4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств прогексадиона-кальция в зерне и соломе зерновых культур методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.3234—14

Издание официальное

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств прогексадиона-кальция в зерне и соломе зерновых культур методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.3234—14 ББК 51.23 Об2

Об2 Определение остаточных количеств прогексадиона-кальция в зерне и соломе зерновых культур методом высокоэффективной жидкостной хроматографии: Методические указания.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2015.—15 с

ISBN 978--5--7508--1373--5

- 1. Разработаны сотрудниками ФБГНУ Всероссийский НИИ защиты растений Федерального агентства научных организаций, Санкт-Петербург, Пушкин (В. И. Долженко, И. А. Цибульская, А. О. Берестецкий, Е. В. Полуэктова).
- 2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемиологическому нормированию Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (протокол от 6 ноября 2014 г. № 2).
- 3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия населения, Главным государственным санитарным врачом Российской Федерации А. Ю. Поповой 22 декабря 2014 г.
 - 4. Введены впервые.

ББК 51.23

ISBN 978—5—7508—1373—5

[©] Роспотребнадзор, 2015

[©] Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2015

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

А. Ю. Попова

22 декабря 2014 г.

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств прогексадиона-кальция в зерне и соломе зерновых культур методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.3234—14

Свидетельство о метрологической аттестации № 01.5.04.181/ 01.00043/2014.

Настоящие методические указания устанавливают порядок применения метода высокоэффективной жидкостной хроматографии для определения массовой концентрации прогексадиона-кальция в зерне зерновых культур в диапазоне концентраций 0,025—0,5 мг/кг, в соломе 0,25—2.5 мг/кг.

Методические указания носят рекомендательный характер.

Прогексадион-кальция.

Структурная формула:

$$H_3C$$
 O Ca^{2^4}

Кальций 3-оксидо-5-оксо-4--пропионилциклогекса-3-енкарбоксилат (IUPAC).

Молекулярная масса: 250,3.

Брутто формула: $C_{10}H_{10}CaO_5$.

Химически чистое вещество представляет собой мелкодисперсный белый порошок без запаха.

Температура плавления > 360 °C.

Давление пара $1,33 \times 10^{-2}$ мРа (20 °C).

Коэффициент распределения в системе н-октанол—вода Kow log P = -2.90.

Растворимость в воде (мг/дм³, 20 °C): 174.

Растворимость в органических растворителях (мг/дм 3 , 20 °C): метанол – 1,11; ацетон – 0,038.

Стабилен в водных растворах (Д T_{50} составляет 5 дней при pH 5,0 и температуре 20 °C и 83 дня при pH 9,0). Устойчив к нагреванию до 200 °C и воздействию солнечного света. pKa 5,15.

Краткая токсикологическая характеристика. Острая оральная токсичность для крыс и мышей $> 5\,000$ мг/кг. При подкожном введении крысам LД $_{50} > 2\,000$ мг/кг. Оказывает слабое раздражающее действие на глаза, но не раздражает кожу (кролики). Ингаляционная токсичность для крыс LC $_{50}$ составляет 4,21 мг на 1 литр воздуха.

Область применения. Регулятор роста растений. Используется в качестве средства от полегания мелкозерновых злаков. Также может быть использован как замедлитель роста дерна, земляных орехов и цветов или для ингибирования удлинения новых побегов фруктовых деревьев.

В России для прогексадиона-кальция установлены гигиенические нормативы для плодовых семечковых культур – МДУ 0,5 мг/кг.

1. Метрологическая характеристика метода

При соблюдении всех регламентированных условий проведения анализа в точном соответствии с данной методикой погрешность (и ее составляющие) результатов измерений при доверительной вероятности P=0.95 не превышает значений, приведенных в табл. 1, для соответствующих диапазонов концентраций.

