
ФЕДЕРАЛЬНОЕ АГЕНТСТВО 

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Р Е К О М  Е Н Д А Ц И  И 
ПО С Т А Н Д А Р Т И З А Ц И И

Р 5 0 .1 .0 9 8 -  
2014

Статистические методы

ОПРЕДЕЛЕНИЕ И ИСПОЛЬЗОВАНИЕ  
ЛИНЕЙНЫ Х ФУНКЦИЙ ПРИ КАЛИБРОВКЕ

1ЭОЯ8 28037:2010
Determination and use of straight-line calibration functions

(IDT)

Издание официальное

Москва
Стандартинформ

2015

блузки фото

https://meganorm.ru/mega_doc/fire/postanovlenie/19/postanovlenie_tretego_arbitrazhnogo_apellyatsionnogo_suda_ot_355.html


Р 50.1.098—2014

Предисловие

1 ПОДГОТОВЛЕНЫ Открытым акционерным обществом «Научно-исследовательский центр кон­
троля и диагностики технических систем» (АО «НИЦ КД») на основе собственного аутентичного перево­
да на русский язык международного документа, указанного в пункте 4

2 ВНЕСЕНЫ Техническим комитетом по стандартизации ТК 125 «Применение статистических ме­
тодов»

3 УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ Приказом Федерального агентства по техническому 
регулированию и метрологии от 24 октября 2014 г. № 1418-ст

4 Настоящие рекомендации идентичны международному документу ISO/TS 28037:2010 «Опреде­
ление и использование линейных функций при калибровке» (ISCVTS 28037:2010 «Determination and use 
of straight-line calibration functions»).

Наименование настоящих рекомендаций изменено относительно наименования указанного меж­
дународного документа для приведения в соответствие с ГОСТ Р 1.5—2012 (подраздел 3.5).

При применении настоящих рекомендаций рекомендуется использовать вместо ссылочных меж­
дународных стандартов соответствующие им национальные стандарты Российской Федерации, сведе­
ния о которых приведены в дополнительном приложении ДА

5 ВВЕДЕНЫ ВПЕРВЫЕ

Правила применения настоящих рекомендаций установлены в ГОСТ Р 1.0—2012 (раздел 8). 
Информация об изменениях к настоящим рекомендациям публикуется в ежегодном (по состоянию 
на 1 января текущего года) информационном указателе «Национальные стандарты», а 
официальный текст изменений и поправок — в ежемесячном информационном указателе 
«Национальные стандарты». В случае пересмотра (замены) или отмены настоящих рекомендаций 
соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного 
информационного указателя «Национальные стандарты». Соответствующая информация, 
уведомление и тексты размещаются также в информационной системе общего пользования — 
на официальном сайте Федерального агентства по техническому регулированию и метрологии в 
сети Интернет (gost.ru)

© Стандартинформ, 2015

Настоящие рекомендации не могут быть полностью или частично воспроизведены, тиражирова­
ны и распространены в качестве официального издания без разрешения Федерального агентства по 
техническому регулированию и метрологии

II



Р 50.1.098—2014

Содержание

1 Область применения..........................................................................................................................................1
2 Нормативные ссылки..........................................................................................................................................1
3 Термины и определения.................................................................................................................................... 2
4 Пояснения к использованным обозначениям................................................................................................4
5 Принципы линейной калибровки......................................................................................................................4
6 Модель, учитывающая неопределенность у ..................................................................................................8
7 Модель, учитывающая неопределенности х(- и у,-.........................................................................................14
8 Модель, учитывающая неопределенности х,и у  и ковариации, соответствующие парам (х,-, у ) ........ 21
9 Модель, учитывающая неопределенности и ковариации, соответствующие у ..................................... 22
10 Модель, учитывающая неопределенности и ковариации, соответствующие х,- и у ............................ 27
11 Использование калибровочной функции....................................................................................................33
Приложение А (справочное) Операции с матрицами.................................................................................... 35
Приложение В (справочное) Применение алгоритма Гаусса-Ньютон а к обобщенной регрессии......... 39
Приложение С (справочное) Применение ортогональной факторизации к решению

обобщенной задачи Гаусса-Маркова..................................................................................... 41
Приложение D (справочное) Представление неопределенностей и ковариаций

результатов измерений х и у .................................................................................................. 45
Приложение Е (справочное) Неопределенность, известная с точностью

до постоянного множителя.....................................................................................................48
Приложение F (справочное) Разработка программного обеспечения для описанных алгоритмов....... 52
Приложение G (справочное) Перечень основных условных обозначений.................................................53
Приложение ДА (справочное) Сведения о соответствии ссылочных международных

стандартов ссылочным национальным стандартам Российской Федерации.............. 55
Библиография...................................................................................................................................................... 56

III



Р 50.1.098—2014

Введение

Калибровка во многих случаях является важной частью процедур измерений и часто включает 
подбор его результатам измерений калибровочной функции, которая наилучшим образом описывает 
взаимосвязь переменных. В настоящих рекомендациях рассмотрены калибровочные функции, 
описывающие зависимую переменную У как линейную функцию независимой переменной X. 
Параметрами прямой являются параметры А и В. Целью процедуры калибровки является определение 
оценок а и б параметров А и В для конкретной измерительной системы на основе результатов измерений 
(X/, у,), / = 1 , ... ,т , выполненных этой измерительной системой. Поскольку результаты измерений 
обладают неопределенностью, это означает, что оценки а и b также обладают неопределенностью. 
В настоящих рекомендациях установлен способ определения оценок а и b и соответствующих им 
неопределенностей по результатам измерений. Использованные в настоящих рекомендациях методы 
обработки и распространения неопределенности соответствуют Руководству ИСО/МЭК 98-3:2008 
«Неопределенность измерения. Часть 3. Руководство по выражению неопределенности в измерении 
(GUM: 1995)».

На основе информации о неопределенности результатов измерений может быть установлен 
метод определения оценок параметров калибровочной функции. Информация о неопределенности 
может включать количественные оценки ковариаций, относящиеся к зависимым или всем величинам.

Как только подобрана линейная модель, наилучшим образом соответствующая результатам 
измерений и требованию состоятельности модели, ее можно использовать для прогноза значения х 
величиныХ, соответствующей результату измерения величины У, полученному спомощью измерительной 
системы. Калибровочную функциютакже можно использовать для оценки неопределенности параметров 
калибровочной функции и неопределенности прогнозируемого значения х.

Определение и использование линейной калибровочной функции состоят из пяти этапов:
1 Получение информации о неопределенности и ковариации данных результатов измерений. 

(В рекомендациях приведены соответствующие примеры.)
2 Определение наилучших оценок параметров линейной калибровочной функции.
3 Валидация модели на ее состоятельность и соответствие данным, использование критерия %2. 

(Совместимы ли данные измерений с соответствующими неопределенностями?)
4 Определение стандартной неопределенности и ковариации оценок параметров прямой.
5 Использование калибровочной функции для прогноза, т. е. определение оценки х величины X  и 

ее неопределенности, соответствующих результату у  величины У и ее неопределенности.
Упомянутые этапы показаны в виде схемы на рисунке 1.
Приведенные численные методы основаны на [6].
Главной целью настоящих рекомендаций является рассмотрение этапов 2—5. Поэтому при 

использовании настоящих рекомендаций на этапе 1 пользователь должен определить стандартные 
неопределенности и ковариации, соответствующие результатам измерений величин X  и У. Следует ис­
пользовать принцип GUM при оценке неопределенности на основе модели измерений, определенной 
для рассматриваемой области.

В ИСО 11095:1996 (см. [14]) рассмотрены вопросы линейной калибровки с использованием 
образцов сравнения. Отличия ИСО 11095:1996 от настоящих рекомендаций приведены в таблице 1.

Настоящие рекомендации могут быть полезны при разработке методик измерений и алгоритмов 
обработки данных при создании новых средств измерений.
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Рисунок 1 — Этапы определения и использования линейных калибровочных функций

Т а б л и ц а  1 — Отличия ИСО 11095:1996 и настоящих рекомендаций

Характеристика ИСО 11095:1996 Настоящие рекомендации

Использование специальных образцов сравнения Да Более общий случай

Значения X  предполагают известными точно Да Более общая информация о неопреде­
ленности

Все результаты измерений получены независимо Да Более общая информация о неопреде­
ленности

Соответствие терминологии GUM Нет Да

Рассматриваемые типы неопределенности Два Пять, включая наиболее общий случай

Только неопределенность, связанная со случай­
ными ошибками

Да Более общая информация о неопреде­
ленности

Проверка сходимости AN OVA Критерий г2

Неопределенность, соответствующая прогнозиру­
емым значениям

Специальный
случай

В соответствии с GUM

V
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Р Е К О М Е Н Д А Ц И И  П О С Т А Н Д А Р Т И З А Ц И И

Статистические методы

ОПРЕДЕЛЕНИЕ И ИСПОЛЬЗОВАНИЕ ЛИНЕЙНЫХ ФУНКЦИЙ 
ПРИ КАЛИБРОВКЕ

Statistical methods. Determination and use of straight-line calibration functions

Дата введения —2015—12—01

1 Область применения

В настоящих рекомендациях рассмотрены линейные калибровочные функции, описывающие вза­
имосвязь переменных X  и У, а именно, функции вида У = А + ВХ. Несмотря на то, что многие из поло­
жений, установленных в настоящих рекомендациях, применимы и к более общим видам калибровочной 
функции, в настоящих рекомендациях везде, где это возможно, использована линейная калибровочная 
функция.

Значения параметров А и В определяют на основе результатов измерений (х;, yj), / = 1 Рас­
смотрены различные случаи, касающиеся неопределенности результатов измерений. Не использовано 
предположение о том, что ошибки у( являются гомоскедастичными (имеют равную дисперсию) и то же 
для хг когда ошибки х,- не незначительны.

Для оценки параметров А и В использован метод наименьших квадратов, наиболее подходящий 
для конкретного вида исходных данных с соответствующей неопределенностью. Рассмотрен самый 
общий вид ковариационной матрицы результатов измерений, а также подробно описаны ситуации, ко­
торые приводят к более простым вычислениям.

Для рассмотренных случаев приведены методы валидации линейной калибровочной функции и 
оценки неопределенностей и ковариации параметров калибровочной функции.

В рекомендациях также описано использование оценок параметров калибровочной функции и 
соответствующих им неопределенностей и ковариаций для прогнозирования значения X  и соответству­
ющей стандартной неопределенности для заданного измеренного значения У и соответствующей ему 
стандартной неопределенности.

П р и м е ч а н и е  1 —  В рекомендациях не приведена общая обработка выбросов по данным результатов 
измерений, хотя приведенные критерии могут быть использованы для идентификации несоответствующих данных.

П р и м е ч а н и е  2 —  В рекомендациях использован метод оценки неопределенности результатов измерений 
в случае, когда эта неопределенность известна с точностью до неизвестного коэффициента (см. приложение Е).

2 Нормативные ссылки

В настоящих рекомендациях использованы нормативные ссылки на следующие документы: 
Руководство ИСО/МЭК 99:2007 Международный словарь по метрологии. Основные и общие по­

нятия и связанные с ними термины (VIM) [ISO/IEC Guide 99:2007 International vocabulary of metrology — 
Basic and general concepts and associated terms (VIM)]

Руководство ИСО/МЭК 98-3:2008 Неопределенность измерения. Часть 3. Руководство по выраже­
нию неопределенности измерений (GUM:1995) [ISO/IEC Guide 98-3:2008, Uncertainty of measurement — 
Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)]

Издание официальное
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Руководство ИСО/МЭК 98-3:2008/Дополнение 1:2008 Неопределенность измерения. Часть 3. Ру­
ководство по выражению неопределенности измерений (GUM:1995). Дополнение 1. Трансформирова­
ние распределений с использованием метода Монте-Карло [ISO/IEC Guide 98-3:2008/Supplement 1:2008, 
Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995) -  
Supplement 1: Propagation of distributions using a Monte Carlo method]

3 Термины и определения

В настоящих рекомендациях применены термины по Руководству ИСО/МЭК 98-3 и Руководству 
ИСО/МЭК 99, а также следующие термины с соответствующими определениями.

Перечень использованных обозначений приведен в приложении G.
3.1 измеренное значение величины (measured quantity value): Значение, представляющее со­

бой результат измерения величины.
[Руководство ИСО/МЭК 99:2007, 2.10]
3.2 неопределенность измерения (measurement uncertainty): Неотрицательный параметр, ха­

рактеризующий разброс значений случайной величины, приписываемых ей на основе имеющейся ин­
формации об измеряемой величине.

[Руководство ИСО/МЭК 99:2007, 2.26]
3.3 стандартная неопределенность измерения (standard measurement uncertainty): Неопреде­

ленность результатов измерений, выраженная в виде стандартного отклонения.
[Руководство ИСО/МЭК 99:2007, 2.30]
3.4 ковариация двух количественных величин (covariance associated with two quantity values): 

Характеристика взаимозависимости двух количественных величин, которым на основе имеющейся ин­
формации, приписывают две измеряемые величины.

3.5 ковариационная матрица, матрица ковариации результатов измерений (measurement 
covariance matrix, covariance matrix): Матрица размерности N * л/, связанная с вектором оценок век­
торной величины размерности Л/ х 1, содержащая на своей диагонали квадраты стандартной неопре­
деленности соответствующих компонент вектора оценок векторной величины, а в качестве остальных 
элементов ковариации пар компонентов вектора оценок векторной величины.

П р и м е ч а н и е  1 —  Ковариационная матрица Ux  размерности N *  N, соответствующая вектору оценок х
векторной величины X, имеет вид:

Ur
cov(x1,x1)

cov(xw,x1)

COV(X1, Хд|)

cov(xN,xN)

где соv(xf-, х() = и2(х() — дисперсия (стандартная неопределенность х();
соv(xf-, Ху) -  ковариация х(- и Ху. соv(xf-, Ху) = 0, если элементы X t и X j вектора X являются некоррелированными. 

П р и м е ч а н и е  2 —  Ковариацию называют взаимной неопределенностью.
П р и м е ч а н и е  3 — Ковариационную матрицу также называют дисперсионно-ковариационной матрицей. 
П р и м е ч а н и е  4 —  Определение соответствует Руководству ИСО/МЭК 98-3:2008/Дополнение 1:2008, 

определение 3.11 (см. [13]).

3.6 модель измерений (measurement model): Математическая связь всех величин в измеритель­
ной задаче.

[Руководство ИСО/МЭК 99:2007, 2.48]
3.7 функциональная модель (functional model): Статистическая модель, включающая ошибки, 

соответствующие зависимой переменной.
3.8 структурная модель (structural model): Статистическая модель, включающая ошибки, соот­

ветствующие независимым и зависимым величинам.
3.9 калибровка (calibration): Операция, в ходе которой при заданных условиях на первом этапе 

устанавливают соотношение между значениями величин с неопределенностями измерений, которые 
обеспечивают эталоны, и соответствующими показаниями средства измерений с присущими им не­
определенностями, а на втором этапе на основе этой информации устанавливают соотношение, по­
зволяющее получать результат измерения, исходя из показаний.

П р и м е ч а н и е  1 —  Калибровка может быть выражена в виде состояния, калибровочной функции, диа­
граммы или таблицы. В некоторых случаях она может состоять из общей или мультипликационной поправки по­
казаний с соответствующей неопределенностью измерений.
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П р и м е ч а н и е  2 — Калибровку не следует путать с регулировкой измерительной системы, часто по 
ошибке называемой самокалибровкой, а также с верификацией калибровки.

П р и м е ч а н и е  3 — Часто под калибровкой понимают только первый этап, указанный в приведенном 
определении.

[Руководство ИСО/МЭК 99:2007, 2.39]
3.10 распределение вероятностей (probability distribution): Функция (случайной величины), ха­

рактеризующая вероятность того, что случайная величина принимает данное значение или принадле­
жит заданному набору значений.

П р и м е ч а н и е  1 — Вероятность, соответствующая всему набору значений случайной величины равна 1.
П р и м е ч а н и е  2 — Распределение вероятностей называют одномерным, если оно описывает един­

ственную (скалярную) случайную величину, или многомерным, если оно описывает вектор случайных величин. 
Многомерное распределение вероятностей описывают также как совместное распределение.

П р и м е ч а н и е  3 — Распределение вероятностей может иметь форму функции распределения или плот­
ности распределения.

П р и м е ч а н и е  4 — Определения и примечание 1 адаптированы по ИСО 3534-1:1993, определе­
ние 1.3, и Руководству ИСО/МЭК 98-3:2008, определение С.2.3; примечания 2 и 3 адаптированы по Руководству 
ИСО/МЭК 98-3:2008/Дополнение 1:2008, определение 3.1 (см.[13]).

3.11 нормальное распределение (normal distribution): Распределение вероятностей непрерывной 
случайной величины Хтакое, что соответствующая плотность распределения для -°о< < +оо имеет вид:

9* (^ ) = x f c expCy/ZK

2

П р и м е ч а н и е  1 — ц — математическое ожидание X, о — стандартное отклонение X.
П р и м е ч а н и е  2 — Нормальное распределение также называют распределением Гаусса. 
П р и м е ч а н и е  3 — Определение и примечание 1 адаптированы по ИСО 3534-1:1993, определение 1.37, 

примечание 2 адаптировано по Руководству ИСО/МЭК 98-3:2008, определение С.2.14.

3.12 {-распределение ({-distribution): Распределение вероятностей непрерывной случайной вели­
чины X, плотность распределения которой для -°°<  £, < +°° имеет вид:

9x41 Г (у г )
•v/jtv r(v /2 )

(
1 + 5_

"(v+1)/2

где v — число степеней свободы (положительное целое число); 
f(z) — гамма функция,

r (z )  = J f z_V fdf, z > 0 . 
о

[Руководство ИСО/МЭК 98-3:2008/Дополнение 1:2008,3.5]
3.13 ^-распределение, распределение хи-квадрат (chi-squared distribution, %2 distribution): Рас­

пределение вероятностей непрерывной случайной величины X, плотность распределения которой для 
0 < В, < +°о имеет вид:

э* й ,= х ^ ехрН
9

где v — положительное число; Г — гамма функция.

П р и м е ч а н и е  — Сумма квадратов v независимых стандартизованных нормальных величин подчи­
няется х2 распределению с параметром v; v — число степеней свободы.

3.14 положительно определенная матрица (positive definite matrix): Матрица М  размерности 
п *п  для которой справедливо неравенство zTM z  > 0 для всех ненулевых векторов z размерности л *1 .

3.15 положительно полуопределенная матрица (positive semi-definite matrix): Матрица М  раз­
мерности п*л, для которой справедливо неравенство zTM z >  0 для всех ненулевых векторов z размер­
ности л *  1.

3
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4 Пояснения к использованным обозначениям

В настоящих рекомендациях использованы следующие условные обозначения.
4.1 X  — независимая величина, У — зависимая величина, даже если X является неизвестной ве­

личиной, а У — известной, как, например, в разделе 7.
4.2 А и В называют параметрами линейной калибровочной функции У= А + ВХ. Их также исполь­

зуют для обозначения (фиктивных) переменных в выражениях, включающих параметры калибровочной 
функции.

4.3 Величины X) и У) используют в качестве (фиктивных) переменных для обозначения координат 
/-ой точки.

4.4 Константы А* и В* представляют собой (неизвестные) значения А и В, которые определяют 
линейную калибровочную функцию У= А* + В*Хдля рассматриваемой измерительной системы.

4.5 Константы X* и Y* представляют собой (неизвестные) координаты /-й точки, полученные из­
мерительной системой и удовлетворяющие уравнению Y* = А* + В*Х*.

4.6 х,- и у ,— результаты измерений значений координат /-й точки.
4.7 а и b — оценки параметров калибровочной функции измерительной системы.
4.8 х* и у* — оценки координат /-ой точки, удовлетворяющие уравнению у* = а + Ьх*.
4.9 Вектор размерности /77*1

х = vT == [*!,

и матрица размерности т*п
а11 ' ' а1 п а11 ' ' ат\

А =

_ат1 атп _

ч
II

_а1 п ' атп.
Для облегчения понимания размерности вектора и матрицы далее всегда такие.
4.10 Т — означает операцию транспонирования.
4.11 Нулевая матрица обозначена 0, а единичный вектор обозначен 1.
4.12 Некоторые символы имеют более одного значения. Необходимые пояснения приведены в 

тексте.
4.13 Значения, приведенные в таблицах с одинаковым количеством десятичных разрядов, яв­

ляются правильно округленными значениями чисел, сохраненными с более высокой точностью, как 
например, при вычислениях с применением электронных таблиц. Поэтому могут быть незначительные 
несовпадения между показанной суммой чисел и суммой чисел, показанной в колонке.

