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Введение

Принятие Руководства ИСО/МЭК 98-3 (GUM)1) привело к возрастающему признанию необходи­
мости включать указание неопределенности в результаты измерений. Аккредитация лабораторий на 
основе ГОСТ ИСО/МЭК 170252) ускорила этот процесс. Признавая, что указание неопределенности не­
обходимо для принятия решений, метрологи в лабораториях всех типов (от национальных институтов 
метрологии до коммерческих лабораторий калибровки) проявляют значительные усилия по разработке 
соответствующих оценок неопределенности для различных типов измеряемых величин и методов, при­
веденных в GUM.

Некоторым преимуществом процедур, описанных и популяризированных в GUM, является стан­
дартизированный подход к определению оценки неопределенности с адаптацией к источникам неопре­
деленности, которая может быть статистической (тип А) или нестатистической (тип В), с акцентом на 
отчетах обо всех источниках рассматриваемой неопределенности. В основе подхода распространения 
неопределенности GUM лежит линейная аппроксимация функции измерений. Во многих практических 
ситуациях такой подход дает результаты, аналогичные полученным более формальными методами. 
Таким образом, принятие GUM, произвело революцию в оценке неопределенности.

Конечно, необходимо много усилий для улучшения оценки неопределенности в практических ситу­
ациях. Совместный комитет по руководствам в метрологии (JCGM), ответственный за GUM с 2000 года, 
закончил Дополнение 1 к GUM, а именно «Неопределенность измерения. Часть 3. Руководство по вы­
ражению неопределенности измерения. Дополнение 1. Трансформирование распределений с исполь­
зованием метода Монте-Карло» (называемый GUMS1). В настоящее время JCGM разрабатывает также 
другие дополнения к GUM в таких направлениях, как моделирование и модели с любым количеством 
выходных величин.

Применительно к широкому кругу измерительных задач в Руководстве ИСО/МЭК 99:2007 (см. [4]) 
приведено достаточно общее определение неопределенности измерения как неотрицательного па­
раметра, характеризующего разброс значений, приписываемых измеряемой величине, на основе ис­
пользуемой информации. В результате определение и понимание функций различных статистических 
величин при определении оценки неопределенности, даже в хорошо понятных применениях измерений 
особенно интересны как статистикам, так и метрологам.

Ранее проводились исследования этих проблем с метрологической точки зрения. Некоторые 
авторы исследовали статистические свойства процедур, установленных в GUM. В [5] показано, что 
к этим процедурам непосредственно не применимы байесовская и фидуциапьная интерпретация. 
В [6] предложено несколько модифицированных процедур GUM, которые дают результаты, более со­
гласованные с интерпретацией Байеса в некоторых случаях. В [7] рассмотрено соотношение между 
процедурами определения оценки неопределенности, предложенной в GUMS1 (см. [3]) и результатами 
байесовского анализа для моделей особого вида. В [8] рассмотрены возможные вероятностные интер­
претации интервалов охвата и даны рекомендации по аппроксимации апостериорного распределения 
для этого класса байесовского анализа распределений вероятностей семейства распределений Пир­
сона.

В [9] приведено сопоставление частотного и байесовского подходов для определения оценки не­
определенности. Однако исследование выполнено только для измерительных систем, причем для всех 
источников неопределенности могут быть использованы оценки типа А. Напротив, в настоящих реко­
мендациях рассмотрены и иллюстрированы несколькими примерами измерительные системы с источ­
никами неопределенности, для которых использованы оценки типа А и В.

Статистики потратили много сил на использование методов определения оценок неопределен­
ности, имеющих вероятностное обоснование или интерпретацию. В результате их работы (часто вне 
метрологии) было разработано несколько подходов, относящихся к оценке неопределенности. В на­
стоящих рекомендациях представлены некоторые из этих подходов и со статистической точки зрения 
рассмотрена их связь с методами, используемыми в настоящее время в метрологии. Статистическими 
подходами, для которых описаны различные методы определения оценки неопределенности, являются 
частотный, байесовский и фидуциальный подходы, рассмотренные в настоящих рекомендациях.

1) Национальный стандарт ГОСТ Р 54500.3—2011/Руководство ИСО/МЭК 98-3:2008 «Неопределенность 
измерения. Часть 3. Руководство по выражению неопределенности измерения» идентичен ISO/iEC Guide 98-3:2008 
(см. [1]).

2) Национальный стандарт ГОСТ ИСО/МЭК 17025—2009 «Общие требования к компетентности испытатель­
ных и калибровочных лабораторий» идентичен ISO/IEC 17025:2005 (см. [2J).
IV
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Статистические методы

ТРИ ПОДХОДА К ИНТЕРПРЕТАЦИИ И ОЦЕНКЕ НЕОПРЕДЕЛЕННОСТИ ИЗМЕРЕНИЙ

Statistical methods. Three approaches fo r the interpretation and assessment o f measurement uncertainty

Дата введения —  2015—12—01

1 Область применения

В настоящих рекомендациях рассмотрены три основных статистических подхода к интерпрета­
ции и оценке неопределенности измерений: частотный подход, байесовский подход и фидуциальный 
подход. Общая черта этих подходов — четкая вероятностная интерпретация интервалов неопределен­
ности. Для каждого подхода описаны основной метод, предположения и вероятностная интерпретация 
неопределенности. В настоящих рекомендациях также рассмотрено соотношение этих статистических 
подходов с методами, предложенными в ГОСТ Р 54500.3—2011 (далее GUM).

2 Нормативные ссылки

В настоящих рекомендациях использованы нормативные ссылки на следующие стандарты:
ГОСТ ИСО/МЭК 17025—2009 Общие требования к компетентности испытательных и калибро­

вочных лабораторий
ГОСТ Р 50779.10—2000 Статистические методы. Вероятность и основы статистики. Термины и 

определения
ГОСТ Р 50779.11—2000 Статистические методы. Статистическое управление качеством. Терми­

ны и определения
ГОСТ Р 54500.3—2011/Руководство ИСО/МЭК 98-3:2008 Неопределенность измерения. Часть 3. 

Руководство по выражению неопределенности измерения
ГОСТ Р 54500.3.1—2011 /Руководство ИСО/МЭК98-3:2008 Дополнение 1:2008Неопределенность 

измерения. Часть 3. Руководство по выражению неопределенности измерения по выражению неопре­
деленности измерения. Дополнение 1. Трансформирование распределений с использованием метода 
Монте-Карло

П р и м е ч а н и е  —  При пользовании настоящими рекомендациями целесообразно проверить действие 
ссылочных стандартов в информационной системе общего пользования —  на официальном сайте Федерального 
агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному 
указателю «Национальные стандарты, который опубликован по состоянию на 1 января текущего года, и по выпу­
скам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссы­
лочный стандарт, на который дана недатированная ссылка, то  рекомендуется использовать действующую версию 
этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на кото­
рый дана датированная ссылка, то  рекомендуется использовать версию этого стандарта с  указанным выше годом 
утверждения (принятия). Если после утверждения настоящих рекомендаций в ссылочный стандарт, на который 
дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это по­
ложение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, 
то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

Издание официальное
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3 Термины и определения

В настоящих рекомендациях применены термины по ГОСТ Р 50779.10, ГОСТ Р 50779.11, а также 
следующие термины с соответствующими определениями.

3.1 эмпирическая функция распределения, эмпирическая интегральная (кумулятивная) 
функция распределения (empirical distribution function, empirical cumulative distribution function): Функ­
ция распределения, присваивающая вероятность 11n каждому из л элементов случайной выборки и 
представляющая собой ступенчатую функцию вида

где {х1,... , хп} —  выборка, и |Л| —  количество элементов, удовлетворяющих условию А

3.2 байесовский анализ (Bayesian sensitivity analysis): Анализ влияния априорных распределе­
ний параметров статистической модели на апостериорное распределение измеряемой величины.

3.3 достаточная статистика (sufficient statistic): Функция выборки Xv ..., Хп из распределения, 
функция плотности вероятностей которой зависит от параметра 9, а условное распределение X ,, .... Хп 
при заданном значении статистики не зависит от 9.

П р и м е ч а н и е  — Достаточная статистика содержит всю информацию о параметре 0, как функции Х1.....Х„.

3.4 модель наблюдений (observation model): Математическая связь результатов измерений (на­
блюдений) измеряемой величины и соответствующей случайной ошибки погрешности измерений.

3.5 структурное уравнение (structural equation): Статистическая модель, связывающая наблю­
даемую случайную величину с неизвестными параметрами и ненаблюдаемой случайной величиной, 
распределение которой известно и не зависит от неизвестных параметров.

3.6 нецентральное хи-квадрат распределение (non-central chi-squared distribution): Нецентраль­
ное распределение вероятностей, представляющее собой обобщение центрального ̂ -распределения.

2П р и м е ч а н и е  1 — Для к  нормально распределенных случайных величин Х(-со средним р(- и дисперсией О/ 
к

случайная величина X  = ^ (Х / / с ,)2 имеет нецентральное ^-распределение. Нецентральное ̂ -распределение 
м

имеет два параметра: к  — 
(  к

величин Xj

число степеней свободы (количество X-j и X, который зависит от средних случайных 
\

и называется параметром нецентральное™.
V /=1 у

П р и м е ч а н и е  2 — Плотность ^-распределения представляет собой смесь плотностей центральных 
распределений:

SxOO = I -
/=0

■^2(Л/2)'
9v*+2; ( ^ ) -

е 2
^к/2+i-ijJ

2*/2 ы )Г (* /2+ /)22'/ ! ’

где Yq подчиняется х?-распределению с q степенями свободы.

4 Обозначения и сокращения

В настоящих рекомендациях использованы для обозначений греческие и латинские буквы. Грече­
ские буквы использованы для обозначения параметров статистической модели (например, измеряемых 
величин), которые могут быть и случайными величинами и постоянными величинами в зависимости 
от используемого статистического подхода и модели. Прописные латинские буквы использованы для 
обозначения случайных величин, которые могут принимать различные значения при наблюдениях, и 
строчные латинские буквы для обозначения наблюдаемых значений величин (например, результатов 
измерений). В некоторых случаях использованы другие обозначения. Однако в этом случае смысл обо­
значений ясен из контекста.

2
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5 Описание задачи

5.1 В настоящих рекомендациях рассмотрена модель измерений:

(1)

где щ , .... рр —  входные величины;
8 —  выходная величина; 
f —  функция измерений.

Функция /  определена математически в виде формулы или алгоритма вычислений. В GUM (при­
мечание 1, 4.1) те же самые функциональные зависимости определены соотношением

которое сложно отличить от функции измерений, определяющей зависимость случайной величины от 
результатов наблюдений входной величины.

В соответствии с процедурой, рекомендованной GUM, для р неизвестных величин определяют 
оценки j t , , .... др по значениям хл, ..., хр, полученным при выполнении измерений или из других источни­
ков. Соответствующие стандартные неопределенности также получают по имеющимся данным с помо­
щью статистических методов или плотностей вероятностей, построенных на основе экспертных знаний 
о переменных. В GUM (см. также п. 4.5 в [11]) модель измерений, связывающую измеряемую величину 0 
с входными величинами Др .... Др, рекомендовано использовать также для вычисления функции, описы­
вающей зависимость уатхь ..., хр. Таким образом, результат измерений (или оценка) удля 9 имеют вид

т. е. оценка Y, у  = f(x1 t представляет собой результат измерений 0. Оценки у, х.,, хр являются 
реализациями случайных величин Y, X , , .... Хр соответственно.