Таблица 1 Метрологические параметры

Объект анализа	Диапазон определяе- мых кон- центраций, мг/кг (мг/дм ³)	Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), σ_r , %	Показатель внутрила- бораторной прецизионности, σ_{Rn} , %	Показатель воспро- изводи- мости, σ_R , %	Показатель точности*) (границы относительной погрешности), $\pm \delta$, %
Зерно	0,025—0,5	7	9	12	23
Солома	0,25-2,5	7	8	11	22

*) соответствует расширенной неопределенности $U_{\it OTH}$. при коэффициенте охвата $\kappa = 2$.

Таблица 2 Полнота извлечения прогексадиона, стандартное отклонение, доверительный интервал среднего результата для n=20, P=0,95

Анализи- руемый объект	Предел обнаруже- ния, мг/кг (мг/дм ³)	Диапазон определяе- мых концентраций, мг/кг	Среднее значение определения, %	Стандарт- ное откло- нение, S	Доверительный интервал среднего результата, ± %
Зерно	0,025	0,0250,5	80,2	6,6	5,5
Солома	0,25	0,25—2,5	79,5	6,7	5,6

2. Метод измерения

Методика основана на определении прогексадиона-кальция по свободной кислоте прогексадиону методом высокоэффективной жидкостной хроматографии (ВЭЖХ) с использованием ультрафиолетового (УФ) детектора после его экстракции из образцов органическим растворителем с последующей очисткой экстрактов на концентрирующих патронах для твердофазной экстракции, заполненных ионобменной смолой.

Идентификация прогексадиона проводится по времени удерживания, количественное определение — методом абсолютной калибровки. Избирательность метода обеспечивается сочетанием условий подготовки проб и хроматографирования.

3. Средства измерений, реактивы, вспомогательные устройства и материалы

3.1. Средства измерений

Жидкостный хроматограф с быстросканирующим УФ-детектором, снабженный дегазатором, автоматическим пробоотборником и термостатом колонки
Весы аналитические с пределом взвешивания до 210 г и пределом допустимой погрешности 0,2 мг ГОСТ 24104—01
Весы технические с пределом взвешивания до 400 г и допустимой погрешностью 0,1 г ГОСТ 24104—01 Колбы мерные на 10, 100 и 1 000 см³ ГОСТ 23932—90 Микродозаторы одноканальные переменного объема от 200 до 1 000 мм³ и от 1 до 5 см³

Пипетки градуированные объемом 1, 2, 5 и 10 см³

Цилиндры мерные на 50 и 100 см³

ГОСТ 29227---91 ΓΟCT 23932--90

ТУ 3.836.008

ΓΟCT 25336-82

Примечание. Допускается использование средств измерения с аналогичными или лучшими характеристиками.

3.2. Реактивы

Ацетонитрил, класс 5, осч	ТУ 2634-002-54260861—13
Натрий фосфорнокислый 1-замещенный	
2-водный (дигидрофосфат натрия), ч	ГОСТ 245—76
Вода для лабораторного анализа	
(бидистиллированная, деионизованная)	ГОСТ Р 52501—05
Хлористый метилен, хч	ТУ 2631-019-4449317998
н-Гексан, хч	ТУ 2631-003-05807999—98
Метанол, хч	ГОСТ 6995—77
Натрия гидроксид, чда	ГОСТ 4328—77
Натрий хлористый, чда	ГОСТ 4233—77
Натрий серно-кислый безводный, хч	ГОСТ 4166—76
Серная кислота, осч	ГОСТ 1426278
Ортофосфорная кислота, хч	ГОСТ 6562—80
Муравьиная кислота, ч	ГОСТ 5848—73
Стандарт прогексадиона с содержанием ос-	
новного компонента 99,6 %	
Трифторуксусная кислота, ч	ТУ 6-09-387780

Примечание. Допускается использование реактивов с более высокой квалификацией, не требующих дополнительной очистки растворителей.