4.14 В некоторых таблицах выше колонки или колонок приведен номер подраздела, в котором 
приведена формула определения значений в соответствующем столбце.

4.15 В примерах для значений с заданной точностью результаты вычислений приведены с более 
высокой точностью, что позволяет пользователю сравнивать результаты при повторении вычислений.

5 Принципы линейной калибровки

5.1 Общие положения

5.1.1 В данном разделе показано, как соотношение У =А + ВХ, описывающее зависимую пере­
менную У (также называемую «откликом») как функцию независимой переменной X  (также называемый 
«сигналом»), может быть определено по результатам измерений. При калибровке результаты измере­
ний получают с помощью измерительного прибора, которому соответствуют (неизвестные) значения 
А* и В* параметров калибровочной функции, выполняя измерения на объектах с калиброванными зна­
чениями Xj: заданными в стандартных единицах, а результаты измерений V) фиксируют. Соотношение 
позволяет определить отклик У системы для данного объекта с калиброванным значением X. Этот 
процесс называют предварительной оценкой. Более полезны на практике соотношения, позволяющие 
преобразовывать измеренное значение у величины У в оценку х в стандартных единицахХ для иссле­
дуемого объекта. Этот процесс называют обратной оценкой или прогнозом.

4
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5.1.2 Калибровка измерительной системы должна учитывать неопределенность результатов из­
мерений и соответствующие ковариации. Результатом процедуры калибровки является калибровочная 
функция, которую используют для прогноза (и при необходимости, предварительной оценки). Резуль­
татами калибровки также являются стандартные неопределенности и ковариации, соответствующие 
оценкам а и Ь параметров калибровочной функции, которые используют для оценки стандартной не­
определенности прогноза (и предварительной оценки).

5.2 Исходные данные для определения калибровочной функции

5.2.1 Данные измерений
Информацией, необходимой для определения уравнения линейной калибровочной функции, яв­

ляются результаты измерений и соответствующие им стандартные неопределенности и ковариации. В 
настоящих рекомендациях результаты измерений обозначены (х,-, у), / = 1,..., т, т. е. т пар результатов 
измерений X  и У. Предполагается, что т > 2, а значения х,- не все равны друг другу.

П р и м е ч а н и е  — Неопределенность, соответствующая оценкам а и Ь, обычно уменьшается с увели­
чением т. Поэтому при калибровке следует стремиться использовать так много результатов измерений, как это 
экономически целесообразно.

5.2.2 Неопределенности и ковариации
Стандартные неопределенности, соответствующие х,- и у,, обозначены u(xj) и и(у) соответственно. 

Ковариация х(- и ху- обозначена cov(X|, xj). Аналогично ковариации у  и у, х,- и у- обозначены соv(y, у )  и 
cov (х,-, у), соответственно. В приложении D показано, как могут быть оценены неопределенности и ко­
вариации, соответствующие результатам измерений сигналов и откликов, и приведена интерпретация 
информации о неопределенности. Полная информация о неопределенности представлена матрицей U 
размерности 2/77*2/77, содержащей дисперсии (квадраты стандартной неопределенности) ы2(х() и и2(у) 
и ковариации:

и2(х1) ••• C0V(X1,Xm ) со v(x1,y1) ••• cov(x1,ym)

cov(xm,x1) ••• и2Ы cov(xm,y i) ••• со V(xm,ym)

cov(y1,x1) соч(УьХт) и2(У1) ••• cov(y1lym)

cov(ym,x1) ••• со V(ym,xm) cov(ym,y1) ••• w2(ym)

Во многих приложениях некоторые или все ковариации принимают равными нулю (см. 5.3).

П р и м е ч а н и е  — В данных рекомендациях предполагается, что и(х,-) и и(у) различны.

5.3 Определение калибровочной функции

5.3.1 Исходными данными для определения калибровочной функции являются результаты изме­
рений, соответствующие неопределенности и, возможно, ковариации. На основе параметров А и В и 
исходных данных определяют отклонение /-й точки (х,-, у) от прямой Y=A + ВХ. Оценки а и b определяют, 
минимизируя сумму квадратов этих отклонений или более общей меры, если все ковариации отличны 
от нуля. Как это получить зависит от структуры неопределенности, соответствующей результатам из­
мерений. Структура неопределенности зависит от ответов на следующие вопросы:

i) Неопределенности результатов измерений х,- являются несущественными?
N) Ковариации, соответствующие парам результатов измерений, являются несущественными?
5.3.2 Следующие ситуации, рассмотренные в настоящих рекомендациях, приведены в соответ­

ствии с возрастающим порядком сложности в зависимости от ответов на вопросы, приведенные в 5.3.1.
a) неопределенности, соответствующие значениям у, и все ковариации, соответствующие дан­

ным, являются несущественными (раздел 6);
b) неопределенности, соответствующие значениям х(- и у, и все ковариации, соответствующие 

данным, являются несущественными (раздел 7);
c) имеются неопределенности, соответствующие значениям х(- и у, а ковариации соответствующие 

парам (Xj, у ) являются несущественными (раздел 8);
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d) имеются неопределенности, соответствующие значениям у,, и ковариации соответствующие у, 
и Уу (/ 5s 7) (раздел 9);

e) наиболее общий случай, когда имеются неопределенности, соответствующие результатам из­
мерений х,- и у,-, и ковариации, соответствующие всем парам значений х,, Ху, уЛ и у, (раздел 10).

5.3.3 В каждом случае, перечисленном в 5.3.2 указаны:
a) установленные результаты измерений и структура неопределенности;
b) соответствующая статистическая модель;
c) соответствующая задача метода наименьших квадратов;
d) этапы вычислений;
e) свойства статистической модели;
f) валидация модели (проверка соответствия модели данным);
д) организация выполнения расчетов на компьютере;
h) алгоритм вычислений;
i) один или несколько примеров.

5.4 Числовая обработка

В приложении С приведен подход, использующий ортогональное разложение (факторизацию) ма­
трицы U для наиболее общего случая е) в 5.3.2. Он может быть использован при рассмотрении всех 
ситуаций. Подход основан на устойчивых методах вычислений. В случаях а)—с) 5.3.2 могут быть ис­
пользованы элементарные операции, которые могут быть выполнены с помощью электронных таблиц. 
В случаях d)—е) 5.3.2 необходимо использовать некоторые матричные операции, которые являются 
прямыми при применении компьютерного языка, допускающего операции с матрицами, но не очень 
подходят для вычислений с использованием крупноформатных электронных таблиц

5.5 Неопределенность и ковариация параметров калибровочной функции

5.5.1 Для всех рассмотренных случаев оценки параметров калибровочной функции могут быть 
представлены (явно или неявно) в виде функции результатов измерений. Принципы GUM [Руководство 
ИСО/МЭК 98-3:2008] могут быть применены для распространения неопределенности и определения 
ковариаций, соответствующих результатам измерений с помощью этих функций для получения оценок 
параметров калибровочной функции. Таким образом, результаты измерений используют для получения 
оценок а и b параметров калибровочной функции и оценок стандартной неопределенности и(а), и(Ь) и 
ковариации cov(a, Ь), соответствующей этим оценкам. Для случаев а) и d) в 5.3.2 распространение яв­
ляется точным, так как оценки параметров могут быть представлены в виде линейной комбинации вхо­
дов уг В других случаях, когда оценки параметров не могут быть так представлены, распространение 
неопределенности основано на линеаризации оценок параметров. Во многих случаях аппроксимация с 
помощью линеаризации является достаточно точной.

П р и м е ч а н и е  —  Если распространение неопределенности является приближенным и особенно, если 
неопределенности являются большими (например, в случаях биологических измерений), может быть использован 
подход, основанный на распространении распределений. Этот подход [Руководство ИСО/МЭК 98-3:2008/Дополне- 
ние 1:2008] использует метод Монте-Карло (не рассматриваемый в настоящих рекомендациях).

5.5.2 Предварительным результатом определения линейной калибровочной функции является 
вектор оценок параметров размерности 2x1 и матрица ковариации Ua размерности 2x2

а
, и а = " "Н а) со v(a,b)

b ’ а
со v(b,a) u2(b) _

где и(а) и и(Ь) — стандартные неопределенности оценок а и b соответственно, a cov(a, b) = cov(b, а) — 
ковариация оценок а и Ь.

5.6 Валидация модели

5.6.1 При определении оценок а и b параметров линейной калибровочной функции предполагает­
ся, что модель Y =A  + ВХсправедлива, а неопределенность, соответствующая результатам измерений, 
является достоверной мерой отклонения результатов измерений от прямой. После определения а и 
Ь, фактическое отклонение точек от наиболее подходящей линейной калибровочной функции может 
быть определено и сопоставлено с прогнозируемыми отклонениями. При сопоставлении используют 
6
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совокупную меру отклонений в виде суммы квадратов %^bs т  взвешенных остатков. В этом случае /-й 
взвешенный остаток является мерой отклонения /-й точки от прямой. Если ковариация, соответствую­
щая /-й точке (Xj, yj), отлична от нуля, может быть использована мера отклонения в более общей форме. 
Если Xobs существенно больше среднего статистических отклонений, есть основание для сомнений в 
правильности предположения об используемой модели.

5.6.2 Со статистической точки зрения результаты измерений могут быть рассмотрены как реали­
зация случайных величин. Если распределение вероятностей, характеризующее эти случайные вели­
чины известно, то можно определить распределение вероятностей для совокупной меры отклонений в
5.6.1. Затем может быть вычислена вероятность того, что Xobs (Для этого совокупного распределения) 
превышает заданный квантиль распределения. Однако, поскольку информация об этих величинах часто 
ограничивается лишь результатами измерений (в виде оценок математического ожидания и дисперсии 
случайных величин, характеризующихся этими распределениями), этой информации недостаточно для 
определения распределения вероятностей этой меры. Вместо этого оценку справедливости предположе­
ний выполняют предполагая, что распределения этих величин являются нормальными. В этом случае, по 
крайней мере, для целей валидации, использованным распределением этой меры является распределе­
ние Xv с v =т -  2 степенями свободы. Соответственно, вероятность того, что Xobs превышает заданный 
квантиль Ху. может быть определена (см. 6.3, 7.3, 9.3,10.3). Обычно используют квантиль уровня 95 %.

П р и м е ч а н и е  1 — Если x^bs превышает квантиль Ху уровня 95 % это означает, что калибровочная функ­
ция не соответствует данным в достаточной мере. В таком случае данные и соответствующая им неопределен­
ность должны быть проверены на наличие ошибок. Может быть использована функция в виде полиномах в сте­
пени 2 или более высокой степени или в другой математической форме. Выбор вида калибровочной кривой в 
настоящих рекомендациях не рассмотрен.

П р и м е ч а н и е  2 — Существует возможность, что модель «слишком хороша» в том смысле, что наблю­
даемое значение Xobs значительно меньше математического ожидания. В этом случае, как правило, неопреде­
ленность результатов измерений указана слишком большой. Такой случай в настоящих рекомендациях также не 
рассмотрен.

5.6.3 Для получения лучших результатов калибровки желательно, чтобы неопределенность ис­
ходных данных была получена до определения параметров калибровочной функции, а не оценена при 
определении соответствия данных выбранной модели или известна с точностью до коэффициента мас­
штаба. Такая ситуация рассмотрена в приложении Е.

5.6.4 Если в конкретной ситуации валидация показала несоответствие данных выбранной модели, 
т.е. %2bs превышает квантиль Ху уровня 95 % (см. 5.6.2), вычисленные стандартные неопределенности 
и(а) и иф) и ковариацию cov(a, Ь) (см. 5.5.2) не следует использовать для расчета неопределенности 
прогнозируемых значений (см. 5.7).

5.7 Использование калибровочной функции

5.7.1 Калибровочную функцию, как правило, используют для прогноза (обратная оценка), когда по 
заданному значению У и соответствующей ему стандартной неопределенности, определяют значение X  
и соответствующую ему стандартную неопределенность. При определении оценки стандартной неопре­
деленности X  используют стандартные неопределенности оценок а и Ь, а также их ковариацию (см. 11.1).

5.7.2 Иногда при определении оценки X и  ее неопределенности, соответствующей значению У с  
соответствующей стандартной неопределенностью, необходима предварительная оценка, например, 
при сопоставлении данных калибровки с набором аналогичных методов (см. 11.2).

П р и м е ч а н и е  — Предполагается, что условия, в которых были выполнены измерения, поддерживались 
во время проведения калибровки и распространяются на период применения калибровочной функции, впослед­
ствии. В противном случае должны быть выполнены новая калибровка или соответствующее регулирование и уч­
тены все изменения, такие как дрейф (и соответствующим образом обработаны неопределенности). С этой целью 
могут быть использованы контрольные карты.

5.8 Определение наилучшей прямой

5.8.1 Наилучшей прямой, соответствующей исходным данным согласно методу наименьших квадра­
тов, является прямая с коэффициентами а и b (оценками параметров А и В), которые минимизируют сумму

т
£ ( у . _ д _ е х .)
/=1
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Эти значения удовлетворяют уравнениям, полученным приравниванием к нулю частных произво­
дных первого порядка по Л и В выражения (2).

5.8.2 Значения оценок а и b могут быть вычислены при выполнении следующих действий:
1 т 1 т

1) вычисление хо = — X х/ и Уо = ~ ^ У /  ]
mi=1 m i=1

2) вычисление х, = х( -  х0 и У/ = У/ -  у0, / = 1, ...,/77;
т

Х*,у,
3) вычисление Ь = ^ —  и а = у0 -  Ьх0.

/=1
5.8.3 Значения х0 и у0 таковы, что наилучшая прямая, проведенная через точку (х(, у(), проходит че­

рез начало координат и имеет тот же угол наклона, что и наилучшая прямая для исходных данных (х(, у().

П р и м е ч а н и е  —  Математически, наилучшие параметры определяют, решая систему из двух линейных 
уравнений, использующих матрицу размерности 2><2. Для преобразованных значений эта матрица является диаго­
нальной, позволяя легко определить параметры решения. Преобразование данных также позволяет достичь более 
высокой точности при использовании компьютера (см. [4, страница 33]).

5.8.4 Методы, описанные в разделах 6—10, представляют собой расширения вычислений, пред­
ставленных в 5.8.2 с учетом информации о неопределенности.

6 Модель, учитывающая неопределенность у,-

6.1 Общие положения

6.1.1 В данном разделе рассмотрена ситуация 5.3.2 а), а именно, когда имеется следующая ин­
формация для / = 1,..., т:

a) результаты измерений (х(, у();
b) стандартная неопределенность u(yj), соответствующая у(.
В приложении D приведено руководство по получению неопределенности. Все другие неопреде­

ленности и ковариации, соответствующие данным, предполагаются несущественными.
6.1.2 Ситуация 5.3.2 а) соответствует статистической модели

у( = А* + B'xj + е(, / = 1,... ,т ,  (3)

где е(- — реализации независимых случайных величин с нулевым математическим ожиданием и диспер­
сиями u2(yj) (см.[9, страница 1]). А* и В* — (неизвестные) значения параметров калибровочной функции 
для измерительной системы, на которой получены результаты измерений. Эту модель (без учета не­
определенности х) называют функциональной моделью.

6.1.3 В качестве оценок а и b определяют значения, минимизирующие по А и В взвешенную сумму 
квадратов

т т

X R/2 wf (У; ~ А -  Bxi Г  (4)
/=1 /=1

W j =  1 /и(У;) , /=  1 ......../77.
Эта задача (4) является методом взвешенных наименьших квадратов. Искомые оценки определя­

ют из уравнений, полученных приравниванием к нулю частных производных первого порядка выраже­
ния по А и В (4).

6.2 Оценки параметров калибровки и соответствующие стандартные неопределенности и
ковариации

Оценки а и b определяют, выполняя вычисления 1—5, затем вычисляют стандартные неопреде­
ленности и(а) и иф) и ковариацию cov(a, Ь) (вычисление 6):

т
1) и/. = , / = 1 ,..., т, и 1=2 = ;

«(У/) /=1
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1 т 1 т
2) 90 = 7 2  5 > /  * / И Л0 = 72 I X  У/

F /=1 /=1 1
3) g, = w((x( -  g0) и hj = w { y , - h Q), /'= 1 ,.... m\

m
4) G2 = I g (2 ;

/=1

1 m
5) b = ^ 2  I X /  и a = hQ-  bgQ;

2

6) u2(a ) = ^ -  + ̂ .  и2(ь) = ^ -  и cov(a,b) = - | | .

П р и м е ч а н и е  1 — Вычисления 1—5 эквивалентны следующим:
m  т

,.2 V v \ , , 2 ,.

1) W; =
АУ/)

/ = 1..... m, x0
2>,x, 5>,y,
-------- и Уо = --------

/-1 /-1

2 )  xi = x i - x 0 v\yi = yi - y 0, i =  1.......m\
m

3)
b = -4 ---------  и a = y0 -  bx0.

X 1/И,2*,2

П р и м е ч а н и е  2 — В процессе вычислений 1—5 определяют решение системы уравнений (метод наи­
меньших квадратов)

w,-a + WjXp = w-yj, i = 1, m.
П р и м е ч а н и е  3 — Если все и(у-} идентичны так, что все w(- идентичны, то а и b те же, что в 5.8.2.
П р и м е ч а н и е  4 — Значения и2(а), и2(Ь) и со v(a, Ь) в вычислении 6 получены на основе применения зако­

на распространения неопределенности в соответствии с Руководством ИСО/МЭК 98-3:2008 к а и b в соответствии 
с вычислениями 1—5.

6.2.2 Оценки а и Ь, полученные в соответствии с 6.1.3, обладают следующими свойствами 
(см. [15]) для данных у(- и модели (3):

1) Оценки а и b являются линейной комбинацией данных у(-.
2) Оценки а и b можно рассматривать, как реализации случайных величин с математическими 

ожиданиями А* и Б* соответственно.
3) Матрица ковариации для случайных величин в перечислении 2) имеет элементы и2(а), и2(Ь) и 

cov(a, Ь), вычисленные в соответствии с 6.2.1. Свойство перечисления 1) состоит в том, что оценки а и 
b получены методом линейной оценки. В соответствии с перечислением 2) оценки являются несмещен­
ными. В соответствии с перечислениями 2) и 3) оценки являются состоятельными, т. е. с увеличением 
т  оценки а и b сходятся к А* и В* соответственно.

Метод, установленный в 6.1.3, обладает следующим оптимальным свойством для данных у( и 
модели (3):

4) Оценки а и b полученные любым несмещенным методом линейной оценки, можно рассматри­
вать как реализацию случайных величин, дисперсии которых являются, по крайней мере, такими же 
большими как дисперсии при использовании метода взвешенных наименьших квадратов.

Свойство перечисления 4) можно интерпретировать следующим образом. Для констант с и d, 
стандартная неопределенность и(са + db), соответствующая линейной комбинации оценок а и Ь, полу­
ченных любым несмещенным методом линейной оценки, является, по крайней мере, столь же боль­
шой, как и(са + db). Свойства перечислений 1)—4) оправдывают использование методов наименьших 
квадратов для данных, совместимых с моделью (3). Необходимо заметить, что все утверждения от­
носятся только к математическим ожиданиям и дисперсиям ег соответствующие распределения далее 
не определены. Если сделано дополнительное предположение о том, что е( являются реализацией 
нормально распределенных случайных величин, то могут быть сделаны утверждения о следующих 
свойствах, связанных с методом взвешенных наименьших квадратов:

5) Случайные величины в перечислении 2) характеризуются двумерным нормальным распреде­
лением со средними А* и В* и матрицей ковариаций с элементами и2(а), и2ф) и cov(a, Ь).

9
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6) Оценки а и b являются оценками максимального правдоподобия, соответствующими наиболее 
вероятным значениям А и В, которые, возможно, могут быть определены по наблюдениям (результатам 
измерений у).

7) С позиции Байесовского анализа распределение знаний об А и В с учетом наблюдаемых ре­
зультатов измерений у, является двумерным нормальным распределением, со средними а и b и кова­
риационной матрицей с элементами а2(а), и2ф) и cov(a, Ь).

