут быть присвоены значения,

- если результат выражения, расположенного слева от квалификатора элемента, принадле­
жит к типу данных ARRAY и выполняется { LOINDEX (left) <=index_1 <=HIINDEX (left)}, то:

если в массиве уже имеется элемент на данной позиции, то выражение, расположенное
справа от оператора присваивания, замещает исходное значение, расположенное в массиве
на данной позиции, если только уточнение объекта, которому присваивается значение, не про­
должается дальше; в последнем случае для исходного элемента используется данное даль­
нейшее уточнение,

если в массиве на данной позиции присутствует неопределенное (?) значение, которое
далее не уточняется, то выражение, расположенное справа от оператора присваивания встав­
ляется в массив на данную позицию,

- если результат выражения, расположенного слева от квалификатора элемента, принадле­
жит к типу данных BINARY и выполняется {1 <=index_1 <=BLENGTH (left)}, то выражение, распо­
ложенное справа от оператора присваивания, заменяет в двоичном числе бит, расположенный на
данной позиции,

94

ГОСТ Р И С 010303-11 — 2009

- если результат выражения, расположенного слева от квалификатора элемента, принадле­
жит к типу данных LIST и выполняется {1<=index_1<=SIZEOF(left)}, то выражение, расположен­
ное справа от оператора присваивания, заменяет в списке элемент, расположенный на данной
позиции, если только объект, которому присваивается значение, не уточняется; в последнем слу­
чае используется данное дальнейшее уточнение,

- если результат выражения, расположенного слева от квалификатора элемента, принадле­
жит к типу данных STRING и выполняется {1<=index_1<=LENGTH(left)}, то выражение, располо­
женное справа от оператора присваивания, заменяет в строке символ, расположенный на данной
позиции;

4) уточнение диапазоном:
- объявленный тип выражения, расположенного слева от квалификатора диапазона, должен

быть BINARY или STRING либо выбираемым типом данных, определенным с использованием
одного из указанных типов данных. Параметры index_1 и index_2 должны иметь целочисленное
значение,

- выражение, расположенное слева от квалификатора диапазона, должно быть инициа­
лизировано, то есть иметь значение до того, как его элементам могут быть присвоены значения,

- если результат выражения, расположенного слева от квалификатора диапазона, принадле­
жит к типу данных BINARY и выполняется {1<=index_1 <=index_2}AND (index_2<=BLENGTH (left)),
то выражение, расположенное справа от оператора присваивания замещает элементы, располо­
женные в исходном двоичном числе между позициями index_1 и index_2.

П р и м е ч а н и е — Е с л и BLENGTH(right)<>(index_2-index_1+1), т о д а н н ы м п р и с в а и в а н и е м
б у д е т з а м е н е н э л е м е н т BLENGTH(left),

- если результат выражения, расположенного слева от квалификатора диапазона, принадле­
жит KTnnyflaHHbixSTRING и BbinonHneTcn{1<=index_1<=index_2}AND(index_2<=LENGTH(left)),
то выражение, расположенное справа от оператора присваивания, замещает элементы, располо­
женные в исходной строке между позициями index_1 и index_2.

П р и м е ч а н и е — Е с л и LENGTH (right) <> (index_2-index_1+1), т о д а н н ы м п р и с в а и в а н и е м
б у д е т з а м е н е н э л е м е н т LENGTH (left);

g) если объект, которому присваивается значение уточнен, но не соответствует ни одному из перечис­
ленных выше случаев, то фиксируется ошибка.

Если синтаксический анализатор, обеспечивающий проверку уровня 4 (см. 4.1.1) определит, что ре­
зультат выражения принадлежит к типу данных, являющемуся обобщением типа данных, объявленного
для переменной, которой присваивается значение, то данный оператор присваивания считается недопусти­
мым. При этом могут существовать допустимые присваивания с использованием данного оператора, если
фактические значения, возвращаемые выражением, соответствуют установленным выше условиям, одна­
ко, может быть получен непредсказуемый результат, если фактические значения, возвращаемые выраже­
нием, не совместимы с установленными выше условиями.

Частичные экземпляры, являющиеся недопустимыми экземплярами сложного объекта (см. приложе­
ние В), не могут быть присвоены параметрам или переменным сложного объекта и переданы в качестве
фактических параметров функциям или процедурам. Данное требование не ограничивает присваивание
допустимых экземпляров сложного объекта.

13.4 Оператор CASE
Оператор выбора CASE обеспечивает механизм для выборочного исполнения операторов на основе

значения некоторого выражения. Оператор исполняется в зависимости от значения переключателя (эле­
мент selector). Оператор выбора состоит из выражения, являющегося переключателем блоков, и списка
альтернативных действий, каждому из которых предшествует одно или несколько выражений, являющих­
ся метками блоков. Результирующий тип данных метки блока должен быть совместим с типом данных
переключателя блоков. Выбирается первая встретившаяся метка блока, имеющая значение, равное пере­
ключателю блоков, и исполняются операторы, связанные сданной меткой. Если результатом сравнения
метки и переключателя является UNKNOWN или FALSE, то выбор не проводится. Исполняется не более
одного из блоков выбора. Если переключатель блоков имеет неопределенное (?) значение, то исполняется
блок, которому предшествует ключевое слово OTHERWISE, при его наличии. Если метка блока имеет
неопределенное (?) значение, то результатом сравнения является UNKNOWN, и оператор не должен

95

ГОСТ Р И С 010303-11— 2009

исполняться. Если значение ни одной из меток блоков не совпадает со значением переключателя блоков,
то возможны следующие альтернативы:

- если ключевое слово OTHERWISE присутствует, то исполняется связанный с ним оператор;
- если ключевое слово OTHERWISE отсутствует, то ни один из операторов, связанных с оператором

выбора, не исполняется.

Синтаксис:
191 case_stm t = CASE selector OF { case_action } [O TH E R W IS E s tm t]

END_CASE
299 selector = expression .
189 case_action = c a s e ja b e l { ' , ' c a s e ja b e l} s tm t.
190 c a s e ja b e l = expression.

Ограничение: тип данных вычисленного значения меток блоков должен быть совместим с типом
данных вычисленного значения переключателя блоков.

Пример — Простой оператор выбора, использующий целочисленные метки блоков.
LOCAL

а : INTEGER;
х : REAL;

END_LOCAL;

а := 3 ;
х := 34.97;
CASE a OF

1 : х := S IN (x);
2 : x := EXP(x);
3 :x := S Q R T (x); — этот оператор исполняется!
4, 5 : x := LOG(x);

OTHERWISE : x := 0.0;
END.CASE;

13.5 Составной оператор
Составной оператор представляет собой последовательность операторов, ограниченную ключевыми

словами BEGIN и END. Составной оператор действует как единый оператор.

П р и м е ч а н и е — С о с т а в н о й о п е р а т о р н е о п р е д е л я е т н о в у ю о б л а с т ь в и д и м о с т и .

Синтаксис:
192 com pound_stm t = BEGIN stm t { s tm t} END ' ; ' .

Пример — Простой составной оператор:
BEGIN

а = а+1 ;
IF а > 100 THEN

а:= 0 ;
ENDJF;

END;

13.6 Оператор ESCAPE
Оператор ESCAPE вызывает немедленный переход к оператору, следующему непосредственно за

оператором REPEAT, в котором встретился данный оператор ESCAPE.
П р и м е ч а н и е — П р и м е н е н и е о п е р а т о р а ESCAPE я в л я е т с я е д и н с т в е н н ы м с п о с о б о м в ы х о д а и з о п е р а т о ­

ра REPEAT в с л у ч а е з а д а н и я б е с к о н е ч н о г о ц и к л а .

Синтаксис:
214 escape_stm t = ESCAPE

Ограничение: оператор ESCAPE должен присутствовать только в пределах области видимости
оператора REPEAT.

96

ГОСТ Р И С 0 10303-11 — 2009

Пример — Оператор ESCAPE передает управление оператору, следующему за END_REPEAT,
если а < 0:

REPEAT UNTIL (а=1);

IF (а< 0) THEN
ESCAPE;

ENDJF;

END_REPEAT; - - у п р а в л е н и е п е р е д а е т с я в т о ч к у п о с л е END_REPEAT

13.7 Оператор IF .. .TH EN .. .ELSE
Оператор IF .. .TH EN .. .ELSE обеспечивает условное выполнение операторов на основе значения

выражения типа LOGICAL. Если значением logical_expression является TRUE, то исполняется опера­
тор, следующий за ключевым словом THEN. Если значением log ica l_expression является FALSE,
UNKNOWN или неопределенность (?), то исполняется оператор, следующий за ключевым словом
ELSE, если данное ключевое слово присутствует. Если значением logical_expression является FALSE,
UNKNOWN или неопределенность (?), а ключевое слово ELSE отсутствует, то управление передается
следующему оператору.

Синтаксис:
233 if_stmt = IF logical_expression THEN stmt {s tm t} [ELSE stmt { s tm t }]

END JF .
254 logical_expression = expression .

Пример — Простой оператор IF;
IF a< 10 THEN

c := c+ 1;
ELSE

c := c - 1;
ENDJF;

13.8 Оператор вы зова процедуры
Оператор вызова процедуры активизирует процедуру. Фактические параметры, передаваемые при

вызове процедуры, должны соответствовать по числу, порядку и типу данных с формальными параметра­
ми, установленными для данной процедуры.

Синтаксис:
270 procedure_call_stmt = (built_in_procedure | procedure_re1)

[actual_param eterjist] ' ; ' .
167 actual_param eterjist = '(' parameter { parameter } ') ' .
264 parameter = expression .

Ограничение: передаваемые фактические параметры должны быть совместимы по присваиванию
с формальными параметрами.

Пример — Вызов встроенной процедуры INSERT:
INSERT (pointjist,this point,here);

13.9 Оператор REPEAT
Оператор цикла REPEAT используется для зависящего от условия повторения исполнения последо­

вательности операторов. Начало или продолжение повторения определяется по вычисленному значению
управляющего условия (или условий). Управляющими условиями являются:

- конечное число итераций (инкрементное управление);
- пока условие имеет значение TRUE (управляющее условие WHILE);
- до тех пор, пока условие имеет значение TRUE (управляющее условие UNTIL).

Синтаксис:
286 repeat_stmt = REPEAT repeat_control stmt {s tm t} END_REPEAT
285 repeat_control = [increment_control] [while_control] [until_control] .
235 increment_control = va riab le jd bo u n d jl TO bound_2 [BY increment] .
183 bo u n d jl = numeric_expression .
184bound_2 = numeric_expression.
234 increment = numeric_expression .

97

ГОСТ Р ИС010303-11— 2009

Для задания условий окончания цикла может использоваться комбинация управляющих условий.
Для управления итерациями значения данных условий определяются следующим образом:

a) Если выполняется оператор REPEAT и при этом присутствует инкрементное управляющее усло­
вие, то вычисляется выражение, определяющее данное инкрементное условие в соответствии с 13.9.1.

b) Если присутствует управляющее условие WHILE, то вычисляется значение указанного в нем вы­
ражения. Если значением выражения является TRUE (либо если управляющее условие WHILE отсутству­
ет), то исполняется тело оператора REPEAT. Если значением выражения является FALSE, UNKNOWN или
неопределенность (?), то исполнение оператора REPEAT заканчивается.

c) Когда заканчивается исполнение тела оператора REPEAT, вычисляют значение выражения управ­
ляющего условия UNTIL. Если значением выражения является TRUE, то дальнейшее исполнение итера­
ций прекращается, и исполнение оператора REPEAT завершается. Если значением выражения является
FALSE или UNKNOWN, то исполнение оператора REPEAT возвращается к проверке инкрементного управ­
ляющего условия. Если управляющее условие UNTIL отсутствует, то исполнение оператора REPEAT воз­
вращается к проверке инкрементного управляющего условия.

d) Если инкрементное управляющее условие присутствует, то значение переменной цикла изменя­
ется на значение, задаваемое элементом increment. Если значение переменной цикла находится в
пределах от bound_1 до bound_2, включая данные границы, то управление передается на шаг по перечис­
лению Ь), в противном случае, исполнение оператора REPEAT заканчивается.

Пример — В данном примере показано, как в операторе REPEAT могут использоваться
несколько управляющих условий. Повтор исполнения операторов тела цикла осуществляется до
тех пор, пока не выполнится одно из двух условий, то есть пока не будет достигнута заданная
точность или выполнено сто циклов; то есть итерационный процесс прекращается, если решение
не сходится достаточно быстро.

REPEAT i : = 1 Т О 100 UNTIL epsilon < 1 .Е-6 ;

epsilon : = . . . ;
END_REPEAT;

13.9.1 Инкрементное управление
При инкрементном управлении тело оператора цикла исполняется для следующих одно за другим

значений из некоторой последовательности. При входе в оператор цикла неявно объявленной переменной
числового типа variable_id присваивается значение bound_1. После каждой итерации переменной
variable_id присваивается значение variablejd + increment. Если элемент increment не задан, то по
умолчанию используется значение равное единице (1). Если значение variablejd находится в пределах
между bound_1 и bound_2 (включая случай, когда variable_id=bound_2), то выполнение оператора цикла
продолжается.

Синтаксис:
235 increment_control = va ria b le jd ':= ' bound_1 ТО bound_2[BY increm ent],
183bound_1 = num eric_expression.
184bound_2 = num eric_expression.
234 increment = numeric_expression .

Правила и ограничения:
a) Выражения numeric_expression, представляющие элементы bound_1, bound_2 и increment,

должны иметь числовые значения.
b) Выражения numeric_expression, представляющие границы и приращение, вычисляют один раз

при входе в оператор REPEAT.
c) Если какое-либо из выражений numeric_expression, представляющих границы или приращение,

имеет неопределенное (?) значение, то оператор REPEAT не исполняется.
d) Перед первым вычислением оператора инкрементного управления проверяют следующие

условия:
- если приращение (элемент increment) положительно и bound_1 > bound_2, то оператор REPEAT не

исполняется,
- если приращение (элемент increment) отрицательно и bound_1<bound_2, то оператор REPEAT не

исполняется,
- если приращение (элемент increment) равно нулю (0), то оператор REPEAT не исполняется;

98

ГОСТ Р И С 0 10303-11 — 2009

- во всех других случаях оператор REPEAT исполняется до тех пор, пока значение переменной
v a r ia b le jd не выйдет за заданные границы или один из других управляющих операторов в теле оператора
REPEAT не завершит его исполнение.

e) Переменная цикла инициализируется со значением bouncM в начале первого цикла итераций,
и изменяется на значение, определяемое элементом increm ent в начале каждого последующего
цикла.

f) Значение переменной цикла не должно изменяться в теле оператора REPEAT.
g) Оператор REPEAT устанавливает локальную область видимости, в которой переменная цикла

variable_id неявно объявляется как числовая переменная. Поэтому любое использование переменной
v a r ia b le jd для внешней области видимости скрыто в операторе REPEAT, и значение переменной цикла
недоступно вне оператора REPEAT.

13.9.2 Управляющее условие WHILE
Управляющее условие WHILE обеспечивает инициализацию и продолжение исполнения тела опера­

тора REPEAT, пока значением управляющего выражения является TRUE. Значение управляющего выра­
жения вычисляется перед каждой итерацией.

Если управляющее условие присутствует WHILE, и значением управляющего выражения является
FALSE, UNKNOWN или неопределенность (?), то тело оператора REPEAT не исполняется.

Синтаксис:
339 while_control = WHILE logical_expression .
254 logical_expression = expression .

Правила и ограничения:
a) элемент logical_expression должен иметь значение типа LOGICAL;
b) элемент logical_expression вычисляют заново в начале каждой итерации.
13.9.3 Управляющее условие UNTIL
Управляющее условие UNTIL обеспечивает продолжение выполнения тела оператора REPEAT до тех

пор, пока управляющее выражение не примет значение TRUE. Значение выражения должно вычисляться
после каждой итерации.

Если управляющее условие UNTIL является единственным управляющим условием, то всегда дол­
жна быть исполнена, по крайней мере, одна итерация.

Синтаксис:
335 until_control = UNTIL logical_expression .
254 logical_expression = expression .

Правила и ограничения:
a) элемент logical_expression должен иметь значение типа LOGICAL;
b) элемент logical_expression вычисляют заново в конце каждой итерации.
13.10 Оператор RETURN
Оператор возврата RETURN завершает исполнение функции или процедуры. В функции опера­

тор RETURN должен определять выражение. Значение, полученное при вычислении данного выраже­
ния, является результатом функции и возвращается в точку вызова. Выражение должно быть
совместимо по присваиванию с объявленным типом данных, возвращаемым функцией. В процедуре
оператор RETURN не должен определять выражение.

Синтаксис:
290 return_stmt = RETURN ['(' expression ') ']

Ограничение: оператор RETURN должен присутствовать только в функциях или процедурах.

Пример — Допустимые операторы RETURN.
RETURN(50); (* возврат из функции *)
RETURN(work point); (* возврат из функции *)
RETURN; (* возврат из процедуры *)

13.11 Оператор SKIP
Оператор SKIP вызывает немедленный переход в конец тела оператора REPEAT, в котором он при­

сутствует. Затем вычисляют значения управляющих условий в соответствии с 13.9.

99

ГОСТ Р ИС010303-11— 2009

Синтаксис:
308 skip_stmt = SKIP .

Ограничение: оператор SKIP должен встречаться только в области видимости оператора REPEAT.
Пример — Оператор SKIP передает управление оператору END_REPEAT, который инициирует

вычисление значения управляющего условия UNTIL.
REPEAT UNTIL (а=1);

IF (а < 0) THEN
SKIP;

ENDJF;
. . . - - эти операторы будут пропущены, если а<0

END_REPEAT;

14 Встроенные константы

В языке EXPRESS имеется несколько встроенных констант, которые определены в настоящем
разделе.

П р и м е ч а н и е — Считается, что встроенные константы имеют точные значения, даже если такое
значение не может быть представлено на компьютере.

14.1 Константа е
CONST_E является константой типа REAL, представляющей математическое значение числа е, яв­

ляющегося основанием функции натурального логарифма (fti). Значение данной константы задается сле­
дующей математической формулой

е = Х /Т 1
/=о

14.2 Неопределенность
Символ неопределенности (?) обозначает неоднозначное значение. Он совместим со всеми типами

данных.
П р и м е ч а н и е — Наиболее часто неопределенность (?) используется в качестве указателя верхней

границы пакета, списка или набора. Это обозначает, что размер агрегированного значения, определенного
агрегированным типом данных, является неограниченным.

14.3 Константа FALSE
Константа FALSE является константой типа LOGICAL, представляющей логическое понятие «ложь».

Данная константа совместима стипами данных BOOLEAN и LOGICAL.
14.4 Константа PI
Константа PI является константой типа REAL, представляющей математическую величину л, пред­

ставляющую отношение длины окружности к ее диаметру.
14.5 SELF
Ключевое слово SELF обозначает ссылку на текущий экземпляр объекта или значение типа данных.

Ключевое слово SELF может присутствовать в объявлении объекта, объявлении типа данных или конструк­
торе объекта.

П р и м е ч а н и е — SELF не является константой, но играет роль константы в любом контексте, в котором
она может использоваться.

14.6 Константа TRUE
Константа TRUE является константой типа LOGICAL, представляющей логическое понятие «истина».

Данная константа совместима стипами данных BOOLEAN и LOGICAL.
14.7 Константа UNKNOWN
Константа UNKNOWN является константой типа LOGICAL, обозначающей недостаточность имею­

щейся информации для оценки логического условия. Данная константа совместима с типом данных
LOGICAL, но несовместима с типом данных BOOLEAN.

1 0 0

ГОСТ Р ИС010303-11—2009

15 Встроенные функции

Предполагается, что все функции (и математические операции вообще) вычисляются сточными ре­
зультатами. Все встроенные функции возвращают неопределенный (?) результат, если им был передан
параметр с неопределенным (?) значением, за исключением случаев, когда это в явном виде не устанавли­
вается в определении функции.

Для каждой встроенной функции установлен прототип с целью демонстрации типов данных формаль­
ных параметров и результата.

15.1 Арифметическая функция ABS
FUNCTION ABS (V :NUMBER) : NUMBER;
Функция ABS возвращает абсолютное значение числа.
Параметр: V — число.
Результат: абсолютное значение V. Тип данных результата идентичен типу данных параметра V.

Пример — ABS (-1 0) — >10

15.2 Арифметическая функция ACOS
FUNCTION ACOS (V:NUMBER): REAL;
Функция ACOS возвращает величину угла, заданного значением косинуса.
Параметр: V — число, представляющее значение косинуса угла.
Результат: значение угла в радианах (0< результат^ л), косинус которого равен значению V.
Условие: -1 .0 < V < 1.0.

Пример — ACOS (0.3) — > 1.266103...

15.3 Арифметическая функция ASIN
FUNCTION ASIN (V: NUMBER): REAL;
Функция ASIN возвращает величину угла, заданного значением синуса.
Параметр: V — число, представляющее значение синуса угла.
Результат: значение угла в радианах (-л/2 < результат < л/2), синус которого равен значению V.
Условие: -1 .0 < V < 1.0.

Пример — ASIN(0.3) - -> 3.04692.. . е - 1

15.4 Арифметическая функция ATAN
FUNCTION ATAN (V I:NUMBER; V2:NUMBER): REAL;
Функция ATAN возвращает величину угла, заданного значением тангенса V, где V задано выражени­

ем V =V 1A /2 .
Параметры:
a) V1 — число;
b) V2 — число.
Результат: значение угла в радианах (-л/2 < результат < л/2), тангенс которого равен значению V.

Если значение параметра V2 равно нулю, то результат равен л/2 или -л /2 в зависимости от знака V1.
Условие: V1 и V2 не должны одновременно иметь нулевое значение.

Пример — ATAN(-5 .5 , 3.0) — >-1 .071449...

15.5 Двоичная функция BLENGTH
FUNCTION BLENGTH (V: BINARY): INTEGER;
Функция BLENGTH возвращает число битов в двоичном числе.
П араметра — двоичное число.
Результат: возвращаемым значением является реальное число битов в переданном функции двоич­

ном числе.

Пример — Использование функции BLENGTH:
LOCAL

n : NUMBER;
x : BINARY :=%01010010;

END_LOCAL;

n := BLENGTH (x); - - n п р и с в а и в а е т с я з н а ч е н и е 8

1 0 1

ГОСТ Р ИС010303-11 — 2009

15.6 Ариф метическая ф ункция COS
FUNCTION COS (V:NUMBER): REAL;
Функция COS возвращает значение косинуса угла.
Параметр: V — число, представляющее значение угла в радианах.
Результат: косинус угла V (-1.0 < результат < 1.0).

Пример — COS (0.5) — > 8.77582... Е - 1

15.7 Универсальная ф ункция EXISTS
FUNCTION EXISTS (V :GENERIC) : BOOLEAN;
Функция EXISTS возвращает значение TRUE, если у входного параметра существует значение, или

значение FALSE, если у входного параметра не существует значения. Функция EXISTS полезна для про­
верки, задано ли значение для необязательных (OPTIONAL) атрибутов или инициализированы ли пере­
менные.

Параметр: V — выражение, результат которого может иметь любой тип данных.
Результат: TRUE или FALSE, в зависимости от того, имеет ли V конкретное или неопределенное (?)

значение.

Пример — IF EXISTS (а) THEN ...

15.8 Ариф метическая ф ункция ЕХР
FUNCTION EXP (V :NUM BER): REAL;
Функция ЕХР возвращает число е (основание системы натуральных логарифмов), возведенное в

степень V.
Параметры: V — число.
Результат: значение ev.

Пример — Е Х Р (10) - -> 2.202646... Е+ 4

15.9 Универсальная ф ункция FORMAT
FUNCTION FORMAT(N : NUMBER; F : STRING): STRING;
Функция FORMAT возвращает форматированное строковое представление числа.
Параметры:
а) N — число (целое или действительное);
б) F — строка, содержащая команды форматирования.
Результат: строковое представление числа N, отформатированное в соответствии с F. При необходи­

мости строковое представление округляется.
Строка форматирования содержит специальные символы, определяющие форму отображения ре­

зультата. Строка форматирования может быть представлена тремя способами:
a) строка форматирования может задавать символьное описание представления результата;
b) строка форматирования может задавать описание шаблона представления результата;
c) если строка форматирования пуста, то производится стандартное представление результата.
15.9.1 Символьное представление
Общая форма символьного формата имеет вид: [sign] width [.decimals] type.
a) Элемент sign определяет представление знака числа. Если элемент sign не задан или задан зна­

ком минус (-), то первым возвращаемым символом будет минус для отрицательных чисел и пробел для
положительных чисел (включая ноль). Если элемент sign задан знаком плюс (+), то первым возвращае­
мым символом будет минус для отрицательных чисел, плюс— для положительных чисел и пробел— для
нуля.

b) Элемент width задает общее число символов в возвращаемой строке. Он должен быть целым
числом больше двух. Если элемент width задан с предшествующим нулем, то возвращаемая строка
будет содержать предшествующие нули, в противном случае предшествующие нули опускаются. Если
для форматируемого числа требуется больше символов, чем задано элементом width, то возвращается
строка с необходимым числом символов.

c) Элемент decimals задает число цифр в возвращаемой строке справа от десятичной точки. Число
данный элемент задан, то он должен быть положительным целым числом. Если элемент decimals не за­
дан, то в возвращаемой строке не будет десятичной точки и следующих за ней цифр.

102

ГОСТ Р И С 010303-11 — 2009

d) Элемент type является буквой, определяющей вид числа, представленного в возвращаемой
строке:

1) если в качестве элемента type задана буква I, то результат должен быть представлен в виде
целого числа; при этом:

- элемент decimals не должен быть задан,
- значение элемента width должно быть не менее двух,
2) если в качестве элемента type задана буква F, то результат должен быть представлен в виде

действительного числа с фиксированной десятичной точкой; при этом:
- значение элемента decimals, если он задан, должно быть не менее единицы,
- если элемент decimals не задан, то используется его значение по умолчанию равное двум,
- значение элемента width должно быть не менее четырех,
3) если в качестве элемента type задана буква Е, то результат должен быть представлен в виде

действительного числа в экспоненциальной форме, при этом:
- элемент decimals должен быть задан обязательно,
- значение элемента decimals должно быть не менее единицы,
- значение элемента width должно быть не менее семи,
- если в элементе width задан предшествующий ноль, то первыми двумя символами мантиссы

будут 0.,
- экспоненциальная часть должна содержать, по меньшей мере, два символа с обязательным

знаком,
- отображаемый символ'Е' должен быть прописной буквой (символом верхнего регистра).

П р и м е ч а н и е — В таблице 20 показано, как форматирование влияет на вид отображения разных
з н а ч е н и й .

Т а б л и ц а 20 — П р и м е р в л и я н и я с и м в о л ь н о г о ф о р м а т и р о в а н и я

Ч и с л о Ф о р м а т О т о б р а ж е н и е К о м м е н т а р и й

10 +7I ' +10' Н у л и о п у щ е н ы

10 +07I ■+000010 ■ Н у л и н е о п у щ е н ы

10 10.ЗЕ ■1.000Е+01 1

123.456789 8.2F 1 123.46'

123.456789 8.2Е '1.23Е+02 '

123.456789 08.2Е '0.12Е+02 ' В л и я е т п р е д ш е с т в у ю щ и й н о л ь

9.876Е123 8.2Е '9.88Е+123 ' Э к с п о н е н ц и а л ь н а я ч а с т ь с о д е р ж и т т р и с и м в о л а ,
з н а ч е н и е width и г н о р и р у е т с я

32.777 6I ' 33' О к р у г л е н о

15.9.2 Представление шаблоном
При форматировании посредством шаблона, каждый символ шаблона соответствует символу в воз­

вращаемой строке. Используемые в шаблоне символы представлены в таблице 21.

Т а б л и ц а 21 — С и м в о л ы ф о р м а т и р о в а н и я ш а б л о н о м

С и м в о л З н а ч е н и е

(р е ш е т к а) П р е д с т а в л я е т ц и ф р у

, (з а п я т а я) Р а з д е л и т е л ь

. (т о ч к а) Р а з д е л и т е л ь

+ - (п л ю с и м и н у с) П р е д с т а в л я е т з н а к

() (к р у г л ы е с к о б к и) П р е д с т а в л я е т о т р и ц а н и е

103

ГОСТ Р И С 0 10303-11 — 2009

Разделители и используются следующим образом:
- если запятая встречается в строке форматирования до точки, то запятая представляет символ груп­

пирования, а точка представляет десятичный символ;
- если точка встречается в строке форматирования до запятой, то точка представляет символ группи­

рования, а запятая — десятичный символ;
- если в строке форматирования присутствует один разделитель, то он представляет десятичный

символ.
Все остальные символы отображаются без изменения.

П р и м е ч а н и е — В т а б л и ц е 22 п о к а з а н о , к а к ф о р м а т и р о в а н и е в л и я е т н а в и д о т о б р а ж е н и я р а з н ы х
з н а ч е н и й .

Т а б л и ц а 22 — П р и м е р в л и я н и я ф о р м а т и р о в а н и я ш а б л о н о м

Число Формат Отображение Комментарий

10 ### ' 10 '

10 (###) ' 10' К р у г л ы е с к о б к и и г н о р и р у ю т с я

-10 (###) '(1 0) '

7123.456 ###,###.## ' 7,123.46' Н о т а ц и я С Ш А

7123.456 ###.###,## ' 7.123,46' Е в р о п е й с к а я н о т а ц и я

15.9.3 Стандартное представление
Стандартным представлением для целых чисел является'7Г. Стандартным представлением для

действительныхчисел является '10.1 Е'. Символьные представления форматов чисел определены в 15.9.1.
15.10 Ариф м етическая ф ункция HIBOUND
FUNCTION HIBOUND (V:AGGREGATE OF GENERIC) : INTEGER;
Функция HIBOUND возвращает объявленный верхний индекс объекта типа ARRAY или объявленную

верхнюю границу объекта типа BAG, LIST или SET.
Параметр: V — агрегированное значение.
Результат:
a) если типом данных V является ARRAY, то возвращаемым значением является объявленный

верхний индекс;
b) если типом данных V является BAG, LIST или SET, то возвращаемым значением является объяв­

ленная верхняя граница; если границы не объявлены или верхняя граница объявлена неопределен­
ной (?), то возвращается неопределенное (?) значение.

Пример — Использование функции HIBOUND для вложенных агрегированных значений:
LOCAL

а : ARRAY[-3:19] OF SET[2:4] OF LIST [0:?] OF INTEGER;
hi, h2, h3 : INTEGER;

END_LOCAL;

a[—3] [1] [1] :=2; — помещает значение в список

hi := HIBOUND(a); — =19 (верхний индекс массива)
h2 := HIBOUND(a[-3]); — = 4 (верхняя граница набора)
h3 := HIBOUND(a[-3] [1]); — = ? (верхняя граница списка (не ограничен))

15.11 Ариф метическая ф ункция HIINDEX
FUNCTION HIINDEX (V:AGGREGATE OF GEN ER IC): INTEGER;
Функция HIINDEX возвращает верхний индекс объекта типа ARRAY или число элементов в объекте

типа BAG, LIST или SET.
Параметр: V — агрегированное значение.
Результат:
а) если типом данных V является ARRAY, то возвращаемым значением является объявленный

верхний индекс;

104

ГОСТ Р ИС 010303-11 — 2009

Ь) если типом данны х V является BAG , L IST или SET, то возвращ аемым значением является ф акти­
ческое число элементов в агрегированном значении.

Пример — Использование функции HIINDEX для вложенных агрегированных значений:
LOCAL

а : ARRAY [-3:19] OF SET[2:4] OF LIST[0: ?] OF INTEGER;
hi, h2, h3 : INTEGER;

END_LOCAL;
a[-3][1][1] := 2; — помещает значение в список
hi := HIINDEX(a); — = 1 9 (верхний индекс массива)
h2 := HIINDEX(a[—3]); — = 1 (размер набора)— это неверно для

— заданных границ
— набора

h3 := HIINDEX(a[-3] [1]); — =1 (размер списка)

15.12 Строковая функция LENGTH
FUNCTION LENGTH (V : STRING) : INTEGER;
Функция LENG TH возвращ ает число символов в строке.
Параметр: V — строковое значение.
Результат: возвращ аемым значением является число символов в строке; возвращ аемое значение

должно быть больше или равно нулю.

Пример — Использование функции LENGTH:
LOCAL

n : NUMBER;
х1 : STRING := 'abc';
x2 : STRING := "0000795E00006238";

END_LOCAL;

n := LENGTH (x1); — n присваивается значение 3
n := LENGTH (x2); — n присваивается значение 2

15.13 Арифметическая функция LOBOUND
FUNCTION LO B O U N D (V : AG G R E G A TE OF G EN ER IC) : INTEG ER;
Функция LO BO U N D возвращ ает объявленный нижний индекс объекта типа AR R A Y или объявлен­

ную нижнюю границу объекта типа BAG , L IST или SET.
Параметр: V — агрегированное значение.
Результат:
a) если типом данны х V является ARR AY, то возвращ аемым значением является объявленный ниж­

ний индекс;
b) если типом данны х V является BAG , L IST или SET, то возвращ аемым значением является объяв­

ленная нижняя граница; если нижняя граница не объявлена, то возвращ ается ноль (0).

Пример — Использование функции LOBOUND для вложенных агрегированных значений:
LOCAL

а : ARRAY [-3 :19] OF SET [2 : 4] OF LIST [0 : ?] OF INTEGER;
hi, h2, h3 : INTEGER;

END_LOCAL;

hi := LOBOUND (a); - - = -3 (нижний индекс массива)
h2 := LOBOUND (a[—3]); - -= 2 (нижняя граница набора)
h3 := LOBOUND (a[-3] [1]); - -= 0 (нижняя граница списка)

15.14 Арифметическая функция LOG
FUNCTION LOG (V : NUMBER) : REAL;
Функция LOG возвращ ает натуральный логарифм числа.
Параметр: V — число.
Результат: действительное число, являю щ ееся натуральным логариф мом V.
Условие: V > 0.0

Пример — LOG (4.5) — > 1.504077.. ,Е0

105

ГОСТ Р ИС010303-11 — 2009

15.15 Арифметическая функция LOG2
FUNCTION LOG2 (V : NUMBER) : REAL;
Функция LOG2 возвращает логарифм числа по основанию два.
Параметр: V — число.
Результат: действительное число, являющееся логарифмом V по основанию два.
Условие: V > 0.0

Пример — LOG2 (8) — > 3.00.. . Е0

15.16 Арифметическая функция LOG10
FUNCTION LOG10 (V : NUMBER) : REAL;
Функция LOG 10 возвращает десятичный логарифм числа.
Параметр: V — число.
Результат: действительное число, являющееся десятичным логарифмом V.
Условие: V > 0.0

Пример — LOG10 (10) — > 1.00.. , Е0

15.17 Арифметическая функция LOINDEX
FUNCTION LOINDEX (V : AGGREGATE OF GENERIC) : INTEGER;
Функция LOINDEX возвращает нижний индекс агрегированного значения.
Параметр: V — агрегированное значение.
Результат:
a) если типом данных V является ARRAY, то возвращаемым значением является объявленный ниж­

ний индекс;
b) если типом данных V является BAG, LIST или SET, то возвращаемым значением является

единица (1).

