ТИП**ОВОЙ ПРОЕКТ** 902-1-19

КАНАЛИЗАЦИОННАЯ НАСОСНАЯ СТАНЦИЯ НА З АГРЕГАТА С НАСОСАМИ 5Ф-6 ИЛИ 5Ф-12 ПРИ ГЛУБИНЕ ЗАЛОЖЕНИЯ ПОДВОДЯЩЕГО КОЛЛЕКТОРА 4,0; 5,5 и 7,0 м

АПЬБОМ 2

АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ ЧАСТЬ ПРИ ГЛУБИНЕ ЗАЛОЖЕНИЯ ПОДВОДЯЩЕГО КОЛЛЕКТОРА 5,5м

ТИПОВОЙ ПРОЕКТ 902-1-19

КАНАЛИЗАЦИОННАЯ НАСОСНАЯ СТАНЦИЯ НА З АГРЕГАТА С НАСОСАМИ 5Ф-6 ИЛИ 5Ф-12 ПРИ ГЛУБИНЕ ЗАЛОЖЕНИЯ ПОДВОДЯЩЕГО КОЛЛЕКТОРА 4,0; 5,5 и 7,0 м

СОСТАВ ПРОЕКТА

АЛЬБОМ 1	АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ ЧАСТЬ ПРИ ГЛУБИНЕ ЗАЛОЖЕНИЯ ПОДВОДЯЩЕГО КОЛЛЕКТОРА 4,0 м
АЛЬБОМ 2	АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ ЧАСТЬ ПРИ ГЛУБИНЕ ЗАЛОЖЕНИЯ ПОДВОДЯЩЕГО КОЛЛЕКТОРА 5,5 м
АЛЬБОМ 3	АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ ЧАСТЬ ПРИ ГЛУБИНЕ ЗАЛОЖЕНИЯ ПОДВОДЯЩЕГО КОЛЛЕКТОРА 7,0 м
АЛЬБОМ 4	ТЕХНОЛОГИЧЕСКАЯ, МЕХАНИЧЕСКАЯ И САНИТАРНО ТЕХНИЧЕСКАЯ ЧАСТИ ПРИ ГЛУБИНАХ ЗАЛОЖЕНИЯ
	ПОДВОДЯЩЕГО КОЛЛЕКТОРА 4,0,5,5 и 7,0 м
АЛЬБОМ 5/7I	ЭЛЕКТРООБОРУД ОВАНИЕ АВТОМАТИКА И ТЕХНОЛОГИЧЕСКИЙ КОНТРОЛЬ
Альбом 6/7I	ЗАКАЗНЫЕ СПЕЦИФИКАЦИИ К ЭЛЕКТРОТЕХНИЧЕСКОЙ ЧАСТИ ПРОЕКТА
АЛЬБОМ 7 /71	СМЕТЫ ПРИ ГЛУБИНЕ ЗАЛОЖЕНИЯ ПОДВОДЯЩЕГО КОЛЛЕКТОРА 4,0 м
А льбом 8 /71	СМЕТЫ ПРИ ГЛУБИНЕ ЗАЛОЖЕНИЯ ПОДВОДЯЩЕГО КОЛЛЕКТОРА 5,5м
АЛЬБОМ 9/7I	СМЕТЫ ПРИ ГЛУБИНЕ ЗАЛОЖЕНИЯ ПОДВОДЯЩЕГО КОЛЛЕКТОРА 7,0м

АЛЬБОМ 2

РА ЗРАБОТАН
ГО СУДАРСТВЕННЫМ ПРОЕКТНЫМ
ИНСТИТУТОМ СОЮЗВОДОКАНАЛПРОЕКТ

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВЫХ ПРОЕКТОВ МОСКВА ВВЕДЕН В ДЕЙСТВИЕ
ПРИКАЗОМ ПО ИНСТИТУТУ
СОЮЗВОДОКАНАЛПРОЕКТ
№%57 21/1/2 1970 г

Дополнения к указаниям по привязке строительной части канализационной насосной станции по типовому проекту 902-1-19 альботы 1,2,3,c целью снижения его стоимости в соответствии с письмами Госстроя СССР от 28 февраля 1972 г. $N^0/3$ -A и письтом Гловпромстрой проекта от 15 марта $c.r. N^{0/9}/3-1252.$

1. При привязке насосной станции в комплексе очистных сооружений приборы для измерения расхода перекачиваемой жидкости не предустатривать.

2. Исключить окраску горячей битумной мастикой за 2 разы, наружных поверхностей стен подземной части.

3. При привязке проекта в сужих грунтах исключить гидроизоляцию днища - слой литого асфальта h=15mm; защитную стяжку цементно-песчаного раствора состава 1:2, h=20mm; в мокрых грунтах - оклеечную гидроизоляцию наружных стен подземной части принять на 500mm выше расчетного уровня грунтовых вод, определенного при привязке проекта.

ЗНГЛАВНЫЙ ЛИСТ

Рабочие чертежи типового проекта канализационной насосной станиии на три агрегата с насосати 56-6 или 50-12 разработа ны в соответствии с планот типового проектирования Госстроя СССР по протышленному строительству на 1968г. раздел "Санитарно-технические сооружения น นักทองนักทอล".

Поректное задание сигласовано Главным сонита оно-эпидетивлогическим управлением Министерства эдраворхранения СССР письмом N 121-18/123-14 om 11/1-1967 2000 U 4mbepxedeno foccopoem CCCP 28/11-67. Проект насосногі станции розработан дія трех агрегатов при глу- **дія токрых грунтов-в виде** опискного колодуа. BUHE 30 DOKEHUA DOBBODAWEED KONJEKMODO 4.0, 5.50 7.0 m. Для подбора альботов при котплектации проекта составлена таблица к1. В таблице указаны нотера альботов, из которых комплектиется типовой проект конализационной насосной станции при глубине подводящего коллектора 5.5 т.

Haumenoba nue anbóoma Ingóuna anoxerus nodeodsujero konsermopa	Архитек- турно- строитель-	TEXMODORU- HEXTOS, META HUMECKAS ALL COMUTADAD- TEXMUMECKAS MACMU	MEXMU - HECKAR HACMB	Cremoi	Решетка пеханизи- рубанная Бертикаль- ная РПВ 600/800
5.5m.	2	4	5u6	8	Tuno5011 npoexm 902-2-105

Область притенения ћанализационная насосная станция предназначена для перекачки хозяйственно-бытовых и близких к нит по составу производственных сточных вод, итеющих нейтральнию или слабршелочнию реакцию. Проект разработан с учетот припенения в райднах с расчетной зитней теппералирой-20°, -30° и -40° С в сухих и покрых грунтах и не рассчитан на строительство в условиях вечной терэлоты, просадочных грунтов и в районах с CAJCMUHADEMBA BOWE 6 60 M. MAB.

<u> Гарактеристика насосной станции</u> Посизводительность насосной станции от 100 до 684 м3/час. призициненом зале устанавливаемся загрегама смасосами 56-6 или 54-12. В грабельном потещении устанавливаются теханизированная вертикальная решетка. РГВ 600/800, решетка с ручной очисткой и дробилка Д-32 Спены подзетной части-желегобетонные, надзетной части--кирпичные. Перекрытия-тонолитные железобетонные. Покрытие-из сборных железобетонных унифицированных констρύκυμι. Δυαρούβρισκημο μαρυχικούχ μ βούπρενομιχ ποδερχηρος πού cmen προβετικού γάζουν βοιποίλουμα & coorbeictbuu c " Указаниями по проектированию гидроизоляции подзетных

частей эдания и соорижений"/СНЗО1-65/. Полы-бетонные, цетентно-песчаные, из керапической MUMKU U SUHDSEUMA. кровля — из 3° слоев руберойда по утеллителю с DOBEMHOIM BECOM H=500 Kr/m3

Подъетно-транспортное оборудование-тонорельсы с ричныти таляти грузоподъетностью 1,0т. каждая. Подзепная часть насосной станции всухих грунтах разработана при условиц возведения ее в открытот котловане;

Таблица подбора листов проекта В Зависимости от метода производства работ

	NN SU	стов проект	ra
Петод	B CYXLIX	В покрых гр	унтах
произвидства работ	rpymax	<i>രോർത്തനവർത്ന</i>	
в открытот котловане	7, 80, 43 6-25 76	71 - 1 T T T T T T T T T T T T T T T T T	
рпускной колодец	60-62,63,65-74	15 M 15 M 15 M 15 M	

YCNOBHWE DOD3HQ4EHU9 Homep Demanu Чопер листа поректа. где деталь изображена Homeo demasu

Нотер листа проекта, в которот деталь притенена

Арпалирные сетки и каркасы обозначенные индексом "C" " " kp"-cemku u kapkasa steh, dhulua u neperopodku подзетной части.

Арпалирные сепки и каркасы, обозначенные индексом "Сл" и "крл"- сетки и каркасы перекрытий и лестничных площа док.

REPEYEND ROUMENEHHING & ROUEKME стандартови типовых чертежей (почертежат тарки АС)

Шифр	Наитенование
Серия	Крупнопанельные железобетонные предварительно
17K-01-41	напряженные плиты покрытий разперот 1.5х 6т.
Серия Пк-01-119	крупнопанельные железиветонные предварительно напряженные плиты разтерот 1.576 и 376 m для покрытий проташленных эданий с унидицирован- ными отверстиями для пропуска вентилахт с дефлектора ми и Эрнтами.
Серия	Сопрные экспезобетонные плиты для покрытий
NK-01-88	производственных зданий.
Серия	Железобетонные балки пролетати 6и 9т для
NK-01-115	покрытий с рулонной кровлей
rocm	Двери деревянные для жилых и обществен-
6629-64	ных зданий.
FDCT	Окна деревянные для эданий пропышленных
12506-67	กุรยภิทยายากนั้น
FOCT	Перетычки железобетанные сбарные для
948-66	жилых и общественных зданий.
rDcm	Плиты подоконные железобетонные для
8484-57	производственных зданий.
	Стальные лестницы, переходные площадки и пераждения
K9-03-1	Деталировочные чертежи КМД.
Tunobouī	Сальники для прохода теталлических труб
npoerm 3.901-5	Ду 50÷ 1200 через стены сооружений.
	Шкары для хранения одежды в гордеробных потещениях пропышленных предприятий
	Альбот 1. Шкары теталлические.
10CT 111-65	Стекла оконное листовое

ћанализацирнная насосная станция на Загрегата с на-
COCAMU 54-6 UNU 56-12

Насосная станция при глубине заложения подводящего коллектора. Нк = 5.5 т Заглавный MIST

Tunoboù nooekm 902-1-19

1968r

содержание альбома

Hau	менование листа.	~	л страни
		JUCTO	αl/bδαk
	1	5	3
DOJOHCKO			1
TUTY ABHBILL SUCT.			2
3aenobhbiu nuci		13-1	3
Codepadue asbond		13-2	4
NO SCHUTENHAS SANUERA		N3-3	5
		13-4:9	6:H
PROPER KOOPER U PONOB. SKE	пликация полов. Спецификации.	7.0	0
Bed DARCE BHUTDANNIX OTRESO	чных работ, основные показатели.	AC-1	12
	LIX NAUT. CXEMO SONOAHEHUR OKOHHEIX	, ,	-/-
ADABADE FICTINES OF A DAME	SHER. BUDDEN COOPH. #CEM. GET. US GENIUU.	AC-2	13
Province of the province of the period	0 no A - A; no 5 - B. Pospesal 1-1, 2-2.	AC-3	14
PARKET HE CIMILED OF A AND A DAY OF A DE	00 no J.A; no6-6 Paspesbit-1;2-2.	AC-4	15
921c03611-3; 3-1; A-5 U-5-5	2 Tome w	AC-5	16
721000211-5, 3-1, 31-208-3 72100021 1-3; 3-1; A-5U5-3		AC-6	17
		AC-7	
<u>детогли еивроизоляции еген с</u>	д днища подземной части.		18
Опалубочный чертеж План	HO OTM - 0.03, LEYEHUS	AC-8	19
<u>Ополубочный чертеж.Плонн</u>	IN OTM 0.03 CEYEHUR.	AC-9	20
Опалубочный чертеж План	no J.J. /Jah Ha oth.0.45	AC-10	
Опалубочный чертеж. Разра	es 1-1. Tabauya cambhukob.	AC-11	22
Ополубочный чертеж Разр	es 1-1. Tabauya casahukob.	AC-12	23
Олаливочный черте ж. Разр	es 2.2 Ceyenus	AC-13	24
Опачичбочный че ртеж Разр	e322. Ceye Hus	AC-14	25
Олалибочный чертеж. Разд	DES 2-2. CEYEHUS	AC-15	26
Опаливочный чертеж Лерекр	ытие на отм. О.45. Сечения, узлы	AC-16	29
DROJIYEOYHEIU YEDTE X. MAH	HO OTM 4.73.	AC-17	28
Ond nucountily Henre Rene	крытие на отм-4.73. Сечения	AC-18	20
Ополубочный чертеж Узлы	CEUCHUS.	AC-19	20
BAKNODHELE MOIDKU		AC-20	24
Опалубочный чертеж.Пла	NU TO 5-5. CPUPHUS.	AC-21	37
Рундаменты под оборудо		AC-22	32
<u>Спецификация и выбор</u>		0,0-22	33
Carre de como con constante	о от м4670. Лестница Л-1, Узлы.	AC-23	34
		AC-24	35
Монтажные планы лес	THUYU BEBUSENUU.	AC-25	36
Армирование днища, пл	OHE, POSPESSI.	AC.26	37
HOMUDOD AHUE BHULLE PACKI	одка кархасов в днише. Расчетные схемь		<u> </u>
CETKU C-1, C-2.	-1 - 1 - 1	AC-27	38
	10-3, C-4, C5 U kapkac KP-1.		
Спецификация и выбор	DE COMOTYPHI.	AC-28	39
<u>Ярмирование стен подземнои</u>	и части. Развертко наружных ивнутренн сето	LAC S	
<i>Урмиробание стен подземной ч</i>	lactu laspes1-1. Palcacoa Maitepudatos	JAC- 30	41
<u>Ярмиробаниестен подземнои</u>	Yactu. Cetku C-6,C-7 U Kalpkalo Kp-2	1	1
<u> Οπευμφυκαιμύς υ βωδορκ</u>	a apmatypsi.	AC-31	42
<u> Армирование перегородки./</u>	Лич. разрезы, раскладка сеток.	AC-36	43
	CETKUCS, C-9,C-10 U KOPKOC Kp-3.	1	73
Cπεμυφυκαμυς Βωδορκα		AC-33	1,
APMUDORANUE BHUUSA PHOKA	MARN REDINELL CLONGTHED POSDES 44	1.8~	-
SOMUDORANIE ZUINA DANE AN	дка нижнешармотуры и каркасов, Разряг-	1.40	
POMUDOBANIE ON WAS PERSON	1. C-2, C-3, C-4 u kapkac kp-1.	J. 35	46
прификация и выборя	TO CONTRADO	AC.36	1
		14.36	47
APMUPOBAHUE CTEH MODSEMA	IDU YOCTU/ONYCKAHUE KOJIQOYA'C BOBDOT.)		_

1	2	3
Ливом) Развертка наружных и внутренних сеток.	AC-37	48
<u> Армирование стен подземной части (опускание колофиа с водоотли</u>	4	
вом). Разрез 1-1. Ярмирование ножа. Расход материалов	AC-38	49
бом), Разрез 1-1. Дрмиробание ножо, Расход материалов Дрмирование стен подземной части(опускание колодиае		
BOO DOTMUBOM) (ETKUC-6, C-4 U KAPKACKP-2, CABUUMUKA-		
ция и выборка арматуры.	AC-39	50
<u> Ярмирование перегородки. План, разрезы Раскладка сеток.</u>	AC-40	51
Ярмирование перегородки Сетки с-8, с-9, с-10, с-11, с-12U		
каркас КР-3, Спецификация и выборка арматиры.	AC-41	52
Врмирование стен подземной части (рлускание колодиа		
SIDMUDODANUE CTEN TIDOSEMNOU 48CTO (UNGLAUNCE E 030044	+	
<u> Без водоотлива) Развертка наружных и внугренних сеток</u>		
UNDH 5-5	AC-42	<u>53</u>
Армирование стен подземной части (опускание колодуа		
без водоотлива). Разрез 1-1. Ярмирование ножа		
Pacxod Materials.	AC-43	54
Армирование стен подземной части (опускание комодиа		
без водоотлива). Сетки и каркасы. Спецификация и		
	AC-44	55
δυδορκα αρματυρώ.		
Выпуски арматуры изствола шажты	AC-45	56
Перекрытие на отм-0.03. Армирование.	AC-46	57
Армирование перекрытия на отм 0.03. Балка 06-1,		
HOHCONS KC-1 Cheyupukayus u boloopka a pmarypsi	AC-47	58
Перекрытие на отм-0.03, Армирование.	AC-48	
Apmupobatue neperpatus Ha otm003. 5aura 05-1koncon		-
		-
גכ-1, כחפעוטשעגמעטא ט משומססגמ מפאמחשאפוו	AC-49	60
<u> Дрмирование перекрытна отн. 0.03. Армирование балок БМ-6 БМ-2, БМ-3, БМ-4.</u>	AC-50	
Армирование перекрытия на оти-доз. Балки БМ-5, БМ-6; БМ-7. БМ-8 и БМ-9	AC-51	<i>6</i> 2
<u> Перекрыти е на отм. аоз. Ломирование балокъм; Бм-Э. Ломатурные сетки икарк</u>	BISIC-52	<i>6</i> 3
Перекрытие на отм0.03. Армирование балок БМ-1 ÷ БМ-9.		
Спецификация и выборка арматиры	AC-53	64
Армирование перекрытия на отм 4.73.	AC-54	65
Ярмирование перекрытия на отм. 4.73. Paspess-1-1, 2-2, 3-3, 4-4.	AC-55	66
«пригробание перекрытия на отм. 4.13. Спецификация и быстркатр Дрмиробание перекрытия на отм. 4.13. Спецификация и быстркатр		67
<u> Ирмирооание перекрытия на огм-4.13.Слецишихация и овиоркаар</u>	26,576-36	
<u> Ярмиробание перекрыти я на отм. 473.</u>	AC-57	68
<i>Фрмирование перекрытия на отм4,73. Разрезы 1-1,2-2,3-3,4-4</i>	AC-58	69
Армирование перекрытия на отм- 4.73. Спецификация и выборы	×	
COMOTYPE.	AC-59	70
REDERPHITUE HE OTH-4.73. SOMUPOSCHUE OCIOKEM-10.5M-11.		
5M-12, 5M-13, U5M-14.	AC-60	71
Перекрытие на отм-4.73. Армирование балок БМ-10, БМ-11.	1	
	AC-61	72
5M-12, 5M-13 U 5M-14.	J71 - 61	15
Перекрытие на отм- 4.73. Армирование балок БМ-10, БМ-4, БМ-	1	
БМ-13 и БМ-14. Арматурные каркасы исетки Спецификацивый ораз		73
Лестничные площадки на отм-3.02и-4,52. Армирование.	AC-63	74
Лестничные площадки на отм-302 и-4,52 Ярмирование.	AC-64	75
	AC-65	76
ЛОМИРОВАНИЕ ПЕРЕКРЫТИЯ НО ОТМ. 2.580 БОЛОК БМ-15 U БМ-16	AC-66	44
CHEUUDUKUUU U OBIODKA KOMALUR DI. RPHIKAMPDI TUN T.I., NACH, DARDERI	AC-67	78 78 80
BEHTKOMEDO TUN W. NJICH POBLES MORKY PM-1 - PM-7	AC-68	7,9
BEHTKOMEDAL TURIT, II. II. CREUDOUKOUUS CTOMU	AC-68 AC-69 AC-70	80
MODEUDOBOYHAIU DAGH PAUT PORDATUS YSAN, CREUDURGUUS	100	
Сборных железобетонных элементов.	AC-71	82
(MOLINGRO LADMIDOCHME REPERONIUS MADTIM 2580 VOAIDA EM-15, 5M-16 DIMIDOCHME REPERDITUS HA OTH 2-580 ΔαΛΟΚ 6M-15 U 5M-16 CREVIDURO LUS U SOLODOKA COMETISE SIL BEHTKAMEDEL TUR I RACH CASDES MADEL PM-1; PM-7 BEHTKAMEDEL TUR II RACH CASDES MADEL PM-1; PM-7 BEHTKAMEDEL TUR II RACH CASDES MADEL PM-1; PM-7 BEHTKAMEDEL TUR III, II SOLODOKA LUS CTALU BEHTKAMEDEL TUR III, III SOLODOKA CITALU U MALDOK. MASKUDO BOUTSUU DAGH TURU TOKROBITUS SILODOK. COOPHISK DE RESOLOTOHINE SILOME MEMBEL. [JUUTSI RC-1, RC-2 U RC-3, ORGANICKA U ADMIDOSEMUE ROBYLIKA ORI-I MONODERSEL (PARA DAGNODOKEMUS MONODERSES SIES.)	AC-73	82 83 84
MOHODESTICEL YESTILL CREUMBUR GULS BEIGOPRA CTAINU. ADEMANDEMBLE ROUSMOR & BHUME.	AC-74	85

Канализационная насосная станция на з аервеата с насосами 5Ф-6 или 5Ф-12. Насосная станция

при елубине

запожения подводящего коллекторанк-5,5м.

Tuna Bou npoekt 902-1-19

Альбом Марка лист 2 /13-2 ПОЯСНИТЕЛЬНЯЯ ЗЯПИСКЯ

Проект предусматривает строительство станции в районах с расчетной зимней температурой t = 20°; -30°и-40°С в сухих и макрых грунтах. При строительстве станции в отклытом котловане расчетное сопротивление грунта принята 1,5 kr/cm² на глубине 15°+2,0m от дневной поверхнасти земли. Для устройства ночка опускного колодиа принят грунт с расчетным сопротивлением 1,5 kr/cm² на глубине 1,5°-2,0 метра от дневной поверхности земли.

Обдемный вес грунта принят у=1,8 т/м³ при уеле внутреннего трения У=30° бля сухоих грунтов и у=2,0 г/м³ при У=20°- для токрых грунтов. Особенности строительства в условиях вечной терялоты, просадочных грунтов и в районах с сейстичностью выше в баллав пооектот не ичитываются.

Енеговая нагрузка принята 70; 400 и 150 кг/т² согласно СН и Г II-я. 4-62 пункт 5,2 для II: II и II снеговысь районов. Рассчетный уровень грунтовых вод условно принят на глубине 1,5 метра от планировачной отметки зекли у здания. Грунтовые воды приняты неагрессивными по отношению к бетом.

Надземная часть насосной станици запроектирована Квадратной формо в плане с размероми 9.0×20 метров. Подземная часть-круглай формы диаметром. 9.0 метров. В подземной части имеется стена, отделяющая машинное отделение от гоабельного па всей высоте.

отделении на отт. – 1.20 размещаются насосные агрегаты, а на отметке 0,45 ишты электрооборидования. грабельном отделении размещается приемный резербуна перекаштии котарога на атм. — 4.70 дасположемеханизированная решетка. дообилка На перекрытии ручная решетка. главельного памешения на отм. ±0.00 расположены δbimabbie

помещения и монтажная площадка Приточная венткамера расположена на отм. 2.70 с самостаятельным вхадам

станции для сухих грунтов при условии возведения ее в открытом кот лабане, для такрых грунтав – в виде опускнога лодиа. расчета толщин стен колодиа апускании принята *чдельная* CUNA MARHUA $f = 2T/m^2$ Расчет *опискнага* коладиа на погаижение гринтовых вод произведен с учетом При апределении толицины колодиа при апускании его без вадортлива удельная ". f " уменашена на 25% с цчетам тоения гидаопне втатического падмывнога истройства. менения

В ташиннот отвелении и в приетнот резервуаре набетонка и фундатенто под насосноге аерегаты выпалняются из бетона "М-100."

повержности приетного резербиора тор-Внутренние в 2 слоя общей толщиной 25мм с жекретируются noched hero dada *N*E3HEHUEM *กามบุธิดกามดชื่ดชิดชิ* Пропуск Mexhonoeuyeckux ocywect-3akjadbibaembie npu bemoбляется через сальники,

в'явется через сальники, за'к'яадыбаетые при бетонировании наружных отен и перегородки подзетной части. В сухих грунтах наружные поберхности подзетной части окрашиваются горячей битутой тастикой за 2 раза по грунтовке. Под днищет укладывается слой литого асфальта толишной 15 тм с защитной цетентной стаккой b=20 тм.

апускании колодца в мокрых грунтах с водоатливам: днишем истраивается аклеечная гидооиз $3^{\underline{x}}$ слоев бризола или гидраизала, укладыва-นสอภคนนต емая па слою бетонной подгатовке с защитной цестяжкой. При опускании колодиа без бодо-MEHITHOÚ отлива гидроиз оля цианный слой икладывается по падишке. выполненной бетаннай из бетана "М-150" / детали гидраизаляции статрите лист истройства AC-7 /.

ЭКелезобетонное перекрытия подзетной части рассчитаны на временную равномерно-распределенную нагрузку 9 = 10 т/m²; перекрытие на атм. 2,58 - на 4 = 0.60 т/m²

'К.ладку' кирпичных стен вести из палнотелога красного кирпича пластического прессования тарки 75 на растворе марки 2.5. Кладку кирпичною перегородок толициюй 120 mm вести на растворе марки 50 с укладкой гаризантальной арматуры 2 ф6 через 5 ряд во Кладки по бысоте.

Катенные конструкции не рассиитаны на возведение их в зимнее время методом затораживания. Кладка наружных стен ведется с расшивкой швов и с под вором кирпича по расаду. Внутренние поверхности наружных стен, внутренние стены и перегородки кладутся полным швом с подрезкой. Нарижные поверхности искольной части стен помеци.

ния душевой и сануэла кладутся впустошовку. При строительстве здания в черте городской застройки по сагласованию с органати сахитектурного надзора надужная поверхность стен выкладывается из лицевого кератического кирпича или нератических блоков.

Гидраизаляция кирпичных стен на отм. –0,03

выполняется из слоя цементного раствора состава 1:2 толишной 30mm

Перетычки над дверныти и оконныти проетати-сборные железобетонные.

Кровельное покрытие из сворных железобетонных унифицированных элементов.

, Параизальция кровельного покрытия— один слой руберойда на битутной тостике БНК-5.

Утеплитель кравли — плитный пеноветон с объемным весом з=500 кг/м³ Поверх утеплителя устраивается выра внивающий слой из цетентно-песчаного раствара толциной 15mm. Правля-рулонная, 3^x слойная на антисептированнай кробельной мастике МБК-Г, состав которой принитается согласно приложения СНи П 1-В. 25-65.

Лестницы — теталлические с заложениет 45° и шириной тариа 800mm

Лестничные площадки — железобетонные.

Полы-бетоные, цементно-песчаные , из ке ратической плитки и линолеума ветали полов смотрите на листе АС-1./

Внутренние отделочные работы помещений насосной станции приведены в ведотастах внутренних отделочных работ на листе АС-1.

Откосы оконных и дверных проемов штукатурятся цементно-избестковым раствором. Нижение откосы оконных проемов покрываются оцинкованной кравелоной сталью.

Оконные переплеты и двери окрашиваются тасляной краской за 2 раза.

Цоколь штукатурится цементным раствором состава 1:4 с последующей окраской ГХВ за 2раза по огрунтовке. Деребянные изделия, соприкасающиеся с кирпичной кладкой, антисептируются.

Металлические лестницы, площадки, перила ограждений и монорельсы окрашиваются лаком АПТ-177 за 2 раза; закладные и обрамляющие детали-кузбасс лаком за 2 раза;

Вокруг здания устраивается ветонная отмостка из ветона "М-100" по утрамбованному грунту.

Деталь гаделки оклеечной гидроизоляции днища опускного колодца смотрите на листе ПЗ-5.

Канализационная насосная станция на Загрегата с насосати 5 ф-6 или 5 ф-12. Насосная станция при глубине заложения подвадящего каллектора Н_к=5,5 м

Паяснительная записка.

Миповай проект 902-1-19

Anbōom Manka-Jucin 2 113-3

2 113-3

Προυβροθετβο ετρουτεπьных ραδοτ

BBEDEHUE

Типовая канализационная насосная станция на 3 огрегата с насосани 596 или 5912 запроектирована с заглублением подводящего коллектора на 5,5м.

MODBEMHOR 400TB CTOHUUU NPEDYEMOTPEHO & DBYX BODU-CHTCH: DAR CIPOUTENOCIBO B CYXUX U MOKPONX EPYHTCH. DAR MOKрых грунтов подземная часть предуснотрена ввиде опускного KODODUU.

Условия строительства приняты следующие:

1. Стройплощидка имеет воризонтальную поверхность и сложена на глубину заложения атанции грунтами I-II категории; 2. Горизонт грунтовых вод расположен на 1,5 ниже поверхности плошадки:

3. Ооновные работы выполнянотся в летний период;

4. В зависимости от гидрогеологических условий стройплощадки, подземная часть насосной станции сооружается сводоогли-ВОМ ИЛИ С ПОНИЖЕНИЕМ УРОВНА ГРУНГОВЫХ ВОД.

METODAL POPULARO OCHOBHAIX CTPOUTENAHO- HOHTOLIKHAIX PO-SOT NO COOPYNEHUHO CTAHUUU NOUHUMAHOTCA & COOTBETCTBUU C ee KOHCTPYKTU8HIMU PEWEHUAMU, ZEONOZU4ECKUMU U ZUOPOZEONOZU-4εοκUNU yc. 108 U. ΑΜΟ CΤΡΟΙΙ Π. ΤΟ LYD ΟΚΟ, ΦυΒΟ 4ΕΟΚΟΜΟ Ο Ο ΒΕΜΟΜΟ ΡΟΙΘΟΤ U TEXHUHECKUMU YCNOBURMU HA UX NPOUBBODETBO U NPUEMKY.

При привязке проекто и составлении проекта производства ραδοτ πο μαιοοιμού εταμμμι οπμικμόνο τίπο επεθίμετ ρίκοβοθcτ808016CA, Τυποβόιμ προεκτομ πρου3βοθετβα ραβοτ πο υ320108neнию и опусканию колодиев.

/ Matepuanol dan npoektupolahun u npouslodetla palar N 9624, PYHOAMEHTAPOEKT 1967!

Работы подготовительного периода.

В подготовительный период на стройплощадке должно быть произведена разбивка опорной егодезической сети / высотные реперы, елавные оси станции, оси коммуникаций и

BREMEHHUIX PROESDOB!

Высотные реперы используеные при строительстве насосной станции для контроля за осадкой. Должны быть цетановлены за пределами котлована и отвалов грунта на CTDOUTE SIGETBO HOCOCHOU CTOHYUU.

DO HO40110 NDOU3800CT80 38MJAH6IX POBOT DOJJEHBI по водоотливи, водоотводи **б**ыгь закончены MEPONDUATUA U UCTPOŪCTBY BPEMEHHBIX DOPOZ.

3emsiahbie pagatbi Ραзραδοτκα κοτποβαμα

Do ρα3ραδοτκυ κοτποβαμά δοπλίτη δώτη βώποπμεμώ рабаты по разбивке границ котлована и отвалов грунта. NOU 86100 SHEHUU BENJAHGIX PUBOT CSEQUET PYKO808 CT80ваться укозониями СНИП 11-5-1-62 "Земляные сооружения. Οδιμυε πραβυπα πρου3βοθετβα υ πρυεμκυ ραδοτ."