6.3 Валидация модели

Если т > 2, соответствие модели исходным данным может быть проверено с использованием 
взвешенных остатков г( (продолжение 6.2.1). Для этого выполняют следующие действия:

8) Формирование г) = w((y( -  а -  Ьх), / = 1
т

2 _  V  2
9) Вычисление наблюдаемого значения хи-квадрат Xobs -  2 ^ ri и определение числа степеней

/=1
свободы v = т  -  2.

10) Сопоставление %2bs с квантилем %2 распределения уровня 95 %. Если значение x2bs больше 
этого квантиля, линейную модель отклоняют.

П р и м е ч а н и е  — Критерий %2 основан на предположении, что е(- в модели (3) являются реализацией не­
зависимых нормальных случайных величин.

6.4 Организация вычислений

Вычисления в 6.2.1 и 6.3 могут быть выполнены в одной или двух таблицах при использовании 
электронных таблиц, в соответствии стаблицами 2 и 3, которые могут быть объединены в одну таблицу.

Т а б л и ц а  2 — Данные для определения линейной калибровочной функции методом взвешен­
ных наименьших квадратов

*/ У» т

*1 У1 и(У1>

х2 /2 и(у2)

хт Ут “(Ут)

Т а б л и ц а 3 — Организация вычислений для определения линейной калибровочной функции методом взве­
шенных наименьших квадратов

6.2.1, вычисление 5

вычисление 2, 3 6.3, вычисление 7 6.3, вычисление 8

9 o h 0 a

w ^ x 1 ™ \ У \ 01 /71 9 2 9 A r \
r 2
' 1

w 2 w \ w | x 2 w 2 y 2
0 2 h 2 0 2 g 2 h 2 r 2

r 2
' 2

Wvvm К w l S m w 2 y m 
m s m 9 m h m 0 m 9 m h m r m r2m

F 2 = 1 w ? 5 > / 2 * / X * v , 2 / , G 2 = l 9 2 J , 9 ih i b z l b .  =  X r ,2

Пример — (равные веса) В таблице 4 приведено шесть значений и соответствующие им 
значения стандартной неопределенности. Результаты измерений х; являются точными, а 
стандартная неопределенность у#- равна u (y j = 0,5. Поэтому wt = 1/и(у) = 2,0, i = 1 , . . . , 6 .
10
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Т аб лиц а 4 — Данные, представляющие результаты шести измерений с рав­
ными весами

х, У, и(у)

1,0 3,3 0,5
2,0 5,6 0,5
3,0 7,1 0,5
4,0 9,3 0,5
5,0 10,7 0,5

6,0 12,1 0,5

Результаты вычислений приведены в таблице 5. В соответствии с таблицей 5 
д0 = 84,000/24,000 = 3,500, h0 = 192,400/24,000 = 8,017, Ь = 123,000/70,000 = 1,757 и а  = 8 ,017- (1,757) 
(3,500) = 1,867.

Т а б л и ц а  5 — Вычисления на основе данных таблицы 4

wi wh i 9, hi я 2, 9jhj n r 2i

3,500 8,017 a = 1,867

2,000 4,000 4,000 13,200 -5,000 -9,433 25,000 47,167 -0,648 0,419
2,000 4,000 8,000 22,400 -3,000 -4,833 9,000 14,500 0,438 0,192

2,000 4,000 12,000 28,400 -1,000 -1,833 1,000 1,833 -0,076 0,006

2,000 4,000 16,000 37,200 1,000 2,567 1,000 2,567 0,810 0,655
2,000 4,000 20,000 42,800 3,000 5,367 9,000 16,100 0,095 0,009

2,000 4,000 24,000 48,400 5,000 8,167 25,000 40,833 -0,619 0,383

24,000 84,000 192,400 70,000 123,000 b = 1,757 1,665

Стандартная неопределенность и ковариация, соответствующие параметрам пря­
мой, могут быть вычислены на основе формулы, приведенной в 6.2.1 и данных таблицы 5: 

и2(а) = 1/24,000 + (3,500)г/70,000, так что и(а) = 0,465; 
и2(Ь) = 1/70,000, так что и(Ь) = 0,120; 
cov(a, b) =-3,500/70,000 =-0,050.
Наблюдаемое значение x20bs = 1,665 с v = 4. Так как у?0bs не превышает квантиль %2 уровня 

95 %, а именно, 9,488, можно считать, что данные соответствуют модели.
Данные и полученная линейная калибровочная функция показаны на рисунке 2. Стан­

дартная неопределенность у,- показана вертикальными отрезками, охватывающими ур ко­
нечные точки которых равны соответственно (у, -  и(у■)) и (у, + и(у■)). Взвешенные остатки 
показаны на рисунке 3.
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У

Рисунок 2 — Данные таблицы 4 и линейная калибровочная функция, полученная в таблице 5
г

Рисунок 3 — Взвешенные остатки rjt полученные в таблице 5

Пример — (не равные веса). В таблице 6 приведено шесть значений и соответствующие 
им стандартные неопределенности. Значения xf измерены точно. Значения у; получены с по­
мощью двух настроек прибора так, что для больших значений X у , являются менее точными.

Т а б л и ц а  6 — Данные, представляющие шесть результатов измерений (неравные веса)

х, У/ «(У»

1,0 3,2 0,5

2,0 4,3 0,5

3,0 7,6 0,5

4,0 8,6 1,0

5,0 11,7 1,0

6,0 12,8 1,0

Результаты вычислений приведены в таблице 7. В соответствии с таблицей 7 
д0 = 39,000/15,000 = 2,600, h0 = 93,500/15,000 = 6,233, b = 65,000/31,600=2,057 и а = 6,233 -  (2,057) 
(2,600) = 0,885.

12
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Таблица  7 — Вычисления для данных таблицы 6

W, w fo " f a Я, hi яр, П

2,600 6,233 а =0,885

2,000 4,000 4,000 12,800 -3,200 -6,067 10,240 19,413 0,516 0,266

2,000 4,000 8,000 17,200 -1,200 -3,867 1,440 4,640 -1,398 1,955

2,000 4,000 12,000 30,400 0,800 2,733 0,640 2,187 1,088 1,183

1,000 1,000 4,000 8,600 1,400 2,367 1,960 3,313 -0,513 0,263

1,000 1,000 5,000 11,700 2,400 5,467 5,760 13,120 0,530 0,281

1,000 1,000 6,000 12,800 3,400 6,567 11,560 22,327 -0,427 0,182

15,000 39,000 93,500 31,600 65,000 Ь = 2,057 4,131

Стандартная неопределенность и ковариация, соответствующие параметрам пря­
мой, могут быть вычислены, используя формулу, приведенную в 6.2.1 и данные таблицы 7: 

и2(а) = 1/15,000 + (2,600)г/31,600, так чтобы и(а) = 0,530; 
и2(Ь) = 1/31,600, так чтобы и(Ь) = 0,178; 
cov(a, Ь) = -2,600/31,600 =-0,082.
Наблюдаемое значение %£bs = 4,131 с v = 4 степенями свободы. Так как %2obs не превыша­

ет квантиль у2 уровня 95 %, а именно 9,488, можно считать, что данные соответствуют 
линейной модели.

Данные и полученная линейная калибровочная функция показаны на рисунке 4. Взвешен­
ные остатки показаны на рисунке 5.

у

Рисунок 4 — Данные таблицы 6 и линейная калибровочная функция, полученная в таблице 7
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г

Рисунок 5 — Взвешенные остатки г), полученные в таблице 7

7 Модель, учитывающая неопределенности xt и у,-

7.1 Общие положения

7.1.1 В данном разделе рассмотрена ситуация 5.3.2 Ь), когда имеется следующая информация 
для / = 1, ... ,т :

a) результаты измерений (х,, у);
b) стандартная неопределенность u(xj), соответствующая х,-;
c) стандартная неопределенность и(у), соответствующая у,-.
В приложении D приведено руководство по определению неопределенности. Все ковариации, со­

ответствующие данным, считаются несущественными.
7.1.2 Ситуации 5.3.2 Ь) соответствует статистическая модель

х, = Х* + dh у, = У* + е,, Y* = А* + В*Х* / = 1 ,...,/77, (5)

где dj и е,- — реализации независимых случайных величин с нулевым математическим ожида­
нием и дисперсиями u2(xj) и а2(у), соответственно. Эту модель называют струк­
турной моделью. В модели (х,-, у) представляют измеренные координаты точек 
(X* У* лежащих на линии У = А* + В*Х.

7.1.3 Поскольку х,- (в дополнение к у  — см. раздел 6) соответствуют неопределенности, это не­
обходимо учитывать при определении линейной калибровочной функции. Задача определения а и b в 
этом случае является одной из задач взвешенной ортогональной регрессии (см.[3]) или обобщенной 
регрессии (GDR) (см.[2])). В статистической литературе ее называют моделью ошибок в переменных 
(см. [7], [9], [17]). Оценки а и b обеспечивают минимум по А, В, и Хр / = 1 ,...,/77 с весами и,- = Ми(х-) и 
Wj = 1 /а(у) сумме квадратов

X  Ы  (х, ~ x i f  + w? (У/ -  л  -  в х , ?  1. (6)
/=1L

Каждая оценка х*вместе с а и b определяет оценку (х*, у*), у*= а + b х* для (X*, У*) модели (5).
7.1.4 Данные А и В и значения х* минимизирующие сумму квадратов (6) относительно X), удовлет­

воряют соотношению

х,- = х(* (Л, В) = [а2(у()х( + (у -  Л) Ви2(х/)] Г(, 7} = 2-------12 2-----. (7)
и (уi)+в и (X;)

Используя выражение (7) и выполняя замену X) в выражении (6) на х* (А, В), можно записать за­
дачу оптимизации для параметров А и В.
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У,* (А  В )= А  + Вх-(А,В). (8)

7.1.5 Если

R, = Rj (А  В) = {-B[Xj -  х? (А  В)] + [у  -  у (* (Л, В)]} 7}1/*,

то сумма квадратов (8) эквивалентна

(9)

Для R, существует следующая геометрическая интерпретация. Вектор, перпендикулярный к пря­
мой Y = А + ВХ, имеет вид (-В ,1)т/(1+В2)1/2, R ,—  весовой коэффициент соответствующего компонента 
(х; - х ? ( А  В), у ,-у ]{А , В))1 в направлении этого вектора (сучетом его значения).

Примечание1 — В обычных методах наименьших квадратов (см. 5.8) и взвешенных наименьших квадратов (см. 
раздел 6), расстояниедолинии измеряют по вертикали, т.е. в направлении оси У, отражая тотфакт, что отклонение (х,-, у) 
от линии может быть вычислено с помощью ошибки е,-, связанной с у,-, так как х,- предполагается точно известным. 
Метод взвешенной ортогональной регрессии применяют в случае, когда существует неопределенность х,-.

Примечание 2 — Выражение (7) получено приравниванием к нулю частных производных первого порядка 
выражения (6) по А, В и Хг

Примечание 3 — Если ujXj) = 0, то в выражениях (7)х * (А, В) = х( (т.е. у ](А , В) = А + BXj) и 7}= 1/и2(у) = и/? 
Следовательно, А  в выражении (9) принимает вид R(- = w({ y  -  А -  Вх^. Таким образом, если и(х() = 0, R(- оценивают 
аналогично (4) в 6.1.3.

Примечание 4 — Если и(ху) = и(у) = у, то х* (Л, В) определяет точку на линии Y=A + ВХ самую близкую к
(*/■ у )

т' = =i j S F p H h  - *'<A S >]+ [у -у> <АВ
Так как(-В,1)т/(1+В2)1/2 — вектор, перпендикулярный к линии, R ,-  взвешенное расстояние отточки (х,-, у ) до линии 
Y=A + ВХ.

7.1.6 В 7.1.3 А, В и Хр / = 1 ,...,/77 использованы как переменные при минимизации. В 7.2.1 приведе­
ны вычисления по этой минимизации в процессе двухэтапной итерации (см. [2]):

1) по приближениям а и b определяют соответствующее оптимальное х (*;
2) на основе х*определяют новые приближения а и Ь, которые уменьшают сумму квадратов (6).

П р и м е ч а н и е  — В рекомендациях не использованы различные обозначения х* для итераций и 
окончательного результата.

7.2 Оценки параметров, соответствующие стандартные неопределенности и ковариации

7.2.1 Оценки а и b определяют, выполняя вычисления 1 - 6 ,  используя схему итерации, описанную 
в 7.1.6; стандартные неопределенности и(а) и иф) и ковариацию cov(a, b) определяют, выполняя вы­
числения 7 (см. приложение В):

1) определение начального приближения а и b оценок а и Ь, например, определение методом 
взвешенных наименьших квадратов наилучшей линии (см. 6.2.1 вычисления 1— 5), игнорируя наличие 
неопределенности х(-;

«| ~
2) tj = 9--------^ ----- , х* = [х,а2(у) + (у  -  a) bu2(xj)] t, и z, = у  -  а -  Ьх,-, / = 1,... ,т\

« (У /)+ Ь ^(х ,-)

3) /}■ = ^ /2, д-, = fjXj и hi = fjz h i = 1 ,...,m;
4) определение решения методом (невзвешенных) наименьших квадратов 5а и 5b для системы 

уравнений (8АЦ + (Щ д = hj, / = 1, ..., т:

F 2 = У / ; 2

Ь) 9о
/Т7

с) д, = д, -  gQfj и л, = л, - h 0fh / = 1 ,..., nr,
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d) G2 = X < ? f;
/=1

 ̂ m
e) 8Ь = и 8a = V  (8fo)90;

G /и

5) обновление параметров и остатков: а := а + 8а, В:=В + 8Ь, г) = /?( -  (8b) gh / = 1
6) повторение вычислений 2— 5, до тех пор, пока не будет достигнута необходимая сходимость. 

Присвоение а = а, b = Ь;
1 д2 1 9

7) вычисление и2(а) = —  + и2ф) = и cov(a,b) = , где д0, Л0 и т. д. —  значения, полу-
F G G G

ченные при выполнении вычислений 4.

П р и м е ч а н и е  1 — Вычисления 4 аналогичны вычислениям 1 -  5 в 6.2.1.
П р и м е ч а н и е  2 — При выполнении вычислений 2 значению х*соответствует точка (х* а + Ьх*) текуще­

го приближения наилучшей линейной калибровочной функции, наиболее близкой к точке результатов измерений 
(х,-, у,-) (с учетом взвешенного расстояния).

П р и м е ч а н и е  3 — При выполнении вычислений 3 значение Л,- представляет значение обобщенного рас­
стояния Rj в выражении (9) от /-й точки до текущей оценки линейной калибровочной функции. Алгоритм минимизи­
рует сумму квадратов таких расстояний.

П р и м е ч а н и е  4 — При выполнении вычислений 4 значения 8 а и 8 Ь уменьшаются в одно и тоже количе­
ство раз от итерации до итерации. Коэффициент уменьшения зависит в значительной степени от неопределенно­
сти, соответствующей данным: чем меньше эта неопределенность, тем больше уменьшение. Итерации могут быть 
закончены, когда величины 8а и 8b становятся несущественными.

П р и м е ч а н и е  5 — Остатки, вычисленные в соответствии с 5, связаны с решением системы уравнений, 
решаемой ранее, при выполнении вычислений 4. Конвергенция г,-, определенная при выполнении вычислений 5, 
совпадает с Л(-, значение которой определено при выполнении вычислений 3.

П р и м е ч а н и е  6 — Строго говоря, остатки (см. вычисление 5) необходимы только на последующей ите­
рации. Однако, в формате таблицы (таблица 9 в 7.4) остатки вычисляют на каждой итерации.

П р и м е ч а н и е  7 — Значения и2(а), и2(Ь) и со v(a, b) (вычисление 7) получены с применением закона рас­
пространения неопределенности по Руководству ИСО/МЭК 98-3:2008 к э и Ь в  соответствии с вычислениями 1—6.

7.2.2 Несмотря на то, что свойства оценки, полученной методом взвешенных наименьших квадра­
тов можно определить в 6.2.2, оценки а и Ь соответствуют минимуму суммы квадратов (6) и нелинейно 
зависят от данных х(- и уг Это означает, что соответствующие свойства оценок взвешенной ортогональ­
ной регрессии не могут быть установлены прямо. Оценки а и Ь, определенные в 7.1.3, обладают следу­
ющими свойствами для данных х(- и у,-, соответствующих модели (5):

1) оценки а и b являются нелинейными функциями данных х,- и у,-.
2) оценки а и b можно рассматривать как реализацию случайных величин, математические ожида­

ния которых составляют приблизительно А* и В*, соответственно.
3) элементы ковариационной матрицы для случайных величин в 2) близки к и2(а), и2ф) и cov(a, b), 

вычисленным в 7.2.1.
Приближения в 2) и 3) являются более точными для данных с меньшей неопределенностью. Од­

нако метод оценки обладает следующими свойствами:
4) для данных, удовлетворяющих модели (5) с увеличением т, оценки а и b сходятся к А* и В* со­

ответственно (см. [16]).
Метод взвешенных наименьших квадратов недооценивает угловой коэффициент (см. [5]) для дан­

ных, соответствующих модели (5).
Если сделано дополнительное предположение о том, что dj и е( являются реализацией случайных 

величин, подчиняющихся нормальному распределению, то могут быть установлены дополнительно 
свойства, связанные с методом взвешенной ортогональной регрессии;

5) случайные переменные в 2 подчиняются приближенно двумерному нормальному распределе­
нию со средними А* и В* и ковариационной матрицей с элементами и2(а), и2ф) и cov(a, b);

6) оценки а и Ь  являются оценками максимального правдоподобия, соответствующими наиболее 
вероятным значениям А и В, которым соответствуют наблюдаемые результаты измерений х( и у(;

7) в соответствии с Байесовским анализом распределение, характеризующее знания об А и В с 
учетом наблюдаемых результатов измерений х( и у(, является приближенно двумерным нормальным 
распределением со средними а и b и ковариационной матрицей с элементами а2(а), и2ф) и cov(a, b).
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7.3 Валидация модели

Если т > 2, соответствие данных модели может быть частично проверено с использованием взве­
шенных остатков г(-, (вычисление 5 в 7.2.1) при их сходимости в процессе итераций (продолжение 7.2.1):

т

8) определение наблюдаемого значения %оЬз = ^ V ,2 с числом степеней свободы v =  /77-2;
/=1

9) сопоставление %2bs с квантилем распределения уровня 95 %. Если j£2bs превышает этот 
квантиль, модель не соответствует исходным данным.

П р и м е ч а н и е  — Тест%2 основан на предположении, что d(- и е(в модели (5) представляют собой реали­
зации независимых случайных величин, подчиняющихся нормальному распределению на первом этапе итерации.

7.4 Организация вычислений

Вычисления в 7.2.1 и 7.3 могут быть выполнены в двух последовательно дополняемых таблицах, 
подходящих для использования электронных таблиц. В первой таблице (таблица 8) даны приближения 
а иЬ (см. 7.2.1 вычисление 1), вычисление /), д,- и /7,(см. 7.2.1 вычисление 3). Во второй таблице (таблица 
9) использованы значения fjt gj и hi для вычисления поправок 5а и 5b (см. 7.2.1 вычисление 4).

Т а б л и ц а  8 — Вычисления для определения параметров а и Ь линейной калибровочной функции по данным 
приближениям а и b

7.2.1, шаги 1-5

7.2.1, шаг2 7.2.1, шаг2 7.2.1, шаг 3

а Ь

*1 Ф -\) У\ и(У^) fi
*

Х1 Z1 и 01 Л1
х2 и(х2) У2 и(У2) f2

*

х 2 z2 и 92 h2

*т и(хт) Ут иЮ Хт zm 9т hm

Т а б л и ц а  9 — Организация вычислений для определения поправок 5 а и S b для GDR линейной калибровочной 
функции

^ „  . , , 7.2.1, шаги v „  0
7.2.1, шаги 4 а), 4 Ь) 4 е) 5 7.3, шаг 8

9o ho ba

Ч9л Щ 01 /7i 9 \ 01^1 ri
r 2
r 1

Л f2g2 f2h2 02 h2 02 02^2 r2 r 2 r  2

f l fm9m 9m К f in Я,тРт rm r m

"П II м го

Х'/З/ Х М g 2 = 1<9? 'L d jh j S b X 0 2

Пример — В таблице 10 приведены шесть результатов измерений и соответствующие им стан­
дартные неопределенности.