5.2 В настоящих рекомендациях приведено три статистических подхода, обеспечивающих опре­
деление:

(а) наилучшей оценки удл я  0,
(б) соответствующей стандартной неопределенности и(у),
(в) доверительного интервала или интервала охвата для 0 с заданной вероятностью охвата 

(обычно 95 %).
5.3 Необходимо различать оценки стандартной неопределенности, соответствующие оценкам 

различных величин и соответствующие теоретические значения стандартной неопределенности. Тео­
ретические значения стандартных неопределенностей обозначены соответственно о^или ох, их оценки 
до и после наблюдений обозначены Sx и sx соответственно.

6 Статистические подходы

6.1 Частотный подход

6.1.1 Статистический подход, позволяющий определить вероятностную оценку неопределенно­
сти, называют частотным. Этот подход иногда называют «классическим» или «общепринятым». Од­
нако в силу особенностей неопределенности в метрологических задачах методы этого семейства для 
определения частотного интервала неопределенности в реальных условиях часто требуют адаптации.

6.1.2 При использовании частотного подхода входные значения \iv  .... Др модели измерений (1) и 
выходную величину 8 рассматривают как неизвестные постоянные величины. Полученные для каждой 
величины jj.j данные используют для определения оценки 0 с помощью модели измерений или других 
статистических моделей. Для определения оценки 0 с помощью использования одного из математиче­
ских методов (наименьших квадратов, максимального правдоподобия или бутстреп-метода) определя­
ют доверительные интервалы с заданным уровнем доверия.

6.1.3 Поскольку 8 рассматривают как постоянную величину, вероятностное утверждение, отно­
сящееся к доверительному интервалу для 9, не является прямым утверждением относительно значе­
ния 0. Это утверждение лишь указывает, как часто доверительный интервал, полученный с примене­
нием данной процедуры, накрывает измеряемую величину при многократном повторении процедуры. 
Повторение процедуры означает, что определение оценки неопределенности повторяют много раз 
с использованием различных данных, взятых из одних и тех же распределений. Частотный подход

Ар), (2)

y  = f(x1, ..„Хр) (3)

3
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обеспечивает выполнение вероятностного утверждения о свойствах процедуры построения интервала 
неопределенности в конкретных условиях процесса измерений на достаточно большом количестве по­
вторений процедуры.

6.1.4 В большинстве практических метрологических задач интервалы неопределенности должны 
учитывать как неопределенность, соответствующую оценкам величин, полученным с использованием 
результатов измерений, так и неопределенность, соответствующую экспертным оценкам. Для получе­
ния интервала неопределенности, аналогичного доверительному интервалу, оценки величин, не осно­
ванные на результатах измерений, рассматривают как случайные величины с распределениями веро­
ятностей (величины, оценки которых могут быть получены с использованием статистических данных, 
рассматривают как неизвестные постоянные величины).

6.1.5 Традиционная частотная процедура построения доверительного интервала может быть мо­
дифицирована для обеспечения заданного уровня доверия после усреднения по возможным значени­
ям величин, имеющих экспертные оценки [5]. Это позволяет использовать вероятностные утвержде­
ния, аналогичные утверждениям в случае доверительных интервалов для величин, которые не были 
измерены.

6.1.6 В таблице 1 приведено краткое описание частотного, байесовского и фидуциального под­
ходов к оценке неопределенности.

Т а б л и ц а  1 — Интерпретации частотного, байесовского и фидуциального подходов

Наименование
подхода

Характеристика величин 
модели измерений 

в = ....IV

Интервал неопределен ности 
для выходной величины в Примечания

Частотный 0 и J1,- — неизвестные посто­
янные величины

Доверительный интер­
вал накрывает 8 с заданной 
вероятностью, при дли­
тельном повторении про­
цедуры

Классический частотный 
подход применяют для объ­
единения неопределенно­
стей, которые не являются 
статистическими оценками

Байесовский 8 и (л,-— случайные величины, 
распределения вероятностей 
которых основаны на предвари­
тельной информации о значени­
ях входных и выходных величин

Интервал охвата для 8 
рассчитывают на основе 
апостериорного распреде­
ления 8

Возможна неоднознач­
ность интервала, обуслов­
ленная выбором априорных 
распределений

Фидуциальный р, — случайные величины, 
распределения которых получе­
ны на основе предположений о 
наблюдаемых данных, исполь­
зованных для определения оце­
нок р* и экспертных знаниях о р,

Интервал охвата для 8 
рассчитывают на основе 
фидуциального распреде­
ления 8

Не единственность ин­
тервала, обусловленная 
выбором структурного урав­
нения

6.2 Байесовский подход

Второй подход называют байесовским подходом в честь фундаментальной теоремы Байеса [12], 
на которой он основан. В этом подходе параметры модели измерений (1) р ^ ,.... р.р рассматривают как 
случайные величины с соответствующими распределениями вероятностей. Теорема Байеса позволяет 
получить распределение вероятностей на основе данных наблюдений и параметров, определенных в 
соответствии с функцией f  или эквивалентными статистическими моделями. Полученное распределе­
ние вероятностей учитывает знания о распределении и информацию о наблюдаемых данных. Из этого 
распределения могут быть получены интервалы неопределенности, которые накрывают 6 с заданной 
вероятностью. Поскольку знания о параметрах заданы в виде распределений вероятностей, байесов­
ский метод обеспечивает возможность прямых вероятностных утверждений о значениях 0 и других па­
раметров, используя определение вероятности, как меры уверенности.

6.3 Фидуциальный подход

6.3.1 Фидуциальный подход разработан R Фишером [13] в 1930-ых годах. В этом подходе рас­
пределение вероятностей для 0, названное фидуциальным распределением, является условным (по 
данным) и получено на основе взаимосвязи 6 и (ху, описанной функцией f, предположениями о рас-

4



Р 50.1.100—2014

пределении данных, используемых для определения оценки Фидуциапьное распределение может 
быть использовано для определения интервалов неопределенности, которые содержат 9 с заданной 
вероятностью.

6.3.2 Обоснование процесса определения фидуциального распределения иллюстрирует следую­
щий пример. Предположим, что величину У можно описать уравнением У = д + Z, где д —  измеряемая 
величина, Z —  случайная величина, подчиняющаяся нормированному нормальному распределению. 
Если у  —  реализация случайной величины У, a z —  реализация случайной величины Z, то д = у -  z. 
Знание распределения z позволяет определить совокупность возможных значений д. Распределение 
вероятностей Z может быть использовано для вывода распределения вероятностей д. Процесс преоб­
разования соотношения д = у  -  z в соотношение д = у  -  Z и есть суть фидуциального подхода. Фидуци- 
альное распределение д представляет собой распределение вероятностей случайной величины ( у - Z) 
при фиксированном у.

7 Примеры

7.1 Общие положения

Примеры связаны с корректировкой некоторой физической величины на фоне помех. В таблице 2 
приведено описание и обозначение используемых величин, в 7.2—7.4 приведены примеры определе­
ния оценок.

Пр и м е ч а н и е  — Описание величин, несущественных для цепей настоящего примера, не приведено.

Т аб л и ца  2 — Пояснения к примеру

Величина Обозначение

Исследуемая физическая величина (измеряемая) в

Величина, обнаруженная методом измерений при измерении фонового шума (г. е. среднее В) Р
Исследуемая физическая величина, обнаруженная методом измерений (т. е. среднее У) у= е  + р

Стандартное отклонение метода измерений при измерении исследуемой физической вели­
чины (стандартное отклонение У)

Су

Стандартное отклонение метода измерений при измерении фонового шума (стандартное от­
клонение В)

аВ

7.2 Примера)

Наблюдаемой величиной является композиция сигнала и фонового шума. В результате измере­
ний получено пять независимых значений. Предполагается, что каждое значение у  является реали­
зацией случайной величины У, подчиняющейся нормальному распределению со средним у  = 9 + р и 
стандартным отклонением оу. Результаты измерений у  составили:

3,738; 3 442; 2 994; 3 637; 3 874.

Выборочные среднее и стандартное отклонение равны у  = 3,537 и sy = 0,342.
Аналогично определено пять результатов измерений фонового шума. Эти значения, как предпо­

лагается, являются реализацией случайной величины В, подчиняющейся нормальному распределению 
со средним р и стандартным отклонением о в. Наблюдаемые значения фонового шума составили:

1,410; 1,085; 1,306; 1,137; 1,200.
Поскольку имеются результаты измерений для каждой величины, которая является источником 

неопределенности, то на основе данного примера может быть показана статистическая интерпретация 
каждого подхода.

7.3 Пример б)

Пример б) идентичен примеру а), но оценки параметров фонового шума определяют не на основе 
экспериментальных данных, а на основе предыдущего опыта или экспертных данных. В этом случае ве­
личина р подчиняется равномерному распределению на интервале с конечными точками 1,126 и 1,329.

5
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Поскольку использована экспертная оценка, неопределенность, соответствующая фоновому шуму, по­
лучена с использованием оценки типа В. Пример б) ближе к реальной ситуации, чем пример а).

7.4 Пример в)

Пример в) идентичен примеру б) за исключением того, что сигнал 9 ближе по характеристикам к 
фоновому шуму. Наблюдаемые данные «сигнал плюс фоновый шум» в этом случае составили

1,340; 1,078; 1,114; 1,256; 1,192.
Для сигнала, почти совпадающего с фоновым шумом, в примере в) показано, как физические 

ограничения могут быть использованы при определении оценки неопределенности в каждом подходе.

8 Частотный подход

8.1 Основной метод

8.1.1 При частотном подходе параметры рассматривают как неизвестные постоянные величины.
Далее случайные переменные обозначены прописными буквами, а соответствующие им наблюдаемые 
значения —  строчными. Доверительный интервал может быть получен на основе функции Щ У  0) от У 
и параметра 9, которая может быть многомерной. Распределение вероятностей параметра 0 не имеет 
неизвестных параметров (если такое распределение может быть определено). Тоща доверительный 
интервал уровня 1 СЮ (1 — а) % для 0 может быть определен через нижнюю и верхнюю процентили 1а и 
иа, удовлетворяющие условию Ре ( ta < Щ  У, 0) < = 1 -  а

8.1.2 Например, если У = {Уь ..., Уп) —  случайные величины, подчиняющиеся нормальному рас-
_ П

пределению Л/(д, о2), то У = ̂ у )1 п  —  также случайная величина, подчиняющаяся нормальному рас-
/=1

пределению. Пусть необходимо определить оценку д при известном значении о. Величина
подчиняется N(0,1).

Тогда границы доверительного интервала для д имеют вид

Z  = у -я
<y/-Jn

(4)

где —  квантиль уровня а/2 нормированного нормального распределения.
Если о неизвестно, можно использовать в качестве его оценки выборочное стандартное отклонение

S =

Оценку д получают, заменяя о на S. 
Величина

(5)

подчиняется распределению Стьюдента с числом степеней свободы ( п - 1). Доверительный интервал 
для д определяют по формуле

У ± ^ * Л - 1,1-а /2.

где fn_1ii _0̂2 —  квантиль распределения Стьюдента с (л - 1) степенями свободы.

8.1.3 Вместо точных оценок, которые можно получить только в простых ситуациях, обычно ис­
пользуют приближенные оценки. Для больших выборок приближенные доверительные интервалы мо­
гут быть получены на основе центральной предельной теоремы.