Βωδορ οποσοδά ραβραδοτκά κοτποθάμα προμββοδάτος при привязке проекта в зависиности от местных условий у. категории грунта, местоположения временных отвалов грунта, состава парка зеклеройных машин отроящей органи-3044U. 1.

Целе сообразно использовать на зенляных работах экска-BOTOP 3-652 (3-1252) U SYNDOOSEP D-459 UNU MEXOHUSMA других марок с аналогичными параметрами.

Зенляные работы следует начинать с разработки растительного грунта и транспортировки его в особый отвал от минерального грунта в целях дальней шего использования при благоустройстве площодки.

Разработка котлована производитея с недобором 10 см с последиющей зачисткой основания вручную, нарушение естественной структуры грунта в основании не допискается.

OTKJOHEHUA OTMETOK OCHOBOHUA NOD DHUWE HACOCHOÙ CTAHUUU OT NOOEKTHEIX HE DANMHEI NOEBEILUATE ± 10 - 30 MM.

Канализационной насосная CTOHUUA HO 3 DEPEROTO C HOCOCOMU 59-6 UNU 59-12.

NOU ENYOUNE SOMOXICHUR Насосная станция nod 8 od A ULEEO KPATKUE COOSPAJICEHUA NO METODAM NPOUBBODETBA PASOT.

KONNEKTOPO HK = 5.5M TUNOBOU NDOEKT

902 -1 -19

ANDSON -DUCT

Обратная засылка котлована насосной станции произво-BUTCA PAHEE BUHLITUM MUHEPANUHUM EPYHTOM NPU NOMOUYU бульдозера. Засыпка выполняется слодии голщиной 15-20см.

YNDOTHEHUE ZPYHTO & POUCTEHHOÙ 40CTU HOCEPU (6:1-1,5M) OCYWECT-ENACTCA THEEMOTPAMOOBKOU.

Остальная часть засыпки уплотняется гусеницами грактора.

<u>Ραзραδοτκα κοτποβαμα ποд οπγοκμού κοποθευ</u>

DAR YMEHBLUEHUR ENYÖLHBI ONYCKOHUR SOKNOOKY KONOOYO CNEGYET NPOUS BODUTS B KOTNOBOHE DHO KOTODOZO DON JEHO BUTS BUWE UDABHA EPUHTOBUX BOD HO 0,5M.

Разработка и транопортировка грунта в отвал ножет быть выполнена бульдозером.

Ροзραδοτκα ερμητά β ορμοκιμόν κολούψε

ДЛЯ разработки грунта в Опускном колодуе (в сухиж условиях и из-под воды) предуснатривается использование экскаватора 3-1252 с грейфером. При длине сгрелы 15м экскаватор может разрабатывать грунт в радицее от 7 до 12м.

Для грунтов I категории применя ется двуклопастный грейфер, для грунтов П категории- четыреклопастный.

Разработка несвязного грунта в калодуе производится от чентра колодца к периферии с тем, чтобы колодец сам подрезал ерунт под ножем и плавно опускался на земляной поdywke.

Разработка связного грунта производится в иной последовательности. Вначале ручным способом равномерно по всевынимается грунт из под ножа колодиа. После MY REPUMETRY посадки колодца на заданную величину осуществляется меха-HU3UPO8AHHAA разработка грунта в центре колодиа.

MODMENSHEIX UPTPOUTETS

В тех случаях, когда сила грения между грунтом и стенами колодца может оказатья больше веса колодуа, приненяется пневмо подныв.

NOOMBIBHO A TUBDONHEBMATUYECKO'A CUCTENO COCTOUT U3 MORUET DOONS HO 20 TOU BONDO BODO U 4BTBIPEX CEKYUÜ NOOMBIBHBIX YCTPOÜCTB.

Секция подмывного устройства выполняется из вертикальной подводящей трубы и горизонтальной перфорированной (согнутой по радицец колодиа) уложенной на внешний выступ ножевой части колодиа.

MONTONE BOKNOOHIK 400TEU NOOMISKOOO YCTPOUCTBO NOOUBBODUT-СЯ ОДНОВРЕМЕННО С ОРМИРОВОНИЕМ СТЕН.

Пневмолодмыв при опускании колодуа, производится путем одновоеменной подачи воды и воздиха за стени колодиа.

BOBBY U BODA RODAHOTCA ROD DABRENUEM 6-8 OTM. HACOCOM 4HDB U KOMPPECCOPOM DK-9.

Возножность наневрирования подмывными цегройствани в случае κρεκα κοποδίμο οδιες πενιβαίες CA μοτακοβκού κα ποδιβοθλιμίας τρίβοαχ ЗООВИЖЕК.

Dayckahue κοποδμα β τυκυατραπΗοŪ ρυδαωκε

THE NOUBRIKE PROPERTO HOCOCHOÙ CTOHUUU CTEHUL DRYCKHOZO KOлодия могит быть приняты меньшей толщины, Облегчение стен PORMICHO BUTTO OBOCHOBOLHO CTOTULECKUM POCLETOM.

Однако при этон погружение колодца будет возножно лишь B TUKCOTPONHOU PYDAWKE

Существо эгого мегода заключается в создании между грунтом и стенками колодца (выше ножа) полости, заполненной глинистым (TUKCOTPONHOIM) PACTBOPOM.

В случае применения тиксотролной рубашки силы трения колодиа а грунт возниканот только в той части поверхности KONODYA, KOTOPAR HENOCPEDCTBEHHO CONPUKACAETCA C EPYHTOM, T. C.

Канализоционная насосная PTAHUUA HO 3 DEPREOTO C HOCOCOMU 596 UNU 5912

насосная станция при елубиме захожения подводящего коллектора Нк=5,5м. Краткие соображения по негодан производства работ.

TunoBou npoekt 902-1-19

ANDOOM

10053-02

INDSERÇÇO KREEDEKT COURDON CCCO

no njouvadu nobepxhoctu konodya, paononomemhoù hume pesuhoboeo монжета, идерживающего тиксотролнию жидкость.

B OCTUSABLOU HOCTU NOBEDIHOCTU CTEH KOSODYU (KOTOPOS CONDU-KACACTOR O TUKCOTPONHOÙ KUDKOCTEHO) CUNW TPEHUR BONEDOTBUU UX HEZHOUUTE JIGHOCTU, ADAKTUUECKU PABHGI HUJHO.

Подготовитльные работы для опускания колодуа в тиксотропной рубашке, по сравнению с обычным способом, значительно усложняются.

Возникает необходимость:

α) Υςτρούς τβα φοριμακτω ολη βαλυβα τυκοογρορμού πουδ-KOCTU:

δ) υз готовления и монтажа резинового монжета на усту-THE CTEHN!

- в) Цстановки перфорированных инвекционных труб;
- г) Приготовления и залива глинистого раствора.

TUKCOTOONHUHO MUDKOCTO CNEDYET NOUZOTOBNATO US MECTHOIX 2.7/14

Рецептуру жидкости, способ создания рубашки и закачки жид-KOCTU HEDĀXODUHO POUHUMOTS 8 COOTBETCTBUU C., YKASOHURMU PO строительству опускных сооружений в тиксогропных рубашках" НИИ ОСП. 1966 Г.

Бетонирование подгоговки.

Бетонирование подгоговки днища насасной станции осуществляется после проверки качества грунтового основания. Бетонную смесь к месту укладки возножно подавать бадьями при помощи крана или автосамосвалами с выгрузкой не-NOC PED CTBEHHO & SETOHUPYEMBIU STICK.

CNOCOS NOBAYU SETONHOU CMECU DONINCH ZAPAHTUPOBATO сохранение гребуемой плотности грунта основания. Уплотнение вегонной емеси уложенной в подготовку следует производить площадочным вибратором или вибробрусом. Перемещение вибробруса производится по наячным доскам

с фиксированной отнеткой верха. Отклонение толщины бетанной подготовки от проектной не должно PREBOLLIATE + 20+ 10MM.

Υεταμοβκα οπαπμδκυ

ДЛЯ бегонирования монолитных конструкций насосной станиии приненяется разборно- переставная опалубка из готовых эле-MPHTOB.

Изготовление опалубки производится в мастерской производственной базы строительства.

На стройплощадку опалубка поотупает в виде кружал, шитов, коробов, и элементов поддерживанощих конструкций. Внутренняя апалубка отен насосной стануии выполняется из щитов или вертикальных досок, нашиваемых сразу на всю BUCOTY CTEHUI NO COPUSONTAINGHUM KPUBONUHEŪHUM KPYNKONTAM.

Ηαργοκή Ο ΠΟ Λίγδκα μετραυβάντες με οτοβελομοίχ μιμτοβ, μεταнавливаемых ярусами по мере бетонирования.

Конуы кружал смежных щитов перекрывают друг друга U CKPENJIAHOTCA SOJITAMU.

Таким образом, все щиты данного яруса образуют занкнутое кольио.

Опорные части лесов, поддерживаноцих апалубку, должны устанавливаться на надежное основание, обеспечивающее забетонированные конструкции ат недопустимых осадок.

Υυταμοβκα αρματυρω

Арматира железобетонных конструкций насосной должна USEOFORNATECA U MONTUPOBOTECA & MONHOM COOTBETCTBUU C PASOUUMU 4EPTE HOMU, CORNOCHO TPESOBOHUAM CHUNIII-B-1-62 "Бетонные и железобетонные конструкции монолитные. Общие правила производства и приемки работ."

Арматура должна изгоговляться в цеховых условиях B BUDE UKPUNHEHHBIX ЭЛЕМЕНТОВ: APMOKAPKOCOB, APMOCETOK. Γαδαρυτώ υ βες ΥΚΡΥΠΗυτεπόμωχ эπεμεμτοβ αρματΥρώ

INGSBUQUKAHANDPOEKT Cabado

1968

Канализационная насосная CTOHUUR HO 3 DEPEROTO C HOLDERMU 596 USU 5912

Hacoohan crahuun npu enyduhe запожения подводящего коллектора Нк=5.5 Краткие соображения по методам производства работ.

TunoBou npoekr 902 - 1 - 19

ASSOON

4ap kar

JUCT

должны соответствовать иненоциная транопортным средством и подзенно-транопортному оборудованию.

<u>Бетонирование насосной станции в открытом</u> котловане

При бегонировании насовной стануии следует руководство-Ватеся указаниями СНИП III—8-1-62., Бетонные и железоветонные конструкции монолитные. Общие правила производства и приетки работ"

Бегонирование конструкций насосной отанции производиться после проверки соответствия установки опалубки и арматуры требованиям проекта.

Бетонноя снесь доставляется с нестной бетоно-спесительной установки или центрального бетонного завода автосамосватами или в бадьях борговыми машиноми.

Бетонирование днища производитей параплельны<u>ни попосо-</u>

Ширина полос устанавливается в зависимости от тенлобетонирования и сопряжения вновь укладываемой бетонной снеси с ранее упоженной до начала схватывания последней.

Укладка бегонной смеси в стены насосной стануции производится горизантальными слоями по всему периметру стены. Каждый новый слой бетонной смеси следует укладывать на поверхность нижележащего слоя не поэже следтывания бетона этого слоя

Толщино слоев не должна превышать длину равочей части вибратора.

В случае вынужденного перерыва в бегонировании, возовновление работ разрешается после проведения негоприятий, объспечивающих прочное соединение схватившегося бегона и бегонной снеси, заключающихся в следующем:

a) Цененгная пленка, образовавшаяся на поверхности бетона, удаляется при понощи стальных щеток или пескоструйной обраBOTKU;

б) поверхность бетона промывается водой под напором;

в) Арматура очищается от налипшего бегона;

г) До укладки бегонной емеси на поверхность бегона укладывается г.с.1-3к сантиметровый слой снеси без крупного заполнителя.

Уплотнение бегонной смеси в днище и перекрытия осуществляется площадочными вибраторами, а в стемах епубинными вибраторами.

Выравнивание и заглаживание бегонных поверхностей днища и перекрытия предусматривается виброрейкой, перемещаемой по направлянощим с фиксированной отметкой, проверенной по нивелиру.

Доставка ветонной снеси на стройплощадку осуществляется автомобилями в водьях или автосамосвалами с последующей перегрузкой снеси в ковш.

Подача бадей или ковшей к несту укладки бетана пребуснатривается краном э-652 (э-1252).

Бетонирование опускного колодца

ввиду значительной высоты подзенной части насолной станции (с заглублением коллектора на 55м) равной 9м, а также в цепях удобного использования для разрабатки грунта экскаватора с грейферным ковшем, бетонирование и опускание колодца предуоматривается в 2 очереди секциями по 4,5м. К производству работ по изготовлению опускного ко-

к произвоюству работ по изготовлению опускного колодуа следует приступать после подготовки и закрепления разбивочных осей.

Разбивка и закрепление осей на нестности должны обеспечивать возножность проверки положения колодуа в пюбой момент его спускания.

Реперы для контроля отметок колодио должны установливаться вне пределов возножных осодок грунта.

Бетонирование ножевой части колодуа должно выполняться

CONCREGIONALICENS
C. Machido
C. M

100

Каногизационная насосная станция на 3 агрегата с насосами 50-6 или 50-12. Насосная станция при глубине запожения подводящего коллекторо Нк=5.5м Краткие соображения по негодам производства работ. *Типовой проект* 902 -1 - 19 Antson 2

4 163

902-1-19

Yapro-our 113-8

UHB.N

на деревянных подкладках-шпалах.

NODKNODKU NPU ZNUHUCISIX OCHOBOHUAX YKNODSIBOIDICA на песчанию подишки толишной не менее 40 см.

UMER B BUDY, 4TO HOCOCHOR CTOHLUUR SYDET POSOTOTS B условиях подпора грунтовых вод, при строительстве особое Внимание следует уделить обеспечению водонепроницаемости колодиа.

Водонепроницаемость колодиа обеспечивается исловияни применения плотного бегона, непрерывного бегонирования, тщательности уплотнения бетонной смеси и поавильного ихода за бегоном в период твердения.

Укладка бетона в стену колодиа должна производится го-DUBDHTANGHGIMU CHORMU NO BERMU REDUMETPY CTEHGI B REDEPLAN данного яруса. Толщина слоев не должна превышать длини ραδομείζ μαστυ Βυδρατορα.

Подача бетонной смеси в опалубку осуществляется через металлические звеньевые хоботы, установленные через Эм по пе-PUMETPU KONODYO.

Бетонирование опорной подушки и днища

Бетонирование опорной подушки, в зависимости от хав основании колодуа, производится с ρακτερα ερμητα BODOOTAUBOM U DES BODOOTAUBO.

В первом случае, при связных и устойчивых грунтах, водоотливной установкой производится осущение колодуа. На дне колодуа устраивается зумпар, из которого ведется непрерывная откачка воды в период бетонирования опорной подишки колодиа. Водоотлив продолжается до приобретения BETOHOM PROCKTHOU PROCHOCTU.

При неблагоприятных грунтовых условиях, когда есть опасность выноса из-под ножо мелких фракций и осадки грунта по периметру колодиа, предуснатривается подводное бетонирование ONOPHOÙ NODYWKU KONODYA, KOTOPOE OLYWECTBARETCA METODOM Вертикольно перемещающейся трубы.

KANUYEOTBO TPUS. OSECNEYUBAYOUJUX HOPMANOHOIT NPOYECC SEL тонирования, определяется из условия распространения бе-TOHO & PADUYCE 3-4 METPOS, NOU USESTOUTION DOBNEHUU & TOUGE 1-25 KE/CME

Бетонирование производится стиленями в 20-40 см однов-DRMENHO DO BORIT ПЛОЩОДИ КОЛОДЦО без перерыва.

DUAMETE TOUS POUNDMETCH 200-300 MM.

D Λυμα τρίο ουδεσθευθείου ενίδημου άκνασκη δείομα. Бегонирование дница колодуа, апущенного с подводной

BEIEMKOŪ ZPUHTO, MOJEET ŠEITE BEINDONHEHO HOCYKO POU HOVIUJUU Френажной пригрузки.

INA NOURPLISKU UCNON634ETCA KPYNHO3EDHUCTOIT NECOK, ZOOBUT υπυ ιμεδεμό. Ποοπεδοβατεπόμοςτο ραδοί πο μετρούςτβί πρυ-ZPYSKU DONJEHO BUTG CNEDYFOLYOR.

На дно опищенного до проектной отметки колодиа устанавливаются два металлических перфорированных ящика с патрибкани для откачки воды из дренажной пригрузки. Высота патрибков должена соответствовать толщине железобетонного дниша колодиа.

Отсыпка дренажной пригрузки осуществляется в води при пачащи гусеничного крана, оборудовонного грейфером.

После окончания отсыпки дренажной пригрузки производит-СЯ ОТКОЧКО ВОДЫ ИЗ КОЛОДУЮ, ЗОТЕМ ВСФС НОСОГОВ ПЕРЕСТОВЛЯ-ETCA 8 NOTPYOKU.

NOCHE BUPOBHUBOHUA NOUZPUZKU, BUNONHAETCA GETOHUPOBO-HUR PHILLIP

ОТКОЧКО ВОДЫ ИЗ ОРЕНОЭКНОЙ ПРИЕРУЗКИ ПРОВОДИТСЯ В ТЕЧЕние всего времени бетонирования и гвердения бетона до достижения бетоном проектной прочности.

Noche npekpawehun atkayku Badu natpyoku sabapubaroten металличе скини заглушками.

Водоотлив в опускном колодуе

DAR OTKOUKU BOOM U3 KONOOYO NOONE BEO DAYCKOHUR DO ADORTROT

KOHOLOUS OLLUO HHOIR HOLOCHOR станция на 3 агрегата с HOCOCOMU 54-6 UNU 54-12 Ногосной станция при глубине запожения подводящего каплектора Нк=55м KPATKUE COOSPACHUA NO METODAM NOOUZBADETBA PASOT.

Tunoboù npoekt 902-1-19

ANDSOM MOIDED ńuer 113-8

10053-02 10

DRISKO AUKARAMPOEKT C/YOCKBO Goerpou creo

отметки и послевующего понижения уровня грунтовых вод в колодуе до нижней грани опорной подушки, используются центробежные HACOCH TUNA "K" UNU "HDB!

Насос монтируется на железобетонном фундаменте, который ПРИ ПОМОЩИ КРАНА ВОЗМОЖНО УСТАНОВИТЬ НА ВРЕМЕННЫХ МЕТОЛ-SULLECKUX ONODOX, 30DESIGNHHISIX 8 CTEHS KOSTODYCY HO BISCOTE 4,5 OT HOJKO KOJOĐUO.

Тип насоса, его мощность и продолжительность работы определяется при привязке проекта, исходя из местных условий строительства.

DAR CHRIUR ZUDPOCTATUHECKOZO DABNEHUR C ONOPHOŪ MAYWки и днища в период их бетанирования и твервения бетона, OTKOUKA BODSI NPOUBBODUTCA UB BYMNAPEPA, DHO KOTOPOZO PACNONOжено на 3M ниже поверхности дниша.

Забор воды из зумпфера производится при помощи потрубка, соединенного со всасыванощей трубой насоса флануем на цровне пола.

Патрубок, забетонированный в подушке и днище, после прекращения водоотлива перекрывается заглушкой.

Водопонижение в колодце

TIPU HEBIOGORDURTHEIX ZEDIOGUHECKUX YCHOBURX/MEJIKUE NECKU/, KOZда есть опасность выноса мелких фракций из-под ножа колодца U OTCUTCTBYET BOB MOXCHOCTS NOOBBODHOED SETOHUPOBOIHUA ONOPHOŪ NOдушки, осущение колодуа осуществляется путем понижения уровня грунтовых вод при помощи эжекторных иглофильтровых установок или трубчатых колодуев, располагаемых за пределами колодиа

Необходиное количество излофильтров или погружных насогов anpedesiretch apu apubriske apoekta, ha ochobahuu dahhbix o beauчине подпора, коэффициенте фильтрации грунта и мощности во-DOHOCHOEO CAOA. APODO JAKUTENO HOOTO PUBOTO YOTOHOBOK ONDEDENAET. CA NO NPUHATOMY TEMNY BEMJAHUK U BETOHHUK POBOT.

Торкретирование стен колодуа

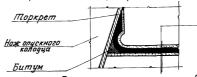
HOPY HE HOR NOBERX HOCTO CTCH KONODUO, NODRE HEQUIOR TODE DE TILрованию, очищается от пыли и грязи обрабатывается пескоструйным аппаратом. Нанесение торкрета производится цемент- пушкой на промытую водой влажную поверхность бетонных конструкций.

Снабжение цемент-пушки и пескоструйного аппарата воздуком осц-WECTBARETCA OT REPERBLIXMHOZO KOMAPERCOPA.

Приготовление сухой чементно- песцаной смеси осуществля ется раствормещолкой.

NECOK UCHONGZURMU DIA CMECU C BADIKHOCTGHO SOMER 5% MODREKUT предварительной сущке.

TOPKPETHELE POBOTEL U YXOO 30 HOHECEHHEIM TOPKPETHEIM CROEM BUIDONHAPOTCA C COSNOODEHUEM TRESOBOLHUU CHUTI. III-B. 2-62.


Β προυρείτε πεικοιτριμικού οδραδοτκύ τορκρετυροβάκυα τορκρετ-4UK DONJKEH POBOTATO B MACKE MUI-2 UNU MACKE MUOT, B KOTOPOJE производится подача чистого воздухо по шлангу от специального вентилятора, размещенного за пределоми колодуа.

POSEPXHOCTS TOPKPETHOZO CAOA POCAR HUHECEHUA PODREJEUT железнению.

СООРУЖЕНИЕ НАЗЕМНОЙ ЧАСТИ СТАНЦИИ

CODPUMENUE HOSEMHOŬ HOCTU HOCOCHOŬ CTOHUUU BUNONHARTCA OSSIGNAMU METODANU C UCNONOSOBONUEM DIA NODZEMNO-TDANCNOPTных операций кранов 9-652 (9-1252).

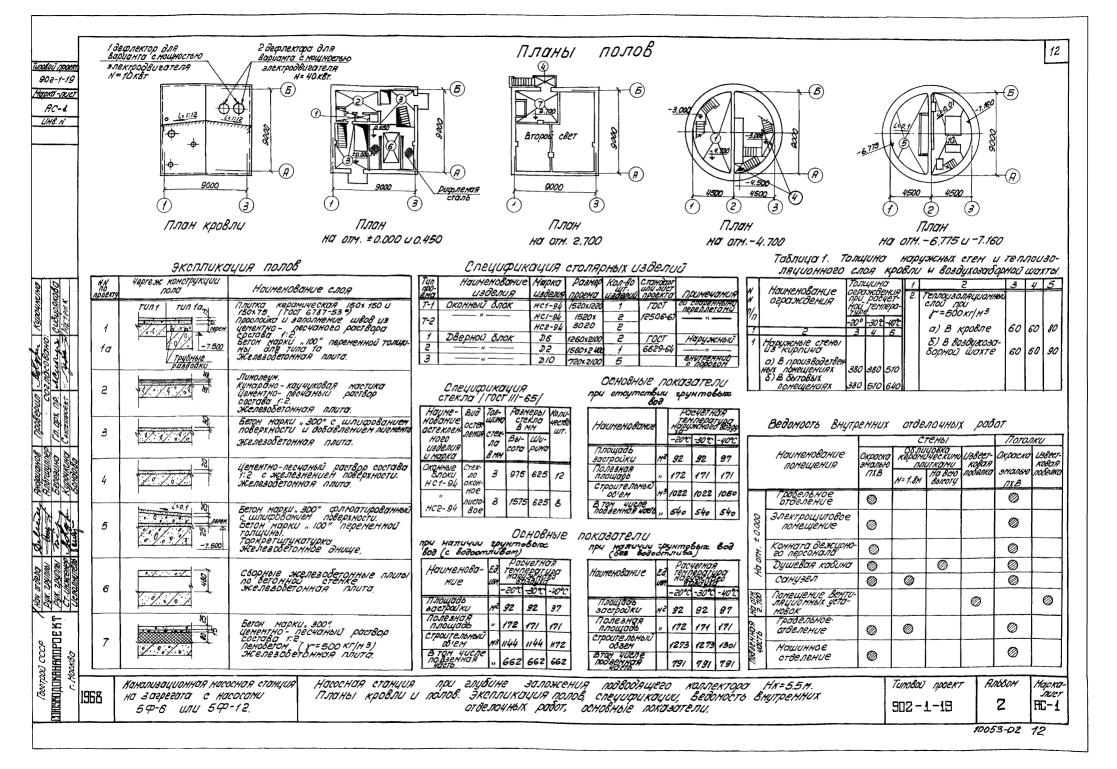
Кирпич доставляется на стройплощадки в контейнерах, раствор в автосамосвалах с последующей перегрузкой в вибробадви или бункер.

Железобетонное днише. Цементно-песчаная стяжка. Оклеечная гидроизаляция. <u>LEMENTHO-ПЕСЧАНАЯ СТЯЗКА</u> Бетонная падеотовка.

Деталь заделки оклеечной гидроизоляции днища опускного колодиа.

Канализационная насосная стания NO 3 O'EPEROTO C HOCOCOMU 546 (10115912

Насосная станция при глубине запожения подводящего коллектора Нк=5,5м Краткие соображения по негодам производства работ.


Tunataŭ novekt 902-1-19

Hapra-F1.068014 113-9

10053-02 11

ONCEDIOKAHANIPOEKT Tacespor cace

1968

Стандарт

COCT

6285-58

ract

678*5-5*8

FOCT

6785-58

Перекры вастый

nponer 6

1500

1520

1560

1260

1520

770

720

720

Mapro.