3.3. Вспомогательные устройства и материалы

Аналитическая колонка, заполненная сорбентом с привитой фазой, включающей гидрофильную карбаматную группу в цепи С18, (100×2.1) MM, 1.7 MKM Вакуумный манипулятор для работы с патронами для твердофазной экстракции Ванна ультразвуковая

Воронки лабораторные В-75-110 Воронки делительные объемом 250 и 500 см³ ГОСТ 25336—82

Воронка Бюхнера

Гомогенизатор MPTY 42-1505-5-63 Колбы плоскодонные на шлифах КШ 250 29/32 TC ГОСТ 25336—82 Колбы-концентраторы емкостью 100 и 250 см³ ΓΟCT 25336-82 Насос водоструйный ΓΟCT 10696—75 Патроны анионообменные для твердофазной экстракции, масса сорбента 0,5 г Ротационный вакуумный испаритель с мембранным насосом, обеспечивающим вакуум до 10 мбар Стаканы химические объёмом 100, 200 и 500 см³ FOCT 25336-82 Центрифуга с максимальной рабочей частотой вращения 4 000 об./мин Пробирки полипропиленовые центрифужные с крышками объемом 50 см³

Примечание. Допускается применение оборудования с аналогичными или лучшими техническими характеристиками.

4. Требования безопасности

4.1. При проведении работы необходимо соблюдать требования техники безопасности, установленные для работ с токсичными, едкими, легковоспламеняющимися веществами (ГОСТ 12.1.005, ГОСТ 12.1.007). Организация обучения работников безопасности труда по ГОСТ 12.0.004.

При выполнении измерений с использованием жидкостного хроматографа и работе с электроустановками необходимо соблюдать правила электробезопасности в соответствии с ГОСТ 12.1.019—79 и инструкциями по эксплуатации приборов.

4.2. Помещение лаборатории должно быть оборудовано приточновытяжной вентиляцией, соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004—91 и иметь средства пожаротушения по ГОСТ 12.4.009. Содержание вредных веществ в воздухе не должно превышать норм, установленных ГН 2.2.5.1313—03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны».

5. Требования к квалификации операторов

Измерения в соответствии с настоящей методикой может выполнять специалист-химик, имеющий опыт работы методом высокоэффективной жидкостной хроматографии, ознакомленный с руководством по эксплуатации хроматографа, освоивший данную методику и подтвер-

дивший экспериментально соответствие получаемых результатов нормативам контроля погрешности измерений по п. 13.

6. Условия измерений

При выполнении измерений выполняют следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20 ± 5) °C и относительной влажности не более 80 %;
- выполнение измерений на жидкостном хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к определению

7.1. Кондиционирование колонки

Перед началом работы аналитическую колонку кондиционируют в потоке подвижной фазы (0,3 см³/мин) до стабилизации нулевой линии.

7.2. Приготовление растворов

- 7.2.1. Приготовление 0,005 М раствора ортофосфорной кислоты: в мерную колбу вместимостью 1 дм³ помещают 200 см³ воды для лабораторного анализа, прибавляют 0,5 г 98 %-й ортофосфорной кислоты и доводят объем до метки водой.
- $7.2.2.\, Приготовление подвижной фазы: в мерную колбу вместимостью 1 дм³ помещают 250 см³ ацетонитрила и доводят объем до метки раствором 0,005 М ортофосфорной кислоты.$
 - 7.2.3. Приготовление 2,5М раствора серной кислоты.
- В мерную колбу объёмом 1 дм 3 добавляют 800 см 3 бидистиллированной воды, 141,24 см 3 серной кислоты и доводят до метки бидистиллированной водой.
 - 7.2.4. Экстракционная смесь.
- В мерную колбу объёмом 1 дм³ помещают 990 см³ ацетонитрила и добавляют 10 см³ 2,5М раствора серной кислоты.
 - 7.2.5. Приготовление 5%-го раствора фосфорно-кислого натрия.
- В мерную колбу объёмом 1 дм³ помещают 50 г натрия фосфорнокислого 1-замещенного 2-водного, растворяют при перемешивании в 600 см³ дистиллированной воды и доводят объём раствора до метки.
 - 7.2.6. Приготовление 10 М раствора ортофосфорной кислоты.
- В мерную колбу объёмом 200 см³ добавляют 95,18 см³ бидистиллированной воды, затем осторожно добавляют 104,82 см³ концентрированной ортофосфорной кислоты.
 - 7.2.7. Приготовление насыщенного раствора хлорида натрия.