8.1.4 Дополнительные методы определения доверительных интервалов приведены в [14]. Неко­
торые из них упомянуты в примерах. При построении доверительного интервала для обратных величин 
6
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с неизвестными распределениями может быть использован бутстреп-метод. Процедура бутстреп-мето- 
да приведена в 8.2.

8.1.5 При получении приближенного доверительного интервала для измеряемой величины так­
же могут быть использованы процедуры, рекомендуемые GUM, хотя они отличаются от методов по­
строения доверительного интервала на основе частотного подхода. Такие доверительные интервалы 
основаны на аппроксимации распределения функции наблюдений в модели измерений (1) распределе­
нием Стьюдента (t-распределением). В соответствии с этой процедурой оценки неизвестных величин 
щ ,.... Цр определяют на основе значений х1 ,..., хр, полученных в результате измерений или из других 
источников. Значения х,- могут быть выборочными средними или другими функциями данных, исполь­
зуемыми для оценки Цр / = 1, .... т. Их суммарную стандартную неопределенность и(Х/) также опреде­
ляют с помощью статистических методов, как правило, используя выборочное стандартное отклонение 
или робастные ранговые процедуры. Такие методы позволяют определить оценки неопределенности 
типа А. Число степеней свободы vb связанное с и(х#), зависит от объема выборки, используемой для 
оценки цу

8.1.6 Так как физические измерения не всегда возможны или целесообразны для некоторых щ 
оценки х,-параметров р., для некоторых /, например / = т + 1 , . . . ,  р  получают с помощью субъективных 
(или потенциально субъективных) оценок и используют вместе с xh для / = 1, ..., р, полученными на 
основе оценок неопределенности типа А. Таким образом, для определения оценок рпп1, .... цр исполь­
зована нестатистическая информация (данные научных исследований, требования изготовителя или 
другая прямая или косвенная информация) при определении оценки неопределенности типа В.

Пр и м е ч а н и е  — Иногда могут быть получены оценки неопределенности типа А и В одновременно.

8.1.7 В GUM рекомендовано для вычисления у  по х.,, .... хр использовать модель, связывающую 
измеряемую величину 9 с входными величинами щ ,..., цр. Таким образом, измеряемую величину (или 
ее оценку) определяют в виде

У - Щ ,  —, xm*v •••. V -
т. е. как оценку Y. При этом y = f{xv  .... хр) —  измеряемое значение 9.

8.1.8 В GUM для оценки стандартной неопределенности и(у) использован закон распростране­
ния неопределенности. Стандартную неопределенность 1/( х Д .., и(х^, соответствующую х = (х1 (.... хр , 
определяют на основе разложения функции f(xb .... х р  в ряд Тейлора первого порядка

f(Xi, ..., хр и%!,....Цр) + £с,(х, -цД (6)
i=1

Пусть jj, = (jt,, ..., jj. ). Частные производные

df_
Ф ; JJ=X

называют коэффициентами чувствительности. В соответствие с GUM применение закона распростра­
нения неопределенности дает метод определения приближенной оценки стандартной неопределен­
ности у:

“ (У) *  J l> ? u 2(x( )+ 2YJCiCj U{XhXj)>
V'=1 ><J (7)

где u{Xj, Ху) —  ковариация Xt и Xj.
8.1.9 Для определения оценки стандартной неопределенности и(у) в GUM использована форму­

ла Велча-Саттервейта для вычисления эффективного числа степеней свободы veff:

и4 (у)
veff = п 4 4 Г Cf U (Xj)

М v(x,.)

(8)

П р и м е ч а н и е  — В [15] рассмотрен парадокс, в соответствии с которым в межлабораторных исследовани­
ях доверительный интервал, построенный на основе аппроксимации Велча-Саттервейта, может быть меньше для 
оценки различий между лабораториями, чем внутри лаборатории для компонентов неопределенности.

7



Р 50.1.100—2014

8.1.10 Согласно GUM для построения доверительного интервала для 0 используют величину

Распределение Щ  У, q) приближенно можно считать f-распредепением с veff степенями свободы.

Этот доверительный интервал может быть рекомендован в качестве доверительного интервала 
для 0 с уровнем доверия 100 (1 -  а) %. Полуширина этого интервала К еП,-\-а/2и(У) представляет собой 
расширенную неопределенность у.

8.1.11 Изложенное согласуется с обычной статистической практикой, когда общую неопределен­
ность определяют с помощью оценки типа А, а наиболее часто используемой статистической оцен­
кой для конкретной входной величины ц является выборочное среднее по л наблюдаемым величинам. 
Традиционным методом получения оценки стандартной неопределенности типа А является дисперсия 
(S /*Jn) с (п - 1) степенями свободы. Это основано на том, что ( л - 1 )S2/o2 подчиняется ̂ -распределению 
с (л -  1) степенями свободы. Этот метод применим также к статистикам вида У = G(X1, .... Хр), когда 
оцен ки X,-, / = 1, .... р подчиняются центральной предельной теореме. При этом стандартное отклонение 
У может быть получено по формуле (7), в которой и{хь хр необходимо заменить на cov(Xh хр.

Метод GUM обобщает коллективный опыт многих метрологов. Однако он ограничен предположе­
ниями о:

- локальной линейности функции f  (коэффициенты чувствительности не следует сильно менять 
и удалять);

- нормальности распределения точечных оценок У = /(X ,, .... Хр) (для малых выборок это может 
не выполняться даже в приближении);

- законности формулы Вепча-Саттервейта (возможно, формула плохо работает, если входные 
величины взаимно зависимы, входные данные не подчиняются нормальному распределению и стан­
дартные неопределенности различны. Число степеней свободы для распределений, не связанных с 
Х2-распределением, трудно интерпретировать, и в действительности его не используют в статистиче­
ской теории).

8.1.12 Для анализа выражения (7) с точки зрения частотного подхода можно использовать по­
нятия теории статистических решений и дисперсию (квадрат стандартной неопределенности) и*(у) ин­
терпретировать как средний квадрат ошибки статистической оценки f(xb х2, .... хр). Это можно сделать 
при условии, что величины, неопределенности которых определены с использованием оценок типа В, 
а именно, х№1, ..., хр устранены интегрированием по их распределениям (см. [5]). Если функция f  до­
статочно близка к линейной, выражение (7) обеспечивает приближение первого порядка среднего ква­
драта ошибки.

8.1.13 В примерах дана другая общепринятая для частотного похода процедура получения до­
верительных интервалов.

8.2 Бутстреп-метод

8.2.1 Бутстреп-метод представляет собой стратегию генерации повторных выборок [16] для оцен­
ки параметров распределения, таких как дисперсия, и определения доверительных интервалов для них 
в случае, когда форма основного распределения неизвестна. Ключевая идея бутстреп-метода состоит 
в том, что соотношение между интегральной функцией распределения вероятностей F для У и выбор­
кой из F аналогично соотношению между оценкой интегральной функции распределения F , которая
может быть не эмпирическим распределением, сгенерированным выборкой, и второй выборкой из F . 
Если распределение F неизвестно, то никакие выводы относительно него не могут быть сделаны, но
современные компьютеры позволяют получить оценку распределения F по большому количеству не­
известных распределений. Так, сначала используют первичную выборку для формирования F по F, а 
затем определяют выборочное распределение оценок параметров F . Эта оценка основана на генера-

(9)

W (y,0)e f(v eff).

Тогда доверительный интервал уровня 100 (1 -  а) % имеет вид:

(10)

1- 0/2- (11)

8
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ции вторичных выборок и получении оценок для каждой вторичной выборки. Если F является хорошим
приближением F, то Н, выборочное распределение оценки на основе F , является в общем случае хо­
рошим приближением выборочного распределения оценки на основе F. Распределение Н обычно на­
зывают бутстреп-распределением параметра.

8.2.2 Существует два типа бутстреп-процедур для непараметрического и параметрического слу­
чая. Непараметрический бутстреп-мегод связан с рассмотрением эмпирического распределения F , 
построенного на основе первичной выборки из F. В параметрическом случае бутстреп-распределение
F имеет некий набор параметров, и F получают с помощью оценок параметров по данным.

Пр и м е ч а н и е  — В типовых метрологических задачах наборы данных не являются достаточно большими, 
чтобы гарантировать правильность непарамегрического бугстреп-подхода, поэтому этот подход не рассмотрен в 
настоящих рекомендациях.

8.2.3 Ключевое предположение, используемое при построении доверительного интервала в 
соответствии с GUM (предположение (10)), может не давать хорошей аппроксимации даже для про­
стых задач. Однако бутстреп-метод позволяет получить доверительные интервалы без использования 
предположения (10). Одним из способов получения таких интервалов является f-бутстреп-подход. Эта 
процедура генерирует эмпирическое распределение для аппроксимации функции ЩУ, 9) [для замены 
^-распределения в (10)]. Если предположение (10) корректно, f-бутстреп распределение воспроизводит 
f-распределение. Эмпирическое f-бутстреп распределение в этом случае используют для построения 
доверительного интервала по формуле (11) так же, как f-распределение.

Соотношение между бутстреп-методом и методами, предложенными в ГОСТ Р 54500.3.1—2011 
(далее GUMS1), рассмотрено в 11.2.

8.2.4 Ниже приведена схема генерации бугстреп-выборки. Предположим, что х1 и и(х^) —  сред­
ние и стандартные отклонения случайной переменной X ,, которая, как предполагается, подчиняется 
распределению вероятностей с некоторым установленным количеством параметров. Далее для иллю­
страции использовано нормальное распределение. Алгоритм бутстреп-выборки состоит из трех этапов:

а) По случайной выборке объема к  из нормального распределения определяют оценки среднего 
и стандартного отклонениях., и u(x.j).

б) Из N(xv и*(хл)) отбирают выборку объема к, т. е. jx^ ч,.... x j И .

в) По fx j 1..... вычисляют выборочное среднее х \  и выборочную стандартную ошибку
“ (x j).

fx1*,L/(x1* ) j —  бутстреп-выборка для Х1. Точно так же В бутстреп-выборок может быть сгенериро­
вано для любой переменной.

8.2.5 Так же, как в GUM значения (х^ и(х^), для / = 1 ,..., р  используют как входные параметры при

вычислении у, и(у) и ЩУ, 6), а бутстреп-выборки ) | / = 1
параметры для вычисления у*, и{у),

W *= W {y*,y ) = ^ ^ ~ .
У  ’  и ( У )

,р (см. 8.2.4) используют как входные

(12)

8.2.6 Для получения бутстреп-распределения ЩУ, 6) для больших значений В (скажем 100000)

генерируют В бутстреп-выборок |хДЬ), и(х*(Ь))|, / = 1, ... р  и для каждой вычисляют W*(b), Ь = 1 ,.... В. 

Процентиль f-бутстреп распределения И^У, 0) уровня 1 СЮ а % аппроксимируют значением fa так, что

W > ) < U

- в ------- = a'
где |А| —  количество элементов, удовлетворяющих условию А. Наконец, доверительный интервал 
f-бутстреп распределения уровня 100 (1 - а )  % имеет вид

( у А а / 2 -“ (У)У + *а/2-"(У))- (13)

9
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Процентили распределения Стьюдента симметричны относительно нуля, и как следствие, значе­
ния в формуле (11) всегда должны быть симметричны относительно у. Напротив, процентили f-бутстреп 
распределения, используемые в (13), могут быть асимметричны относительно нуля, что приводит к не­
симметричному интервалу неопределенности относительно у, который может обеспечить более точное 
описание физической ситуации в некоторых случаях. Детали этого процесса при построении интервала 
неопределенности приведены в следующем алгоритме.