Т а б л и ц а  10 — Шесть результатов измерений с соответствующими неопреде­
ленностями

xi u(x) У, u(yi>

1,2 0,2 3,4 0,2

1,9 0,2 4,4 0,2
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Окончание таблицы 10

х, и(х) У/ и(у)

2,9 0,2 7,2 0,2
4,0 0,2 8,5 0,4
4,7 0,2 10,8 0,4
5,9 0,2 13,5 0,4

Для определения начальных приближений а и Ь (7.2.1 вычисления 1) используют метод взвешен­
ных наименьших квадратов и определяют параметры линейной калибровочной функции. После схемы, 
описанной в 6.2, получают таблицы 11 и 12.

Т а б л и ц а  11 — Данные, представляющие шесть результатов измерений

xi У, и(у)

1,2 3,4 0,2

1,9 4,4 0,2
2,9 7,2 0,2

4,0 8,5 0,4

4,7 10,8 0,4

5,9 13,5 0,4

Т а б л и ц а  12 — Вычисление начальных аппроксимаций а и b на основе данных таблицы 11

W; wb i 9i hi 9/ 9,h, ri ' 2i

5,0000 25,0000 30,0000 85,0000
2,5733

-6,8667
6,1867

-13,9333 47,1511 95,6756
a = 0,6583 

0,8186 0,6701
5,0000 25,0000 47,5000 110,0000 -3,3667 -8,9333 11,3344 30,0756 -1,7006 2,8920
5,0000 25,0000 72,5000 180,0000 1,6333 5,0667 2,6678 8,2756 1,5577 2,4264
2,5000 6,2500 25,0000 53,1250 3,5667 5,7833 12,7211 20,6272 -1,8791 3,5310
2,5000 6,2500 29,3750 67,5000 5,3167 11,5333 28,2669 61,3189 0,1113 0,0124
2,5000 6,2500 36,8750 84,3750 8,3167 18,2833 69,1669 152,0564 0,4163 0,1733

93,7500 241,2500 580,0000 171,3083 368,0292 b = 2,1483 9,7052

Начальные приближения а = 0,6583 ub = 2,1483. На основе приближений вычисляют fj, g, и hj (табли­
ца 13). Затем вычисляют поправки (таблица 14) 8а = -0,0784 и 56 = 0,0111 (7.2.1 вычисления 4). В конце 
итерации приближения а и b обновляют (7.2.1 вычисления 5):

а : = а + 8а = 0,6583 -  0,0784 = 0,5799;
Ь : = Ь  + 8Ь = 2,1483 + 0,0111 = 2,1594;

По этим обновленным значениям а и b снова выполняют вычисления (таблицы 15 и 16) и опреде­
ляют поправки 8а = -0,0010 и 8Ь = 0,0002. Процесс повторяют в третий раз (таблицы 17 и 18). В этом 
случае значения поправок менее 0,0005 можно считать незначительными, а итерацию с оценками пара­
метров а = 0,5788 и Ь = 2,1597 заключительной.

Стандартная неопределенность и ковариация (7.2.1 вычисления 7), соответствующие этим па­
раметрам, могут также быть оценены по данным таблицы 18: 

и2(а) = 1/21,8977 + (3,1414)2/54,4271 так, что и(а) = 0,4764; 
и2(Ь) = 1/54,4271, так, что и(Ь) = 0,1355; 
cov(a, Ь) = -3,1414/54,4271 = -0,0577.
Наблюдаемое значение %2obs = 2,743 с v = 4 степенями свободы. Так как %2bs не превышает у2 уров­

ня 95 %, а именно 9,488, можно считать, что модель достаточно хорошо соответствует исходным 
данным.
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Исходные данные и линия, полученная методом взвешенной ортогональной регрессии представ­
лены на рисунке 6. На графике также для каждого / показано положение точки (x j , y j )  на полученной 
прямой и точки (xj: yj). Взвешенные остатки показаны на рисунке 7.

Т а б л и ц а  13 — Первая итерация при определении fj, g, и hj на основе а и b

х, и(х) У/ и(у) */ xi zi h Я, hi

0,6583 2,1483
1,2000 0,2000 3,4000 0,2000 4,4522 1,2626 0,1637 2,1100 2,6642 0,3455
1,9000 0,2000 4,4000 0,2000 4,4522 1,7699 -0,3401 2,1100 3,7345 -0,7176

2,9000 0,2000 7,2000 0,2000 4,4522 3,0192 0,3116 2,1100 6,3706 0,6575

4,0000 0,2000 8,5000 0,4000 2,9019 3,8126 -0,7515 1,7035 6,4947 -1,2802

4,7000 0,2000 10,8000 0,4000 2,9019 4,7111 0,0447 1,7035 8,0253 0,0761

5,9000 0,2000 13,5000 0,4000 2,9019 5,9416 0,1667 1,7035 10,1214 0,2840

Т а б л и ц а  14 — Первая итерация при определении поправок 8а и 8Ь на основе fj, gj и hj

ft h f,hj 9/ hi 9,~h, ri r i

3,1239 -0,0437 8 a = -0,0784

4,4522 5,6216 0,7290 -3,9273 0,4378 15,4236 -1,7193 0,4814 0,2318

4,4522 7,8799 -1,5141 -2,8570 -0,6253 8,1623 1,7864 -0,5935 0,3523

4,4522 13,4422 1,3874 -0,2209 0,7498 0,0488 -0,1656 0,7523 0,5659

2,9019 11,0636 -2,1807 1,1732 -1,2057 1,3764 -1,4145 -1,2187 1,4852

2,9019 13,6710 0,1297 2,7038 0,1506 7,3108 0,4073 0,1206 0,0145

2,9019 17,2416 0,4838 4,7999 0,3585 23,0387 1,7208 0,3052 0,0931

22,0622 68,9199 -0,9648 55,3606 0,6152 5b = 0,0111 2,7429

Т а б л и ц а  15 — Вторая итерация (таблица, аналогичная таблице 13)

xi u(x) У/ u(y) h xi zi h 9i hi

0,5799 2,1594

1,2000 0,2000 3,4000 0,2000 4,4146 1,2873 0,2289 2,1011 2,7047 0,4808

1,9000 0,2000 4,4000 0,2000 4,4146 1,7922 -0,2827 2,1011 3,7655 -0,5941

2,9000 0,2000 7,2000 0,2000 4,4146 3,0365 0,3579 2,1011 6,3799 0,7519

4,0000 0,2000 8,5000 0,4000 2,8858 3,8212 -0,7175 1,6988 6,4913 -1,2189

4,7000 0,2000 10,8000 0,4000 2,8858 4,7177 0,0709 1,6988 8,0142 0,1205

59000 0,2000 13,5000 0,4000 2,8858 5,9448 0,1796 1,6988 10,0988 0,3051

Т а б л и ц а  16 — Вторая итерация (таблица, аналогичная таблице 14)

ft h Щ 9i hi я] ri

3,1412 -0,0003 8a = -0,0010

4,4146 5,6827 1,0103 -3,8953 0,4814 15,1734 -1,8751 0,4823 0,2326

4,4146 7,9117 -1,2482 -2,8344 -0,5935 8,0339 1,6822 -0,5928 0,3514
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Окончание таблицы 16

ft Ь Щ 9, ~hi Я 9,Л П г1

4,4146 13,4047 1,5798 -0,2201 0,7524 0,0484 -0,1656 0,7525 0,5662

2,8858 11,0271 -2,0706 1,1551 -1,2184 1,3342 -1,4074 -1,2187 1,4852

2,8858 13,6143 0,2046 2,6781 0,1209 7,1720 0,3238 0,1203 0,0145

2,8858 17,1555 0,5183 4,7626 0,3056 22,6824 1,4553 0,3044 0,0927

21,9012 68,7961 -0,0057 54,4443 0,0132 5Ь = 0,0002 2,7427

Т а б л и ц а  17 — Третья итерация (таблица, аналогичная таблице 13)

х, и(х) У/ и(у) */ X'i zi h 9, hi

0,5788 2,1597

1,2000 0,2000 3,4000 0,2000 4,4138 1,2875 0,2296 2,1009 2,7050 0,4823

1,9000 0,2000 4,4000 0,2000 4,4138 1,7924 -0,2822 2,1009 3,7657 -0,5928

2,9000 0,2000 7,2000 0,2000 4,4138 3,0366 0,3582 2,1009 6,3795 0,7525

4,0000 0,2000 8,5000 0,4000 2,8855 3,8212 -0,7174 1,6987 6,4909 -1,2187

4,7000 0,2000 10,8000 0,4000 2,8855 4,7176 0,0708 1,6987 8,0137 0,1203

5,9000 0,2000 13,5000 0,4000 2,8855 5,9447 0,1792 1,6987 10,0980 0,3044

Т а б л и ц а  18 — Вторая итерация (таблица, аналогичная таблице 14)

Щ Щ 9j hi 9] 9i~hj ri *

3,1414 0,0000 5 a =0,0000

4,4138 5,6829 1,0133 -3,8947 0,4823 15,1685 -1,8785 0,4823 0,2327

4,4138 7,9113 -1,2454 -2,8340 -0,5928 8,0315 1,6800 -0,5928 0,3514

4,4138 13,4027 1,5809 -0,2202 0,7525 0,0485 -0,1657 0,7525 0,5662

2,8855 11,0258 -2,0702 1,1548 -1,2187 1,3335 -1,4073 -1,2187 1,4852

2,8855 13,6126 0,2043 2,6776 0,1203 7,1695 0,3220 0,1203 0,0145

2,8855 17,1531 0,5171 4,7619 0,3044 22,6756 1,4496 0,3044 0,0927

21,8977 68,7884 0,0000 54,4271 0,0001 5b =0,0000 2,7427

У

Рисунок 6 — Данные таблицы 10 и полученная линейная калибровочная функция (см. таблицы 11— 18)
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г

Рисунок 7 — Взвешенные остатки, полученные в таблице 18

8 Модель, учитывающая неопределенности х,- и у,- и ковариации, 
соответствующие парам (хр у,-)

8.1 Общие положения

8.1.1 В данном разделе рассмотрена ситуация 5.3.2 с), когда имеется следующая информация 
для / = 1,..., т.

a) результаты измерений (х,-, у,-);
b) стандартная неопределенность u(xj), соответствующая х(;
c) стандартная неопределенность u(yj), соответствующая у;
d) ковариация соv(x;-, у(), соответствующая х(- и у,-.
В приложении D приведено руководство по определению неопределенностей и ковариаций. Все 

другие ковариации, соответствующие данным, считаются несущественными.
8.1.2 Ситуации 5.3.2 с) соответствует статистическая модель

Xj = X* + dj, уj = Yj +е,-, Yj = А* + ВХ,, / = 1 т, (Ю)
где каждая пара (cf;-, в|) является реализацией двумерной случайной величины с математическим ожи­
данием (0,0)т и ковариационной матрицей, имеющей диагональные элементы и2(х() и и2(у)), а недиа­
гональные элементы соv(x,-, у() = cov(y(, xf), т.е.

u2(x,) со v(x„y,)
.со v(y„x ,) и2 (у,)

Матрица не зависит от других случайных величин.

П р и м е ч а н и е  —  Предположение о том, что (d,-, в|) являются реализациями двумерных нормальных 
случайных величин, необходимо только для валидации модели (10).

8.2 Оценки параметров калибровочной функции и соответствующие стандартные 
неопределенности и ковариация

8.2.1 Алгоритмически данный случай является расширением (см. приложение В) обработки, при­
веденной в разделе 7. Вычисления в данном случае идентичны, приведенным в разделе 7, кроме того, 
что вычисления 2) в 7.2.1 должны быть заменены на следующие:

2 )
t i  = ■

uz {yj )-2b cov (X/ ,У/ )+b2u2(Xj)
, xi = { [ " 2 (У/) -  ̂ cov (xi -У/ )]■*/ -  [ cov ( * /-У/) -  bu2 (x ,) ] (у,- -  a)} tj

С,- = У/ -  a -  bXj ,  /=1 .....m.
8.2.2 Все свойства, указанные в 7.2.2, применимы к данным, полученным в соответствии с моде­

лью (10), остальную часть раздела 7 выполняют аналогично.
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9 Модель, учитывающая неопределенности и ковариации, 
соответствующие у,-

9.1 Общие положения

9.1.1 В данном разделе рассмотрена ситуация 5.3.2 d), когда имеется следующая информация 
для / =1,...,/т7:

a) результаты измерений (х,, у,);
b) стандартная неопределенность u(yj), соответствующая у,;
c) ковариации соу(у,, yj), соответствующие парам (у, Уу),У = 1....m , j t  /.
9.1.2 Квадраты стандартных неопределенностей и ковариации составляют ковариационную ма­

трицу Uy размерности тхт для вектора результатов измерений у  = (у ,..... ут )т.

и и

и2(У1) 

с о  V ( y 2 , y 1 )

cov(ym_1,y1)

cov(ym,y1)

cov(y1ly2)

U2{у2)

со V(ym.1ly2) 

cov(ym,y2)

cov(y1,ym_1) COV(y1,ym) 

соу(У2 .У т- 1 ) cov(y2lym)

“ 2(Ут - 1 ) cov(ym_1,ym)

cov(ym.ym- l)  у2(Ут)

В приложении D приведено руководство по определению этой неопределенности и ковариаций. 
Все другие неопределенности и ковариации, соответствующие данным, считаются несущественными.

9.1.3 Ситуация 5.3.2 d) соответствует статистической модели

yj = A + B x i + ej,i= '\,...,m , (11)

где е = (е,-....ет)Т является реализацией многомерной случайной величины с вектором математическо­
го ожидания равным нулевому вектору размерности /77*1 и ковариационной матрицей Uy размерности 
/ 7 7 Х / 7 7  ( С М . [ 2 1 ] ) .

9.1.4 Оценки а и Ь минимизируют обобщенную сумму квадратов относительно А и  В (см.[8])

у1 -  {А + Вх^) 

У m ~ + Вхт)

Т

UZ
У т -И  + Вхт)

Ут + Вхт ).

:eTUy [e , (12)

где е = у - А Л  -  Вх. Задача определения а и b в этом случае называется регрессионной задачей Гаусса- 
Маркова (см.[2]).

П р и м е ч а н и е  —  В случае, когда Выявляется диагональной матрицей, обобщенная сумма квадратов (12) 
упрощается до выражения (4) в 6.1.3 и задача сводится к задаче взвешенных наименьших квадратов.

9.2 Оценки параметров калибровочной функции, соответствующих стандартной
неопределенности и ковариации

9.2.1 Если Uy положительно определенная матрица, такая, что нижняя треугольная матрица (фак­
тор Холецкого) Ly размерности mxm существует и Uy= Ly L J  (см.[10], также см. А.4), оценки а и b пара­
метров А и  В могут быть вычислены непосредственно с использованием общей схемы, приведенной в
6.2.1, после некоторых предварительных вычислений с применением матрично-векторных операций. В 
противном случае необходимо применение более сложных вычислений. Эти операции преобразовыва­
ют обобщенную сумму квадратов (12) в обычную сумму квадратов (2) (см. в 5.8.1), т.е. задача сводится 
к задаче метода невзвешенных наименьших квадратов без ковариации.

9.2.2 Оценки параметров а и b определяют в соответствии с вычислениями 1—7, а стандартные 
неопределенности и(а) и u(b) и ковариацию cov(a, Ь) определяют в соответствии с вычислением 8:

1) вычисление фактора Холецкого Ly размерности mxm, для которого Uy= Ly LyT (см. А.4.1);
2) решение трех нижних треугольных систем уравнений Ly f  = 1, Ly g = х  и Ly h = у, где f = (f, ,...,fm)T 

и т.д. для f , g n h  (см. А.4.3). 1 — вектор размерности /77x1.
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3) вычисление F 2 = ^ f 2
/=1 i
Л т "j

4) вычисление 9о = ^  Y f o . , К  = ;
F г  /=1

5) вычисление g( = д, -  gQfh h( = Л, -  hQfh / = 1, ..., т;
т

6) вычисление G2 = ^ jg f
/=1 1

/| т

7) вычисление Ь = ^ ^ д Д  и а = hQ-  bgQ;
G ,=i

8) вычисление и2 (а) = , u2(b) = и соч(а,Ь) = Щ
F G G G

9.2.3 Оценки а и Ь, определенные в соответствии с 9.1.4, обладают следующими свойствами 
(см.[15]) для данных у , соответствующих модели (11):

1) оценки а и b являются линейной комбинацией данных у .
2) оценки а и b можно рассматривать как реализации случайных величин, математические ожида­

ния которых равны А* и В* соответственно.
3) ковариационная матрица для случайных величин в перечислении 2) включает элементы ы2(а), 

и2(Ь) и cov(a, Ь), вычисленные в соответствии с 9.2.2.
Свойство перечисления 1) означает, что а и b получены методом линейной оценки. Свойство пере­

числения 2) означает, что полученные оценки являются несмещенными. Свойства перечислений 2) и
3) показывают сходимость полученных оценок, т. е. при увеличении т, оценки а и b стремятся к А* и В* 
соответственно.

Метод оценки в соответствии с 9.1.4 обладает следующими оптимальными свойствами для дан­
ных у , согласованными с моделью (11):

4) оценки а и Ь, полученные любым несмещенным методом линейной оценки, можно рассматри­
вать как реализацию случайных величин, дисперсии которых не меньше, чем у оценок, полученных 
методом регрессионной оценки Гаусса-Маркова.

Свойство перечисления 4) может быть интерпретировано следующим образом. Для констант с 
и с/, стандартная неопределенность u(ca + db), соответствующая линейной комбинации оценок а и Ь, 
полученных любым несмещенным методом линейной оценки, является не менее u(ca +db). Свойства 
перечислений 1)—4) обосновывают использование метода наименьших квадратов для данных, согла­
сующихся с моделью (11). Необходимо отметить, что эти утверждения при их использовании относятся 
только к математическим ожиданиям и дисперсиям е,-. Соответствующие распределения далее не опре­
деляют. Если сделаны дополнительные предположения о том, что е( является реализацией случайных 
величин, характеризующихся многомерным нормальным распределением, то могут быть выделены 
следующие свойства, связанные с методом оценки Гаусса-Маркова:

5) случайные величины, указанные в перечислении 2), характеризуются двумерным нормальным 
распределением со средними А* и В*, ковариационной матрицей с элементами и2(а), u2 (b) и cov(a, b).

6) оценки а и b являются оценками максимального правдоподобия, соответствующими наиболее 
вероятным значениям А и В, которые соответствуют наблюдаемым результатам измерений у .

7) в соответствии с Байесовским анализом распределение, характеризующее знания об А и В с 
учетом наблюдаемых результатов измерений у , является двумерным нормальным распределением со 
средними а и b и ковариационной матрицей с элементами и2(а), и2ф) и cov(a, Ь).

П р и м е ч а н и е  1 —  Приведенные выше свойства относятся также к методу оценки взвеш енных наим ень­
ших квадратов 6.1.3 для данных, соответствую щ их модели (3).

П р и м е ч а н и е 2  —  Значения и2(а), и2(Ь) и со v(a, Ь), полученные при выполнении вычислений 8, опреде­
лены  на основе применения закона распространения неопределенности (см. Руководство ИСО /М ЭК 98-3:2008 ) к 
а и b в соответствии с вычислениями 1— 7.

9.3 Валидация модели

Если m > 2, соответствие модели данным может быть проверено при использовании взвешенных 
остатков /) (продолжение 9.2.2):
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9) определение г,- = Л,- -  Ьд;, / = 1, ..., /л;
т

2 _ ^  2
10) определение наблюдаемого значения ^obs -  2 J i и числа степеней свободы v = т  -  2;

/=1

11) сопоставление x^bs с квантилем уровня 95 %. Если %^bs превышает квантиль, то линейная 
модель не соответствует исходным данным.

П р и м е ч а н и е  — Тестх2 основан на предположении, что е( в модели (11) является реализацией случай­
ных величин, характеризуемых многомерным нормальным распределением.

9.4 Организация вычислений

Вычисления в соответствии с 9.2.2 и 9.3 могут быть выполнены с применением таблиц 19— 21. В 
таблице 20 приведены fjt д, и hjt вычисленные в соответствии с 1 и 2 в 9.2.2 с учетом разложения кова­
риационной матрицы Uy  на множители Холецкого Ly  В таблице 21 значения fr  д, и hi использованы для 
вычисления оценок а и b параметров линейной калибровочной функции.