В мерную колбу объёмом 1 дм³ помещают 320 г кристаллического хлористого натрия, растворяют при перемешивании в 600 см³ бидистиллированной воды и доводят объём раствора до метки.

7.2.8. Приготовление 0,1 н раствора гидроксида натрия.

В мерную колбу объёмом 1 дм³ помещают 4 г кристаллического гидроксида натрия и растворяют при перемешивании в 800 см³ бидистиллированной воды, доводя объём раствора до метки.

7.2.9. Приготовление элюента № 1 (метанол — 0.1 н гидроксид натрия в соотношении 20:80).

В мерной колбе объёмом 100 см³ смешивают 20 см³ метанола и 80 см³ 0,1 н раствора гидроксида натрия. Полученную смесь перемешивают.

7.2.10. Приготовление элюента N = 2 (1 %-й водный раствор муравьиной кислоты).

В мерную колбу объёмом 1 дм³ помещают 990 см³ бидистиллированной воды и добавляют 10 см³ муравьиной кислоты при перемешивании.

7.2.11. Приготовление 50 %-го раствора метанола.

В мерную колбу объёмом 100 см³ вносят 50 см³ метанола и доводят до метки бидистиллированной водой, полученную смесь перемешивают.

7.2.12. Приготовление элюента N2 (1 %-й раствор муравьиной кислоты в 50 %-ом метаноле).

В мерную колбу объёмом $100~{\rm cm}^3$ помещают 99 ${\rm cm}^3$ смеси метанольода в соотношении 50:50 по объёму и добавляют $1~{\rm cm}^3$ муравьиной кислоты.

7.2.13. Приготовление элюента № 4 (1 %-й раствор муравьиной кислоты в метаноле).

В мерную колбу вместимостью 100 см^3 добавляют 99 см³ метанола и при перемешивании добавляют 1 см^3 муравьиной кислоты.

7.3. Приготовление основного и градуировочных растворов

7.3.1. Основной раствор с концентрацией $0.1~\text{мг/см}^3$: точную навеску прогексадиона $(10\pm0.1~\text{мг})$ помещают в мерную колбу вместимостью $100~\text{см}^3$, растворяют в ацетонитриле и доводят объем до метки тем же растворителем.

Градуировочные растворы с концентрациями 0,125, 0,25, 0,5, 1,0 и 2,5 мкг/см 3 готовят методом последовательного разбавления по объему, используя раствор подвижной фазы.

7.3.2. Раствор № 1 с концентрацией 2,5 мкг/см³: в мерную колбу вместимостью 100 см^3 вносят 2,5 см³ основного раствора и доводят объем до метки подвижной фазой.

- 7.3.3. Раствор № 2 с концентрацией 1,0 мкг/см³: в мерную колбу вместимостью 100 см³ вносят 1,0 см³ основного раствора и доводят объем до метки подвижной фазой.
- 7.3.4. Раствор № 3 с концентрацией 0,5 мкг/см³: в мерную колбу вместимостью $10~{\rm cm}^3$ помещают 5,0 ${\rm cm}^3$ раствора № 2 и доводят объем до метки подвижной фазой.
- 7.3.5. Раствор № 4 с концентрацией $0.25 \, \text{мкг/см}^3$: в мерную колбу вместимостью $10 \, \text{см}^3$ помещают $5.0 \, \text{см}^3$ раствора № 3 и доводят объем до метки подвижной фазой.
- 7.3.6. Раствор № 5 с концентрацией 0,125 мкг/см³: в мерную колбу вместимостью 10 см^3 помещают 5,0 см³ раствора № 4 и доводят объем до метки подвижной фазой.

Основной раствор можно хранить в холодильнике при температуре 0—4 °C в течение 4 недель, градуировочные растворы – в течение суток.