PRUT

BN3 -15

no

POCT

5419

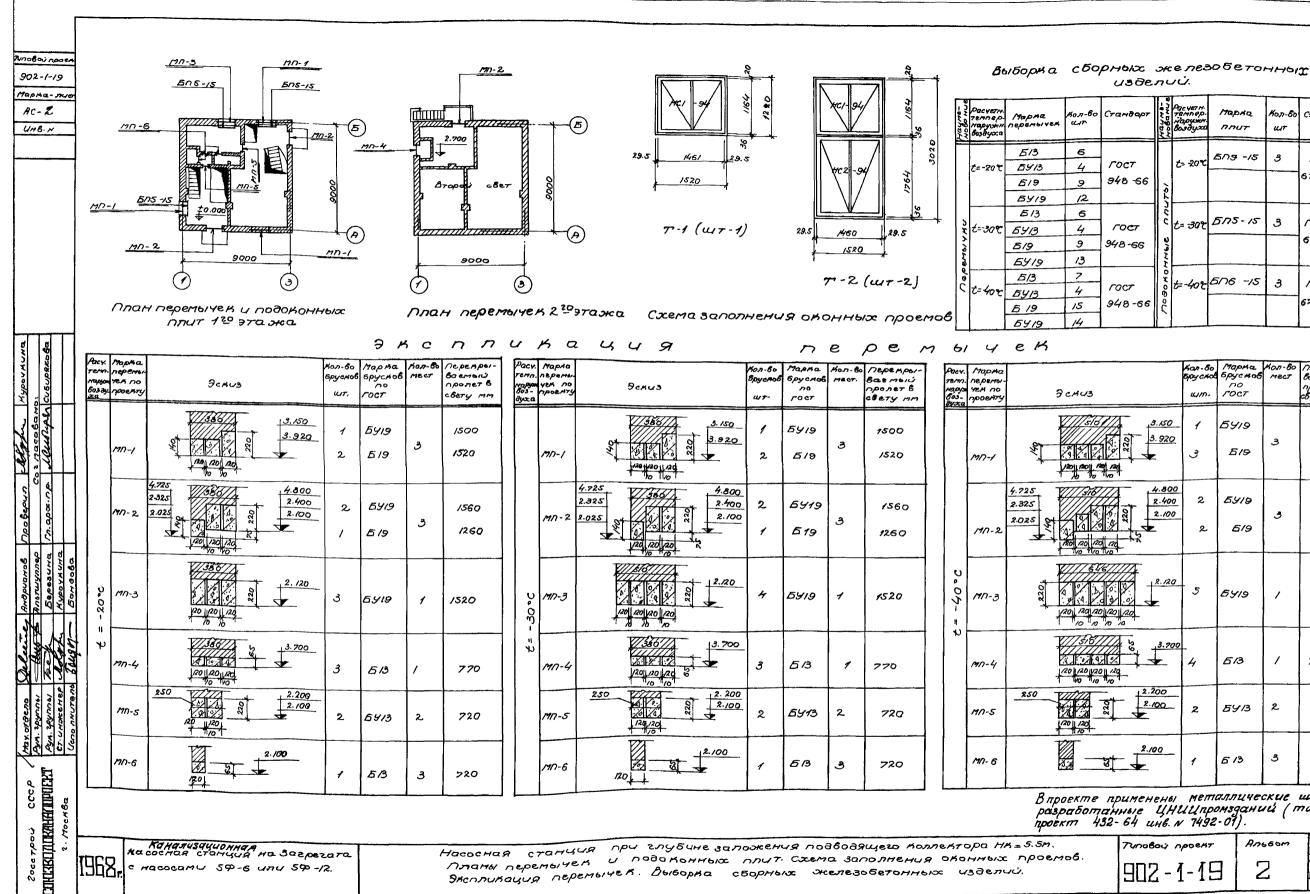
519

5419

619

5419

5/3


*541*3

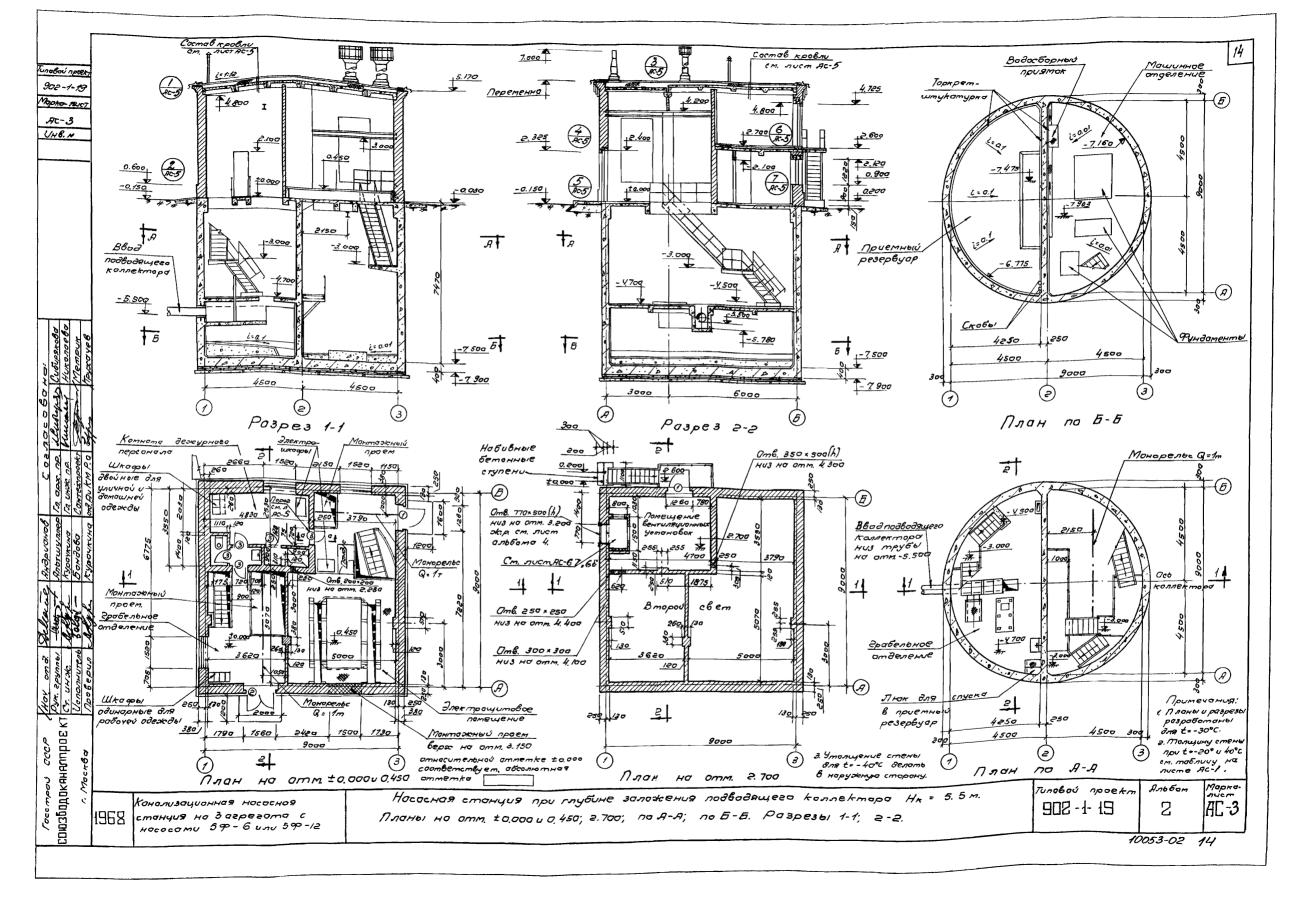
*51*3

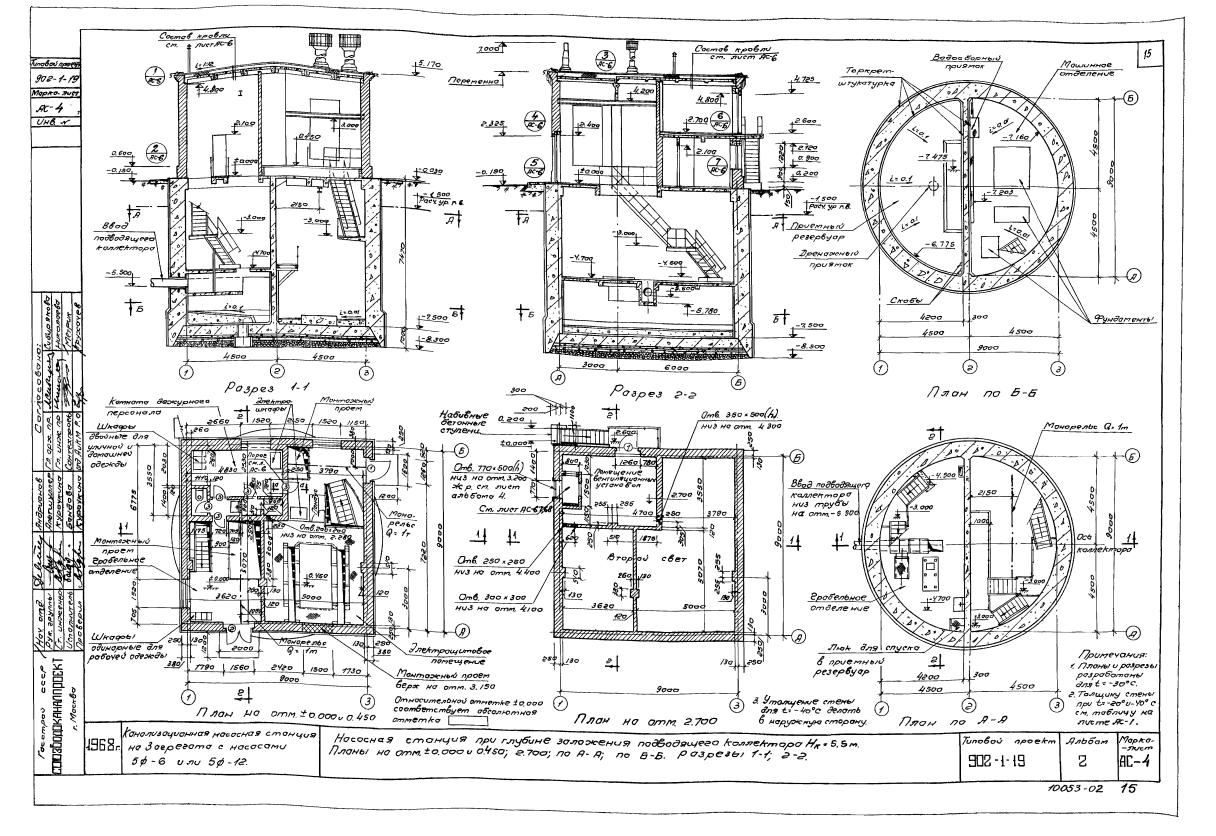
2

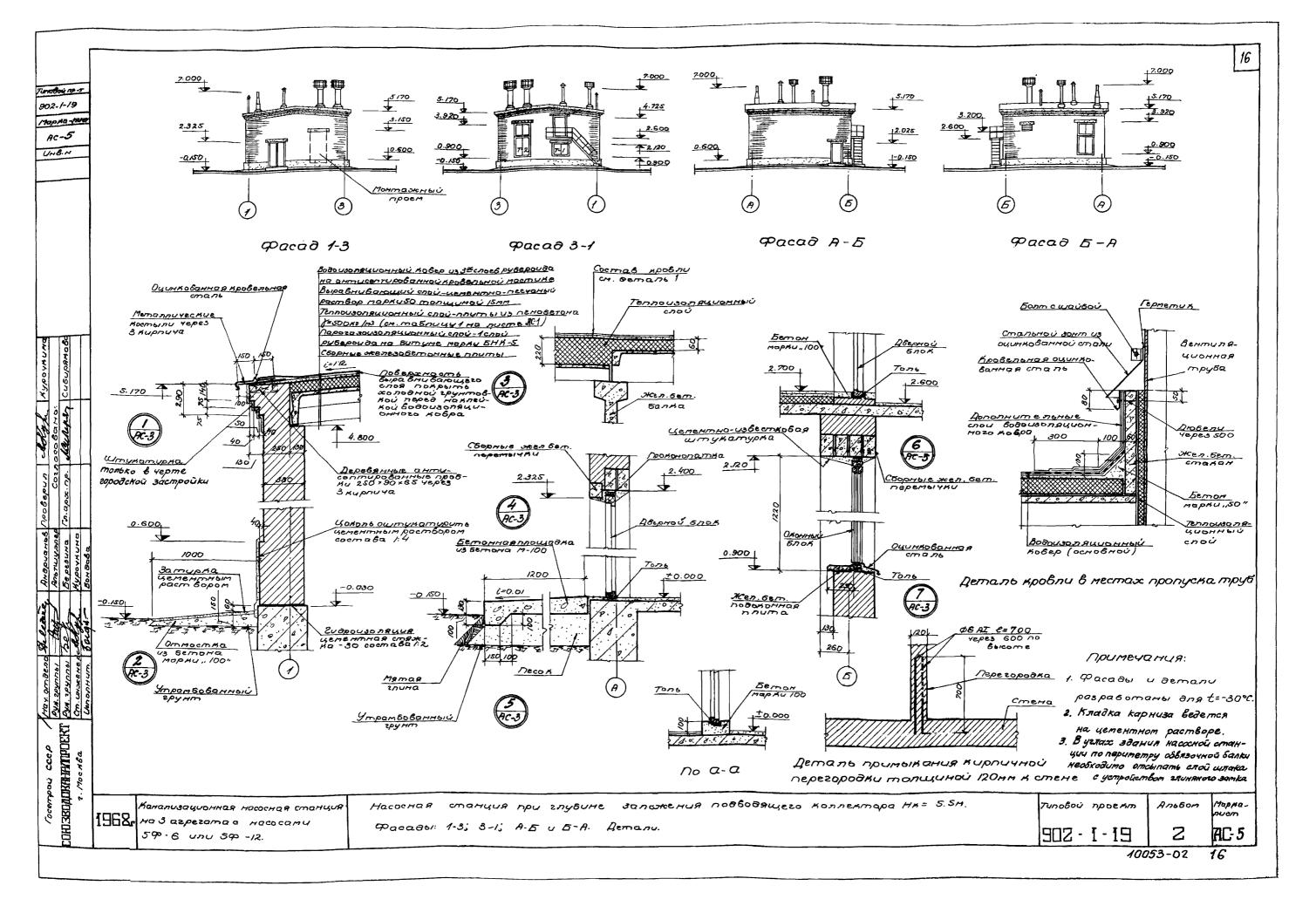
Kon-60

WT

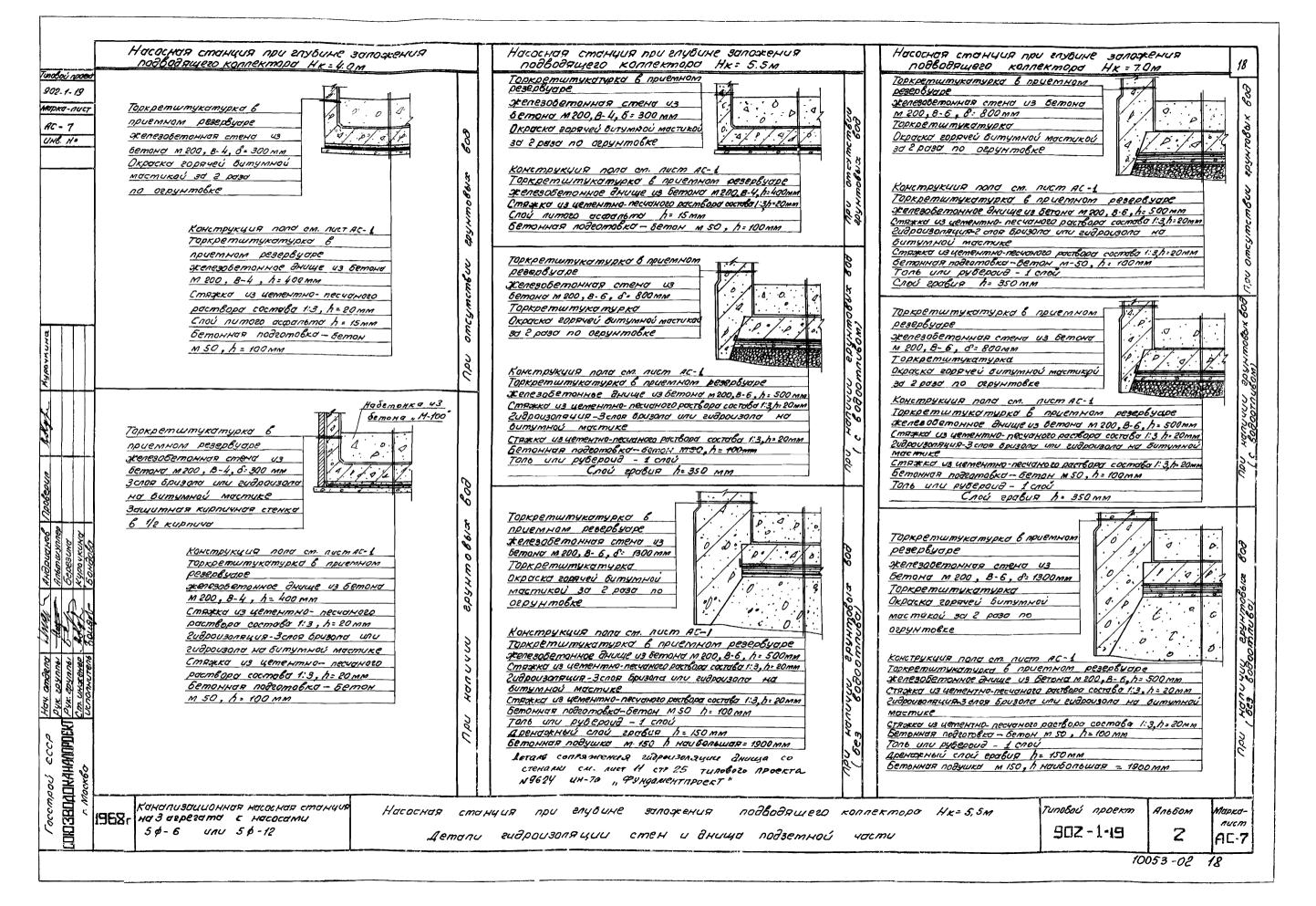
Впроекте применены металлические шкары, разработанные ЦНИИпромзданий (типовой MODERITY 432-64 WHE. N 7492-01).

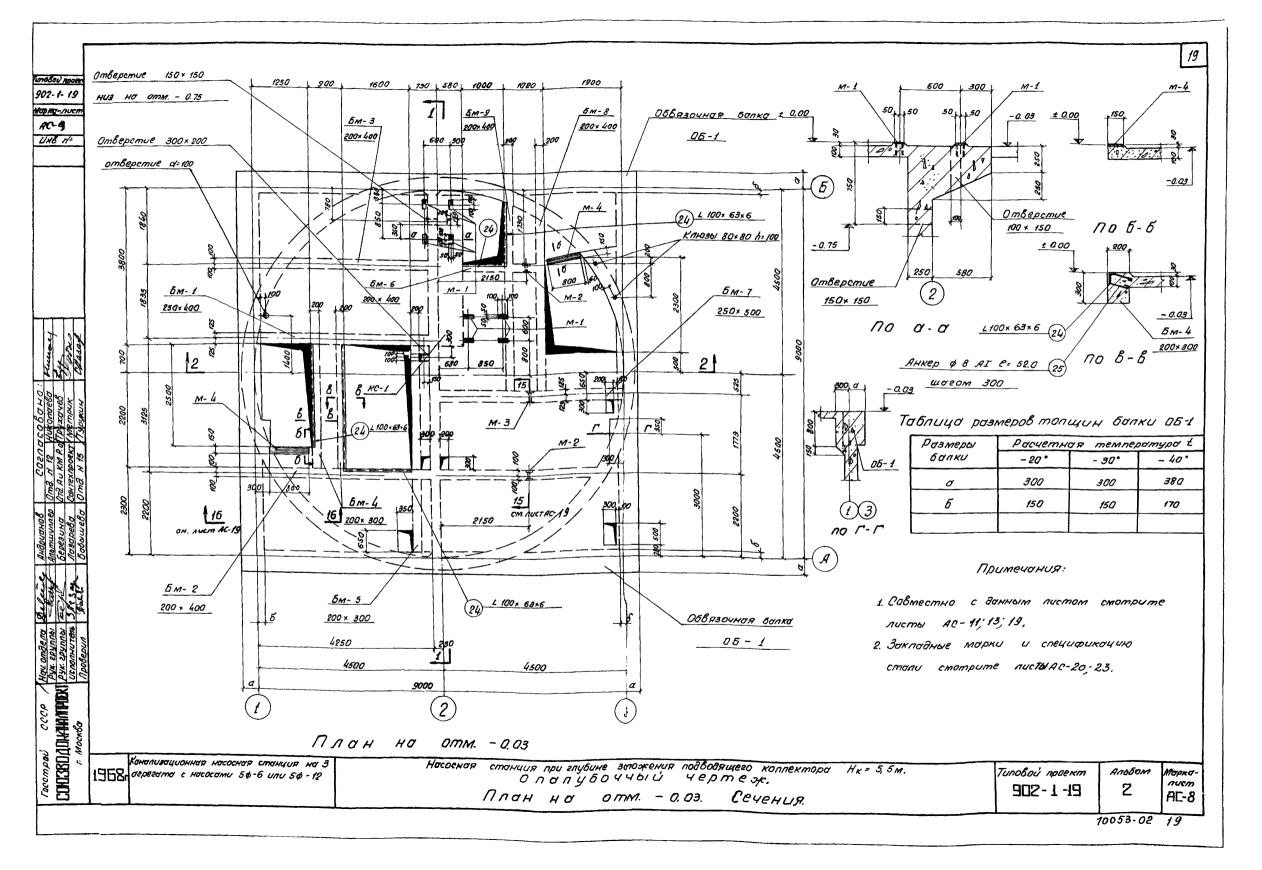

Канализационная на сосная станция на Загрегата 1968, c Hacocamu 59-6 unu 59-12.

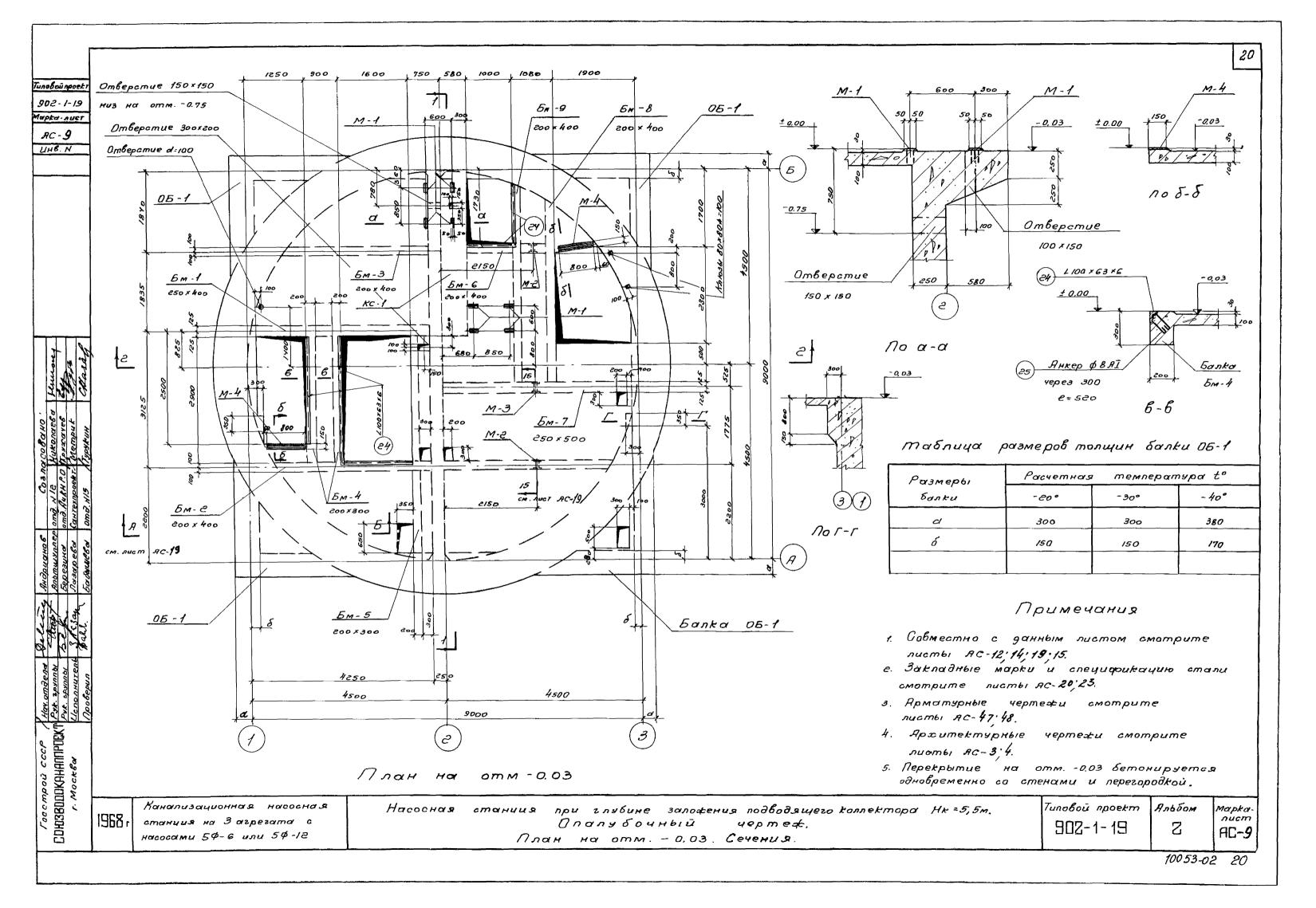

при глубине запожения подводящего коллектора НК=5.5м. Насоеная станция Планы перемычек и подоконных плит. Сжема заполнения оконных проемов. Эксплинация перемычей. Выборна сборных железобетонных изделий.