Пример — Использование функции LOINDEX для вложенных агрегированных значений:
LOCAL

а : ARRAY[-3:19] OF SET[2:4] OF LIST[0: ?] OF INTEGER;
h i, h2, h3 : INTEGER;

END_LOCAL;

hi := LOINDEX(a); — = -3 (н и ж н и й и н д е к с м а с с и в а)
h2 := LOINDEX(a[-3]); — = 1 (д л я н а б о р а)
h3 := LOINDEX(a[-3] [1]); - - = 1 (д л я с п и с к а)

15.18 Функция пустого значения NVL
FUNCTION NVL(V : GENERIC : GEN1; SUBSTITUTE : GENERIC : G E N 1): GENERIC : GEN1;
Функция NVL возвращает исходное значение либо альтернативное значение, если входной параметр

имеет неопределенное (?) значение.
Параметры:
a) V — выражение любого типа данных;
b) SUBSTITUTE — выражение, которое не должно иметь неопределенное (?) значение.
Результат: если V не имеет неопределенного (?) значение, то возвращается значение V. В противном

случае возвращается SUBSTITUTE.

Пример — Функция NVL используется, чтобы подставить ноль (0.0) в качестве значения Z, если Z
имеет неопределенное (?) значение:

ENTITY unit_vector;
х , у : REAL;
z : OPTIONAL REAL;

WHERE
x**2 + y**2 + NVL(z, 0.0)**2 = 1.0;

END_ENTITY;

15.19 Арифметическая функция ODD
FUNCTION ODD (V : INTEGER) : LOGICAL;
Функция ODD возвращает значение TRUE или FALSE, в зависимости от того, является ли заданное

число нечетным или четным.
Параметр: V — целое число.

106

ГОСТ Р ИС010303-11 — 2009

Результат: если V MOD 2 = 1, то возвращается TRUE, в противном случае, возвращается FALSE.
Условие: ноль не считается нечетным числом.

Пример — ODD (1 2 1)— > TRUE

15.20 Универсальная функция ROLESOF
FUNCTION ROLESOF (V : GENERIC_ENTITY): SET OF STRING;
Функция ROLESOF возвращает набор строк, содержащих полные уточненные имена ролей, исполня­

емых указанным экземпляром объекта. Полное уточненное имя определяется как имя атрибута, уточнен­
ное именем схемы и объекта, в которых объявлен данный атрибут (то есть 'SCHEMA.ENTITY.ATTRIBUTE').

Параметр: V — любой экземпляр объектного типа данных.
Результат: набор строковых значений (на верхнем регистре), содержащих полные уточненные имена

атрибутов экземпляров объектов, использующих экземпляр V.
Если именованный тип данных импортирован посредством операторов USE или REFERENCE, то

возвращаются также имя исходной схемы и имя именованного типа данных в этой схеме, если имело
место переименование. Поскольку операторы USE могут быть связаны в цепочку, то возвращаются имена
всех связанных схем и имена именованного типа данных во всех схемах.

Пример — Данный пример демонстрирует возможность использования точки в качестве
центра окружности. Функция ROLESOF определяет, какие роли экземпляр объекта исполняет
фактически.

SCHEMA that_schema;
ENTITY point;

x, у , z : REAL;
END_ENTITY;
ENTITY line;

start,
end : point;

END_ENTITY;
END SCHEMA;
SCHEMA this_schema;
USE FROM that_schema (point, line);
CONSTANT

origin : point := point(0.0, 0.0, 0.0);
END_CONSTANT;
ENTITY circle;

center : point;
axis : vector;
radius : REAL;

END_ENTITY;

LOCAL
p : point := point(1.0, 0.0, 0.0);
c : circle := circle(p, vector(1,1,1), 1.0);
I : line := line(p, origin);

END_LOCAL;

IF 'THIS_SCHEMA.CIRCLE.CENTRE' IN ROLESOF(p) THEN - - true

IF 'THIS_SCHEMA.LINE.START' IN ROLESOF(p) THEN - - true

IF 'THAT_SCHEMA.LINE.START' IN ROLESOF(p) THEN - - true

IF 'THIS SCHEMA.LINE.END' IN ROLESOF(p) THEN - - false

15.21 Арифметическая функция SIN
FUNCTION SIN (V : NUMBER): REAL;
Функция SIN возвращает значение синуса угла.
Параметр: V — число, представляющее значение угла в радианах.
Результат: синус угла V (-1 .0 < результат < 1.0).

Пример — SIN (P I) — > 0.0

107

ГОСТ Р ИС010303-11 — 2009

15.22 Агрегированная функция SIZEOF
FUNCTION SIZEOF (V : AGGREGATE OF G E N ER IC) : INTEGER;
Функция SIZEOF возвращает число элементов в агрегированном значении.
Параметр: V — агрегированное значение.
Результат:
a) если типом данных V является ARRAY, то возвращаемым значением является объявленное число

элементов в данном агрегированном типе данных;
b) если типом данных V является BAG, LIST или SET, то возвращаемым значением является факти­

ческое число элементов в агрегированном значении.

Пример — Использование функции SIZEOF:
LOCAL

n: NUMBER;
у : ARRAY[2:5] OF b;

END_LOCAL;

n := SIZEOF (y); — n присваивается значение 4

15.23 Арифметическая функция SORT
FUNCTION SO RT (V : N U M B E R) : REAL;
Функция SORT возвращает неотрицательное значение квадратного корня числа.
Параметр: V — любое неотрицательное число.
Результат: неотрицательное значение квадратного корня числа V.
Условие: V > 0.0

Пример — SQRT (121) — > 11.0

15.24 Арифметическая функция TAN
FUNCTION TAN (V : N U M B E R) : R EAL;
Функция TAN возвращает значение тангенса угла.
Параметр: V — число, представляющее значение угла в радианах.
Результат: тангенс угла. Если угол равен пп/2, где п — нечетное целое число, то возвращается нео­

пределенное (?) значение.

Пример — TAN (0.0) — > 0.0

15.25 Универсальная функция TYPEOF
FUNCTION TYPEOF (V : GENERIC) : SET OF STRING;
Функция TYPEOF возвращает набор строк, содержащ их имена всех типов данных, к которым при­

надлежит данный параметр. За исключением простых типов данных (BINARY, BO O LEAN, INTEGER,
LOGICAL, NUMBER, REAL и STRING) и агрегированных типов данных (ARRAY, BAG, LIST, SET), данные
имена уточняются именем схемы, содержащей определение данного типа данных.

П р и м е ч а н и е — О с н о в н ы м н а з н а ч е н и е м д а н н о й ф у н к ц и и я в л я е т с я п р о в е р к а , м о ж е т л и д а н н о е з н а ч е н и е
(п е р е м е н н о й и л и а т р и б у т а) и с п о л ь з о в а т ь с я д л я о п р е д е л е н н о й ц е л и , н а п р и м е р , ч т о б ы у б е д и т ь с я в с о в м е с т и м о ­
с т и п о п р и с в а и в а н и ю д в у х з н а ч е н и й . Д а н н а я ф у н к ц и я м о ж е т т а к ж е и с п о л ь з о в а т ь с я , е с л и р а з н ы е п о д т и п ы и л и

к о н к р е т и з а ц и и з а д а н н о г о т и п а д а н н ы х д о л ж н ы п о - р а з н о м у т р а к т о в а т ь с я в н е к о т о р о м к о н т е к с т е .

Параметр: V — значение любого типа данных.
Результат: содержимым возвращаемого набора строковых значений являются имена (на верхнем

регистре) всехтипов данных, к которым принадлежит V. Данные имена уточняются именем схемы, содер­
жащей определение данного типа данных ('S C H E M A -TY P E '), если они не относятся к простому или агре­
гированному типу данных. Возвращаемый набор строковых значений может быть определен посредством
следующего алгоритма (данный алгоритм приводится здесь в целях пояснения, а не в качестве предписа­
ния какого-либо конкретного вида реализации):

а) возвращаемый набор строковых значений набор инициализируется включением как имени типа
данных, к которому принадлежит V, так и именем типа данных, которое представляет экземпляр V (если
они различаются), включая имена их схем, если данные типы данных являются именованными типами
данных; при этом применяются следующие правила:

П р и м е ч а н и е — Е с л и ф а к т и ч е с к и й п а р а м е т р , п е р е д а в а е м ы й ф у н к ц и и TYPEOF, б ы л ф о р м а л ь н ы м
п а р а м е т р о м н е к о т о р о й в ы ч и с л я е м о й ф у н к ц и и , т о « т и п о м д а н н ы х , к к о т о р о м у п р и н а д л е ж и т V (в с о о т в е т с т в и и

108

ГОСТ Р ИС010303-11 — 2009

с о б ъ я в л е н и е м) » я в л я е т с я т и п д а н н ы х , о б ъ я в л е н н ы й д л я и с х о д н о г о ф а к т и ч е с к о г о п а р а м е т р а , и л и т и п д а н н ы х
р е з у л ь т а т а в ы ч и с л е н и я в ы р а ж е н и я , о п р е д е л я ю щ е г о ф а к т и ч е с к и й п а р а м е т р , в с о о т в е т с т в и и с р а з д е л о м 12, а н е
т и п д а н н ы х , о б ъ я в л е н н ы й д л я ф о р м а л ь н о г о п а р а м е т р а , в м е с т о к о т о р о г о о н п о д с т а в л е н ,

1) если V является агрегированным значением, то имя типа данныхявляется просто именем агре­
гированного типа данных (ARRAY, BAG, LIST, SET), а не каким-либо другим,

2) если V является перечисляемым типом данных, базирующимся на другом перечисляемом типе
данных, то добавляют имена перечисляемыхтипов данных, получаемых при прослеживании взаимо­
связей BASED_ON, начиная от данного перечисляемого типа данных,

3) если V является наращиваемым перечисляемым типом данных, то рекурсивно добавляются
имена перечисляемыхтипов данных, являющихся расширениями V.

П р и м е ч а н и е — Д в е п о с л е д н и е и з п е р е ч и с л е н н ы х в ы ш е п о з и ц и й с п р а в е д л и в ы д л я р а с ш и р я е м о г о

п е р е ч и с л я е м о г о т и п а д а н н ы х , к о т о р ы й б а з и р у е т с я н а д р у г о м п е р е ч и с л я е м о м т и п е д а н н ы х ,

4) если V имеет неопределенное (?) значение, то возвращается пустой набор типа данных SET;
b) повторяют следующие действия до тех пор, пока возвращаемый набор не перестанет

расширяться:
1) выполняют следующие действия для всех имен в возвращаемом наборе:
- если текущее имя является именем простого типа данных, то пропускают,
- если текущее имя является именем агрегированного типа данных (ARRAY, BAG, LIST, SET), то

пропускают,
- если текущее имя является именем перечисляемого типа данных, то пропускают,
- если текущее имя является именем выбираемого типа данных, то к возвращаемому набору

добавляются имена всех типов данных (с именем схемы) из списка выбора, которые действительно
конкретизируются посредством V (данных имен может быть несколько, так как список выбора может
содержать имена типов данных, являющихся совместимыми подтипами общего супертипа или конкре­
тизациями одного общего обобщенного типа),

- если текущее имя является именем любого другого вида определенного типа данных, то имя
типа данных, на который ссылается определение данного типа данных, включая (при необходимости)
имя схемы, добавляется к возвращаемому набору. Если ссылка делается на агрегированный тип дан­
ных, то добавляется имя данного агрегированного типа данных,

- если текущее имя является именем объекта, то к возвращаемому набору добавляются имена
всех тех подтипов (включая, при необходимости, имя схемы), которые действительно конкретизируются
посредством V,

2) выполняют следующие действия для всех имен в возвращаемом наборе:
- если текущ ее имя является именем подтипа, то к возвращаемому набору добавляются имена

всех его супертипов,
- если текущ ее имя является именем конкретизации, то к возвращаемому набору добавляются

имена всех ее обобщений,
3) выполняют следующие действия для всех имен в возвращаемом наборе и для каждого типа

данных SELECT, у которого текущ ее имя присутствует в списке выбора:
- добавляют имя выбираемого типа данных к списку,
- если выбираемый тип данных базируется на другом выбираемом типе данных, то добавляют

имена выбираемых типов данных, получаемых при прослеживании взаимосвязей BASED_ON, начиная
с текущего выбираемого типа данных,

- если выбираемый тип данныхявляется наращиваемым выбираемым типом данных, то рекурсив­
но добавляют имена выбираемых типов данных, являющихся расширениями текущего выбираемого
типа данных,

4) выполняют следующие действия для всех имен в возвращаемом наборе: если текущее имя
импортировано в схему посредством операторов USE или REFERENCE, то в возвращаемый набор до­
бавляют имя из схемы, откуда был осуществлен импорт, уточненное именем данной схемы. Поскольку
операторы USE могут быть связаны в цепочки, в возвращаемый набор также добавляют имена из всех
связанных схем, уточненные именами соответствующих схем;

c) результатом функции является сформированный возвращаемый набор.
Если V имеет неопределенное (?) значение, то функция TYPEOF возвращает пустой набор.

П р и м е ч а н и е — Ф у н к ц и я TYPEOF з а в е р ш а е т с в о ю р а б о т у , к о г д а в с т р е ч а е т с я а г р е г и р о в а н н ы й т и п
д а н н ы х . Ф у н к ц и я н е д а е т и н ф о р м а ц и и о т н о с и т е л ь н о б а з и с н о г о т и п а д а н н ы х а г р е г и р о в а н н о г о з н а ч е н и я . П р и

109

ГОСТ Р ИС010303-11 — 2009

н е о б х о д и м о с т и д а н н а я и н ф о р м а ц и я м о ж е т б ы т ь п о л у ч е н а п р и п р и м е н е н и и ф у н к ц и и TYPEOF к
д о п у с т и м ы м э л е м е н т а м а г р е г и р о в а н н о г о з н а ч е н и я .

Примеры
1 В контексте следующей схемы:
SCHEMA this_schema;

TYPE
m ylist = LIST [1 :20] OF REAL;

ENDJYPE;

LOCAL
1st : m ylist;

END_LOCAL;

END_SCHEMA;
следующие условия имеют значение TRUE;
TYPEOF (1st) = ['THIS_SCHEMA.MYLIST', 'LIST']
TYPEOF (1st [17]) = ['R EA L ','N U M B ER ']
2 Действие операторов USE или REFERENCE показано на основе предыдущего примера:
SCHEMA another_schema;

REFERENCE FROM this_schem a (m ylist AS hislist);

1st: h is lis t;

END_SCHEMA;
В данном контексте следующее выражение имеет значение TRUE;
TYPEOF (1st) = ['ANOTHER_SCHEMA.HISLIST', 'THIS_SCHEMA.MYLIST', 'L IS T ']

15.26 Универсальная функция USEDIN
FUNCTION USEDIN (T: GENERIC ; R: STRING) : BAG OF GENERIC_ENTITY;
Функция USEDIN возвращает все экземпляры объекта, в которых используется указанный экземпляр

объекта в указанной роли.
Параметры:
a) Т — любой экземпляр любого объектного типа данных.
b) R — строка, содержащая полностью уточненное имя атрибута (роли), в соответствии с 15.20.
Результат: все экземпляры объекта, в которых используется указанный экземпляр объекта в указан­

ной роли, возвращаются в форме пакета (типа данных BAG).
Если экземпляр Т не исполняет никаких ролей или роль R не указана, то возвращается пустой пакет.
Если R представлен пустой строкой, то документируется каждое использование Т. Проверяют все

взаимосвязи, направленные к Т. Если взаимосвязь исходит от атрибута с именем R, то экземпляр объекта,
содержащий данный атрибут, добавляется к возвращаемому пакету. Отметим, что, если Т не использует­
ся, то возвращается пустой пакет.

Пример — Данный пример показывает, как может быть использовано правило для проверки
того, что должна существовать точка (объект point) в начале координат, используемая как центр
окружности. Заметим, что в данном примере выражение QUERY (см. 12.6.7) используется в качестве
параметра функции SIZEOF.

ENTITY point;
х, у, z : REAL;

END_ENTITY;
ENTITY circle;

centre : point;
axis : vector;
radius : REAL;

END_ENTITY; ...
("П равило "exam ple" находит каждую точку, используемую в качестве центра окружности, и затем

проверяет, что, по крайней мере, одна из этих точек расположена в начале координат*)

RULE example FOR (point);
LOCAL

circles : SET OF circ le := [] ; — пустой набор окружностей
END_LOCAL;

110

ГОСТ Р ИС010303-11 — 2009

REPEAT i := LOINDEX(point) ТО HIINDEX(point);
circles := circles +

USEDIN (point [i], 'THIS_SCHEMA.CIRCLE.CENTRE');
END_REPEAT;
WHERE R1 : SIZEOF (

QUERY(— начало запроса
at zero <* circles | — взять все точки
(at_zero.centre = point(0.0, 0.0, 0.0)) - - в 0,0,0

)
) >= 1; — по крайней мере, одна

END_RULE;

15.27 А риф метическая ф ункция VALUE
FUNCTION VALUE (V : STRING) : NUMBER;
Функция VALUE возвращает число, представленное строкой.
П ар а м е тр ^ — строка, содержащая действительный или целочисленный литерал (см. 7.5).
Результат: число, соответствующее содержанию строки. Если строка не может быть интерпретирова­

на как действительный или целочисленный литерал, то возвращается неопределенное (?) значение.

Пример — В данном примере представлены результаты вызова функции VALUE с разными пара­
метрами:

VALUE ('1.234') — > 1.234 (действительное число)
VALUE ('20') — >20 (целое число)
VALUE ('abc') — > ? (неопределенное значение)

15.28 Ф ункция принадлежности VALU EJN
FUNCTION V ALU E JN (С : AGGREGATE OF GENERIC : GEN; V : GENERIC : GEN) : LOGICAL;
Функция VALU EJN возвращает логическое значение в зависимости оттого, принадлежит ли конкрет­

ное значение к агрегированной структуре.
Параметры:
a) С — агрегированная структура любого типа;
b) V — выражение, совместимое по присваиванию с базисным типом С.
Результат:
a) если V или С имеет неопределенное (?) значение, то возвращается значение UNKNOWN;
b) если значение какого-либо элемента из С равно значению V, то возвращается значение TRUE;
c) если какой-либо элемент из С имеет неопределенное (?) значение, то возвращается значение

UNKNOWN;
d) во всех других случаях возвращается значение FALSE.

Пример — Следующая проверка обеспечивает, что существует хотя бы одна точка (объект point),
расположенная в начале координат:

LOCAL
points : SET OF point;

ENDJ.OCAL;

IF VALUEJN (points, point(0.0, 0.0, 0.0)) THEN...

15.29 Ф ункция уникальности VALUEJJNIQUE
FUNCTION VALUEJJNIQUE (V : AGGREGATE OF G ENERIC): LOGICAL;
Функция VALUEJJNIQUE возвращает логическое значение в зависимости оттого, являются ли зна­

чения элементов агрегированной структуры уникальными.
Параметр: V — агрегированная структура любого типа данных.
Результат:
a) если V имеет неопределенное (?) значение, то возвращается значение UNKNOWN;
b) если значения любых двух элементов из V равны, то возвращается значение FALSE;
c) если любой элемент из V имеет неопределенное (?) значение, то возвращается значение UNKNOWN;
d) во всех других случаях возвращается значение TRUE.

Пример — Следующая проверка обеспечивает, что все точки (объекты points) в наборе расположе­
ны на разных позициях (по определению, эти точки различны, то есть их экземпляры уникальны).

IF VALUEJJNIQUE (points) THEN...

111

ГОСТ Р И С 0 10303-11 — 2009

16 В строенны е процедуры

В я з ы к е EXPRESS и м е е т с я д в е в с т р о е н н ы е п р о ц е д у р ы , и с п о л ь з у е м ы е д л я у п р а в л е н и я с п и с к а м и .

В д а н н о м р а з д е л е п р и в е д е н о о п и с а н и е э т и х п р о ц е д у р . В с т р о е н н ы е п р о ц е д у р ы н е и с п о л н я ю т с я , е с л и и м

п е р е д а е т с я н е о п р е д е л е н н ы й (?) п а р а м е т р , е с л и т о л ь к о и н о е н е о п р е д е л е н о в я в н о м в и д е в о п и с а н и и п р о ­
ц е д у р ы .

Д л я к а ж д о й п р о ц е д у р ы з а д а н з а г о л о в о к , ч т о б ы п о к а з а т ь т и п ы д а н н ы х ф о р м а л ь н ы х п а р а м е т р о в .
16.1 П роцедура INSERT
PROCEDURE INSERT (VAR L : LIST OF GENERIC : GEN; E : GENERIC : GEN; P : INTEG ER);
П р о ц е д у р а INSERT в с т а в л я е т э л е м е н т н а з а д а н н у ю п о з и ц и ю в с п и с к е .
П а р а м е т р ы :
a) L — з н а ч е н и е с п и с к а , в к о т о р ы й д о л ж е н б ы т ь в с т а в л е н э л е м е н т ;
b) Е — э к з е м п л я р , в с т а в л я е м ы й в с п и с о к L. Е д о л ж е н б ы т ь с о в м е с т и м с б а з и с н ы м т и п о м L, к а к

у к а з а н о м е т к а м и т и п о в в з а г о л о в к е п р о ц е д у р ы ;
c) Р — ц е л о е ч и с л о , з а д а ю щ е е п о з и ц и ю в L, н а к о т о р у ю д о л ж е н б ы т ь в с т а в л е н э л е м е н т Е.
Р е з у л ь т а т : с п и с о к L м о д и ф и ц и р у е т с я в с т а в л е н и е м Е в L н а у к а з а н н у ю п о з и ц и ю . Е в с т а в л я е т с я

н е п о с р е д с т в е н н о п о с л е с у щ е с т в у ю щ е г о э л е м е н т а , р а с п о л о ж е н н о г о н а п о з и ц и и Р, е с л и Р = 0, т о Е с т а н о ­
в и т с я п е р в ы м э л е м е н т о м с п и с к а .

У с л о в и е : 0 < Р < SIZEOF(L).
16.2 Процедура REMOVE
PROCEDURE REMOVE (VAR L : LIST OF GENERIC; P : INTEGER);
П р о ц е д у р а REMOVE у д а л я е т э л е м е н т и з з а д а н н о й п о з и ц и и в с п и с к е .
П а р а м е т р ы :
a) L — з н а ч е н и е с п и с к а , и з к о т о р о г о д о л ж е н б ы т ь у д а л е н э л е м е н т ;
b) Р — ц е л о е ч и с л о , з а д а ю щ е е п о з и ц и ю в L, и з к о т о р о й д о л ж е н б ы т ь у д а л е н э л е м е н т .
Р е з у л ь т а т : с п и с о к L м о д и ф и ц и р у е т с я у д а л е н и е м э л е м е н т а , н а х о д я щ е г о с я н а з а д а н н о й п о з и ц и и Р.
У с л о в и е : 1 < Р < SIZEOF (L).

112

ГОСТ Р ИСО 10303-11 — 2009

Приложение А
(обязательное)

Синтаксис языка EXPRESS

В настоящем приложении определены лексические элементы языка и грамматические правила, которым
данные элементы должны подчиняться.

П р и м е ч а н и е — Прямое применение данного определения синтаксиса приведет к неоднозначности при
построении синтаксических анализаторов. Данное определение разработано для представления информации,
относящейся к использованию идентификаторов. Интерпретированные идентификаторы определяют лексичес­
кие элементы, являющиеся ссылками на объявленные идентификаторы, и поэтому не должны трактоваться как
простые идентификаторы (simple_id). Разработчик синтаксического анализатора должен создать таблицу соот­
ветствия или что-то подобное ей с тем, чтобы обеспечить разрешение ссылок на идентификаторы и получение
требуемого ссылочного лексического элемента для проверки грамматических правил. Такой подход был приме­
нен, чтобы помочь разработчикам синтаксических анализаторов обеспечить отсутствие неоднозначности при
использовании идентификаторов.

А.1 Лексические элементы
Приведенные ниже правила определяют лексические элементы, используемые в языке EXPRESS. За

исключением случаев, когда это явно установлено в синтаксических правилах, никакие пробелы или комментарии
не должны присутствовать в тексте, относящемся к отдельному синтаксическому правилу, представленному в
А .1.1 — А.1.3 и А.1.5.

А.1.1 Ключевые слова
В настоящем подразделе установлены правила, используемые для представления ключевых слов языка

EXPRESS.

П р и м е ч а н и е — Здесь используется соглашение, установленное в 6.1, по которому каждое ключевое
слово представляется синтаксическим правилом, содержащим в левой части данное ключевое слово, записанное
с использованием символов верхнего регистра (прописных букв). Поскольку строковые литералы в синтаксических
правилах являются независящими от регистра, данные ключевые слова могут задаваться в формальных специ­
фикациях с использованием символов верхнего, нижнего или обоих регистров.

0 ABS = 1 abs 1.
1 ABSTRACT = 1 abstract1.
2 ACOS = 1 acos 1.
3 AGGREGATE = 1 aggregate '.
4 ALIAS = 1 a lia s1.
5 AND = 'a n d '.
6 ANDOR = 'a n d o r '.
7 ARRAY = 1 a rray1.
8 AS = 1 a s 1.
9 ASIN = 1 a s in '.

10 ATAN = 1 a tan '.
11 BAG = ' bag '.
12 BASED ON = ' based_on '
13 BEGIN = ' begin ' .
14 BINARY = 'b in a ry '.
15 BLENGTH = ' blength ' .
16 BOOLEAN = ' boolean ' .
17 BY = ' b y '.
18 CASE = ' ca se '.
19 CONSTANT = ' constan t' .
20 CONST E = ' const_e ' .
21 COS = 'c o s '.
22 DERIVE = ' de rive '.
23 DIV = ' d iv '.
24 ELSE = ' e ls e '.
25 END = 'e n d '.
26 END ALIAS = ' end_a lias '.
27 END CASE = ' end case ' .

113

ГОСТ Р ИСО 10303-11— 2009

28 END_CONSTANT = 1 end_constant1 .
29 END_ENTITY = 1 end_entity 1.
30 END FUN CTIO N = 1 end junc tion 1 .
31 EN D JF = ' end i f ' .
32 E N D LO C A L = 1 e n d jo c a l1.
33 ENDPRO CEDURE = 1 endprocedure 1 .
34 END_REPEAT = 1 end_repeat1.
35 E N D R U LE = 1 end_rule 1 .
36 END_SCFIEMA = 1 end_schema 1.
37 EN D S U B TYP E C O N S TR A IN T = 1 end_subtype_constraint1
38 END_TYPE = 1 end_type 1.
39 ENTITY = 1 en tity1.
40 ENUMERATION = 1 enumeration 1.
41 ESCAPE = 'e s c a p e 1.
42 EXISTS = 1 exists 1.
43 EXTENSIBLE = 'e x te n s ib le '.
44 EXP = ' exp '.
45 FALSE = ' false '.
46 FIXED = ' fixed '.
47 FOR = ' fo r '.
48 FORMAT = ' fo rm a t'.
49 FROM = ' from '.
50 FUNCTION = ' function '.
51 GENERIC = 'g e n e r ic '.
52 GENERIC_ENTITY = ' generic_entity ' .
53 HIBOUND = ' hibound '.
54 HIINDEX = ' hiindex '.
55 IF = ' i f ' .
56 IN = ' in ' .
57 INSERT = ' in s e r t '.
58 INTEGER = ' in te g e r '.
59 INVERSE = ' inverse '.
60 LENGTH = ' length '.
61 LIKE = ' l ik e '.
62 LIST = ' l is t ' .
63 LOBOUND = ' lobound ' .
64 LOCAL = ' lo ca l' .
65 LOG = ' log '.
66 LOG10 = ' log 10 '.
67 LOG2 = ' log2 '.
68 LOGICAL = ' log ica l'.
69 LOINDEX = ' lo in d e x '.
70 MOD = ' mod '.
71 NOT = ' no t' .
72 NUMBER = 'n u m b e r '.
73 NVL = ' n v l'.
74 ODD = ' odd '.
75 OF = ' o f ' .
76 ONEOF = 'o n e o f '.
77 OPTIONAL = ' op tiona l'.
78 OR = ' o r ' .
79 OTHERWISE = ' otherwise '.
80 PI = ' p i ' .
81 PROCEDURE = 'p ro ce d u re '.
82 QUERY = 'query '.
83 REAL = ' re a l'.
84 REFERENCE = ' reference '.
85 REMOVE = ' remove '.
86 RENAMED = ' renamed '.
87 REPEAT = ' repeat'.
88 RETURN = ' return '.
89 ROLESOF = ' ro leso f'.

114

ГОСТ Р ИСО 10303-11— 2009

90 RULE = 1 rule 1.
91 SCHEMA = 's c h e m a '.
92 SELECT = ' se le c t'.
93 SELF = 's e lf '.
94 SET = ' s e t '.
95 SIN = 's in '.
96 SIZEOF = 's iz e o f '.
97 SKIP = 's k ip '.
98 SORT = ' s q r t '.
99 STRING = 's tr in g '.

100 SUBTYPE = ' subtype '.
101 SUBTYPE_CONSTRAINT = ' subtype_constraint' .
102 SUPERTYPE = 'supertype '
103 TAN = ' tan '.
104 THEN = 'then '.
105 TO = ' to '.
106 TOTAL OVER = ' to ta l_over'.
107 TRUE = 't r u e '.
108 TYPE = ' type '.
109 TYPEOF = 'ty p e o f'.
110 UNIQUE = ' unique '.
111 UNKNOWN = ' unknown ' .
112 UNTIL = 'u n t i l ' .
113 USE = 'u s e '.
114 USEDIN = ' usedin '.
115 VALUE = 'v a lu e '.
116 VALU EJN = 'v a lu e jn '.
117 V ALU EU N IQ U E = ' value unique '.
118 VAR = ' v a r '.
119 WHERE = 'w h e re '.
120 WHILE = 'w hile '.
121 WITH = 'w ith '.
122 XOR = ' x o r '.

A.1.2 Классы символов
Представленные ниже правила определяют различные классы символов, используемых при построении

лексических элементов в А .1.3.
123 bit = ' 0 ' | '1 '.
124 digit = ' 0 ' | ' 1 ' | ' 2 ' | ' 3 ' | ' 4 ' | ' 5 ' | ' 6 ' | ' 7 ' | ' 8 ' | ' 9 ' .
125 digits = digit { d ig it} .
126 encoded_character = octet octet octet octet .
127 h e x d ig it = digit | ' a ' | ' b ' | ' c ' | ' d ' | ' e ' | ' f ' .
128 letter = ' a ' | ' b ' | ' c ' | ' d ' | ' e ' | ' f ' | ' g ' | ' h ' | ' i ' | ' j ' |

' k ' | ' l ' | ' m ' | ' n ' | ' о ' | ' p ' | ' q ' | ' r ' | ' s ' | ' t ' |

129 lparen_then_not_lparen_star = ' (' { ' (' } not_lparen_star
{ not_lparen_star} .

130 not_lparen_star = not_paren_star | ') ' .
131 not_paren_star = letter | digit | not_paren_star_special .
132 not_paren_star_quote_special = i и i

i i

' < '
' \ '

i i
i _ i

Ti i i

' $ ' | ' % '| ' &' |
' . ' | 7 ' | ' : ' |

' > ' | ' ? ' | ' @ ' |
i A i | i i | 1 1 1 |
i i

133 not_paren_star_special = not_paren_star_quote_special | ' ' ' ' .
134 not_quote = not_paren_star_quote_special | letter | digit | ' ('

i \ i I i * i

135 not_rparen_star = not_paren_star | ' (' .
136 octet = hex digit hex digit .
137 special = not_paren_star_quote_special | ' (' | ') ' | ' * ' | .
138 not_rparen_star_then_rparen = not_rparen_star { no t_rparen_star}

') ' { ') ' } ■

115

ГОСТ Р ИСО 10303-11— 2009

А.1.3 Лексические элементы
Представленные ниже правила определяют, как определенные комбинации символов интерпретируются в

качестве лексических элементов языка.
139 b inary jite ra l = ' % ' bit { b it } .
140 encoded_string_literal = ' " ' encoded character {

encodedcha rac te r} ' " ' .
141 in tegerjite ra l = digits .
142 re a ljite ra l = nteger literal |

(d ig its ' . ' [digits] [' e ' [sign] digits]) .
143 s im p le jd = letter { letter | digit | ' _ ' } .
144 simple_string_literal = \ q { (\ q \ q) | not quote | \s | \x9 |

\xA | \x D } \q .
A. 1.4 Комментарии
Представленные ниже правила определяют синтаксис комментариев в языке EXPRESS.

145 em beddedrem ark = ' (* ' [rem ark tag] { (n o tp a re n s ta r {
n o tp a r e n s ta r }) |
Iparen then not lparen star | (' * ' { }) |
not rparen star then rparen | embedded remark }
i i

146 remark = embedded remark | ta ilre m a rk .
147 remark tag = ' " ' re m a rk re f{ ' . ' r e ma r k r e f } ' .
148 remark ref = a ttr ib u te re f | constant_ref | e n tity re f |

enum eration re f | fu n c tio n re f | pa ram ete rre f | procedure_ref |
ru le la b e lre f | ru le re f | s ch e m a re f | subtype_constraint_ref |
ty p e la b e lre f | ty p e re f | variable r e f .

149 tail remark = ' — ' [remark tag] { \a | \s | \x9 | \xA | \x D }
\ n .

A. 1.5 Интерпретированные идентификаторы
Представленные ниже правила определяют идентификаторы, для которых установлен конкретный смысл

(то есть они объявляются как типы, функции и т. д.).

П р и м е ч а н и е — Предполагается, что идентификаторы, определенные данными правилами, распоз­
наются реализацией. Способ, которым реализация получает эту информацию, не связан с определением языка.
Одним из способов получения данной информации является многопроходный синтаксический анализ, когда на
первом проходе собираются идентификаторы из их объявлений, а на последующих проходах появляется воз­
можность отличить, например, variable_ref от function_ref.