а) Используя заданные распределения для X,-, /=  1 , р формируют В бутстреп-выборок

(х ;(1),и(х,.(1)))........  (х,.(В ),и(х;(е))).

б) Для каждой бугстреп-выборки (х,*(Ь), и(х,*(£>))), /=  1 ,.., р  и Ь = 1 ,.... В, вычисляюту*(Ь), и(у*(Ь)) 
и W*(b) = (у*(Ь) -  у)/и(у*(Ь)) в соответствии с GUM.

в) Определяют процентил ь f-бутстреп расп ределен ия И/( у  9) уровня 100 а % с помощью значения 
ta такого, что |{W*(b) < fa }|/B  = a.

г) Определяют доверительный интервал f-бутстреп распределения уровня 95%  
(У -  *0,975 ■ и {у ) ; У + f0,025 ■ и (у)).

8.2.7 Бутстреп-выборки могут также использоваться для замены и(у) оценкой стандартного от­
клонения У, когда приближение Тэйлора (6) считают неподходящим. Для этого, поскольку / = 1 ,... р, и
b = 1,..., В, генерируют только входные оценки х, (Ь ). Для каждой бутстреп-выборки определяют 
у  (Ь) = f(Xj (Ь)......Хр(Ь)). Бутстреп-оценкой стандартной неопределенности у  является стандартное от­
клонение выборки объема В:

“ c ( y ) = J z [ / ( 6 ) - / ( - ) f  П в -%  y ' ( - ) = Z / W 's
Vb=1 Ь=1

8.2.8 Наконец, если приближение Тэйлора является неподходящим и имеется существенная 
асимметрия основного распределения У, отбирают вложенные бутстреп-выборки В1 *  В2 для постро­
ения f-бутстреп интервала с использованием бутстреп стандартного отклонения. Пусть генерировано 
В1 бутстреп-выборок (входных оценок и соответствующих им у ). Для каждой бутстреп-выборки ис(у*) 
вычисляют В2 бутстреп-выборок второго уровня и определяют оценки

У *-у
«(у*)

Набор В1 таких отношений используют для определения оценки процентили распределения 
И/(У, 0), что позволяет определить f-бутстреп интервал в соответствии с (13). Алгоритм построения 
интервала неопределенности уровня 95 % с использованием вложенных бутстреп-выборок состоит в 
следующем.

а) Для / = 1,..,р, используя распределения Хь генерируют S1 бутстреп-выборок первого уровня

.... ( * ; « .
*

б) Для каждой бутстреп-выборки первого уровня x ,(B j), / = 1 ,.., д  Ь1 = 1,..., В1 вычисляют
y *(b ,) = f(x -(b ,)..... Хр(Ь,)) и И /*(Ь |) = (у*(Ь |)-у )/с (у * (Ь 1)), где для определения Цу'ф ф  применяют

бутстреп-метод второго уровня, используя следующий алгоритм:
1. Для / = 1, .., р, используя распределение генерируют В2 бутстреп-выборок второго уровня
*,*(1).....^ (В г ) .
2. Для каждой бутстреп-выборки второго уровня определяют оценку у*(Ь 2) = /(х ^ Ь г)..... Хр(й^)).
3. Формируют бутстреп-оценку стандартной неопределенности у  *(& ,) в виде выборочного стан­
дартного отклонения:

^ ( у * ( ь ,) ) = .Е [у * ( Ь 2) - у * ( - ) ]2 /(е 2- 1).
Ч*>2=1

®2
для В2 повторений, где У *(-) = ^  У *(Ь г)/й2

*2=1
10
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в) Определяют оценку процентили уровня 100 а % f-бутстреп распределения W(Y, 9) с помощью 
значения такого, что |{ИУ(Ь.,) < fa }|/81 = a.

г) Определяют вложенный f-бутстреп доверительный интервал уровня 95 %

( у _ ^0,975'и (у ); У + ̂ 0,025 *и (у ))-

Это более общий подход. Вложенный бутстреп-метод требует достаточно сложных вычислений. 
Для примеров был выбран более простой бутстреп-метод.

8.3 Примеры

8.3.1 Общие положения
8.3.1.1 В качестве примера рассмотрим статистическую модель примера из раздела 7, а именно

Y;.= 0 + p + s ,,/= 1 ,..., п, (14)

где 0 —  измеряемая величина, р представляет фоновый шум, в,-—  независимые ошибки, е,- е N(0, о2). 
Если р —  постоянная величина, у —  среднее данных, то в соответствии с (14) 0 = f$ , у) = у -  р.

8.3.1.2 Если фоновый шум р подчиняется равномерному распределению на интервале (a -d , a + d), 
интервал для 0 в соответствии с GUM имеет вид:

У -а ± 2  J — + 4 -  V п 3

В [5] рассмотрены свойства таких интервалов и проведено их сравнение с интервалом

У -а + (15)

рекомендованным Эйэенхартом в [17]. Так как условное распределение У для данного р является нор­
мальным, Л/(0 + р, a2/n),

Р >0,95,

в то время как

Я (|а-Р |<с?) = 1.

Из этого следует, что интервал Эйзенхарта является гарантированным, т. е.

>^|У -  а -  9| < ̂ + cf j  > 0,95. (16)

8.3.1.3 Однако если d  > 12a/ -Jn, интервал, рекомендованный GUM, содержит интервал (15), из 
чего видны различия этих подходов.

8.3.1.4 Интервал (15) может быть приспособлен к f-распределению отношения > /л (У -а -р )/в . 
Он также может быть использован для других распределений (треугольного, трапециевидного и т. д.). 
Действительно, в модели (14) статистика У  содержит всю информацию о 0, содержащуюся в данных 
(т. е. У  — достаточная статистика для 0) с плотностью вероятностей

_ Р ^ 7 е - 0 , 5 л ( у - в - р ) 2 /<т2 ф
2V2*acf э-а

Специальная форма этого распределения позволяет получить альтернативные доверительные 
интервалы (различной длины с центром в точке максимума правдоподобия ( У -  а)) (см. [14]).

8.3.2 Примера)
Используем исходные данные примера, приведенного в разделе 7 для модели (14). После вы­

числений получаем у  = 3,537 и и(у) = 0,153. Последним заменяем ol-Jn  в неравенстве (16), а ко-

11
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эффициент 2 следует заменить на процентиль f-pacnределения с эффективным числом степеней 
свободы 5,15. В примере а) фоновый шум (3 может быть исследован на основе измеренных величин, 
принадлежащих нормальному распределению. Получаем Ь = 1,228 и и(Б) = 0,059. Тогда оценка 9 при­

нимает значение у - Б  = 2,309 с соответствующей стандартной неопределенностью ^и 2(у) + и2(Ь) = 
= 0,164. Доверительный интервал в соответствии с GUM имеет вид

2,309 ± 2,548 х 0,164 = 2,309 ± 0,417 = (1,892; 2,727). 

f-бутстреп интервал уровня 100(1 -  а) % согласно (13) имеет вид:

(2,309 -  0,164£,_а/2 ; 2,309 + 0,164fa /2), 

где fp —  процентиль ИЛ уровня 100 р % (12).
Для удобства пользователей в качестве иллюстрации далее приведены некоторые фрагмен­

ты R-программы (см. [18]) и WinBUGS (см. [19]). Для примера а) приведена R-программа генерации 
В = 10000 реализаций распределения ИЛ:

В =10000
y.star= rnorm (В, mean=3,537, sd=0,153)
u.y.star = 0,153 * sqrt (rchisq (B, df=4)/4)
b.star= rnorm (B, mean=1,228, sd=0,059)
u.b.star = 0,059 * sqrt (rchisq (B, df=4)/4)
w.star = ((y.star-b.star)-2,309)/sqrt (u.y.starA2+u.b.starA2).
Доверительный f-бутстреп интервал уровня 95 %, на основе квантилей уровней 0,025 и 0,975 мо­

делируемого распределения:
2.309 —  quantile (w.star, с (0,975; 0,025)) *0,164 
##1,895754; 2,728817
Таким образом, доверительный f-бутстреп интервал уровня 95 % имеет вид (1,896; 2,729).
8.3.3 Пример б)
При отсутствии статистических данных о фоновом шуме предполагается, что р подчиняется рав­

номерному распределению в интервале (1,126; 1,329). Тогда приближенный доверительный интервал 
в соответствии с GUM имеет вид:

3,537 -1 ,2 2 8  ± 2,533 = 2,310 ± 0,415 = (1,895; 2,724).

Доверительный интервал Эйзенхарга несколько шире, а именно,

+0,102j= 2,310 ± 0,526 = (1,783; 2,836).

На основе данных примера а) для 9 может быть построен доверительный f-бутстреп интервал. 
Для данного примера оценки и соответствующая стандартная неопределенность для у, р и 9 представ­
лены в цифровой форме так же, как в примере а), за исключением того, что р определен на основании 
опыта или оценок экспертов и оценка неопределенности В представляет собой оценку типа В. Поэтому 
генерация ИЛ выполнена не так, как в примере а), а только для отбора бутстреп-выборки Ь* и опреде­
ления оценки соответствующей неопределенности. Бутстреп-выборка объема Ь* теперь генерирована 
из известного равномерного распределения (1,126; 1,329) со стандартной неопределенностью 0,059. 
Программа генерации В = 10000 реализаций ИЛ приведена ниже.

В = 10000
y.star = rnorm (В, mean=3,537, sd=0,153) 
u.y.star = 0,153 * sqrt (rchisq (B, df=4)/4) 
b.star= runif (B, min=1,126, max=1,329) 
u.b.star = 0,059
w.star = ((y.star-b.star)-2,309)/sqrt (u.y.starA2+u.b.starA2).
Доверительный f-бутстреп интервал уровня 95 %, основанный на квантилях уровней 0,025 и 0,975
2,309 —  quantile (w.star, с (0,975; 0,025)) *0,164 
##1,918643; 2,699749.
Таким образом, доверительный f-бутстреп интервал уровня 95 % имеет вид (1,919; 2,700).

3 ,5 3 7 -1 ,228  2,776 0,342
Я
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8.3.4 Примере)
Так как у  = 1,196 и sy = 0,047, оба интервала имеют отрицательные нижние границы. Если сред­

нее 0 положительно, то нижнюю границу можно заменить нулем, что приводит к рекомендуемому GUM 
интервалу (0; 0,124) и к интервалу Эйзенхарта (0; 0,202).

R-программа генерации S = 10000 реализаций И/* и получения бутстреп-интервала такая же, как 
для примера б) с у  = 1,196 и и (у) = 0,047.

В =10000
y.star= rnorm (В, mean=1,196, sd=0,047) 
u.y.star = 0,047 * sqrt (rchisq (B, df=4)/4) 
b.star= runif (B, min=1,126, max=1,329) 
u.b.star = 0,059
w .star= (y.star-b.star) +0,032)/sqrt (u.y.starA2+u.b.starA2).
Доверительный f-бустреп интервал уровня 95 %
-0,032 -quantile (w.star, c (0,975;0,025)) *0,075 
##-0,1762648; 0,1128422
Таким образом, доверительный f-бустреп интервал уровня 95 % имеет вид (-0,176; 0,113).
Если известно, что 9 положительная величина, то усеченный доверительный f-бустреп интервал 

уровня 95 % для 9 имеет вид (0; 0,113).