При изучении полноты определения для внесения в матрицу используют ацетонитрильные растворы прогексадиона с концентрациями $1.0~\rm u~10.0~\rm mkr/cm^3$, которые готовят из основного стандартного раствора (п. 7.3.1) с концентрацией $0.1~\rm mr/cm^3~\rm metoдом$ последовательного разбавления ацетонитрилом.

7.4. Построение градуировочного графика

Для установления градуировочной характеристики (площадь пика — концентрация прогексадиона в растворе) в хроматограф вводят по $10~\mathrm{mm}^3$ градуировочных растворов (не менее $3~\mathrm{параллельных}$ измерений для каждой концентрации, не менее $4~\mathrm{точек}$ по диапазону измеряемых концентраций). Затем измеряют площади пиков и строят график зависимости среднего значения площади пика от концентрации прогексадиона в градуировочном растворе.

Методом наименьших квадратов рассчитывают градуировочный коэффициент (*K*) в уравнении линейной регрессии:

$$C = KS$$
, где

S – площадь пика градуировочного раствора.

Градуировку признают удовлетворительной, если значение коэффициента линейной корреляции оказывается не ниже 0,99.

Градуировочную характеристику необходимо проверять при замене реактивов, хроматографической колонки или элементов хроматографической системы, а также при отрицательном результате контроля градуировочного коэффициента.

Градуировочную зависимость признают стабильной при выполнении следующего условия:

$$\frac{\left|C-C_{K}\right|}{C} \cdot 100 \le \lambda_{_{KOHMP}}$$
, где

C – аттестованное значение массовой концентрации прогексадиона в градуировочном растворе,

 C_{κ} — результат контрольного измерения массовой концентрации прогексадиона в градуировочном растворе,

 $\lambda_{\text{контр.}}$ — норматив контроля градуировочного коэффициента, %. ($\lambda_{\text{контр.}}=10$ % при P=0.95).

7.5. Подготовка анионообменных патронов для твердофазной экстракции

Патрон промывают 10 см^3 1 %-го раствора муравьиной кислоты в метаноле и подсушивают током воздуха. Затем патроны последовательно промывают 5 см^3 метанола и 5 см^3 воды. Нельзя допускать высыхания верхнего слоя сорбента.

8. Отбор проб и хранение

Отбор проб производится в соответствии с «Унифицированными правилами отбора проб сельскохозяйственной продукции, пищевых продуктов и объектов окружающей среды для определения микроколичеств пестицидов» (№ 2051-79 от 21.08.79), а также в соответствии с ГОСТ Р 50436—92 (ИСО 950-79) «Зерновые. Отбор проб зерна». Пробы зерна и соломы для определения остатков прогексадиона в урожае хранят в бумажной или тканевой упаковке при комнатной температуре. Перед анализом пробы зерна доводят до стандартной влажности и измельчают.

9. Проведение определения

9.1. Экстракция

Образец измельчённого зерна массой ($5\pm0,1$) г или соломы массой ($1\pm0,1$) г помещают в центрифужные пробирки вместимостью $50~{\rm cm}^3$, добавляют $35~{\rm cm}^3$ экстракционной смеси, приготовленной по п. 7.2.4, интенсивно перемешивают в течение 10 мин и центрифугируют при $4~000~{\rm of./m}$ ин в течение $5~{\rm mu}$ н. Надосадочную жидкость декантируют и переносят в испарительную колбу объемом $250~{\rm cm}^3$. Экстракцию повторяют дважды с $35~{\rm u}~30~{\rm cm}^3$ смеси, после чего объединённый экстракт упаривают на роторном испарителе при температуре бани не выше $45~{\rm cm}$ 0 объёма $10~{\rm cm}^3$.