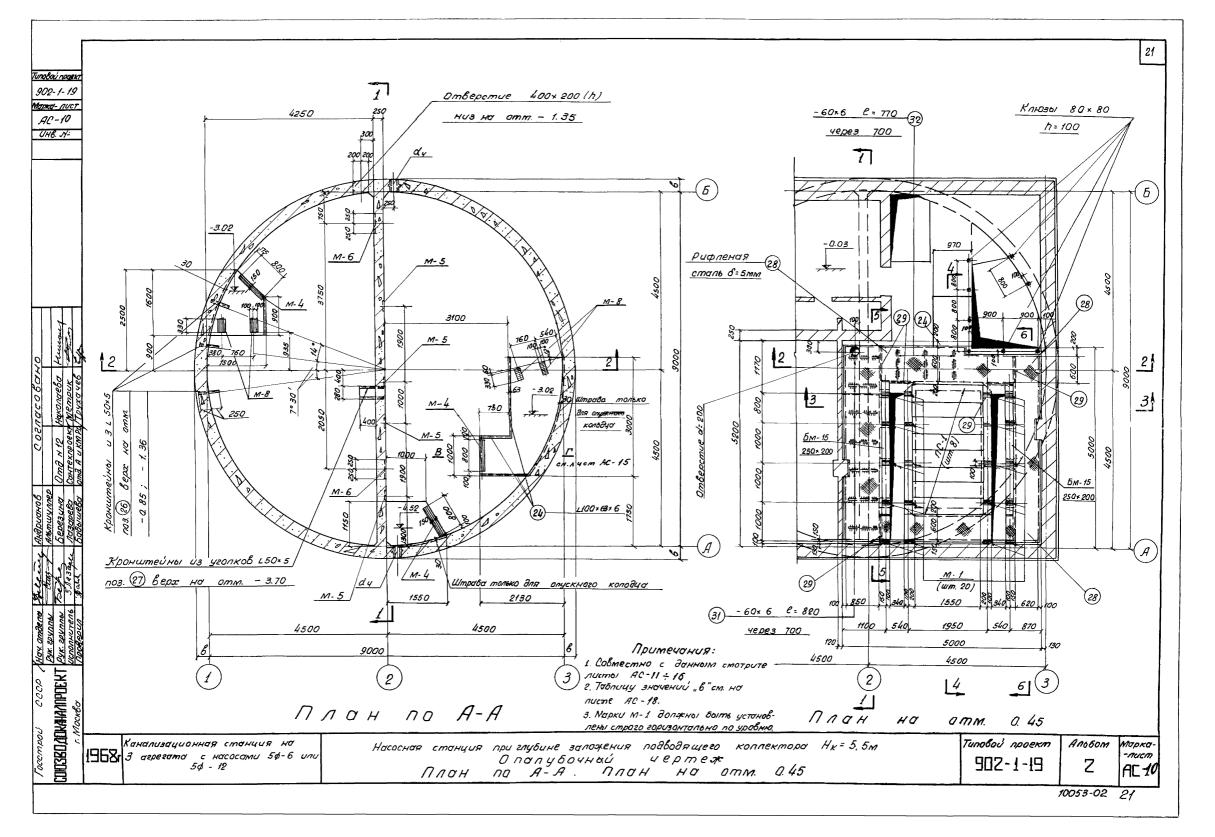

TUNOBOU NOVERT

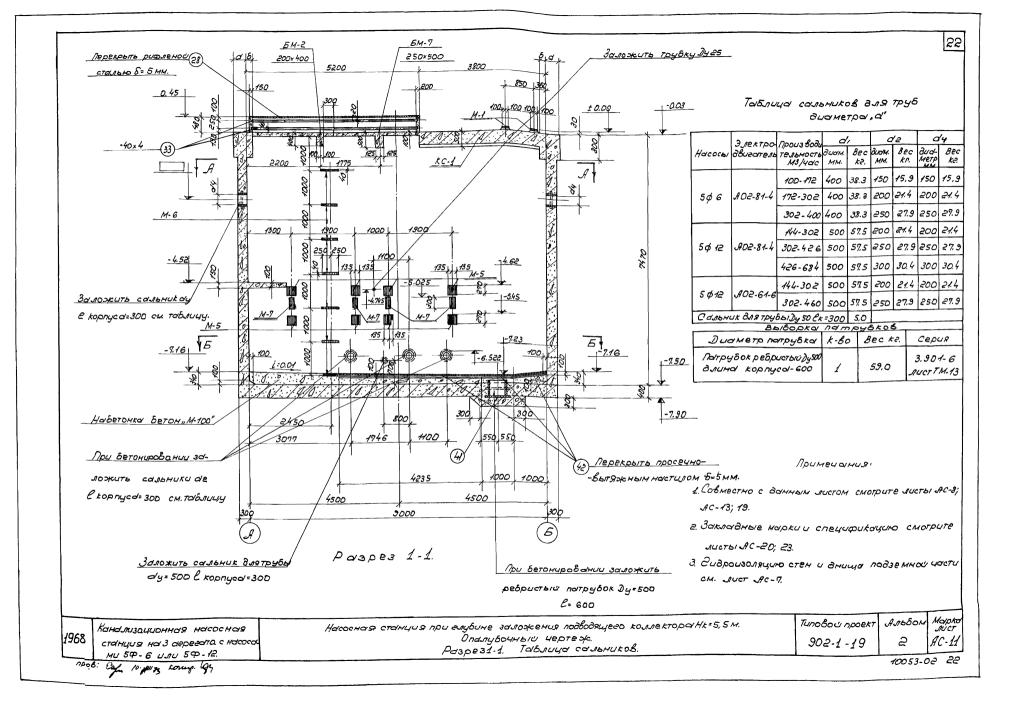
Ansson Марна. MIST AC-2

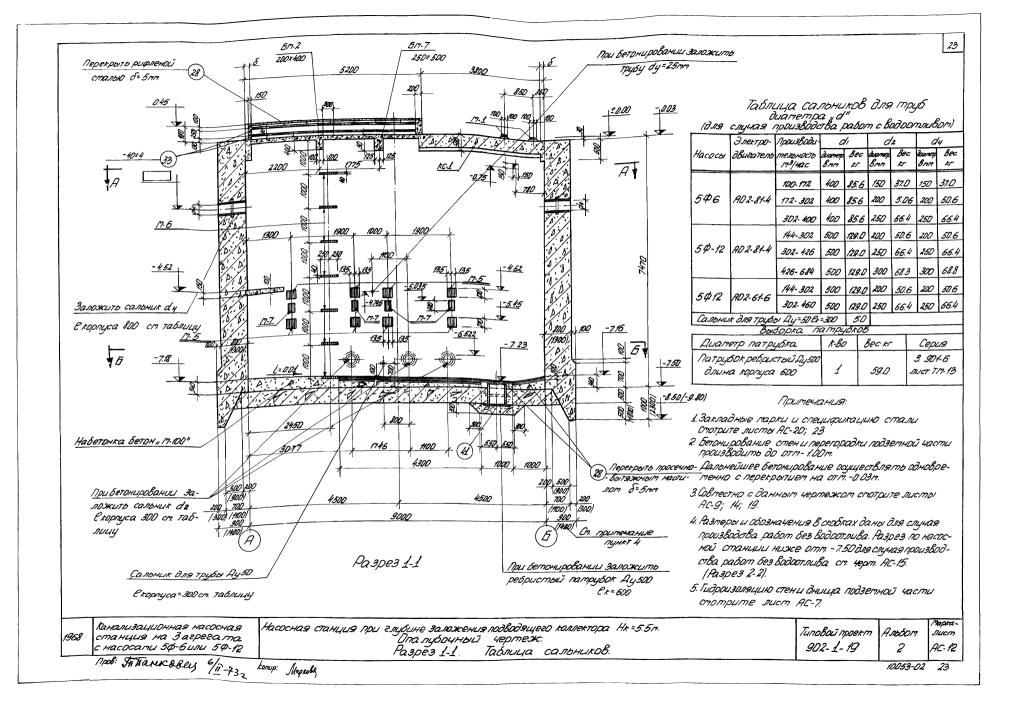

10053-02 13

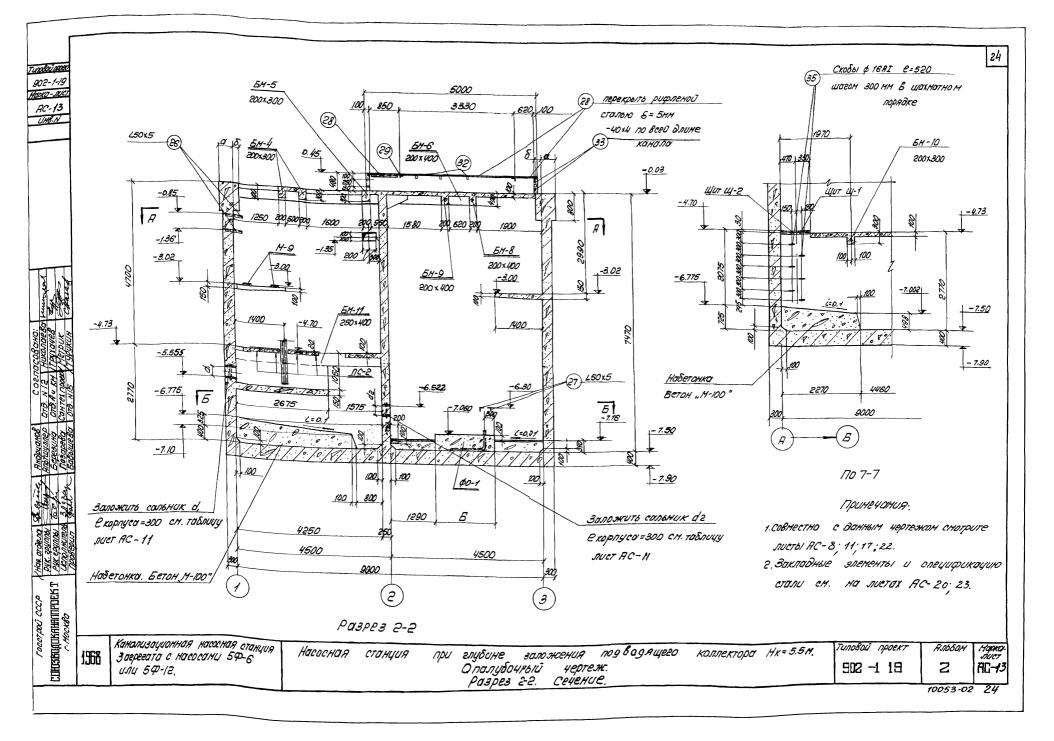


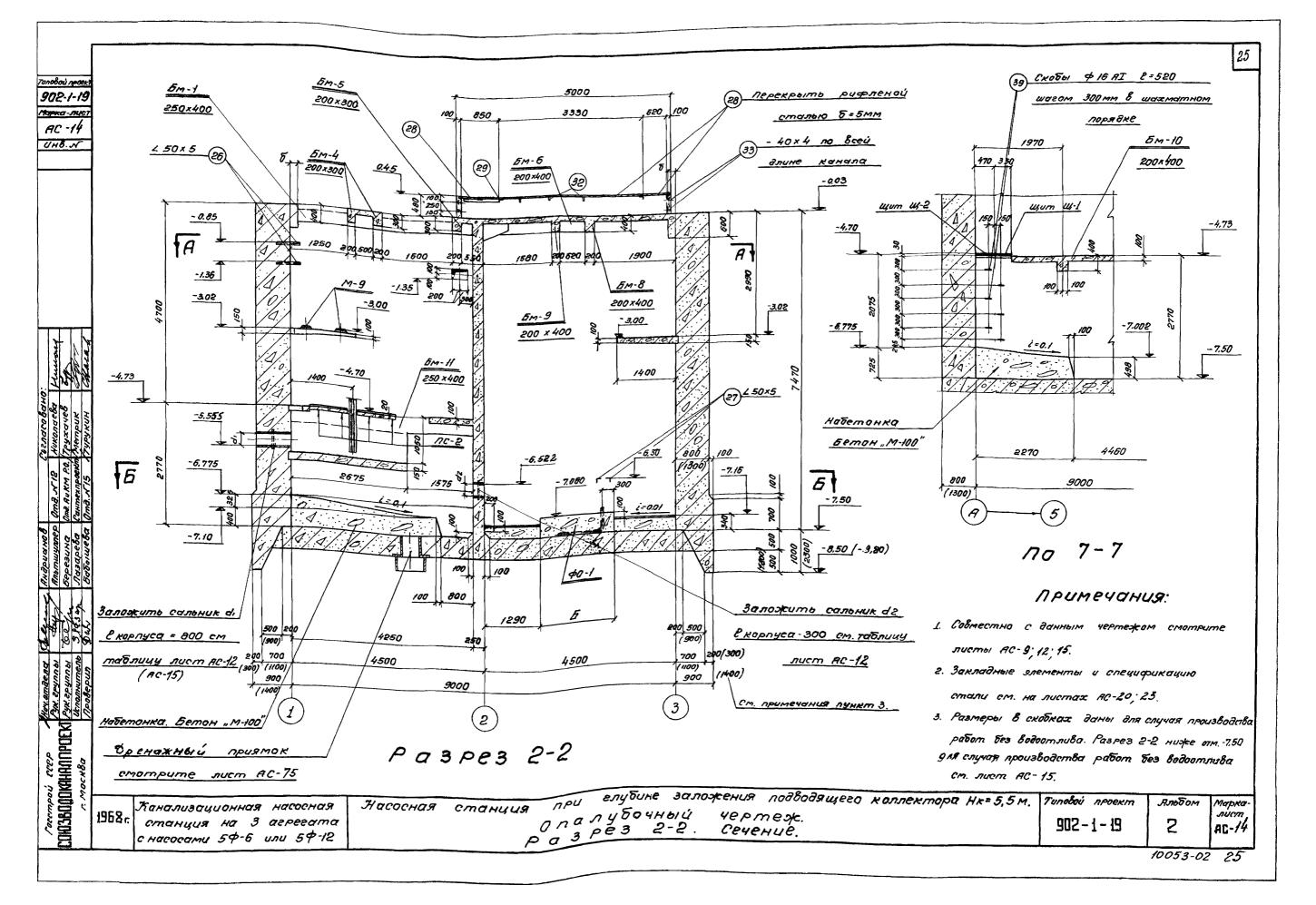


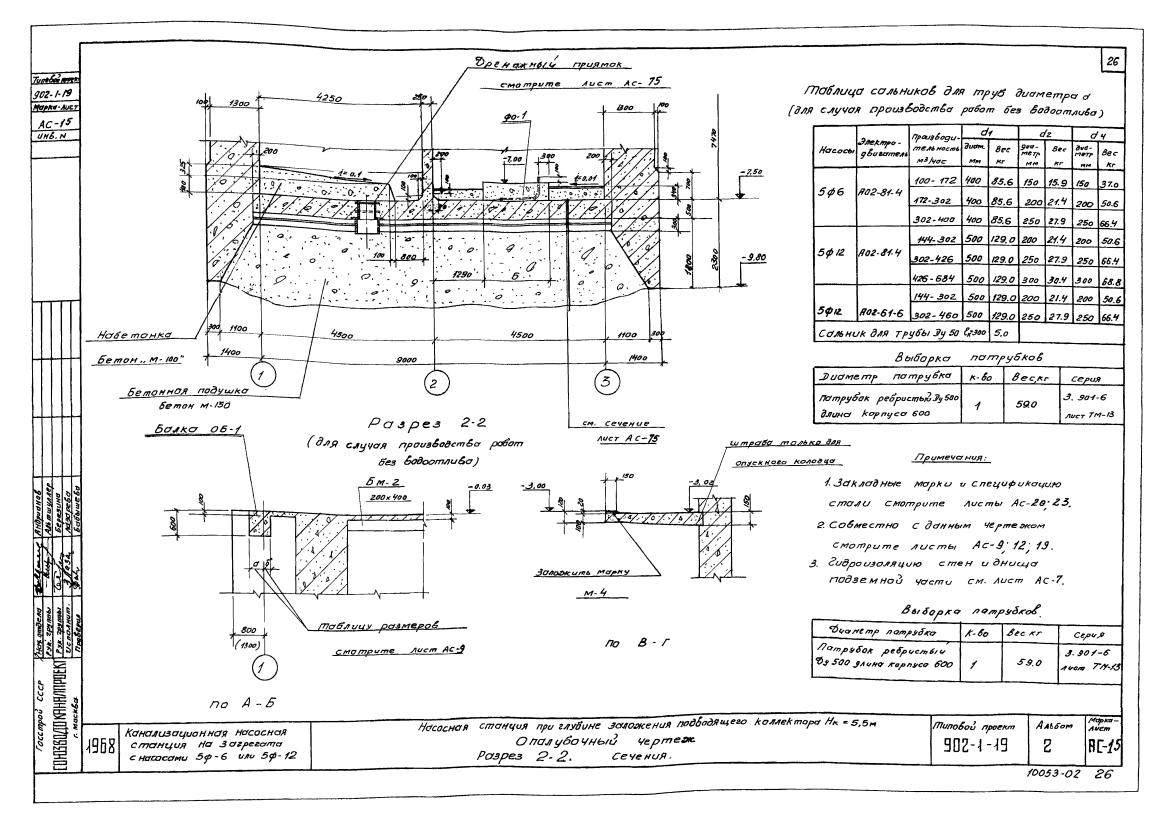


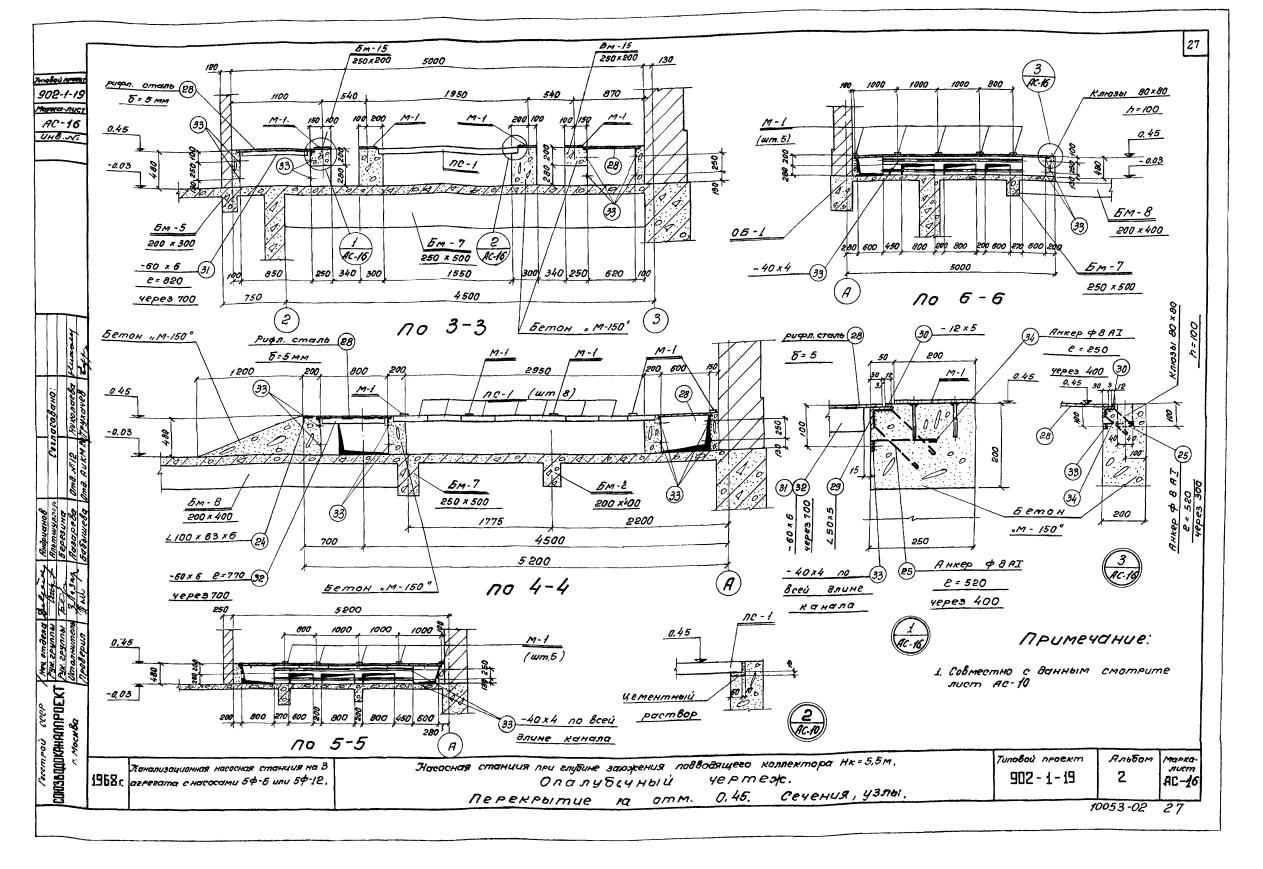


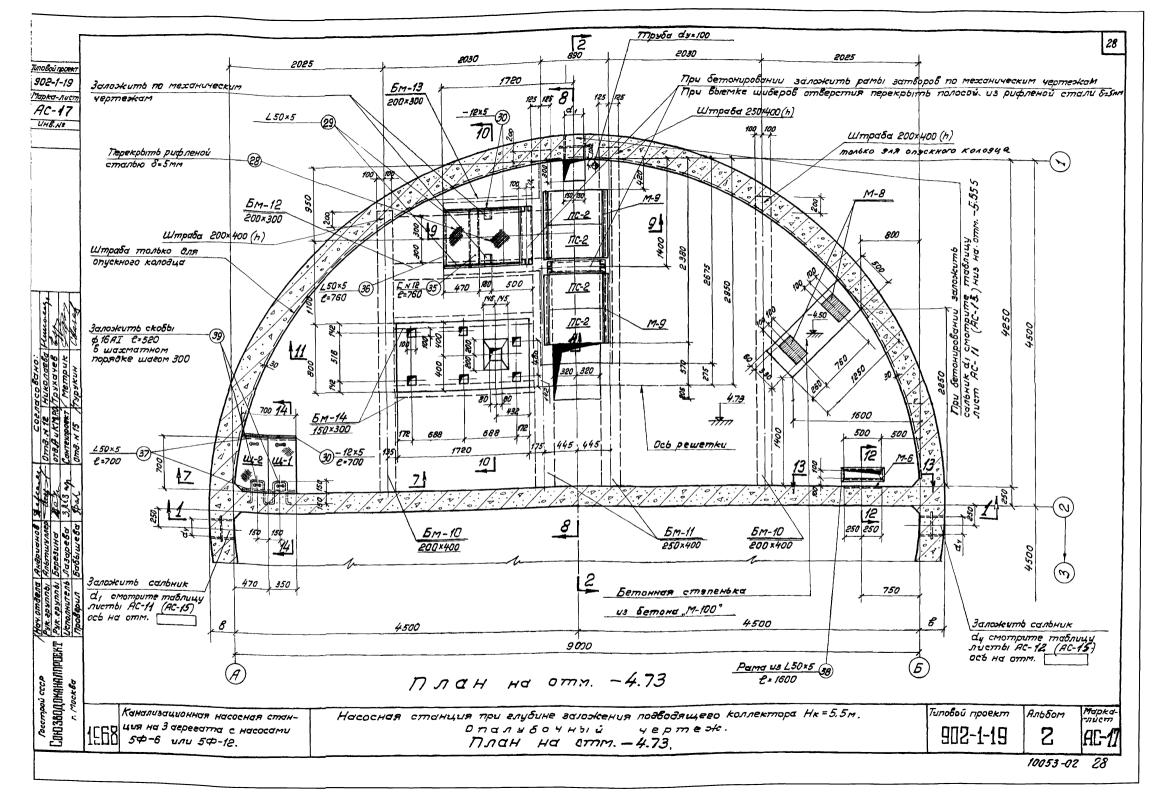


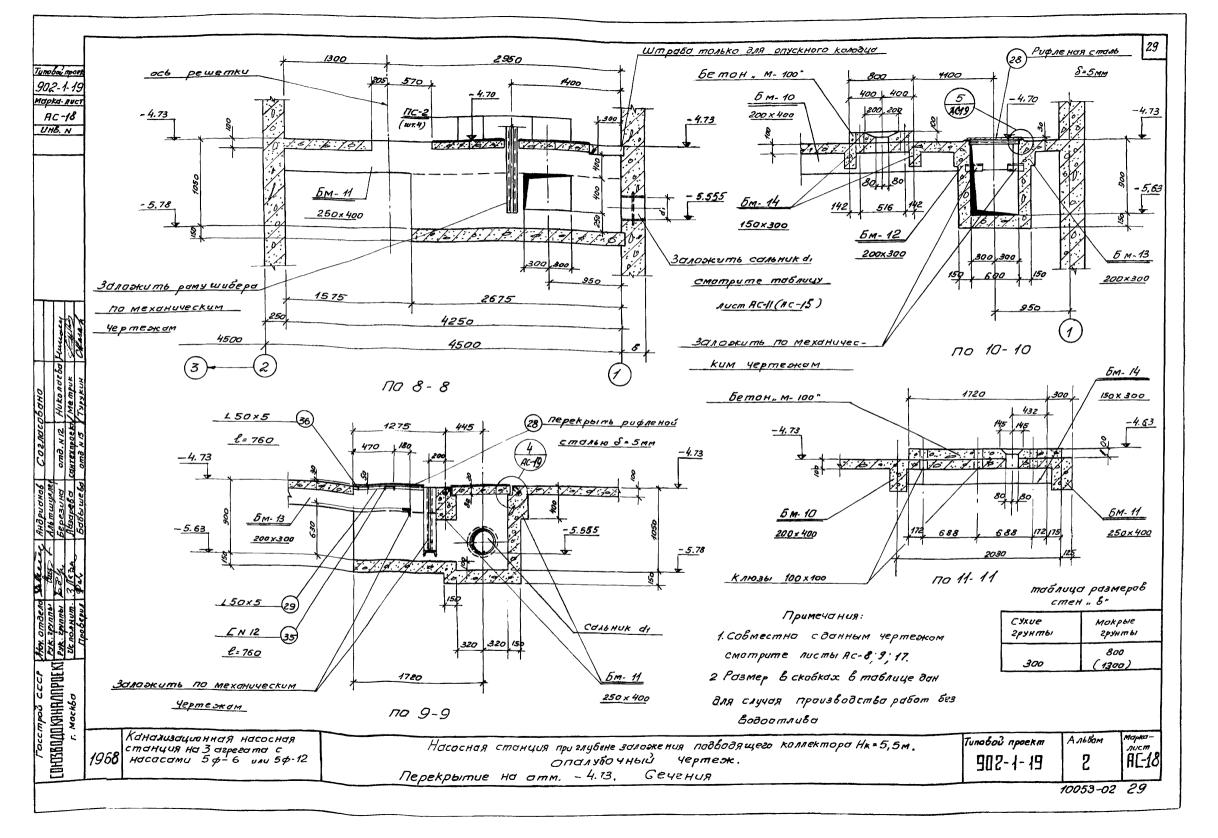


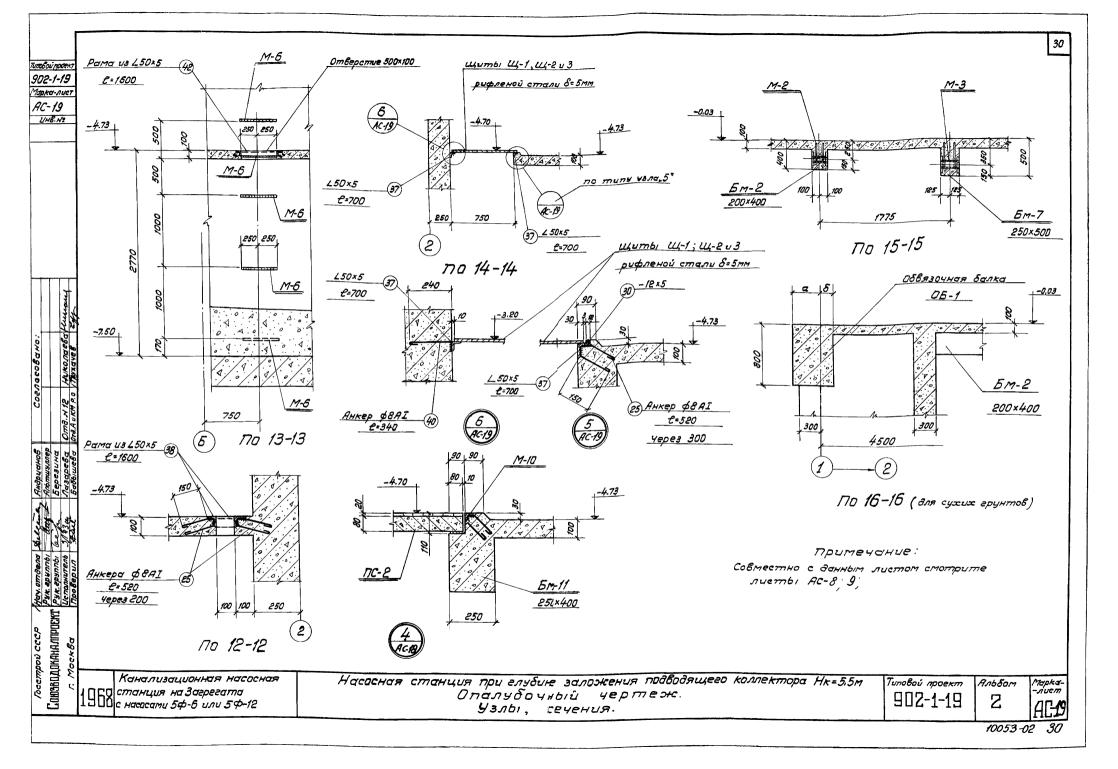


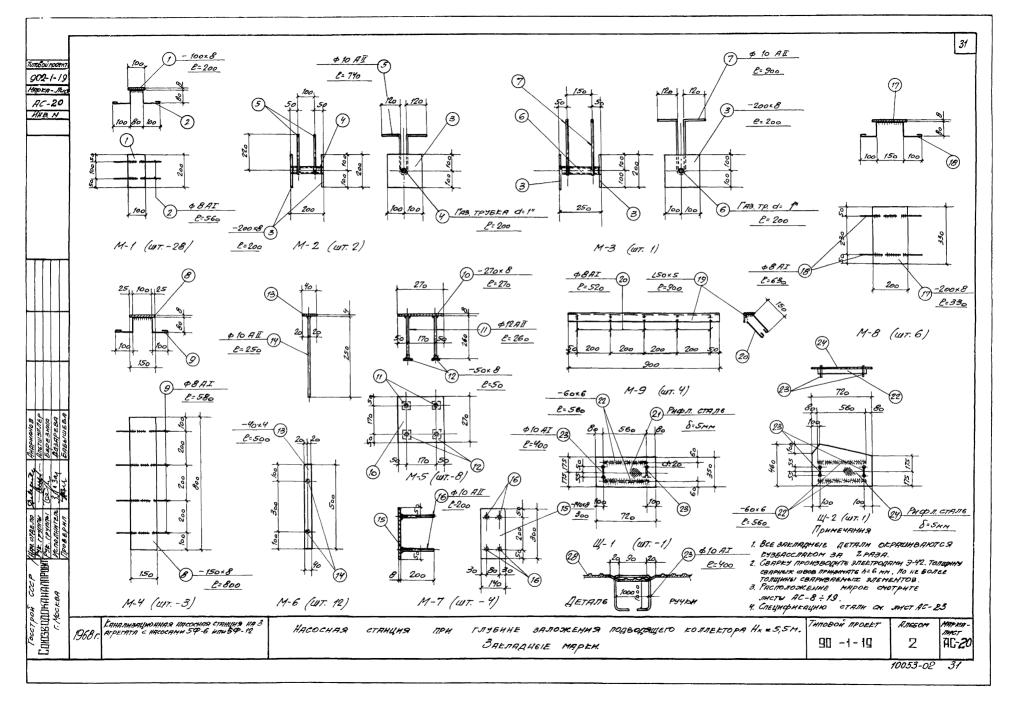


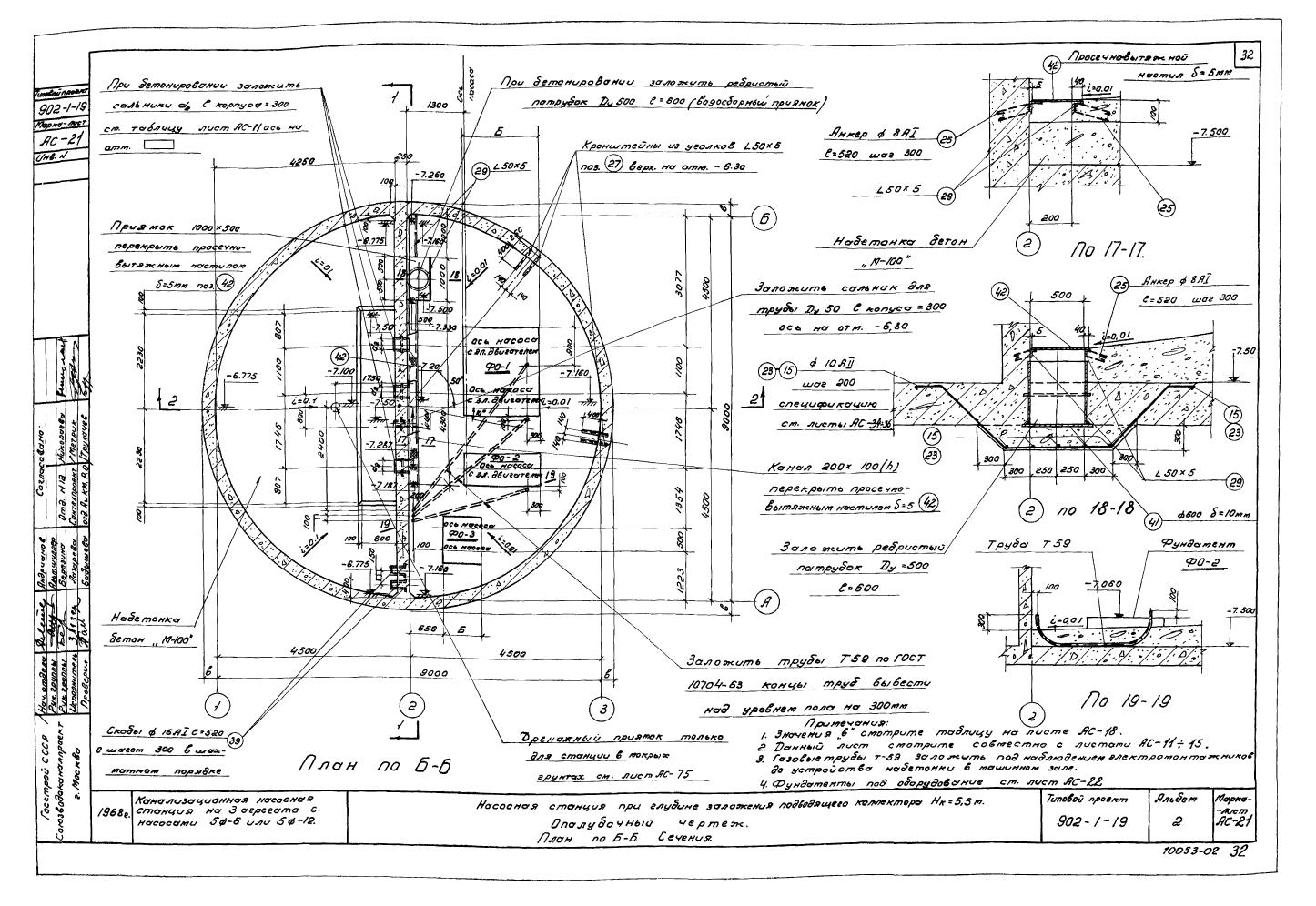


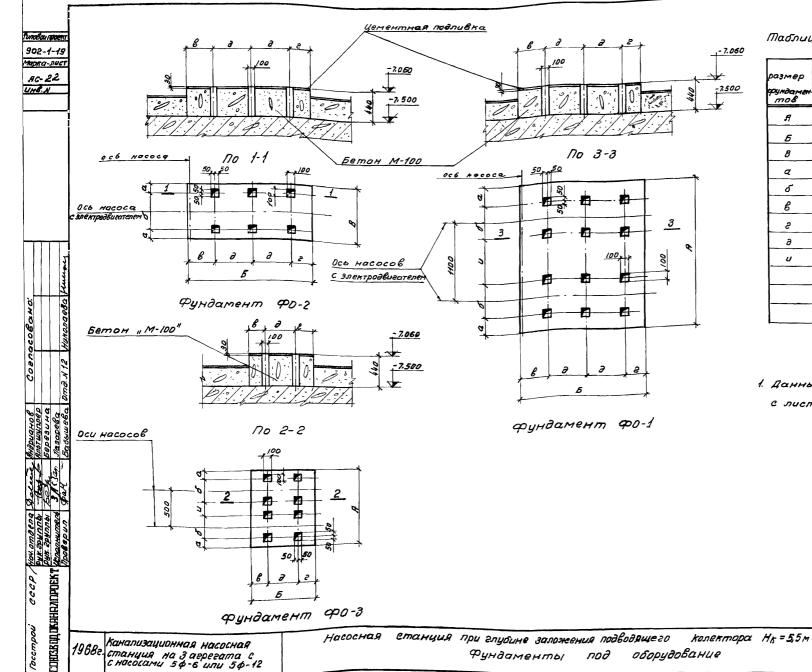












1968г. Станция на 3 агрегата с с нососами 5ф-6 или 5ф-12

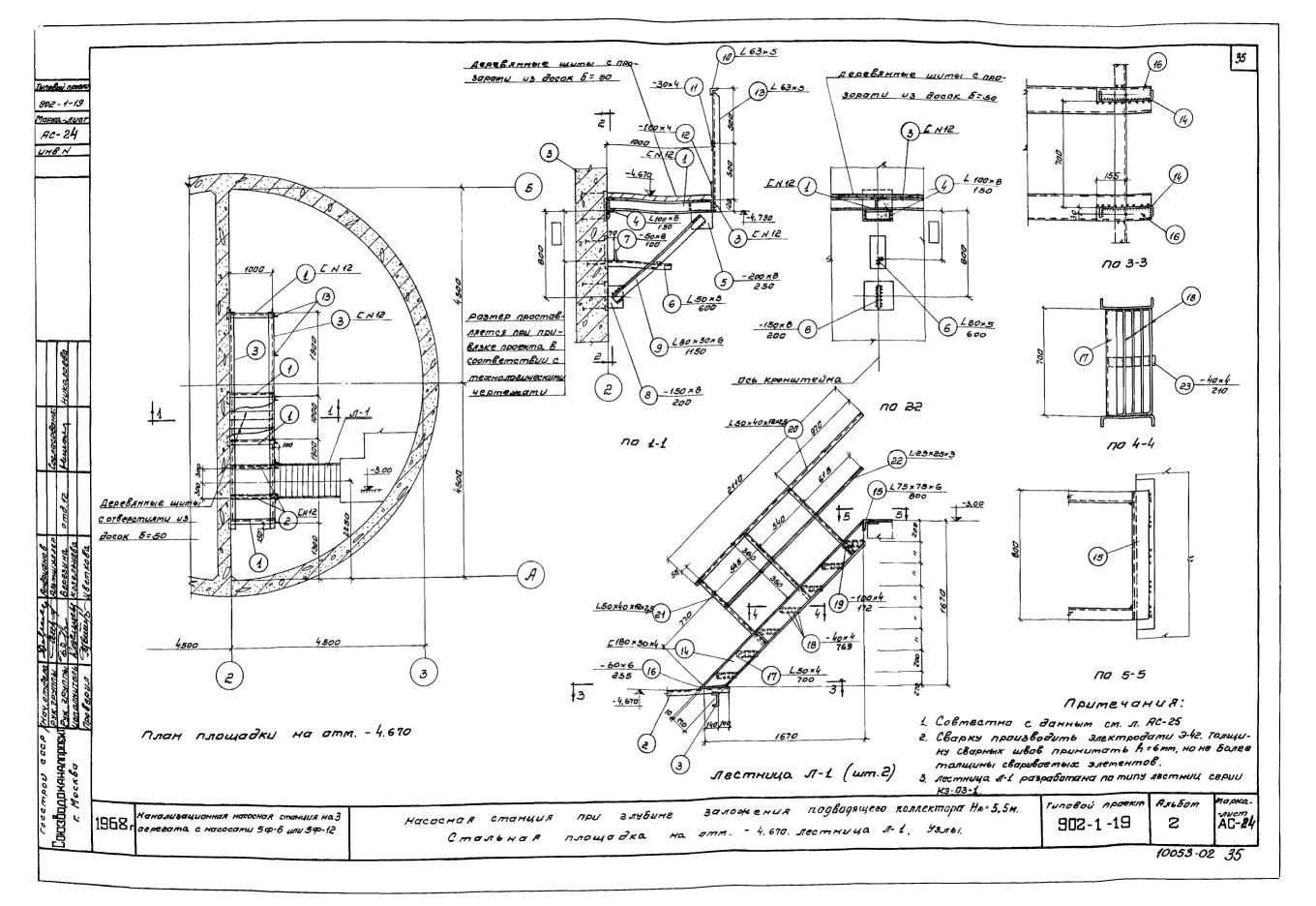
Паблица размеров фундатентов

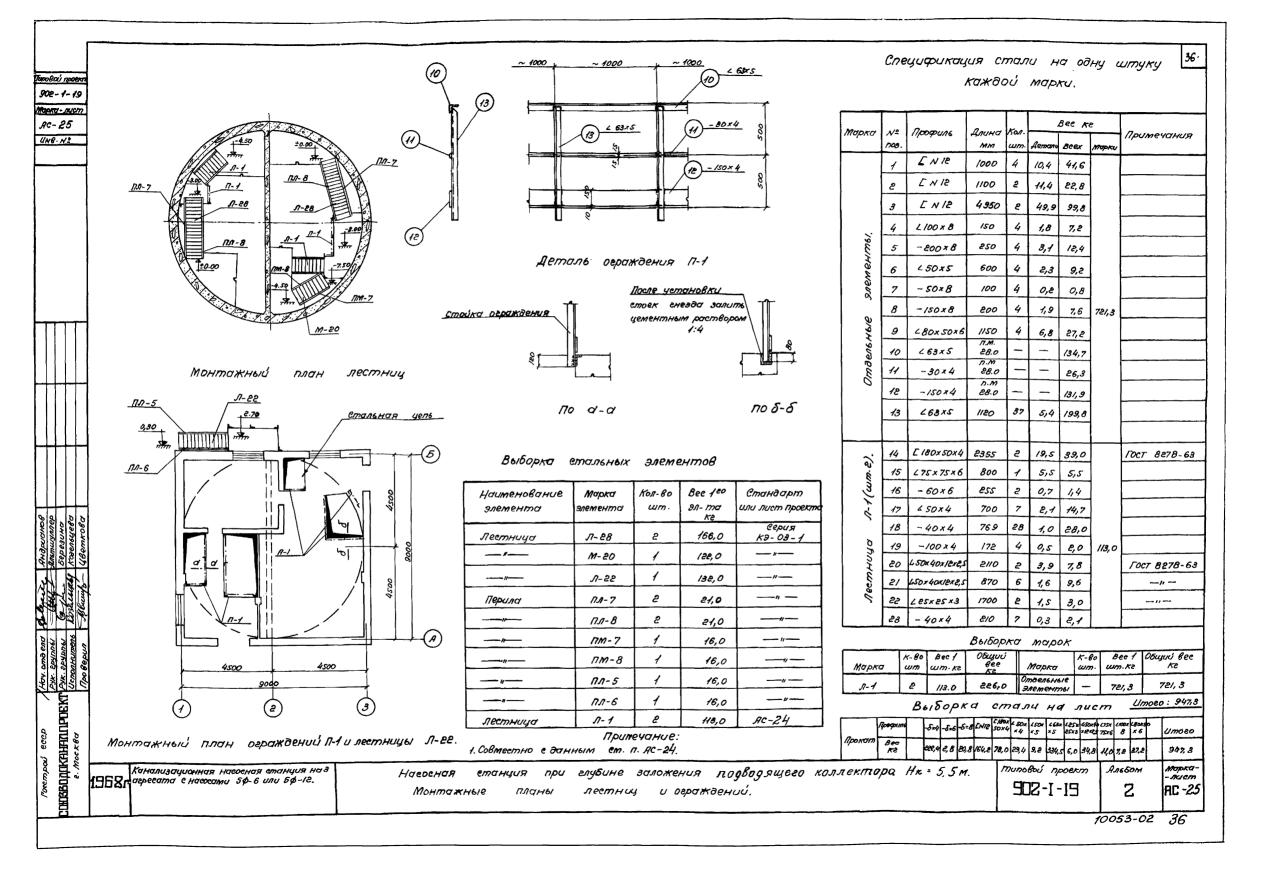
	\$0-1,9	₽0-2		0-3
размер Фундамен тов	Насос 5 ф12 или 5 ф6 Электро∂бигат. Я02-81- ф	насос 5ф12 электр ажи еат а 902-61-6	HOCOC 1,18"-0,9M	HACOC 2.5,,8*1,8M²
Я	1850	1720	1010	1070
Б	1730	1540	760	860
8	745	620		
α	140	100	125	127
8	465	415	260	320
в	380	380	205	205
ę	300	270	213	238
ð	525	445	342	417
U	635	685	240	180