150 attribute_ref = a ttribu te jd .
151 constant_ref = cons tan tjd .
152 entity_ref = e n tity jd .
153 enumeration_ref = enum eration jd .
154 function_ref = fu n c tio n jd .
155 parameter_ref = param eterjd .
156 procedure_ref = p rocedure jd .
157 rule_label_ref = ru le ja b e ljd .
158 rule_ref = ru le jd .
159 schema_ref = sch e m a jd .
160 subtype_constraint_ref = subtype_constraint_id .
161 type_label_ref = type label id .
162 type_ref = ty p e jd .
163 variable_ref = va ria b le jd .

A.2 Грамматические правила
Представленные ниже правила определяют, как рассмотренные выше лексические элементы могут объе­

диняться в конструкции языка EXPRESS. Пробелы и/или комментарии могут помещаться между любыми двумя
лексемами в данных правилах. Первичным синтаксическим правилом языка EXPRESS является syntax.

164 abstract_entity_declaration = ABSTRACT .
165 abstract supertype = ABSTRACT SUPERTYPE 1; 1.
166 abstract supertype declaration = ABSTRACT SUPERTYPE [

subtype_constraint] .
167 a c tu a lp a ra m e te rlis t = 1 (1 parameter { 1 , 1 param eter} 1) 1.
168 add like op = 1 + 11' - ' | OR | XOR .
169 aggregate jn itia lizer = 1 [1 [element { 1, 1 element }] '] ' ■

116

170
171
172
173
174

175

176
177
178
179
180
181
182
183
184
185
186
187

188
189
190
191

192
193
194

195

196
197
198
199

200

201
202
203
204

205

206
207
208
209

210
211
212
213

214

ГОСТ Р ИСО 10303-11— 2009

aggregate_source = s im pleexpression .
aggregate_type = AGGREGATE [' : ' typ e ja b e l] OF parameter type .
aggregation_types = array type | b a g jy p e | list_type | set type .
algorithm_head = { declaration } [constant_decl] [local_decl] .
alias_stm t = ALIAS va ria b le jd FOR general_ref { qua lifie r} ' ; '

stmt { s tm t} E N D A LIA S ' ; ' .
array_type = ARRAY boundspec OF [O PTIO N AL] [U N IQ U E]

instantiable_type .
assignment_stmt = g e n e ra lre f { qua lifie r} ' ' expression ' ; ' .
attribute_decl = a ttr ib u te jd | redeclared_attribute .
a ttribu te jd = simple_id .
attribute_qualifier = 1 . 1 attribute ref .
bag_type = BAG [bound spec] OF instantiable_type .
binary_type = BINARY [w id th spec] .
boolean_type = BOOLEAN .
bound_1 = num ericexpression .
bound_2 = numeric_expression .
bound_spec = ' [' bound_1 ' : ' bound_2 '] ' .
built_in_constant = CONST E | PI | SELF | ' ? ' .
built_in_function = ABS | ACOS | ASIN | ATAN | BLENGTH | COS |

EXISTS | EXP | FORMAT | HIBOUND | HIINDEX |
LENGTH | LOBOUND | LOINDEX | LOG | LOG2 |
LOG 10 | NVL | ODD | ROLESOF | SIN | SIZEOF |
SORT | TAN | TYPEOF | USEDIN | VALUE |
VALU EJN | VALUE UNIQUE.

built_in_procedure = INSERT | REMOVE.
case_action = case_label { ' , ' case la b e l} ' : ' s tm t.
ca se ja be l = expression .
case_stmt = CASE selector OF { case action } [OTHERWISE ' : ' stmt]

END_CASE' ; ' .
compound_stmt = BEGIN stmt { s tm t} END ' ; ' .
concrete types = aggregation types | simple_types | t y p e r e f .
constant body = co ns tan tjd ' : ' instantiable_type ' := '

expression ' ; ' .
constant decl = CONSTANT constant_body { constant_body }

END CONSTANT' ; ' .
constant factor = built in constant | constan t_re f.
cons tan tjd = s im p le jd .
constructed types = enum erationtype | select_type .
declaration = entity decl | function_decl | procedure_decl |

subtype constraint decl | type_decl .
derived attr = attribute d e c l ' : ' parameter_type ' := ' expression

i . i

de rivec lause = DERIVE derived attr { derived_attr} .
d o m a in ru le = [rule label id ' : '] expression .
element = expression [' : ' repetition] .
entity body = { explicit a t t r } [derive clause]

[inverse clause] [unique_clause]
[where clause] .

entity constructor = entity re f ' (' [expression { ' , '
expression}] ') ' .

entity decl = entity_head entity body END ENTITY ' ; ' .
entity liead = ENTITY entity id subsuper ' ; ' .
e n tity jd = s im p le jd .
enum erationextens ion = B A S E D O N ty p e re f [WITH

enumeration items] .
enum eration jd = s im p le jd .
enumeration items = 1 (1 enum eration jd { ' , ' enum eration jd } ') ' .
enum erationreference = [type r e f1 . '] enum eration_ref.
enum erationJype = [EXTENSIBLE] ENUMERATION [(OF

enumeration items) | enumeration_extension] .
escape_stmt = ESCAPE 1; 1.

117

ГОСТ Р ИСО 10303-11— 2009

215 explicit_attr = attribute_decl attribute d e c l '
[OPTIONAL] p a ra m e te rtyp e ' ; ' .

216 expression = simple_expression [rel_op_extended
simple_expression] .

217 factor = simple_factor [' * * ' simple_factor] .
218 formal_parameter = param ete rjd param eterjd '

parameter_type .
219 function_call = (built_in_function | function_re f)

[actual_parameter_list] .
220 function_decl = fu n c tio n jie a d algorithm_head stmt { stmt }

END_FUNCTION 1; 1.
221 fu n c tio n jie a d = FUNCTION fu n c tio n jd [1 (1 formal_parameter

{ 1; 1 formal_parameter
parameter_type 1 ; 1 .

222 fu n c tio n jd = s im p le jd .
223 generalized types = aggregate_type | general_aggregation_types |

generic_entity_type | generic_type .
224 general_aggregation_types = general_array type |

general_bag type | g e n e ra ljis t jy p e |
general_set type .

225 general array type = A R R AY[bound_spec] OF [O PTIO NAL]
[U N IQ U E] parameter type .

226 general bag type = BAG [bound_spec] OF parameter_type .
227 general list type = LIST [bound_spec] OF [UNIQUE]

parameter_type .
228 general ref = parameter_ref | va riab le_re f.
229 general set type = SET [bound_spec] OF parameter_type .
230 generic entity type = GENERIC_ENTITY [1: 1 type label] .
231 generic type = GENERIC [1: 1 typ e ja b e l] .
232 group_qualifier = 1 \ 1 en tity_ re f.
233 if_stmt = IF logical_expression THEN stmt { s tm t} [ELSE stmt

{ s tm t}] EN D JF 1; 1.
234 increment = num ericexpression .
235 increment_control = variable id ' := ' b o u n d jl TO bound_2 [BY

increment] .
236 index = numeric_expression .
237 index_1 = index .
238 index_2 = index .
239 index_qualifier = ' [' index_1 [' : ' index_2] '] ' .
240 instantiable_type = concrete types | e n t i ty r e f .
241 integer_type = IN TEG ER .
242 interface_specification = reference clause | use_clause .
243 interval = ' { ' interval low interval op interval_item

interval_op interval high ' } ' .
244 interval_high = s im pleexpression .
245 in te rva ljtem = simple expression .
246 in te rva ljow = simple expression .
247 interval_op = ' < ' | ' .
248 inverse_attr = attribute d e c l' : ' [(SET | BAG) [bound_spec]

OF] entity ref FOR [entity r e f ' . ']
attribute r e f ' ; ' .

249 inverse_clause = INVERSE inverse attr { inverse_attr} .
250 list_type = LIST [bound spec] OF [UNIQUE] instantiable_type .
251 literal = b inary jite ra l | logical literal | re a ljite ra l |

s tr in g jite ra l .
252 local_decl = LOCAL loca lva riab le { loca lva riab le }

END_LOCAL' ; ' .
253 local_variable = variable id { ' , 1 variable id } 1: 1

parameter type [1 := 1 expression] ' ; ' .
254 logical_expression = expression .
255 logicalJiteral = FALSE | TRUE | UNKNOWN .
256 logical_type = LOGICAL .

118

ГОСТ Р ИСО 10303-11— 2009

257 multiplication like op = 1 * 1 | ' / ' | DIV | MOD | AND | 11|'.
258 named_types = entity ref | type_ref.
259 named_type_or_rename = named_types [AS (entity id | type_id)] .
260 null_stmt = 1; 1.
261 number_type = NUMBER .
262 numeric_expression = simpleexpression .
263 one_of = ONEOF 1 (1 supertype_expression { 1, 1

supertype_expression } 1) 1.
264 parameter = expression .
265 parameterjd = simplejd .
266 parameter_type = generalized types | named types | simple types .
267 population = entity_ref.
268 precision_spec = numericexpression .
269 primary = literal | (qualifiable factor { qualifier}) .
270 procedure_call_stmt = (built in procedure | procedureref)

[actual parameter list] 1 ; 1 .
271 procedure_decl = procedure head algorithm head { stmt }

ENDPROCEDURE1; 1.
272 procedure_head = PROCEDURE procedure id [1 (1 [VAR]

formalparameter { 1; 1 [VAR]
formalparameter} 1) 1] 1; 1.

273 procedurejd = simplejd .
274 qualifiablejactor = attribute ref | constant_factor |

function call | generalref | population .
275 qualified_attribute = SELF groupqualifier attribute qualifier .
276 qualifier = attribute_qualifier | group qualifier |

index_qualifier .
277 query_expression = QUERY1 (1 variable id '< * 'aggregate source ' | '

logical_expression ') ' .
278 real_type = REAL [1 (1 precision spec') '].
279 redeclared_attribute = qualified attribute [RENAMED

attributejd] .
280 referenced attribute = attribute_ref | qualified_attribute .
281 reference clause = REFERENCE FROM schema_ref [' ('

resourceorrename { ' , ' resource_or_rename }

282 relop = | | | | | | ' :<>:' |
283 rel op extended = rel op | IN | LIKE .
284 rename id = constant id | entityjd | functionjd | procedurejd |

type id .
285 repeatcontrol = [incrementcontrol] [while_control]

[until control] .
286 repeat stmt = REPEAT repeat control' ; ' stmt { stmt}

END REPEAT'; ' .
287 repetition = numeric expression .
288 resourceorrename = resource ref [AS rename id] .
289 resource ref = constant ref | entity_ref | function ref |

procedure ref | type_ref.
290 return stmt = RETURN [' (' expression
291 rule decl = rule head algorithm head { stmt } where clause

END RULE' ; ' .
292 rule head = RULE rule id FOR' (' entity_ref { ' , ' entity ref}

i ^ i i . i

293 rule id = simple id .
294 rule label id = simplejd .
295 schema body = { interface specification } [constant decl]

{ declaration | rule_decl} .
296 schema decl = SCHEMA schema id [schema version id '

schema body END SCHEMA' ; ' .
297 schema id = simplejd .
298 schema version id = string literal .
299 selector = expression .

119

ГОСТ Р ИСО 10303-11— 2009

300 select_extension = BASEDJDN type ref [WITH selectjist] .
301 selectjist = 1 (' named_types { 1, 1 named_types } 1) 1.
302 select_type = [EXTENSIBLE [GENERIC_ENTITY]] SELECT

[selectjist | select_extension] .
303 setjype = SET [bound_spec] OF instantiablejype .
304 sign = ' + ' I 1- 1.
305 simple_expression = term { addJike_op term } .
306 simple_factor = aggregatejnitializer | entity_constructor |

enumeration_reference | interval |
query_expression | ([unary_op] (1 (1

expression 1) 1 | primary)) .
307 simplejypes = binaryjype | booleanjype | integerjype |

logicaljype | numberjype | real type |
stringJype .

308 skip_stmt = SKIP 1; 1.
309 stmt = alias_stmt | assignment_stmt | case_stmt | compound_stmt |

escapestmt | if_stmt | null_stmt | procedurecallstmt |
repeat_stmt | return_stmt | skip_stmt.

310 stringjiteral = simple_stringjiteral | encoded string literal .
311 stringjype = STRING [width_spec].
312 subsuper = [supertype_constraint] [subtype declaration] .
313 subtype_constraint = OF 1 (1 supertype_expression ') ' .
314 subtype_constraint_body = [abstract_supertype] [total over]

[supertype_expression ' ; '].
315 subtype_constraint_decl = subtype_constraint_head

subtype_constraint_body
END_SUBTYPE_CONSTRAINT ' ; ' .

316 subtype_constraint_head = SUBTYPE_CONSTRAINT
subtype_constraint id FOR entityref
< . <

317 subtype_constraintJd = simplejd .
318 subtype_declaration = SUBTYPE OF ' (' entity ref entity ref

} ') '■
319 supertype constraint = abstract_entity_declaration |

abstract_supertype_declaration |
supertyperule .

320 supertype expression = supertypefactor { ANDOR
supertypefactor} .

321 supertype factor = supertype term { AND supertypejerm } .
322 supertype rule = SUPERTYPE subtype_constraint.
323 supertypejerm = entity ref | one of | ' (' supertype_expression

') '■
324 syntax = schemadecl { schemadecl}.
325 term = factor { multiplicationlikeop factor} .
326 total over = TOTAL OVER 1 (1 entity_ref { 1, 1 entity_ref} 1) ' ' ; ' .
327 type_decl = TYPE typejd 1 = 1 underlyingjype 1; 1 [where_clause]

END_TYPE 1; 1.
328 type id = simplejd .
329 type label = type label id | type label_ref.
330 type labeljd = simple id .
331 unary_op = ' + ' | | NOT.
332 underlyingjype = concretejypes | constructedjypes .
333 unique_clause = UNIQUE unique rule 1 ; 1 { unique_rule '; ' } .
334 unique_rule = [rule label id 1 : 1] referenced_attribute { 1 , 1

referenced_attribute } .
335 until_control = UNTIL logicalexpression .
336 use_clause = USE FROM schemaref [1 (1 namedJype_or_rename

{ 1, 1 namedJype_or_rename
337 variablejd = simple id .
338 where_clause = WHERE domainrule 1; 1 { domain_rule '; ' } .
339 while_control = WHILE logical expression .
340 width = numeric_expression .
341 width_spec = 1 (1 width 1) 1 [FIXED].

120

о
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

ГОСТ Р ИСО 10303-11 — 2009

А.З Список перекрестных ссылок
Элементы, указанные слева, используются в правилах, указанных справа.
ABS I 187
ABSTRACT
ACOS
AGGREGATE
ALIAS
AND
ANDOR
ARRAY
AS
ASIN
ATAN
BAG
BASED ON
BEGIN
BINARY
BLENGTH
BOOLEAN
BY
CASE
CONSTANT
CONST E
COS
DERIVE
DIV
ELSE
END
END ALIAS
END CASE
END CONSTANT
END ENTITY
END FUNCTION
END IF
END LOCAL
END PROCEDURE
END REPEAT
END RULE
END SCHEMA
END SUBTYPE CONSTRAINT
END TYPE
ENTITY
ENUMERATION
ESCAPE
EXISTS
EXTENSIBLE
EXP
FALSE
FIXED
FOR
FORMAT
FROM
FUNCTION
GENERIC
GENERIC ENTITY
HIBOUND
HIINDEX
IF
IN
INSERT
INTEGER

164,165,166
187
171
174
257,321
320
175,225
259,288
187
187
180,226,248
209,300
192
181
187
182
235
191
195
186
187
201
257
233
192
174
191
195
206
220
233
252
271
286
291
296
315
327
207
213
214
187
213.302
187
255
341
174,248,292,316
187
281,336
221
231
230.302
187
187
233
283
188
241

121

ГОСТ Р ИСО 10303-11— 2009

59 INVERSE | 249
60 LENGTH | 187
61 LIKE | 283
62 LIST | 227,250
63 LOBOUND | 187
64 LOCAL | 252
65 LOG | 187
66 LOG 10 | 187
67 LOG2 | 187
68 LOGICAL | 256
69 LOINDEX | 187
70 MOD | 257
71 NOT | 331
72 NUMBER | 261
73 NVL | 187
74 ODD | 187
75 OF | 171,175,180,191,213,225,226,227,229, 248,250,303,313,318
76 ONEOF | 263
77 OPTIONAL | 175,215,225
78 OR | 168
79 OTHERWISE | 191
80 PI | 186
81 PROCEDURE | 272
82 QUERY | 277
83 REAL | 278
84 REFERENCE | 281
85 REMOVE | 188
86 RENAMED | 279
87 REPEAT | 286
88 RETURN | 290
89 ROLESOF | 187
90 RULE | 292
91 SCHEMA | 296
92 SELECT | 302
93 SELF | 186,275
94 SET | 229,248,303
95 SIN | 187
96 SIZEOF | 187
97 SKIP | 308
98 SORT | 187
99 STRING | 311

100 SUBTYPE | 318
101 SUBTYPE_CONSTRAINT | 316
102 SUPERTYPE | 165,166,322
103 TAN | 187
104 THEN | 233
105 TO | 235
106 TOTAL OVER | 326
107 TRUE | 255
108 TYPE | 327
109 TYPEOF | 187
110 UNIQUE | 175,225,227,250,333
111 UNKNOWN | 255
112 UNTIL | 335
113 USE | 336
114 USEDIN | 187
115 VALUE | 187
116 VALUE IN | 187
117 VALUE UNIQUE | 187
118 VAR | 272
119 WHERE | 338

122

ГОСТ Р ИСО 10303-11 — 2009

120 WHILE
121 WITH
122 XOR
123 bit
124 d ig it
125 digits
126 encoded character
127 hex d ig it
128 le tte r
129 Iparen then not lparen star
130 not lparen sta r
131 n o tp a r e n s ta r
132 not paren sta r quote special
133 not paren sta r special
134 not quote
135 not rparen star
136 octe t
137 special
138 not rparen star then rparen
139 binary literal
140 encoded string literal
141 in te g e rlite ra l
142 real literal
143 sim ple id
144 sim ple string literal
145 embedded rem ark
146 rem ark
147 re m a rk ta g
148 re m a rk re f
149 tail_remark
150 attribute_ref
151 constant_ref
152 entity_ref
153 enumeration_ref
154 function_ref
155 parameterref
156 procedure ref
157 rule label ref
158 rule ref
159 schemaref
160 subtype_constraint_ref
161 type_label_ref
162 type_ref
163 variable ref
164 abstract_entity_declaration
165 abstract_supertype
166 abstract_supertype_declaration
167 actualparameterlist
168 add like op
169 aggregate_initializer
170 aggregate source
171 aggregate_type
172 aggregation_types
173 algorithm_head
174 alias_stmt
175 array_type
176 assignment_stmt
177 attribute_decl
178 attribute id
179 attributequalifier
180 bag_type

339
209,300
168
139
125.127.131.134.143
141,142
140
136
131.134.143
145
129
130,135,145
133,134,137
131
144
138
126

145
251
310
142
251
178,197,208,210,222,265,273,293,294,297,317,328,330,337
310
145,146

145.
147
146
148.
148,
148,
148,
148,
148,
148,
148
148
148,
148
148,
148,
148,
319
314
319
219,
305
306
277
223
193
220,
309
172
309
200,
150,
275,
172

149

179,248,274,280
196.289
205,232,240,248,258,267,289,292, 316,318,323,326
212
219.289
228
270.289

281,336

329
193,209,212,258,289,300
228

270

271,291

215,248
177,279
276

123

ГОСТ Р ИСО 10303-11— 2009

181 binary_type | 307
182 boolean_type | 307
183 bound_1 | 185,235
184 bound_2 | 185,235
185 bound_spec | 175,180,225,226,227,229,248,250,303
186 built_in_constant | 196
187 builti n_function | 219
188 built_in_procedure | 270
189 case_action | 191
190 caselabel | 189
191 casestmt | 309
192 compound_stmt | 309
193 concrete_types | 240,332
194 constant_body | 195
195 constant_decl | 173,295
196 constant_factor | 274
197 constantjd | 151,194,284
198 constructed_types | 332
199 declaration | 173,295
200 derived_attr | 201
201 deriveclause | 204
202 domainrule | 338
203 element | 169
204 entity_body | 206
205 entity_constructor | 306
206 entity_decl | 199
207 entity_head | 206
208 entityid | 152,207,259,284
209 enumeration_extension | 213
210 enumeration_id | 153,211
211 enumeration_items | 209,213
212 enumerationreference | 306
213 enumeration_type | 198
214 escape_stmt | 309
215 expl ic ita ttr | 204
216 expression | 176,190,194,200,202,203,205,253,254, 264,290,299,306
217 factor | 325
218 formalparameter | 221, 272
219 function_call | 274
220 function_decl | 199
221 function_head | 220
222 function_id | 154,221,284
223 generalizedtypes | 266
224 general_aggregation_types | 223
225 generalarraytype | 224
226 general_bag_type | 224
227 generallisttype | 224
228 generalref | 174,176,274
229 general_set_type | 224
230 generic_entity_type | 223
231 generic_type | 223
232 groupqualifier | 275,276
233 if_stmt | 309
234 increment | 235
235 increment_control | 285
236 index | 237,238
237 index_1 | 239
238 index_2 | 239
239 index_qualifier | 276
240 instantiable_type | 175,180,194,250,303
241 integer_type | 307

124

ГОСТ Р ИСО 10303-11— 2009

242 interface_specification
243 interval
244 interval high
245 intervaljtem
246 intervaljow
247 interval_op
248 inverse_attr
249 inverse clause
250 list type
251 literal
252 local decl
253 local variable
254 logical expression
255 logical literal
256 logical type
257 multiplication like op
258 named_types
259 named type or rename
260 null stmt
261 number_type
262 numeric expression
263 oneof
264 parameter
265 parameterjd
266 parametertype
267 population
268 precision_spec
269 primary
270 procedurecallstmt
271 proceduredecl
272 procedure head
273 procedures
274 qualifiable factor
275 qualified_attribute
276 qualifier
277 query expression
278 real type
279 redeclared attribute
280 referenced_attribute
281 referenceclause
282 rel op
283 rel op extended
284 renameid
285 repeat control
286 repeat stmt
287 repetition
288 resource or rename
289 resource ref
290 return stmt
291 ruledecl
292 rule head
293 rule id
294 rule label id
295 schema body
296 schema decl
297 schemajd
298 schema version id
299 selector
300 select_extension
301 selectlist
302 select type

295

306
243

243
243
243

249
204

172
269

173
252
233,277,335,339

251
307

325
259,266,301

336
309
307
183,184,234,236,268,287,340

323

167
155, 218
171,200,215,218,221 ,225 ,226 ,227 ,229,253

274
278

306
309

199
271
156,272,284

269
279,280
174,176,269

306
307

177
334

242
283
216

288
286

309
203

281
288
309

295
291

158,292
157,202,334

296
324
159,296

296
191

302
300,302

198

125

ГОСТ Р ИСО 10303-11— 2009

303 set_type | 172
304 sign | 142
305 simpleexpression | 170,216,244,245,246,262
306 simplefactor | 217
307 simpletypes | 193,266
308 skipstmt | 309
309 stmt | 174,189,191,192,220,233,271,286,291
310 stringliteral | 251,298
311 string_type | 307
312 subsuper | 207
313 subtype_constraint | 166,322
314 subtype_constraint_body | 315
315 subtype_constraint_decl | 199
316 subtype_constraint_head | 315
317 subtype_constraint_id | 160,316
318 subtype_declaration | 312
319 supertype_constraint | 312
320 supertypeexpression | 263,313,314,323
321 supertype_factor | 320
322 supertyperule | 319
323
324

supertypeterm
syntax

| 321
I

325 term | 305
326 totalover | 314
327 type_decl | 199
328 type_id | 162,259,284,327
329 typelabel | 171,230,231
330 type_label_id | 161,329
331 unary _op | 306
332 underlying_type | 327
333 uniqueclause | 204
334 uniquerule | 333
335 untilcontrol | 285
336 useclause | 242
337 variable_id | 163,174,235,253,277
338 whereclause | 204,291,327
339 while_control | 285
340 width | 341
341 width_spec | 181,311

126

ГОСТ Р ИСО 10303-11— 2009

Приложение В
(обязательное)

Определение допустимых реализаций объектов

В конкретном графе подтип/супертип может присутствовать большое число сложных и простых объектных
типов данных, которые могут реализовываться в виде своих экземпляров. В данном приложении показано, как
объектные типы данных идентифицируются в объявлении общего графа подтипов/супертипов.

П р и м е ч а н и е — Для иллюстрации дальнейшего изложения рассмотрим множество натуральных чисел
[1, 2, 3 , ...]. Данное множество может быть структурировано разными способами:

- разделено на четные и нечетные числа: [2, 4, 6, ...] и [1, 3, 5, 7 ,...];
- выделены простые числа: [2, 3, 5, 7 ,...];
- выделены числа с общим делителем 3: [3, 6, 9, 12, ...];
- выделены числа с общим делителем 4: [4, 8, 12, 16, ...].
В терминах языка EXPRESS натуральные числа могут быть представлены супертипом, а другие множества

чисел — его подтипами. Очевидно, что некоторые из подтипов являются неперекрывающимися множествами
(например, четные и нечетные числа), в то время как другие будут иметь какие-то общие элементы (например,
подтипы «Числа с общим делителем 3» и «Числа с общим делителем 4»).

В.1 Формализованный подход
Любая группа объектных типов данных, связанная отношениями «подтип/супертип», может рассматри­

ваться как потенциально реализуемый граф подтипов/супертипов. В данном формализованном подходе такие
группы объектных типов данных называются частичными сложными объектными типами данных. Частичный
сложный объектный тип данных может содержать единственный объектный тип данных, поскольку отдельный
объектный тип данных является потенциально реализуемым. Частичный сложный объектный тип данных обо­
значается именами составляющих его объектных типов данных, разделенных символом 1 & '. Частичные сложные
объектные типы данных могут комбинироваться для образования новых частичных сложных объектных типов
данных. Частичный сложный объектный тип данных может быть сложным объектным типом данных сложного
объекта, но для того, чтобы в этом удостовериться, необходимо осуществить его полную оценку. Экземпляр
сложного объекта, являющийся предметом рассмотрения в данном приложении, представляет собой экземпляр
сложного объектного типа данных.

Для любого частичного сложного объектного типа данных справедливы следующие тождества:
А&А = А, то есть конкретный объектный тип данных может присутствовать в данном частичном сложном

объектном типе данных только один раз;
А&В = В&А, то есть группирование частичных сложных объектных типов данных является коммутативным;
А8с(В8сС) = (А&В)&С = А&В&С, то есть группирование частичных сложных объектных типов данных являет­

ся ассоциативным; круглые скобки, указывающие на приоритет выполнения вычислений в данном случае не
влияют на результат.

Результирующее множество определяется как математическое множество частичных сложных объектных
типов данных, обозначенное частичными сложными объектными типами данных, разделенными запятыми (' , ')
и заключенными в квадратные скобки. Пустое результирующее множество обозначается ' [] ' .

Для объединения частичного сложного объектного типа данных и результирующего множества могут быть
использованы два оператора:

А + [В 1, Б2] = [В1, В2] + А = [А, В1, В2]. О ператор ' + ' добавляет частичный сложный объектный тип данных к
результирующему множеству в качестве нового элемента данного множества. Один и тот же частичный сложный
объектный тип данных не должен присутствовать в одном результирующем множестве более одного раза;

Д & [В 1 , В2] = [В1, В2]&А = [Л&В1 ,А&В2]. О ператор ' & 1 добавляет частичный сложный объектный тип данных
ко всем частичным сложным объектным типам данных в результирующем множестве. Следовательно, он являет­
ся дистрибутивным для результирующих множеств.

Результирующие множества могут объединяться посредством тех же двух механизмов:
[Л1, А 2] + [В1, В2] = [А*\, А2, В 1 , В2]. Может быть сформировано результирующее множество, содержащее все

элементы двух объединяемых множеств. Данная операция является объединением двух множеств;
[Л1, Л 2]& [В 1, В2] = [Л1&В1, Л 1& В 2 , Л 2& В 1 , А2&В2]. Результирующее множество может быть сформирова­

но путем повторного применения правила дистрибутивности, касающегося оператора ' & ', для каждого элемента
первого результирующего множества ко второму результирующему множеству.

127

ГОСТ Р ИСО 10303-11— 2009

Результирующие множества могут фильтроваться посредством оператора 1 / 1 с целью создания нового
результирующего множества:

[А, А&В, А&С, A&B&D, В&С, D]IA - [А, А&В, А&С, A&B&D], Новое результирующее множество содержит
только те элементы исходного результирующего множества, которые содержат данный частичный сложный объек­
тный тип данных;

[А, А&В, А&С, A&B&D, В&С, D] / [Б, D] = [А&В, A&B&D, В&С, D], Новое результирующее множество может
быть сформировано путем повторной фильтрации первого результирующего множества каждым частичным слож­
ным объектным типом данных из второго результирующего множества с последующим объединением результа­
тов посредством оператора ' +

Может быть определена разность результирующих множеств посредством оператора' — 'с целью создания
нового результирующего множества:

[А1,А2, В1, Б2] — [А2, Б1] - ,[А1, Б2]. Может быть сформировано результирующее множество, содержащее
все элементы первого результирующего множества за исключением элементов, входящих во второе результирую­
щее множество.

Следующие тождества справедливы для любого результирующего множества:
[А, В] = [В, А]. Результирующие множества не зависят от порядка следования своих элементов;
[А, А, В] = [А, В]. Конкретный частичный сложный объектный тип данных может присутствовать в любом

результирующем множестве только один раз;
[А, [В, С]] = [А, В, С]. Результирующие множества могут быть вложенными.
В.2 Операторы ограничения супертипов и подтипов
Используя вышеописанный формальный подход, можно переписать ограничения, определенные в выра­

жениях для супертипов на языке EXPRESS, а также ограничения на подтипы в терминах результирующих мно­
жеств. Преобразования, представленные в В.2.1 — В.2.3, применяются рекурсивно до тех пор, пока не останется
ни одного терма, представляющего супертип (ONEOF, AND или ANDOR).

Данные преобразования не описывают полное содержание выражения супертипов и ограничений подти­
пов, в частности, условий ONEOF и TOTAL_OVER. Для этого требуется полный алгоритм, представленный в В.З.

В.2.1 ONEOF
Список оператора ONEOF преобразуется в результирующее множество, содержащее варианты выбора

оператора ONEOF, то есть:
ONEOF (А, Б ,...) — [А, В , . . .]
В. 2.2 AND
Оператор AND эквивалентен оператору & и оперирует с частичными сложными объектными типами дан­

ных или с результирующими множествами с целью создания частичного сложного объектного типа данных или
результирующего множества.

A AND В -*■ [А&В]
A AND ONEOF (В1, В2) - А& [61,62] = [А&61, А&62]
ONEOF (А1, А2) AND ONEOF (В1,В2) - [А1, А2] & [61,62] = [А1 & 61 , А1 &62, А2&61, А2&62]
В. 2.3 ANDOR
Оператор ANDOR создает результирующее множество, содержащее все операнды по отдельности и опе­

ранды, объединенные оператором &. Оператор ANDOR оперирует с частичными сложными объектными типами
данных или результирующими множествами.

A ANDOR В -► [А, В, А&В]
A ANDOR 0 N E 0 F (6 f, 62) - [А, [61,62], А&[61,62]] = [А, 61, 62, А&В1, А&В2]
ONEOF (А1, А2) ANDOR ONEOF (В1, В 2) ^ [[А 1, А 2 \ , [61,62], [А1, А2\ & [61,62]] =
[А1, А2, 61, В2.А1&В1, А1&В2, А2&В1.А2&В2]
В.2.4 Приоритет операторов
Вычисление результирующих множеств проводится слева направо. При этом операторы, имеющие высший

приоритет, выполняются первыми в соответствии с 9.2.5.5.

Пример — Нижеприведенное выражение вычисляется следующим образом:
A ANDOR 6 and С ->• [А, [В&С],А&[В&С]] = [А ,В&С,А&В&С]

В.З Интерпретация возможных типов данных сложных объектов
Интерпретация выражений супертипов и ограничений подтипов с дополнительной информацией, имею­

щейся в объявленной структуре, позволяет разработчику EXPRESS-схемы определить сложные объектные типы
данных, которые могут быть реализованы, исходя из данных объявлений. Для того, чтобы обеспечить данное
определение может быть создано результирующее множество сложных объектных типов данных для графа
подтипов/супертипов. Для этого определим следующие термины:

подтип с множественным наследованием (multiply inheriting subtype): Подтипом с множественным на­
следованием является подтип, в объявлении которого указаны два или более супертипов.

128

ГОСТ Р ИСО 10303-11— 2009

корневой супертип (root supertype): Корневым супертипом является супертип, не являющийся
подтипом.

Результирующее множество R сложных объектных типов данных вычисляют по следующему
алгоритму:

a) выявляют все объявления объектов, формирующие граф подтипов/супертипов.

П р и м е ч а н и е — Для сложных графов подтипов/супертипов для выполнения данного действия может
потребоваться несколько итераций;

b) для каждого супертипа /' из графа подтипов/супертипов, в котором объявлено ограничение супертипа
создается конструкция SUBTYPE_CONSTRAINT следующего вида:

SUBTYPE_CONSTRAINT i_superconstraint FOR i;
<supertype_constraint> ;

END_SUBTYPE_CONSTRAINT;
в которой элемент <supertype_constraint> заменяется ограничением супертипа, объявленным в объекте. Для
целей данного алгоритма следует рассматривать данное ограничение как часть схемы. Кроме того, следует игно­
рировать выражение супертипа в объявлении объекта, послужившее основой для данного ограничения подтипа.

П р и м е ч а н и е — На данном шаге ограничения супертипов, объявленные в объекте, преобразуются в
эквивалентные объявления SUBTYPECONSTRAINT;

c) для каждого супертипа /' из графа подтипов/супертипов выявляются все имеющиеся в данном графе типы
данных у'1, у'2, ... у'к, которые определены как подтипы /', но не встречаются в какой-либо конструкции
SUBTYPE CONSTRAINT, определенной для /' в данной схеме или сгенерированной на шаге Ь), и создается
конструкция SUBTYPE CONSTRAINT следующего вида:

SUBTYPE_CONSTRAINT i_othersubtypes FOR i;
j1 ANDOR j2 ANDOR ... ANDORjk;

END_SUBTYPE_CONSTRAINT;
Для целей данного алгоритма будем рассматривать данное ограничение как часть схемы;
d) для каждого супертипа /' из графа подтипов/супертипов выявляются все конструкции

SUBTYPE CONSTRAINT sc1, sc2,... sck, в условии FOR которых присутствует /'. На данном шаге игнорируются части
ограничений подтипов, содержащие полное покрытие или абстрактные ограничения. Выражения подтипов sxi
данных ограничений объединяются в одну конструкцию SUBTYPE_CONSTRAINT sti следующего вида: (sx1 ANDOR
sx2 ANDORsx3 ... ANDORsx/c);

e) для каждого супертипа /' из графа подтипов/супертипов генерируется результирующее множество, пред­
ставляющее ограничения между его непосредственными подтипами, путем применения преобразований из В.2
и тождеств из В.1 к конструкции SUBTYPE CONSTRAINT sti, сформированной на предыдущем шаге по перечисле­
нию d). Полученный результат объединяется с /' посредством оператора &. Если / не определено как ABSTRACT
SUPERTYPE в своем объявлении ENTITY или в какой-либо конструкции SUBTYPE_CONSTRAINT из /', то / добавля­
ется к результату с использованием оператора + . Н1азовем полученное множество Е -,;

f) для каждого корневого супертипа г из графа подтипов/супертипов Ег раскрывается следующим
образом:

1) для каждого подтипа s из г заменяется каждое вхождение (включая вхождения в сложные объектные
типы данных) s в £г на Es, если это возможно, и применяются преобразования из В.2 и тождества из В.1,

2) рекурсивно повторяется шаг по пункту 1) перечисления f) для каждого s, раскрывая подтипы s до тех пор,
пока не будут достигнуты концевые объекты (для которых не существует Es).