9 Байесовский подход

9.1 Основной метод

9.1.1 В метрологии измеряемая величина и входные переменные модели (1) являются постоян­
ными физическими величинами. При байесовском подходе соответствующие параметры у ,и  0 рассма­
тривают как случайные величины в том смысле, что их распределения вероятностей суммируют знания 
об этих величинах.

9.1.2 Байесовский подход позволяет получить распределения вероятностей без физических дан­
ных, например, используя требования изготовителей или экспертные оценки. На практике в типичных 
метрологических задачах результаты измерений (данные) физических величин могут быть использо­
ваны для оценки параметров входных величин. В таких случаях, используя теорему Байеса, можно 
получить плотность распределения следующим образом. Пусть р(у;) —  плотность распределения у̂ , 
известная заранее до получения физических данных. Эта функция называется априорной плотностью 
вероятностей у,-. Пусть У —  случайная величина, для которой существует ее реализация у  (данные). 
Плотность р(у|у;) для У называют статистической моделью. Так как у(-—  случайная величина, знак «|» 
обозначает, что плотность вероятностей У является условной по у,-. Для конкретной реализации у  ве­
личины У плотность р(у|у/), как функция у,-, называется функцией правдоподобия. В соответствии с 
теоремой Байеса

р(у|у,)р(у,)
J р(у|у,)р (у/)Ф ,-

Плотность распределения у,- обобщает знания о у(-с учетом полученных значений уг
9.1.3 Если заранее о у,- ничего не известно, то используют так называемое неинформативное 

априорное распределение [20]. При наличии априорной информации ее представляют в виде инфор­
мативного распределения вероятностей. Это один из механизмов байесовского подхода для включения 
информации, используемой для получения оценки неопределенности типа В. Форму функции правдо­
подобия обычно выбирают на основе знаний о процессе, поставляющем данные.

9.1.4 Вид функции правдоподобия и априорная плотность определяют форму апостериорной 
плотности. Важно тщательно выбрать функцию правдоподобия и априорную плотность и провести 
анализ чувствительности результатов относительно возможных изменений этих распределений. Для 
априорных распределений это может означать сопоставление результатов использования нескольких 
различных плотностей. Проверка соответствия функции правдоподобия (статистическая модель, ко­
торая описывает данные об измерениях) представляет собой форму валидации модели [21], которую 
проводят не только для байесовской, но и для других моделей (частотной и фидуциальной).
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9.1.5 Определение оценки неопределенности измерений в контексте байесовской статистики мо­
жет быть интерпретировано (по отношению к апостериорному распределению вероятностей для из­
меряемой величины 9) следующим образом: стандартная неопределенность —  это стандартное откло­
нение случайной величины, характеризуемой этим распределением вероятностей. Для определения 
стандартного отклонения необходимо сначала найти объединенное распределение вероятностей д; и 
затем применить формулу замены переменных, предложенную в [14] для получении распределения 0.

Простой способ получения моментов этого распределения состоит в следующем. Математиче­
ское ожидание и дисперсия функции h(Q) имеют вед:

Е (Л (0)) = J ...J  Ир))р(м-1,..., |д,р)ф 1...ф р,

Мэг(е) = £(е2)-[Е(е)]2.

Для интегрирования часто используют методы Монте-Карло [20].
9.1.6 Совместное распределение вероятностей для независимых случайных величин представ­

ляет собой произведение частных распределений. Однако д( не всегда являются независимыми. Для 
такого случая возьмем, например, функцию распределения вероятностей У, зависящую только от двух 
переменных ц,1 и j^ . Здесь р(>1 м-1, д2) — статистическая модель/Хщ, Иг) ^РО ч) Piv?)- Для этого примера 
апостериорная плотность (д.,, д2) имеет вед:

Р (ж .^ г |у )
р{у \ 1Ч.Ц2)р(ш.Ц2)

jp(y| m.P2)p(m.P2)dM̂ 2

9.1.7 Распространенная ситуация, которая приводит к такой зависимости, появляется тогда, ког­
да статистическая модель является функцией 9 и щ  Оба примера, рассмотренных в данном разделе, 
попадают в эту категорию, иллюстрируя тезис о том, что при байесовском подходе, когда результаты 
измерений доступны, процесс определения связанных распределений вероятностей требует соответ­
ствующего определения статистической модели. Выполнение этого правила автоматически приводит 
к функциям правдоподобия, необходимым для применения теоремы Байеса и к соответствующей апо­
стериорной плотности. Таким образом, процесс можно описать следующим образом:

а) определение результатов измерений, относящихся к исследуемым физическим величинам;
б) установление статистической модели (также называемой моделью наблюдений), связываю­

щей данные с параметрами, которыми могут быть р, и измеряемая величина 8;
в) установление априорных распределений для всех используемых параметров;
г) применение теоремы Байеса для получения апостериорных распределений параметров;
д) вычисление апостериорного среднего и апостериорного стандартного отклонения измеряемой 

величины;
е) выполнение анализа чувствительности результатов относительно возможных изменений апо­

стериорных распределений.
9.1.8 Чтобы упростить числовые вычисления, там, где это возможно, можно использовать по­

следовательное приближение Тэйлора и предположение о нормальности распределений. В частности, 
разложение в ряд Тэйлора Дщ, ..., Др) в точке математических ожиданий д(- вместе с предположением 
о нормальности могут быть использованы для утверждения о том, что /(щ ,...., д^) имеет приближенное 
распределение /V(f(E(p.1), .... £(Др)), ю2), ще

р
® Var (ц,-)+ г ^ с /З с л ф ,, д Д  

/=1 /</

Cov(|x^ д;) —  ковариация д,- и Ду, с,-— частная производная 0 по переменной д^ вычисленная в точке 
математического ожидания дt

П р и м е ч а н и е  — Формулы (6) и (7) использованы в 8.1.8. В данном случае разложение использовано для 
определения дисперсии оценки в, а не самого в.
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9.2 Пример

9.2.1 Общие положения
Проиллюстрируем процесс на данных примера раздела 7. Измеряемой величиной в атом примере 

является 9. Модель измерений в соответствии с 8.3.1.1 имеет вид:

0 =  Т - Р -  ( 1 8 )
9.2.2 Примера)
9.2.2.1 Имеется два набора данных: Набор данных I — пять результатов измерений уДсигнал плюс 

фоновый шум), полученных независимо друг от друга. Набор данных II —  пять результатов измерений 
значений фонового шума Ь,-, также независимых. Каждую величину в наборе данных I рассматрива­
ют как реализацию случайной величины Yh подчиняющуюся нормальному распределению со средним 
у = 0 + р и стандартным отклонением оу. Те же предположения сделаны относительно случайной вели­
чины Bj в наборе данных II, со средним р и стандартным отклонением ов. Таким образом, статистиче­
ские модели для У) и пяти результатов измерений независимых величин имеют вид:

у; |е,р,ст£еЛ/(е+р,<т£),

..... y s |« » .R < » v )= (^ s r exp
/  .V I 
1=1

2оС

9.2.2.2 Статистическая модель для В,-

Bj | р, о |  е А/(р,ст|),

Р (Ь |,-
<*в•^2*

ехр-
Е(ь,-в!
/=1_______

2 4

9.2.2.3 Так как два набора наблюдений взаимно независимы, статистическая модель для У и В
имеет вид:

р(у, Ь\ е, р, оу, ств) = р(Ь,..... % | р, ав)р (у1......у5| 9, Р, Оу).

9.2 2.4 Таким образом, существуют четыре параметра 0, р, оу и Og, для которых необходимо 
задать априорные распределения. В данном примере нет никакой информации об этих параметрах, 
кроме того, что они являются неотрицательными, поэтому предположим, что эти параметры незави­
симы. Желательно, чтобы влияние вида априорных распределений на результаты анализа было мини­
мальным. Такой результат может быть получен при использовании так называемой опорной априорной 
плотности [20]. Для параметров, связанных со средними, например 0 и р, такая плотность может быть 
аппроксимирована для 0 равномерным распределением (0, с), для р ~ равномерным распределением 
(0, с) с большими значениями с. Для параметров масштаба оу и ов опорные априорные плотности вида:

р(оу) = 1/оу, р(ов) = 1/ов

являются неподходящими, так как их трудно объединить в единую плотность. Так как этот аспект может 
вызвать трудности при вычислениях, для больших значений использованы более подходящие плотно­
сти: для Оу—  равномерное распределение (0, с) или Гамма-распределение (с, с).

Гамма (1 |, Ф2 ) представляет собой гамма-распределение с параметрами Ф\ и Фг, т. е. для случай­
ной переменной X эта плотность вероятностей имеет вид:
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9.22.5 Применение теоремы Байеса приводит к объединенной апостериорной плотности для О, 
р, су и ов следующего вида:

р(0, р, су , с в | у, Ь) =
р(у, Ь|е, р, су, св)р(е)р(р)р(су)р(св)

jp (y , Ь|0, р, cy,cB)p (0)p (p )p (oy)p (aB)dedpdoydaB

Апостериорная плотность измеряемой величины 6 выражается через интеграл и имеет вид: 

Р(9|У>Ь) = Jp(0, ft <jY,aB\y,b)dpday<kjB.

Это апостериорное распределение содержит всю информацию о 0 после выполнения измерений. 
Оценка математического ожидания этого распределения является оценкой физической величины, а 
стандартное отклонение этого распределения —  оценкой стандартной неопределенности этой оцен­
ки. Это прямой путь получения интервала охвата для измеряемой величины на основе такого рас­
пределения. Такой интервал охвата представляет собой интервал возможных значений 0 с заданной 
вероятностью. В статистике Байеса этот интервал называют байесовским доверительным интервалом. 
Во многих случаях при применении теоремы Байеса для вычисления интеграла используют числен­
ные методы. Одним из возможных решений является получение апостериорного распределения мето­
дами Монте-Карло по схеме марковской цепи (см. [22]) с использованием программного обеспечения 
WinBUGS (см. [19]). Программа для этого примера, с равномерными априорными распределениями и 
с = 100 приведена ниже 

Example 1а { 
theta-dunif (0,100) 
beta-dunif (0,100) 
gammac- theta+beta 
sigma. Y~dunif (0,1) 
sigma. B~dunif (0,1) 
tau.Y <-1 /  (sigma.Y*sigma.Y) 
tau.B <-1 /  (sigma.B*sigma.B) 
for (i in 1 :n) {
y[i]~dnorm (gamma, tau.Y) 
b[i]~dnorm (beta, tau.B)}
}
С данными из 7.2 для n = 5 программа дает апостериорное среднее 0, равное 2,309, и апостери­

орное стандартное отклонение 0,247. Байесовский доверительный интервал для 0 уровня 95 % имеет 
вид (1,805; 2,815). Анализ чувствительности относительно изменений формы четырех предшествую­
щих распределений может быть выполнен с помощью изменения значений с (см. 9.22.4) и подстановки 
строк

tau.Y~dgamma (1,0Е-5; 1.0Е-5)
tau.B~dgamma (1.0Е-5; 1.0Е-5)
в четыре строки
sigma. Y~dunif (0,1)
sigma. B~dunif (0,1)
tau.Y < -1 /(sigma. Y*sigma.Y)
tau.B <-1 /(sigma. B*sigma.B)

и сравнения полученных значений апостериорного среднего и стандартного отклонения. По результа­
там очевидна их устойчивость к таким изменениям.

9.2.3 Пример б)
92.3.1 Информация о р представлена в форме распределения вероятностей, полученного на ос­

нове оценки неопределенности типа В. В этом случае модель наблюдений для набора данных (I) в при­
мере а) (9.2.2), имеет вид:

Yj 10, ft сту е Л/(0 + ft сту).