МУК 4.1.3234—14

К полученному экстракту добавляют 50 см³ 5 %-го раствора дигидрофосфата натрия и переносят в делительную воронку. Испарительную колбу обмывают 50 см³ новой порции 5 %-го раствора дигидрофосфата натрия и переносят в ту же делительную воронку. Затем в нее добавляют 50 см³ н-гексана и встряхивают несколько минут. Водный слой отделяют (органический — отбрасывают) и доводят до рН 3 с помощью 10М ортофосфорной кислоты, после чего добавляют 30 см³ насыщенного раствора хлорида натрия. Прогексадион переэкстрагируют дважды хлористым метиленом порциями по 50 см³, встряхивая делительную воронку в течение 2—3 мин. Органическую фазу фильтруют через слой безводного сульфата натрия (2 г) в испарительную колбу объемом 250 см³, осущитель промывают 10—15 см³ хлористого метилена и вносят в ту же испарительную колбу. Полученный раствор выпаривают досуха на роторном испарителе при температуре не выше 40 °C.

9.2. Очистка на анионообменных патронах для твердофазной экстракции

Остаток в колбе, полученный при упаривании экстрактов зерна или соломы, растворяют в 10 см³ 0,1н раствора гидроксида натрия, помещая образцы в ультразвуковую ванну на 2—3 мин. Раствор вносят в кондиционированный анионообменный патрон со скоростью пропускания раствора 1—2 капли в секунду. После нанесения раствора патрон промывают 10 см³ 0,1 н раствора гидроксида натрия, элюат отбрасывают. Затем патрон промывают последовательно 10 см³ элюента № 1 и 10 см³ метанола, элюат отбрасывают. Патрон подсушивают током воздуха. После этого патрон последовательно промывают по 10 см³ элюентов № 2 и 3. Патрон подсушивают током воздуха, после чего прогексадион элюируют 10 см³ элюента № 4. Элюат упаривают на роторном испарителе при температуре не выше 45 °C. Сухой остаток растворяют в 2 см³ подвижной фазы для ВЭЖХ (приготовленной по п. 7.2.2) и анализируют на содержание прогексадиона. 10 мм³ полученного раствора вводят в хроматограф.

9.3. Условия хроматографирования

Жидкостный хроматограф с быстросканирующим УФ-детектором. Элюирование в системе ацетонитрил—0,005М ортофосфорная кислота в соотношении 25 : 75 по объему. Скорость потока 0.3 см^3 /мин. Дозируемый объем 10 мм³. Колонка, заполненная сорбентом с привитой фазой, включающей гидрофильную карбаматную группу в цепи C18, (100×2.1) мм, 1,7 мкм. Температура колонки 40 °C. Детектирование на длине волны 275 нм. Время удерживания прогексадиона 2.65 ± 0.055 мин.

Линейный диапазон детектирования сохраняется в интервале концентраций 0,125—2,5 мкг/см³.

10. Обработка результатов анализа

Количественное определение проводят методом абсолютной калибровки. Содержание прогексадиона-кальция в зерне (или соломе) X (мг/кг) вычисляют по формуле:

$$X = \frac{S_x \cdot K \cdot V}{P} \cdot \frac{100}{f} \cdot F$$
, где

 S_x – площадь пика прогексадиона на хроматограмме испытуемого образца, (AU-сек);

К – градуировочный коэффициент, найденный на стадии построения соответствующей градуировочной зависимости;

V – объём пробы, подготовленной для хроматографического анализа, см 3 ;

P – навеска (объем воды) анализируемого образца, г (см³);

f – полнота извлечения прогексадиона, приведенная в табл.2,

F — фактор пересчета содержания прогексадиона в его кальциевую соль (250,3/212,2 = 1,18).

Содержание остаточных количеств прогексадиона-кальция в образце вычисляют как среднее из двух параллельных определений.

Образцы, дающие пики большие, чем стандартный раствор прогексадиона с концентрацией 2,5 мкг/см 3 , разбавляют подвижной фазой для $B \ni XX$.

11. Проверка приемлемости результатов параллельных определений

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает предела повторяемости (1):

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le r$$
, где

 X_1, X_2 – результаты параллельных определений, мг/кг;

r – значение предела повторяемости ($r = 2,8\sigma_r$).