П р и м е ч а н и е — Данная рекурсивная процедура должна завершиться, поскольку в графе подтипов/
супертипов нет циклов;

д) объединяют корневые множества. Создается R = Zr Er s £г1 + £г2 +..., то есть R является объединением
множеств, созданных на шаге по перечислению f);

h) для каждого супертипа s из R и для каждого ограничения подтипа полного покрытия t^ ,t2, ... /|<, определен­
ного для s, выполняют следующие действия:

1) пусть /определяется как(/-| ANDOR/2 ...ANDORfk),
2) для всех непосредственных подтипов s, из s, не входящих в t^ ,t2, ... /|<, каждое вхождение S| в R заменяется

выражением, полученным из (s, и /) с использованием определений из В.2.2,
3) R преобразовывают в соответствии с преобразованиями, определенными в В.2, и тождествами, опреде­

ленными в В.1;
i) для каждого подтипа с множественным наследованием т выполняют следующие действия:
1) для каждого из его непосредственных супертипов s формируют множество Rlmls, содержащее только те

сложные типы данных из R, которые включают как т , так и s,

129

ГОСТ Р ИСО 10303-11— 2009

2) создают результирующее множество комбинаций супертипов, допустимых для т\ Рт = Rlmls/\&Rlmls2&...,
то есть объединяются результирующие множества, сформированные на шаге по пункту 1) перечисления /1) с
помощью оператора &,

3) формируют результирующее множество комбинаций супертипов, которое может не включать в себя все
супертипы пгг. Хт = 2SR/m/s, то есть объединяются результирующие множества, полученные на шаге по пункту 1)
перечисления /1),

4) выполняют действие: R = (R — Хт) + Рт ;
j) для каждого к-го выражения SUBTYPECONSTRAINT [включая сформированные на шагах по перечисле­

ниям Ь) и h)], имеющего вид ONEOF(S-|, S2, ...), выполняют следующие действия:
1) для каждой пары подвыражений S,, Sj, управляемой к (/' < j), вычисляют множество комбинаций, запре­

щенных оператором ONEOF(Sj, Sj): DkJ =[Sj&Sj]. DkJ преобразуется в соответствии с преобразованиями, опре­
деленными в В.2, и тождествами, определенными в В.1,

2) формируют Dk = Z, j Dk 1, то есть Dk является объединением множеств, вычисленных на шаге по пункту 1)
перечисления у'1),

3) выполняют действие: R = R — (R/Dk);
k) для каждого к-го выражения SUBTYPE CONSTRAINT [включая сформированные на шагах по перечисле­

ниям Ь) и h)], имеющего вид S-, AND S2, выполняют следующие действия:
l) вычисляют множество требуемых комбинаций, задаваемых к: Qk = [S-|&S2]. Qk преобразуется в соответ­

ствии с преобразованиями, определенными в В.2, и тождествами, определенными в В.1,
2) для каждого объектного типа данных объекта /', объявленного в к, вычисляют множество недопустимых

комбинаций объектов, содержащих /', которые запрещены к: Dk = RH — R/(Qk//'),

3) выполняют действие: Dk = 2,0к , то есть Dk является объединением множеств, сформированных на шаге
по пункту 2) перечисления к).

4) выполняют действие: R = R — Dk;
I) полученное результирующее множество R является результирующим множеством для исходного графа

подтипов/супертипов.

Примеры
1 В данном примере заданы только объявления супертипов и подтипов объектов, поскольку только

они требуются для выявления возможных сложных объектных типов данных.
SCHEMA example;
ENTITY р;
END_ENTITY;
SUBTYPE_CONSTRAINT p_subs FOR p;

TOTAL_OVER(m, f);
ONEOF(m, f) AND ONEOF(c, a);

END_SUBTYPE_CONSTRAINT;
ENTITY m SUBTYPE OF (p);
END_ENTITY;
ENTITY f SUBTYPE OF (p);
END_ENTITY;
ENTITY c SUBTYPE OF (p);
END_ENTITY;
ENTITY a SUBTYPE OF (p);
END_ENTITY;
SUBTYPE_CONSTRAINT n o ji FOR a;

ABSTRACT SUPERTYPE;
ONEOF(l, i);

END_SUBTYPE_CONSTRAINT;
ENTITY I SUBTYPE OF (a);
END_ENTITY;
ENTITY i SUBTYPE OF (a);
END_ENTITY;
END_SCHEMA;
Данная схема в формате EXPRESS-G представлена на рисунке В.1.

130

ГОСТ Р ИСО 10303-11— 2009

Рисунок В.1 — EXPRESS-G диаграмма схемы из примера 1

Возможные сложные объектные типы данных могут быть определены следующим образом:
- в представленной выше EXPRESS-схеме уже заданы все объявления объектов и полные выраже­

ния супертипов, которые требуются для алгоритма на шагах по перечислению а), Ь) и с);
- в результате выполнения шага по перечислению d) получаем:
SUBTYPE_CONSTRAINT stp FOR р;
TOTAL_OVER(m, f);
((ONEOF(m, f) AND ONEOF(c, a)));
END_SUBTYPE_CONSTRAINT;
SUBTYPE_CONSTRAINT sta FOR a;
(ONEOF(i,l));
END_SUBTYPE_CONSTRAINT;
- в результате выполнения шага по перечислению е) получаем:
Ер [p&m&c, р&т &а, p& f& c, p& f& a, р];
Еа — [a&l, a& i];
- в результате выполнения шага по перечислению f) расширяются объявления корневых объектов,

в данном случае р. В результате получаем следующее множество:
Ер = [p&m&c, p&m &a&l, p&m&a&i, p&f&c, p&f&a&l, p&f&a&i, p];
- в результате объединения корневых множеств на шаге по перечислению д), получаем:
R = [p& m & c, p & m & a& l, p& m & a& i, p&f&c, p&f&a&l, p&f&a&i, p];
- в результате применения действий на шаге по перечислению h) к ограничению TOTALJOVER, полу­

чаем:
TOTAL_OVER(m, f): sp = [р&т, p & f].
Заменяя все вхождения р, не содержащие т или f, получаем:
R = [p&m&c, p&m&a&l, p&m&a&i, p&f&c, p&f&a&l, p&f&a&i, p&m, p & f].
- подтипы с множественным наследованием отсутствуют, поэтому выполнения шага i) не тре­

буется;
- выполняя действия на шаге по перечислению j) для каждого ограничения ONEOF, получаем:

ONEOF(m,f): Dl’2 =[m&f]- ,

D1 = [m&f].
После удаления D1 из R e соответствии с шагом по пункту 3) перечисления j) R остается неизмен­

ным. Следовательно, мы имеем следующее множество:
R = [p&m&c, p&m&a&l, p&m&a&i, p&f&c, p&f&a&l, p&f&a&i, p&m, p & f].

ONEOF(c,a): = [c&a];
D2 = [c&a].

131

ГОСТ Р ИСО 10303-11— 2009

После удаления D2 U 3 R e соответствии с шагом по пункту 3) перечисления j) R остается неизмен­
ным. Следовательно, мы имеем следующее множество:

R = [р&т &с, p&m &a&l, p&m &a&i, p&f&c, p&f&a& l, p&f&a&i, p&m , p& f].

ONEOF(Ai): dJ’2 = [/& /];
D3 = [l&i].

После удаления D3 U 3 R e соответствии с шагом по пункту 3) перечисления j) R остается неизмен­
ным. Следовательно, мы имеем следующее множество:

R = [p&m&c, p&m &a& l, p&m &a&i, p&f&c, p&f&a& l, p&f&a& i, p&m , p&f] ;
- выполняя шаг no перечислению k) для каждого ограничения AND получаем:
ONEOF(m, f) AND ONEOF(c, a): Q1 = [m&c, m&a, f&c, f&a];

0 7 = [p&m];

D{ = [p & f] ;

o f ■ [];
o f ■ [] ;
D1 = [p&m, p&f] .

После удаления D ^ u e R e соответствии с шагом по пункту 4) перечисления k) R остается неизмен­
ным. Следовательно, имеем следующее множество:

R = [р&т &с, p&m &a& l, p&m &a&i, p&f&c, p&f&a& l, p& f& a& i];
после выполнения шага по перечислению I) получаем результат:
R = [р&т &с, p&m &a& l, p&m &a&i, p&f&c, p&f&a& l, p& f& a& i].
Данный пример, хотя и являющийся произвольным, мог бы быть сделан более реалистичным, если

объектам дать более содержательные имена. Например, если вместо р, т, f, с, а, 4 i объекты были бы
названы person (личность), male (мужчина), female (женщина), citizen (гражданин), alien (иностранец),
legal_alien (легальный иностранец) и illegal_alien (нелегальный иностранец), соответственно.

Данная трактовка дает следующий смысл некоторым элементам из окончательного результиру­
ющего множества:

-личност ь (person), которая является мужчиной (male) и гражданином (citizen);
-личност ь (person), которая является мужчиной иностранцем (male alien) и нелегальным иност­

ранцем (illegal_alien);
-личност ь (person), которая ...
Кроме того, ограничение T0TAL_0VER обеспечивает то, что результирующие множества, опреде­

ленные для какой-либо другой схемы, расширяющей данный граф подтипов/супертипов, также должны
включать объекты male или female в число допустимых экземпляров объекта person.

2 Данный пример демонстрирует, что 0NE0F является глобальным ограничением, которое не мо­
жет быть аннулировано множественным наследованием.

SCHEMA diamond;
ENTITY а;
END_ENTITY;
SUBTYPE_CONSTRAINT a_subs FOR a;

0NE0F(b, c);
END_SUBTYPE_CONSTRAINT;
ENTITY b SUBTYPE OF (a);
END_ENTITY;
ENTITY c SUBTYPE OF (a);
END_ENTITY;
ENTITY d SUBTYPE OF (b, c);
END_ENTITY;
END_SCHEMA;
Данная схема в формате EXPRESS-G представлена на рисунке В.2.
В представленной выше EXPRESS-схеме уже заданы все объявления объектов и полные выражения

супертипов, которые требуются для алгоритма на шагах по перечислениям а) и Ь).
В результате выполнения шага по перечислению с) получаем:
SUBTYPE_CONSTRAINT b_othersubtypes FOR b;

d;
END_SUBTYPE_CONSTRAINT;
SUBTYPE_CONSTRAINT c_othersubtypes FOR c;

d;
END_SUBTYPE_CONSTRAINT;

132

ГОСТ Р ИСО 10303-11— 2009

В результате выполнения шага по перечислению d), получаем:
SUBTYPE_CONSTRAINT sea FOR а;

ONEOF(b, с);
END_SUBTYPE_CONSTRAINT;
SUBTYPE_CONSTRAINT seb FOR b;

d;
END_SUBTYPE_CONSTRAINT;
SUBTYPE_CONSTRAINT sec FOR c;

d;
END_SUBTYPE_CONSTRAINT;

Рисунок B.2 — EXPRESS-G диаграмма схемы из примера 2

В результате выполнения шага по перечислению е) получаем:
Еа -> [а&Ь, а&с, а];
£ ь - [b&d, Ь];
Ес — [c&d, с];
*d - Id]-
В результате выполнения шага по перечислению f) расширяются объявления корневых объектов,

в данном случае а. В результате получаем следующее множество:
Еа = [a&b&d, a&b, a&c&d, а&с, а].
В результате объединения корневых множеств на шаге по перечислению д) получаем:
R = [a&b&d, a&b, a&c&d, а&с, а].
Применение шага по перечислению i) к каждому подтипу с множественным наследованием дает

следующие результаты:

Д ля объекта d: = [a & b & d] ;

eg = [a& c&d];

Pd = [a& b& d&c];
X d = [a&b&d, a& c&d].

Новое множество R = (R — X d) + Pd тогда определяется как [a&b, a&c, a, a&b&d&c].
Выполняя шаг no перечислению j) для каждого ограничения ONEOF, получаем:

ONEOF(b, с): dJ’2 = [Ь&с];
D1 = [Ь&с].

При удалении из R e соответствии с шагом по пункту 3) перечисления j) из R удаляется следую­
щий элемент:

133

ГОСТ Р ИСО 10303-11— 2009

[a&b&d&c].
Таким образом, получаем:
R = [а&Ь, а&с, а].
Выражения супертипов, использующие оператор AND, отсутствуют, поэтому выполнение шага

по перечислению к) не требуется.
После выполнения шага по перечислению I) получаем результат:
R = [а&Ь, а&с, а].
3 Данный пример демонстрирует влияние применения ограничений к сложной структуре, содержа­

щей, по крайней мере, одно ограничение каждого возможного типа. Назначением данного примера являет­
ся не моделирование конкретной ситуации, а просто демонстрация алгоритма.

SCHEMA complex;
ENTITY а;
END_ENTITY;
ENTITY b SUBTYPE OF (a);
END_ENTITY;
ENTITY c SUBTYPE OF (a);
END_ENTITY;
ENTITY d SUBTYPE OF (a);
END_ENTITY;
ENTITY f SUBTYPE OF (a, z);
END_ENTITY;
ENTITY к SUBTYPE OF (d);
END_ENTITY;
ENTITY I SUBTYPE OF (d, y);
END_ENTITY;
ENTITYx SUBTYPE OF (z);
END_ENTITY;
ENTITY у SUBTYPE OF (z);
END_ENTITY;
ENTITY z;
END_ENTITY;
SUBTYPE_CONSTRAINT a_subs FOR a;

ONEOF(b, c) AND d ANDORf;
END_SUBTYPE_CONSTRAINT;
SUBTYPE_CONSTRAINT d_subs FOR d;

ABSTRACT;
ONEOF(k.l);

END_SUBTYPE_CONSTRAINT;
END_SCHEMA;
Данная схема в формате EXPRESS-G представлена на рисунке В.З.

Рисунок В.З — EXPRESS-G диаграмма схемы из примера 3

134

ГОСТ Р ИСО 10303-11— 2009

Возможные сложные объектные типы могут быть определены следующим образом:
В приведенной выше EXPRESS-схеме в явном виде представлены все объявления объектов и пол­

ные выражения супертипов, требуемые на шагах по перечислениям а) и Ь).
В результате выполнения шага по перечислению с) получаем:
SUBTYPE_CONSTRAINT z_othersubtypes FOR z;

f ANDORy ANDORx;
END_SUBTYPE_CONSTRAINT;
SUBTYPE_CONSTRAINT y_othersubtypes FORy;

i ;
END_SUBTYPE_CONSTRAINT;
В результате выполнения шага по перечислению d), получаем:
SUBTYPE_CONSTRAINT stz FOR z;

f ANDORy ANDORx;
END_SUBTYPE_CONSTRAINT;
SUBTYPE_CONSTRAINT sty FORy;

END_SUBTYPE_CONSTRAINT;
SUBTYPE_CONSTRAINT sta FOR a;

0NE0F(b, c) AND d ANDORf;
END_SUBTYPE_CONSTRAINT;
SUBTYPE_CONSTRAINT std FORd;

ABSTRACT;
ONEOF(k, l);

END_SUBTYPE_CONSTRAINT;
В результате выполнения шага по перечислению е), получаем:
Еа —> [a, a&b&d, a&b&d&f, a&c&d, a&c&d&f, a&f];
Ed - [d&k, d&l],
Ey — [l&y, y]\
Ez -*■ [f&x&y&z, f&x&z, f&y&z, f&z, x&y&z, x&z, y&z, z],
В результате выполнения шага по перечислению f) преобразуются объявления корневых объектов

а и z. В результате получаем следующие множества:
Еа = [a, a&b&d&k, a&b&d&l, a&b&d&f&k, a&b&d&f&l, a&c&d&k, a&c&d&l, a&c&d&f&k,

a&c&d&f&l, a& f];
Ez = [f&l&x&y&z, f& l&y&z, f&x&y&z, f&x&z, f&y&z, f&z, l&x&y&z, l&y&z, x&y&z, x&z, y&z, z].
Объединяя корневые множества на шаге по перечислению д), получаем:
R = [a, a&b&d&k, a&b&d&l, a&b&d&f&k, a&b&d&f&l, a&c&d&k, a&c&d&l, a&c&d&f&k,

a&c&d&f&l, a&f, f&l&x&y&z, f&l&y&z, f&x&y&z, f&x&z, f&y&z, f&z, l&x&y&z, l&y&z, x&y&z,
x&z, y&z, z].

Ограничений подтипов полного покрытия не существует, поэтому выполнение шага по перечисле­
нию h) не требуется.

Применение шага по перечислению i) к каждому подтипу с множественным наследованием дает
следующие результаты:

Для объекта f:

С® = [a&b&d&k&f, a& b& d&l&f, a& c&d&k& f, a& c&d&l&f, a&f];

Cf = [f& l&x&y&z, f& l& y&z, f&x&y&z, f&x&z, f&y&z, f&z];
Pf = [a&b&d&f&k&z, a& b& d&f& k&x& z, a& b& d&f& k&l&y& z, a& b&d&f&k&y&z,

a& b& d& f& k& l& x& y& z, a& b& d& f& k& x& y& z, a& b& d& f& l& z, a& b& d& f& l& x& z,
a& b& d& f& l& y& z, a& b& d& f& l& x& y& z, a& c& d& f& k& z, a& c& d& f& k& x& z,
a& c& d& f& k& l& y& z, a& c& d& f& k& y& z, a& c& d& f& k& l& x& y& z, a& c& d& f& k& x& y& z,
a& c& d& f& l& z, a& c& d& f& l& x& z, a& c& d& f& l& y& z, a& c& d& f& l& x& y& z, a& f&z, a& f& x& z,
a& f& l& y& z, a& f& y& z, a& f& l& x& y& z, a& f& x& y& z];

Xf = [a&b&d&f&k, a& b& d&f& l, a& c&d&f&k, a& c&d&f& l, a&f, f& l& x&y& z,
f& l&y&z, f&x&y&z, f&x&z, f&y&z, f&x].

Новое множество R = (R—Xf) + Pf тогда равно: [a, a&b&d&f&k&z, a&b&d&f&k&x&z,
a& b& d& f& k& l& y& z, a& b& d& f& k& y& z, a& b& d& f& k& l& x& y& z, a& b& d&f& k&x& y& z,
a& b& d& f& l& z, a& b& d& f& l& x& z, a& b& d& f& l& y& z, a& b& d& f& l& x& y& z, a&b&d&k, a& b& d&l,
a& c& d& f& k& z, a& c& d& f& k& x& z, a& c& d& f& k& l& y& z, a& c& d& f& k& y& z, a& c& d& f& k& l& x& y& z,
a& c& d& f& k& x& y& z, a& c& d& f& l& z, a& c& d& f& l& x& z, a& c& d& f& l& y& z, a& c& d& f& l& x& y& z,
a&c&d&k, a&c&d&l, a&f&z, a&f&x&z, a&f&l&y&z, a&f&y&z, a&f&l&x&y&z, a&f&x&y&z, l&x&y&z,
l&y&z, x&y&z, x&z, y&z, z].

135

ГОСТ Р ИСО 10303-11— 2009

Для объекта I:

С? = [a&b&d&f&k&l&y&z, a&b&d&f&k&l?&x&y&z, a&b&d&f&l&z, a&b&d&f&l&x&z,
a&b&d&f&l&y&z, a&b&d&f&l&x&y&z, a&b&d&l,
a&c&d&f&k&l&y&z, a&c&d&f&k&l&x&y&z, a&c&d&f&l&z, a&c&d&f&l&x&z,
a&c&d&f&l&y&z, a&c&d&f&l&x&y&z, a&c&d&l];

Cj = [a&b&d&f&k&l&y&z, a&b&d&f&k&l&x&y&z, a&b&d&f&l&y&z, a&b&d&f&l&x&y&z,
a&c&d&f&k&l&y&z, a&c&d&f&k&l&x&y&z, a&c&d&f&l&y&z, a&c&d&f&l&x&y&z,
a&f&l&y&z, a&f&l&x&y&z, l&x&y&z, l&y&z];

PL = [a&b&c&d&f&k&l&y&z, a&b&c&d&f&k&l&x&y&z, a&b&c&f&k&l&y&z,
a&b&c&f&l&x&y&z, a&b&d&f&k&l&y&z, a&b&d&f&k&l&x&y&z, a&b&d&f&l&y&z,
a&b&d&f&l&x&y&z, a&b&d&l&x&y&z, a&b&d&l&y&z, a&c&d&f&k&l&y&z,
a&c&d&f&k&l&x&y&z, a&c&d&f&l&y&z, a&c&d&f&l&x&y&z, a&c&d&l&x&y&z,
a&c&d&l&y&z];

X(= [a&b&d&f&k&l&y&z, a&b&d&f&k&l&x&y&z, a&b&d&f&l&z, a&b&d&f&l&x&z,
a&b&d&f&l&y&z, a&b&d&f&l&x&y&z, a&b&d&l, a&c&d&f&k&l&y&z,
a&c&d&f&k&l&x&y&z, a&c&d&f&l&z, a&c&d&f&l&x&z, a&c&d&f&l&y&z,
a&c&d&f&l&x&y&z, a&c&d&l, a&f&l&y&z, a&f&l&x&y&z, l&x&y&z, l&y&z].

Новое множество R = (R—Xt) + Pt тогда равно: [a, a&b&c&d&f&k&l&y&z, a&b&c&d&f&k&l&x&y&z,
a&b&c&f&l&y&z, a&b&c&f&l&x&y&z, a&b&d&f&k&l&y&z, a&b&d&f&k&l&x&y&z,
a&b&d&f&k&x&z, a&b&d&f&k&y&z, a&b&d&f&k&x&y&z, a&b&d&f&k&z, a&b&d&f&l&y&z,
a&b&d&f&l&x&y&z, a&b&d&k, a&b&d&l&x&y&z, a&b&d&l&y&z, a&c&d&f&k&l&x&y&z,
a&c&d&f&k&l&y&z, a&c&d&f&l&y&z, a&c&d&f&l&x&y&z, a&c&d&f&k&x&z, a&c&d&f&k&y&z,
a&c&d&f&k&x&y&z, a&c&d&f&k&z, a&c&d&k, a&c&d&l&x&y&z, a&c&d&l&y&z, a&f&z,
a&f&x&z, a&f&y&z, a&f&x&y&z, x&y&z, x&z, y&z, z].
Выполняя шаг no перечислению j) для каждого ограничения ONEOF, получаем:

ONEOF (b, c): c j’2 = [b&c];
=[Ь&с].

В результате удаления из R в соответствии с шагом по пункту 3) перечисления j) из R
удаляются следующие элементы:

[a&b&c&d&f&k&l&y&z, a&b&c&d&f&k&l&x&y&z, a&b&c&f&l&y&z, a&b&c&f&l&x&y&z].
Следовательно, мы имеем следующее множество:
R = [a, a&b&d&f&k&l&y&z, a&b&d&f&k&l&x&y&z, a&b&d&f&k&x&z, a&b&d&f&k&y&z,
a&b&d&f&k&x&y&z, a&b&d&f&k&z, a&b&d&f&l&y&z, a&b&d&f&l&x&y&z, a&b&d&k,
a&b&d&l&x&y&z, a&b&d&l&y&z, a&c&d&f&k&l&x&y&z, a&c&d&f&k&l&y&z, a&c&d&f&l&y&z,
a&c&d&f&l&x&y&z, a&c&d&f&k&x&z, a&c&d&f&k&y&z, a&c&d&f&k&x&y&z, a&c&d&f&k&z,
a&c&d&k, a&c&d&l&x&y&z, a&c&d&l&y&z, a&f&z, a&f&x&z, a&f&y&z, a&f&x&y&z, x&y&z, x&z,
y&z, z \

ONEOF (k, (.): D±2 = [k&l]\
D2 = [k&l].

В результате удаления D2U3Re соответствии с шагом по пункту 3) перечисления j) из R удаляют­
ся следующие элементы:

[a&b&d&f&k&l&y&z, a&b&d&f&k&l&x&y&z, a&c&d&f&k&l&y&z, a&c&d&f&k&l&x&y&z].
Следовательно, мы имеем следующее множество:
R = [a, a&b&d&f&k&x&z, a&b&d&f&k&y&z, a&b&d&f&k&x&y&z, a&b&d&f&k&z, a&b&d&f&l&y&z,
a&b&d&f&l&x&y&z, a&b&d&k, a&b&d&l&x&y&z, a&b&d&l&y&z, a&c&d&f&l&y&z,
a&c&d&f&l&x&y&z, a&c&d&f&k&x&z, a&c&d&f&k&y&z, a&c&d&f&k&x&y&z, a&c&d&f&k&z,
a&c&d&k, a&c&d&l&x&y&z, a&c&d&l&y&z, a&f&z, a&f&x&z, a&f&y&z, a&f&x&y&z, x&y&z, x&z,
y&z, z \
Выполняя шаг no перечислению k) для каждого ограничения AND, получаем:
ONEOF (b, c) AND d: Q1 = [b&d, c&d];

of =[];

of =[];

o? ■[];
D, =[]■

136

ГОСТ Р ИСО 10303-11— 2009

После удаления D-, из Re соответствии с шагом по пункту 4) перечисления k) R остается неизмен­
ным. Следовательно, имеем следующее множество:

R = [a, a&b&d&f&k&x&z, a&b&d&f&k&y&z, a&b&d&f&k&x&y&z, a&b&d&f&k&z, a&b&d&f&l&y&z,
a&b&d&f&l&x&y&z, a&b&d&k, a&b&d&l&x&y&z, a&b&d&l&y&z, a&c&d&f&l&y&z,
a&c&d&f&l&x&y&z, a&c&d&f&k&x&z, a&c&d&f&k&y&z, a&c&d&f&k&x&y&z, a&c&d&f&k&z,
a&c&d&k, a&c&d&l&x&y&z, a&c&d&l&y&z, a&f&z, a&f&x&z, a&f&y&z, a&f&x&y&z, x&y&z, x&z,
yScz, z].
После выполнения шага no перечислению /) получаем результат:
R = [a, a&b&d&f&k&x&z, a&b&d&f&k&y&z, a&b&d&f&k&x&y&z, a&b&d&f&k&z,
a&b&d&f&l&y&z, a&b&d&f&l&x&y&z, a&b&d&k, a&b&d&l&x&y&z, a&b&d&l&y&z,
a&c&d&f&l&y&z, a&c&d&f&l&x&y&z, a&c&d&f&k&x&z, a&c&d&f&k&y&z, a&c&d&f&k&x&y&z,
a&c&d&f&k&z, a&c&d&k, a&c&d&l&x&y&z, a&c&d&l&y&z, a&f&z, a&f&x&z, a&f&y&z,
a&f&x&y&z, x&y&z, x&z, y&z, z\.

137

ГОСТ Р ИСО 10303-11— 2009

Приложение С
(обязательное)

Ограничения на экземпляры,
налагаемые спецификацией интерфейса

При построении интерфейсов со сложными графами подтипов/супертипов, допустимые сложные
объектные типы данных вычисляют посредством расширения правил, определенных в разделе 11 и прило­
жении В. Граф подтипов/супертипов, определенный в одной или нескольких других схемах, может быть усечен
для использования в данной схеме посредством указания только тех объектов, которые необходимы в данной
схеме.

В настоящем приложении установлены правила, необходимые для интерпретации графов подтипов/супер­
типов в которых с одним или несколькими объектными типами данных, изначально имеющимися в графе, не
установлены интерфейсы. Такие пропущенные объектные типы данных объектов оставляют пустые места в выра­
жениях супертипов. В данном приложении такие пустые места обозначены как <>. Для удаления пустых мест из
выражения супертипа используются следующие преобразования:

ONEOF (А, о , . . .) -► ONEOF(A,...);
ONEOF (<>) - <> ;
ONEOF (А) ^ А ;
A AND <> — ONEOF(A,A);
A A N D O R o ^ A ;
TOTAL_OVER (А ,о , . . .) - * TOTAL_OVER(A,...);
TOTAL_OVER (о) ->■ о .
Интерпретация оператора AND должна обеспечить, чтобы те объектные типы данных, которые в исход­

ной схеме должны объединяться, не могли бы существовать в данной схеме (обеспечивается оператором
ONEOF(A,A)), если с объектными типами данных, с которыми они должны объединяться, не установлены интер­
фейсы.

Результирующее множество допустимых сложных объектных типов данных для схемы, у которой установле­
ны интерфейсы с другими схемами, вычисляют по следующему алгоритму:

а) создается полный пул объектов для данной схемы. Полный пул включает в себя следующие объекты:
1) все объекты, определенных в данной схеме,
2) все объекты, импортированных в данную схему посредством операторов USE и REFERENCE,
3) все объекты, неявно импортированные в данную схему.

П р и м е ч а н и е — Полный пул объектов может содержать несколько объектов с одинаковым именем (в
случае их неявного импортирования из разных схем) или может включать в себя один и тот же объект под разны­
ми именами (в случае использования оператора USE FROM . . . AS). В первом случае пул будет содержать все
объекты с одинаковыми именами, а во втором — только один объект, несмотря на наличие у него нескольких
имен;

b) для каждого супертипа из пула объектов сокращается выражение супертипа, посредством удаления всех
ссылок на объекты, отсутствующие в пуле объектов. Данное преобразование выполняется многократно, чтобы
удалить образовавшиеся пустые места и получить истинное выражение супертипа, в котором присутствуют ссылки
только на объекты из пула объектов;

c) вычисляется результирующее множество в соответствии с алгоритмом, установленным в приложении В,
начиная с шага по перечислению Ь) и с применением преобразований, определенных в начале данного прило­
жения, к ограничениям, полученным в результате выполнения шагов по перечислениям Ь), с) и h) алгоритма из
приложения В, раздел В.З.

Сложный объектный тип данных из результирующего множества, содержащий, по крайней мере, один
локально объявленный или импортированный посредством оператора USE объект, может быть реализован
автономно. Сложный объектный тип данных, не содержащий таких объектов, не может быть реализован авто­
номно в данной схеме.

П р и м е ч а н и е — Если существует импортированный в явном виде объект, не присутствующий в каком-
либо сложном объектном типе данных из результирующего множества, то такой объект вообще не может быть
реализован. Вероятно, данный объект был импортирован по ошибке.

Примеры
1 Для демонстрации данного алгоритма используется схема example (см. пример 1 из приложения В,

раздел В.З).

138

ГОСТ Р ИСО 10303-11— 2009

SCHEMA test;
USE FROM example (1);
REFERENCE FROM example (m, c);
END_SCHEMA;
Возможные сложные объектные типы данных определяются следующим образом:
Пул объектов состоит из I, т, с, а, р: I, т и с импортированы в явной форме, а и р импортированы в

неявной форме, поскольку они входят в цепочку супертипов объекта I .
Сокращая выражение супертипа для р и преобразовывая его в соответствии с шагом по перечисле­

нию Ь), получаем:
ONEOF(m, f) AND ONEOF (с, а)
ONEOF(m, о) AND ONEOF (с, а)
ONEOF (m) AND ONEOF (c ,a)

m AND ONEOF (c ,a)
Аналогично получаем для a:

ONEOF (/,/)
ONEOF (l, <>)

ONEOF (l)
l

В данном случае выражения супертипов уже сформированы в виде, необходимом для шага по пере­
числению с).

Применяя алгоритм вычисления результирующего множества на шаге по перечислению с), получа­
ем результирующее множество: R = [с&т&р, a&l&m&p].

Сложный объектный тип данных a&l&m &p содержит объект I, явно импортированный посред­
ством оператора USE, и поэтому он может быть реализован автономно. С другой стороны, сложный
объектный тип данных с&т&р не может быть реализован автономно в данной схеме.

2 Пусть имеются следующие схемы:
SCHEMA s1;
ENTITY е1 SUPERTYPE OF (e11 ANDOR e12); END_ENTITY;
ENTITY e11 SUBTYPE OF (e1); END_ENTITY;
ENTITY e12 SUBTYPE OF (e1); END_ENTITY;
END_SCHEMA;
SCHEMA s2;
USE FROM s1 (e11 ASf);
ENTITY e211 SUBTYPE OF (f); END_ENTITY;
ENTITY e212 SUBTYPE OF (f); END_ENTITY;
ENDSCHEMA;
SCHEMA s3;
USE FROM s1 (e12 as g);
ENTITY e321 SUBTYPE OF (g); END_ENTITY;
ENTITY e322 SUBTYPE OF (g); END_ENTITY;
ENDSCHEMA;
Результирующими множествами для данных схем являются:
s1 [е1, е1&е11, е1&е12, e1&e11&e12];
s2 [e1&f, e1&f&e211, e1&f&e212, e1&f&e211&e212];
s3 [e1&g, e1&g&e321, e1&g&e322, e1&g&e321&e322].
Если определена следующая схема test:
SCHEMA test;
USE FROM s2 (e211);
USE FROM s3 (e322);
END_SCHEMA;

то возможные сложные объектные типы данных для нее определяются следующим образом:
Пул объектов состоит из е211, е322, f, g, е1: е211 и е322 импортированы в явной форме, a f, g и е1

импортированы в неявной форме, поскольку они входят в цепочку супертипов е211 и е322. fu g являются
переименованиями е11 и е12, соответственно, поэтому е11 и е 12 являются фактическими членами
пула объектов.

139

ГОСТ Р ИСО 10303-11— 2009

Сокращая выражение супертипа для е1 и преобразовывая его в соответствии с шагом по перечис­
лению Ь), получаем:

е11 ANDOR е12;
f ANDOR д;

для f получаем:
е211 ANDOR е212

е211 ANDOR <>
е211

для g получаем:
е321 ANDOR е322;

о ANDOR е322;
е322.

В данном случае выражения супертипов уже сформированы в виде, необходимом для шага по пере­
числению с).