9 .2.32 Имеется три параметра, которым необходимо назначить априорные распределения. Для 
параметра р в качестве априорной плотности выбрано равномерное распределение на интервале
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(1,126; 1,329), для 9 —  равномерное распределение (0, с) и для оу —  равномерное распределение 
(О, с) с большими значениями с.

9.2.3.3 Программа WinBUGS для данного примера:
Example 1 b { 
theta-dunif (0,100) 
beta~dunif (1,126;1,329) 
sigma. Y~dunif (0,1) 
gamma< -theta+beta
tau.Y < -1/(sigma. Y*sigma.Y) для (i in 1:n) { 
y[i]~dnorm (gamma, tau.Y)
}
Эта программа дает апостериорное среднее 9, равное 2,309 и апостериорное стандартное от­

клонение 0, равное 0,232. Доверительный байесовский интервал уровня 95 % для 0 имеет вид 
(1,832; 2,788). Анализ чувствительности также удовлетворительный.

9.2.4 Примере)
9.2.4.1 Единственным отличием данного примера от примера б) является различие фактических 

измеряемых величин (которые теперь близки к фоновому шуму), поэтому могут быть использованы 
та же модель и та же программа WinBUGS, что и в примере б). Апостериорное среднее 0 теперь со­
ставляет 0,069, апостериорное стандартное отклонение О равно 0,067, а байесовский доверительный 
интервал уровня 95 % для 0 имеет вид (0,000; 0,188). Эти результаты устойчивы к изменению значений 
с в априорном равномерном распределении. Замена формы априорной плотности для оу равномер­
ного распределения на Гамма-распределение приводит к значениям апостериорного среднего и апо­
стериорного стандартного отклонения 0,058 и 0,052, соответственно, и байесовскому доверительному 
интервалу уровня 95 % (0,000; 0,150). Это большее изменение, чем в предыдущих примерах. Видно, 
что из-за близости данных к значению фонового шума они дают меньше информации об измеряемой 
величине. Значение с у (управляемое до некоторой степени с помощью априорного распределения, так 
как есть только пять значений, на которых основана эта оценка) влияет на информативность данных. 
В этом случае консервативное (гарантированное) решение состоит в использовании равномерного рас­
пределения, обеспечивающего более широкий байесовский доверительный интервал. Очевидно, что 
использование большего количества данных снижает влияние априорной плотности оу на результаты. 
Дополнительные сведения о байесовских интервалах приведены в [23]. Там показано, что для моделей, 
рассмотренных в примере, байесовским доверительным интервалам, построенным на основе априор­
ного равномерного распределения, соответствует вероятность охвата, близкая к 95 %, в то время как 
интервалам, основанным на априорном гамма-распределении, соответствует меньшая вероятность.

9.2.5 Выводы
В примере а) показана ситуация, когда для оценки неопределенности измерений использованы 

две независимые измеряемые величины. В примере б) показано, как информация о фоновом шуме, 
используемая для определения оценки неопределенности типа В, может быть включена в байесовскую 
модель. В примере в) показано, что ограничения (например, положительность) значений измеряемой 
величины могут быть включены в байесовскую модель. В этом примере также показано, как выбор не­
информативного априорного распределения влияет на результаты.

10 Фидуциальный подход

10.1 Основной метод

10.1.1 Для функции измерений (1) оценка неопределенности измеряемой величины 0 может быть 
основана на фидуциальном распределении 9. Приведенные ниже примеры иллюстрируют способ полу­
чения фидуциальных распределений для исследуемых параметров.

10.1.2 Пусть У е А/(0, 1), ще 0 —  измеряемая величина, процесс измерений имеет известную 
дисперсию, равную 1, и У —  наблюдаемые значения случайной величины. Соотношение между резуль­
татами и случайной экспериментальной погрешностью процесса имеет вед:

У = 0 + £ , (19)

ще Е —  случайная величина, характеризующая ошибку измерений, подчиняющаяся нормальному рас­
пределению А/(0,1). Каждому результату измерений соответствует случайная ошибка измерений. Пред-
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положим, что выполнено единственное измерение, и результат измерений составил 10. Обозначим 
соответствующую ошибку измерений е. Тогда:

10 = 6 + е.
Следовательно, 9 = 10 -  е. Если бы значение е  было известно, то результат измерений был бы 

известен точно. Поскольку распределение случайной величины е известно, можно определить совокуп­
ность наиболее вероятных значений 9. Например, насколько вероятно, что 9 = 2. Для этого, необходи­
мо, чтобы е  = 8. Значение е  = 8 маловероятно для Л/(0 ,1 ). Таким образом, значение 9 = 2 маловероят­
но. Какова вероятность того, что 9 принимает значения из интервала от 10 до 12. Для этого е должно 
находиться в интервале от 0 до 2, и вероятность этого события равна Ф(2) -  Ф(0), где Ф (г) —  значе­
ние интегральной функции нормированного нормального распределения в точке г. Таким образом, по 
вероятностям, соответствующим ошибке £, могут быть определены вероятности для 9. Знание о 9, 
основанное на результате измерений 10, может быть описано распределением случайной величины 
0 = 1 0 £ ,  распределение которой имеет вид Л/(10,1). Это фидуциальное распределение 0 (т. е. рас­
пределение 0). Случайную переменную 0 также называют фидуциальной величиной для 9. Эту вели­
чину называют в литературе обобщенной центральной величиной (см. [24], [25]) или фидуциальной 
обобщенной центральной величиной (см. [26], [27]).

10.1.3 Предположим, что в рассмотренном выше примере выполнено два измерения. Пусть У’1 и 
У2 —  случайные величины, обозначающие возможные значения результатов измерений:

Ул = 9 + Е,
У2 = 9 + Е2. (20)

Предположим, что фактические результаты измерений равны 10 и 8. Тогда, следующие уравнения 
связывают результаты измерений, измеряемую величину и реализованные значения е, и

10 = 0 + ev
8 = 0 + е2.

Вероятные значения 9 связаны с вероятными значениями (е.,, е2). В отличие от предыдущего 
примера предположим известно, что е1 - е 2 = 2. Теперь набор возможных значений (©,, е^) ограничен 
этим требованием. Известно, что (е^ е2) подчиняется двумерному нормированному нормальному рас­
пределению, но ограничены линейным соотношением е1 -  е2 = 2.

Следовательно фидуциальная величина 0 имеет распределение, которое равно условному рас­
пределению (10 -  £.,), при условии, что (Е  ̂ -  Е2) = 2. Это то же самое распределение, что и условное 
распределение (8 - £ 2), при условии, что (Е1 - Е 2) = 2. Простые вычисления показывают, что распреде­
ление 0 подчиняется А/( у , 1/2), где У = (у1 + у2)/2 = (10 + 8)/2 = 9.

10.1.4 Для л независимых результатов измерений из Л/(0, о2),

У| = 9 + оЕ^,
У2 = 9 + а£2,

Уп = 9+’ оЕл, (21)

где £ 1,..., Еп —  независимые случайные величины из Л/(0,1). Объединенное фидуциальное распреде­
ление для (9, о) может быть получено следующим образом. Используя первые два (или любые два) из 
выше приведенных п уравнений необходимо выразить 9 и о как функции уь  у2, Е |, и £ 2, обозначая их
0 и 5 . Объединенное фидуциальное распределение (9, а) является объединенным распределением 
( 0, о ) при условии Eh наложенном остальными (л -  2) уравнениями. В частности фидуциальное рас­
пределение 0

Q = F - ^ V i  (22)

представляет собой смещенное и масштабированное /-распределение с (л -  1) степенями свободы. 
Здесь у  и s —  значения выборочных среднего X  и стандартного отклонения S по л результатам из­
мерений, а Тп_л —  случайная величина, подчиняющаяся /-распределению с (л - 1 ) степенями свободы.

10.1.5 Далее приведен альтернативный и более простой метод формирования фидуциального 
распределения, чем тот, что описан в предыдущей части раздела формулой (22).
18
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10.1.6 Приведенные выше аргументы можно обобщить. Фидуциальные распределения могут 
быть получены для параметров модели в более общих задачах. Отправной точкой этого процесса яв­
ляется структурное уравнение [28]. Структурное уравнение имеет вид У = G(p, £). Для единственного 
измерения уравнение (19) является структурным уравнением. Для п результатов измерений уравне­
ния (21) представляют собой п структурных уравнений. Структурные уравнения связывают результаты 
измерений У с параметрами модели р и ошибкой измерений £, распределение которой полностью из­
вестно. Например, для единственного результата измерений распределение £  известно полностью. 
Для любых постоянных значений р распределение £  и структурные уравнения G( ) определяют рас­
пределение У. После выполнения измерений У роли данных и параметров могут поменяться местами. 
В частности, если значение У установлено, распределение £  и структурные уравнения G () используют 
для определения распределения р. Это то, что составляет фидуциальный вывод.

10.2 Пример

10.2.1 Примера)
10.2.1.1 Рассмотрим пример а) из раздела 7, в котором необходимо определить оценку величины 

9 на основе результатов измерений в соответствии с моделью

У ^ е  + Р + в* /=  1,.., п, (23)

где Sj —  независимые ошибки измерений, щ е N{0, оу). р —  параметр фонового шума в соответствии с
моделью

В,= Р + 8;, /=  1,.., П, (24)

где 8j—  независимые ошибки измерений, 8;- е N(0, а |). Предполагается, что е, и 8, независимы. Из (23) 
и (24) следует, что случайная величина (У -В )  подчиняется нормальному распределению со средним
9 и дисперсией fo y /n + o 2 1пЛ, где У  и В  —  средние У) и Вь соответственно. Для них справедливо
соотношение

у - в = е + (25)

где Z  —  нормированная нормальная случайная величина. Уравнение (25) является структурным урав­
нением для (У -В ).

И/у = —— ~ х2( л - 1),
<Jy

Wb = ^ L ~ x 2(« b -U

где %2(v) — случайная величина, подчиняющаяся х2-распределению с v  степенями свободы, S2 и 
S2 —  выборочные дисперсии для V) и Bh соответственно.

Структурное уравнение для S2
>2 4 w y
>y = ~ iP T (26)

Структурное уравнение для Sb

о2 _ c2BWh 
s“

(27)

Решая приведенные выше три структурных уравнения для 0, оу и ае, можно получить фидуциаль- 
ную величину 0 в виде

9 = у - Ь -
Г(л-1)82 (% -1)sg

nWy nbWb (28)
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10.2.1.2 Фидуциальный интервал для 9, соответствующий вероятности (1 -  а), имеет вид 
jjea/2,61- 0/2) ■где —  квантиль распределения 0 уровня а. В простых ситуациях эти квантили могут 
быть определены аналитически. Однако более удобно использовать их приближения с помощью мето­
да Монте-Карпо. Этот метод обеспечивает генерацию большого количества реализаций распределения 
0 и позволяет получить эмпирические квантили уровней а/2 и (1 -  а/2), которые используют в качестве 
оценок ёц/з и 0ч_а/2- Единственная реализация 0 может быть получена следующим образом.