При невыполнении условия (1) выясняют причины превышения предела повторяемости, устраняют их и вновь выполняют анализ.

12. Оформление результатов

Результат анализа представляют в виде:

$$(\overline{X} \pm \Delta)$$
 мг/кг при вероятности $P = 0.95$, где

 \overline{X} – среднее арифметическое результатов определений, признанных приемлемыми, мг/кг:

 Δ – граница абсолютной погрешности, мг/кг;

$$\Delta = \frac{\delta \cdot \vec{X}}{100}$$

 δ – граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций), %.

В случае, если содержание компонента менее нижней границы диапазона определяемых концентраций, результат анализа представляют в виле:

«содержание вещества в пробе «менее нижней границы определения» (например: менее 0.05 мг/кr*, где * -0.05 мг/кr — предел обнаружения прогексадиона-кальция в зерне).

13. Контроль качества результатов измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ Р ИСО 5725-1-6—02 «Точность (правильность и прецизионность) методов и результатов измерений».

- 13.1. Стабильность результатов измерений контролируют перед проведением измерений, анализируя один из градуировочных растворов.
- 13.2. Плановый внутрилабораторный оперативный контроль процедуры выполнения анализа проводится с применением метода добавок.

Величина добавки C_{∂} должна удовлетворять условию:

$$C_{\lambda} = \Delta_{x, Y} + \Delta_{x, Y'}$$
, где

 $\pm \Delta_{n,X}$ ($\pm \Delta_{n,X'}$) — характеристика погрешности (абсолютная погрешность) результатов анализа, соответствующая содержанию компонента в испытуемом образце (расчетному значению содержания компонента в образце с добавкой, соответственно), мг/кг; при этом:

$$\Delta_{y} = \pm 0,84 \Delta$$
, где

 Δ – граница абсолютной погрешности, мг/кг:

$$\Delta = \frac{\delta \cdot X}{100}$$
, где

 δ – граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций), %.

Результат контроля процедуры K_{κ} рассчитывают по формуле:

$$K_{\nu} = X' - X - C_{\hat{\nu}}$$
, где

X, X, C_{∂} — среднее арифметическое результатов параллельных определений (признанных приемлемыми по п. 11) содержания компонента в образце с добавкой, испытуемом образце, концентрация добавки, соответственно, мг/кг.

Норматив контроля К рассчитывают по формуле:

$$K = \sqrt{\Delta_{x,X'}^2 + \Delta_{x,X}^2} \tag{1}$$

Проводят сопоставление результата контроля процедуры (K_{κ}) с нормативом контроля (K).

Если результат контроля процедуры удовлетворяет условию

$$|K_{\kappa}| \le K,\tag{2}$$

процедуру анализа признают удовлетворительной.

При невыполнении условия (2) процедуру контроля повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры к их устранению.

13.3. Проверка приемлемости результатов измерений, полученных в условиях воспроизводимости.

Расхождение между результатами измерений, выполненных в двух разных лабораториях, не должно превышать предела воспроизводимости (R):

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le R, \, \text{где}$$
 (3)

 X_1, X_2 — результаты измерений в двух разных лабораториях, мг/кг; R — предел воспроизводимости (в соответствии с диапазоном концентраций), %.

Определение остаточных количеств прогексадиона-кальция в зерне и соломе зерновых культур методом высокоэффективной жидкостной хроматографии

MYK 4.1.3234—14

Ответственный за выпуск Н. В. Митрохина

Редактор Н. В. Кожока Компьютерная верстка Е. В. Ломановой

Подписано в печать 6.11.15

Формат 60х84/16

Тираж 125 экз.

Печ. л. 1,0 Заказ 65

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер., д. 18, стр. 5, 7

Оригинал-макет подготовлен к печати и тиражирован отделением издательского обеспечения отдела научно-методического обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а

Реализация печатных изданий, тел./факс: 8 (495) 952-50-89