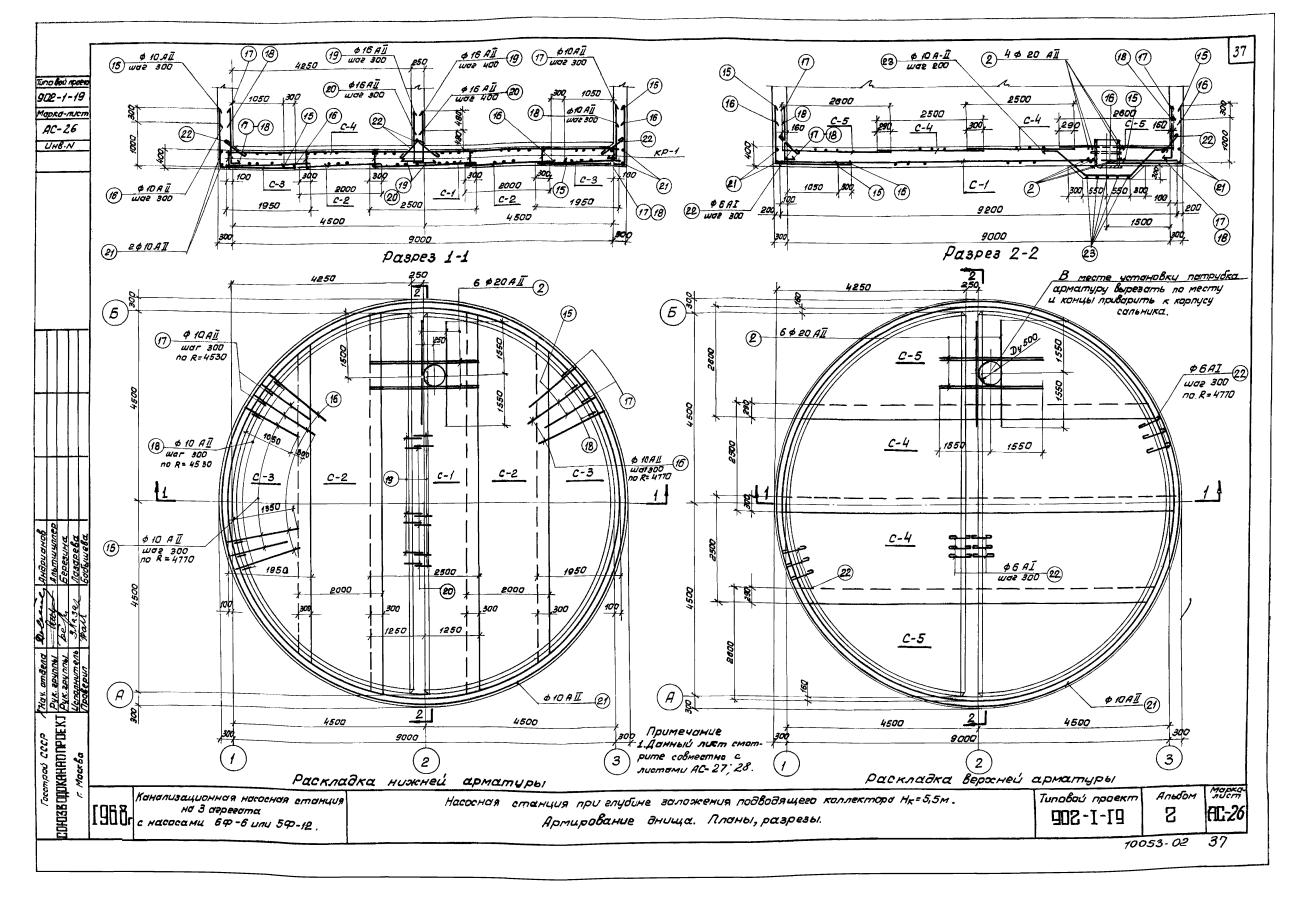
Примечание:

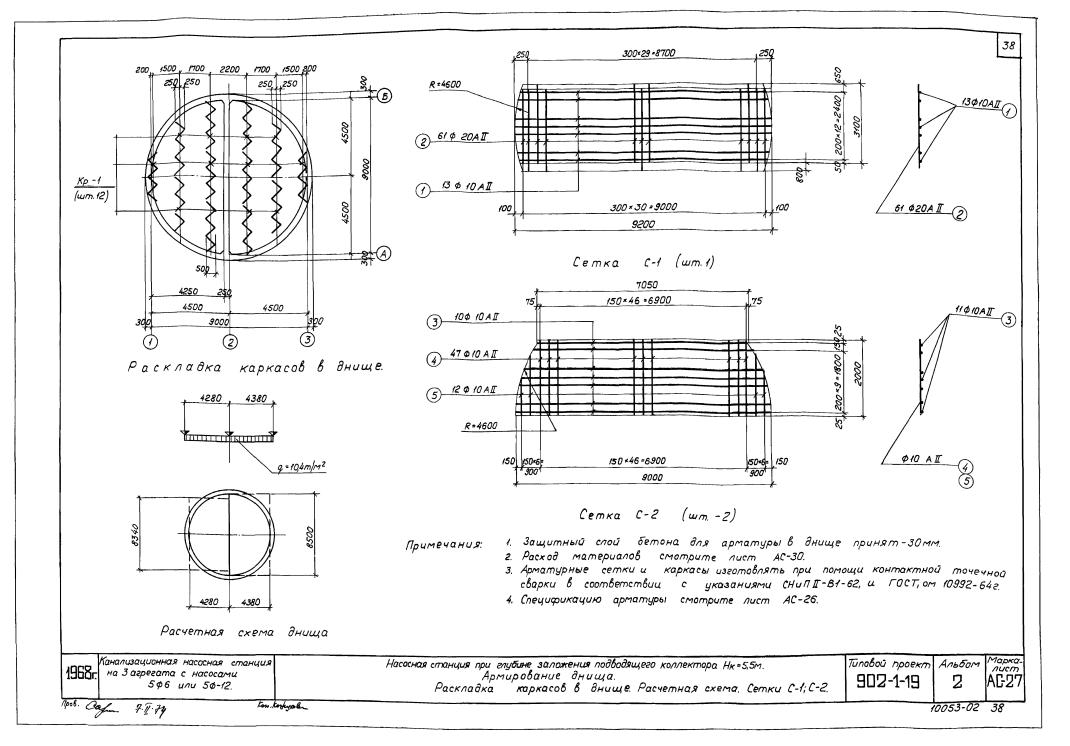
1. Данный лист смотрите совтестно c nucmamu AC-11 + 15:21.

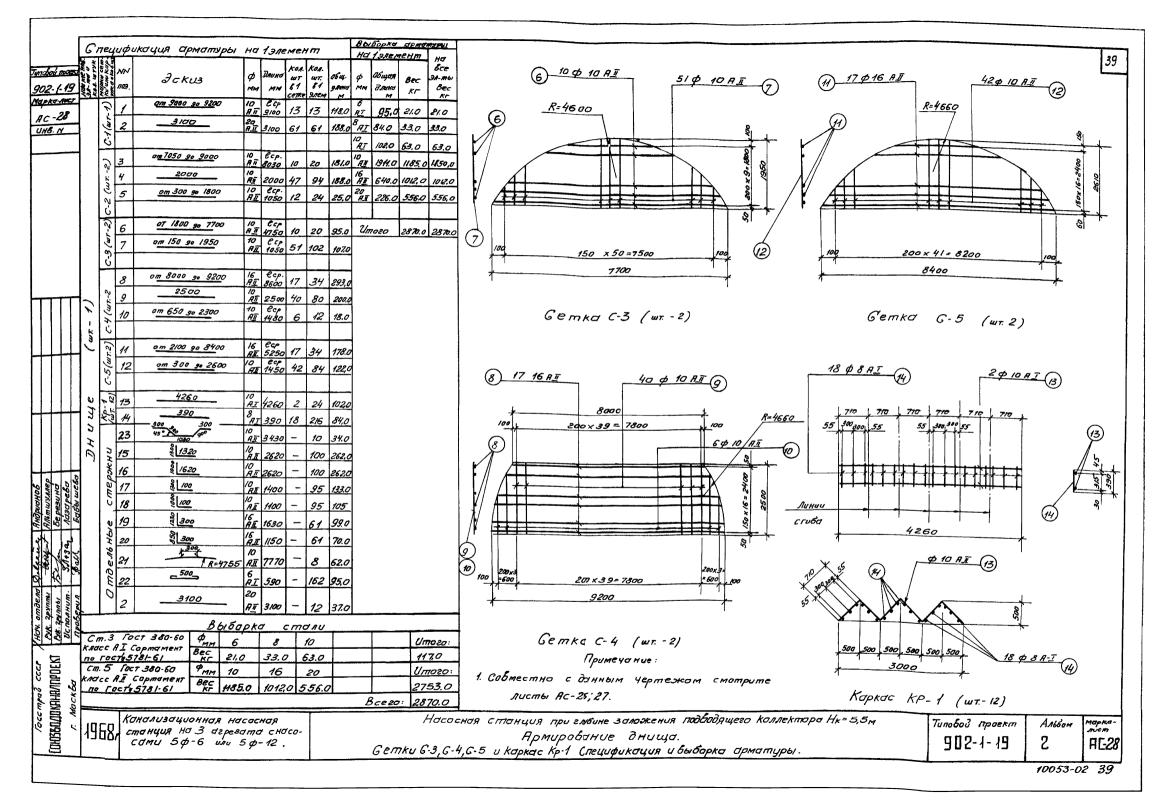
> Tunaboù npoekm 902-1-19

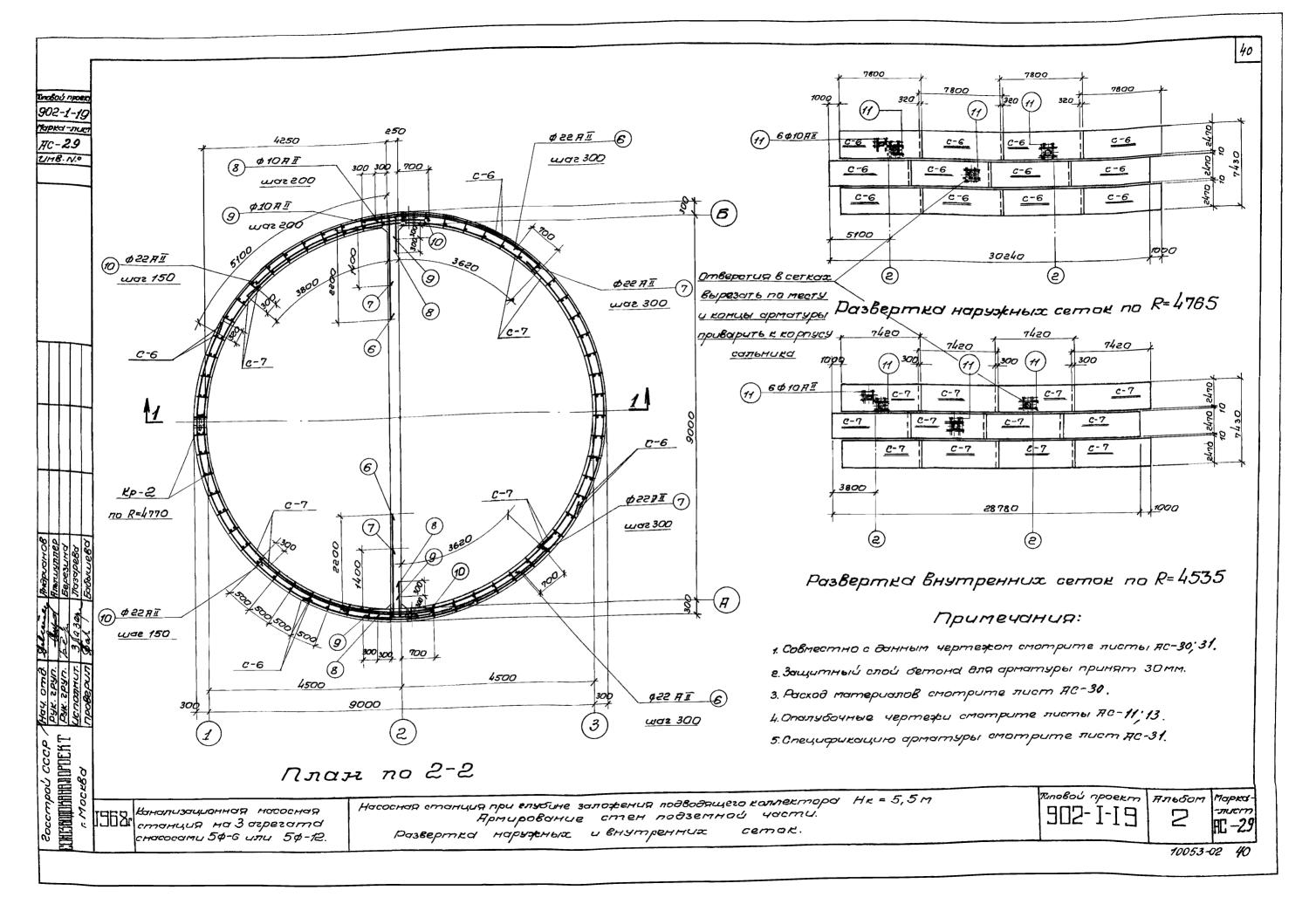

оборудование

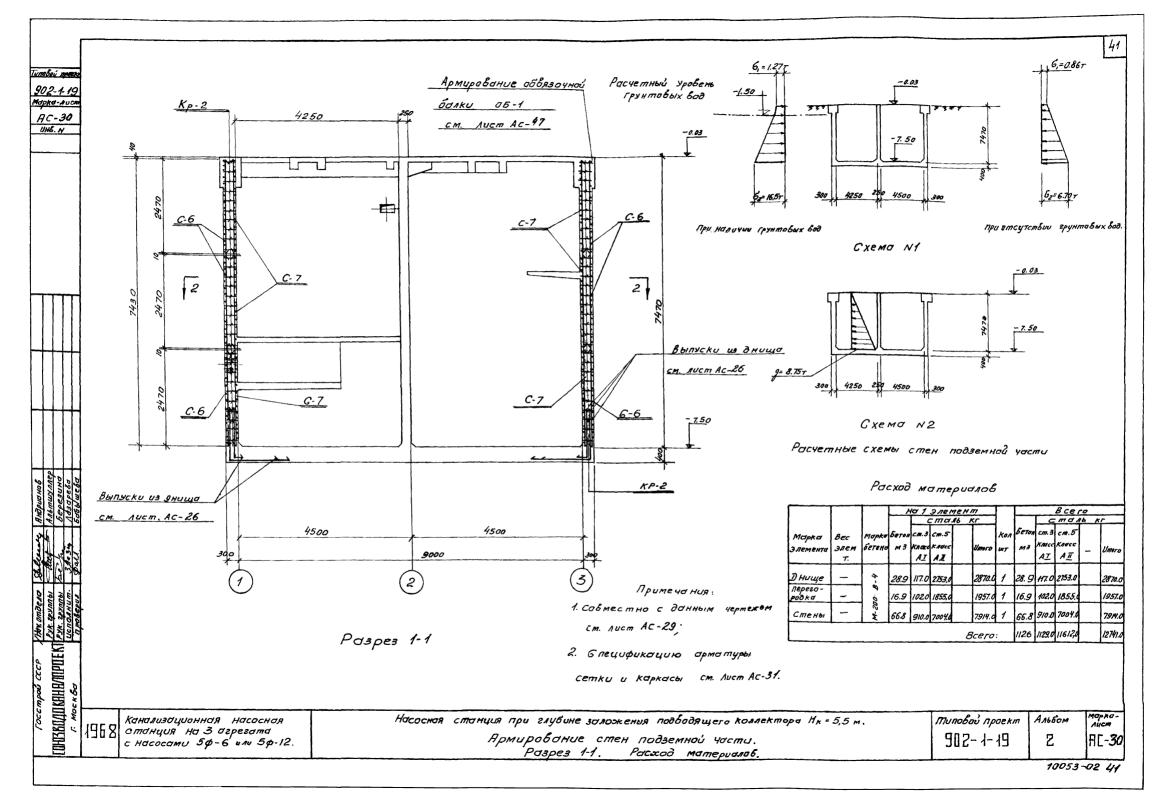

под

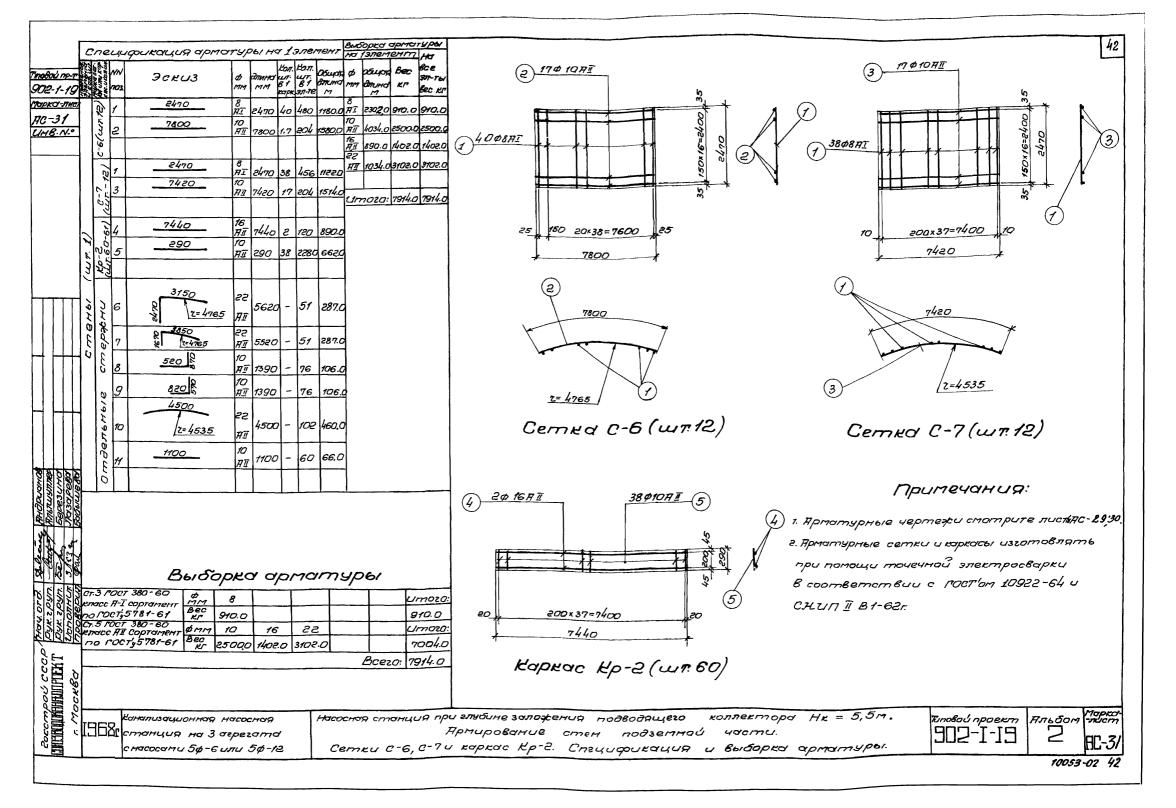

Фундаменты

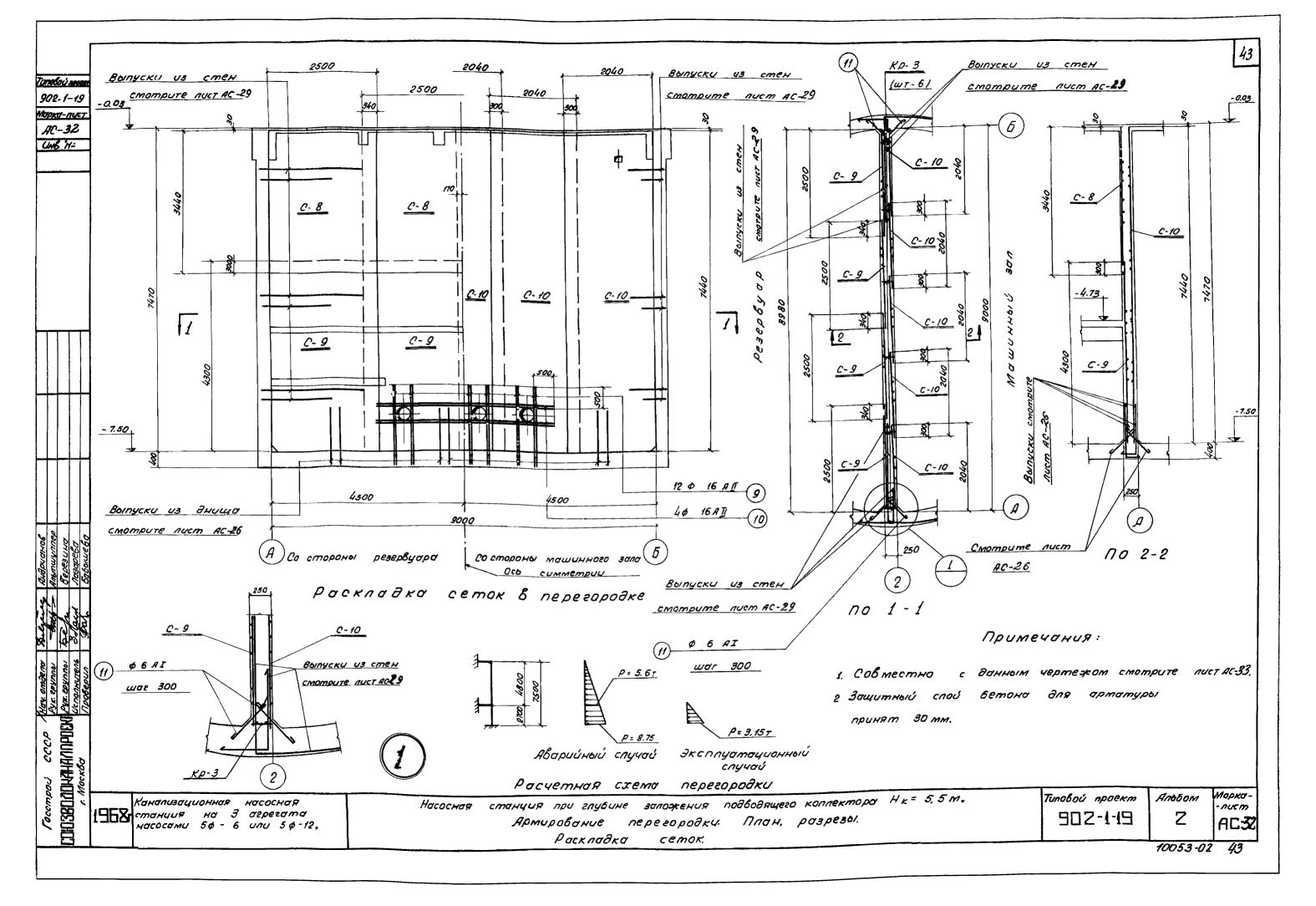

ASSEOM Mapha - jucm

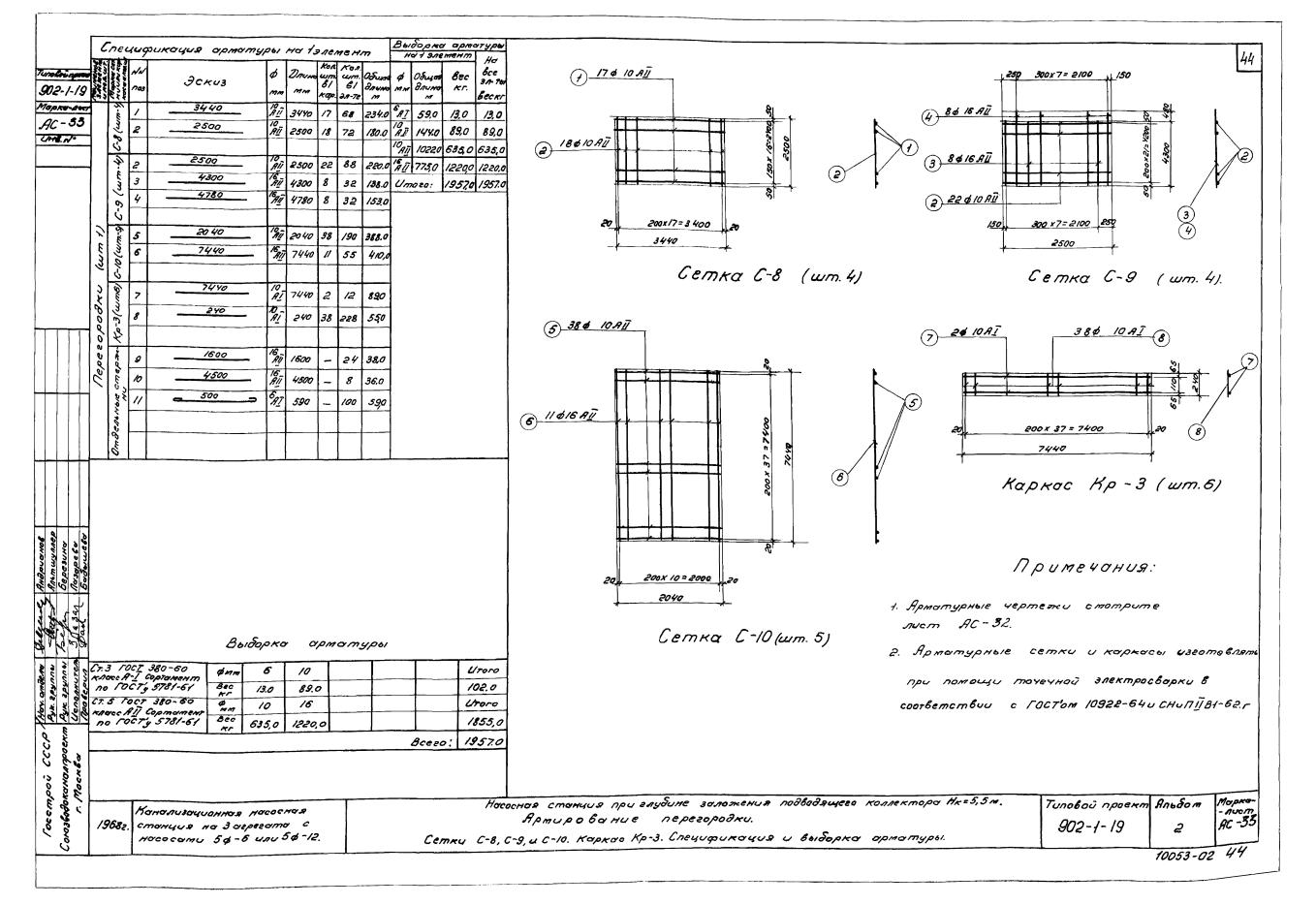

١		Cne	yuqpukayu	IA CI	πας	74	cm	.3 H	α	1	و	3	4	5	6	7	8	9							
997		OÔ	Hy omnpa	вочни	ую		aph			1	19	£ 50×5	900	1	3.4	3,4				4	36100pk	~ ~-			(
8	100					Be	c Ki	 ?,		É	50	· \$ 8 A Z	520	5	0,2	1.0	4.4			2	אנקטטוטנ	a cn	nanu		
空	90			Длина	r. Ca	├	T	i i	1	13				<u> </u>			Ţ		273 (ø nm	8	45 4	.	1.
	2	P03.	Профиль	MM			Been	марки	Примечание	8-N									ropme		Bec	1.8	10 1	. 8	80
+	15	-			<u> </u>			1	9	12	9/	Рифп.сталь 8-5	MZnos			" 0				CT 380-60	#	0			_
4	1	2	3	4	5	6	7	8		É		-60×6		_		11.0			Copme	MEHM E	3ec	3,1	12		8c
1	7.28	1	- 100× 8	200	1	1,3	1.3			3	55	· \$ 10 R I	400	2	1,6	3, 2	14.7						8,0	ридол.ст	2018
ı	lun	e	• \$ 8 A I	560	2	0.2	0,4	1.7		1-1	23	77042	+00	2	0,25	0,5			1 '		ree		50×5 [N		
L	ž									1/4	1									, , , , , , , , , , , , , , , , , , , 	KE.		58,2 7.		
-	0	3	-200×8	200	2	2,5	5,0			2	24	Purps.cmass 8:5	m° 0,30	_		12.7			- 8=	5 - 8=	6 -8=	8 a	3. 70 8=10	TIPOCE YHO HOLDING SWIFTEN PS MENH HOCTON PS METO	184 BC
-	2-6	4	Γα3.τρ.d=1"	200	1	0,3	0.3			(m)	25	- 60×6	560	2	1.6	3,2	10 6		18.	8 29,	1 16	7.7	1.0 28,0	24.6 14.6	0 1á
	E	5	• \$ 10 A II	740	2	0,45	+	6,2		9	23	· \$ 10 AI	400	2	0,25	05	1,6.4		L					Umoeo	13
1	N. K.		· · · · · · · · · · · · · · · · · · ·	1	<u> </u>	1	†	1		17	·														
╁	4	3	-200×B	255	+_	-	+	+			24	t 100 × 63×6	N.M. 12,0		_	90,0						•			
	Ġ.	<u> </u>		200	2	 	+	۔ ا			25	• \$8 A I	520	210	0,2	420				выбора	omnpo	хбочнь	na Ma	pok	
П	7	6	ras. rp. d=1	250	1	 		6.5			26	L 50×5	500	6	1,9	17. 4			n/n.	Отправоч.	Mapka	K-60 W	m. 1 wm.	ec Ke	npu.
Ц	5.5	2	· 410 A ji	900	2	0,55	1.1	_			27	L 50×5	650	6	2,5	15,0			1	M-1		28	1.7	47.6	
 -	$\frac{-}{x}$	┼		ļ	_	<u> </u>		 	-		H	Pugon. Craine 8=5	M2 13,0	├		550,0			2	M-2		2	6,2	12, 4	
l	3		- 150×8	800	1	7,5	2.5	4			29	L 50 × 5	D.M. 51.5	-	 	194,0				M-3				1	-
	(unu	9.	• 48 A I	580	1 4	0,25	1.0	8,5			1.		, 	F	-				3	M-4		5	8,5	6.5 42.5	
П	14							_		3		-12×5	P.M.40,0	1		18,8			5	M-5				49,6	
	ķ									3	S 37	-60×6	820	7	2,3	16,1	0:		6	 		8	6,2		_
	8	10	- 270×8	270	1	4,6	4,6	_		030	} ==	-60×6	770	3	5,5	6,6	1			M-6		12	0.9	10.8	ļ
8	É	11	· \$12A_I	260	4	0,25	1,0	6,2		(33	-40×4	17. M 62,0	┼		78.0	×		7	M-7		4	2,4	9,6	
0/11	N-5	12	- 50×8	50	4	0,15		1		١.	34	· 48AÎ	250	160	0.1	16,0			8	M-8		6	4.7	28,2	
9	~	13	- 40×4	500	1	0,6	0,6			9	133	EN 12	760	1	7.9	29			9	M-9		4	4.4	17.6	
8	119	14	• \$ 10 R II	250	2			29		1	· I	450×5	760	1	2,9	2.9			10	щ-1		1	14.7	14.7	
	È		7.3/12	230	-	4/3	+ 3,3	+ ""		9	127	L 50×5	700	2	2,6	5,2			11	41-2		1	16, 4	16.4	
3	φ			 	-	 	+	1		١٩	38	L50×5	1600	1	61	6,1			12	Отдельны	e 110344444		<u> </u>	1118,0	
-	4	15	- 140× 8	300	1	-	+	+		1 0	39	CROSSI \$16A.	520	6	0,8	4,8	1		13	Ηαππα 6.	ленных	Memo	200 1%	14,0	
pond	Cum	12		 		2,0	2,0			0	`	· \$8AI	340	3	42	26	1						Umozo	1388,0	
200	M-76		• \$10 R_F	200	4	0,1	0,4	2.4			41	 		1	28,0	 	1				nour	1640 H	יטק:		
10068				-	+	+	+	+				Просечновытя- жной настил 8=5	2	1	T		1		1 000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•		Смотр	ume	
1	19:0		-200×8	330	1	4,2					42	жной мастил 6=5	V ⁴⁻ 1.5	1	24,6	246	1			101104681 11161 AC-1		MAHOR	CHOMP	~ 111€	
	É	18	· \$ 8 A I	630	2	0,25	0,5	4,7			-			-	+						•	брамл	A HOUSUB	SNAMEHI	mbi
اي	9	_			<u> </u>	<u> </u>		4			-		 	1-	1	 			•	cumb Ky30		•			
MOCKBO	Ė		<u></u>	<u> </u>			1_		Hoon			анция при в	מעני יאנט מ	سل	000000	UA D	08808	HURED KON				_		RABBON	1 110
۱,	196	84	CHONUSCHONA COMOCHUNA (COMOCHA)	HAAA H	aca	CHO	7		,,,,,,,			•								- 110 - 0191	•	1	?-1-19	2	-0
ı.		-16	HOCOCOMU 5	d - 6 us	هرس		704			رى	ney	uqukayus	7 4	561C	OPK	O.	ama	nu.				1 226		"	AC