а) Генерируют реализацию нормированной нормальной случайной величины Z.
б) Генерируют реализацию независимых случайных величин Wy и Wb из ^-распределений с 

{п - 1) и (пь - 1 ) степенями свободы, соответственно.
в) Вычисляют 0 в соответствии с (28).
Для данного примера п = пь = 5; у  = 3,537; sy = 0,342, Ь = 1,228 и sb = 0,131. R-npoграмма для 

генерации 500000 реализаций приведена ниже, 
nrun = 500000 
Z = rnorm (nrun)
W1 = rchisq (nrun, 4)
Wb = rchisq (nrun, 4)
theta = 3,537 -1 ,2 2 8  -  sqrt (4*0,342A2 /  (5*W1) + 4*0,131A2 /  (5*Wb)) *Z 
Среднее моделируемого распределения: 
mean (theta)
## 2,308893
Фидуциальный интервал уровня 95 % на основе квантилей уровней 0,025 и 0,975 моделируемого 

распределения:
quantile (theta, с (0,025; 0,975))
## 2,5 %; 97,5 %
##1,857814; 2,760931
Таким образом, фидуциальный интервал уровня 95 % имеет вид (1,858; 2,761).
10.2.2 Пример б)
10.2.2.1 При отсутствии статистических данных о фоновом шуме предполагается, что известно 

распределение р и что р и £,-независимы. Кроме того, предполагается, что распределение р полностью 
известно, т. е. не имеет неизвестных параметров.

10.2.2.2 Структурным уравнением для У  является

y  = e + p+-£_Z. (29)
ып 2

Используя эту формулу вместе со структурным уравнением для Sy из (26) можно получить 
фидуциальную величину 0 в виде

5 = y - p - ^ L  2
ып jw y/(n-l)

Так как Z  /  yjwy / ( л 1 )  = Тп Л —  случайная величина, подчиняющаяся /-распределению с (л - 1) 
степенями свободы, то

е = у - р _ ^ Г п_1 . (30)
V/J

Единственная реализация 0 может быть получена следующим образом.
а) Генерируют реализацию Тп _ 1 из распределения Сгьюдента с (п - 1) степенями свободы.
б) Генерируют р в соответствии с его распределением независимо от Тп_ 1.

в) Вычисляют 0 в соответствии с (30).
Для данного примера предполагается, что р подчиняется равномерному распределению на интер­

вале (1,126; 1,329). Ниже приведена программа генерации 500000 реализаций 0. 
beta = runif (nrun, 1,126; 1,329) 
theta = 3.537 -  beta -  0,342/sqrt (5) *rt (nrun,4)
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Среднее моделируемого распределения: 
mean (theta)
## 2,309454
Фидуциальный интервал уровня 95 % на основе квантилей моделируемого распределения уров­

ней 0,025 и 0,975:
quantile(theta, с(0,025; 0,975))
## 2,5 %; 97,5 %
## 1,871685; 2,745590
Таким образом, фидуциальный интервал уровня 95 % имеет вид (1,872; 2,746).
10.2.2.3 Полученный фидуциальный интервал соответствует интервалу неопределенности, полу­

ченному в соответствии с GUMS1.
10.2.3 Пример в)
10.2.3.1 Рассмотрим данные примера б). Пусть у  = 1,196 и sy = 0,106.

Для 500000 реализаций 0 программа имеет вид: 
theta = 1,196 -  beta -  0,106/sqrt (5) *rt (пгип,4)
Среднее реализаций: 
mean(theta)
##-0,03158058
Среднее находится вне области значений 9. Количество реализаций за пределами области зна­

чений 9:
length ((1 :nrun) [theta<0])
##319168
Ограничения на параметры приводят к усеченному фидуциальному распределению на ограни­

ченном пространстве параметров. Таким образом, используют та х (0 , 0) для получения реализаций 
фидуциального распределения 9. Фидуциальный интервал уровня 95 % 

quantil(pmax (theta, 0), с (0,025; 0,975))
## 2,5 %; 97,5 %
##0,0000000; 0,1361553
Таким образом, фидуциальный интервал уровня 95 % имеет вид (0,000; 0,136).
10.2.3.2 Способ, приведенный в 10.2.1.1, 10.2.2.2, может быть обобщен на произвольные стати­

стические модели. Описание построения фидуциапьных величин приведено в [29]. Более простой спо­
соб, применимый для большей части задач, где существуют достаточные статистики, приведен в [30] и 
рассмотрен в [24] и [25]. Таким образом, общий подход включает следующие этапы.

а) Каждую достаточную статистику представляют в виде функции одного или более параметров 
и случайных величин, распределения которых полностью известны (не включают неизвестные параме­
тры). Таким образом, получают структурное уравнение для каждой достаточной статистики.

б) В каждом структурном уравнении каждый параметр представляют в виде функции достаточ­
ных статистик и случайных величин, распределения которых полностью известны.

в) Получают фидуциальную величину для каждого параметра, заменяя достаточные статистики 
соответствующими им наблюдаемыми значениями.

11 Обсуждение результатов

11.1 Сопоставление оценок неопределенности, полученных на основе трех 
статистических подходов

11.1.1 В таблице 3 приведены результаты примера. Решения для примера а) и примера б) на 
основе частотного бутстреп-метода, байесовского и фидуциального подходов очень похожи. Бутстреп- 
решения и решения в соответствии с GUM дают более короткие интервалы для обоих примеров а) 
и б). Более существенные различия присутствуют в решении примера в). В этом случае байесовское 
решение на основе равномерной априорной плотности распределения дают интервалы, которые за­
метно больше, чем интервалы, построенные другими методами. Только консервативный (гарантиро­
ванный) интервал Эйзенхарта больше байесовского интервала.
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Т а б л и ц а  3 — Интервалы неопределенности для трех статистических подходов (см. пример)

Пример GUM Интервал
Эйзенхарта Бутстреп-подхсд Байесовский

подход
Фидуциальный

подход

Пример а) (1,89; 2,73) (1,89; 2,73) (1,83; 2,66) (1,81; 2,82) (1,86; 2,76)
Пример б) (1,90; 2,72) (1,78; 2,84) (1,86; 2,64) (1,83; 2,79) (1,87; 2,75)
Пример в) (0,00; 0,12) (0,00; 0,20) (0,00; 0,11) (0,00; 0,19) (0,00; 0,14)

Плотность вероятностей

Пример а): Фидуциальная плотность 0

Плотность вероятностей

Пример в): Фидуциальная плотность 0

Плотность вероятностей

Пример а): Байесовская плотность 0

Плотность вероятностей

Пример в): Байесовская плотность 6

Рисунок 1 — Сопоставление аппроксимаций байесовской и фидуциальной плотности для примеров а) и в)

11.1.2 Поскольку байесовский и фидуциальный подходы дают распределения вероятностей для 
измеряемой величины 0, то в дополнение к сравнению интервалов расширенной неопределенности в 
таблице 3 результаты примеров а) и в) также представлены на рисунке 1. Результаты примера б) не 
показаны, поскольку они визуально неразличимы с результатами примера а). Из гистограммы на рисун­
ке 1 видно, что в случае, когда сигнал заметно превышает фоновый шум, байесовское апостериорное 
распределение вероятностей и фидуциальное распределение для 0 аналогичны. Однако, если сигнал 
близок к фоновому шуму, то эти два распределения имеют различные характеристики в связи с различ­
ными методами включения физических ограничений, присущих каждой задаче.

11.1.3 В частотном подходе предполагается, что измеряемая величина 0 и входные величины 
щ, ..., ц в модели измерений (1) являются неизвестными постоянными величинами. Этот подход явля­
ется достаточно разумным, если измеряемая величина представляет собой физическую константу, для 
которой предыдущие исследования не обеспечивают информативное априорное распределение или 
структурное уравнение. Этот подход одобрен статистиками, которые не считают, что все параметры мо­
гут быть смоделированы в виде случайных величин (хотя это, как правило, относится к неопределенно­
сти, полученной методами типа В), описаны распределениями вероятностей и интегральной функцией 
распределения. Такой подход похож на байесовский подход, в котором все параметры характеризуют 
распределениями вероятностей, потребуется меньшее количество предположений о распределениях.
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11.1.4 Бутстреп-метод является известным статистическим методом, который может заменить 
сложные и часто приближенные доверительные интервалы компьютерным моделированием. Суще­
ствуют различные бутстреп-схемы построения доверительных интервалов в различных условиях. 
Параметрический f-бутстреп интервал, приведенный в настоящих рекомендациях, является усовер­
шенствованным интервалом Сгьюдента (f-интервала), приведенного в GUM. Преимущество бутстреп- 
метода состоит в его простоте и возможности построения доверительных интервалов (см. примеры).

11.1.5 В примерах показано также, что байесовская оценка неопределенности, использующая 
статистическую модель, концептуально проста, и может быть применена в сложных задачах метро­
логии без изменения основного метода. Систематические влияния, которые не могут быть оценены 
с помощью результатов измерений (при отсутствии функций наблюдений, математические ожидания 
которых равны систематическому влиянию), и для которых получают оценку неопределенности типа В, 
могут легко быть включены в байесовскую модель. Вычисление апостериорных распределений может 
быть выполнено с использованием метода Монте-Карло по схеме Марковской цепи с применением 
существующего программного обеспечения.

11.1.6 У байесовского метода существуют некоторые недостатки. Самый серьезный недостаток 
состоит в том, что априорные распределения должны быть определены для всех параметров моде­
ли измерений, включая измеряемые величины. Даже при том, что в метрологии информация для по­
строения априорных распределений часто представлена в виде оценок неопределенности типа В, не 
редко бывает так, что для одного или двух параметров назначают неинформативные априорные рас­
пределения из-за недостатка предварительной информации. Как было показано в примере в) такие 
распределения могут влиять на результаты. Поэтому желательно выполнять анализ чувствительности 
для определения степени такого влияния. Существенные влияния, являющиеся результатом априор­
ных, неинформативных характеристик, требуют проведения исследований измерительной системы. 
Наличие таких влияний означает, что в полученных данных недостаточно информации об измеряемой 
величине и, таким образом, априорное распределение имеет значительное влияние на результат. В не­
которых случаях эта проблема может быть решена путем увеличения количества повторных измерений 
или изменением способа сбора данных. Существуют ситуации, когда в используемой математической 
модели слишком много параметров, для которых отсутствует реальная априорная информация, и сле­
довательно, модель должна быть упрощена.

11.1.7 Когда существенная априорная информация ей измеряемой величине действительно су­
ществует, она может быть введена и эффективно обновляться через теорему Байеса. Далее, чувстви­
тельность к форме априорного распределения не только для измеряемой величины, но и для стандарт­
ного отклонения является признаком наличия проблем с измерительной системой. В этом случае они 
должны быть изучены и устранены.

11.1.8 Фидуциальный подход является основой, позволяющей связать распределение с исследу­
емым параметром. Результаты исследования ГОСТ ИСО/МЭК17025 показали, что фидуциальный вы­
вод является реальным статистическим методом. Приведенные примеры показали, что фидуциальный 
подход помогает легко включать информацию о неопределенности в модель измерений и определять 
оценки измеряемой величины и соответствующей стандартной неопределенности.

Нет никакой необходимости в распространении неопределенности на основе последовательных 
разложений Тэйпоод или методе Велча-Сатгервейга при использовании фидуциального подхода.

11.1.9 В фидуциальном подходе вследствие выбора формы структурного уравнения существу­
ет проблема не единственности. Однако следует отметить, что в большинстве случаев физический 
процесс, в результате которого получены данные, известен. В этом случае выбранные структурные 
уравнения должны отражать этот процесс, таким образом, устраняя проблему не единственности. В ме­
трологии при измерении некоторюй величины и использовании некоторых известных процессов, можно 
утверждать, что случайные погрешности влияют на результат измерений некоторым указанным спосо­
бом. Полученные результаты измерений отражают модель измерений, которая включает результаты из­
мерений и ошибки измерений в форме влияющих величин. Эта модель может быть выбрана в качестве 
структурного уравнения.