Применяя алгоритм вычисления результирующего множества на шаге по перечислению с),
получаем результирующее множество:

R = [е1, e1&f, e1&g, el& f&g, e1&f&e211, e1&f&g&e211, e1&g&e322, e1&f&g&e322,
e1&f&g&e211&e3227.
С лож ны е объ ект ны е т ипы данны х e1&f&e211, e1&f&g&e211, e1&g&e322, e l& f& g & e 322 и

e1 &f&g&e211 &e322 содержат один из явно импортированных посредством оператора USE объектов
е211 или е322 и поэтому могут быть реализованы автономно. С другой стороны е1, еЛ &f, еЛ &д и е1 &f&g
не могут быть реализованы автономно в данной схеме.

140

ГОСТ Р ИСО 10303-11— 2009

Приложение D
(обязательное)

Графическое подмножество языка EXPRESS — EXPRESS-G

D.1 Введение и обзор
EXPRESS-G является формальной графической нотацией, предназначенной для изображения

спецификаций данных, определенных в языке EXPRESS. Данная нотация поддерживает подмножество языка
EXPRESS.

EXPRESS-G поддерживает:
- разные уровни абстракции данных;
- диаграммы, размещаемые на нескольких страницах;
- диаграммы, использующие минимальные возможности компьютерной графики.
Нотация EXPRESS-G представлена графическими обозначениями, образующими диаграмму. В нотации

используется три типа обозначений:
- обозначения определений — обозначения, представляющие простые типы данных, именованные типы

данных, конструкционные типы данных и объявления схем;
- обозначения взаимосвязей — обозначения, представляющие взаимосвязи, существующие между опреде­

лениями;
- обозначения компоновки — обозначения, позволяющие размещать диаграммы на нескольких стра­

ницах.
EXPRESS-G поддерживает простые типы данных, именованные типы данных, взаимосвязи и мощность

множеств. Кроме того, EXPRESS-G поддерживает представление одной или нескольких схем. EXPRESS-G не
поддерживает механизмы ограничений, предоставляемые языком EXPRESS.

П р и м е ч а н и е — EXPRESS-G может использоваться как самостоятельный язык определения данных,
поскольку не требуется иметь соответствующую спецификацию на языке EXPRESS.

Пример — На рисунках D.1 и D.2 представлена EXPRESS-G диаграмма для схемы на языке EXPRESS,
определенной в примере из приложения J, раздел J. 1. Диаграмма представлена на двух страницах, чтобы
показать, как создаются многостраничные диаграммы.

Основные элементы диаграммы показывают, что личность (объект person) имеет некоторые
определяющие характеристики, включая имя (first_name), фамилию (lastname), необязательный псевдо­
ним (nickname), дату рождения (birth_date) и описание волос (hair). Личность может быть мужчиной (объект

male) или женщ иной (объект female). Мужчина может иметь жену (wife) женского пола; в этом случае
женщ ина имеет мужа (husband) мужского пола. Личность может иметь детей (children), которые также
являются личностями.

D.2 Обозначения определений
Определения типов данных и схем на диаграмме обозначаются прямоугольниками, в которых указано имя

определяемого элемента. Взаимосвязи между элементами обозначаются линиями, соединяющими прямоуголь­
ники. Для разных типов определений и взаимосвязей используются разные стили линий.

D.2.1 Обозначения простых типов данных
Простой тип данных языка EXPRESS обозначается прямоугольником, ограниченным сплошными линиями

с трех сторон и двойной вертикальной сплошной линией справа. Имя типа данных указывается внутри прямоу­
гольника, как показано на рисунке D.3.

D.2.1.1 Обозначения обобщенных типов данных
Для обозначения типа данных GENERIC_ENTITY используется такой же прямоугольник, что и для обозна­

чения простого типа данных языка EXPRESS. Имя типа данных указывается внутри прямоугольника, как показано
на рисунке D.4.

141

ГОСТ Р ИСО 10303-11— 2009

С Г *sc_person

children S[0:?]

(INV) parents S[0:2]

_____ С2____ зt

hair -Cj^ hair_type j j

2,5 date)

Рисунок D.1 — Полная диаграмма уровня объектов для примера из приложения J, раздел J.1 (лист 1 из 2)

А [1:3]s ------------- N I------------------ 1 А [1:3] л----------------------
(2,5(1))---q date j— -— ----- g INTEGER

Рисунок D.2 — Полная диаграмма уровня объектов для примера из приложения J, раздел J.1 (лист 2 из 2)

BINARY

BOOLEAN LOGICAL STRING

NUMBER INTEGER REAL

Рисунок D.3 — Обозначения простых типов данных языка EXPRESS

GENERIC ENTITY

Рисунок D.4 — Обозначение типа данных GENERIC_ENTITY языка EXPRESS

D.2.2 Обозначения конструкци онны х типов данны х
Конструкционные типы данных языка EXPRESS — SELECT и ENUMERATION обозначаются прямоугольни

ками, ограниченными пунктирными линиями. Имя типа данных указывается внутри прямоугольника, как показа
но на рисунке D.5.

Г! SELECT "! Г ENUMERATION Vi
L I _____________________________ I I_____________________________ LJ

Рисунок D.5 — Символы для конструкционных типов данных языка EXPRESS

142

ГОСТ Р ИСО 10303-11— 2009

Обозначение типа данных SELECT состоит из пунктирного прямоугольника с двойной вертикальной пунк­
тирной линией слева. Если выбираемым типом данных является GENERIC_ENTITY SELECT, то перед именем
типа данных ставится символ «звездочка» (*).

Обозначение типа данных ENUMERATION состоит из пунктирного прямоугольника с двойной вертикальной
пунктирной линией справа. EXPRESS-G не обеспечивает представления списка с перечислением.

П р и м е ч а н и е — Поскольку простые типы данных и тип данных ENUMERATION являются в EXPRESS-G
элементарными типами данных, обозначение типа данных ENUMERATION похоже на обозначение простого
типа данных, в котором также используется двойная вертикальная линия справа.

В языке EXPRESS допускается использование только типов данных SELECT и ENUMERATION для пред­
ставления определенного типа данных. EXPRESS-G предоставляет сокращенную нотацию, в которой имя опре­
деленного типа данных помещается внутри пунктирного прямоугольника, обозначающего типы данных SELECT
или ENUMERATION, вместо имени типа данных, а специального обозначения определенного типа данных не
существует, как показано на рисунке D.6 (см. D.5.4).

! ! a select i i an enumeration | I
L J _________ Z"_________________ I I_____________________________LJ

Рисунок D.6 — Сокращенные обозначения конструкционных типов данных языка EXPRESS при их
использовании для представления определенных типов данных

Пример — Две диаграммы на рисунке D. 7 эквивалентны.

\ ha irjype ’ ------------------сГ ENUMERATION |1
L------------------------------ 1 I_____________________________ LJ

!~ ha irjype |"!

Рисунок D.7 — Пример альтернативных методов представления перечисляемого типа данных

При реализации инструментальных средств редактирования для EXPRESS-G может использоваться пол­
ная форма представления конструкционных типов данных, сокращенная форма или обе формы вместе. Разра­
ботчик инструментальных средств редактирования для EXPRESS-G должен указать, какая из этих форм примене­
на, используя приложение Е.

D.2.2.1 Наращиваемые конструкционные типы данных
Наращиваемые конструкционные типы данных обозначаются в EXPRESS-G посредством символов ЕХ,

заключенных в круглые скобки, то есть (ЕХ), размещенных перед именем конструкционного типа данных, как
показано на рисунке D.8.

! a_select I----------------------О I (EX) SELECT "!
1__________________________ I L J _____ ' ___ L__________________________ I

! | (EX) a_select]

| an_enum I----------------------H " (EX) ENUMERATION I !
L---------------------------------1 L I ___L_____________________ LJ

i------------------- г -
| (EX) an_enum | |
L____________ !_i

Рисунок D.8 — Обозначение наращиваемых конструкционных типов данных языка EXPRESS

D.2.3 Обозначение определенных типов данных
Определенный тип данных обозначается пунктирным прямоугольником, в котором указано имя типа, как

показано на рисунке D.9.

гI
L

a_dd_type

Рисунок D.9 — Обозначение определенного типа данных языка EXPRESS

143

ГОСТ Р ИСО 10303-11— 2009

D.2.4 Обозначение объектных типов данных
Объектный тип данных обозначается прямоугольником, ограниченным сплошными линиями, в котором

указано имя объекта, как показано на рисунке D.10.

an_entity

Рисунок D.10 — Обозначение объектного типа данных языка EXPRESS

D.2.5 Обозначение ограничений подтипов
Ограничение подтипа (конструкция SUBTYPE_CONSTRAINT) обозначается эллипсом, в котором указано

имя ограничения, как показано на рисунке D.11.

(sc constraint)

Рисунок D.11 — Обозначение конструкции языка EXPRESS SUBTYPE_CONSTRAINT

D.2.6 Обозначение функций и процедур
В языке EXPRESS-G не поддерживаются обозначения операторов FUNCTION и PROCEDURE.
D.2.7 Обозначение правил
В языке EXPRESS-G не поддерживается обозначение оператора RULE. Имена объектов, являющихся па­

раметрами оператора RULE, могут быть помечены звездочкой (см. D.5.3).
D.2.8 Обозначение схем
Обозначением схемы (см. рисунок D.12) является прямоугольник, ограниченный сплошными линиями и

разделенный пополам горизонтальной линией. В верхней половине прямоугольника указывается имя схемы.
Нижняя половина прямоугольника остается пустой.

a schema

Рисунок D.12 — Обозначение схемы

D.3 Обозначение взаимосвязей
Обозначения определений соединяются линиями различных стилей, показанных на рисунке D.13.

---------------------------- - обычная линия;
---------------------------- ---- пунктирная линия;

- утолщенная линия

Рисунок D.13 — Стили линий, обозначающих взаимосвязи

Взаимосвязь с необязательным атрибутом объектного типа данных, определенным как OPTIONAL, пред­
ставляется пунктирной линией. Ссылка между схемами представляется пунктирной линией. Пунктирная линия
может также связывать эллипс, обозначающий ограничение подтипа, и прямоугольник, обозначающий ограни­
ченный супертип. Отношение наследования (то есть взаимосвязь между подтипом и супертипом) представляется
утолщенной линией. Расширение одного конструкционного типа данных другим также представляется утолщен­
ной линией. Все прочие взаимосвязи представляются сплошными линиями обычной толщины.

Взаимосвязи являются двунаправленными, но одно из двух направлений является главным. Если объект А
имеет явный атрибут, которым является объект В, то главным является направление от А к В. В EXPRESS-G
взаимосвязь помечается незаштрихованным кружком в главном направлении, в данном случае в конце линии у
объекта В. Для отношения наследования главным является направление к подтипу, то есть кружок располагается
в конце линии со стороны подтипа. Для расширения конструкционных типов данных главным является направле­
ние к конструкционному типу данных, основанному на наращиваемом типе данных (то есть кружок располагается
в конце линии со стороны конструкционного типа данных, основанного на наращиваемом конструкционном типе
данных).

Пример — Направления взаимосвязей показаны на рисунке D. 14, который является неполным пред­
ставлением кода на язы ке EXPRESS из примера, приведенного в приложении J, раздел J.2. Диаграмма
содержит шесть объектных типов данных, три определенных типа данных и несколько простых типов
данных. Объект super имеет два подтипа с именами sub_1 и sub_2. Объект sub_2 имеет атрибут вы-

144

ГОСТ Р ИСО 10303-11— 2009

бираемого типа данных с именем choice, представляющего выбор между объектным типом данных с
именем an_ent и определенным типом данных name. Атрибутом объектного типа данных an ent являет­
ся целочисленный тип данных, a name является строковым типом данных.

Атрибутом объектного типа данных объекта sub_1 является объектный тип данных from_ent,
необязательным атрибутом которого является to_ent, а обязательным — действительный тип дан­
ных. В свою очередь, обязательным атрибутом объектного типа данных to_ent является определенный
тип данных с именем strings, a strings является списком (не показанным на диаграмме) строкового типа
данных.

П р и м е ч а н и я
1 Хотя в приведенной диаграмме показаны только прямые линии взаимосвязей, линии могут иметь любую

конфигурацию (например, быть кривыми).
2 Не всегда может оказаться удобным изобразить диаграмму без взаимного пересечения линий взаимо­

связей. Способы различения точек пересечения определяются разработчиком диаграммы.
D.4 Обозначение компоновки диаграмм
Графические представления могут располагаться на нескольких страницах. Каждая страница нумеруется.

Обозначение межстраничных ссылок показано на рисунке D.15.

Рисунок D.14 — Частная диаграмма уровня объектов, иллюстрирующая направления взаимосвязей
для примера из приложения J, раздел J.2 (лист 1 из 1)

С page# .re f# (# , # , -) ") --------О - ссылка на данную страницу;

-------- (page#, ref#: name ^ - ссылка на другую страницу

Рисунок D.15 — Обозначение компоновки диаграммы: ссылки между страницами

Схема может содержать ссылки на определения из других схем. Обозначение ссылок между схемами
показано на рисунке D.16.

К' . . . N - определение, включенное из другой схемыscnema.aeT j, о ееео еы ге .посредством оператора REFERENCE;
rename

rename

_. _ . , > - определение, включенное из другой схемы
schema.def у посредством оператора USE

Рисунок D.16 — Обозначение компоновки диаграммы: ссылки между схемами

145

ГОСТ Р ИСО 10303-11— 2009

D.4.1 Ссылки между страницами
Если существует взаимосвязь между определениями на разных страницах, линия взаимосвязи, связываю­

щая две страницы, заканчивается скругленным прямоугольником на каждой из них. Скругленный прямоугольник
содержит номер страницы и номер ссылки, как показано на рисунке D.15. Номер страницы определяет номер
страницы, содержащей определение, на которое дается ссылка. Номер ссылки используется для различения
нескольких ссылок на странице. Обозначение компоновки диаграммы на странице, на которой размещена ссыл­
ка, содержит имя определения, на которое дана ссылка. Скругленный прямоугольник ссылки на странице, на
которую дана ссылка, может содержать заключенный в круглые скобки список номеров страниц, из которых исхо­
дят ссылки.

П р и м е ч а н и е — Использование межстраничных ссылок показано на рисунках D.1 и D.2. Скругленный
прямоугольник, помеченный «2, 5», исходящий от определения объекта person, указывает, что определение, на
которое дается ссылка, находится на странице диаграммы с номером 2 под ссылкой с номером 5. На странице
диаграммы с номером 2, показанной на рисунке D.2, в скругленном прямоугольнике, направленном на определе­
ние объекта date указано, что на данное определение ссылка сделана из другого определения, расположенного
на другой странице диаграммы. Число в круглых скобках указывает, что ссылающийся элемент расположен на
странице диаграммы с номером 1.

D.4.2 Ссылки между схемами
Ссылки между схемами обозначаются скругленным прямоугольником, содержащим имя определения, уточ­

ненное именем схемы, как показано на рисунке D.16.
Скругленный прямоугольник с определением, к которому осуществляется доступ из другой схемы посред­

ством оператора REFERENCE, помещается внутри прямоугольника, ограниченного пунктирными линиями. Если
определение переименовывается при импорте, то новое имя может быть указано под скругленным прямоуголь­
ником.

Скругленный прямоугольник с определением, к которому осуществляется доступ из другой схемы посред­
ством оператора USE, указывается в прямоугольнике, ограниченном сплошными линиями. Если определение
переименовывается при импорте, то новое имя может быть указано под скругленным прямоугольником.

П р и м е ч а н и е — Использование ссылок между схемами показано на рисунке D.24.

D.5 Диаграммы уровня объектов
Графическая нотация EXPRESS-G может быть использована для представления определений и взаимо­

связей между ними в рамках одной схемы. Данный тип диаграммы может содержать обозначения простых типов
данных, определенных типов данных, объектных типов данных, ограничений подтипов и взаимосвязей, а также
информацию о ролях и мощности множеств, необходимую для представления содержания одной схемы.

D.5.1 Имена ролей
В языке EXPRESS для атрибута объектного типа данных указывается имя роли типа данных, на который

дается ссылка, когда экземпляр участвует во взаимосвязи, установленной данным атрибутом. Текстовая строка с
именем роли может быть размещена на линии взаимосвязи, соединяющей обозначение объектного типа данных
с обозначением его атрибута. Данные имена ролей должны согласовываться с областью видимости и правилами
видимости, определенными в разделе 10.

D.5.2 Мощности множеств
Атрибуты объектных и определенных типов данных могут быть представлены агрегированными типами

данных (LIST, SET, BAG и ARRAY). В графической нотации EXPRESS-G агрегированная структура указывается на
линии взаимосвязи для атрибута сразу после имени атрибута. Используется только первая буква названия
агрегированного типа данных (то есть А, В, L или S), а ключевое слово OF опускают. Исключением является
использование типа данных AGGREGATE, что указывают на линии взаимосвязи для атрибута посредством пустой
пары квадратных скобок ([]), а не буквы. Если агрегированная структура не специфицирована, то мощность
множества принимается равной единице для обязательной взаимосвязи и нулю или единице — для необяза­
тельного атрибута.

П р и м е ч а н и е — Полное представление в графической нотации EXPRESS-G примера из приложе­
ния J, раздел J.2 представлено на рисунке D.17. Для компонентов типа данных SELECT имена ролей не
присвоены.

146

ГОСТ Р ИСО 10303-11— 2009

— I
__ I

Рисунок D.17 — Полная диаграмма уровня объектов для примера из приложения J, раздел J.2 (лист 1 из 1)

D.5.3 Ограничения
Графическая нотация EXPRESS-G не предоставляет способов определения ограничений, кроме ограниче­

ний на мощность множеств. Тот факт, что некоторый элемент ограничен в спецификации данных на языке
EXPRESS, может быть обозначен указанием символа звездочки (*) перед именем данного элемента. При этом
применяют следующие правила:

- если объект является параметром оператора RULE, то имени объекта может предшествовать звездочка;
- если атрибут объекта ограничен в рамках объекта условием UNIQUE или WHERE, то имени атрибута

может предшествовать звездочка;
- если определенный тип данных ограничен условием WHERE, то имени определенного типа данных мо­

жет предшествовать звездочка;
- если агрегированный тип данных ограничен ключевым словом UNIQUE, то первому символу имени агреги­

рованной структуры может предшествовать звездочка.
D.5.4 Конструкционные и определенные типы данных
Тип данных SELECT представляется обозначением выбираемого типа данных (см. рисунок D.5) с опреде­

лением взаимосвязи и типа данных для каждого из элементов выбора. Для взаимосвязей не указывают ни мощ­
ность множества, ни имя роли.

Тип данных ENUMERATION представляется только своим обозначением (см. рисунок D.5).

П р и м е ч а н и е — Графическая нотация EXPRESS-G не обеспечивает механизм для обозначения
элементов перечисления.

Определенный тип данных представляется обозначением определения типа (см. рисунок D.9), содержа­
щим имя определения, определением типа данных представления и линией взаимосвязи, направленной от
определения определенного типа данных к определению типа данных представления. На линии взаимосвязи
может быть указана мощность представления.

П р и м е ч а н и е — Представление определенного типа данных показано на рисунке D.14 на примере
типа данных strings.

Взаимосвязь расширения между наращиваемым конструкционным типом данных и основанным на нем
конструкционным типом данных обозначается утолщенной линией, связывающей наращиваемый тип данных с
его расширениями. Поскольку может существовать более одного расширения наращиваемого типа данных, то
линия, связывающая наращиваемый тип данных с его расширениями, может иметь ответвления. Наращиваемый
тип данных может иметь несколько линий, ведущих к его расширениям. Конец линии со стороны наращиваемого
типа данных не имеет специального обозначения. Конец линии со стороны расширения обозначается незаштри-
хованным кружком.

П р и м е ч а н и е — Два расширения наращиваемого выбираемого типа данных, один из которых сам
является наращиваемым, показаны на рисунке D.18.

147

ГОСТ Р ИСО 10303-11— 2009

jc- - - - - - - - - - - - - - - - - - - JL----------м ------------------------------- 1 |—i---1
an_extension]]] (EX) ext_extension j

Рисунок D.18 — Диаграмма наращиваемого выбираемого типа данных

D.5.5 О бъектны е ти пы данны х
Определения ENTITY обозначают в EXPRESS-G прямоугольником, ограниченным прямыми линиями (см.

рисунок D.10). Имя объектного типа данных указывают внутри прямоугольника.
В графической нотации EXPRESS-G объект может:
- быть частью ациклического графа наследования;
- иметь явные атрибуты;
- иметь вычисляемые атрибуты;
- иметь инверсные атрибуты.
Каждый явный или вычисляемый атрибут объекта языка EXPRESS отображается взаимосвязью в соответ­

ствующей EXPRESS-G диаграмме. Имя роли атрибута вместе со следующей за ним мощностью могут быть указаны
на линии взаимосвязи. Вычисляемый атрибут отличается от явного атрибута тем, что перед именем вычисляемо­
го атрибута указываются символы DER в круглых скобках, то есть (DER).

В случае, когда для данного атрибута определен инверсный атрибут, имя и мощность инверсного атрибута
указывают на линии взаимосвязи с противоположной стороны относительно имени атрибута, для которого он
является инверсным. Перед именем инверсного атрибута указывают символы INV в круглых скобках, то есть (INV).

Инверсия может не быть прямой (простой) инверсией явного атрибута. Объект, на который дается ссылка в
объявлении инверсного атрибута может быть подтипом объекта, объявившего прямую взаимосвязь. Другие виды
непрямых инверсных взаимосвязей описаны в 9.2.1.3. К таким непрямым инверсным взаимосвязям применяют
следующие правила:

- инверсный атрибут обозначается обычной линией, связывающей объект, в котором определен инверсный
атрибут, с объектом (или с обозначениями компоновки диаграммы для ссылок между страницами или схемами,
представляющими объект), представляющим цель инверсного атрибута. Целью инверсного атрибута может быть
объект, объявляющий явный атрибут, для которого он является инверсией или подтипом данного объекта;

- конец линии со стороны объекта, содержащего инверсный атрибут, обозначается незаштрихованным
кружком;

- конец линии со стороны целевого объекта не имеет стиля конца;
- имена исходного явного атрибута и объекта, в котором данный атрибут объявлен, размещаются рядом с

линией в круглых скобках в виде (имя_объекта.имя_атрибута);
- символы INV, заключенные в круглые скобки, то есть (INV), помещаются перед именем инверсного атрибу­

та, которое также помещается рядом с линией;
- если инверсный атрибут ограничен правилом WHERE или UNIQUE, то имени атрибута предшествует звез­

дочка в позиции верхнего индекса (*);
- если инверсный атрибут определен агрегированным типом данных, то данный агрегированный тип дан­

ных показывается в соответствии с D.5.2 после имени атрибута;
- если инверсный атрибут является повторно объявленным атрибутом, то у него перед символами (INV)

должны быть указаны символы RT, заключенные в круглые скобки, то есть (RT). Если в данном повторном объяв­
лении атрибут переименовывается, то новое имя атрибута указывается после исходного имени, и эти имена
разделяются символом «больше чем» (>).

П р и м е ч а н и я
1 Типичные диаграммы уровня объектов показаны на рисунках D.1 и D.17.
2 Обозначение правил области определения, примененных к атрибутам, можно увидеть на рисунке D.1

на примере ролей husband и m aiden_nam e.
3 Примерами объектов, ограниченных правилами, являются объекты male и fem ale на рисунке D.1.

Подтипы и супертипы.
Объекты, формирующие граф наследования, соединяются утолщенными сплошными линиями. Кружок на

конце линии взаимосвязи обозначает ее конец со стороны подтипа. Когда супертип является абстрактным супер­
типом, то есть определен как ABSTRACT, в прямоугольнике, обозначающем объект, перед именем объекта указы­
ваются символы ABS в круглых скобках, то есть (ABS). Если в SUBTYPE_CONSTRAINT объявлено ограничение
ABSTRACT SUPERTYPE, то обозначение (ABS) должно предшествовать имени соответствующего ограничения
SUBTYPE_CONSTRAINT в эллипсе, обозначающем данное ограничение, как показано на рисунке D.19.

I I I I

148

ГОСТ Р ИСО 10303-11— 2009

Если объект объявлен как ABSTRACT (не ABSTRACT SUPERTYPE, a ABSTRACT ENTITY), то символы АЕ,
заключенные в круглые скобки, то есть (АЕ), предшествуют имени объекта в прямоугольнике, обозначающем дан­
ный объект, как показано на рисунке D.20.

Рисунок D.19 — Обозначение ограничения ABSTRACT SUPERTYPE, если данное ограничение
определено в конструкции SUBTYPE_CONSTRAINT

(АЕ)
an_entity

Рисунок D.20 — Обозначение ограничения ABSTRACT ENTITY

Графическая нотация EXPRESS-G обеспечивает ограниченные возможности для представления л о т -
ческой структуры графа наследования. Отношение ONEOF может быть представлено разветвляющейся линией
взаимосвязи, направленной от супертипа к каждому из его подтипов, связанных друге другом отношением ONEOF,
и цифрой 1, расположенной у точки разветвления. Если отношение ONEOF задано конструкцией
SUBTYPE_CONSTRAINT, то перед именем SUBTYPE_CONSTRAINT в эллипсе, обозначающем данную конструк­
цию, должна стоять звездочка.

Отношение AND может быть представлено разветвляющейся линией взаимосвязи, направленной от супер­
типа к каждому из его подтипов, связанных друг с другом отношением AND, и символом &, расположенным у точки
разветвления. Если отношение AND задано конструкцией SUBTYPE_CONSTRAINT, то перед именем
SUBTYPE_CONSTRAINT в эллипсе, обозначающем данную конструкцию, должна стоять звездочка.

Представление ограничения TOTAL_OVER связано с обозначением ограничения SUBTYPE_CONSTRAINT,
составной частью которого оно было определено (см. рисунок D.21). Между эллипсом, обозначающим ограниче­
ние SUBTYPE_CONSTRAINT, и прямоугольником, обозначающим ограниченный объектный супертип, должна
быть проведена пунктирная линия; стиль этой линии не должен зависеть от существования ограничения
TOTAL_OVER. Между эллипсом, обозначающим ограничение SUBTYPE_CONSTRAINT, и прямоугольниками, обо­
значающими объектные подтипы, которые обеспечивают полное покрытие супертипа, должны быть проведены
линии обычной толщины. Все эти линии должны заканчиваться открытыми стрелками у прямоугольников, обозна­
чающих объектный супертип и его подтипы, включенные в данное ограничение. Кроме того, линии, исходящие от
SUBTYPE_CONSTRAINT, могут заканчиваться у обозначений компоновки диаграммы для ссылок между страни­
цами и схемами.

Рисунок D.21 — Пример ограничения покрытия TOTAL_OVER

149

ГОСТ Р ИСО 10303-11— 2009

Пример — На рисунке D.21 представлена следующая модель:
ENTITY person;
END_ENTITY;
ENTITY male SUBTYPE OF (person);
END_ENTITY;
ENTITY fem ale SUBTYPE OF (person);
END_ENTITY;
SUBTYPE_CONSTRAINT gender FOR person;

TOTAL_OVER (male, fem ale);
ONEOF (female, male);

END_SUBTYPE_CONSTRAINT;

П р и м е ч а н и я
1 На рисунке D.22 представлена EXPRESS-G диаграмма для примера из приложения J, раздел J.3, изобра­

жающая объект sub2 в качестве абстрактного супертипа.
2 На рисунке D.15 показано, что объекты sub1, sub2 и sub5 являются подтипами супертипа super. Экземп­

ляр супертипа supe r может не иметь подтипов, поскольку supe r не является абстрактным супертипом. Объекты
sub3 и sub4 являются подтипами супертипа sub2. Объекты sub3 и sub4 связаны друг с другом отношением
ONEOF.

Рисунок D.22 — Полная диаграмма уровня объектов графа наследования для примера из приложения J,
раздел J.3 (лист 1 из 1)

Язык EXPRESS допускает повторное объявление атрибутов супертипа в подтипе. При этом повторно объяв­
ленный атрибут является конкретизацией типа данных атрибута супертипа. Если повторное объявление атрибута
включает в себя также его переименование, то новое имя указывается после исходного имени и отделяется от
него символом «больше чем» (>). В графической нотации EXPRESS-G повторно объявленный атрибут представ­
ляется так же, как атрибут его супертипа, но с добавлением символов RT в круглых скобках, то есть (RT) перед
именем атрибута.

П р и м е ч а н и е — Некоторые формы повторного объявления атрибутов, представленных в примере на
языке EXPRESS из приложения J, раздел J.4 показаны на рисунке D.23. Объект sub_a повторно объявляет
атрибут a ttr из своего супертипа как подтип атрибута своего супертипа. Объект sup_b имеет необязательный
атрибут типа NUMBER. В его подтипе данный атрибут повторно объявлен как обязательный атрибут типа REAL.

150

Рисунок D.23 — Полная диаграмма уровня объектов для примера из приложения J, раздел J.4,
показывающая повторные объявления атрибутов в подтипах (лист 1 из 1)

ГОСТ Р ИСО 10303-11— 2009

D.5.6 Ссылки между схемами
Если определение из данной схемы ссылается на определение из другой схемы, используется обозначе­

ние ссылки между схемами, содержащее уточненное имя определения.

П р и м е ч а н и е — Диаграмма уровня объектов для одной схемы показана на рисунке D.24. Исходный текст
на языке EXPRESS для данной диаграммы приведен в примере 1 из приложения J, раздел J.5. Полная
диаграмма состоит из двух схем — top и geom (см. рисунок D.25), а некоторые объекты схемы top имеют атрибуты,
использующие определения из схемы geom. Поскольку диаграмма уровня объектов состоит только из элементов,
определенных в одной схеме, для представления схемы top в данном примере необходимо использовать ссылки
между схемами.

face
loc

bounds
L[1:?]

■ cieom.surface)

bound bound L[1:?]

geom.point
node

loc
П

vertex
start

finish

О

edge loc < geom.curve

Рисунок D.24 — Полная диаграмма уровня объектов схемы top для примера 1 из приложения J, раздел J.5,
иллюстрирующая ссылки между схемами (лист 1 из 1)

point > node
curve

top --------------------- С geom
---------- ----------------------- С

I surface

Рисунок D.25 — Полная диаграмма уровня схем для примера 1 из приложения J, раздел J.5 (лист 1 из 1)

D.6 Диаграммы уровня схем
Диаграмма уровня схем включает в себя представление нескольких схем и интерфейсов между ними.
Содержимое EXPRESS-G диаграммы уровня схем ограничено схемами, представленными в диаграмме, и

интерфейсами между ними. Диаграмма уровня схем может содержать следующие элементы:
- схемы, ссылающиеся на другие схемы посредством оператора USE;
- схемы, ссылающиеся на другие схемы посредством оператора REFERENCE;
- имена элементов, импортированных посредством операторов USE или REFERENCE.
Интерфейс USE представляется линией взаимосвязи обычной толщины, направленной от импортирующей

схемы к импортируемой схеме, с незаштрихованным кружком, обозначающим импортируемую схему. Интерфейс
REFERENCE представляется пунктирной линией взаимосвязи, направленной от импортирующей схемы к импор­
тируемой схеме, с незаштрихованным кружком, обозначающим импортируемую схему.

Импортированные определения могут быть показаны в виде списка имен, расположенного рядом с соот­
ветствующей линией взаимосвязи и соединенного с линией взаимосвязи посредством линии, заканчивающейся
стрелкой, указывающей на линию взаимосвязи. Переименование определения представляется его исходным
именем, за которым следуют символ «больше чем» (>) и новое имя определения.

151

ГОСТ Р ИСО 10303-11— 2009

П р и м е ч а н и е — Диаграмма с двумя схемами показана на рисунке D.25. Схема top имеет интерфейс со
схемой geom. В частности, схема top ссылается на объект surface и использует определения curve и p o in t из
схемы geom. Определение po in t в схеме top переименовано в node.

Если диаграмма уровня схем размещается на нескольких страницах, а интерфейсы между схемами пере­
секают границы страниц, то используются обозначения межстраничных ссылок.

П р и м е ч а н и е — В примере 2 из приложения J, раздел J.5 представлен исходный текст на языке
EXPRESS для сокращенной версии диаграммы уровня схем. EXPRESS-G диаграмма для данного примера пока­
зана на рисунке D.26.

gadgets things

-- с

I
(S

stuff whatsits whosits

> ------- > -------

7

widgets

Рисунок D.26 — Полная диаграмма уровня схем для примера 2 из приложения J, раздел J.5 (лист 1 из 1)

D.7 Полные EXPRESS-G диаграммы
Полной EXPRESS-G диаграммой называется диаграмма, в которой с учетом ограничений графической

нотации EXPRESS-G точно представлены все определения, взаимосвязи и ограничения посредством диаграм­
мы уровня объектов или уровня схем.

D.7.1 Полная диаграмма уровня объектов
Содержание диаграмм, представляющих полную диаграмму одной схемы, определяется следующими пра­

вилами:
a) каждая страница должна иметь заголовок, начинающийся со слов: «Complete entity level diagram of...»

(полная диаграмма уровня объектов для ...);
b) каждая страница нумеруется в виде «Page X of N» (страница X из N), где N — общее число страниц

диаграммы, а X — номер данной страницы;
c) должны быть показаны обозначения всех объектных типов данных, определенных типов данных и про­

стых типов данных, используемых в данной схеме;
d) не должно быть обозначений схем;
e) должны быть показаны все взаимосвязи, имена атрибутов и мощности множеств;
f) должны быть показаны все атрибуты, включая явные, вычисляемые и инверсные;
д) должны быть показаны все взаимосвязи наследования (между подтипами и супертипами);
h) должны быть помечены все ограничения ABSTRACT SUPERTYPE;
i) должны быть помечены все взаимосвязи подтипов ONEOF;
j) все определения, импортированные из других схем, должны быть обозначены скругленными прямоуголь­

никами, заключенными в прямоугольники соответствующего стиля (то есть ограниченными сплошными линиями
для определений, импортированных посредством оператора USE, и пунктирными линиями — для определений,
импортированных посредством оператора REFERENCE);

k) любое переименование должно быть представлено в соответствующем обозначении ссылки между схе­
мами;

l) все объекты, ограниченные оператором RULE, должны быть помечены звездочкой (*);
т) все атрибуты, на которые наложены ограничения, должны быть помечены звездочкой (*);
п) все определенные типы данных, на которые наложены ограничения, должны быть помечены звездоч­

кой (*);
о) все агрегированные типы данных, на которые наложены ограничения, должны быть помечены звездоч­

кой (*);
р) все объявления ABSTRACT ENTITY должны быть помечены;
q) все ограничения TOTAL_OVER должны быть помечены;
г) все взаимосвязи между наращиваемыми конструкционными типами данных и их расширениями должны

быть показаны;
s) все новые и старые имена атрибутов, переименованных при повторном объявлении, должны быть пока­

заны;

152

ГОСТ Р ИСО 10303-11— 2009

t) все ограничения GENERIC_ENTITY SELECT должны быть показаны;
и) все типы данных GENERIC_ENTITY, использованные в данной схеме, должны быть показаны.
Все взаимосвязи между объектами, не помеченные инверсным атрибутом, интерпретируются как имеющие

мощность, равную нулю или больше нуля. Непомеченное отношение подтипов не может служить основанием для
вывода о наличии логического структурирования, если только данное отношение не является отношением ONEOF.