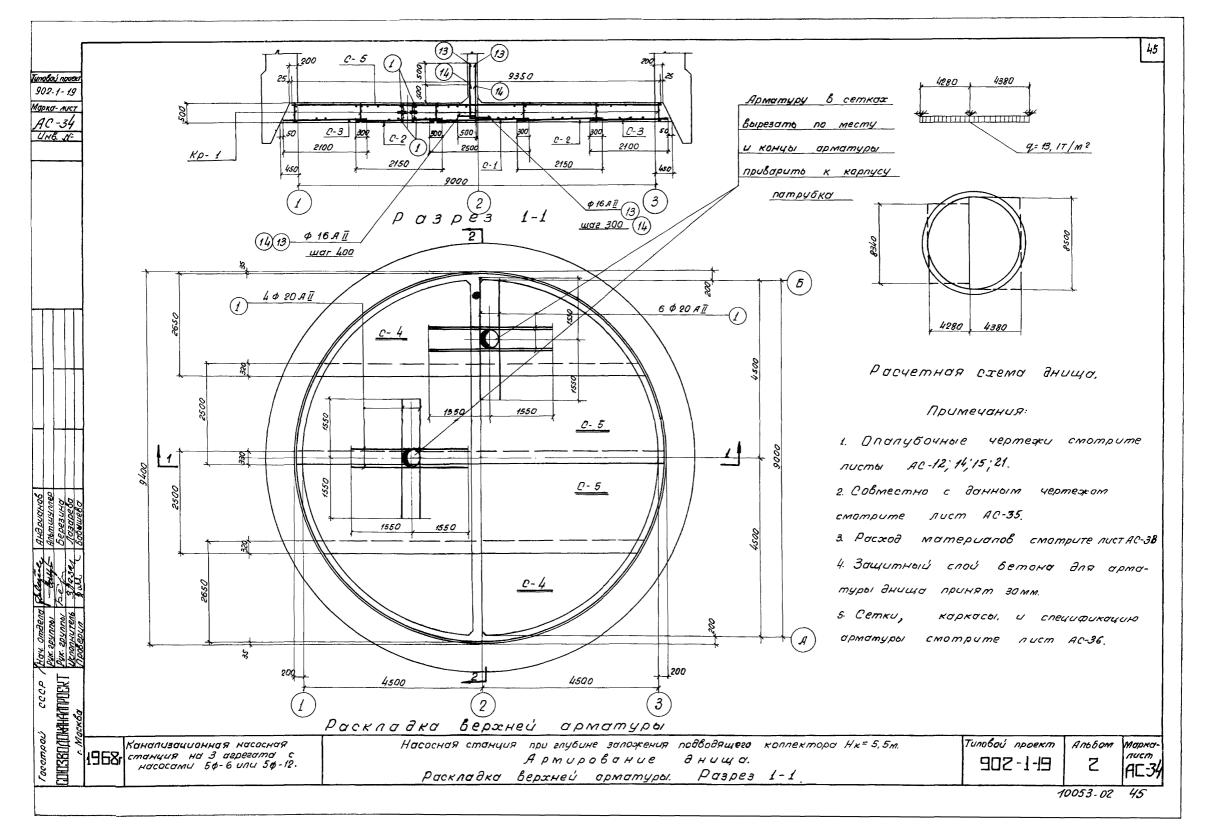


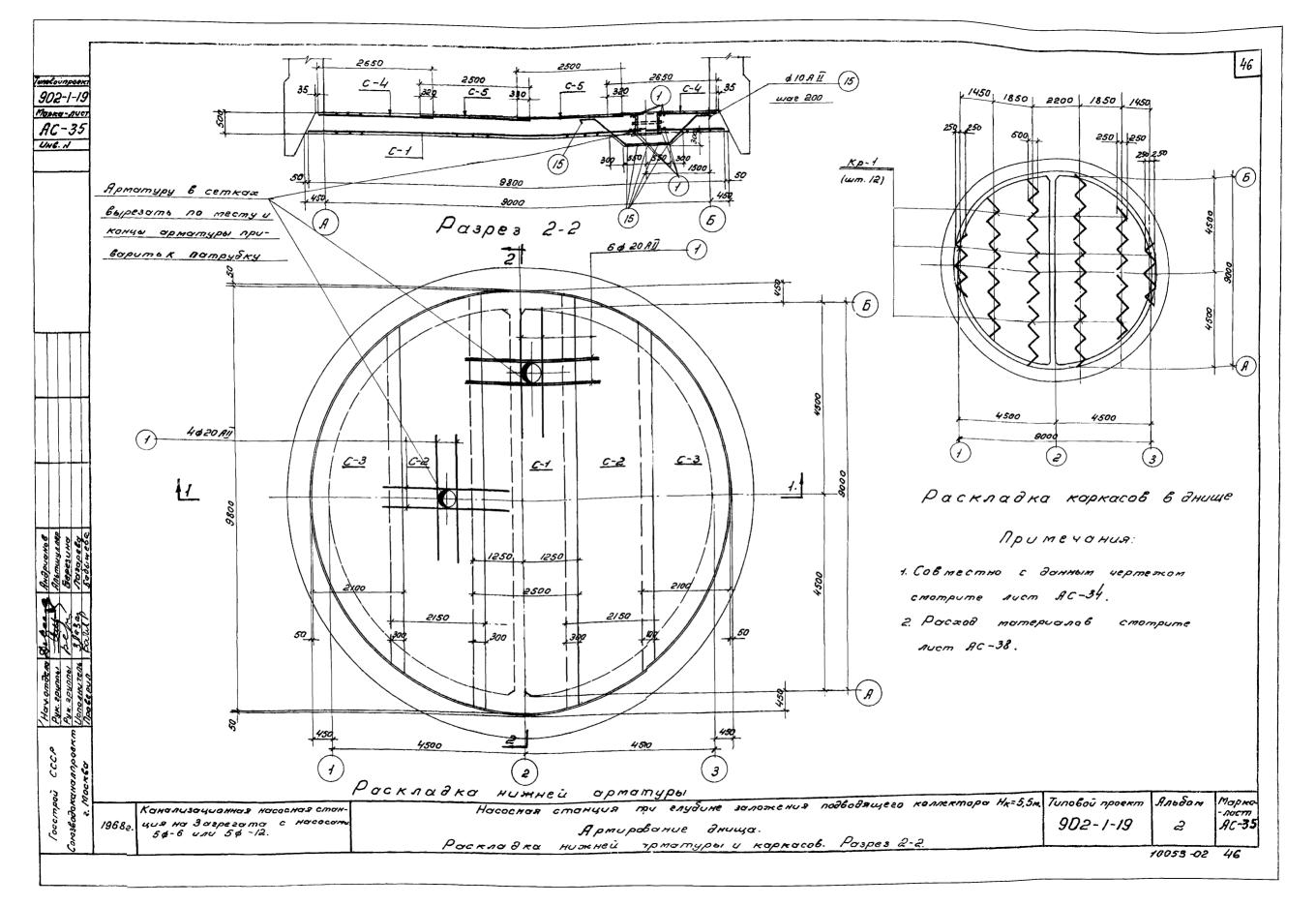


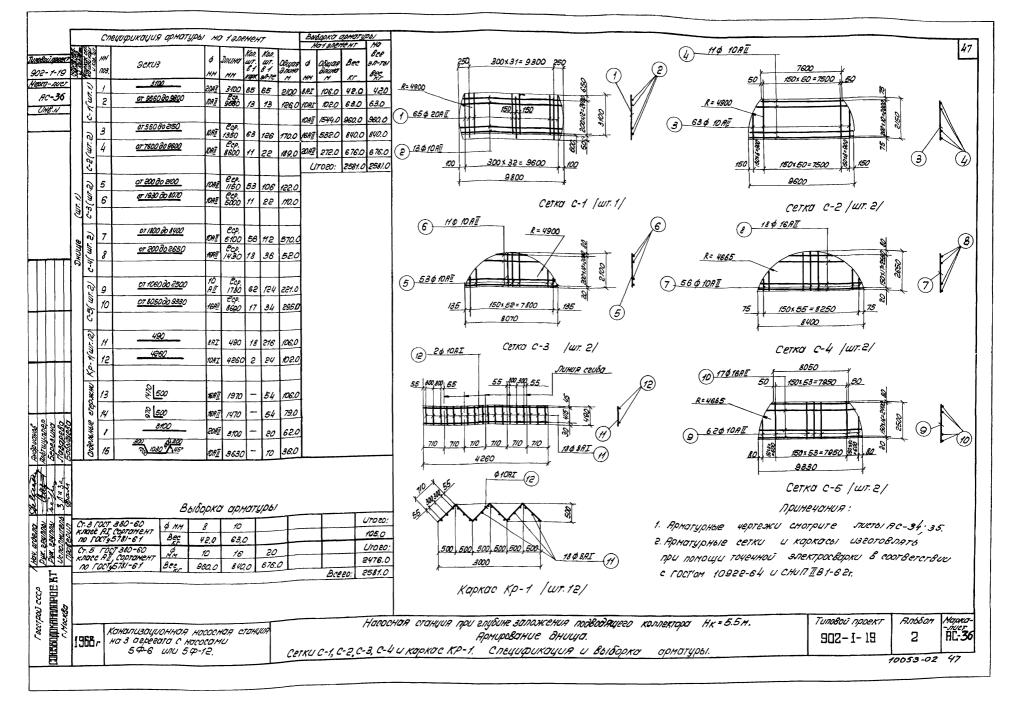


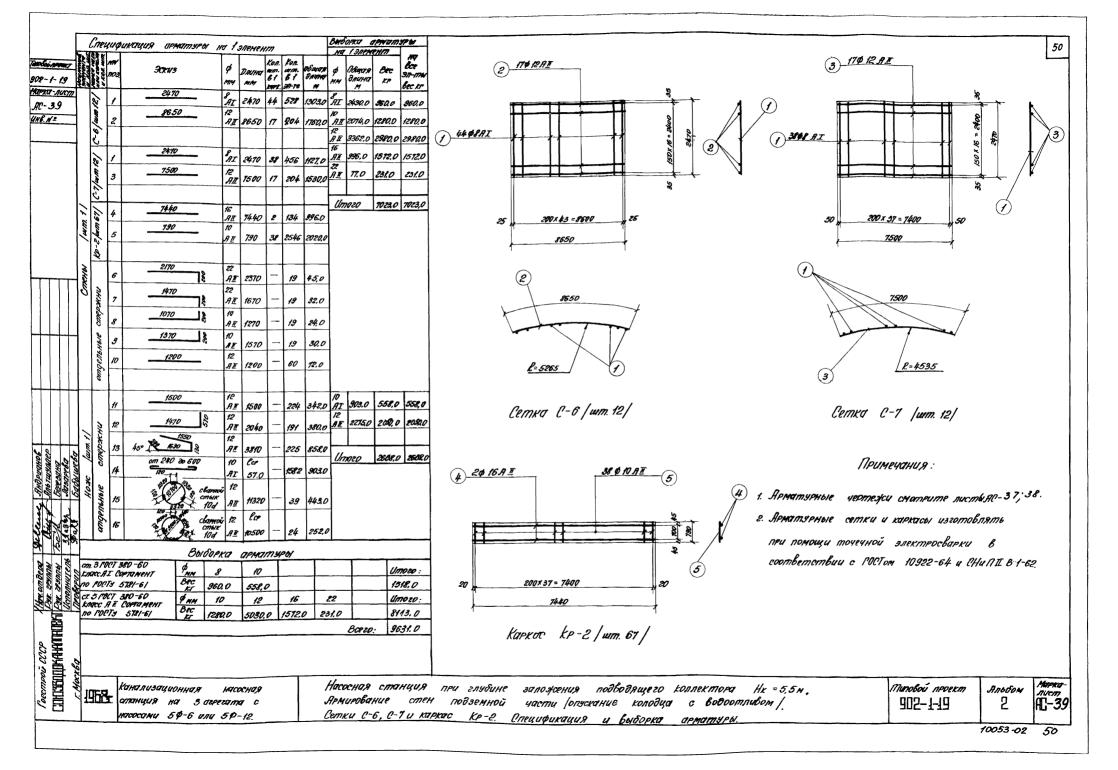


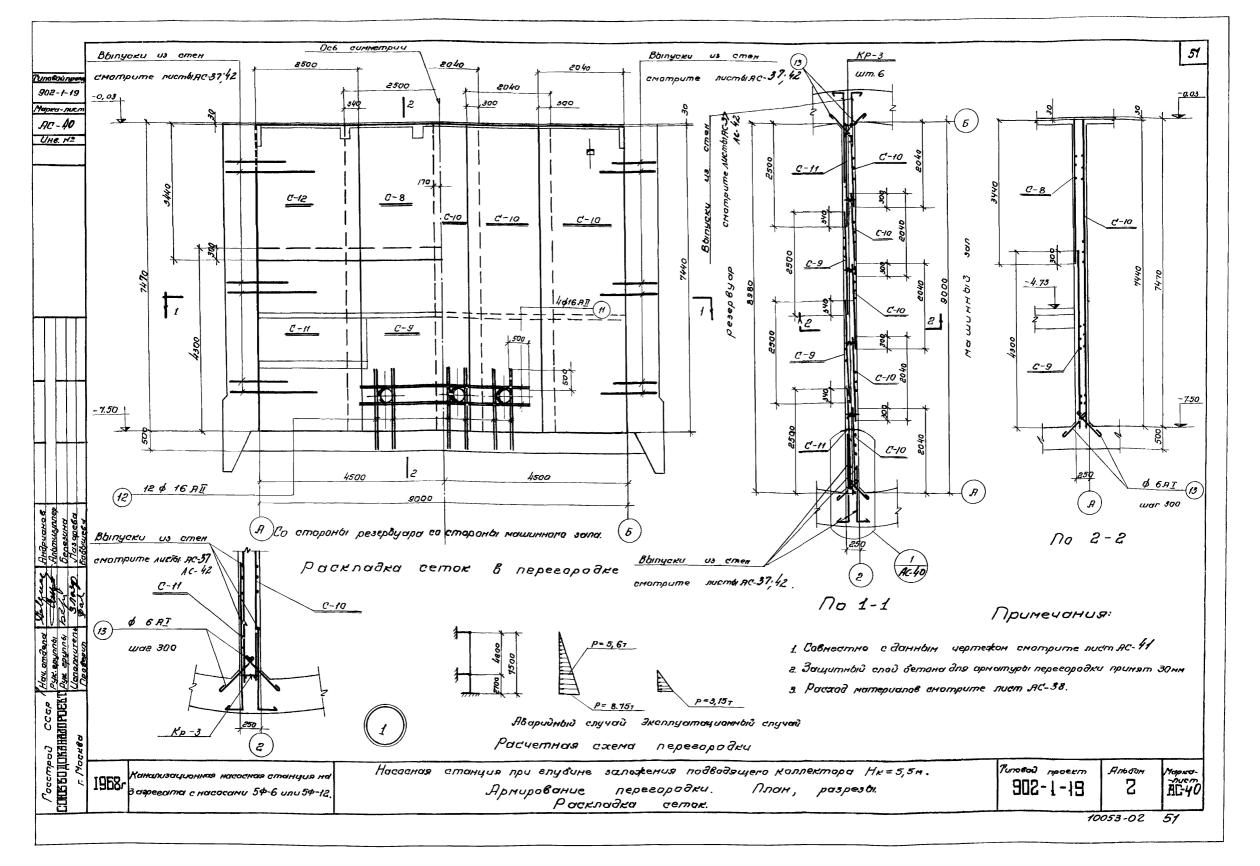


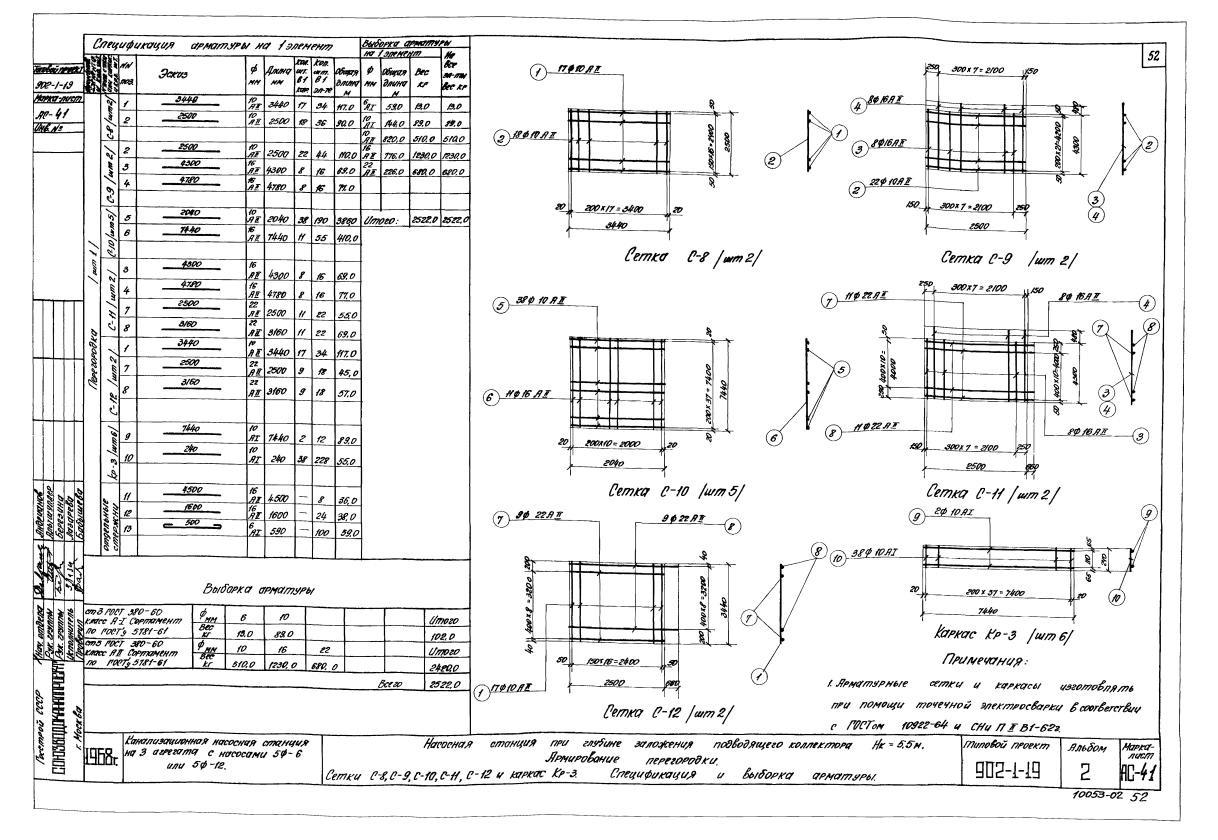


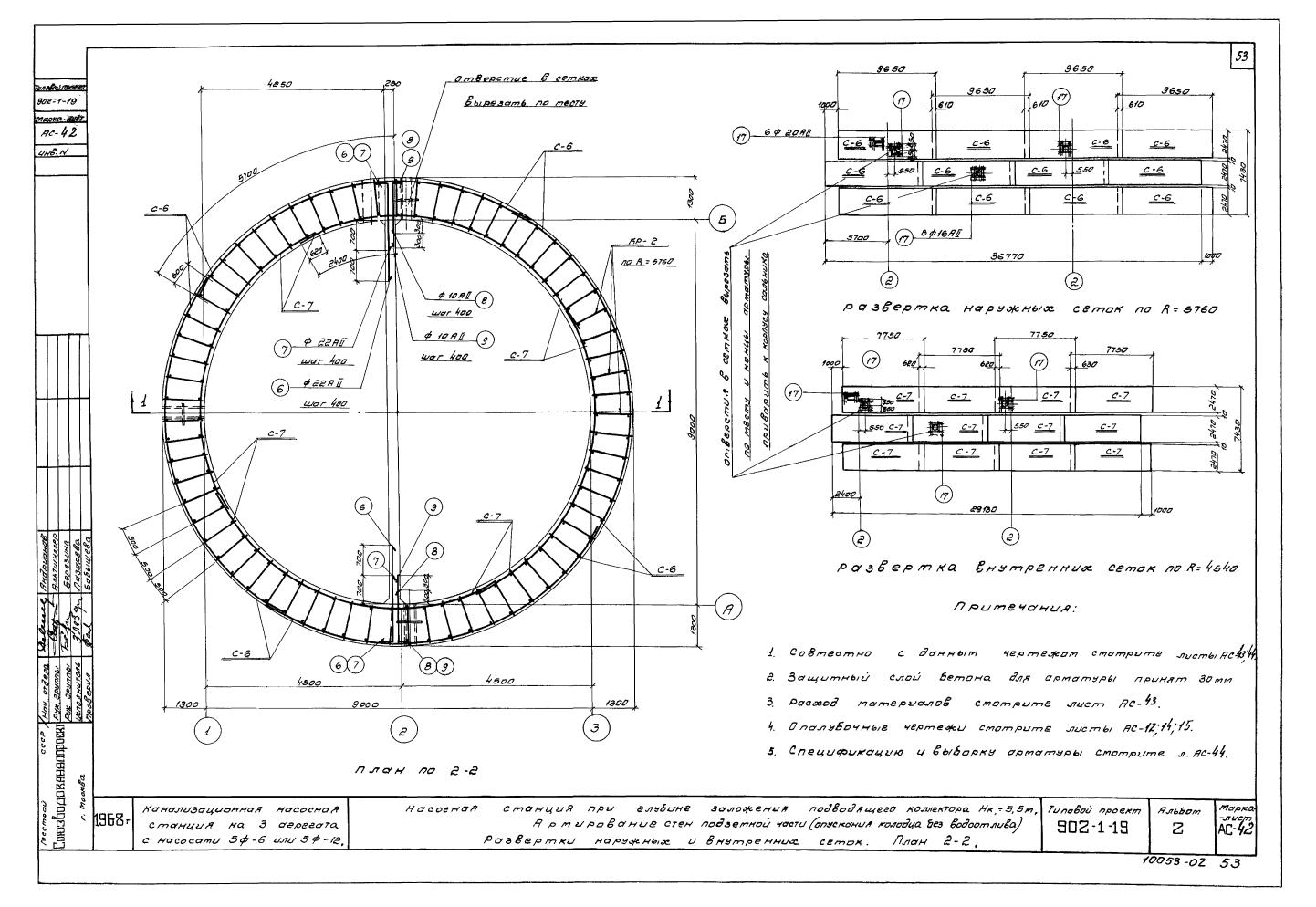


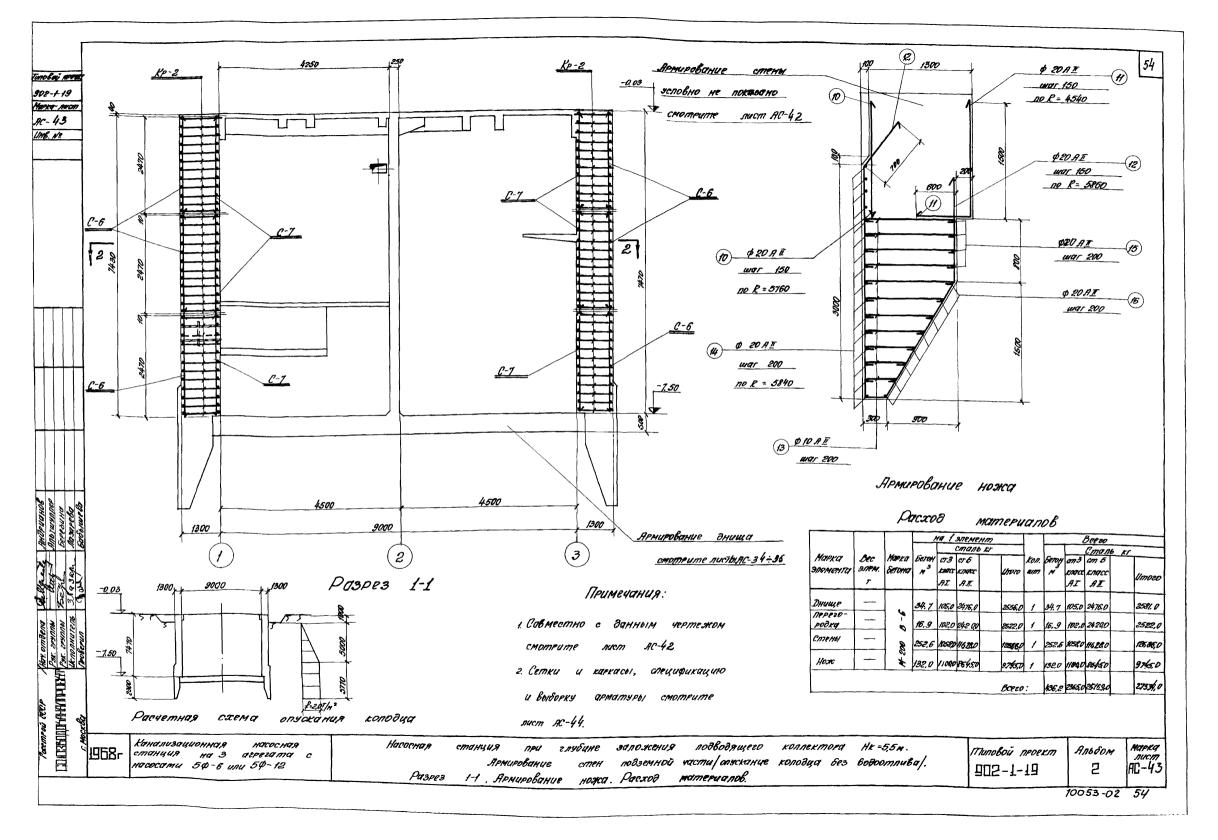


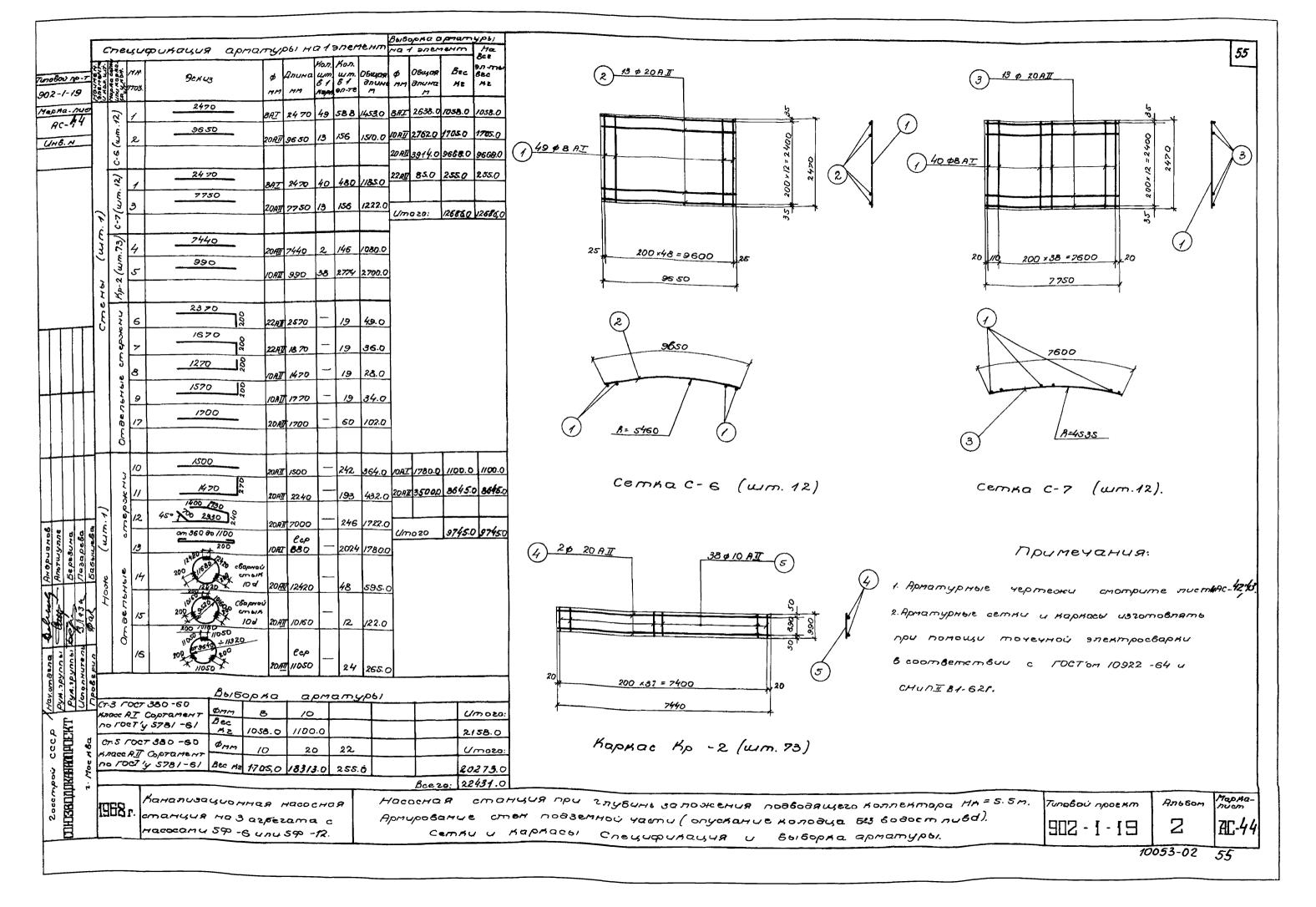


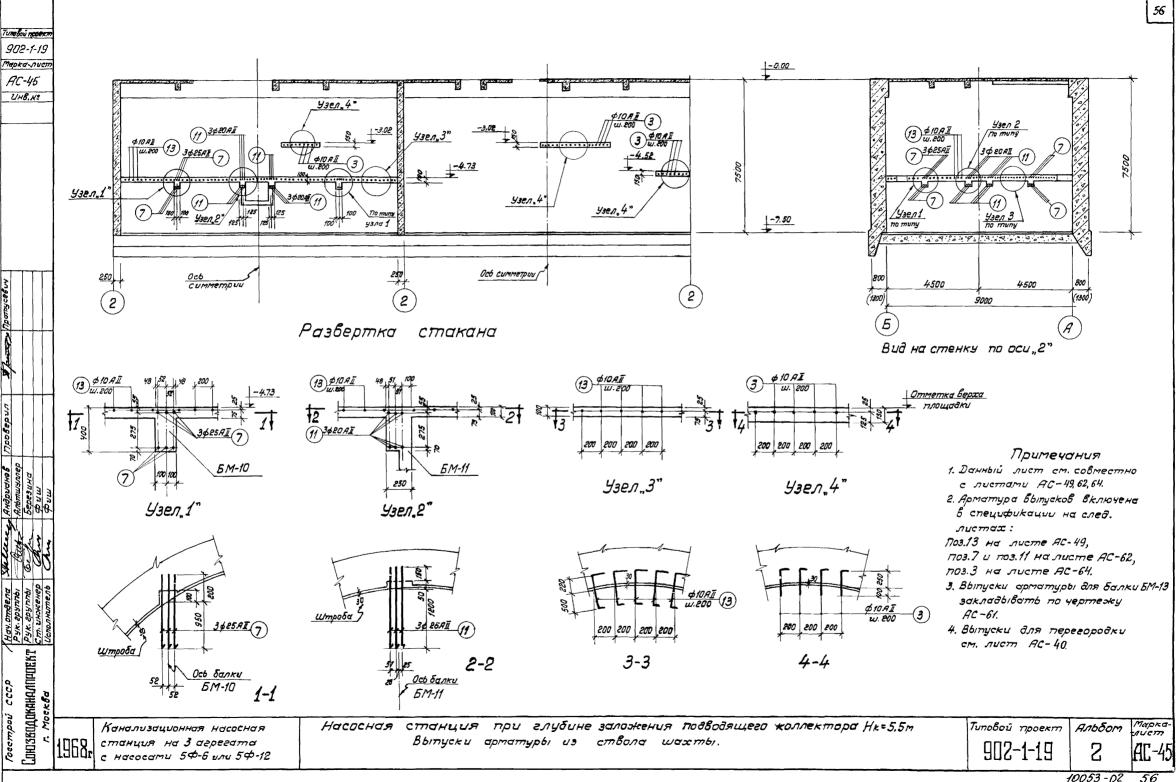


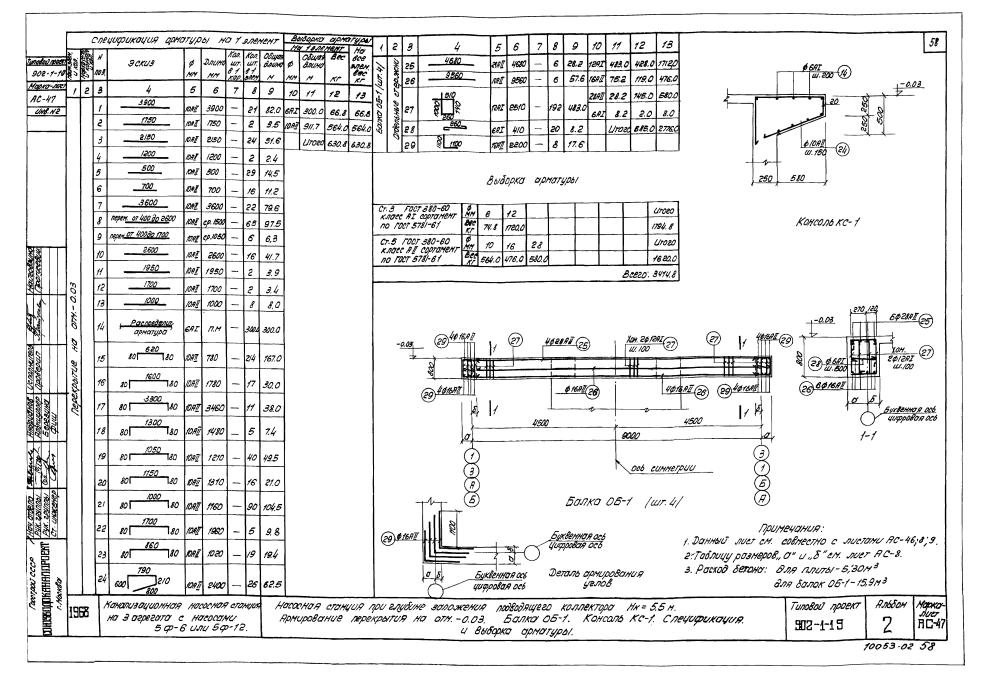


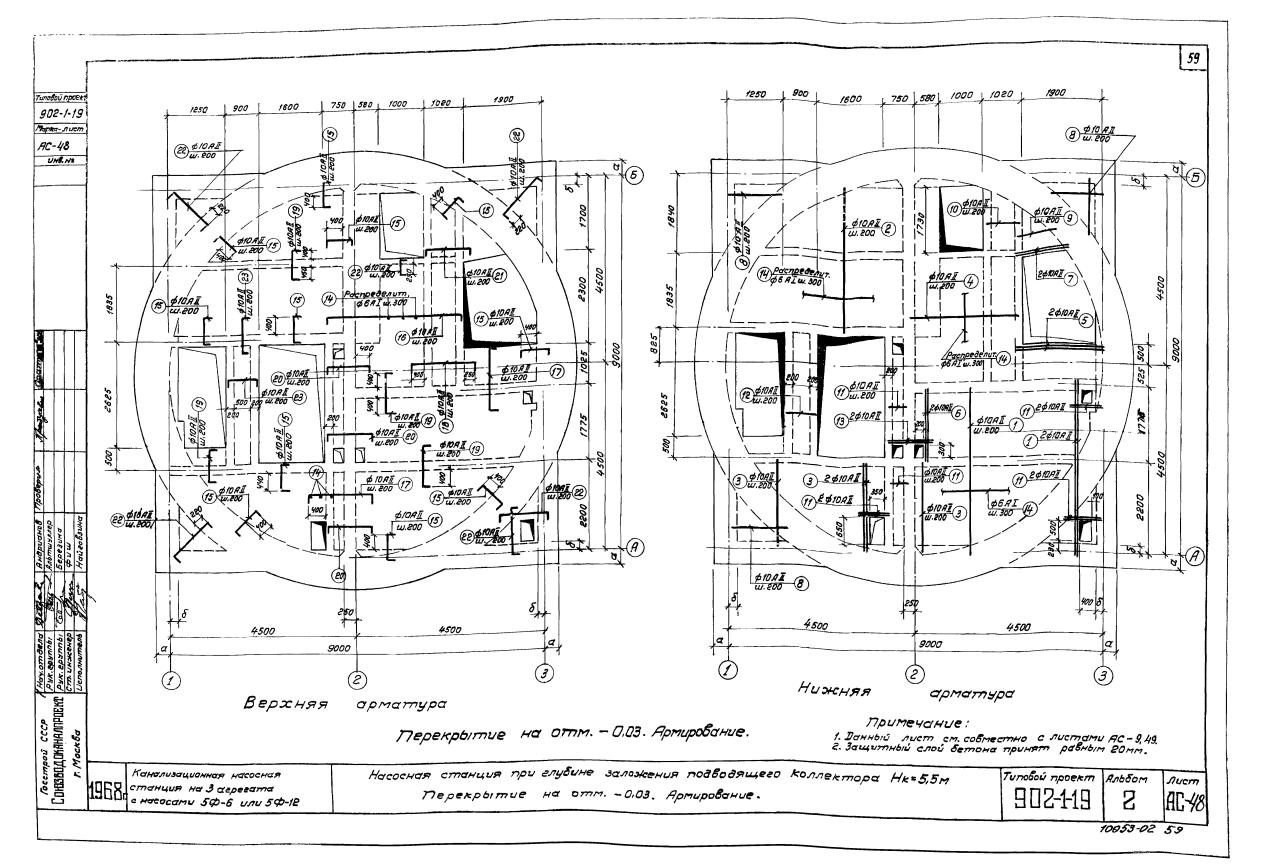


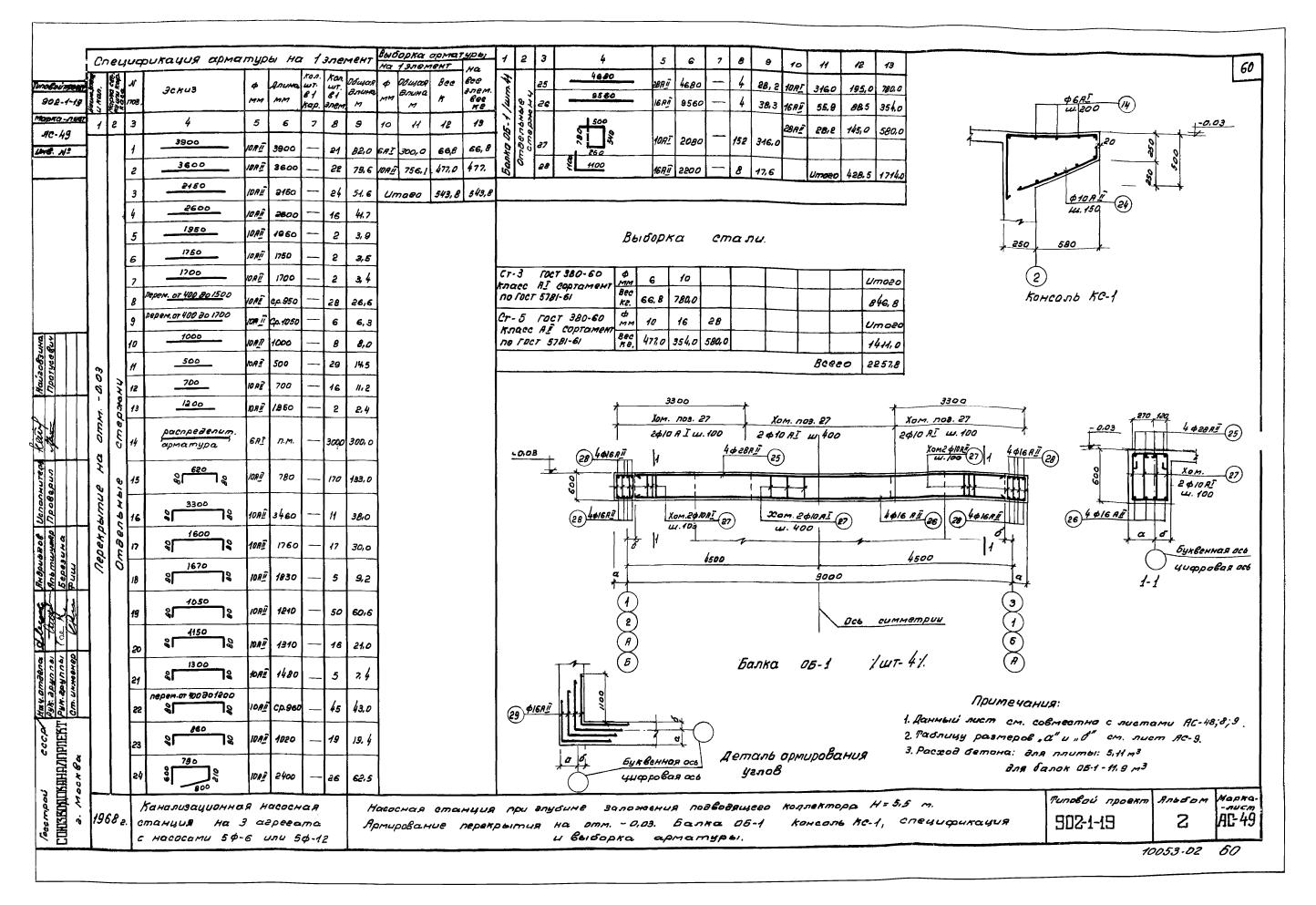


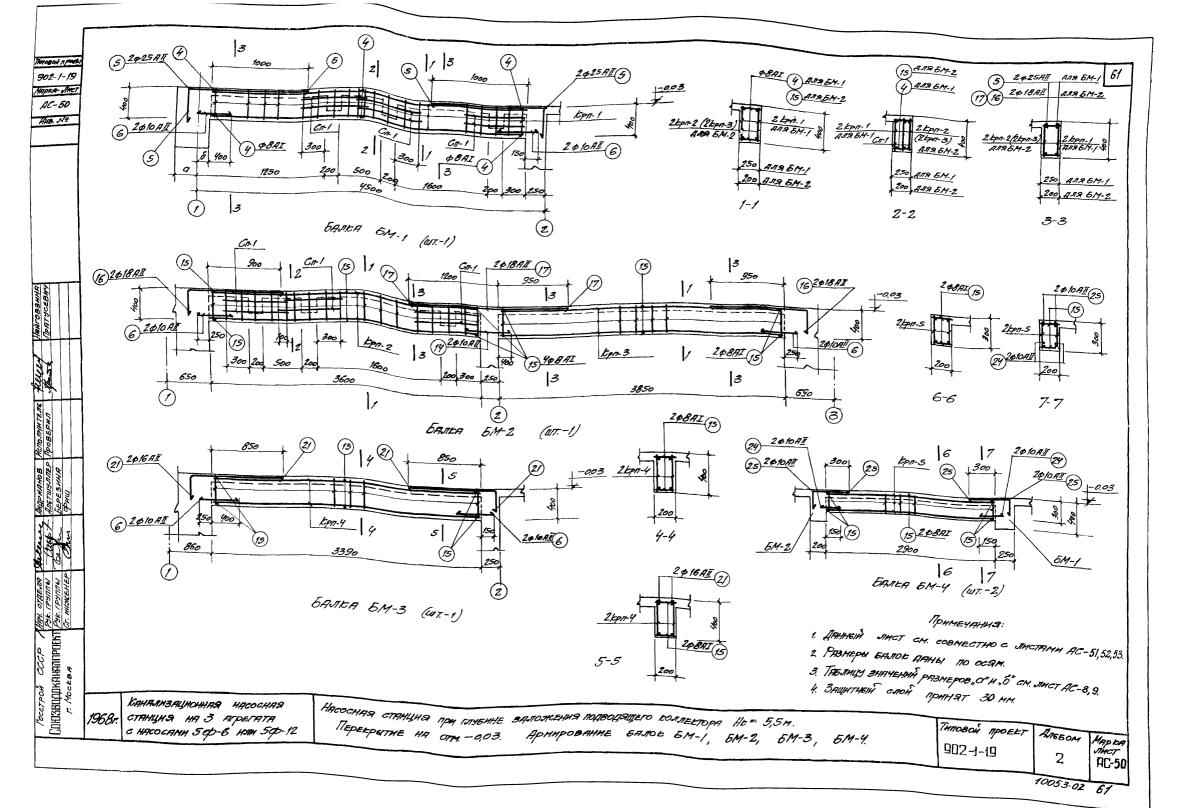


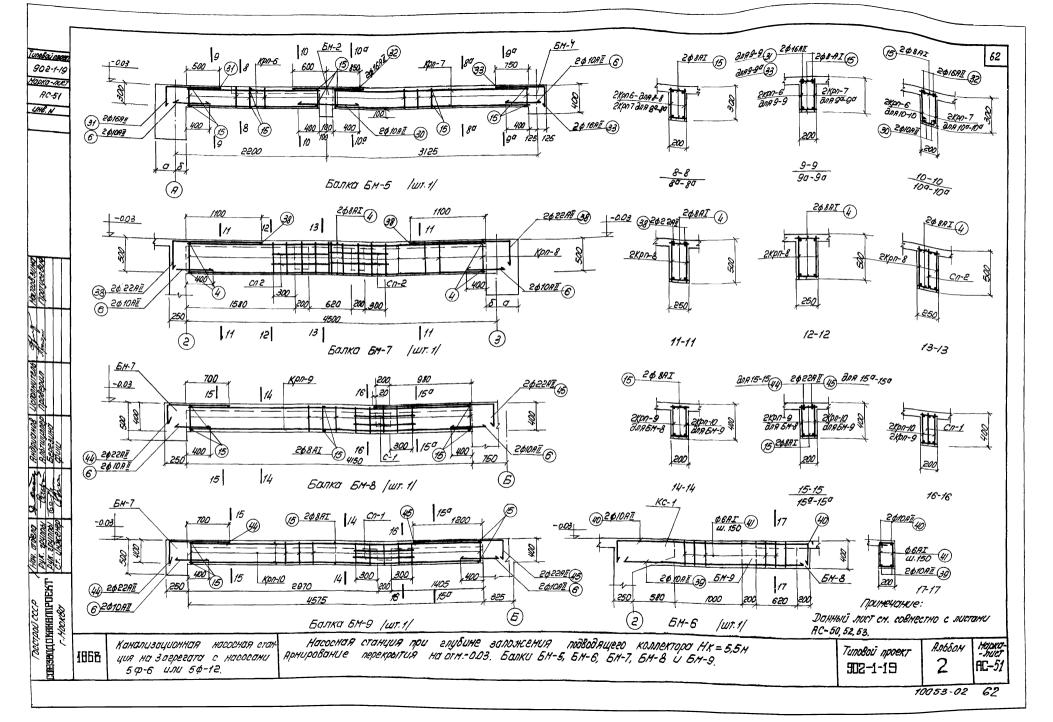


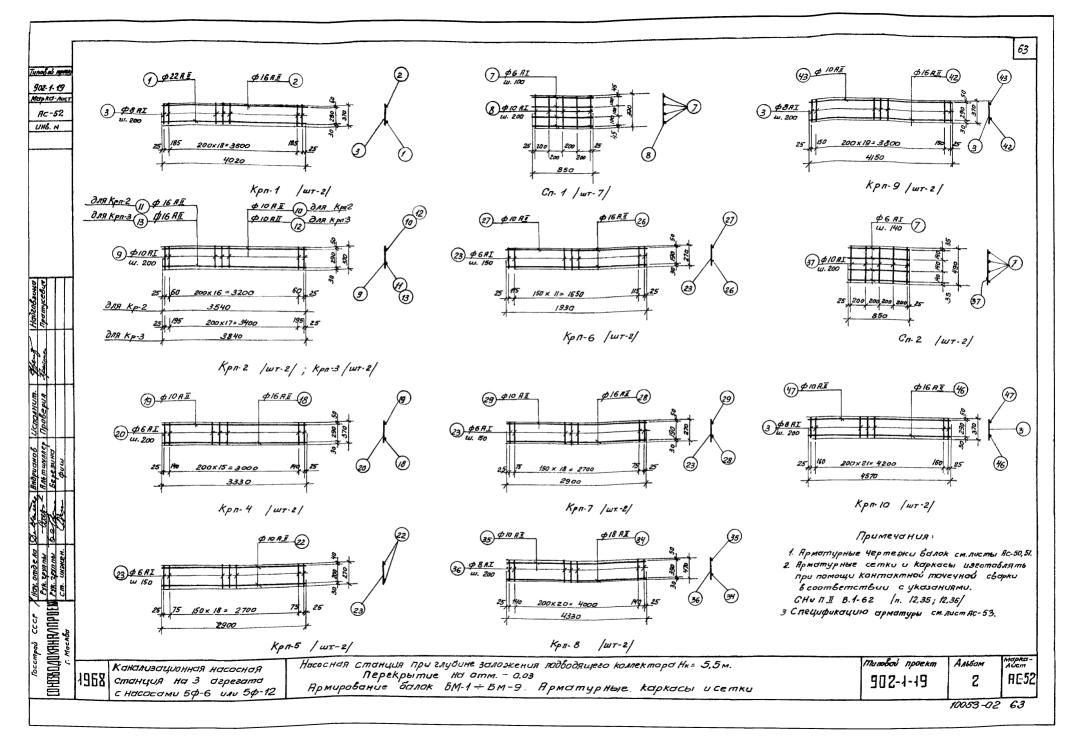


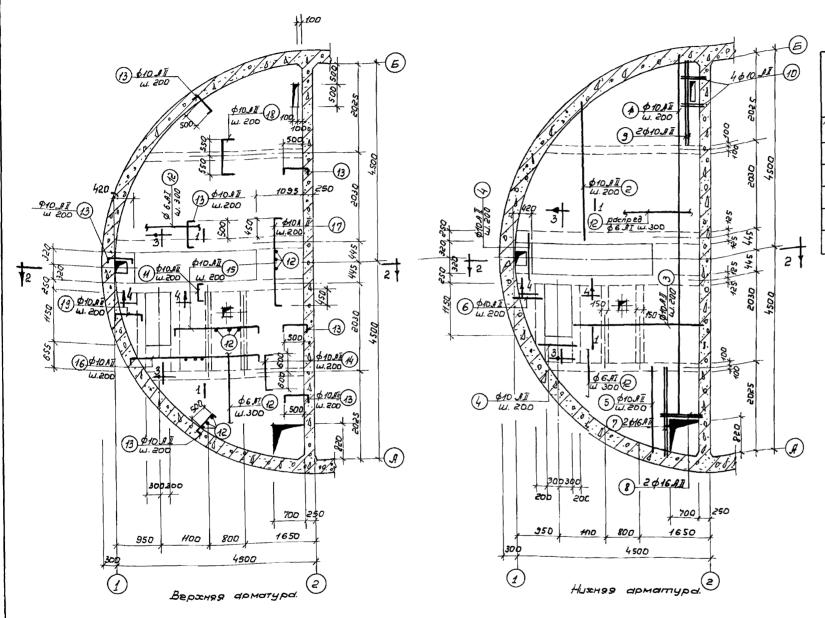





Foermpou

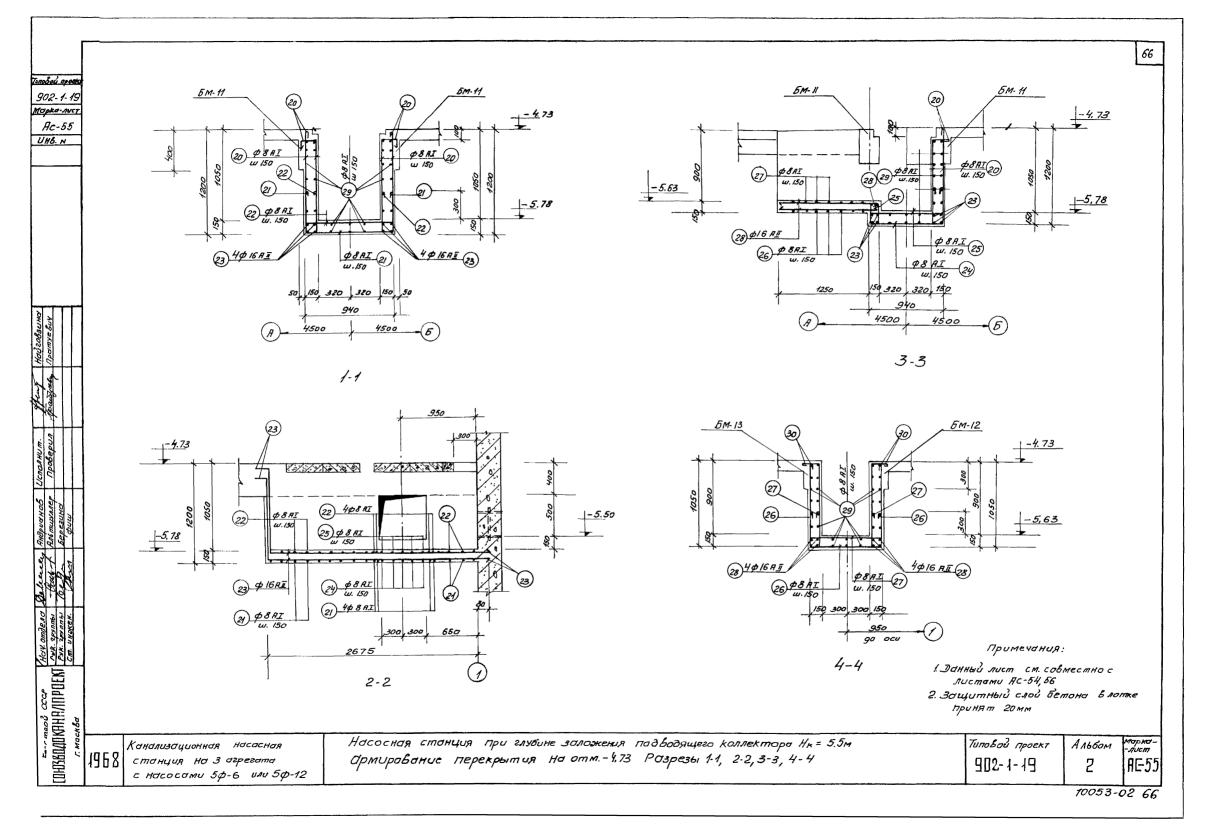


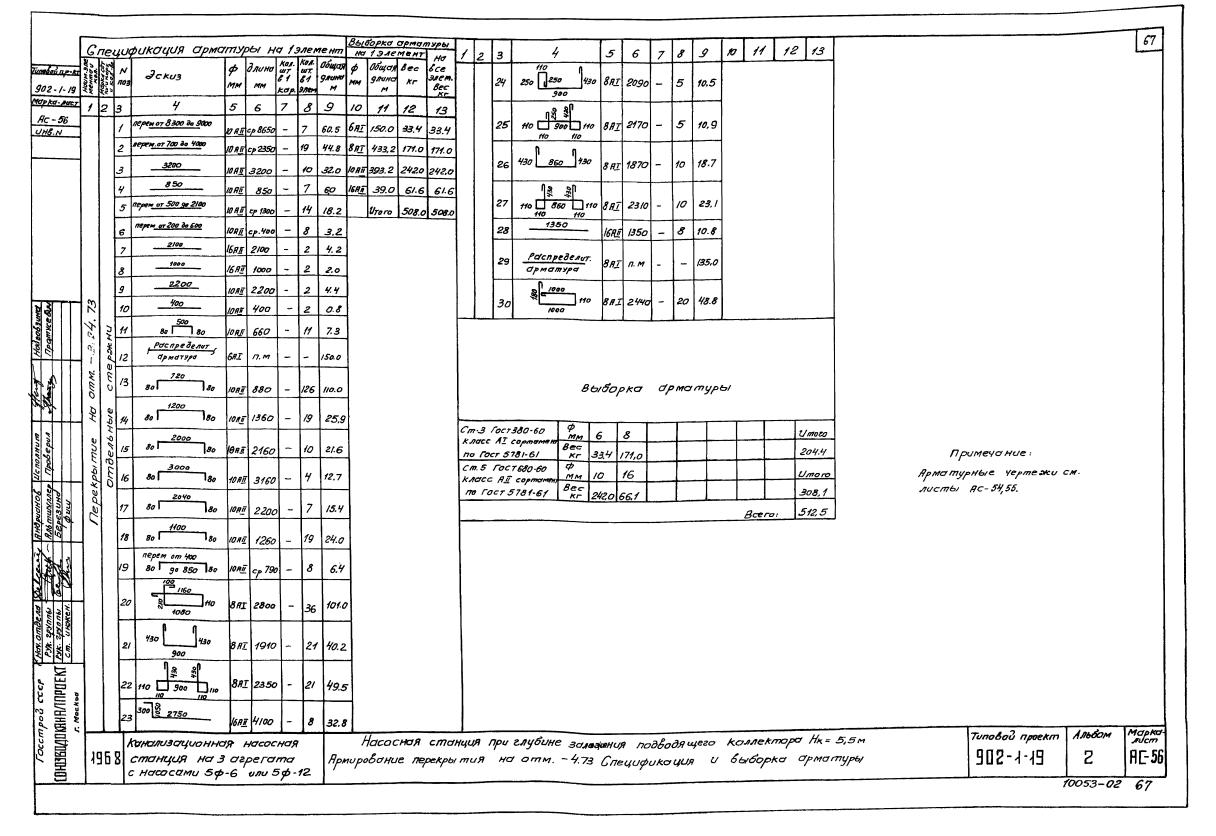


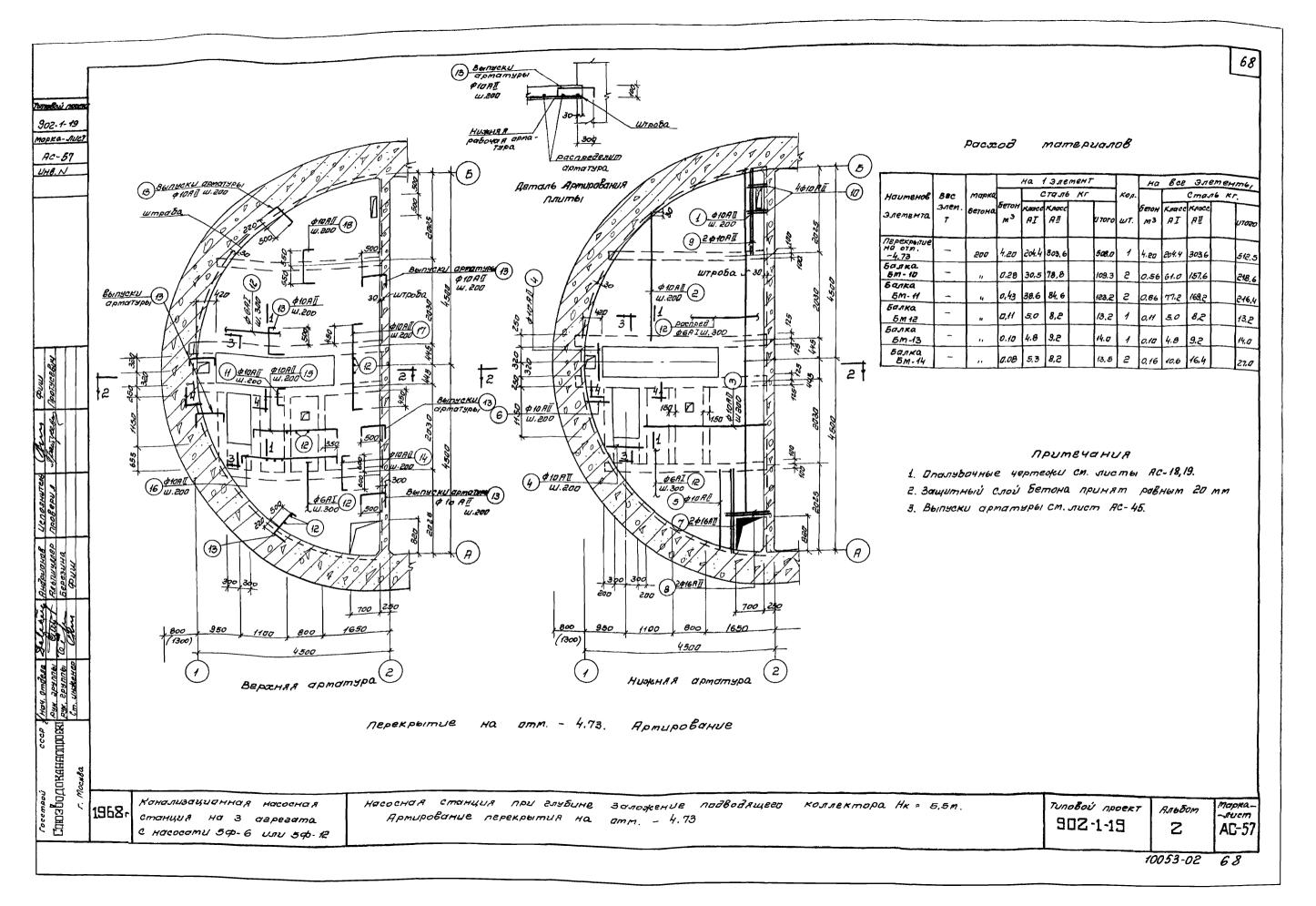


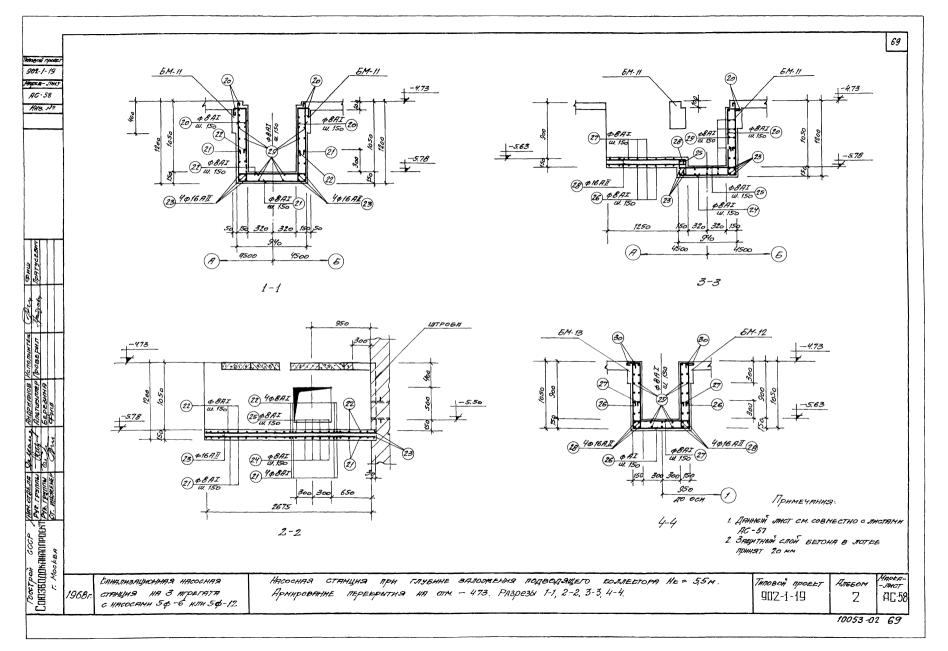
Спецификация арматуры на 1 элем							1e me	нт Выборка арман на 1 элемент						2 3	4	5	6	7	8		10	<u>, T</u>			
Med Appent	10	100	~	2	14	Asun	KOA.	Kan	Общая				HO 6ce	\vdash		Cm. boure	1 1			+	9			2 /3	- \
02-1-19	74/FG	133	202	3CKU3	MM	1	61 KOP	61	dswima	MAT	BAUND	KF	элет.		23	2900	6AI	2900				BAI 19			~1
PARY-NUET			Т	·	-	 	 				m		bec Kr	,	28	2900	+	2900			$\overline{}$	BAT 2		1.0	
PC-53	$\overline{}$	2	3	4	5	 	7	8	9	10		12	/3	1.		Cm. Goicure	BAI					10AIT 14		8 88	d ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
HB, Nº		3	4	4020	2281		4	۵	8.04	601	10.2	2.3	وج		3 15	1000	+		-			16AIJ 15			
		ľL	2	4020	ISA!	4020	1/	2	8.04	BAĪ	/7./	6.8	6.8	j.	30 31	750		1000		_	2,0	U	770: 3	7.9 37.9	no FOCT 5781- 61 Rr 22,9 33.8 30.0 86.7
		-`-	3	370	BR!	370	21	42	15,6	IORT	5.9	3,6	3.6	2 3	```	250 /450_	IGAIJ				2.0	-+			67-5 (OC) 380-80 B
į	um	***	4	250	BAI		1-	6	1,5	IOAII	2.6	1.6	1.6	2 8	33	950	1-1				2.9				NATION AND COPTOMENT NAME OF THE TOTAL NAME OF T
	`	ダドト	5	550 1200	25AU	+	-	4	7.0	16 A I	8.04	12.7	12.7	06	6	300		1250 650		_	2,5				Bceeo. 415.1
	4.		6	<u> 550</u>	VORI		<u> </u>	4	2,6	-		24.0	240		+		12			7	-,0				
	S,	, N. F	7	850	SAI	+	+	12	10.2	25AII	7.0	27.2	27.2	}	120	2750	maii	2750		_		005			{
1		23	8	390	IOA]	390	5	15	5,9		Uzoro	78.2	78.2		39 40 41	2750	10.00	3/50				6A[/			
			4				<u> </u>							07	41	200 230 200	+ -	1070			6.3 17.1	IOA !!			3
		1.6		CM. Boiwe	6AI	850	4	12	10.2	GAI	10.2	2.3	2.3	63 6	6 41	\$ 180	012	7070	-		(/.)	Um	ora 11	.1 11.1	
		33	8		IOA I	390	5	15	5,9	841	2.4	1.0	1.0	\vdash	34		1007	4330	 , 	_		201 0		_	
ППТ		اره	9	370	IDAI	370	19	38	14.0	IDAI	34.4	21.0	21.0		N 35	1.2.2		4330			3.66	8A] 6 8A] 2			Tocked marriepodinos.
.		25	10	3540	IORI	3540	1	2	7./	IDAII	19.6	11.8	11.8		36	470	881						.9 3.		
		13	//	3540	ISAI)	3540	1	2	7,1	IGA II	14.8	22.8	22.8	1 2 1	1	Cm. Goice	6AI		, t	_	+		_		HOWMEN. BEC MOPRO CTOING KI KON CTOING KI