11.2 Соотношение между методами, предложенными в GUMS1 и тремя статистическими
подходами
11.2.1 GUMS1 требует генерации случайных чисел из распределения вероятностей для выходной 

величины Y в соответствии с моделью измерений, которая описывает знание этой величины, осно-
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ванное на знании входных величин в соответствии с их функциями плотности вероятностей. В GUM 
подчеркнуто, что плотность распределения вероятностей не следует понимать как частотную функцию 
плотности (гистограмму). В качестве измеряемой величины в GUM определена входная величина У. 
Таким образом, результатами анализа в соответствии с GUMS1, такими как среднее и стандартное от­
клонение, полученными на основе метода Монте-Карло, являются оценки параметров плотности веро­
ятностей измеряемой величины. Следовательно, возможно сопоставление методов GUMS1, фидуци- 
ального метода и традиционного байесовского метода. Интервалы неопределенности по GUMS1 могут 
быть исследованы на частоту охвата, но их не следует интерпретировать как обычные доверительные 
интервалы.

11.2.2 В соответствии с 9.1.1 и 9.1.2 традиционные байесовские методы основаны на статисти­
ческой модели, которая учитывает предварительные сведения об измеряемой величине. Это утверж­
дение не верно для GUMS1, поскольку этот метод основан на модели измерений, ще измеряемая ве­
личина является выходной величиной, и, таким образом, ее распределение вероятностей полностью 
определяют платности вероятностей входных величин. Таким образом, любое прямое сопоставление 
выводов традиционных байесовских методов и методов GUMS1 ограничено случаем отсутствия пред­
варительной информации об измеряемой величине.

11.2.3 В [34] выполнено такое сопоставление для частной, но широко распространенной задачи 
измерений. В [34] измеряемая величина ц является функцией а и р, т. е. модель измерений имеет вид 
11 = Ца, р). Оценка параметра а может быть определена по данным, которые представляют собой реали­
зации случайной величины X, подчиняющейся нормальному распределению. Для определения оценки 
параметра р нет никаких данных, но известно его фидуциальное распределение. Анализ, приведенный 
в GUMS1 (см. п. 6.4.9.2), устанавливает масштабированное смещенное /-распределение для а, и за­
тем определяет распределение р через распределение а и функцию f. В [34] показано, что этот анализ 
эквивалентен вычислению байесовской плотности вероятностей для функции Ца, р), при условии, что 
эти два параметра независимы, функция правдоподобия для X  является нормальной со средним а, 
для а задано равномерное априорное распределение, а плотность для р задана распределением, по­
строенным на основе предположений. Следует отметить, что априорная плотность ц в этом случае не 
используется.

11.2.4 Предположим, что существует функция д, такая, что а = g(p, Р). Традиционный байесовский 
анализ использует нормальную функцию правдоподобия для X  со средним д(щ р) и априорными рас­
пределениями ц и р. В отсутствие дополнительной информации об измеряемой величине для р может 
быть использовано равномерное распределение, но могут быть использованы и другие распределе­
ния. В основе выбора априорного распределения лежит доверенность в распределении р. Обычно д и р 
являются независимыми случайными величинами. Следует отметить, что в данной модели, априорная 
плотность а не использована.

11.2.5 В GUMS1 и традиционном байесовском анализе использована различная параметризация 
одной и той же статистической модели. Модель, использованная в GUMS1, не предполагает знания 
средних плотностей вероятностей д, а использует неинформативное априорное распределение а. Как 
указано в [34] это различные предположения. Традиционный байесовский анализ использует для из­
меряемой величины ц неинформативное априорное распределение. В [34] показано, что два эти ис­
следования приводят к идентичным распределениям вероятностей для измеряемой величины, когда в 
байесовском анализе использовано равномерное априорное распределение для ц и функция /'линей­
на. Для нелинейных функций распределения вероятностей щ полученные этими двумя способами па­
раметризации, не совпадают. Важно отметить, что если неинформативное априорное распределение 
преобразовано в априорное распределение ц, то соответствующий байесовский анализ приводит к тем 
же самым результатам что и GUMS1.

11.2.6 Как было отмечено GUMS1 позволяет на основе модели измерений получить плотность 
вероятностей измеряемой величины путем распространения плотностей вероятностей входных вели­
чин. Полученная плотность описывает знания об измеряемой величине, содержащиеся в наблюдаемых 
данных и предположениях, сделанных при назначении объединенной плотности вероятностей входных 
данных. Во многих стандартных моделях с результатами измерений, подчиняющимися одномерному 
нормальному распределению, интервалы неопределенности, полученные в соответствии с GUMS1 и 
фидуциальным методом, очень похожи и даже идентичны. В соответствии с моделью измерений при­
мера а)

е = у -  Р.
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с Yj е Л/(у, сту), / = 1,... ,5 и By е Л/(р, а |)  , /  = 1,... ,5. На основании GUMS1, в качестве плотности распре­
деления у и р назначено смещенное масштабированное t-распределение. Плотность распределения у 
совпадает с распределением случайной величины

где 4 ”  —  случайная величина, подчиняющаяся распределению Стьюдента с четырьмя степенями 
свободы, плотность распределения р имеет то же распределение, что и случайная величина

Ь -  ®ь_г<2)
6 S  4 ’

где —  случайная величина, подчиняющаяся распределению Стьюдента с четырьмя степенями 
свободы, независимая от 7 ^ . Следовательно, плотность распределения измеряемой величины 9 мо­
жет быть получена из распределения величины

' - 6 - К )+ К ’ '

Ниже приведена R-программа генерации 500000 реализаций из вышеупомянутого распределения, 
nrun = 500000 
Т1 = rt (nrun, 4)
Т2 = rt (nrun, 4)
theta = 3,537 -1 ,2 2 8  -  0,342/sqrt (5) *T1 + 0,131/sqrt (5) *T2
Интервал неопределенности уровня 95 % на основе квантилей аппроксимации плотности распре­

деления уровней 0,025 и 0,975: 
quantile (theta, (0,025; 0,975))
Ш  2,5 %; 97,5 %
Полученный интервал (1,853703; 2,763999) идентичен фидуциальному интервалу для этого при­

мера. Точно так же подход GUMS1 и фидуциальный подходы дают один и тог же интервал неопреде­
ленности для задач примеров б) и в).

11.2.7 Существует много других ситуаций, когда приведенный в GUMS1 и фидуциальный методы 
приводят к различным результатам. Особый случай описан в задаче [35]. В случае [35] измеряемой 
величиной является комплексная величина

Г = Г1 + /Г2.
Таким образом

|r| = V r?  + l 2-

Если Х | е Л/(Г1, о2) и Х2 е Л/(Г2, о2) с известным о, метод ГОСТ Р 54500.3.1 назначает N(xv  о2) 
в качестве плотности распределения Г1 и Л/(х2, о2) —  для Г2. Следовательно, для |Г| в соответствии с 
GUMS1 плотность распределения имеет вид:

>/(Xi - oz i )2 + (x2- ctZ2)2, (31)

где Z1 и Z2 —  независимые случайные величины, подчиняющиеся нормированному нормальному рас­
пределению. В [35] показано, что интервалы, построенные методом GUMS1 для |Г|, имеют вероятности 
охвата менее заданных, если |Г| мало по сравнению с о. Это происходит потому, что случайная вели­
чина в выражении (31) положительна и, следовательно, нижняя граница интервала неопределенности 
также положительна и возможна ситуация, если |Г| близко к 0, когда интервал не накрывает |Г|.

х 2+х211.2.8 Фидуциальное решение этой задачи может быть получено на основе того, что 1 ? 2 под-
с

чиняется нецентральному %2-распределению с двумя степенями свободы и параметром нецентраль­
ное™ X = |Г|2/с2. Это свойство может быть использовано для формирования структурного уравнения,

которое связывает наблюдаемую статистику (х2 + х2) /а 2 с параметром X, включающим исследуемый 
параметр |Г|. На основе этого структурного уравнения можно построить фидуциальный интервал для 
|Г|. В [36] показано, что этот фидуциальный интервал обеспечивает охват во всех ситуациях.
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12 Заключение

12.1 В настоящих рекомендациях рассмотрено три подхода к построению интервалов неопреде­
ленности при наличии четкой вероятностной интерпретации.

Анализ, приведенный в [9], показывает, что интервалы неопределенности, полученные при ис­
пользовании разных подходов, часто дают близкие результаты, однако интерпретации их различны.

12.2 При частотном подходе справедливо утверждение о том, что при многократном выполнении 
конкретной процедуры построения интервала неопределенности, вероятность соответствует заданной 
в идентичных условиях. Таким образом, вероятностное утверждение не относится непосредственно к 
измеряемой величине, а лишь к соотношению процедуры, которой интервал был построен, и измеряе­
мой величины. После того, как получены результаты измерений и интервал неопределенности вычис­
лен частотным методом, в результатах больше нет ничего случайного. Несмотря на то, что неизвестно 
накроет ли конкретный интервал измеряемую величину, построенные таким образом интервалы будут 
накрывать измеряемую величину с установленной вероятностью. В отличие от традиционного довери­
тельного интервала, основанного только на статистических данных, частотный интервал неопределен­
ности, как правило, строят так, чтобы зад энный доверительный уровень в среднем был достигнут после 
объединения всех распределений вероятностей, полученных с использованием оценок неопределен­
ности типа В.

12.3 При построении байесовского и фидуциального интервалов неопределенности использова­
ны распределения вероятностей, основанные на знании измеряемой величины. Методы построения 
этих двух типов интервалов различны, но результаты подобны. Байесовские результаты получены пу­
тем комбинирования распределений вероятностей для каждого параметра с вероятностной моделью, 
описывающей вариацию данных на основе теоремы Байеса. Получающиеся апостериорные распре­
деления для каждого параметра отражают вероятность реализации конкретного значения параметра с 
учетом априорной информации и данных. Фидуциальные результаты получены путем обращения веро­
ятностной модели при заданных параметрах для получения распределения параметров при заданных 
данных.

12.4 Если бы числовые результаты всегда были аналогичны, то каждая из интерпретаций была 
бы применима (по крайней мере, приближенно) к каждому интервалу неопределенности. Однако, как 
показано в примерах настоящих рекомендаций, результаты в некоторых случаях могут отличаться друг 
от друга, даже при том, что каждый имеет вероятностную природу и одинаковый уровень доверия (чаще 
всего 95 %). Могут быть и другие различия. Например, если один из доминирующих источников неопре­
деленности соответствует случайной величине, имеющей асимметричное распределение, то интерва­
лы неопределенности, полученные с использованием байесовского или доверительного интервалов, 
отражают эту асимметрию, в то время как доверительный интервал, построенный на основе подхода 
GUM, дает симметричный интервал неопределенности (это означает, что он является более длинным). 
Результаты частотного метода, основанного на других статистических принципах, могут в некоторых 
случаях соответствовать байесовским или фидуциальным результатам, но в общем случае они не 
совпадают, потому что каждый подход основан на своем наборе математических предположений и кри­
териев.

12.5 Существование разных подходов для оценки неопределенности может вызывать затрудне­
ния. Однако следует воспринимать эго как возможность дальнейших улучшений, которые позволят соз­
дать понятные и удобные в применении методы, эффективно использующие ресурсы, применимые ко 
многим типам измерений.
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