D.7.2 Полная диаграмма уровня схем
Содержание диаграмм, представляющих полную диаграмму уровня схем, определяется следующими пра­

вилами:
a) каждая страница должна иметь заголовок, начинающийся со слов: «Complete schema level diagram of... »

(полная диаграмма уровня схем для ...);
b) каждая страница нумеруется в виде «Page X of N» (страница X из N), где N — общее число страниц

диаграммы, а X — номер данной страницы;
c) должны быть показаны все использованные схемы;
d) не должны показываться обозначения объектов, типов данных и простые символы;
e) должны быть показаны все отношения между схемами, представленные операторами USE и REFERENCE;
f) имена всех определений, импортированных посредством операторов USE или REFERENCE, должны

быть привязаны к соответствующей линии взаимосвязи вместе с их переименованиями. Если к линии взаимосвя­
зи не привязано никаких имен, то это интерпретируется как схема, целиком импортированная посредством опе­
раторов USE или REFERENCE.

П р и м е ч а н и е — При разработке моделей или графических диаграмм полезно иметь возможность
представлять диаграммы на разных уровнях абстракции. Например, на конкретной диаграмме могут быть пред­
ставлены не все атрибуты или показаны не все имена ролей. Подобное представление находится вне области
определения EXPRESS-G, но рекомендуется, чтобы уровень абстракции был согласован и документирован до
начала разработки. Кроме того, рекомендуется, чтобы в заголовке диаграммы были отражены используемые
уровни абстракции.

153

ГОСТ Р ИСО 10303-11— 2009

Приложение Е
(обязательное)

Заявка о соответствии реализации протоколу (ЗСРП)

Является ли данная реализация синтаксическим анализатором или верификатором языка EXPRESS? Если
да, то следует ответить на вопросы из Е.1.

Является ли реализация средством редактирования EXPRESS-G? Если да, то следует ответить на вопросы
из Е.2.

Е.1 Синтаксический анализатор языка EXPRESS
Для какого уровня заявляется поддержка:
[] Уровень 1 — проверка ссылок;
[] Уровень 2 — проверка типов данных;
[] Уровень 3 — проверка значений;
[] Уровень 4 — полная проверка.

П р и м е ч а н и е — Для того, чтобы заявить о поддержке данного уровня, поддержка всех нижележащих
уровней также должна быть обеспечена.

Каково максимальное целочисленное :
значение [in tege rjite ra l]? :
Какова максимальная точность действительных :
чисел [rea ljite ra l]? :
Каков максимальный показатель степени :
действительных чисел [real literal]?:
Какова максимальная длина строки (в символах) .. :
[s im p le s tr in g lite ra l]? :
Какова максимальная длина строки (в октетах) .. :
[e n c o d e d s tr in g lite ra l]? :
Какова максимальная длина двоичных чисел :
(в битах) [binary literal]?:
Существует ли ограничение на число .. :
объявленных уникальных идентификаторов?
Если да, то чему оно равно?:
Существует ли ограничение на число символов в .. :
идентификаторе? Если да, то чему оно равно?:
Существует ли ограничение на глубину вложения .. :
областей видимости? Если да, то чему оно равно?:
Реализуется ли концепция нескольких областей .. :
видимости имен, в которых могут появляться
имена схем? Если да, то как называются эти области
видимости?:
Как представлена стандартная константа 1 ? 1 .. :
[b u ilt in c o n s ta n t]? :
Е.2 Средство редактирования EXPRESS-G
Для какого уровня заявляется поддержка:
[] Уровень 1 — проверка обозначений;
[] Уровень 2 — полная проверка.

П р и м е ч а н и е - Для того, чтобы заявить о поддержке данного уровня, поддержка всех нижележащих
уровней также должна быть обеспечена.

154

Существует ли ограничение на число
объявленных уникальных идентификаторов?
Если да, то чему оно равно?:
Существует ли ограничение на число символов в
идентификаторе? Если да, то чему оно равно?:
Существует ли ограничение на число обозначений
на странице модели? Если да, то чему оно равно?:
Существует ли ограничение на число страниц в
модели? Если да, то чему оно равно?:
Реализуется ли концепция нескольких областей
видимости имен, в которых могут появляться
имена схем? Если да, то как называются эти области
видимости?:
Реализуется ли полная форма представления
конструкционных типов данных, сокращенная форма
или обе формы одновременно?:

ГОСТ Р ИСО 10303-11— 2009

Приложение F
(обязательное)

Регистрация информационного объекта

F.1 Обозначение документа
Для обеспечения однозначного обозначения информационного объекта в открытой системе настоящему

стандарту присвоен следующий идентификатор объекта:

{ iso standard 10303 part(11) version(4) }

Смысл данного обозначения установлен в ИСО/МЭК 8824-1 и описан в ИСО 10303-1.
F.2 Обозначение синтаксиса
Для обеспечения однозначного обозначения информационного объекта в открытой системе синтаксису

языка EXPRESS присвоен следующий идентификатор объекта:

{ iso standard 10303 part(11) version(4) object(1) EXPRESS-syntax (1)}

Смысл данного обозначения установлен в ИСО/МЭК 8824-1 и описан в ИСО 10303-1.

156

ГОСТ Р ИСО 10303-11— 2009

Приложение G
(обязательное)

Генерация одной схемы из нескольких схем

G. 1 Введение
Модель данных на языке EXPRESS состоит, по крайней мере, из одной схемы, но может состоять и из

нескольких схем. Существует много способов построения мультисхемной спецификации, некоторые из которых
перечислены ниже.

Часть спецификации может быть определена в одной схеме, которая повторно может использоваться в
другой схеме с целью конкретизации или расширения.

Схема верхнего уровня может импортировать несколько схем, чтобы построить полную спецификацию
данных.

Полная спецификация может состоять из нескольких независимых схем.
В исходных методах реализации, включенных в стандарты комплекса ИСО 10303, предполагалась модель

данных, состоящая из одной схемы, называемой схемой в длинной форме. До тех пор, пока методы реализации,
включенные в стандарты комплекса ИСО 10303, не обновляются, чтобы соответствовать настоящей редакции
ИСО 10303-11, или реализации не модифицируются, чтобы соответствовать новым методам реализации, может
быть достаточно преобразовать спецификацию данных, соответствующую настоящему стандарту, в специфика­
цию данных, соответствующую предыдущей редакции 1994 г. В настоящем приложении определены правила
выполнения данного преобразования. Эти правила обеспечивают преобразование мультисхемной специфика­
ции, соответствующей требованиям настоящего стандарта, в схему в длинной форме, соответствующую предыду­
щей редакции 1994 г. Данные правила разработаны, чтобы получить в результате полную и непротиворечивую
длинную форму и минимизировать потери семантики исходной модели данных.

G.2 Основные понятия
Объекты, состоящие во взаимосвязи супертип-подтип, образуют направленный граф, который должен быть

ациклическим (многокорневым) деревом. Аналогично, схема, которая связана спецификациями интерфейсов
USE или REFERENCE, образует направленный граф, который может быть циклическим, и узлами которого явля­
ются схемы, а ребрами - спецификации интерфейсов. В общем случае спецификация модели данных состоит из
одного или нескольких графов схем. В частности, такой граф может иметь одну корневую схему, в которую не
направлена какая-либо спецификация интерфейса, но из которой можно достичь все другие схемы. Корневая
схема может рассматриваться в качестве представителя данного графа. В других случаях в графе может суще­
ствовать одна или несколько основных схем, тогда как другие схемы в данном графе существуют только для
поддержки основной схемы. Корневая и основная схемы играют особую роль в процессе преобразования.

Исходными данными для процесса генерации схемы в длинной форме являются корневая и основная
схемы графа, заключающего в себе спецификацию модели данных.

Результатом данного процесса является одна схема, содержащая все конструкции из исходных схем плюс
необходимые поддерживающие конструкции из других схем, присутствующих во множестве графов. К поддержи­
вающим конструкциям относятся конструкции, которые явно или неявно импортированы в корневую и основную
схему.

Результирующая схема в длинной форме почти семантически идентична модели без операторов USE и
REFERENCE; объекты, интерфейс с которыми установлен посредством оператора REFERENCE, вносятся непос­
редственно в данную схему. Информация, описывающая исходные схемы, отбрасывается. Объекты в импортиро­
ванных схемах, на которые непосредственно не ссылаются объекты из корневой или основной схемы, также
отбрасываются. Проводится сокращение и перезапись некоторых конструкций из исходных схем, чтобы не вклю­
чать объекты, объявленные первоначально, но не используемые в конечной схеме.

Процесс преобразования состоит из двух этапов, на каждом из которых происходит потеря семантики:
а) мультисхемная спецификация данных преобразовывается в спецификацию промежуточной единой схе­

мы. При этом проводятся следующие основные преобразования:
1) выбираемые элементы типа данных SELECT сокращают за счет удаления элементов, не импортируемых

в схему. Согласно 11.4.2 выбираемые элементы не являются неявно импортируемыми, поскольку импортируется
сам тип данных SELECT. Если выбираемые элементы остались в списке выбора, а соответствующие им объекты
не видимы в схеме, то результатом компиляции схемы в длинной форме будет ошибка,

2) сокращают ограничения SUBTYPE_CONSTRAINT, чтобы отразить сокращение графа подтипов/суперти-
пов в соответствии с 11.4.3 и приложением С,

3) сокращают правила RULE, чтобы отразить сокращение графа подтипов/супертипов в соответствии с 11.4.3
и приложением С,

4) имена схемы в полностью уточненных ссылках на атрибуты заменяют именем схемы в длинной форме,

157

ГОСТ Р ИСО 10303-11— 2009

5) знания о том, как конструкции были импортированы, то есть их видимость и реализуемость, преобразовы­
ваются в правила. Информация, описывающая как объект был импортирован (учитывая различие между опера­
торами USE и REFERENCE), влияет на его реализуемость и видимость; см. 11.2 и 11.3.

При этом может быть потеряна следующая семантическая информация:
теряются знания о схеме, из которой происходит каждая конструкция, комментарии, не имеющие меток

комментария (см. 7.1.6.3), могут быть отброшены, регистр символов в идентификаторах пользователя может не
сохраниться;

Ь) представление промежуточной единой схемы переписывают с использованием только конструкций из
ИСО 10303-11:1994 для создания конечной схемы в длинной форме. Преобразование из сокращенной формы
промежуточного представления в схему в длинной форме требует удаления или изменения конструкций языка
EXPRESS, не поддерживаемых предыдущей редакцией ИСО 10303-11. В частности, проводят следующие основ­
ные действия с сопутствующими семантическими потерями:

1) типы данны х EXTE N S IBLE S ELEC T зам еняю т типами данны х S ELEC T в соответствии с ИСО
10303-11:1994, не поддерживающим расширение,

2) типы данных EXTENSIBLE ENUMERATION заменяют типами данных ENUMERATION в соответствии с
ИСО 10303-11:1994, не поддерживающим расширение,

3) операторы SUBTYPE_CONSTRAINT удаляют:
их ограничения SUPERTYPE и операторы ABSTRACT преобразовывают в операторы SUPERTYPE, соот­

ветствующие ИСО 10303-11:1994, и переписывают, чтобы удалить типы данных, которые в других обстоятельствах
не появились бы в схеме в длинной форме,

ограничения TOTAL_OVER заменяются конструкциями RULE,
4) ABSTRACT ENTITY и GENERIC_ENTITY преобразовывают в ограничения ABSTRACT SUPERTYPE,
5) конструкции RENAMED преобразовывают в атрибуты DERIVE,
6) для пустых типов данных SELECT должно быть сформировано сообщение об ошибке.
Спецификация промежуточной единой схемы является артефактом процесса преобразования и не ис­

пользуется вне данного процесса.
Перечисленные выше действия более подробно описываются в последующих подразделах.
G.3 Изменение имен
G.3.1 Конфликты имен
Схема определяет область видимости имен, в которой имена, указанные в объявлениях объектов, уникаль­

ны. Имена, объявленные в других схемах, относятся к другим областям видимости и поэтому они не обязательно
будут уникальными при формировании единой схемы из нескольких. Ниже представлен процесс объединения
объявлений из разных схем при формировании единой схемы. Для того, чтобы обеспечить уникальность имен в
такой единой схеме, любое имя, не являющееся уникальным в исходном наборе объединяемых схем, должно
быть модифицировано с тем, чтобы избежать конфликта имен и обеспечить выполнение требования уникально­
сти имен в объединенной схеме.

Перед каждым не уникальным именем добавляется имя схемы, в которой оно определено, и строка '_dot_'.
Соответствующие изменения имен должны быть сделаны во всей исходной схеме.

Пример — Пусть объект thing объявлен в схеме scha, а тип данных thing объявлен в схеме schb. При
объединении данных схем объект переименовывается в scha dot thing, а тип данны х— в schb dot thing.

G.3.2 Идентификаторы, представленные строками
В схеме некоторые строки могут представлять полностью уточненные имена.

Пример — В следующем фрагменте кода:

IF ' THISSCHEMA.ANENTITY' IN TYPEOF(super)
ст рока ' THIS SCHEMA.AN ENTITY' представляет полностью уточненное имя.

Если объявления, содержащие такие строки, перемещаются из своей исходной схемы в другую схему, то в
данных строках часть, содержащая имя исходной схемы, должна быть модифицирована, чтобы представлять
схему, в которую данные объявления перемещаются.

Пример — Пусть объявление с именем whatsit из схемы scha копируется в другую схему schb. Д ру­
гое объявление, содержащее строку ' SCHA.WHATSIT ', также копируется в schb. В схеме schb данная
строка появится с им енем ' SCHB.W HATSIT '.

G.4 Этап 1 — преобразование нескольких схем в промежуточную схему
G.4.1 Введение
Ниже определен первый этап ф ормирования специф икации модели данных единой схемы по ИСО

10303-11:1994 из спецификации моделей данных нескольких схем. Результатом данного этапа является специ­
фикация модели данных в форме единой схемы по ИСО 10303-11:2003. Назовем данную схему artifact.

Исходными данными для преобразования на этапе 1 являются корневая и основная схемы для специфи­
кации модели данных. Начальная спецификация модели данных должна быть ссылочно полной, то есть в ней не
должно быть неопределенных ссылок.

158

ГОСТ Р ИСО 10303-11— 2009

Способ идентификации исходных схем не определяется в настоящем стандарте и остается на усмотрение
разработчиков реализации.

G.4.2 Первичное содержимое
Создается новая промежуточная схема с именем artifact, в которую копируются все объявления и помечен­

ные комментарии из корневой и основной схем. Схема artifact не должна иметь идентификатор версии
schema_version_id. Любой конфликт имен между объявлениями и помеченными комментариями в схеме artifact
должен быть разрешен и все представления строковых идентификаторов соответствующим образом модифици­
рованы.

Удаляются все дубликаты в операторах USE и REFERENCE. Если какой-либо элемент появляется в обоих
операторах USE и REFERENCE, то данный элемент удаляется из оператора REFERENCE, поскольку специфика­
ция интерфейса посредством оператора USE имеет приоритет по отношению к оператору REFERENCE
(см. 11.3).

Оператор USE позволяет рассматривать элементы из другой схемы, как объявленные локально в данной
схеме (см. 11.1). Копируются все такие элементы и относящиеся к ним помеченные комментарии в схему artifact,
при этом разрешаются все конфликты имен и модифицируются идентификаторы, представленные строками.

Если импортированный элемент должен быть переименован (см. 11.1 и 11.2), то он должен быть скопиро­
ван под своим исходным именем, а ссылки на идентификатор должны быть изменены соответствующим обра­
зом.

Затем из схемы artifact удаляются все операторы USE, поскольку все элементы, идентифицированные
посредством операторов USE, уже скопированы в данную схему.

П р и м е ч а н и е — Схема artifact теперь будет содержать все элементы, объявленные в исходных
корневой и основной схемах, плюс элементы, импортированные в исходные схемы посредством операторов
USE, плюс операторы (модифицированные) REFERENCE из исходных схем.

Примеры
1 Данный пример иллюстрирует копирование переименованных элементов. Дано:
SCHEMA sch;

USE FROM second (alfred AS alf);
REFERENCE FROM second (bert AS herbert);
ENTITY joe;

attrl : alf;
attr2 : herbert;

END_ENTITY;

SCHEMA short;
USE sch;

END_SCHEMA;
тогда, если схема short была для алгоритма исходной корневой схемой, a alfred и bert являются объявле­
ниями объектов, то схема artifact будет иметь следующий вид:

SCHEMA artifact;
ENTITY joe;

attrl : alfred;
attr2 : bert;

END_ENTITY;
ENTITY alfred...
ENTITY bert...

2 Данный пример иллюстрирует изменение имен для разрешения конфликтов имен. Исходная спе­
цификация содержит три схемы:

SCHEMA s1;
ENTITY creature;

— атрибуты
END_ENTITY;
— другие объявления

END_SCHEMA; — конец схемы s1
SCHEMA farming;

USE FROM s1 (creature);
ENTITY dog SUBTYPE OF creature;

— атрибуты
END_ENTITY;

159

ГОСТ Р ИСО 10303-11— 2009

ENTITY shepherd;
dogs: SET OF dog;

END_ENTITY;
— другие объявления

END_SCHEMA; — конец схемы farming
SCHEMA pet_shows;

USE FROM s1 (creature);
ENTITY pet SUBTYPE OF (creature);

— атрибуты
END_ENTITY;
ENTITY dog SUBTYPE OF pet;

— атрибуты
END_ENTITY;
ENTITY dog_show;
dogs: SET [1:?] OF dog;
— другие атрибуты
END_ENTITY;
— другие объявления

END_SCHEMA; — конец схемы pet_shows
Принимая схемы farming и petshows в качестве основных схем, получаем следующую промежуточ­

ную схему:
SCHEMA artifact;

ENTITY creature;
— атрибуты

END_ENTITY;
ENTITY farming_dot_dog SUBTYPE OF creature;

— атрибуты
END_ENTITY;
ENTITY shepherd;

dogs : SET OF farming_dot_dog;
END_ENTITY;
ENTITY pet SUBTYPE OF (creature);

— атрибуты
END_ENTITY;
ENTITY pet_shows_dot_dog SUBTYPE OF pet;

— атрибуты
END_ENTITY;
ENTITY dog_show;

dogs : SET [1 : ?] OF pet_shows_dot_dog;
— другие атрибуты

END_ENTITY;
— другие объявления

END_SCHEMA; — конец схемы artifact

G.4.3 Вторичное содержимое
Проверяют каждый элемент, идентифицированный в схеме artifact в операторе REFERENCE. Если дан­

ный элемент необходим для обеспечения ссылочной полноты, то в схему artifact из исходной схемы копируют
объявление и относящиеся к нему помеченные комментарии. Если данный элемент принадлежит к объектному
типу данных, то сохраняется семантика оператора REFERENCE, в соответствии с которой данный элемент дол­
жен быть реализован, если на него ссылается другой элемент, посредством следующей процедуры:

а) для первого подобного элемента в схеме artifact создают следующие правило и функцию:
RULE validate_dependently_instantiable_entity_data_types FOR

(<здесь перечисляются данный элемент первым, а затем все относящиеся к нему объ­
ектные типы данных>);

LOCAL
number_of_input_instances : INTEGER;
previous_in_chain : LIST OF GENERIC := [];
set_of_input_types : SET OF STRING := [];
alljnstances : SET OF GENERIC :=[];

END_LOCAL;
all jnstances := <создается объединение всего неявного содержимого условия FOR>;
number_ofJnputJnstances := SIZEOF(allJnstances);

160

ГОСТ Р ИСО 10303-11— 2009

(* Собираются строки всех типов для экземпляров FOR в один набор. *)
REPEAT i:=1 ТО number_of_input_instances;

set_of_input_types := set_of_input_types + TYPEOF(all_instances [i]);
END_REPEAT;
WHERE

WR1: dependently_instantiated(all_instances, s e to fin p u tty p e s , previousinchain);
END_RULE;
FUNCTION dependently_instantiated(

set of input instances : SET OF GENERIC:igen;
set_of_input_types : SET OF STRING;
previous_in_chain : LIST OF GENERIC:cgen): BOOLEAN;

(«функция "dependently instantiated" предназначена для проверки, на все ли экземпляры в исходном
set_of_input_instances имеются ссылки от независимо реализуемых экземпляров. Если да, то функ­
ция возвращает значение true. Set_of_input_types содержит строки типов для всех исходных экземп­
ляров. Экземпляры в previous in chain используются для выявления циклических ссылок при рекур­
сивном вызове данной функции. Параметр содержит список уже проверенных экземпляров в цепочке
ссылок.

*)
LOCAL

number_of_input_instances
n u m be r_of_refe rri ng_i nstan ces
bag_of_referring_instances
dependentlyinstantiatedflag
previous inchainp lus
result
set_of_types

END_LOCAL;
IF EXISTS(set_of_input_instances) THEN

number_of_input_instances := SIZEOF(set_of_input_instances);
(* Объявленный тип bag_of_referring_instances добавляется к множеству типов импортированных

посредством оператора REFERENCE экземпляров для последующего сравнения подмножеств.

INTEGER;
INTEGER;
BAG OF GENERIC:igen := [];
BOOLEAN;
LIST OF GENERIC:cgen := [];
BOOLEAN := true;
SET OF STRING := [];

set_of_input_types := set_of_input_types + ' GENERIC ';
REPEAT i:=1 TO number_of_input_instances;

(* Определяются все ссылки на текущий исходный экземпляр. *)
bag_of_referring_instances := USEDIN (set_of_input_instances [i] , ' ') ;
IF EXISTS(bag_of_referring_instances) THEN

number_of_referring_instances := SIZEOF(bag_of_referring_instances);
dependently_instantiated_flag := false;
REPEAT j:=1 TO number_of_referring_instances;

(* Определяются строки типов текущего ссылающегося экземпляра.

set_of_types := TYPEOF(bag_of_referring_instances [j]);
(* Если ссылающийся экземпляр принадлежит к одному из типов только зависимо реализуе­

мых выбираемых элементов, то текущий исходный экземпляр еще может быть недопустимо
реализован. В противном случае все в порядке, и проверяется следующий исходный экземп­
ляр.

IF set_of_types <= set_of_input_types THEN — оператор подмножества
(* Ссылающийся экземпляр принадлежит к одному из ограниченных типов. Однако на него

самого может ссылаться допустимый экземпляр; тогда текущий экземпляр также мог бы
быть допустимым.
Таким образом, осуществляется рекурсивный вызов данной функции со ссылающимся эк­
земпляром в качестве входного параметра.
Чтобы избежать бесконечного цикла в случае, когда множество экземпляров ссылается
друг на друга в замкнутом цикле, сначала проверяется, присутствует ли текущий ссылаю­
щийся экземпляр в списке уже обработанных элементов цепочки.

п
IF NOT (bag_of_referring_instances [j] IN previous_in_chain) THEN
previous_in_chain_plus := previous_in_chain +

set_of_input_instances [i];
IF dependently_instantiated([bag_of_referring_instances [j]],

set_of_input_types,
previous_in_chain_plus) THEN

161

ГОСТ Р ИСО 10303-11— 2009

dependently_instantiated_flag := true;
ESCAPE; — экземпляр, зависимо реализуемый; переход к

— следующему исходному экземпляру
ELSE

(* Экземпляр, не зависимо реализуемый: переход к следующему ссылающемуся
экземпляру. *)

SKIP;
ENDJF;

ENDJF;
ELSE

dependently_instantiated_flag := true;
ESCAPE; — экземпляр, зависимо реализуемый; взять следующий

— исходный экземпляр
ENDJF;

END_REPEAT;
IF NOT dependentlyjnstantiated J lag THEN

RETURN (false);
ENDJF;

ELSE
RETURN (false); — на экземпляр нет ссылок => недопустимо реализован

ENDJF;
END_REPEAT;

ELSE
RETURN (false); — нет исходных данных

ENDJF;
RETURN (true);
END_FUNCTION; — конец функции dependentlyjnstantiated

b) к условию FO R m правой части оператора присваивания, в левой части которого имеется объект all Jnstances
(оба эти места отмечены угловыми скобками < >), добавляют имена первого и всех последующих таких объектных
типов данных;

c) к этим двум местам добавляют также такие объектные типы данных, которые требуются уже идентифици­
рованным экземплярам для их ссылочной полноты, и которые не содержатся где-либо еще в длинной форме как
независимо реализуемые объектные типы данных;

d) Если одна или несколько основных схем являются длинными формами, которые были созданы на осно­
ве данной процедуры , и, сл ед овател ьно , уже содерж атся в правиле validate_dependently_
instantiable_entity_datajypes, то добавляется содержимое их условий FOR к созданному содержимому. Значи­
мым содержимым являются объектные типы данных, которые остаются зависимо реализуемыми также и после
генерации текущей длинной формы, и которые уже не включены в новое правило.

Если данный элемент не требуется для ссылочной полноты, то он не должен копироваться. Конфликты
имен должны быть разрешены, а строковые идентификаторы — модифицированы.

П р и м е ч а н и е - Н е скопированные объявления, которые не требуются для полноты, содержат семантику
операторов REFERENCE данных объявлений.

Пример - В данном примере исходная модель состоит из двух схем, одна из которых не содержит
спецификаций интерфейсов, а вторая, являющаяся специализированной схемой в длинной форме, содер­
жит оператор REFERENCE:

SCHEMA export;
ENTITY a;

a1: STRING;
END_ENTITY;
ENTITY b;

M : STRING;
END_ENTITY;

END SCHEMA; — конец схемы export
SCHEMA import;

REFERENCE FROM export (a, b); — только зависимо реализуемый!
ENTITY ref;

aref: a; — реализация зависит от объектного типа данных ref
bref: b; — реализация зависит от объектного типа данных ref

END_ENTITY;
END SCHEMA; — конец схемы import

162

ГОСТ Р ИСО 10303-11— 2009

Используя схему import в качестве корневой схемы, получаем следующую промежуточную схему:
SCHEMA artifact;

ENTITY а;
а1: STRING;

END_ENTITY;
ENTITY b;

M : STRING;
END_ENTITY;
ENTITY ref;

aref: a; — реализация зависит от объектного типа данных ref
bref: b; — реализация зависит от объектного типа данных ref

END_ENTITY;
RULE validate_dependently_instantiable_entity_data_types FOR

(a, b); — !! здесь добавлены а и b !!
LOCAL

number_of_input_instances : INTEGER;
previous_in_chain : LIST OF GENERIC := [];
set_of_input_types : SET OF STRING := [];
alljnstances : SET OF GENERIC := [];

END_LOCAL;
all jnstances := a+b; — !! здесь добавлены а и b !!
number_ofJnput_instances := SIZEOF(allJnstances);
(* Собираются все строки типов всех экземпляров FOR в одно множество. *)
REPEAT i:=1 ТО number_of_input_instances;

set_of_input_types := set_of_input_types + TYPEOF(all_instances [i]);
END_REPEAT;
WHERE

WR1: dependentlyjnstantiated(all_instances, set_of_input_types, previousJn_chain);
END_RULE;
FUNCTION dependentlyjnstantiated (

set_of_input_instances : SET OF GENERIC:igen;
set_of_input_types : SET OF STRING;
previousJn_chain : LIST OF GENERIC:cgen): BOOLEAN;

(*Функция «dependentlyjnstantiated» предназначена для проверки, на всели экземпляры
в исходном set_of_input_instances имеются ссылки от независимо реализуемых экземпляров.
Если да, то функция возвращает значение true. Set_of_input_types содержит строки типов для
всех исходных экземпляров. Экземпляры в previous in chain используются для выявления цик­
лических ссылок при рекурсивном вызове данной функции. Параметр содержит списокуже про­
веренных экземпляров в цепочке ссылок,

п
LOCAL

number_ofJnputJnstances
number_of_referringJnstances
bag_of_referri ng_i nstan ces
dependentlyinstantiatedflag
previous Jn_chain_plus
result
set_ofJypes

END_LOCAL;
IF EXISTS(set_of_input_instances) THEN

number_of_input_instances := SIZEOF(set_of_input_instances);
(* Объявленный тип bag_of_referring_instances добавляется к множеству типов

импортированных посредством оператора REFERENCE экземпляров для последующего
сравнения подмножеств.

INTEGER;
INTEGER;
BAG OF GENERIC:igen := [];
BOOLEAN;
LIST OF GENERIC:cgen := [];
BOOLEAN := true;
SET OF STRING := [];

set_of_inputJypes := set_of_input_types + ' GENERIC ';
REPEAT i:=1 TO number_of_inputJnstances;

(* Определяются все ссылки на текущий исходный экземпляр. *)
bag_of_referring_instances := USEDIN (set_of_input_instances [i] , ' ') ;
IF EXISTS(bag_of_referringJnstances) THEN

number_of_referringJnstances := SIZEOF(bag_of_referring_instances);
dependently instantiated flag := false;
REPEAT j:=1 TO number_of_referring_instances;

163

ГОСТ Р ИСО 10303-11— 2009

(* Определяются строки типов текущего ссылающегося экземпляра.
*)

set_of_types := TYPEOF(bag_of_referring_instances [j]);
(* Если ссылающийся экземпляр принадлежит к одному из типов только

зависимо реализуемых выбираемых элементов, то текущий исходный экземпляр еще
может быть недопустимо реализован. В противном случае все в порядке, и проверяет­
ся следующий исходный экземпляр.

*)
IF set_of_types <= set_of_input_types THEN — оператор подмножества

(* Ссылающийся экземпляр принадлежит к одному из ограничен­
ных типов. Однако на него самого может ссылаться допустимый экземпляр; тогда
текущий экземпляр также мог бы быть допустимым.

Таким образом, осуществляется рекурсивный вызов данной функции со ссы­
лающимся экземпляром в качестве входного параметра.

Чтобы избежать бесконечного цикла в случае, когда множество экземпляров
ссылается друг на друга в замкнутом цикле, сначала проверяется, присутствует ли
текущий ссылающийся экземпляр в списке уже обработанных элементов цепочки.

*)
IF NOT (bag_of_referring_instances [j] IN previous_in_chain) THEN

previous_in_chain_plus := previous_in_chain +
set_of_input_instances [i];

IF dependently_instantiated([bag_of_referring_instances [j]],
set_of_input_types,
previousJn_chain_plus) THEN

dependently_instantiated_flag: = true;
ESCAPE; — экземпляр, зависимо реализуемый; переход к

— следующему исходному экземпляру
ELSE

(* Экземпляр, не зависимо реализуемый: переход к следующему ссылающемуся
экземпляру. *)

SKIP;
ENDJF;

ENDJF;
ELSE

dependently_instantiated_flag := true;
ESCAPE; — экземпляр, зависимо реализуемый; взять следующий

— исходный экземпляр
ENDJF;

END_REPEAT;
IF NOT dependentlyjnstantiated J lag THEN

RETURN (false);
ENDJF;

ELSE
RETURN (false); — на экземпляр нет ссылок => недопустимо реализован

ENDJF;
END_REPEAT;

ELSE
RETURN (false); — нет входных данных

ENDJF;
RETURN (true);
END_FUNCTION; - -конецфункции dependentlyjnstantiated

END_SCHEMA; — конец схемы artifact

Когда внешнее объявление импортируется в схему, то другие объявления могут оказаться импортирован­
ными неявно (см. 11.4). В схему artifact копируются те неявно импортированные объявления, которые необходи­
мы для ссылочной полноты схемы artifact, включая их помеченные комментарии. При этом разрешаются конф­
ликты имен и модифицируются представления строковых идентификаторов.

П р и м е ч а н и е — Копирование неявно импортированных элементов может быть рекурсивным процес­
сом.

Примеры
1 В данном примере исходная модель состоит из двух схем:

SCHEMA export;
TYPE colour = EXTENSIBLE ENUMERATION;
END_TYPE;

164

ГОСТ Р ИСО 10303-11— 2009

TYPE stopjight = ENUMERATION BASED_ON colour WITH (red, yellow, green);
END_TYPE;

END SCHEMA; — конец схемы export
SCHEMA import;

USE FROM export (stopjight);
REFERENCE FROM export (colour);
TYPE Canadian J lag = ENUMERATION BASED_ON colour WITH (red, white);
END_TYPE;
— другие объявления, зависящие от Canadian J lag и stopjight

END_SCHEMA; — конец схемы import
Используя схему import в качестве корневой схемы, получаем следующую промежуточную схему:

SCHEMA artifact;
TYPE colour = EXTENSIBLE ENUMERATION;
END_TYPE;
TYPE stopjight = ENUMERATION BASED_ON colour WITH (red, yellow, green);
END_TYPE;
TYPE Canadian J lag = ENUMERATION BASED_ON colour WITH (red, white);
END_TYPE;
— другие объявления, зависящие от Canadian J lag и stopjight

END_SCHEMA; — конец схемы artifact
2 В данном примере исходная модель состоит из четырех схем:

SCHEMA s1;
TYPE general_approval = EXTENSIBLE ENUMERATION OF (approved, rejected);
END_TYPE;

ENDJ5CHEMA; — конец схемы s1
SCHEMA s2;

USE FROM s1 (generalapproval);
TYPE domain2_approval = EXTENSIBLE ENUMERATION BASED_ON general approval WITH (pending);
END_TYPE;

END SCHEMA; — конец схемы s2
SCHEMA s3;

USE FROM s1 (general approval);
TYPE domain3_approval = EXTENSIBLE ENUMERATION BASED_ON general_approval WITH (cancelled);
END_TYPE;

ENDJ5CHEMA; — конец схемы s3
SCHEMA s4;

USE FROM s2 (domain2_approval);
REFERENCE FROM s3 (domain3_approval);
TYPE specific_approval = ENUMERATION BASED_ON domain2_approval WITH (rework);
END_TYPE;
— другие объявления, зависящие от данных типов

ENDJ5CHEMA; — конец схемы s4
Используя схему s4 в качестве корневой схемы, получаем следующую промежуточную схему:

SCHEMA artifact;
TYPE specific_approval = ENUMERATION BASED_ON domain2_approval WITH (rework);
END_TYPE;
TYPE domain3_approval = EXTENSIBLE ENUMERATION BASED_ON general_approval WITH (cancelled);
END_TYPE;
TYPE domain2_approval = EXTENSIBLE ENUMERATION BASED_ON general approval WITH (pending);
END_TYPE;
TYPE general_approval = EXTENSIBLE ENUMERATION OF (approved, rejected);
END_TYPE;
— другие объявления, зависящие от данных типов

ENDJ5CHEMA; — конец схемы artifact

G.4.4 Сокращение
Существуют ограничения на неявно импортированные объявления (см. 11.4).