Т а б л и ц а  19 — Данные для линейной калибровочной 
функции Гаусса—Маркова

*/ У\

*1 У1
х2 У2

хт Ут

Т а б л и ц а  20 — Предварительные вычисления для 
применения метода Гаусса—Маркова

9.2.2 вычисления 1,2

h я, hi

01 Л1

h 92 h2

9щ hm

Т а б л и ц а  21 — Организация вычислений для определения параметров линейной калибровочной функции ме­
тодом Гаусса — Маркова

9.2.2, вычисления 7;

9.2.2 вычисления 4,5 9.3, вычисления 9; 9.3, вычисления 10

9o ho a

h9\ fl/>1 01 /?1 9 2 9 ^ ^ ri
r2
r1

f l f292 f2h2 02 h2 02 02^2 r2
r2
r2

f 2m ^m9m fnPm 9m ~hm 0 2m 9rrftm rm г 2 'm

F2 = J f 2 Х 'Л g 2 = I  9? b
m

Xobs = У /if 
/=1

Пример — В таблице 22 приведено десять результатов измерений (xjt у ) и соответствующая 
матрица стандартных неопределенностей у,-.
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Данные получены с использованием модели, описанной в D.2.2 с uR = 1,0, us1 = 1,0 и uS2 = 2,0.

Т а б л и ц а  22 — Десять результатов измерений у, и соответствующая 
ковариационная матрица

*» У/

1,0 1,3

2,0 4,1

3,0 6,9

4,0 7,5

5,0 10,2

6,0 12,0

7,0 14,5

8,0 17,1

9,0 19,5

10,0 21,0

Ковариационная матрица Uy размерности 10x10, соответствующая у(

2,0 1,0 1,0 1,0 1,0 0,0 0,0 0,0 0,0 0,0

1,0 2,0 1,0 1,0 1,0 0,0 0,0 0,0 0,0 0,0
1,0 1,0 2,0 1,0 1,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 2,0 1,0 0,0 0,0 0,0 0,0 0,0

1,0 1,0 1,0 1,0 2,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 5,0 4,0 4,0 4,0 4,0

0,0 0,0 0,0 0,0 0,0 4,0 5,0 4,0 4,0 4,0

0,0 0,0 0,0 0,0 0,0 4,0 4,0 5,0 4,0 4,0

0,0 0,0 0,0 0,0 0,0 4,0 4,0 4,0 5,0 4,0
0,0 0,0 0,0 0,0 0,0 4,0 4,0 4,0 4,0 5,0

Фактор Холецкого Ly размерности 10x10 для Uy = Ly LyJ, вычисленный с использованием любого из 
алгоритмов, описанных в А.4.1

1,4142 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

0,7071 1,2247 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

0,7071 0,4082 1,1547 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

0,7071 0,4082 0,2887 1,1180 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

0,7071 0,4082 0,2887 0,2236 1,0954 0,0000 0,0000 0,0000 0,0000 0,0000
0,0000 0,0000 0,0000 0,0000 0,0000 2,2361 0,0000 0,0000 0,0000 0,0000

0,0000 0,0000 0,0000 0,0000 0,0000 1,7889 1,3416 0,0000 0,0000 0,0000

0,0000 0,0000 0,0000 0,0000 0,0000 1,7889 0,5963 1,2019 0,0000 0,0000

0,0000 0,0000 0,0000 0,0000 0,0000 1,7889 0,5963 0,3698 1,1435 0,0000
0,0000 0,0000 0,0000 0,0000 0,0000 1,7889 0,5963 0,3698 0,2691 1,1114

Векторы f ,g u h  в таблице 23 получены в соответствии с вычислениями 2 в 9.2.2.
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Т а б л и ц а  23 — Таблица предварительных вычислений соответствующих 
данным таблицы 22

fi 9i hi

0,7071 0,7071 0,9192

0,4082 1,2247 2,8169

0,2887 1,7321 4,4167

0,2236 2,2361 3,9578

0,1826 2,7386 5,6963

0,4472 2,6833 5,3666

0,1491 1,6398 3,6522

0,0925 1,8490 4,4284

0,0673 2,2198 5,3208

0,0529 2,6463 5,5360

Параметры лучшей прямой, приведенные в таблице 24, вычислены в соответствии с та­
блицей 21. В соответствии с таблицей 24 д0 = 4,4048/1 ,0714 = 4,1111, h0 = 9 ,0048/1,0714 = 8,4044, 
Ь = 54,2185/24,6296 = 2,2014 и а =  8,4044 -  (2,2014) (4,1111) =-0,6456.

Т а б л и ц а  2 4 -  Таблица вычислений для данных таблицы 22

f? fi9i Щ 9i hi 9/ 9jhj ri

4,1111 8,4044 a = -0,6456

0,5000 0,5000 0,6500 -2,1999 -5,0236 4,8395 11,0514 -0,1809 0,0327

0,1667 0,5000 1,1500 -0,4536 -0,6142 0,2058 0,2786 0,3844 0,1477

0,0833 0,5000 1,2750 0,5453 1,9906 0,2973 1,0854 0,7902 0,6245

0,0500 0,5000 0,8850 1,3168 2,0785 1,7340 2,7370 -0,8202 0,6727

0,0333 0,5000 1,0400 1,9880 4,1619 3,9523 8,2739 -0,2145 0,0460

0,2000 1,2000 2,4000 0,8447 1,6080 0,7136 1,3583 -0,2516 0,0633

0,0222 0,2444 0,5444 1,0269 2,3994 1,0546 2,4640 0,1387 0,0192

0,0085 0,1709 0,4094 1,4689 3,6514 2,1578 5,3636 0,4177 0,1745

0,0045 0,1493 0,3579 1,9433 4,7555 3,7763 9,2412 0,4777 0,2282

0,0028 0,1401 0,2930 2,4287 5,0912 5,8986 12,3650 -0,2552 0,0651

1,0714 4,4048 9,0048 24,6296 54,2185 b=2,2014 2,0740

Стандартные неопределенности и ковариация, соответствующие а и b определены по данным 
таблицы 24 в соответствии с вычислениями 8 в 9.2.2:

и2 (а) = 1/1,0714  + (4,1111)2/ 24,6296, так, чтобы и(а) = 1,2726; 
и2 (Ь) = 1/24,6296, так чтобы и(Ь) = 0,2015; 
соч(а, Ь) = -4,1111/24,6296 = -0,1669.

Наблюдаемое значение Xobs = 2>074 с 8 степенями свободы определено по данным таблицы 24 с 
использованием 9.3. Так как не превышает квантиль %2 уровня 95 %, а именно 15,507, может быть 
принято решение о соответствии линейной модели и данных.

Данные и полученная линейная калибровочная функция приведены на рисунке 8. Взвешенные 
остатки приведены на рисунке 9.
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У

Рисунок 8 — Данные таблицы 22 и полученная линейная калибровочная функция
г

Рисунок 9 —  Взвешенные остатки rj

10 Модель, учитывающая неопределенности и ковариации, 
соответствующие х7- и у7-

10.1 Общие положения

10.1.1 В данном разделе рассмотрена ситуация 5.3.2 е), т. е. наиболее общий случай, когда все 
результаты измерений имеют соответствующие неопределенности и ковариации. В приложении D при­
ведено руководство по получению неопределенностей и ковариаций.

10.1.2 Стандартные неопределенности и ковариации являются элементами ковариационной матрицы

и 2( х 1) ••• cov(xv xm ) cov^.y -i) ••• со у { х ь у т )

cov(xm,Xi) ••• и 2{ х т ) c o v ^ , ^ ) ••• со v(xm,ym)

cov(y1,x1) ••• со у { у ь х т ) и 2{ у ^ ••• covCy^y™)

СО v(ym,x1) ••• cov(ym,xm) со v(ym,y1) ^2(ym)
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Размерности 2т*2т, соответствующей вектору (х1 хт, у1 ут)Т результатов измерений размер­
ности 2/77x1.

10.1.3 Ситуация 5.3.2 е) соответствует статистической модели

Xj = Х *+  dj, Yj = Y*+ er Y*= А* + В*Х* , / = 1, т, (13)

где вектор еь ...,ет )Т размерности 2/77*1 является реализацией многомерной случайной вели­
чины с нулевым вектором математического ожидания размерности 2/лх1 и ковариационной матрицей 
U размерности 2 /77x2/77 (см.[21]).

10.1.4 Оценки а и b минимизируют обобщенную сумму квадратов

х1 - Х 1 х1 -  Х 1
3* I 

.

1* 1Г1 3* I 
.

H - i A  + BXj) H - i A  + BXj) LeJ Le

У т ~  (^  + ВХт) Ут ~  + ВХт)

(14)

где d  = х -  X, е = у  -  А*\ -  Вх  в соответствии с А, В и Xh /=  1,..., /77. Задача определения оценок а и b в 
данном случае является задачей обобщенной регрессии Гаусса—Маркова (см. [2]).

10.2 Оценки параметров калибровочной функции и соответствующие стандартные
неопределенности и ковариации

10.2.1 Если U положительно определенная и существует нижняя треугольная матрица L (фактор Хо- 
лецкого) размерности 2/7?х2/77, такая что U= LLT (см.[10] и А.4), оценки а и b параметров А и В могут быть 
вычислены по итеративной схеме, используя матричные и векторные операции. В противном случае тре­
буется применение более сложных методов вычислений. Эти операции преобразовывают обобщенную 
сумму квадратов (14) в обычную сумму квадратов (2) (см. 5.8.1), т.е. задача сводится к задаче взвешенных 
наименьших квадратов без ковариации. В итеративной схеме использованы приближения х(* соответ­
ствующие точке на линии (х* А+Вх*), самой близкой к точке результатов измерений (х(, у(), если близость 
определяется в виде взвешенного расстояния с учетом неопределенности, указанной в матрице U.

10.2.2 Оценки а и b определяют в соответствии с вычислениями 1— 10, используя итеративную 
схему, аналогичную приведенной в 6.2.1, стандартные неопределенности и(а) и иф) и ковариацию 
cov(a, Ь), выполняя вычисления 11:

1) Определяют начальные приближения t = (^  хт а, Ь)т;
2) Вычисляют вектор размерности 2 /7 7x 1

х1 -  Xi

хт ~ хт 
^ - ( а  + Ьхт)

X -  X

y - a ' i - b x

ут - (а  + Ьхт)

и матрицу размерности 2тх(т + 2) (якобиан)
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- 1 0 0 0 0 0

0 - 1 0 0 0 0

0 0 - 1 0 0 0

0 0 0 - 1 0 0

- ь 0 0 0 - 1
- * 1

0 - ь 0 0 - 1 - х 2

0 0 - ь 0 - 1 ~ * т-

0 0 0 - ь - 1 ~ * т

где х  = (£ |, хт) \  а значения а и Ь получены по текущему значению t  вектора параметров;
3) Вычисляют фактор Холецкого L  размерности 2т *2т , для которого U= LLT (см. А.4.1и [10]);
4) Определяют решение нижних треугольных систем 
L f  = f  и LJ = J ,

для определения преобразованного вектора f  размерности 2/ттх1 и преобразованной матрицы J  раз­
мерности 2т  х (т  + 2) (см. А.4.3);_

5) Формируют вектор д = J Tf  размерности (т+2)*1 и матрицу Н =JTJ размерности (т  + 2 )*(т  + 2);
6) Определяют фактор Холецкого М, нижнюю треугольную матрицу размерности (т + 2) *(т  + 2), 

для которой Н  = ММТ (см. А.4.1);
7) Определяют решение нижней треугольной системы M q  = -  д для определения вектора q  раз­

мерности (m  + 2)х1 (см. А.4.3);
8) Определяют решение верхней треугольной системы MT8 t = q  для определения вектора по­

правок 5 f размерности (m  + 2)*1 (см.А.4.4);
9) Обновление текущего приближения оценок параметров: t : = t  + Sf;
10) Повторение вычислений 2— 9 до тех пор, пока не достигнута необходимая сходимость. Уста­

новление а = а и b = b (элементы m +1 и m + 2 вектора f) ;
11) Представление матрицы М, полученной при выполнении вычислений в виде:

М

Ш

М ц 0

М21 м 22

' / 7 7 ц 0
22 АТ?21 /7?22

где М22 —  нижняя правая треугольная матрица размерности 2^2 матрицы М. Тогда

и (а ):
/ Т 7 222 +  т 21 

mnm22
!(ь) =

m г.
mf.mL

J \ _

m l
со v (a ,b ):

/ 7 7 ,

П р и м е ч а н и е  1 — При выполнении вычислений 1 начальные приближения соответствуют вектору 
t = (хь ...,хт, а0, Ь0)т, где а0 и Ь0 -  значения параметров прямой, определенные с помощью метода взвешенных 
наименьших квадратов (см. 6.2.1).

Примечание 2 — При выполнении вычислений 8 вектор поправок St уменьшается по величине при каждой 
итерации приблизительно в одно и то же число раз. Коэффициент уменьшения зависит от неопределенности дан­
ных: чем меньше неопределенность, тем больше сокращение. Итерации могут быть закончены, когда величина 
поправки станет несущественной.

Примечание 3 — При выполнении вычислений 8 поправки 8t определяют, решая методом наименьших 
квадратов матричное уравнение

Jdt = f .
Решение этого матричного уравнения находят из нормальных уравнений

H = J TJ d t  = - j f  = -g .
Примечание 4 — При выполнении вычислений 5—8 находят решения нормальных уравнений, используя 

факторизацию Холецкого. В цифровой форме более устойчивым подходом является использование факторизации 
QR для J  (см. А.5.1 и [10]). В схеме, описанной в С.2, использована QR-факторизация без вычисления обратной 
матрицы L, как в вычислениях 4.

П р и м е ч а н и е  5 — В матричной форме ковариационная матрица, соответствующая оценкам а и Ь, имеет вид:
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Uа =

Примечание 6 — Более общий и численно более устойчивый подход к решению обобщенной регрессион­
ной задачи Гаусса—Маркова в общих чертах описан в С.2. Этот подход предполагает, что матрица U положительно 
определенная и не включает высоких корреляций.

П р и м е ч а н и е  7 — Значения и2(а), и2(Ь) и со v(a, b) получены в вычислении 11с применением закона рас­
пространения неопределенности в соответствии с Руководством ИСО/МЭК 98-3:2008 к оценкам а и Ь, полученным 
в соответствии с вычислениями 1—10.

10.2.3 Поскольку оценки а и b определены в результате минимизации суммы квадратов (14), они 
нелинейно зависят от данных х, и у(, а следовательно, свойства для оценок обобщенного метода Гаус­
са— Маркова не могут быть установлены непосредственно. Оценки а и Ь, определенные в соответствии 
с 10.1.4, обладают следующими свойствами для данных х, и yjt согласованных с моделью (13):

1) Оценки а и b являются нелинейными функциями х, и у(.
2) Оценки а и b можно рассматривать как реализации случайных величин, математические ожида­

ния которых приближенно равны А* и В*, соответственно.
3) Элементы ковариационной матрицы для случайных величин в перечислении 2) приближенно 

равны и2(а), и2ф) и cov(a, Ь), вычисленным в соответствии с 10.2.2.
Приведенные аппроксимации являются более точными для данных, имеющих меньшую неопре­

деленность. Однако метод оценки обладает следующими свойствами:
4) Для данных, согласованных с моделью (13), при увеличении т  оценки а и b сходятся к Л* и В*, 

соответственно (см.[16]).
Если сделано дополнительное предположение о том, что cf, и е, являются реализациями случай­

ных величин, характеризующихся многомерным нормальным распределением, то могут быть установ­
лены дополнительные свойства, связанные с обобщенным методом оценки Гаусса-Маркова:

5) Случайные величины в перечислении 2) подчиняются приближенно двумерному нормальному 
распределению со средними Л* и В* и ковариационной матрицей с элементами ы2(а), и2ф) и cov(a, Ь).

6) Оценки а и b являются оценками максимального правдоподобия, соответствующими наиболь­
шей вероятности значений Л и В, которые соответствуют наблюдаемым результатам измерений х( и у(.

7) С позиции Байесовского анализа распределение, характеризующее знания об Л и В с учетом 
наблюдаемых результатов измерений х( и у(, приближенно является двумерным нормальным распреде­
лением со средними а и b и ковариационной матрицей с элементами и2(а), и2(Ь) и cov(a, Ь).

10.3 Валидация модели

Если m > 2, соответствие модели исходным данным может быть частично проверено с использо­
ванием взвешенных остатков f j (продолжение 10.2.2):

2т ̂
12) определение наблюдаемого значения Xobs = ^ j i  с числом степеней свободы v = т  -  2;

/=1

13) сопоставление %2bs с квантилем %2 уровня 95 %. Если %2bs превышает этот квантиль, то пред­
положение о линейной модели отклоняют.

П р и м е ч а н и е  — Критерий основан на предположении, что d(- и е,в модели (13) в первом приближении 
являются реализациями случайных величин, характеризующихся многомерным нормальным распределением.

Пример — В таблице 25 приведено семь результатов измерений (х,-, у), полученных с использова­
нием моделей измерений, описанных в D.2 и D.4.

Ковариационная матрица, соответствующая yjt получена с использованием модели измерений 
(D.1) для us = 2,0 и uR = 1,0.

Данные х(- и соответствующая ковариационная матрица получены с использованием модели из­
мерений (D.2) для г1 = 50, z2 = 100, z3 = 200, u (z j = 0,5, u(zJ = u(z^) = 1,0, и uDj = 0,5.

Т а б л и ц а  25 — Данные семи результатов измерений х,- и у,- 
с соответствующей ковариационной матрицей

У/

50,4 52,3

99,0 97,8
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Окончание таблицы 25

*» У/

149,9 149,7
200,4 200,1
248,5 250,4
299,7 300,9
349,1 349,2

Ковариационная матрица Ux размерности 7x7, соответствующая х,-

0,50 0,00 0,25 0,00 0,25 0,00 0,25
0,00 1,25 1,00 0,00 0,00 1,00 1,00
0,25 1,00 1,50 0,00 0,25 1,00 1,25
0,00 0,00 0,00 1,25 1,00 1,00 1,00
0,25 0,00 0,25 1,00 1,50 1,00 1,25
0,00 1,00 1,00 1,00 1,00 2,25 2,00
0,25 1,00 1,25 1,00 1,25 2,00 2,50

Фактор Холецкого Lx размерности 7x7 Ux = LXLXJ, вычисленный с использованием любого алго­
ритма, описанного в А.4.1.

0,7071 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
0,0000 1,1180 0,0000 0,0000 0,0000 0,0000 0,0000
0,3536 0,8944 0,7583 0,0000 0,0000 0,0000 0,0000
0,0000 0,0000 0,0000 1,1180 0,0000 0,0000 0,0000
0,3536 0,0000 0,1648 0,8944 0,7402 0,0000 0,0000
0,0000 0,8944 0,2638 0,8944 0,2115 0,7319 0,0000
0,3536 0,8944 0,4286 0,8944 0,3436 0,2928 0,6225

Ковариационная матрица Uy размерности 7x7, соответствующая у,-

5,00 1,00 1,00 1,00 1,00 1,00 1,00
1,00 5,00 1,00 1,00 1,00 1,00 1,00
1,00 1,00 5,00 1,00 1,00 1,00 1,00
1,00 1,00 1,00 5,00 1,00 1,00 1,00
1,00 1,00 1,00 1,00 5,00 1,00 1,00
1,00 1,00 1,00 1,00 1,00 5,00 1,00
1,00 1,00 1,00 1,00 1,00 1,00 5,00

Фактор Холецкого Ly размерности 7x7 Uy = LyLyJ, вычисленный с использованием любого алгорит­
ма, описанного в А.4.1, имеет вид

2,2361 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

0,4472 2,1909 0,0000 0,0000 0,0000 0,0000 0,0000

0,4472 0,3651 2,1602 0,0000 0,0000 0,0000 0,0000

0,4472 0,3651 0,3086 2,1381 0,0000 0,0000 0,0000

0,4472 0,3651 0,3086 0,2673 2,1213 0,0000 0,0000

0,4472 0,3651 0,3086 0,2673 0,2357 2,1082 0,0000

0,4472 0,3651 0,3086 0,2673 0,2357 0,2108 2,0976
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Ковариационная матрица U размерности 14*14

П рим ечание  — В данном примере существует корреляция, соответствующая каждой паре х,- и 
Xj и каждой паре у,- и yj, отсутствует корреляция, соответствующая парам х, и yj, т. е. cov(xjt yj) = 0 для 
всех / и

Фактор Холецкого L размерности 14*14 для U = LLJ:

Применение метода взвешенных наименьших квадратов к  данным (6.2.1 вычисления 
1— 5) дает а = 0,2707 ub = 1,0011. Итеративную схему начинают c t=  (х1г..., х7, а, Ь)Т.