		m 0:	9	CM. BUWE	JOA Z	370	20	40	14.8	1881	10.3	20.6	20.6	3 5	2 7 3 37	1/02	10.07						1.3 7. 3.7 /7		Diem Derond Deron Afford Kinger
	1-1	200	12	3840	IDAI	3840	1/	2	7.7		Uraro	79.5	79.5	トレト	-+-	/200	ZEATI	f							""" """
.	3	70	/3	3840	15 Ail	3840	1	و	7.7					200	38	500	BAT	250					.2 2		- OTM-0.03 - 200 CMOTPUME NUCMBAC-47,49
	Q	' ⊩	6	Ст. выше	IDAI	650	<u> </u>	4	2.6						5	11	IOAII				1.5	Ur	ro: 55	59.	5 600kg - " 040 127 655 782 1 040 127 555 78
	1	· }	14		10.80	1100	<u> </u>	م	۾ ۾	<u> </u>					5		10713	000	+	- '	2,6				50 AKO - 4 0.58 24.3 552 79.5 / 0.58 24.3 56.8 79
	8	200	15	200	8AI	200	<u> </u>	12	2.4					 	3	CM. Gorwe	8AI	370	22	44	-	\dashv			60 AKO - " 0.27 3.5 249 284 / 0.27 3.5 249 28
		cm's	15	8 1200	18.00	1500	<u> </u>	4	6.0	<u> </u>					10 42	Ium		4150			<i>8.3</i>	6A <u>I</u> 3.	y /	1 10	500 AKO - 1 0/8 30 0/1 124 2 030 60 180
		6	/7	2/50	1844	2150	1-	2	4.3	<u> </u>			<u> </u>	2/2	13 42 43		_	4150							500kg - 1 030 50 000 000 000
					1			L						Į į	6	 	IOAI						7.5 6		5000 - " 0.12 3.8 7.3 11/ 1 0.12 3.8 7.3 11/
40 20		3		3330	IBA <u>I</u> Ī	3330	1	2	6.66	6AI	13.3	3.0	3.0	3	!!			200		- -		IOA! 2	-+		6M-7 - " 0.55 /3.6 35.9 59.5 / 0.55 /3.6 35.9 59.
10 S	2	4/20		3330	IO A !	3330	/	2		BAI	1.2	0.8	0.5	8-W.		450		1350				IDAY 10			548 - " 0.33 91 39.5 486 1 0.33 9.1 39.5 48
Alana George	1-11	ואו	1	370	SAT	370	18	36	/3.3	IORII	9.3	5.8	5.8	100	56 45			1850	-		-	18A] 8			$\neg \mid SM-9 \mid \neg \mid \mid \mid \mid 0.37 \mid 9.7 \mid 4/.4 \mid \mid \mid 5/ \mid \mid \mid \mid 0.37 \mid 9.7 \mid \mu_{1} \downarrow_{1} \downarrow_{1} \mid \mid 5/$
7 1	しこ		6	Ст. выше	DAĪ	650	<u> </u>	4	2.6	16 A I	12.1	19.1	/9./	1 L		Cm. Some		850	_		3.4	22 A [i] 6	7 /:	0.7 19.7 6 48.6	05-1 - CMOMONINE DUCTH AC-47 49
The state of the s	J.	Ordens Hose Citteporen	15		8AI	200		6	1.2		Uroro	28.4	28.4		7	·		390			20	-+-	70	.0 40.0	
	2	Sens	21	250	16911	1350	<u> </u>	4	5.4	<u> </u>			L	26								-	, ,		<u>, </u>
13 %		0				<u> </u>				<u></u>								4570			_	BRI 3	9.0 7	+	~
9 8	3	أؤذ	22	2900	IOAII	2900	2	4	11.6	6AI	11.4	2,5	5.0	W/W	13/1/			4570		_		4			
we were	13	CINGONINO KPO-	23	270	6AI	270	21	42	11.4	8 A]	1.2	0.5	1.0	1.1	_			650	\vdash				1.8 7	3 7.3	
	15	9 }	24	300	MAII	300		4	1.2	IO RĪĪ	15.2	9.4	18.8	5M-9	1/2		BAI		\vdash						
\$ 3 5 8	210	100	25	8 450	IORIL	600	_	4	2.4		Urero	12.4	24.8	6	2 4			1350				18 ATT C		4.4 14.9 7.7 19.	
8	`	800	15	CM. Chiwe	841	200	T –	6	1.2					100	£ 43		+	1850	\vdash		3.7				
(*)	7	3	23	CM. Benue	BAI	270	14	28	7.6							 	 -	850		4 3		07	5	1.1 51.1	<u>'-</u>
8 0	5/2	3/2	26	/930	ISRI	1930	1	2	3.9				<u> </u>		1 7			390			2.0				_
wenny wenny	149	Kor 6 (w)	27	/930	IORII	1930	1	2	3.9						`\	<u> </u>	1,0,72	, 550		<u>~ 1</u>	2.0 1				-
300	<u> </u>	لث		OHONU BOYUOHHO				-L			. 4/0: 2	<u> </u>		L					- ^ -						