165

ГОСТ Р ИСО 10303-11— 2009

Примеры
1 Тип данных SUPERTYPE ENTITY не импортирует неявно любые подтипы данного объекта.
2 Выбираемый тип данных не импортирует неявно любой из своих элементов выбора.
3 Правило не импортирует неявно любы е объектные типы данных, указанные в его списке пара­

метров.

Вследствие ограничений на неявные интерфейсы в схеме artifact могут существовать объявления, не явля­
ющиеся ссылочно полными.

Выражения ограничений супертипов должны быть сокращены в соответствии с приложением С.
Правило (оператор RULE), в котором не все параметры являются видимыми, должно быть сокращено

посредством удаления всех невидимых параметров и относящихся к ним помеченных комментариев.
Правило может вызывать функции и процедуры. Любая функция или процедура в схеме artifact, которая не

вызывается каким-либо объявлением из данной схемы, должна быть удалена, включая ее помеченные коммен­
тарии.

Выбираемый тип данных должен быть сокращен посредством удаления из списка выбора всех выбирае­
мых элементов, невидимых в схеме artifact.

П р и м е ч а н и е — Сокращение выбираемого типа данных может привести в результате к пустому списку
выбора.

Удаляют все спецификации интерфейсов REFERENCE.

П р и м е ч а н и е — На данном этапе схема artifact должна быть ссылочно полной. Все объявления, кроме
объявлений из исходной схемы или объявлений, импортированных в исходную схему посредством оператора
USE, должны быть необходимыми для обеспечения ссылочной полноты исходных объявлений.

Примеры
1 Данный пример иллюстрирует сокращение выбираемого типа данных. Исходная модель состоит

из двух схем:
SCHEMA export;

TYPE attachment_method = EXTENSIBLE SELECT (nail, screw);
END_TYPE;
ENTITY nail;
END_ENTITY;
ENTITY screw;
END_ENTITY;

END SCHEMA; — конец схемы export
SCHEMA import;

USE FROM export (attachment_method,
nail);

TYPE permanent_attachment = SELECT BASED_ON attachmentmethod WITH
(glue, weld);

END_TYPE;
TYPE simple_attachment = SELECT BASED_ON attachment method WITH

(needle, tape);
END_TYPE;
— объявления объектов glue и других

END_SCHEMA; — конец схемы import
Схема import используется в качестве корневой схемы. Объект screw как явно, т ак и неявно не

импортирован в схему import, поэтому он не присутствует в промежуточной схеме, которая имеет
следующий вид:

SCHEMA artifact;
TYPE attachmentmethod = EXTENSIBLE SELECT (nail);
END_TYPE;
ENTITY nail;
END_ENTITY;
TYPE permanent_attachment = SELECT BASED_ON attachment_method WITH

(glue, weld);
END_TYPE;
TYPE simple_attachment = SELECT BASED_ON attachment_method WITH

(needle, tape);
END_TYPE;
— объявления объектов glue и других

166

ГОСТ Р ИСО 10303-11— 2009

END_SCHEMA; — конец схемы artifact
Следует заметить, что исходный выбираемый тип данных attachment_method из схемы export бьт

сокращен посредством удаления объекта screw из списка выбора.
2 Данны й пример иллюстрирует случай, когда сокращение выбираемого типа данных приводит к

пустому списку выбора. Исходная спецификация содержит три схемы:
SCHEMA s1;

TYPE t11 = EXTENSIBLE SELECT
(t12, t13);

END_TYPE;
— объявления объектов t12, t13 и других

END_SCHEMA; — конец схемы s1
SCHEMA s2;

REFERENCE FROM s1 (t11);
ENTITY e21;

a ttr: t11;
END_ENTITY;
— другие объявления

END_SCHEMA; — конец схемы s2
SCHEMA s3;

USE FROM s1 (t11);
USE FROM s2 (e21);
TYPE t31 = SELECT BASED_ON t11 WITH

(t32, t33);
END_TYPE;
— объявления объектов t32, t33 и других

END_SCHEMA; — конец схемы s3
Используя схему s2 в качестве корневой схемы, получаем промежуточную схему следующего вида:

SCHEMA artifact;
ENTITY е21;

attr : t11;
END_ENTITY;
TYPE t11 = EXTENSIBLE SELECT;
END_TYPE;
— другие объявления

END_SCHEMA; — конец схемы artifact
Схема s2 импортирует объект t11 из схемы s1, но не импортирует какие-либо элементы из его

списка выбора. После сокращения список выбора пуст и поэтому он не присутствует в окончательном
представлении промежуточной схемы.

3 Исходная модель состоит из двух схем. Данный пример иллюстрирует сокращение ограничения
TOTAL_OVER и правила RULE.

SCHEMA s1;
ENTITY e1;
END_ENTITY;
ENTITY e2 SUBTYPE OF (e1);
END_ENTITY;
ENTITY e3 SUBTYPE OF (e1);
END_ENTITY;
SUBTYPE_CONSTRAINT sc_total_over FOR e1;

TOTAL_OVER (e2, e3);
END_SUBTYPE_CONSTRAINT;
RULE e2_and_e3 (e2, e3);

— тело оператора RULE
END_RULE;

END_SCHEMA; — конец схемы s1
SCHEMA import;

USE FROM s1 (e1, e2);
END_SCHEMA; — конец схемы import

167

ГОСТ Р ИСО 10303-11— 2009

Используя схему import в качестве корневой схемы, получаем следующий вид промежуточной схе­
мы до каких-либо сокращений:

SCHEMA artifact;
ENTITY е1;
END_ENTITY;
ENTITY e2 SUBTYPE OF (e1);
END_ENTITY;
SUBTYPE_CONSTRAINT sc_total_over FOR e1;

TOTAL_OVER (e2, e3);
END_SUBTYPE_CONSTRAINT;
RULE e2_and_e3 (e2, e3);

— тело оператора RULE
END_RULE;

END_SCHEMA; — конец схемы artifact
Следует заметить, что объект еЗ отсутствует.
После сокращения окончательный вид промежуточной схемы выглядит следующим образом:

SCHEMA artifact;
ENTITY е1;
END_ENTITY;
ENTITY e2 SUBTYPE OF (e1);
END_ENTITY;
SUBTYPE_CONSTRAINT sc_total_over FOR e1;

TOTAL_OVER(e2);
END_SUBTYPE_CONSTRAINT;

END_SCHEMA; — конец схемы artifact
Поскольку объекта еЗ нет в схеме artifact, сокращается и ограничение SUBTYPE_CONSTRAINT.

Аналогично удаляется и правило RULE.
4 Данный пример основан на схеме example из примера 1 из приложения В, раздел В.З и иллюстриру­

ет сокращение выражений супертипов. Исходными схемами по И С 0 10303-11:2003 являются следующие:
SCHEMA example;

ENTITY р;
END_ENTITY;
SUBTYPE_CONSTRAINT p_subs FOR p;

ONEOF(m, f) AND ONEOF(c, a);
END_SUBTYPE_CONSTRAINT;
ENTITY m SUBTYPE OF (p);
END_ENTITY;
ENTITY f SUBTYPE OF (p);
END_ENTITY;
ENTITY c SUBTYPE OF (p);
END_ENTITY;
ENTITY a ABSTRACT SUBTYPE OF (p);
END_ENTITY;
SUBTYPE_CONSTRAINT n o ji FOR a;

ONEOF(^, i);
END_SUBTYPE_CONSTRAINT;
ENTITY l SUBTYPE OF (a);
END_ENTITY;
ENTITY i SUBTYPE OF (a);
END_ENTITY;

END_SCHEMA; — конец схемы example
SCHEMA import;

USE FROM example (l);
REFERENCE FROM example (m);

END_SCHEMA; — конец схемы import
Используя схему import в качестве корневой схемы, получают следующий вид промежуточной схе­

мы до сокращения:
SCHEMA artifact;

ENTITY р;
END_ENTITY;
SUBTYPE_CONSTRAINT p_subs FOR p;

ONEOF(m, f) AND ONEOF (c, a);

168

ГОСТ Р ИСО 10303-11— 2009

END_SUBTYPE_CONSTRAINT;
ENTITY m SUBTYPE OF (p);
END_ENTITY;
ENTITY a ABSTRACT SUBTYPE OF (p);
END_ENTITY;
SUBTYPE_CONSTRAINT n o ji FOR a;

ONEOF (l, i);
END_SUBTYPE_CONSTRAINT;
ENTITY l SUBTYPE OF (a);
END_ENTITY;

END_SCHEMA; — конец схемы artifact
Объекты f, с и i не присутствуют в данной схеме, поэтому выражения супертипов в p subs и no_li

должны быть сокращены в соответствии с приложением С. Сначала берут выражение из p_subs, кото­
рое выглядит следующим образом:

ONEOF (m, f) AND ONEOF (с, а);
Первое сокращение (ONEOF(A, <>) => ONEOF(A)) в результате дает следующее сокращенное выра­

жение:
ONEOF(m) AND ONEOF(a);
Данное выражение может быть сокращено еще раз (посредством ONEOF(A) => А), что приведет к

следующему окончательному выражению:
т AND а;
Таким образом, после сокращения p_subs выглядит следующим образом:
SUBTYPE_CONSTRAINT p_subs FOR р;

т AND а;
END_SUBTYPE_CONSTRAINT;
Выражение для по_Д выглядит следующим образом:
ONEOF (iI, i);
Применяя сокращения, получаем следующий вид no_li:
SUBTYPE_CONSTRAINT n o ji FOR a;

l)
END_SUBTYPE_CONSTRAINT;
Данное ограничение бессодержательно, поэтому данный оператор SUBTYPE_CONSTRAINT в целом

и потенциально относящиеся к нему помеченные комментарии должны быть удалены.
Окончательным результатом после сокращения будет следующая схема:

SCHEMA artifact;
ENTITY р;
END_ENTITY;
SUBTYPE_CONSTRAINT p_subs FOR p;

m AND a;
END_SUBTYPE_CONSTRAINT;
ENTITY m SUBTYPE OF (p);
END_ENTITY;
ENTITY a ABSTRACT SUBTYPE OF (p);
END_ENTITY;
ENTITY l SUBTYPE OF (a);
END_ENTITY;

END SCHEMA; — конец схемы artifact

G.4.5 Имена и версии схем
Имена исходных схем, из которых копируются элементы в промежуточную схему, могут быть сохранены в

виде встроенных комментариев. Если сохраняется имя какой-либо схемы, то и имена всех других схем также
должны быть сохранены.

Встроенный комментарий должен иметь следующий формат (где \п обозначает конец строки, текст, заклю­
ченный в угловые скобки, является переменным, а квадратные скобки обозначают необязательный элемент):

(* Original 2003 schemas: \n
schema = <schema_id> [schema version id = ' <version> '] ; \n

*)
Если схема, содержащая элемент schema_version_id, указывается во встроенном комментарии, то и сам

элемент schema_version_id должен быть в нем указан.
Порядок, в соответствии с которым указываются схемы, значения не имеет.

169

ГОСТ Р ИСО 10303-11— 2009

Примеры
1 Если одной из исходных схем является SCHEMA geometry_schema, то соответствующий ей

встроенный комментарий должен выглядеть следующим образом:
schema = geometryschema;
2 Встроенный комментарий, содержащий имена следующих двух исходных схем:
SCHEMA schema_one;

SCHEMA schema_two' version 4 ';

выглядит следующим образом:
(* Original 2003 schemas:

schema = schematwo schema version id = ' version 4 ';
schema = schemaone;

*)
G.5 Этап 2 — Преобразование промежуточной схемы в схему по ИСО 10303-11:1994
G.5.1 Введение
Ниже определен второй этап формирования спецификации модели данных единой схемы по ИСО 10303-

11:1994 из многосхемного представления модели данных.
Исходными данными для данного этапа является спецификация модели данных в виде ссылочно полной

единой схемы, сформированной в соответствии с G.4. Результатом данного этапа является единая ссылочно
полная схема, не содержащая конструкций, не соответствующих ИСО 10303-11:1994.

Установленные ниже правила определяют, каким образом конструкции исходной схемы должны приво­
диться в соответствие с ИСО 10303-11:1994.

Назовем исходную схему artifact, а результирующую схему longform.
G.5.2 Инициализация
Создадим новую схему с именем longform. Скопируем все объявления и комментарии из промежуточной

схемы в схему longform. Все представления строковых идентификаторов должны быть соответствующим образом
модифицированы.

G.5.3 Преобразование наращиваемых конструкционных типов данных
Наращиваемые выбираемые типы данных и наращиваемые перечисляемые типы данных (см. 8.4) не

определены в ИСО 10303-11:1994. Дерево, содержащее любой из этих типов данных, должно быть сокращено до
одного нерасширяемого типа данных. Конструкционные типы данных, не являющиеся частью данного дерева,
должны быть просто скопированы из схемы artifact в схему longform.

Для того, чтобы сократить дерево наращиваемых типов данных, выполняют следующие преобразования:
- каждый наращиваемый или расширяющий тип данных должен быть заменен типом данных с тем же

именем, но который не является ни наращиваемым, ни расширением какого-либо типа данных;
- элементы списков, заданных в каждом конструкционном типе данных должны быть совокупностью элемен­

тов, принадлежащих области определения данного типа данных относительно схемы longform;
- для того, чтобы поддерживать отношения между наращиваемыми и расширяющими типами данных, их

результирующие структуры должны быть связаны; зависимые типы данных, к которым относятся расширяющие
типы данных, должны быть созданы в виде определенных типов данных, использующих расширяющий тип дан­
ных в качестве базисного типа; элементы базисного типа данных, не являющиеся допустимыми в определенном
типе данных, должны быть ограничены посредством локальных правил;

- в случае, если определенный тип данных в схеме, видимой во внешней схеме, имеет в качестве своего
базисного типа данных наращиваемый или расширяющий тип данных, то к данному определенному типу данных
добавляется условие WHERE; это позволит исключить все элементы, появившиеся в результате преобразования,
но не являющиеся допустимыми элементами списков в схемах, видимых во внешней схеме; поясняющие приме­
ры приведены ниже;

- при выполнении данной процедуры в результирующую схему могут быть скопированы конструкционные
типы данных, на которые не ссылается ни один тип данных в схеме в длинной форме. Такие типы данных и их
помеченные комментарии должны быть удалены из длинной формы.

Ниже приведено подробное описание прим енения данны х правил к типам данны х EXTENSIBLE
ENUMERATION и EXTENSIBLE SELECT.

G.5.3.1 Тип данных EXTENSIBLE ENUMERATION
Тип данных EXTENSIBLE ENUMERATION должен быть преобразован в соответствии с определенной выше

процедурой в перечисляемый тип данных, не являющийся наращиваемым. Имена всех конструкций должны быть
сохранены.

Если все элементы перечисления наращиваемого перечисляемого типа данных допустимы в контексте
результирующей схемы в длинной форме, то наращиваемый перечисляемый тип данных должен быть преобра­
зован в определенный тип данных, базисным типом которого является целевой перечисляемый тип данных

170

ГОСТ Р ИСО 10303-11— 2009

наращиваемого перечисления, на котором он основан. Именем определенного типа данных в целевой модели
должно быть имя соответствующего перечисляемого типа данных в исходной схеме.

Если из целевого определенного типа данных необходимо исключить элементы перечисления, недопусти­
мые в его контексте, но которые определены в его базисном перечислении, то необходимо выполнить следующие
действия:

- создать промежуточный определенный тип данных и присвоить ему имя, являющееся уникальным в целе­
вой длинной форме;

- использовать в качестве его базисного типа данных базисный тип данных наращиваемого перечисляемо­
го типа данных;

- создать другой определенный тип данных и присвоить ему имя наращиваемого перечисляемого типа
данных, подлежащего преобразованию;

- использовать промежуточный определенный тип данных как его базисный тип;
- исключить элементы перечисления, являющиеся недопустимыми в целевом контексте, но определенные

в преобразуемом перечислении, из реализации в целевой схеме посредством локальных правил (см. пример 3);
- для каждого исключаемого элемента перечисления должно быть создано одно локальное правило.

П р и м е ч а н и е - См. правило по перечислению]) в 8.4.1, касающееся использования локальных правил
в объявлениях типов, в которых объявляются перечисляемые типы данных.

Примеры
1 Промежуточная схема, сформированная в соответствии с G.4, выглядит следующим образом:

SCHEMA artifact;
TYPE gender = ENUMERATION OF (not-known, male, female);
END_TYPE;
TYPE general_approval = EXTENSIBLE ENUMERATION OF (approved, rejected);
END_TYPE;
- другие объявления, зависящие от gender и general approval

END SCHEMA; — конец схемы artifact
Результирующая схема по ИСО 10303-11:1994 выглядит следующим образом:

SCHEMA longform;
TYPE gender = ENUMERATION OF (not-known, male, female);
END_TYPE;
TYPE general_approval = ENUMERATION OF (approved, rejected);
END_TYPE;
- другие объявления, зависящие от gender и general_approval

END_SCHEMA; — конец схемы longform
2 Промежуточная схема, сформированная в соответствии с G.4, выглядит следующим образом:

SCHEMA artifact;
TYPE general_approval = EXTENSIBLE ENUMERATION OF (approved, rejected);
END_TYPE;
TYPE domain2_approval = EXTENSIBLE ENUMERATION BASED_ON general_approval

WITH (pending);
END_TYPE;
- другие объявления, зависящие от domain2_approval

END SCHEMA; — конец схемы artifact
Результирующая схема по ИСО 10303-11:1994 выглядит следующим образом:

SCHEMA longform;
TYPE general_approval = ENUMERATION OF

(approved, rejected, pending);
END_TYPE;
TYPE domain2_approval = general_approval;
END_TYPE;
- другие объявления, зависящие от domain2_approval

END_SCHEMA; — конец схемы longform
3 Промежуточная схема, сформированная в соответствии с G.4, выглядит следующим образом:

SCHEMA artifact;
TYPE general_approval = EXTENSIBLE ENUMERATION OF

(approved, rejected);
END_TYPE;

171

ГОСТ Р ИСО 10303-11— 2009

TYPE domain2_approval = EXTENSIBLE ENUMERATION BASED_ON general_approval
WITH (pending);

END_TYPE;
TYPE specific_approval = ENUMERATION BASED_ON domain2_approval WITH

(rework);
END_TYPE;
TYPE domain3_approval = EXTENSIBLE ENUMERATION BASED_ON general_approval

WITH (cancelled);
END_TYPE;
— другие объявления, зависящие от данных типов

END_SCHEMA; — конец схемы artifact
Результирующая схема по ИСО 10303-11:1994 выглядит следующим образом:

SCHEMA longform;
TYPE general_approval = ENUMERATION OF

(approved, rejected, pending, cancelled, rework);
END_TYPE;
TYPE domain2_approval = generalapproval;
WHERE

wr1 : SELF <> cancelled;
END_TYPE;
TYPE specific_approval = domain2_approval;
END_TYPE;
TYPE domain3_approval = generalapproval;
WHERE

wr1 : SELF <> pending;
wr2 : SELF <> rework;

END_TYPE;
— другие объявления, зависящие от данных типов

END_SCHEMA; — конец схемы longform

Особое внимание следует уделить тому факту, что в перечисляемых типах данных по ИСО 10303-11:1994
учитывается порядок элементов перечисления. Данное понятие упорядочения не включено в ИСО 10303-11:2003.

G.5.3.2 Тип данных EXTENSIBLE SELECT
Тип данных EXTENSIBLE SELECT должен быть преобразован в соответствии с определенной выше проце­

дурой в выбираемый тип данных, не являющийся наращиваемым. Имя исходной конструкции должно быть сохра­
нено.

Выбираемый тип данных, основанный на наращиваемом выбираемом типе данных, должен быть преобра­
зован в определенный тип данных, базисным типом которого является целевой выбираемый тип данных нара­
щиваемого выбора, на котором он основан. Именем определенного типа данных в целевой модели должно быть
имя соответствующего выбираемого типа данных в исходной схеме. Из определенного типа данных необходимо
исключить элементы выбора, недопустимые в его контексте, но определенные в его базисном выборе, из реали­
зации во внешней схеме посредством локальных правил. Для каждого исключаемого элемента выбора должно
быть создано одно локальное правило.

Примеры
1 Промежуточная схема, сформированная в соответствии с G.4, выглядит следующим образом:

SCHEMA artifact;
TYPE attachment_method = EXTENSIBLE SELECT

(nail);
END_TYPE;
ENTITY nail;
END_ENTITY;
TYPE permanent_attachment = SELECT BASED_ON attachment_method WITH

(glue, weld);
END_TYPE;
TYPE simple_attachment = SELECT BASED_ON attachment_method WITH

(needle, tape);
END_TYPE;

— объявления объектов glue и других
END_SCHEMA; — конец схемы artifact

172

ГОСТ Р ИСО 10303-11— 2009

Результирующая схема по ИСО 10303-11:1994 выглядит следующим образом:
SCHEMA longform ;

TYPE attachm ent_m ethod = SELECT
(nail, glue, weld, needle, tape);

END_TYPE;
ENTITY nail;
END_ENTITY;
TYPE perm anent_a ttachm ent = a ttachm ent m ethod;
W HERE

wr1 : NOT (' LONGFORM.NEEDLE1 IN TYPEOF(SELF));
w r2 : NOT (' LONGFORM.TAPE1 IN TYPEOF(SELF));

END_TYPE;
TYPE s im p le_a ttachm ent = a ttachm ent_m ethod;
WHERE

wr1 : NOT (' LONGFORM.GLUE1 IN TYPEOF(SELF));
w r2 : NOT (' LONGFORM .W ELD 1 IN TYPEOF(SELF));

END_TYPE;
- объявления объектов glue и других

END_SCHEMA; — конец схемы longform
2 Промежуточная схема, сформированная в соответствии с G.4 и названная prob lem , выглядит

следующим образом:
SCHEMA problem ;

ENTITY е1;
a ttr : t1 ;

END_ENTITY;
ENTITY e2;

a t t r : t3;
END_ENTITY;
TYPE t1 = SELECT

(t2, t3);
END_TYPE;
TYPE t2 = INTEGER;
END_TYPE;
TYPE t3 = EXTENSIBLE SELECT;
END_TYPE;

END_SCHEMA;
Схема problem является ссылочно полной спецификацией данных по ИСО 10303-11:2003. Однако ее

невозможно преобразовать в спецификацию, соответствующую И С 0 10303-11:1994, поскольку тип дан­
ных SELECT неможет иметь пустой список элементов выбора. Удаление t3 не решает данную пробле­
му, поскольку на него ссылается объект е2.

G.5.4 Преобразование ограничений подтипов
Ключевое с л о в о SUBTYPE_CONSTRAINT не определено в ИСО 10303-11:1994. Поэтому объявления

SUBTYPE_CONSTRAINT у д а л я ю т с я в процессе преобразования. Однако семантика ограничения должна сохра­
ниться в длинной ф о р м е п о ИСО 10303-11:1994.

Преобразования ограничений TOTAL_OVER и ограничений на допустимые реализации графов подти-
пов/супертипов определены ниже.

G.5.4.1 Ограничение TOTAL_OVER
К ограничениям TOTAL_OVER применяются следующие правила преобразования:
- схема в длинной форме должна сохранять семантику ограничения TOTAL_OVER, даже если импортирует­

ся только одна из компонент ограничения;
- для каждого ограничения TOTAL_OVER из SUBTYPE_CONSTRAINT в схему должно быть добавлено гло­

бальное правило RULE;
- именем RULE должно быть total_over_<HMH ограничения подтипа>;
- правило RULE должно быть допустимым для объекта супертипа, для которого было задано ограничение

TOTAL_OVER;
- правило WHERE в глобальном правиле RULE должно обеспечивать, чтобы каждый экземпляр целевого

супертипа являлся типом/типами данных одного или нескольких подтипов, определенных в исходном ограниче­
нии TOTAL_OVER и импортированных в целевую схему в длинной форме;

173

ГОСТ Р ИСО 10303-11— 2009

- комментарии с метками, относящиеся к ограничению SUBTYPE_CONSTRAINT, должны быть переназна­
чены новому правилу RULE; если создается несколько глобальных правил, то комментарий должен быть повто­
рен для каждого правила.

П р и м е ч а н и е — Рекомендуется вручную отредактировать переназначенные помеченные комментарии
в конце процесса преобразования.

Пример — Промежуточная схема, сформированная в соответствии с G.4, выглядит следующим
образом:

SCHEMA artifact;
ENTITY е1;
END_ENTITY;
ENTITY e2 SUBTYPE OF (e1);
END_ENTITY;
SUBTYPE_CONSTRAINT sc_total_over FOR e1;

TOTAL_OVER(e2);
END_SUBTYPE_CONSTRAINT;

END_SCHEMA; — конец схемы artifact
Результирующая схема no ИСО 10303-11:1994 выглядит следующим образом:

SCHEMA longform;
ENTITY е1;
END_ENTITY;
ENTITY e2 SUBTYPE OF (e1);
END_ENTITY;
RULE total_over_sc_total_over FOR (e1);
WHERE

(* "total_over_sc_total_over.wri" Все экземпляры e1
должны также быть объектного типа е2. *)

wr1 : SIZEOF (QUERY(e1_i <* е1 |
SIZEOF ([' LONGFORM.Е2 '] * TYPEOF(e1_i)) = 0)) = 0;

END_RULE;
END_SCHEMA; — конец схемы longform

G.5.4.2 Ограничения реализаций подтипов/супертипов
Если SUBTYPE_CONSTRAINT включает в себя ограничения на реализацию графов подтипов/супертипов,

то они должны быть преобразованы в ограничения SUPERTYPE. Данные ограничения обычно включают в себя
ключевые слова AND, ANDOR и ONEOF. Ограничения SUPERTYPE должны быть построены по следующим прави­
лам:

a) для каждого объекта, ограниченного ограничением SUBTYPE_CONSTRAINT, содержащим ограничение
SUPERTYPE, ограничение SUPERTYPE заключается в круглые скобки и добавляется к ограничению SUPERTYPE,
определенному в данном объекте;

b) каждое ограничение, вытекающее из SUBTYPE_CONSTRAINT, объединяется посредством оператора
ANDOR со всеми другими ограничениями, добавленными из разных спецификаций SUBTYPE_CONSTRAINT.

Комментарии с метками, относящиеся к ограничению SUBTYPE_CONSTRAINT, содержащему указанные
ограничения, должны быть переназначены объекту с ограничением SUPERTYPE.

П р и м е ч а н и е — Рекомендуется вручную отредактировать переназначенные помеченные комментарии
в конце процесса преобразования.

Пример — Промежуточная схема, сформированная в соответствии с G.4, выглядит следующим
образом:

SCHEMA artifact;
ENTITY р;
END_ENTITY;
SUBTYPE_CONSTRAINT p_subs FOR p;

m AND a;
END_SUBTYPE_CONSTRAINT;
ENTITY m SUBTYPE OF (p);
END_ENTITY;
ENTITY a ABSTRACT SUBTYPE OF (p);
END_ENTITY;
ENTITY I SUBTYPE OF (a);
END_ENTITY;

END_SCHEMA; — конец схемы artifact

174

ГОСТ Р ИСО 10303-11— 2009

Результирующая схема по ИСО 10303-11:1994 выглядит следующим образом:
SCHEMA longform;

ENTITY р
SUPERTYPE OF (m AND a);
END_ENTITY;
ENTITY a ABSTRACT SUPERTYPE

SUBTYPE OF (p);
END_ENTITY;
ENTITY I SUBTYPE OF (a);
END_ENTITY;
ENTITY m SUBTYPE OF (p);
END_ENTITY;

END_SCHEMA; — конец схемы longform

G.5.5 Преобразование абстрактных объектных и обобщенных типов данных
Объявления ABSTR AC T ENTITY должны быть преобразованы в ограничения на объект ABSTR AC T

SUPERTYPE в схеме по ИСО 10303-11:1994.
Формальные параметры и локальные переменные функций и процедур, объявленные с типом данных

GENERIC_ENTITY, должны быть преобразованы в тип данных GENERIC. Может потребоваться доработка алго­
ритма функции или процедуры, чтобы обеспечить совместимость по типам данных с типом данных GENERIC.

Объект может иметь атрибут, объявленный обобщ енным типом данных, например, AG G R EG ATE,
GENERIC_ENTITY, или типом данных SELECT, элементы списка выбора которого ограничены типом данных
GENERIC_ENTITY. Для таких атрибутов у типа данных ABSTRACT ENTITY, областью определения которых явля­
ется обобщенный тип данных, применяются следующие правила преобразования:

- если все подтипы повторно объявляют тот же самый тип области определения атрибута, то присваивают
данный тип типу данных атрибута супертипа в схеме по ИСО 10303-11:1994;

- во всех остальных случаях в схеме по ИСО 10303-11:1994 создают тип данных SELECT и добавляют все
именованные типы данных, являющиеся типами данных атрибутов во всех повторных объявлениях в любом
подтипе или супертипе. Имя выбираемого типа данных должно представлять собой объединение имени объек­
тного типа данных абстрактного супертипа с именем атрибута, имеющего выбираемый тип данных. Между двумя
именами должен быть помещен символ подчеркивания (_) . К полученному имени должен быть добавлен термин
_se lec t (см. b ina ry_re la tionsh ip_end_one_se lect в приведенном ниже примере). В подтипах данный новый атри­
бут супертипа должен быть повторно объявлен с типом данных, соответствующим типу данных элементу списка
выбора, объявленному в исходной схеме.

Если типом данных повторно объявленного атрибута окажется неименованный тип данных, например,
агрегированный, то создаются определенные типы данных, поддерживающие тип данных атрибута, которые
используются в типе данных SELECT. Имена данным поддерживающим определенным типам данных присваи­
вают по следующему правилу: к имени агрегированного типа данных добавляют термин _of_ и имя базисного типа
данных агрегированной структуры (данное правило может применяться рекурсивно).

Пример — В данном примере промежуточная схема, сформированная в соответствии с G.4, назва­
на abstract_exam ple.

SCHEMA abstract_exam ple;
ENTITY person;
END_ENTITY;
ENTITY product;
END_ENTITY;
ENTITY organization;
END_ENTITY;
ENTITY nary_re la tionsh ip ABSTRACT;

end_one : AGGREGATE OF GENERIC_ENTITY;
end_tw o : GENERIC_ENTITY;

END_ENTITY;
ENTITY product_o f_organ iza tion

SUBTYPE OF (nary_re la tionsh ip);
SELF\nary_re lationship.end_one: SET OF product;
SELF\nary_re lationship.end_tw o: organization;

END_ENTITY;
ENTITY person_in_organ iza tion
SUBTYPE OF (b inary_re la tionsh ip);
SELF\nary_re la tionsh ip .end_one: SET OF person;
SELF\nary_re lationship.end_tw o: organization;

END_ENTITY;

175

ГОСТ Р ИСО 10303-11— 2009

END_SCHEMA; — abstract_exam ple
При ф ормировании длинной формы, конст рукция A BSTR AC T преобразует ся в ограничение

SUPERTYPE. Вводится тип данных SELECT, чтобы обеспечить разные типы данных, которые обобщен­
ный атрибут супертипа создает в его подтипах. Поскольку типы данных, используемые в списке выбо­
ра, не обязательно являются именованными, то по мере необходимости создаются определенные типы
данных.

Результирующая схема по ИСО 10303-11:1994 выглядит следующим образом:
SCHEMA longform ;

ENTITY person;
END_ENTITY;
ENTITY product;
END_ENTITY;
ENTITY organization;
END_ENTITY;
TYPE se t_o f_p roduc t = SET OF product;
END_TYPE;
TYPE se t_o f_person = SET OF person;
END_TYPE;
TYPE nary_re la tionsh ip_end_one_se lect = SELECT

(se t_o f_person, se t_o f_p roduct);
END_TYPE;
ENTITY nary_re la tionsh ip

ABSTRACT SUPERTYPE;
end_one : nary_re la tionsh ip_end_one_se lect;
e n d _ tw o : organization;

END_ENTITY;
ENTITY product_o f_organ iza tion

SUBTYPE OF (nary_re la tionsh ip);
SELF\nary_re lationship.end_one: SET OF product;

END_ENTITY;
ENTITY person_in_organ iza tion

SUBTYPE OF (nary_re la tionsh ip);
SELF\nary_re la tionsh ip .end_one: SET OF person;

END_ENTITY;
E N D S C H EM A; — longform

G.5.6 Преобразование атрибутов, переим енованны х при повторном объявлении
Для каждого атрибута, переименованного в подтипе при повторном объявлении, применяют следующие

правила преобразования:
- повторные объявления, изменяющие только имя атрибута, но не изменяющие его типа данных, должны

быть удалены;
- в повторных объявлениях с переименованием должны быть удалены ключевое слово RENAMED и следу­

ющее за ним новое имя атрибута;
- в данном подтипе должны быть созданы вычисляемые атрибуты с новыми именами;
- вычисленные значения атрибутов должны иметь следующие вид:
SELF\<hmb супертипа>.<старое имя атрибутам

П р и м е р — В данном примере промежуточная схема, сформированная в соответствии с G.4,
названа renam ed_exam ple.

SCHEMA renam ed_exam ple;
ENTITY b inary_re la tionsh ip ;

e n d _ o n e : being;
e n d _ tw o : s truc tu re ;

END_ENTITY;
ENTITY being;
END_ENTITY;
ENTITY s truc tu re ;
END_ENTITY;
ENTITY person

SUBTYPE OF (being);
END_ENTITY;

176

ГОСТ Р ИСО 10303-11— 2009

ENTITY pe rson_ in_s truc tu re
SUBTYPE OF (b inary_re la tionsh ip);

SELF\b inary_re la tionsh ip .end_one RENAMED th e j je rs o n : person;
(*"pe rson_ in_s truc tu re .end_tw o" С ледую щ ий атрибут тол ько

переим еновы вается, но не конкретизируется. *)
S ELF \b inary_re la tionsh ip .end_tw o RENAMED the_s truc tu re : s truc tu re ;

END_ENTITY;
END_SCHEMA; — конец схем ы renam ed_exam ple

При формировании длинной формы конструкции RENAMED преобразуют в атрибуты DERIVE.
Объект pe rson_ in_s truc tu re модифицируется следующим образом:

ENTITY pe rson_ in_s truc tu re
SUBTYPE OF (b inary_re la tionsh ip);
S ELF \b inary_re la tionsh ip .end_one : person;

DERIVE
the_person : person := S ELF \b inary_re la tionsh ip .end_one;
the_s truc tu re : s truc tu re := SELF \b inary_re la tionsh ip .end_tw o;

END_ENTITY;

П р и м е ч а н и е — Ошибки могут возникать в функциях, в которых имени атрибута, следующему за ключевым
словом RENAMED, что-либо присвоено. В подобных случаях для исправления ошибок требуется ручная обработ­
ка схемы.