В таблице 26 приведены начальный вектор t0 , поправки 8tk для k-го повторения, к  = 1..., 4 и заклю­
чительную оценку t = t4.

Т аб ли ц а  26 — Изменения вектора t

to 8fj х Ю'2 812 x m 4 8t3 x 10t6 bt4 x 10* U
50,4000 17,2531 1,2580 3,0782 0,2904 50,5727

99,0000 -43,1501 -3,2145 -6,3201 -0,7101 98,5682

149,9000 -29,1641 -3,9604 -3,8889 -0,7564 149,6080

200,4000 2,9677 -10,7629 -0,6024 -1,7165 200,4286

248,5000 24,0394 -11,4064 3,2378 -1,7064 248,7393

299,7000 -22,2510 -15,7767 -3,3581 -2,6110 299,4759

349,1000 -20,6192 -16,6217 -3,3805 -2,7429 348,8921

0,2707 7,5040 -33,3957 0,1006 -5,3019 0,3424

1,0011 0,0110 0,2113 0,0076 0,0337 1,0012

Наилучшими оценками А и В являются а = 0,3424 и Ь = 1,0012.
В заключительной итерации матрица М размерности 9*9 имеет вид:

1,7755 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

0,1810 1,6959 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
-0,4246 -0,5430 1,4306 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

0,1810 0,2378 0,6893 1,5312 0,0000 0,0000 0,0000 0,0000 0,0000

-0,4246 0,5053 0,0999 -0,7249 1,2453 0,0000 0,0000 0,0000 0,0000

0,3748 -0,5607 -0,2377 -0,4369 -0,0306 1,3465 0,0000 0,0000 0,0000
-0,2308 -0,2931 -0,8271 0,0932 -0,5828 -0,9711 0,8329 0,0000 0,0000
0,0513 0,0482 0,0971 0,0022 0,0645 0,0927 0,3899 0,6762 0,0000

-10,7652 -3,0381 0,3815 13,9302 30,1814 38,8412 127,1155 107,2706 110,9677

где М22 (Ю.2.2, вычисление 11) имеет вид:

М22 =
0,6762

107,2706

0,0000

110,9677

Стандартные неопределенности и ковариация, соответствующие a u b  (см. вычисления 11 в 10.2.2):

и2 (а) =
(110,9677)2 +(107,2706)2 

(0,6762)2 (110,9677)2
,и(а) = 2,0569;
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u2 (b) =
(110,9677)'

7,u (b ) = 0,0090;

со v (a ,b )
(107.2706)

(0,6762) (110,9677)
-0 ,0 1 2 9

Наблюдаемое значение Xobs = 1,777. с v = 5 степенями свободы получено в соответствии с вычис­
лениями 12 в 10.3. Так как %20bs не превышает квантиль х2 уровня 95 %, а именно, 11,070, это не противо­
речит предположению о линейности модели.

11 Использование калибровочной функции

Использование калибровочной функции для прогноза и предварительной оценки не зависит от 
метода, используемого для оценки параметров калибровочной функции и соответствующих им стан­
дартных неопределенностей и ковариации.

11.1 Прогноз

11.1.1 Предположим, что в соответствии с применением одного из разделов 6— 10 установлено
следующее:

a) оценки параметров прямой а и b и соответствующие им стандартные неопределенности и(а) и 
и(Ь) и ковариация соv(a, Ь);

b) результат измерения у величины У  и соответствующая стандартная неопределенность и(у). 
Предположим, что результат измерения у  получен независимо отданных результатов измерений,

использованных при определении калибровочной функции.
11.1.2 Оценка х величины X, соответствующая у  имеет вид:

11.1.3 Стандартную неопределенность и(х), соответствующую х, определяют следующим образом:

с(а ) = ~ , с(Ь) = -  у ^  , с (у )  = —, и2(х) = с2(а)и2(а) + cP̂ {b)u2{b) + 2c(a)c(b)cov(a,b) + сР-(у)и2{у). 
b ь

П р и м е ч а н и е  1 — Формула для и2(х) получена на основе закона распространения неопределенности 
в соответствии с Руководством ИСО/МЭК 98-3:2008. Это приближенная формула, основанная на линеаризации 
формулы (15), где с(а), с(Ь) и с(у) — коэффициенты чувствительности.

П р и м е ч а н и е  2 — Для вычислительных целей может быть удобно матричное представление:

- и2 (а) со v(a,b) 0 с(а)
и2(х) = сТ cov (Ь,а) u2(b) 0 с, с = с(Ь)

0 0 ц2 (у ). А у ).
П р и м е ч а н и е  3 — В случае b = 0, когда наилучшей прямой является у  = а (недопустимая калибровочная 

функция), прогноз невозможен.
П р и м е ч а н и е  4 — Валидация стандартной неопределенности и(х) зависит от выполнения соответству­

ющего критерия у2, приведенного в разделах 6—10.

Пример 1 — В соответствии с примером метода взвешенных наименьших квадратов с извест­
ными равными весовыми коэффициентами, приведенными в разделе 6, параметры наилучшей прямой 
и их стандартные неопределенности и ковариация имеют вид:

а = 1,867, Ь = 1,757, и(а) = 0,465, и(Ь) = 0,120, cov(a, b) = -0,050.

Пусть у = 10,5 — результат дополнительного измерения Y, а и (у) = 0,5 — соответствующая стан­
дартная неопределенность.

В соответствии с 11.1.2 оценка х  величины X, соответствующей у;
х  = (10,5 -  1,867)/1,757 = 4,913.

В соответствии с 11.1.3 вычисления для определения стандартной неопределенности и(х) дают
с(а) = - 1 / 1,867 = -0,569,
с(Ь) = -  (10,5 -  1,867) /  (1,757) 2 = -2,796,
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с(у) = 1 /1,757 = 0,569,
и2(х) = (-0,569)2 (0,217) + (-2J96)2 (0,014) + (2) (-0,569) (-2,796) (-0,050) + (~0,569)2 (0,5)2 = 0,104. Таким 

образом, и(х) = 0,322.
Пример 2 — В соответствии с примером метода взвешенных наименьших квадратов с известны­

ми неравными весовыми коэффициентами, описанными в разделе 6, параметры наилучшей прямой и их 
стандартные неопределенности и ковариация имеют вид:

а = 0,885, Ь = 2,057, и(а) = 0,530, и(Ь) = 0,178, cow (а, Ь) = -0,082.
Пусть у  = 10,5 — результат дополнительного измерения Y, а и (у) = 1,0 — его стандартная неопре­

деленность.
Из 11.1.2 оценка значений х  величины X, соответствующей у, имеет вид

х  = (10,5 -  0,885)12,057 = 4,674.

В соответствии с 11.1.3 вычисления для определения стандартной неопределенности и(х) дают
с(а) = -1/0,885 = -0,486,
с(Ь) = -(10,5  -  0,885) /  (2,057) 2 = -2,272,
с(у) = 1/2,057 = 0,486,
и2(х) = (-0.486)2 (0,281) + (—2,272)2 (0,032) + (2) (-0,486) (-2,272) (-0,082) + (-0,486)2 (1,0) 2 = 0,284.Таким 

образом, и(х) = 0,533.
В этом примере и примере 1 в 11.1 заметно влияние различных неопределенностей у  на неопре­

деленность х.

11.2 Предварительная оценка

Предположим, что в соответствии с применением одного из разделов 6— 10 установлено следующее:
a) оценки параметров прямой а и Ь, их стандартные неопределенности и(а) и и(Ь) и соответству­

ющая им ковариация соv(a, Ь);
b) результат измерений х величины X  и его стандартная неопределенность и(х).
Предположим, что значение х получено независимо от результатов измерений, использованных

для установления калибровочной функции.
11.2.1 Оценка у  величины У, соответствующая значению х,

у = а  + Ьх. (16)

11.2.2 Стандартную неопределенность и(у), соответствующую у, определяют при выполнении сле­
дующих вычислений:

с(а) = 1, с(Ь) = х, с(х) = Ь,

и2(у) = с2(а)и2(а) + c2(b)u2(b) + 2с(а)с(Ь) соv(a, Ь) + с2(х)и2(х).

П р и м е ч а н и е  1 — Формула для и2(у) установлена с использованием закона распространения неопре­
деленности в соответствии с Руководством ИСО/МЭК 98-3:2008. Эта аппроксимация основана на линеаризации 
формулы (16). Величины с(а), с(Ь) и с(у) представляют собой коэффициенты чувствительности.

П р и м е ч а н и е  2 — В вычислительных целях может быть полезна матричная форма:

' ц 2 (а ) со v(a ,b) 0 'с(а)'
и2 (у)  = сТ соv(b,a) u2 (b)  0 с, с = с(Ь)

0 0 и2 (х) с(х)

П р и м е ч а н и е  3 — Валидация стандартной неопределенности и(у) зависит от выполнения критерия %2 
в разделах 6— 10.

Пример — В соответствии с примером метода взвешенных наименьших квадратов с известны­
ми равными весовыми коэффициентами, приведенными в разделе 6, параметры наилучшей прямой, их 
стандартная неопределенность и ковариация имеют вид:

а = 1,867, Ь = 1,757, и(а) = 0,465, и(Ь) = 0,120, cov(a, Ь) = -0,050.
Пусть х  = 3,5 — результат дополнительного измерения X, а и(х) = 0,2 — его стандартная неопре­

деленность и пусть cow(x, а) = cow(x, b) = 0, т.е. отсутствует корреляция х  с а и х  с Ь.
В соответствии с 11.2.1 оценка у величины Y, соответствующей х, имеет вид:

у = 1,867 + (1,757) (3,5) = 8,017.
В соответствии с 11.2.2 стандартная неопределенность и(у) имеет вид:

и2 (у) = 0,217 + (3,5)2 (0,014) + (2) (3,5) (-0,050) + (1,757)2 (0,2) 2 = 0,165.
Таким образом, и(у) = 0,406.
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А.1 Общие положения

В данном приложении описаны основные математические операции с матрицами, использованные в насто­
ящих рекомендациях.

А.2 Элементарные операции

Далее используются следующие обозначения:
A-матрица результатов измерений размерности т*п с элементом А(/, у) = а,у в /'-й строке и у-м столбце. 

S-матрица размерности п*к, С-(квадратная) матрица размерности /77х/77, d — вектор результатов измерений раз­
мерности лх 1 су-м элементом dj.

А.2.1 Умножение матрицы на вектор
Произведение матрицы на вектор Ad  представляет собой вектор е размерности т х1 с /-м элементом е,-

П

®/ = ^ aijdj  = a/1̂ 1 + ai2d2 + • • • + aindn .
7=1

A.2.2 Операция умножения матрицы на матрицу
Произведение двух матриц АВ  представляет собой матрицу размерности /77х/(,у-й столбец которой является 

произведением матрицы А на у-й столбец В.
А.2.3 Транспонирование матрицы
Результатом АТ транспонирования матрицы А является матрица размерности лх/т? с элементом А(/, /) = a;J в 

у-й строке и /-м столбце.
А.2.4 Единичная матрица
Единичной матрицей порядка m является матрица / размерности m*m, у которой /(/', у) = 1, для у = 1,..., т ,  а 

все другие элементы равны нулю.

А.2.5 Инверсия квадратной матрицы

Инверсией матрицы С, если она существует, является такая матрица С-1* размерности /77х/77, что
СС-1 = С '1С = /.

Транспонирование С"1 эквивалентно инверсии Ст и дает С _т.

А.З Элементарные определения

Далее использованы следующие определения: С-(квадратная) матрица размерности /77х/77 с элементом 
С(/, у) = Су в /-ой строке и у'-ом столбце.

А.3.1 Симметричная матрица
Матрица С является симметричной, если с(у= Су,-, / = 1,..., т .у  = 1 , . . . , / 77, т.е., С = Ст.
А.3.2 Обратимая матрица
Матрица С является обратимой, если ее обратная матрица С-1 (см. 2.5), существует.
А.3.3 Нижняя треугольная и верхняя треугольная матрица
Матрица С является нижней треугольной матрицей, если с(у = 0, / < у и верхней треугольной матрицей, если 

су=0 ,/>у.
А.3.4 Ортогональная матрица
Матрица С является ортогональной, если СТС = /.

А.4 Факторизация (разложение на множители) Холецкого

Факторизация Холецкого симметричной положительно определенной матрицы U размерности m*m- это 
представление матрицы в виде U = LLт (см.[10]), где L — нижняя треугольная матрица размерности m*m.

А.4.1 Алгоритмы факторизации Холецкого
А.4.1.1 Следующий алгоритм позволяет вычислить нижнюю треугольную матрицу L, такую, что U=LLJ.
Инициализация
For к =  1: /7?
For у = к: m

Щ, к): = U(j\ к) 
end 
end

* Матрицу С-1 также называют обратной матрицей по отношению к матрице С.
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for к = 2: т 
for у = 1: к -1
т , К): = О
end
end
Факторизация 
For к=  1: /л
L(k ,k ) :=  L (k ,k) :=  ^L{k,k)

For j  = k+  1: m
L(j, k): = L(j, k)IL(k, k)
end
for) = /< + 1: /77 
for / =j: /77
L ( I J ) : = L ( I J ) - L ( I ,  k) L(j, k)
end
end
end

П р и м е ч а н и е  — Чтобы переписать элементы (У(/',У), / > у нижней треугольной матрицы U с разложением 
Холецкого, выполняют только действия стадии Разложение на множители алгоритма, приведенного в А.4.1.1, ис­
пользуя U вместо L.

А.4.1.2 Вычисления в соответствии сА.4.1.1 могут быть реорганизованы, для использования большего коли­
чества операций между векторами и повышения скорости выполнения программы на компьютерных языках, обе­
спечивающих выполнение действий с векторами. Н1апример,

Инициализация 
For у = 1: /77
Ш, 1:j Y = U(j, 1:у)
end
for у = 1: /л -1 
L(j, у + 1: /77): = 0 
end
Разложение на множители 
д л я  у = 1: /77,
if у> 1

Ц]\ /77,У): = щ-. mj ) - L(j: т, 1: у - 1) L(j, 1: у ■- 1 ))т 
end
L(y : m,у) = L ( j  : m, j) / ̂/Цу'.У). 

end

П р и м е ч а н и е  — Для получения элементов U(i,j), / > у нижней треугольной матрицы U имеющей разло­
жение Холецкого, выполняют только действия этапа «Факторизация», приведенного алгоритма в А.4.1.2, используя 
U вместо L.

А.4.2 Интерпретация разложения Холецкого ковариационной матрицы
А.4.2.1 Пусть £(-, / = 1,...,/??, -  /7/ независимых случайных величин с нулевым математическим ожиданием и 

единичной дисперсией каждая, а е(-— реализация £(-.

/1 = Л1 е1 >
У2 =  2̂1 ®1 + 2̂2е2-

Тогда = / ^  и и2(у2) = l \  1 + / 2 2 - Зависимость у1 и у2 от е1 означает, что у у1 и у2 существует корреляция 
с ковариацией covfy^ у2) = ^ 1 /21 . Далее продолжим, что

Уз = 3̂1 е 1 + ^32е2 + ^33е3’

Ут = ^т1е1 + !т2е2 + ■■■ / ттепт
А.4.2.2 В матричной форме у  = Le с нижней треугольной матрицей L. Общая зависимость у1 и у3 от е1 оз­

начает, что существует корреляция между у1 и у3. Аналогично общая зависимость у2 и у3 от е1 и е2 означает, что 
существует корреляция между у2 и у3 и так далее.

А.4.2.3 Для данной ковариационной матрицы U, соответствующей данным у,-, разложение Холецкого 
U = LLT позволяет вычислить элементы матрицы таким образом, что ковариационную матрицу можно рассматри­
вать, предполагая, что у(- определены в соответствии с А.4.2.1 как реализации линейных комбинаций значений /,у
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независимых случайных переменных £,-. На практике ковариационные матрицы часто определяют с помощью раз­
ложения на множители U = ВВТ, что дает U бесконечно много вариантов матриц В, которые можно использовать 
для построения U. Разложение на факторы Холецкого, в котором линейные комбинации представлены нижней 
треугольной матрицей, является однозначным с точностью до знака колонок L.

А.4.3 Решение нижней треугольной системы
А.4.3.1 Если L нижняя треугольная матрица размерности ггг*т такая, что L(j,j) ± 0 ,j=  1 и х  — вектор 

размерности т *  1, следующий алгоритм позволяет вычислить вектор у, где Ly = x, т.е., у  = Z."1x.
Инициализация 
For j=  1: т 
У0): = *(/) 
end
Решение
у(1):=у(1)/Ц1,1)
for j=  2: т
for к= 1: j  -  1
m  = y ( j) - l- ( i,k )y (k )
end
y(JY = y(j) ~ L(JJ)

end

Примечание — Для определения вектора х, соответствующего решению у, выполнять только действия 
этапа «Решение» алгоритма, приведенного в А.4.3.1, используя х  вместо у.

А.4.3.2 Алгоритм, приведенный в А.4.3.1, может быть применен к решению матричного уравнения LY=X, по­
следовательно применяя его к каждому столбцу X  Решение имеет вид У = L"1X.

А.4.4 Решение верхней треугольной системы
А.4.4.1 Решение верхней треугольной системы может быть определено с помощью транспонирования ниж­

ней треугольной матрицы. Если L — нижняя треугольная матрица размерности тхт такая, что L(j,j) ± 0, j  = 1,..., т и 
х  — вектор размерности т *  1, следующий алгоритм позволяет определить элемент вектора у, где у  удовлетворяет 
уравнению LJy  = х, т.е. у = L~Jx.

Инициализация 
For j  = 1: т
№  = x(J)
end
Решение
y(m): = y(m)!L(m, m) 
l o r j = j  = /7? -  1: -  1: 1 
for к = j  + 1: /7?
У(/): = У(/) -  ЦАЛ У(к) 
end
У(/): = y W U jj)  

end

Примечание — Для определения вектора х, соответствующего решению у, выполняют только действия 
этапа «Решение» алгоритма, приведенного в А.4.4.1, используя х  вместо у.

А.4.4.2 Алгоритм, приведенный в А.4.4.1, может быть применен для решения матричного уравнения LTY = X, 
последовательно применяя его к каждой колонке X. Решение имеет вид Y = L'TX.

А.5 Ортогональная факторизация

Ортогональные матрицы являются комбинациями вращений и отображений и имеют свойство, состоящее в 
том, что умножение вектора на ортогональную матрицу не изменяет длины вектора (квадратный корень из суммы 
квадратов элементов вектора). Столбцы ортогональной матрицы можно рассматривать как системы ортогональ­
ных осей. Важность методов ортогонального разложения состоит в том, что они позволяют решать матричные 
уравнения в цифровой форме устойчивым методом. Алгоритмы вычисления ортогонального разложения матрицы 
описаны в [1, 10, 20].

А.5.1 QR-факторизация
QR-факторизация матрицы А размерности т*п, с т > п  имеет вид:

A = QR = [Q1,Q2]
7 * 1

О -  QiRi -

где Q = [Q.|, Q2] является ортогональной матрицей размерности т*т, Q1 — матрица, состоящая из первых п 
столбцов матрицы Q, Q1 = /, /?1 — верхняя треугольная матрица размерности п*п.
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П р и м е ч а н и е  — Также может быть получена QR-факгоризация матрицы А размерности /77хл, ст < п . Так 
как для матрицы в настоящих рекомендациях, для которых требуется QR-факторизация, необходимо выполнение 
неравенства /?7 > л, разложение не существует.

А.5.2 RQ-факторизация
А.5.2.1 RQ-факторизация матрицы В размерности т*п, с т ^п , имеет вид:

B = TZ  = Г
7г

Z ,

где Z — ортогональная матрица; Т2— верхняя треугольная матрица.
А.5.2.2 RQ-факторизация матрицы В размерности m*n, с m < п имеет вид:

где Z — ортогональная матрица; Т2 — верхняя треугольная матрица.

B = TZ  = [0T2]
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Приложение В 
(справочное)

Применение алгоритма Гаусса-Ньютона к обобщенной регрессии
В.1 В данном приложении приведены алгоритмы в соответствии с 7.2.1 и 8.2.1 с использованием алгоритма 

Гаусса-Ньютона.
В.2 Алгоритмы, приведенные в 7.2.1 и 8.2.1, являются частным случаем итеративного алгоритма Гаусса-Нью­

тона (см. [10]) для минимизации суммы квадратов нелинейных функций:
т

F{A) = J f? { A ) ,A  = (Ai,...,An)T, т > п .
/=1

В.З Пусть а — приближение искомого параметра а и

'э  ц
ЦА) ЭА, ЭА„

f  =
Ш ) _

, J =

ЭА, ЭА„

где f  и j — соответственно вектор размерности /77*1 значений функции и якобиан размерности т*п частных произ­
водных первого порядка по параметрам, оцениваемым по приближению а к параметрам.

В.4 Пусть р  — решение уравнения

J TJ p  = - J Tf. (В.1)

Тогда обновленная оценка искомых параметров имеет вид а := а + р.
В.5 Для алгоритмов в 7.2.1 и 8.2.1 А = {А, В)т и функция f/(A) является мерой обобщенного расстояния от/'-й 

ТОЧКИ (Xj, у,-) до линии у = А + Вх.
В.6 Пусть Uj -  ковариационная матрица /-й точки,

U2 (X j )  со v(x/,y/ )

со v(y/,x/ ) и2 (у,)

Xj = х (-(А, В) — решение уравнения

min df(x,A , В) 
х

-iT

у , - А - В х
,-1

у , - А -  Вх
(В-2)

как функция А и В.
В.7 Если f?(A, В) определяется равенством

f2j(A, B) = d}(x-(A, В), А, В),
т. е. d?(x, А, В) оценивают в точке х(* то значения А и В минимизируют

m
F(A,B) = Y f?(A ,B ).

i=1
Определяют лучшую линию обобщенной регрессии. Выполнение алгоритма Гаусса-Ньютона требует опреде­

ления частных производных первого порядка от /)(А, В) по А и В в форме якобиана J.
В.8 Пусть п = (-В, 1)т — вектор ортогональный к линии у = А + Вх, х ] — решение задачи (В.2). 

Если Xj — (Xj, у(-)т, х - = (x*j, А + Вх-)т, то

t j = n JU,n, (В.З)

ДА, В) = (,--1/2 nT(X j-X j), (В.4)

—  = - f r 1/2nT
0' , ^ -  = -Д1/2„Т "0 "

ЭА / 1 эв ' (В-5)

В.9 Решение х (*задачи (В.2) имеет вид:
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Pi
Pi

= U,
-В
1

. /  _ ~Qixi + PiiYi -  A) 
' -Q; + PjB

(B.6)

П р и м е ч а н и е  — В выражениях (В.З), (В.4), (В.5) и (В.6) использованы Uh а не Ц“ 1. Не требуется суще­
ствования матрицы обратной к Ujt но лтЦ л  должно быть отличным от нуля.

В. 10 Алгоритмы в 7.2.1 и 8.2.1 представляют собой алгоритм Гаусса-Ньютона. В них использованы явные вы­
ражения для ft{A, В), д^/дА  и dfj/ЭВ. Решение для обновления р  в выражении (В.1) сформулировано как проблема 
определения методом взвешенных наименьших квадратов наилучшей прямой (см. 6.2.1 вычисления 1—5) для пре­
образованных данных, полученных по результатам измерений (х(-, у(), соответствующих ковариационной матрице 
Uj и текущим аппроксимациям А и В.
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Приложение С 
(справочное)

Применение ортогональной факторизации к решению обобщенной задачи Гаусса-Маркова

С.1 Общие положения

В итеративном алгоритме, описанном в 10.2.2, использовано предположение о том, что ковариационная 
матрица U размерности 2т * 2т является положительно определенной и, следовательно, имеет обратную ма­
трицу. В частности, свойство обратимости предполагает, что и(х() > 0 и и(у() > 0. В данном приложении описан 
общий алгоритм, который подходит для всех действительных (симметричных положительно полуопределенных) 
ковариационных матриц U. Необходимо, чтобы ковариационная матрица могла быть представлена в виде U = ВВТ, 
где В -  матрица размерности 2т * р (р> т). Часто ковариационную матрицу задают в виде такого разложения на 
множители. Если В является обратимой, В может быть ее фактором Холецкого. Алгоритм аналогичен, описанному 
в 10.2.2, и требует вычисления остатков f  и якобиана J, но поправки 8( определяют, используя две ортогональных

Р

факторизации. Математически Ы минимизирует стс = ̂ 'cf при условии f  = -J8 t + Вс.
/=1

С.2 Оценки параметров калибровочной функции, соответствующие стандартной неопределенности 
и ковариации

Оценки а и b вычисляют в соответствии с вычислениями 1—9, приведенными ниже; стандартные неопреде­
ленности и(а) и и(Ь) оценивают в соответствии^ вычислениями 10:

1) определяют начальные приближения t = (х^..., хт , а, Ь)т к параметрам;
2) вычисляют вектор размерности 2/77*1,

и якобиан размерности 2т*(т + 2),

х1 -Х.|

f  —
х - х

т  —
У1 -  (а +  Ьх1 у  — а1 — Ьх

ym -(a  + bxm

(/77 + 2),

-1 0 0 0 0 0
0 _1 0 0 0 0

0 0 -1 0 0 0
0 0 0 1 0 0

- Ь 0 0 0 -1 - *1

0 - 6 0 0 -1 —*2

0 0

• 
О

 I -1 - * т -1

0 0 0 S -1 _* т

- /  0 

-Ь / -1

гдех = хт )т, а иЬ определяют на основе текущей оценки (вектора параметров; 
3) определяют разложение на множители QR-факгоризацию матрицы J:

0

- х

J  = Q
/? 1

О

где Q — ортогональная матрица размерности 2т*2т, /?1 — верхняя треугольная матрица размерности 
(/7? + 2) х (/77 + 2) (см. А.5.1);

4) формируют матричное произведение QTB и находят RQ-факгоризацию

QTB = TZ,

где Т — матрица размерности_2/т7хр и Z — ортогональная матрица размерности р*р  (см. А.5.2);
5) определяют f  = QTf, f  и Т.

41



Р 50.1.098— 2014

f  = , Т = Til 7-12
h . 0 7*22.

где f, — вектор размерности (т+2)х1, f2 — вектор размерности (т — 2)><1, Т.11 — матрица размерности (т + 2)* 
Х(Р -  т + 2), Г12 — матрица размерности (т + 2) * (т -  2), и Г22 — верхняя треугольная матрица размерности 
(/77 -  2)х(/77 -  2);

6) решают верхнюю треугольную систему Г22ё2 = f2, для определения вектора ё2 = (ё2 ё2т_2)Т размер­
ности (/77 -  2)*1 (см. А.4.4);

7) решают верхнюю треугольную систему R f i t  f , для определения поправок Ы (см. А.4.4);
8) обновляют текущие приближения параметров: t  .= t  + 51,
9) повторяют вычисления 2—8 до тех пор, пока не будет достигнута необходимая сходимость. Устанавлива­

ют а = а и Ь = Ь  (элементы m + 1 и m + 2 из f);
10) пусть Rg-  нижний правый минор размерности 2^2 из Ил< Та— нижний правый минор размерности 2x2 из 

7^. Решают верхнюю треугольную систему

Ra Ka =T a,

для верхней треугольной матрицы К а размерности 2x2 (см. 4.4), устанавливают Ug = KJiJ, затем вычисляют
и2(а) = Ua( 1, 1), u2(b) = Ua(2, 2) и cov(a, Ь) = Ua( 1, 2).

Примечание 1 — Подход, описанный в С.2, представляет собой общее решение при определении параме­
тров линейной калибровочной функции на основе метода наименьших квадратов. Все другие подходы, описанные 
в настоящих рекомендациях, являются частными случаями этого подхода.

Примечание 2 — Вычисления 1,2, 8 и 9 в С.2 идентичны соответственно вычислениям 1, 2, 9 и 10 в 10.2.2.

С.З Валидация модели

Если /77 > 2, соответствие модели данным может быть частично проверено с использованием элементов 
вектора ё2 (продолжение С.2):

т - 2

11 определяют наблюдаемое значение Xobs = с числом степеней свободы v = m -2 ;
/=1

12 сопоставляют %̂ bs с квантилем %2 уровня 95 %. Если превышает этот квантиль, линейную модель 
отклоняют.

П р и м е ч а н и е  — Критерий %2 основан на предположении, что d(- и е(- в модели (13) представляют реали­
зацию случайных величин, характеризуемых в первом приближении многомерным нормальным распределением. 
В условиях этого предположения вектор ё2 размерности (т-2)х1 подчиняется многомерному нормальному рас­
пределению ковариационной матрицы, равной матрице идентичности размерности ( т - 2 )  х (т - 2 )  так, что Xobs 
соответствует распределение c m  -  2 степенями свободы.

Пример 1 — Подход QR-факторизацци может быть применен к числовому примеру, описанному в 
разделе 10.

Ковариационная матрица Ux в факторизованной форме имеет вид (см. D.4)

их = вхв],

0,5 0,0 0,0 0,0 0,0 0,0 0,0 0,5 0,0 0,0

0,0 0,5 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0

0,0 0,0 0,5 0,0 0,0 0,0 0,0 0,5 1,0 0,0

0,0 0,0 0,0 0,5 0,0 0,0 0,0 0,0 0,0 1,0

0,0 0,0 0,0 0,0 0,5 0,0 0,0 0,5 0,0 1,0

0,0 0,0 0,0 0,0 0,0 0,5 0,0 0,0 1,0 1,0

0,0 0,0 0,0 0,0 0,0 0,0 0,5 0,5 1,0 1,0

Ковариационная матрица Uy в факторизованной форме имеет вид: Uy = ВуВу
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2 , 0 0 , 0 0 , 0 0 , 0 0 , 0 0 , 0 0 , 0 1 , 0

0 , 0 2 , 0 0 , 0 0 , 0 0 , 0 0 , 0 0 , 0 1 , 0

0 , 0 0 , 0 2 , 0 0 , 0 0 , 0 0 , 0 0 , 0 1 , 0

0 , 0 0 , 0 0 , 0 2 , 0 0 , 0 0 , 0 0 , 0 1 , 0

0 , 0 0 , 0 0 , 0 0 , 0 2 , 0 0 , 0 0 , 0 1 , 0

0 , 0 0 , 0 0 , 0 0 , 0 0 , 0 2 , 0 0 , 0 1 , 0

0 , 0 0 , 0 0 , 0 0 , 0 0 , 0 0 , 0 2 , 0 1 , 0

Полная ковариационная матрица U размерности 14x14 имеет вид U = ВВТ, где В - матрица размер­
ности 14x18

В =
Вх
о

Для данного примера алгоритм, приведенный в С.2, математически эквивалентен алгоритму, 
приведенному в 10.2.2. Оба подхода дают очень близкие числовые результаты.

Пример 2 — В таблице С.1 приведено семь результатов измерений (xj: у ), полученных с использо­
ванием моделей измерений, описанных в D. 2 и D. 5.

Ковариационная матрица, соответствующая у/, с использованием модели (D.1) с и5 =2,0 и uR = 1,0 
является такой же, как в примере 1 приложения С.

Данные х,- и соответствующая ковариационная матрица получены с использованием модели (D.3) 
c z 1 = 50, z2 = 100, z3 = 200, u(Zj) = 0,5 и u(z2) = u(z3) = 1,0, так, что

их = вхвх\
0,5 0,0 0,0

0,0 1,0 0,0

0,5 1,0 0,0

0,0 0,0 1,0

0,5 0,0 1,0

0,0 1,0 1,0

0,5 1,0 1,0

Полная ковариационная матрица U размерности 14x14 может быть представлена в виде U = ВВТ, 
где В — матрица размерности 14x11

В =
Вх

I----
о

0 4» I __

Для этого примера не может быть применен алгоритм, описанный в 10.2.2, так как U не является 
положительно определенной. Вместо него может быть использован алгоритм, описанный в С.2.

В таблице С.2 приведены начальный вектор tQ, поправки 8 tk для k-ой итерации к  = 1 ,..., 5 и заклю­
чительная оценка t0 = t5 .

Т а б л и ц а  С.1 -  Данные семи результатов измерений х,- и у,-

*» У/

50,5 47,1
99,7 98,4
150,2 153,7
199,5 194,0
249,9 251,9
299,2 297,5
349,7 349,0
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Т а б л и ц а  С.2 -  Изменение параметров вектора t

ч 8fj х Ю'2 Ы2 х т 4 8f3 х 10-6 Ы4 х ю-8 8f5 х 10-10 Ч

50,5000 30,8229 3,1874 23,2957 8,1124 16,4231 50,8086

99,7000 55,8313 -13,8365 26,1136 -0,2063 15,6770 100,2570

150,2000 86,6542 -10,6491 49,4093 7,9061 32,1002 151,0655

199,5000 -59,0711 -8,5976 -49,5849 -44,7904 -43,0470 198,9044

249,9000 -28,2482 -45,4102 -26,2891 -36,6780 -26,6237 249,6130

299,2000 -3,2398 -62,4341 -23,4713 -44,9967 -27,3698 299,1613

349,7000 27,5831 -59,2467 -0,1755 -36,8843 -10,9468 349,9699

-1,8528 -50,6203 -140,0856 -63,9316 -100,9432 -68,1345 -2,3731

1,0042 0,1738 0,8571 0,3217 0,6108 0,3722 1,0060
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Приложение D 
(справочное)

Представление неопределенностей и ковариаций результатов измерений х и  у

D.1 Общие положения

В данном приложении установлено, как могут быть получены неопределенности и ковариации, соответству­
ющие результатам измерений и моделируемым значениям. Подход основан на использовании модели процесса 
измерений, лежащей в основе определения отклика и моделируемых данных и применения закона распростране­
ния неопределенности в соответствии с Руководством ИСО/МЭК 98-3:2008. С этой целью использованы иллюстра­
тивные примеры.

D.2 Данные отклика 1

D.2.1 Общие положения
D.2.1.1 Предполагается, что величина У, представляющая отклик средства измерений, может быть описана 

моделью измерений

У=У0 + Е, (D.1)
где У0 — величина, реализованная указанным откликом, Е — величина, представляющая систематическое воз­
действие. Предположим, что знания об У0 можно описать распределением со стандартным отклонением uR. 
Это распределение обычно основано на анализе большого количества повторений У. У0 оценивают средним на­
блюдаемых значений, uR — стандартная неопределенность, соответствующая этой оценке. Предположим, что 
знания о Е таковы, что Е обладает нулевым математическим ожиданием (т.е. были применены все необходимые 
корректировки) и дисперсией и£ (полученной на основе знаний о средстве измерений).

D.2.1.2 Из выражения (D.1) следует, что применяя закон распространения неопределенности в соответствии 
с Руководством ИСО/МЭК 98-3:2008, стандартная неопределенность и(у() измеренного значения у(- величины У 
имеет вид:

и2(У/) = ы | + ur2.
Кроме того, ковариация измеренных значений у(- и у- величины У имеет вид:

соv(y(, уу) = и |.
D.2.1.3 Таким образом ковариационная матрица в этом случае

UУ ~

2 2 2
US + UR US

2 2 2 
US US +  UR

US

2 2 
US US

2  2  

US + UR

D.2.2 Модель измерений для неопределенности и ковариации, соответствующих у,-.

D.2.2.1 Данные, используемые в примере раздела 9, получены для измерительной системы, на которой вы­
полнены две группы измерений. Каждая группа измерений подвергалась различным воздействиям системы. Эти 
воздействия являются некоррелированными, т. е.

y  = \yoj + e v '1 = \ - , ггц <т,
' |У0/ + Е2, / = т-| + 1,...,т, ’

где У0(-— величина /-го отклика, Е1 и Е 2 — величины, характеризующие воздействия системы. Предположим, что 
знания об У0(-таковы, что У0(- имеет дисперсию uR, а знания об Ек таковы, что позволяют считать, что Ек обладает 
нулевым математическим ожиданием и дисперсией и \  k для к  = 1, 2.

D.2.2.2 Стандартная неопределенность и(у() результата измерений у,- величины У) имеет вид:

2 /  ч [ UR + UI,1. 1 =

и (У') = \ 2 2 -Iu r+ u| , 2 ' I = гщ + \ —,т.

Ковариация значений у(- и уу имеет вид:

co v(y ,,yy ):

ы| 1 , 1 < / < т ,̂ 1 < у < т^

US2 ’ т .|+ 1< / < т , т ^ <  у <т.  
0, иначе.
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D.2.2.3 Ковариационная матрица в этом случае имеет вид:

Uh + “ R • • Ц § , 1

о
 

*•

О
 

*•

US,1 • !  +  U%

* 
о

* 
о

О
 

**

О
 

**

2 2 
US, 2 +  UR '

см
см

^' **

* 
О

________i

* 
о

US,2 • US,2 +  UR

D.3 Данные отклика 2

D.3.1 Модель измерений идентична выражению (D.1) за исключением того, что воздействия системы Еявля- 
ются абсолютными; D — относительное воздействие системы.

У= Y0(1 +D).
D.3.2 Обработка аналогична, проведенной в D.2, за исключением того, что теперь, используют и0 для обо­

значения стандартной неопределенности оценки У0,

и2(У1) = у }  "ё  + и£ , 
соv(y,-, уу) = у,- ■ yj ■ u g .

D.3.3 Ковариационная матрица в этом случае имеет вид:

y 'uD +uR УгУУо ••• УУУ,Л 
и  У2уЛ  У\и1 +Ur ... y2ymu2D

. у ,„уК  ymy2uD ■■■yiul + ul_

D.4 Данные моделирования

D.4.1 Данные, использованные в примере раздела 10, получены на основе модели измерений, в которой в 
соответствии с практикой, применяемой в метрологии, используют большое количество стандартных образцов для 
формирования большого количества значений х( при калибровке. В соответствии с моделью х(- представляют со­
бой реализации случайных величин X), / = 1....,7, определенных с помощью случайных величин Zk, к= 1, 2, 3 и D(-, 
/ = 1__7:

Х1 =Z1 + Dv 
Х̂2 + ^2'X3 = z1+ z2 +D3, (D.2)
X4 = Z3 + D4,
x 5 = z1 + z3 +d5,
X6 -  Z2 + z3 +D6,
X7 = Zi + Z2 + Z3D7.

Случайные величины Zk, k=  1, 2, 3 обладают математическим ожиданием zk и дисперсией u2(zk), случайные 
величины Dj обладают нулевым математическим ожиданием и дисперсией u2Di. (При калибровке масс значения zk 
являются калиброванными значениями масс, a u(zk) — неопределенностями).

D.4.2 Неопределенности u(zk) и u(d() распространяют с помощью модели измерений, приведенной в D.4.1, 
для определения неопределенностей оценок х(-, величин X) с использованием закона распространения неопреде­
ленности в соответствии с Руководством ИСО/МЭК 98-3:2008. Общая зависимость Ху от Zk означает, что некоторые 
из ковариаций являются отличными от нуля. Распространение неопределенности наиболее легко может быть опи­
сано в матричной форме. Пусть

C = [CD Cz]
представляет собой матрицу чувствительности размерности 7х 10, где CD = I — матрица идентичности размер­
ности 7Х7.

Cz

1 0 0

0 1 0

1 1 0

0 0 1

1 0 1

0 1 1

1 1 1
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D.4.3 Пусть SD — диагональная матрица размерности 7x7 с диагональными элементами SD(/, /') = uDj ,
i = 1.... 7, Sz — диагональная матрица размерности 3x3 с диагональными элементами Sz(k, к) = u(zk), к =  1, 2, 3.
Пусть

В х  ~  [ CD
о

Sz
[SD CZSZ]

D.4.4 Наилучшая оценках имеет вид х  = Czz, гд е х— вектор размерности 7x1, с соответствующей матрицей 
ковариации размерности 7x7

их = Вх®х = SD + CzS2zCTZ-
Элемент S2D является вкладом в дисперсию, вызванным D(-, а второй элемент— вкладом в дисперсию, вы­

званным Zk.

D.5 Входные данные 2

D.5.1 Входные данные, используемые в примере 2 приложения С, получены на основе следующей моде­
ли измерений, связанной с описанной в D.4. Исходные данные х(- являются реализацией случайных величин Xjt 
/ = 1,... ,7, определенных как функции случайных величин Zk, А=1, 2, 3:

X ^ = Z V
x2 = z2,
X 3 = z1+ z2, (D.3)
x4 = z3,
* 5  = Z l + Z3’
Хб -  ^2 + Z3,x?= z1 + z2 + z3.