177

ГОСТ Р ИСО 10303-11— 2009

Приложение Н
(справочное)

Взаимосвязи

Н.1 Взаимосвязи через атрибуты
В языке EXPRESS объявление в объектном типе данных атрибута, областью определения которого являет­

ся другой тип данных, явно устанавливает взаимосвязь между этими двумя типами данных. Данная взаимосвязь
считается простой взаимосвязью, которая связывает экземпляр объявляющего объекта с одним экземпляром
представляющего типа данных.

Для того, чтобы описать взаимосвязи, устанавливаемые атрибутами, имеющими агрегированные значения,
определяют как основной базисный тип для типа данных неагрегированный тип данных, задаваемый следующим
образом:

- основным базисным типом неагрегированного типа данных является сам данный тип данных;
- основным базисным типом агрегированного типа данных является основной базисный тип его базисного

типа.
Если основным базисным типом атрибута А является Т, принимают, что А основан на Т.
Тогда объявление в объектном типе данных атрибута, областью определения которого является агрегиро­

ванный тип данных, основанный на основном базисном типе, устанавливает два вида взаимосвязей:
- групповая взаимосвязь между объявляющим объектом и агрегированным типом данных, связывающая

экземпляр объявляющего объекта с совокупностью экземпляров основного базисного типа;
- дистрибутивная взаимосвязь между объявляющим объектом и основным базисным типом, связывающая

экземпляр объявляющего объекта с одним или несколькими экземплярами основного базисного типа по отдель­
ности.

П р и м е ч а н и е — Данный подход отличается от подходов, принятых в некоторых других языках модели­
рования. Например, в модели Сущность-связь (ER-модели) объекты и взаимосвязи моделируются разными кон­
струкциями.

Как простые, так и дистрибутивные взаимосвязи направлены от объявляющего объекта к некоторому друго­
му типу данных. Полезно рассмотреть мощность этих взаимосвязей (с точки зрения объявляющего объекта). Если
мощность обозначить как т : п (где 0 < т < п), то каждый экземпляр объявляющего объекта связан не менее чем
с т и н е более с п экземплярами целевого типа данных. Если п имеет неопределенное (?) значение, то не
существует верхнего ограничения на число экземпляров целевого типа данных, с которыми может быть связан
экземпляр объявляющего объекта.

Полезно рассмотреть инверсную взаимосвязь, представляющую обратное направление простой или дист­
рибутивной взаимосвязи. Данная взаимосвязь неявно существует всегда и по умолчанию имеет мощность 0 : ?.
Она может быть явно поименована и возможно ограничена посредством объявления атрибута INVERSE в пред­
ставляющем типе данных, если представляющий тип данных является объектным типом данных.

Пример — В данном примере существует простая взаимосвязь между объектными типами дан­
ных first и second, в котором second играет роль ref. Мощность данной взаимосвязи по отношению к first
в данном случае равна 1 :1 (то есть каждый экземпляр объекта first связан строго с одним экземпляром
объекта second). Мощность данной взаимосвязи по отношению к second будет 0 : ? или неограниченной
(то есть один экземпляр объекта second может быть либо не связан ни с одним или связан с несколькими
экземплярами объекта first), что определяет значение мощности инверсной взаимосвязи по умолчанию.

ENTITY first;
ref : second;
fattr : STRING;

END_ENTITY;
ENTITY second;

sattr : STRING;
END_ENTITY;

Если объектный тип данных Е имеет взаимосвязь с типом данных Т, установленным атрибутом А, то данная
взаимосвязь может быть условно изображена следующим образом:

Е-А {>” -п} {р:д> } Т>

где 0 й т й п и 0 £ p £ q . Здесьт : п является мощностью прямой взаимосвязи от Е кТ, а р : q является мощностью
инверсной взаимосвязи от Т к Е.

Ниже в более формализованной форме описаны три вида взаимосвязей и соответствующие им мощности.

178

ГОСТ Р ИСО 10303-11— 2009

Н.1.1 Простая взаим освязь
Простая взаимосвязь является взаимосвязью, установленной атрибутом, представление которого являет­

ся другим объектным типом данных. Даная взаимосвязь устанавливается между двумя объектными типами дан­
ных.

Простая взаимосвязь всегда существует между экземпляром объявляющего объекта и не более чем одним
экземпляром представляющего объекта. Используя установленное выше условное изображение, данная взаи­
мосвязь может быть представлена следующим образом:

Е. A i m : 1> {Р : Я) у Т.

где 0 £ /п £ 1 и 0 й р < ц .
Это означает, что для каждого экземпляра Е роль А либо не исполняет ни один из экземпляров Т, либо

исполняет строго один экземпляр Т. Для каждого экземпляра Т должно существовать от р до q экземпляров Е, в
которых данный экземпляр Т исполняет роль А.

Следующие варианты значений р и q представляют содержательные классы ограничений на простую взаи­
мосвязь между Е и Т:

- если q = 1, то существует ограничение, заключающееся в том, что экземпляр Т не может исполнять роль А
более чем в одном экземпляре Е;

- если 1 й р, то для Т существует ограничение существования. То есть для каждого экземпляра Т должно
существовать не менее р (но не более q) экземпляров Е, использующих данный экземпляр Т в роли А.

Для ограничения мощности простой взаимосвязи и ее инверсной взаимосвязи используются несколько
разных конструкций на языке EXPRESS:

- вариант Т = 0 обеспечивается объявлением атрибута А как необязательного (OPTIONAL). Если А не объяв­
лен как OPTIONAL, то т = 1;

- вариант q = 1 обеспечивается объявлением простого инверсного атрибута или присоединением к Е.А
правила уникальности, которое требует, чтобы для каждой из ролей А в совокупности объектов Е использовались
разные экземпляры, поэтому экземпляр Т может быть использован не более чем одним Е.А;

- другие ограничения на мощность инверсной взаимосвязи выражаются путем объявления в Т инверсного
атрибута в виде: INVERSE I : SET [р : q] OF Е FOR А. Случай, когдар = д = 1, может быть сокращенно представлен
в виде:

INVERSE I : Е FOR А.

Ниже приведены примеры простых взаимосвязей и связанных с ними ограничений мощности.

Примеры

1 CIRCLE-CENTRE { 1 :1 > { ° : ?> , POINT

Каждая окружность CIRCLE имеет строго одну точку POINT, исполняющую роль ее центра CENTRE.
Каждая точка POINT может исполнять роль центра в произвольном числе окружностей (в том числе ни
в одной). Это может быть объявлено следующим образом:

ENTITY point;

END_ENTITY;
ENTITY c irc le ;

centre : point;

END_ENTITY;

2 PRODUCT_VERSION.BASE_PRODUCT {1 :1) {1 : ?) PRODUCT

Каждая версия изделия PRODUCT_VERSION имеет строго одно изделие PRODUCT, исполняющее
роль базового изделия BASE_PRODUCT. Объект PRODUCT может играть роль BASE_PRODUCT в лю бом
количестве версий PRODUCT_VERSION, но не менее чем в одной (зависимость существования). Это
может быть объявлено следующим образом:

ENTITY p roduct_ve rs ion ;
base p roduc t : p roduct; . . .

END_ENTITY;
ENTITY product;

INVERSE
ve rs ions : SET [1 : ?] OF p roduct_ve rs ion FOR base_product;

END_ENTITY;

179

ГОСТ Р ИСО 10303-11— 2009

3 PERSON.LUNCH {0 :1 } {0 :? } MEAL

Каждая личность PERSON может иметь еду MEAL в роли завтрака LUNCH. Еда MEAL может играть
роль LUNCH для лю бого числа личност ей (предполагая, что еды достаточно много). Это может быть
объявлено следующим образом:

ENTITY person;
lunch : OPTIONAL meal;

END_ENTITY;
ENTITY meal;

ca lo ries : energy measure;
a m o u n t: w e igh t measure;

END_ENTITY;
H.1.2 Групповая взаим освязь
Атрибут объектного типа данных, имеющий агрегированное значение, устанавливает групповую взаимо­

связь между объектным типом данных и агрегированным типом данных, используемым для представления
атрибута.

П р и м е ч а н и е — Г рупповая взаимосвязь не распространяется на экземпляры объектов, из которых
агрегированные значения атрибута в итоге формируются. Вместо этого данные экземпляры участвуют в дистрибу­
тивной взаимосвязи (см. Н.1.3).

Групповая взаимосвязь подобна простой взаимосвязи в случае неагрегированных типов данных. Группо­
вая взаимосвязь всегда существует между экземпляром объявляющего объекта и не более чем одним экземпля­
ром представляющего агрегированного типа данных. Как и в случае простой взаимосвязи, это может быть пред­
ставлено следующим образом:

Е.А {m = 1> ir s) j Т.

где 0 £ /п £ 1 и 0 < г < s.
Следующие варианты значений г и s представляют содержательные классы ограничений на групповую

взаимосвязь между Е и Т:
- если s = 1, то существует ограничение уникальности для группового значения атрибута А;
- если 1 < г, то существует ограничение существования для Т.
Как и в простой взаимосвязи значение т определяется объявлением атрибута А как OPTIONAL (т = 0).

Ограничение уникальности, когда s = 1, может быть обеспечено как и в случае простой взаимосвязи записью
правила уникальности для А в объявлении Е. В противном случае г и s не могут быть ограничены.

Ниже приведены примеры групповых взаимосвязей и связанных с ними ограничений мощности.
Примеры

1 POLY_CURVE.COEF { 1 :1 } { 0 : ? } ̂ LIST [1 : ?] OF REAL

Каждый объект POLY_CURVE имеет список действительных чисел, играющий роль объекта COEF.
Любой список LIST [1 : ?] OF REAL может играть роль объекта COEF в лю бом количестве объектов
POLY_CURVE (включая ни одного). Это может быть объявлено следующим образом:

ENTITY po ly_curve;
coe f : LIST [1 : ?] OF REAL;

END_ENTITY;

2 LOOP.EDGES {0 :1 } { 0 :1 } ; LIST [1 : ?] OF EDGES

Каждый объект LOOP может иметь список объектов EDGE, играющий роль объекта EDGES. Каж­
ды й список LIST [1 : ?] OF EDGE может играть роль объекта EDGES самое большее для одного экземпляра
LOOP. Это может быть объявлено следующим образом:

ENTITY loop;
edges : OPTIONAL LIST [1 : ?] OF edge;

UNIQUE
u n 1 : edges;

END_ENTITY;
ENTITY edge;

END_ENTITY;

180

ГОСТ Р ИСО 10303-11— 2009

Н.1.3 Дистрибутивная взаимосвязь
Помимо групповой взаимосвязи, рассмотренной выше, атрибут, имеющий агрегированное значение, уста­

навливает дистрибутивную взаимосвязь между объектным типом данных и основным базисным типом агрегиро­
ванного типа данных, используемым для представления атрибута.

Дистрибутивная взаимосвязь индивидуально связывает экземпляр объявляющего объекта с любым чис­
лом экземпляров представляющего основного базисного типа. Мощность данной взаимосвязи ограничена мощ­
ностью агрегированного типа (типов) данных, используемого для представления атрибута. Обозначив основной
базисный тип типа данных атрибута как FUND(T), дистрибутивная взаимосвязь может быть представлена следую­
щим образом:

Е. A {fc :1> (Р : Я)) FUND (Т),

где 0 S fc S 1 и 0 < p < q .
Это означает, что для каждого экземпляра Е атрибут А состоит из экземпляров FUND (Т) числом от Л до 1.

Экземпляр FUND (Т) может появиться в роли А в от р до q экземплярах Е.
Следующие варианты значений р и q представляют содержательные классы ограничений на дистрибутив­

ную взаимосвязь между Е и FUND (Т):
- если q = 1, то существует ограничение, что экземпляр FUND (Т) не может появиться в роли А более чем в

одном экземпляре Е;
- если 1 й р, то существует ограничение существования для FUND (Т). То есть для каждого экземпляра

FUND (Т) должно существовать не менее р (но не более q) экземпляров Е, содержащих экземпляр FUND (Т) в
роли А.

Для ограничения мощности дистрибутивной взаимосвязи и ее инверсной взаимосвязи используются следу­
ющие конструкции на языке EXPRESS:

- значения к и 1 определяются спецификациями границ агрегированных типов данных, используемых для
представления А. В простейшем случае типом данных атрибута будет просто SET [k : I] OF FUND (Т) (или аналогич­
ный тип данных BAG или LIST).

П р и м е ч а н и е — При данном подходе к взаимосвязям не существует различия между одномерными и
многомерными агрегированными значениями;

- для дистрибутивной взаимосвязи вариант q = 1 не может быть охвачен присоединением правила уникально­
сти к Е. А. Вместо этого инверсный атрибут должен быть объявлен и ограничен в FUND (Т) как INVERSE I : Е FORA;

- другие ограничения на мощность инверсной взаимосвязи выражаются путем объявления инверсного
атрибута в FUND (Т), как INVERSE I : SET [р : q] OF Е FOR А. Случай, когда р = q = 1, может быть сокращенно
представлен как INVERSE I : Е FORA.

Ниже приведены примеры дистрибутивных взаимосвязей и связанных с ними ограничений мощности.

Примеры
1 Сравните данный пример с примером 1 из Н.1.2.

POLY_CURVE.COEF {1 : ?} {0 : ?} ̂ REAL

Объект POLY_CURVE имеет, по меньшей мере, одно действительное число, играющее роль объек­
та COEF. Конкретное действительное число может быть использовано в атрибуте COEF в неограни­
ченном числе объектов POLY_CURVE (в том числе ни одного). Это может быть объявлено следующим
образом:

ENTITY po ly_curve;
coe f : LIST [1 : ?] OF REAL;

END_ENTITY;
2 Сравните данный пример с примером 2 из Н.1.2.

LOOP-EDGES { ° : ? > {2 : 2 > , EDGE

Объект LOOP может состоять из лю бого числа объектов EDGE (в том числе ни одного). Объект
EDGE должен использоваться точно в двух разных объектах LOOP. Это может быть объявлено следую­
щим образом:

ENTITY loop;
edges : OPTIONAL LIST [1 : ?] OF edge;

UNIQUE
u n 1 : edges;

END_ENTITY;

181

ГОСТ Р ИСО 10303-11— 2009

ENTITY edge;

INVERSE
loops : SET [2:2] OF loop FOR edges;

END_ENTITY;

H.1.4 Инверсный атрибут
Любая взаимосвязь, установленная атрибутом, имеет неявную инверсную взаимосвязь. По умолчанию ин­

версное отношение фактически игнорируется, то есть на него не могут делаться ссылки, и ее мощность не ограни­
чена. Правило уникальности для атрибута, объявляющего простую взаимосвязь, фактически ограничивает мощ­
ность инверсной взаимосвязи. Язык EXPRESS предоставляет конструкции, позволяющие присваивать имена и
ограничивать инверсные взаимосвязи. Данные конструкции частично были описаны выше при рассмотрении
других классов взаимосвязей, а ниже приводится их полное описание.

Идентификатор инверсной взаимосвязи задается в объявлении инверсного атрибута посредством ключе­
вого слова INVERSE. Тип инверсного атрибута может ограничивать мощность данной инверсной взаимосвязи.

Ниже рассмотрены конкретные конструкции на языке EXPRESS и их влияние на мощность инверсной взаи­
мосвязи. Предполагается, что объект Е объявляет атрибут А типа данных Т. Если Т является агрегированным
типом данных, то его основным базисным типом является FUND (Т). Представляющий объект [FUND (Т) или Т]
обозначен как R. Предполагается, что инверсная взаимосвязь объявляется инверсным атрибутом I в R.

Если А является неагрегированным атрибутом, с которым связано правило уникальности, то простая взаи­
мосвязь ограничена так, чтобы в совокупности экземпляров объекта Е каждый атрибут А был уникален. Поэтому
экземпляр Т может исполнять роль А не более чем в одном экземпляре Е, то есть q = 1. Это эквивалентно
следующей конструкции: INVERSE I : SET [0 :1] OF Е FORA.

Если А является агрегированным атрибутом, с которым связано правило уникальности, то групповая взаи­
мосвязь ограничена так, чтобы s = 1. То есть экземпляр Т (который является агрегированной структурой) может
исполнять роль А не более чем в одном экземпляре Е. На дистрибутивную взаимосвязь ограничений нет: экзем­
пляр R может исполнять роль А в любом числе экземпляров Е.

Если I объявлен как INVERSE I : BAG [p:q] OF E FOR А, то мощность инверсного направления простой или
дистрибутивной взаимосвязи ограничена в соответствии со значениями р и q. То есть экземпляр R может испол­
нять роль А в экземплярах Е числом от р до q. Поскольку тип данных BAG допускает существование элементов с
одинаковыми экземплярами, конкретный экземпляр R может исполнять данную роль более одного раза в конк­
ретном экземпляре Е. Это имеет смысл только если Т является агрегированным типом данных, допускающим
существование одинаковых элементов.

Если I объявлен как INVERSE I : SET [p:q] OF E FOR А, то м о щ н о с т ь инверсного направления простой или
дистрибутивной взаимосвязи ограничена в соответствии со значениями р и q. То есть экземпляр R может испол­
нять роль А в экземплярах Е числом от р до q. Поскольку тип данных SET не допускает существования одинаковых
элементов, конкретный экземпляр R не может исполнять данную роль более одного раза в конкретном экземпля­
ре Е.

Если I объявлен как INVERSE I : Е FORA, то это равносильно его объявлению как SET [1 : 1] OF Е. То есть
каждый экземпляр R должен исполнять роль А точно в одном экземпляре Е.

Любое объявление I как BAG или SET с р > 1 либо как не BAG и не SET, устанавливает ограничение существо­
вания для R, которое требует, чтобы любой экземпляр R исполнял роль А не менее чем в одном экземпляре Е.

Н.2 Взаимосвязи подтип/супертип
Объявление подтипа в объекте устанавливает взаимосвязь между объектом подтипа и указанными объек­

тами супертипов.
Для заданного объекта супертипа Р, имеющего подтип С, данная взаимосвязь может быть условно пред­

ставлена следующим образом:

Р (" И) {1:1} . С,

где 0 S л S 1.
Это означает, что для каждого экземпляра Р не существует ни одного, либо существует один экземпляр С.

Для каждого экземпляра С существует один экземпляр Р.
В случае, когда Р является абстрактным супертипом, данная взаимосвязь представляется следующим об­

разом:

р {1 : 1} {1 : 1) . с.

Это означает, что для каждого экземпляра Р существует один экземпляр С, и для каждого экземпляра С
существует один экземпляр Р.

182

ГОСТ Р ИСО 10303-11— 2009

Приложение J
(справочное)

Модели на языке EXPRESS для примеров, иллюстрирующих EXPRESS-G

В данном приложении приведены преобразованные на язык EXPRESS копии нескольких примеров, ис­
пользованных для иллюстрации моделирования посредством графической нотации EXPRESS-G.

Данные примеры не претендуют на то, чтобы считаться реалистичными или «хорошими». В частности,
модели, использованные в данных примерах, не имеют никакой связи с какими-либо моделями из других стан­
дартов комплекса ИСО 10303.

J.1 Пример модели единой схемы
Модель в данном примере в основном утверждает, что личность может быть мужчиной или женщиной.

Каждая личность имеет некоторые определяющие характеристики, такие как имя и фамилия, дата рождения, тип
волос, а также может иметь или не иметь детей (которые, конечно, также являются людьми). Мужчина может быть
женат на женщине. В этом случае женщина имеет инверсную взаимосвязь с данным мужчиной.

Возраст (объект аде) личности является вычисляемым атрибутом, который рассчитывается с помощью
функции years, определяющей число лет между датой, вводимой в качестве параметра, и текущей датой.

Личность (объект person) имеет инверсный атрибут, связывающий детей со своими родителями. Нижней
границей данного инверсного атрибута является 0, чтобы обеспечить ненужность предоставления всей родослов­
ной.

П р и м е ч а н и е — Если бы объект parents (родители) был необходимым явным атрибутом, а объект
children (дети) — его инверсным атрибутом, то родословную надо было бы раскручивать назад во времени.

Пример — Модель единой схемы на языке EXPRESS.
SCHEMA example;
TYPE date = ARRAY [1 : 3] OF INTEGER;
END_TYPE;
TYPE hair_type = ENUMERATION OF

(blonde,
brown,
black,
red,
white,
bald);

END_TYPE;
ENTITY person;

first_name : STRING;
last_name : STRING;
nickname: OPTIONAL STRING;
birth_date : date;
children : SET [0 : ?] OF person;
hair: hair_type;

DERIVE
age : INTEGER : = years (birth_date);

INVERSE
parents : SET [0 : 2] OF person FOR children;

END_ENTITY;
SUBTYPE_CONSTRAINT sc_person FOR person;

ONEOF (female, male);
END_SUBTYPE_CONSTRAINT;
ENTITY female

SUBTYPE OF (person);
INVERSE

husband : SET [0 :1] OF male FOR wife; — муж является необязательным!
END_ENTITY;
ENTITY male

SUBTYPE OF (person);
w ife : OPTIONAL female;

END_ENTITY;

183

ГОСТ Р ИСО 10303-11— 2009

FUNCTION years (past: date): INTEGER;
(* "years" Данная функция рассчитывает число лет

между датой в прошлом и текущей датой*)
END_FUNCTION;
END_SCHEMA;

J.2 Модель взаимосвязей
В приведенном ниже примере представлена простая модель, демонстрирующая некоторые объявления и

взаимосвязи на языке EXPRESS. Модель содержит объекты супертипов, объекты подтипов и объекты, не являю­
щиеся ни тем, ни другим. Также показаны два определенных типа данных, выбираемый тип данных и несколько
простых типов.

Пример — Модель, содержащая простой объект и взаимосвязь типов данных.
SCHEMA etr;
ENTITY super;
END_ENTITY;
ENTITY sub_1

SUBTYPE OF (super);
a ttr : from_ent;

END_ENTITY;
ENTITY sub_2

SUBTYPE OF (super);
pick: choice;

END_ENTITY;
ENTITY an_ent;

in t: INTEGER;
END_ENTITY;
ENTITY from_ent;

description: OPTIONAL to_ent;
values : ARRAY [1 : 3] OF UNIQUE REAL;

END_ENTITY;
ENTITY to_ent;

te x t: strings;
END_ENTITY;
TYPE choice = SELECT

(an_ent,
name);

END_TYPE;
TYPE name = STRING;
END_TYPE;
TYPE strings = LIST [1 : ?] OF STRING;
END_TYPE;
END_SCHEMA;

J.3 Простое дерево подтипов/супертипов
Язык EXPRESS позволяет определять очень сложные деревья (и сети) подтипов/супертипов. Показанное в

приведенном ниже примере дерево относительно простое.

Пример — Дерево подтипов/супертипов на языке EXPRESS.
SCHEMA simple_trees;
ENTITY super;
END_ENTITY;
ENTITY sub1

SUBTYPE OF (super);
END_ENTITY;
ENTITY sub2;

SUBTYPE OF (super);
END_ENTITY;
SUBTYPE_CONSTRAINT sc_sub2 FOR sub2;

ABSTRACT;
ONEOF(sub3,sub4);

END_SUBTYPE_CONSTRAINT;

184

ГОСТ Р ИСО 10303-11— 2009

ENTITY sub3
SUBTYPE OF (sub2);

END_ENTITY;
ENTITY sub4

SUBTYPE OF (sub2);
END_ENTITY;
ENTITY sub5

SUBTYPE OF (super);
END_ENTITY;
END_SCHEMA;

J.4 Повторное объявление атрибутов
Язык EXPRESS допускает повторное объявление наследованных атрибутов, обеспечивающее совмести­

мость новых типов данных атрибутов. В приведенном ниже примере показаны некоторые допустимые формы
повторного объявления:

- типом данных повторно объявленного атрибута является подтип наследованного типа;
- типом данных повторно объявленного атрибута является совместимый простой тип данных;
- значение повторно объявленного атрибута является необходимым, хотя наследованное значение было

необязательным.

Пример — Повторное объявление атрибута на язы ке EXPRESS.
ENTITY sup_a;

attr : sup_b;
END_ENTITY;
ENTITY sub_a

SUBTYPE OF (sup_a);
SELF\supa.attr : sub b;

END_ENTITY;
ENTITY sup_b;

num : OPTIONAL NUMBER;
END_ENTITY;
ENTITY sub_b

SUBTYPE OF (sup_b);
SELF\sup_b.num : REAL;

END_ENTITY;

J.5 Модели, состоящие из нескольких схем
Модели на языке EXPRESS состоят, по меньшей мере, из одной схемы. В приведенном ниже примере

показана модель, состоящая из двух схем.

Пример — Модель на языке EXPRESS, состоящая из двух схем.
SCHEMA geom;

ENTITY Ics;
END_ENTITY;
ENTITY surface;
END_ENTITY;
ENTITY curve;
END_ENTITY;
ENTITY point;
END_ENTITY;

END_SCHEMA; - - geom
SCHEMA top;

USE FROM geom
(curve,
point AS node);

REFERENCE FROM geom
(surface);

ENTITY face;
bounds : LIST [1 : ?] OF loop;
loc : surface;

END_ENTITY;
ENTITY loop;
END_ENTITY;

185

ГОСТ Р ИСО 10303-11— 2009

SUBTYPE_CONSTRAINT scjo o p FOR loop;
ABSTRACT;
ONEOF(eloop, vloop);

END_SUBTYPE_CONSTRAINT;
ENTITY eloop

SUBTYPE OF (loop);
bound: LIST [1 :?]OFedge;

END_ENTITY;
ENTITY vloop

SUBTYPE OF (loop);
bound : vertex;

END_ENTITY;
ENTITY edge;

start : vertex;
end : vertex;
loc : curve;

END_ENTITY;
ENTITY vertex;

lo c : node;
END_ENTITY;
END_SCHEMA; - - to p

Более сложный набор схем показан в следующем примере. Следует иметь в виду, что в каждой из объяв­
ленных схем существуют объекты, типы данных и другие определения, которые здесь не показаны для экономии
места.

Пример — Многосхемная модель на языке EXPRESS.
SCHEMA stuff;
END_SCHEMA;
SCHEMA whatsits;

REFERENCE FROM stuff;
END_SCHEMA;
SCHEMA widgets;

USE FROM whosits;
USE FROM gadgets;
REFERENCE FROM things;

END_SCHEMA;
SCHEMA things;
END_SCHEMA;
SCHEMA gadgets;

USE FROM stuff;
REFERENCE FROM things;

END_SCHEMA;
SCHEMA whosits;

REFERENCE FROM stuff;
REFERENCE FROM whatsits;

END_SCHEMA;

186

ГОСТ Р ИСО 10303-11— 2009

Приложение К
(справочное)

Возможности языка EXPRESS, не рекомендуемые к использованию

В настоящей редакции языка EXPRESS существует несколько понятий, которые могут быть определены
посредством двух разных синтаксических структур. Данное двойственное представление обеспечивает допусти­
мость существующих схем и в то же время позволяет использовать новые конструкции языка. В последующих
редакциях языка EXPRESS данное дублирование будет исключено удалением синтаксических структур первой
редакции языка EXPRESS из конструкций, для которых определен новый синтаксис. По этой причине не рекомен­
дуется использование следующих синтаксических структур:

- обозначение (ABS) для объекта, являющегося абстрактным супертипом (ABSTRACT SUPERTYPE), на
EXPRESS-G диаграммах;

- синтаксис определения ограничения SUPERTYPE (см. 9.2.3.2 и 9.2.5), которое теперь может быть опреде­
лено новым объявлением SUBTYPE_CONSTRAINT.

Кроме того, имеется семантика, связанная с понятиями, существующими в первой редакции языка EXPRESS,
которые модифицированы или удалены из настоящей редакции языка. По этой причине не рекомендуется ис­
пользование следующей семантики:

- упорядочение элементов перечисления, относящегося к ненаращиваемому, нерасширяющему типу дан­
ных ENUMERATION.

187

ГОСТ Р ИСО 10303-11— 2009

Приложение L
(справочное)

Пример использования новых конструкций
языка EXPRESS

В данном приложении представлен пример использования новых конструкций, добавленных в язык EXPRESS
настоящим стандартом. Приведенная ниже модель носит чисто иллюстративный характер и демонстрирует, как
могут быть использованы новые конструкции языка.

L.1 Пример управления разработкой изделий
Данный пример демонстрирует использование следующих конструкций языка EXPRESS в схеме, которая

может быть использована в качестве образца для схем, расширенных применительно к конкретным областям
применения:

- наращиваемые конструкционные типы данных;
- ограничение GENERIC_ENTITY на тип данных SELECT;
-ABSTRACT ENTITY;
- переименование атрибутов;
- SUBTYPE_CONSTRAINT.
Пример— В данном примере используются наращиваемые конструкционные т ипы данных.

SCHEMA my_product_management;
USE FROM generic_product_management;
TYPE my_additional_categories = ENUMERATION BASED_ON product_category_names WITH

(document, drawing, electromechanical, mechanical, electrical, pump);
END_TYPE;
TYPE my_additional_values = ENUMERATION BASED_ON approval_status_values WITH

(approved, disapproved, pending);
END_TYPE;
TYPE my_approvable_objects = EXTENSIBLE SELECT BASED_ON approvable_objects WITH

(product, product_category, product_to_category Relationship);
END_TYPE;
ENTITY approval_by_person_in_organization

SUBTYPE OF (approval);
SELF\approval.approved_by: person in organization relationship;

END_ENTITY;
ENTITY approval_by_person

SUBTYPE OF (approval);
SELF\approval.approved_by: person;

END_ENTITY;
SUBTYPE_CONSTRAINT not_both FOR approval;

ONEOF (approval_by_person, approval_by_person_in_organization);
END_SUBTYPE_CONSTRAINT;
END_SCHEMA;
SCHEMA generic_product_management;
TYPE product_category_names = EXTENSIBLE ENUMERATION OF (part, tool,

raw_material);
END_TYPE;
TYPE approval_status_values = EXTENSIBLE ENUMERATION;
END_TYPE;
TYPE approvable_objects = EXTENSIBLE GENERIC_ENTITY SELECT;
END_TYPE;
ENTITY product;

name : STRING;
END_ENTITY;
ENTITY product_category;

name : product_category_names;
END_ENTITY;
ENTITY binary_entity_relationship ABSTRACT;

end_one : GENERIC_ENTITY;
end_two: GENERIC_ENTITY;

END_ENTITY;

188

ГОСТ Р ИСО 10303-11— 2009

ENTITY product_to_category_relationship
SUBTYPE OF (binary_entity relationship);
SELF\binary_entity Relationship.endone RENAMED the_category: product category;
SELF\binary_entity_relationship.end_two RENAMED the_product: product;

END_ENTITY;
ENTITY approval ABSTRACT;

approved_by: GENERIC_ENTITY;
status : approval_status_values;
approvedjtems : SET [1 : ?] OF approvable_objects;

END_ENTITY;
ENTITY person;

name : STRING;
END_ENTITY;
ENTITY organization;

name : STRING;
END_ENTITY;
ENTITY person_in_organization_relationship

SUBTYPE OF (binary_entity_relationship);
role_of_person : STRING;
SELF\binary_entity_relationship.end_one RENAMED the_person : person;
SELF\binary_entity_relationship.end_two RENAMED the_organization : organization;

END_ENTITY;
END_SCHEMA;

189

ГОСТ Р ИСО 10303-11— 2009

Приложение ДА
(справочное)

Сведения о соответствии ссылочных международных стандартов
ссылочным национальным стандартам

Российской Федерации

Т а б л и ц а ДА.1

Обозначение ссылочного
международного стандарта

Степень
соответствия

Обозначение и наименование соответствующего
национального стандарта

ИСО 10303-1:1994 ют ГОСТ Р ИСО 10303-1— 99 Системы автоматизации про­
изводства и их интеграция. Представление данных об из­
делии и обмен этими данными. Часть 1. Общие представ­
ления и основополагающие принципы

ИСО/МЭК 8824-1:2002 ют ГОСТ Р ИСО/МЭК 8824-1—2001 Информационная тех­
нология. Абстрактная синтаксическая нотация версии один
(АСН.1). Часть 1. Спецификация основной нотации

ИСО/МЭК 10646:2003 — *

* Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использо­
вать перевод на русский язык данного международного стандарта. Перевод данного международного стандар­
та находится в Федеральном информационном фонде технических регламентов и стандартов.

П р и м е ч а н и е — В настоящей таблице использовано следующее условное обозначение степени
соответствия стандартов:

- IDT — идентичные стандарты.

190

ГОСТ Р ИСО 10303-11— 2009

Библиография

[1] ISO TR/9007:1987 Information processing systems — Concepts and terminology for the conceptual schema and
the information base

[2] Kamada, T. and Kawai, S. A General Framework for Visualizing Abstract Objects and Relations», ACM Transactions
on Graphics, January 1991, vol. 10, no. 1, p. 1— 39

[3] Wirth, N. What can we do about the unnecessary diversity o f notation for syntactic definitions?, Communications of
the ACM, November 1977, vol. 20, no. 11, p. 822

[4] Sanderson, D. The Proposed Amendment to EXPRESS — Its motivation, features and relationship to EXPRESS
Edition 2

191

ГОСТ Р ИСО 10303-11— 2009

УДК 656.072:681.3:006.354 ОКС 25.040.40 П87 ОКСТУ 4002

Ключевые слова: автоматизация, системы автоматизации производства, прикладные автоматизированные
системы, данные, представление данных, обмен данными, искусственные языки, языки моделирования,
язык EXPRESS, язык EXPRESS-G

Редактор В. Н. Копысов
Технический редактор В. Н. Прусакова

Корректор Е. Ю. Митрофанова
Компьютерная верстка Т. Ф. Кузнецовой

Сдано в набор 19.07.2010. Подписано в печать 02.11.2010. Формат 60х841/8. Бумага офсетная. Гарнитура Ариал.
Печать офсетная. Уел. печ. л. 23,25. Уч.-изд. л. 23,50. Тираж 104 экз. Зак. 1161

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.
www.gostinfo.ru info@gostinfo.ru

Набрано и отпечатано в Калужской типографии стандартов, 248021 Калуга, ул. Московская, 256.

ГОСТ Р ИСО 10303-11-2009

https://meganorm.ru/Index1/52/52261.htm
https://meganorm.ru/Index/54/54069.htm
https://meganorm.ru/mega_doc/fire/postanovlenie/47/postanovlenie_dvadtsatogo_arbitrazhnogo_apellyatsionnogo_626.html