Случайные переменные Zk обладают математическими ожиданиями zk и дисперсиями u2(zk), /(=1,2, 3.
D.5.2 Неопределенность u(zk) на основе модели измерений, приведенной в D.5.1, распространена на оцен­

ки х,- величины X,- с помощью закона распространения неопределенности (см. Руководство ИСО/МЭК 98-3:2008). 
В соответствии с D.4 наилучшая оценка Х(- имеет вид х = Czz, где х — вектор размерности 7Х1 с соответствующей 
ковариационной матрицей размерности 7x7.

UX = BXBJ = CZS2ZCJZ-Bx = c zs z.

В этом случае Ux не имеет обратной матрицы.

D.6 Исходные и наблюдаемые данные

D.6.1 Корреляции, т.е. ковариации отличные от нуля, соответствующие результатам измерений х(- и у(-, воз­
никают в результате воздействий, влияющих на величины (х,- и у().

D.6.2 Предположим, что X  и У могут быть описаны моделью измерений

Х  = Х 0 + 7, У =  У0 + 7, (D.4)

где Х0 и У0 и Т — независимые случайные величины, математические ожидания которых равны х0 , у0 и нуль и дис­
персиями и2(х0), и2 (у0) и u2(t) соответственно.

D.6.3 Из выражения (D.4) следует, что применяя закон распространения неопределенности в соответствии 
с Руководством ИСО/МЭК 98-3:2008, стандартные неопределенность и(х() и и(у() результатов измерений х(- и у(- ве­
личин X  и У имеют вид:

u2(Xi) = и2(х0) + и2 (t), u2 (Yi) = и2(у0) + u2 (t).

Кроме того, ковариация х(- и у(- имеет вид:
cov (X,-, y,) = u2 {t).

D.6.4 Если вместо X  и У может быть применена модель измерений

Х = Х 0 + Т, У = У0 -  Т,

ковариация х(- и у(- имеет вид
cov (х,-, y,) = -u 2(f).
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Приложение Е 
(справочное)

Неопределенность, известная с точностью до постоянного множителя
Е.1 В данном приложении описан метод оценки неопределенности результатов измерений в случае, если 

неопределенность известна с точностью до постоянного коэффициента.
Е.2 В настоящих рекомендациях предполагается, что величины (переменные) характеризуются согласно 

принципам Руководства ИСО/МЭК 98-3:2008 и Руководства ИСО/МЭК 98-3:2008/Дополнение 1:2008 (см.[13]) рас­
пределением вероятностей. Результатам измерений соответствует математическое ожидание и дисперсия соот­
ветствующей случайной величины.

П рим ечание  — Для измеренного значения у, как реализации случайной величины, характеризуемой 
(-распределением с параметром масштаба s и v степенями свободы (v > 2), стандартная неопределенность имеет 
вид и(у) = [v /(v -  2)]^s, где s — стандартное отклонение распределения.

Е.З Так как калибровочную функцию используют при выполнении измерений, оценка неопределенности дан­
ных калибровки должна быть столь полной и строгой насколько возможно. Оценки параметров калибровочной 
функции и их неопределенности могут в этом случае быть использованы с доверием.

В настоящих рекомендациях применен этот подход в ситуации, когда неопределенность из­
вестна с точностью до постоянного коэффициента. В самом общем случае (раздел 9) предполагает­
ся, что измеренные значения у  имеют идентичные неопределенности, но их общая стандартная не­
определенность о неизвестна. (Это — более общий случай, когда ковариационная матрица имеет вид 
U = o 2U0, где U0 — задано, о неизвестно.) Если т > 2, можно получить оценку о на основе разброса исходных 
д анны х вокруг подобранной линии калибровочной функции. Эта оценка известна как апостериорная оценка о, ква­
лиф икац ия  апостериорного  отношения к данным после определения наилучшей линии калибровки.

Е.4 Апостериорные оценки определяют используя те же понятия, что и при валидации модели. Делая пред­
положение о том, что исходные данные являются реализацией величины, характеризуемой многомерным нор­
мальным распределением, апостериорную оценку о выбирают так, чтобы х2ь3 был равен ( т - 2 )  — (математиче­
скому ожиданию х2-распределения с (т -  2) степенями свободы). В этом случае валидация модели не может быть 
выполнена, так как апостериорная оценка выбрана так, чтобы критерий валидации был выполнен.

Е.5 Эти методы должны быть использованы с большой осторожностью. Например, если график данных ука­
зывает, что они не соответствуют линейной калибровочной функции, метод не должен быть использован.

Е.6 О ценки парам етров а и b не зави сят от коэф ф ициента  пропорциональности о. Оценка о необходима 
только  для определения стандартны х неопределенностей и(а) и и(Ь) и ковариации соv(a, Ь). Для случая, когда U  
полностью  известна, и(а), и(Ь) и соv(a, Ь) м огут бы ть  оценены  по д анны м  и U. Предположения о распределениях 
д анны х не нужны. В предполож ении о норм альности оценки парам етров м огут  рассматриваться как реализации 
случай ны х величин, характеризуем ы х двум ерны м  распределением .

Е.7 В случае, если данны е м огут бы ть  рассм отрены , ка к реализации м ногом ерного  норм ального  распреде­
л ения  с известной ковариационной  матрицей U, д вум ерное  распределение в Е.6 является норм альны м  с ковариа­
ционной матрицей Ug и элем ентам и и2(а) и и2(Ь) и соv(a, Ь) как в вы ражении (1).

Е.8 Д ля случая Е.4, когда м ногом ерном у норм альном у распределению  соответствует ковариационная матри­
ца U = o2U0, где U0 известно, а о  неизвестно, UQ использую т вм есто U  в вы числениях. Ковариационная матрица

Г и$(а) соv0(a,b)
и а ,0 -  о

со v0(b,a) u$(b)

оценок парам етров л инейной  калибровочной ф ункции может бы ть  вы числена. Если т > 2, наблю даем ое значение 
X2 (см. 6 .3) может бы ть  использовано для определения апостериорной  оценки коэф ф ициента  пропорционально­
сти, связанного  с исходной неопределенностью . П усть х 2ь3 определено в соответствии с вы числениям и 8 в 6.3

° 2 = xlbs>(m ~ 2) ■
Е.9 С корректированная  по м асш табу ковариационная матрица

~2 -— -
и (а) соv(a,b)

-— - -2
соv(b,a) и (Ь)

может бы ть представлена в виде:

0 а  = ° 2 и а ,0- .  .  _
т.е. скорректированны е по м асш табу стандартны е неопределенности й(а) и й(Ь) и ковариация соv (a ,  Ь) получен­
ны х оценок парам етров им ею т вид:

й2(а) = о2и§(а) , й2ф) = a2u£(b), cov (a, b) = 62cov0(a, b) . (Е.1)
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Е.10 Оценки (Е.1) основаны на конечном количестве т исходных данных. Для небольших т метод занижает 
значение дисперсии распределения для оценок параметров. Для т > 4 лучшую оценку определяют (см.[19, глава 8]) 
используя

ё 2 _ т - 2  Xobs _  Xobs 

/ 7 7 - 4  / 7 7 - 2  / 7 7 - 4

П р и м е ч а н и е  — В случае предположения о нормальности распределения оценки параметров рассма­
тривают как реализацию случайной величины с двумерным f-распределением с матрицей параметров масштаба 0а 
и (/77 -  2) степенями свободы. Для т > 4 ковариационная матрица этого распределения имеет вид:

й2(а) 

со v(b,a)

со v(a,b) 

й2(Ь) _

т -2
т -4

U а = О U.а,0 , (Е.2)

где коэффициент (т -  2) / (т -  4) учитывает то, что о является оценкой, а не известным значением.
Пример — (неизвестные весовые коэффициенты). В данном примере х(- определены точно, а у(- 

имеют равные, но неизвестные стандартные неопределенности, апостериорные оценки неопреде­
ленностей подобранных параметров оценены на основе полученных остатков. Аппроксимацию прово­
дят, выбирая весовые коэффициенты, равные единице (это значит, что стандартная неопределен­
ность и (у) также равна единице). Данные приведены в таблице Е.1.

Т а б л и ц а  Е.1 -  Данные шести результатов измерений

х, У, и(у)

1,000 3,014 1

2,000 5,225 1

3,000 7,004 1

4,000 9,061 1

5,000 11,201 1

6,000 12,762 1

В таблице Е.2 приведены результаты вычислений параметров наилучшей прямой. В соот­
ветствии с этой таблицей gQ = 21,000/6,000 = 3,500, h0 = 48,267/6,000 = 8,044, b = 34,363/17,500 = 1,964, 
а = 8,044 -  (1,964) (3,500) = 1,172.

Т а б л и ц а  Е.2 -  Вычисления на основе данных таблицы Е.1

W; и>fx, wfy; 9i hi 9* 9ihi n r f

3,500 8,044 a = 1,172
1,000 1,000 1,000 3,014 -2,500 -  5,031 6,250 12,576 -0,122 0,015
1,000 1,000 2,000 5,225 -1,500 -2,819 2,250 4,229 0,126 0,016
1,000 1,000 3,000 7,004 -0,500 -  1,040 0,250 0,520 -0,059 0,003
1,000 1,000 4,000 9,061 0,500 1,017 0,250 0,508 0,035 0,001
1,000 1,000 5,000 11,201 1,500 3,157 2,250 4,735 0,211 0,045
1,000 1,000 6,000 12,762 2,500 4,718 6,250 11,794 -0,191 0,037

6,000 21,000 48,267 17,500 34,363 b = 1,964 0,116

Данные и полученная линейная калибровочная функция приведены на рисунке Е.1. Взвешенные 
остатки показаны на рисунке Е.2. Поскольку всем и(у) присвоено значение 1, в этом случае неопреде­
ленности сильно превышают остатки по величине.
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У

Рисунок Е.1 -  Данные таблицы Е.1 и полученная линейная калибровочная функция (см. таблицу Е.2)

Если априорно известно, что и(у) = 1, / = 1, ..., т, то неопределенность полученных параметров, 
вычисленная по данным таблицы Е.2 имеет вид:

и2(а) = 1/6,000 + (3,500)2/17,500, так, что и(а) = 0,931; 
и2(Ь) = 1/17,500, так, что и(Ь) = 0,239; 
cov(a, Ь) = -3,500/17,500 = -0,200.

Поскольку эти вычисления основаны на произвольном присвоении u(yj) = 1, необходима апостери­
орная оценка 6 по u(yj) для определения неопределенностей параметров полученной функции. В соот­
ветствии с таблицей

~2
О Xobs

т -2
0,116 „—----- = 0,029, о = 0,171.

4
г

Рисунок Е.2 — Взвешенные остатки для подобранной линейной калибровочной функции
в соответствии с таблицей Е.2

Значение 6 представляет собой оценку стандартной неопределенности u(yjf, соответствующей 
У/, основанную на наблюдаемом значении %lbs- Учитывая эту апостериорную оценку, вычисления могут  
быть повторены с u(yj) = 0,171. Оценки а и b при этом не изменились, но наблюдаемое значение %2obs и 
неопределенности определены следующим образом:
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так, что =  т -  2 =  4 —  математическое ожидание %2-распределения с 4 степенями свободы. Ис-
о

пользуя формулу (Е.1) можно записать
и2(а) = д2и§(а) = 0,867 о2 = 0,025, так, что й(а) = 0,931 о  = 0,159;

й(Ь) = d2ujf(b) = 0,057 а 2 = 0,002, /пак, что й(Ь) = 0,239 ст = 0,041;

cov (а, Ь) = ст2 cov^a, b) = -0,200 а 2 = -0,006.
Элементы матрицы Ua затем оценивают, если априорно известно, что и(у) = а. Однако, о  явля­

ется оценкой стандартной неопределенности уг Для т > 4 коэффициент (т -  2)/(т -  4) может быть 
включен в ковариационную матрицу для учета дополнительной неопределенности, которая является 
результатом того, что оценки о получены по т значениям. Используя формулу (Е.2), можно записать

и а
т

-U,
т

а — ■

й(а) = (0,050)1/2 = 0,225, й(Ь)  = (0,003)*/£ = 0,058 и cov(a,b)  = -0,0121

0,025 -0,006 
-0,006 0,002

0,050 -0,012 
-0,012 0,003

1 / 2
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Приложение F 
(справочное)

Разработка программного обеспечения для описанных алгоритмов

F.1 Программное обеспечение, реализующее алгоритмы, описанные в настоящих рекомендациях для опре­
деления и использования линейных калибровочных функций, разработано Национальной Физической Лаборато­
рией (NPL) Соединенного Королевства. Программное обеспечение доступно как архивированная папка ZIP с веб­
сайтов NPL www.nDl.co.uk/mathematics-scientific-computina/software-suDDort-for-metroloav/software-downloads-fssfm) 
<http://www.npl.co.uk/mathematics-scientific-computina/software-support-for-metroloav/software-downloads-fssfm)> и 
ИСО standards.iso.org/iso/ts/28037/.

F.2 Программное обеспечение разработано на языке программирования MATLAB (см.[18]), в форме 
М-файлов и файлов html и использует Версии 7.10.0 MATLAB (R2010a). Для пользователей MATLAB М-файлы 
могут быть выполнены непосредственно и также изменены для выполнения алгоритмов обработки различных 
данных. Для пользователей, не имеющих доступа к MATLAB, программное обеспечение более всего подходит 
для использования как файлы html. Программное обеспечение может быть использовано в качестве основы для 
подготовки выполнения алгоритмов на других языках программирования. В пределах файлов использованы об­
ращения ко многим функциям MATLAB, которые также включены в программное обеспечение. Например, функция 
algm_gdr1_steps_2_to_5 выполняет вычисления 2—5 процедуры вычислений ситуации 5.3.2 Ь) (неопределенность 
соответствует х(- и у,-, а все ковариации, соответствующие данным, являются несущественными), установленной в
7.2.1. Кроме того, некоторое использование встроенных функций MATLAB предусмотрено для разложения Холец- 
кого. Скрипты MATLAB (имеющие расширение ‘. т ’) и файлы html (‘.html’) обеспечены следующим:

- TS28037_WLS1 (выполняет числовой пример метода взвешенных наименьших квадратов с известными 
равными весовыми коэффициентами, описанный в разделе 6 и выполняет прогноз, описанный в 11.1, пример 1 и 
предварительную оценку, описанную в 11.2);

- TS28037_WLS2 (выполняет числовой пример метода взвешенных наименьших квадратов с известными не­
равными весовыми коэффициентами, описанный в разделе 6, и выполняет прогноз, описанный в 11.1, пример 2);

- TS28037_WLS3 (выполняет числовой пример метода взвешенных наименьших квадратов с неизвестными 
равными весовыми коэффициентами, описанный в приложении Е);

- TS28037_GDR1 (выполняет числовой пример обобщенного регрессионного анализа расстояний, описан­
ный в разделе 7);

- TS28037_GDR2 (выполняет числовой пример, иллюстрирующий алгоритм для обобщенной регрессии рас­
стояний, описанный в разделе 8);

- TS28037_GMR(BbinonHfleT числовой пример регрессии Гаусса-Маркова (GMR), описанный в разделе 9);
- TS28037_GGMR1 (выполняет числовой пример обобщенной регрессии Гаусс-Маркова, описанный в раз­

деле 10);
- TS28037_GGMR2 (выполняет числовой пример обобщенной регрессии Гаусса-Маркова, описанный в раз­

деле 10 и приложении С, Пример 1, с использованием ортогонального разложения, описанного в С.2);
- TS28037_GGMR3 (выполняет числовой пример, описанный в приложении С, Пример 2,с использованием 

ортогонального разложения, описанного в С.2).
Несмотря на то, что прогноз и предварительная оценка могут быть выполнены только в скриптах, предна­

значенных для решения задач взвешенных наименьших квадратов, текст MATLAB, соответствующий этому ис­
пользованию калибровочной функции, может быть скопирован и прикреплен к любому из обеспеченных скриптов.

F.3 Программное обеспечение должно быть использовано вместе с настоящими рекомендациями. Пользова­
тели должны изучить настоящие рекомендации до применения программного обеспечения.

F.4 Предоставлено соглашение о лицензии на программное обеспечение, имеется лицензионное соглаше­
ние (REF: MSC/L/10/001) и использование программного обеспечения должно соответствовать правовым требова­
ниям этого соглашения. Используя MATLAB, пользователь принимает условия соглашения. Запросы на програм­
мное обеспечение следует направлять в NPL по адресу enauiries@npl.co.uk.
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Приложение G 

(справочное)
Перечень основных условных обозначений
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А
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u( z) 

Ч-
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X

x
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*/
Y

V/

У

точка пересечения линейной калибровочной функции с осью абсцисс; 

неизвестное значение параметра А для конкретной измерительной системы; 

оценка параметра А\

вектор (а, Ь)т оценок параметров калибровочной функции;

угловой коэффициент линейной калибровочной функции;

неизвестное значение параметра В для конкретной измерительной системы;

оценка параметра В;

ковариация оценок а и Ь;

разность (х(- -  X*,-), представляющая собой реализацию случайной величины с нулевым 
математическим ожиданием и дисперсией и2(х(-);

разность (у,- -  У*,- ), представляющая собой реализацию случайной величины с нулевым 
математическим ожиданием и дисперсией и2(у);

нижняя треугольная матрица; 

количество точек результатов измерений;

взвешенный остаток или взвешенное расстояние /-й точки для оценок а и Ь; 

взвешенный остаток или взвешенное расстояние /-Й точки для параметров Л и в ;

матрица ковариации размерности 2т*2т, соответствующая результатам измерений (х,-, у), 
/ = 1, . . . ,  т ;

ковариационная матрица а размерности 2><2;

ковариационная матрица размерности пг*т, соответствующая результатам измерений х(-, 
/ = 1, . . . ,  m ;

ковариационная матрица размерности пг*т, соответствующая результатам измерений у(-, 
/ = 1 , . . . , / 77;

стандартное отклонение случайной величины с распределением, отражающим знания о случай­
ных воздействиях;

стандартное отклонение случайной величины с распределением, отражающим знания о влиянии 
системы;

стандартная неопределенность z, в качестве z могут быть использованы а, Ь, х(-, у, и т.д.; 

величина, обратная и(х(); 

величина, обратная и(у); 

независимая величина (переменная);

/-я независимая величина (переменная);

неизвестное значение/-Й независимой величины, обеспечиваемое измерительной системой; 

оценка Х (в  случае прогноза) или результат измерений Х(предварительная оценка);

/-й результат измерений X;

оценка /-Й независимой величины переменной;

зависимая величина (переменная);

/-я зависимая величина;

неизвестное значение /-Й зависимой величины, измерения которой обеспечивает измерительная 
система;

результат измерений величины У (в случае прогноза) или оценка У (предварительная оценка);
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Yj — /-й результат измерений величины У;

у* — оценка /-й зависимой величины;

v — число степеней свободы для модели ^-распределения или f-распределения;

о — стандартное отклонение случайной величины, характеризуемой распределением вероятностей;

а  — апостериорная оценка о;

^obs — наблюдаемое значение у2;

у2 — случайная величина, подчиняющаяся ^-распределению с v степенями свободы.
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(справочное)
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Сведения о соответствии ссылочных международных стандартов ссылочным 
национальным стандартам Российской Федерации

Т а б л и ц а  ДА. 1

Обозначение ссылочного междуна­
родного документа

Степень
соответствия

Обозначение и наименование соответствующего национально­
го стандарта

Руководство ИСО/МЭК 99:2007 — *

Руководство ИСО/МЭК 98-3:2008 ю т ГОСТ Р 54500.3—2011/Руководство ИСО/МЭК 98-3:2008 
«Неопределенность измерения. Часть 3. Руководство по 
выражению неопределенности измерения»

Руководство ИСО/МЭК 98-3:2008/, 
Дополнение 1:2008

ю т ГОСТ Р 54500.3.1—2011/Руководство ИСО/МЭК 98-3:2008 
/Дополнение 1:2008 «Неопределенность измерения. 
Часть 3. Руководство по выражению неопределенности 
измерения по выражению неопределенности измерения. 
Дополнение 1. Трансформирование распределений с ис­
пользованием метода Монте-Карло»

* Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать 
перевод на русский язык данного международного стандарта. Перевод данного международного стандарта на­
ходится в Федеральном информационном фонде технических регламентов и стандартов.

П р и м е ч а н и е  — В настоящей таблице использовано следующее условное обозначение степени со­
ответствия стандартов:

- ЮТ — идентичные стандарты.
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