, 600 1000		0.0	"	MANGUR HA	7 A	ye pe en	·····		"	3000	K (2) 43	cmai	1 409	np		rydune sanome	HU S	0026	OÓBUS	€20	KON.	nekmo	oer H	r=5,5 A	Tuno bou npack T Ans do m Mapka
į į	19	58 e .						ים		Перекрытие на отм 0.03. Армирование балок БМ-1 ÷ БМ-9. Спецификация и выборка арматуры.										ו חודו ו ווייים ו					
<u>' '8</u>	<u> </u>			HOLOCOMO SO	-0 2	1110 0	· G - //	n.;		ח מן ה		S NUC	00.	JUK	2/1/-/	DITES. CA	euuq	UKU	408	<u> </u>	6100	PKO	ap m	myps	1. AC-53
1 accmpou Corostadora 2. Mac				насосами 5ф				2		Apm	006	O HUE							<i>५०</i> ८	<u>u</u> 6	8 6180	pra	a p mi	mype	

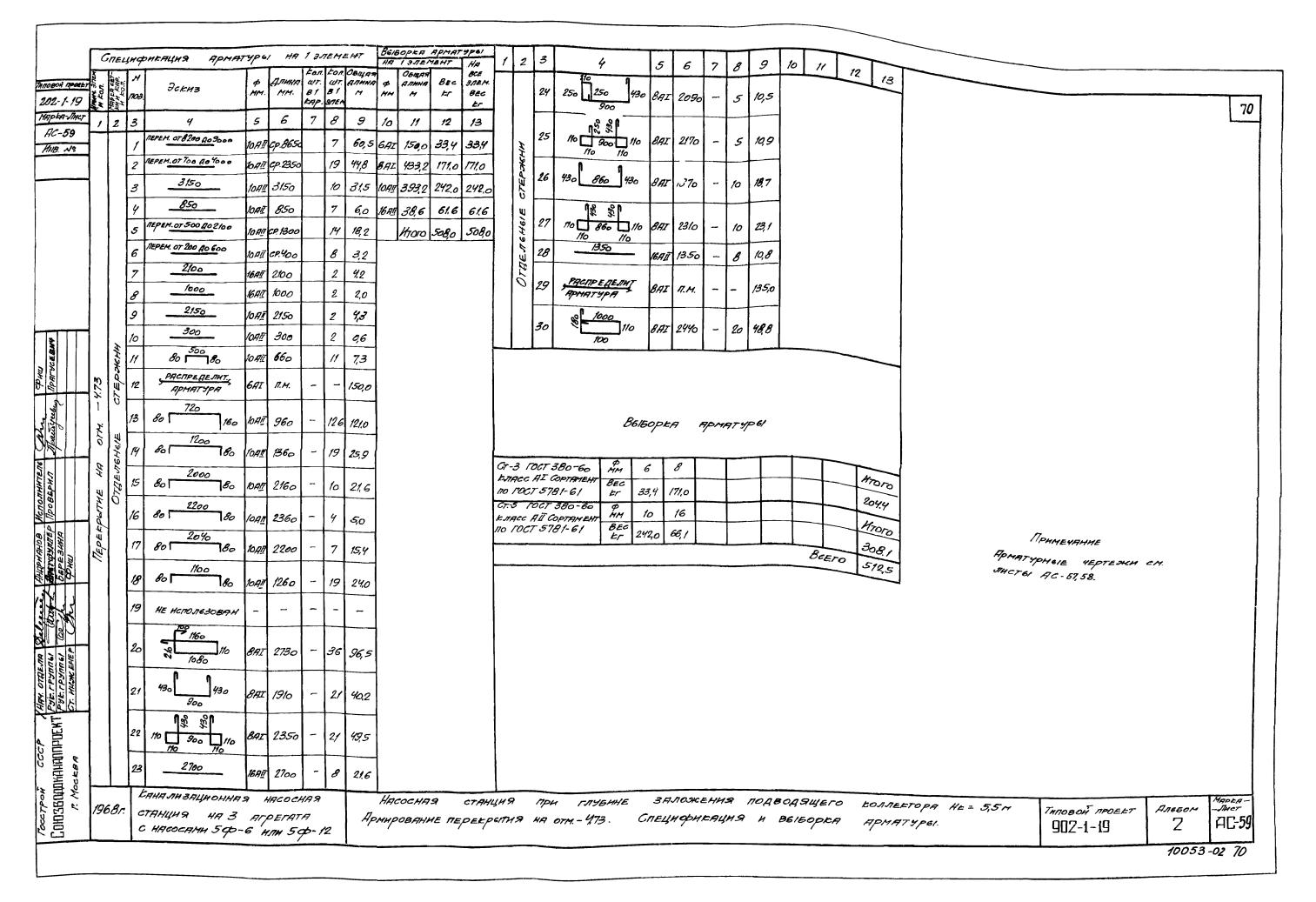
Расход материалов.

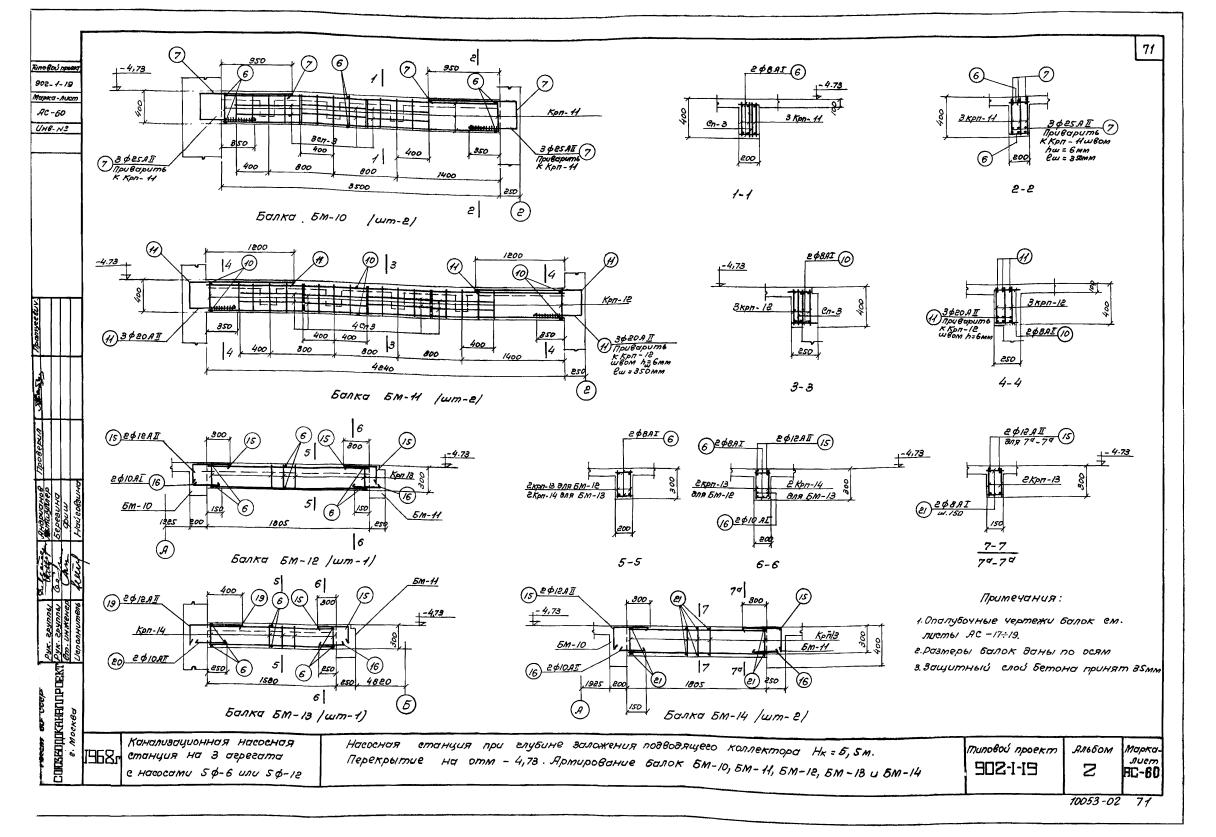

		Γ		Hd 1	9.10	MEH	m		Hd BCE SJEMENTS				4761
Наименов	Bec	Malpha			Cma	mass ke.					Cme	116	ke.
элемента	3,12M T	бетона		KACICC AI	KNOCC A <u>T</u>		Choeo	koji. Um.	DEIM	Knaa AT	KNOTOC A II		Uroeo
Nepekpairue Hd omm. - 4.73	_	200	4.20	204,4	308.1		512,5	1	4.20	204.4	308.1		512.5
5aska 5M-10		"	0.28	30,5	78,8		109.3	2	256	61.0	1576		218.6
Edjka EM-H	_	4	0.43	38,6	84.6		123,2	ءِ	0.86	77,2	169.2		246.4
5d_1Kd 5M-12	_	"	0,11	5,0	8,2		13,2	1	O.H	5,0	8,2		13.2
501kd 5M-13		4	0,10	4,8	9.2		14.0	1	0.11	4.8	9,2		14.0
501kd 5M-14		,	0,08	5.3	8,2		13,5	2	0,16	10,6	16,4		27.0

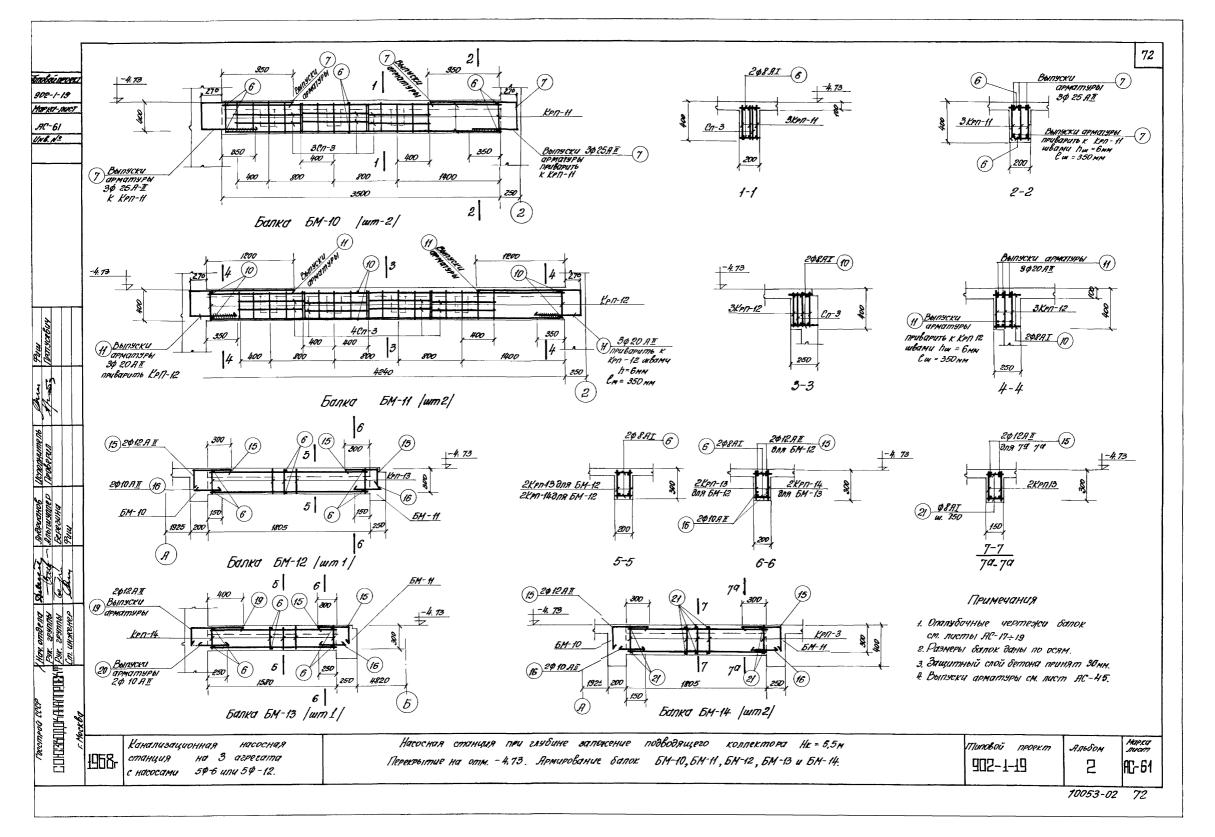

Примечания.

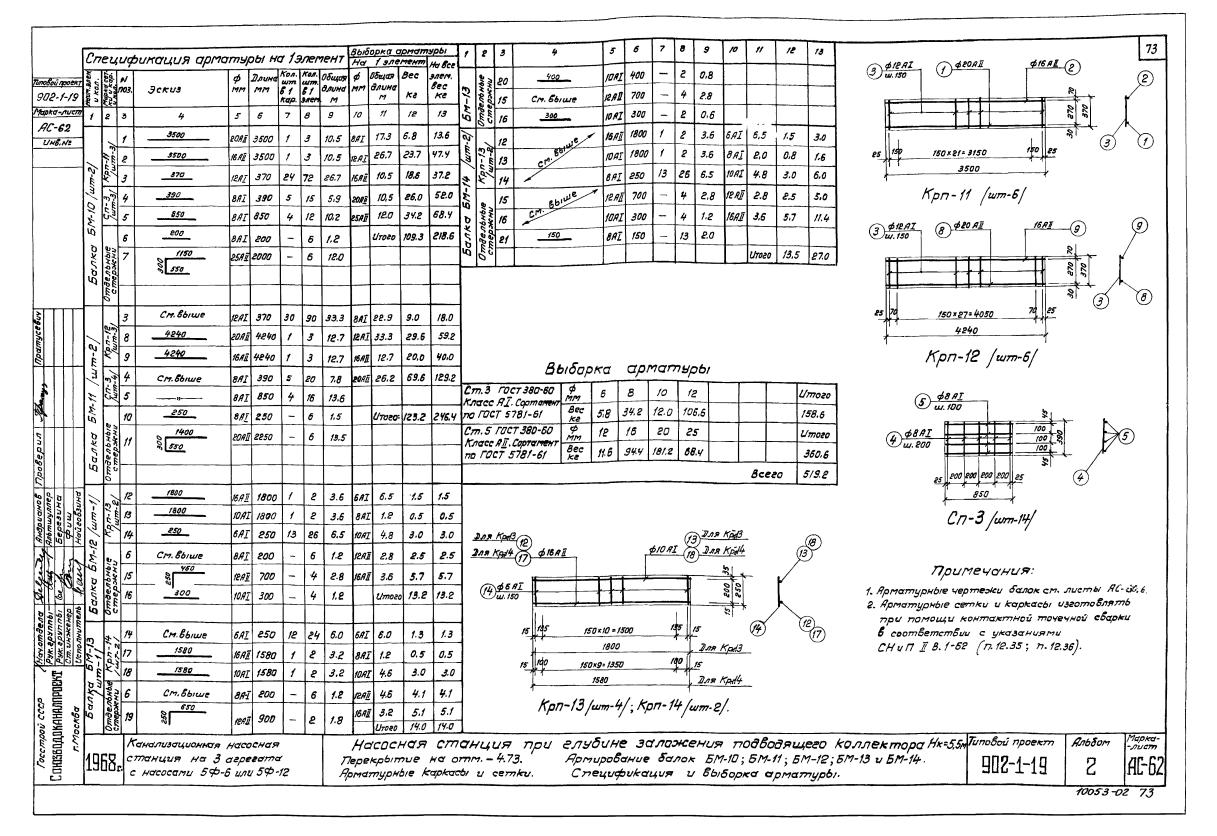

1. Опамубочные чертежи см. листы ЯС-17. 2. Защитным слом бетона принят равным 20 мм.

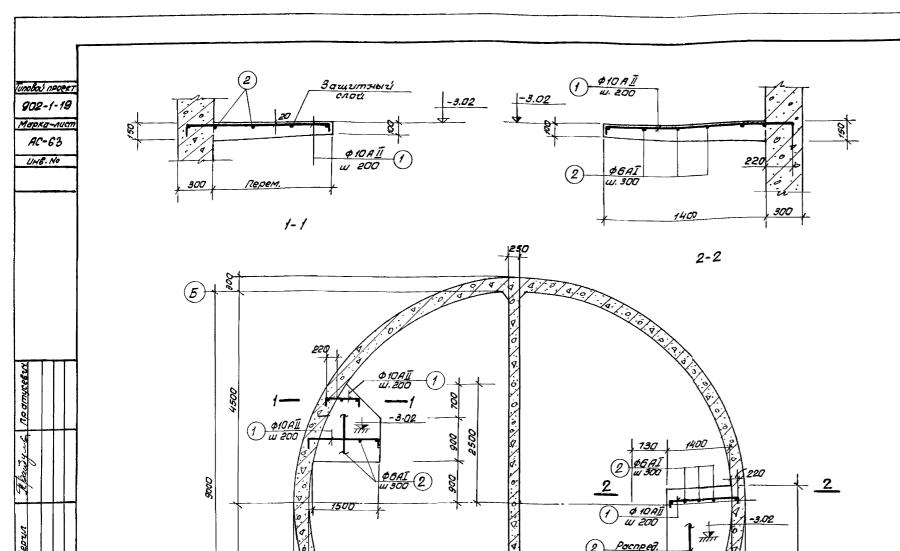

Перекрытие на отм. - 4.73. Ярнирование.


-					——
1	Кана јизационная насосная	Насосная станция при глубине залъжения подводящего коллектора Hk±5,5 м.	TUNDBOUL MODERM	93680M	Mapka
linco		10	1		JUCT
1968	станция на 3 агрегата	Армирование перекрытия на отм 4.73.	1 000 / 10	· `	00 01
1	с насосами 5 ф - 6 или 5 ф - 12.		902-1-19		AC-54
1	E Macoustina p o asid o p				









С	ne	ция	оихация армал	пурь	/ HO 2	91	емез	4/77	8610 ×0	1 ane	PMOIT	41061
V KOA. WM.	ey your Kape.	N n03,	9cru s	ф	Д пина м м	Kon. wm. 8 I Kap.	Kon. wm. в 1 эпен.	Общая Влина М		Общая Впина М	Bec Kr	Ha Bce gnem. Bec Kr.
.		1	10 01400 80 1900 80	10A <u>I</u> Ī	1310	-	36.0	47.5	BAI	21.0	4.7	4.7
TANAMOUU		2	_р роспредел.	6AI	п.м.	=	_	21.0	10A <u>II</u>	47.5	29.3	29.3
Ř 6										Umora	34.0	34.0

Выборка арматуры.

Cm.3 FOCT 380-60 KNOCC A-I COPTOMENT	ф мм	6			Umozo
no roct 5781-61	Bec Kr	4.7			4.7
Cm-5 FOCT 380-60 XACC A [[COPMOMENM	Ø MM	10			Um020
	Bec Kr	29.3			29.3
				Bcezo	34.0

Расход материалов жа элементы, похазанные на данном листе

Наимен.	Bec	Μαρκα		$\mathcal{H}\alpha$	1 31	емен	רח		H	a Bc	e 3116	PMET	LM6/
·		1 '	-	Сталь кг				. ـ ـ ا	<u>.</u>	CMON6 KT			
ЭЛЕМ.	элем. Т	бетона	pemoy _M 3	Kndec AI	Knacc A <u>ll</u>		Urazo		Бетон м 3	Knace	Knace A [[Uroro
Лестнич жые ппощадки	_	200	1.18	4.7	29.3		34.0	1	1.18	4.7	29.3		34.0

Πραμενακυя

1. Данный лист см. савместно с листами АС-10.

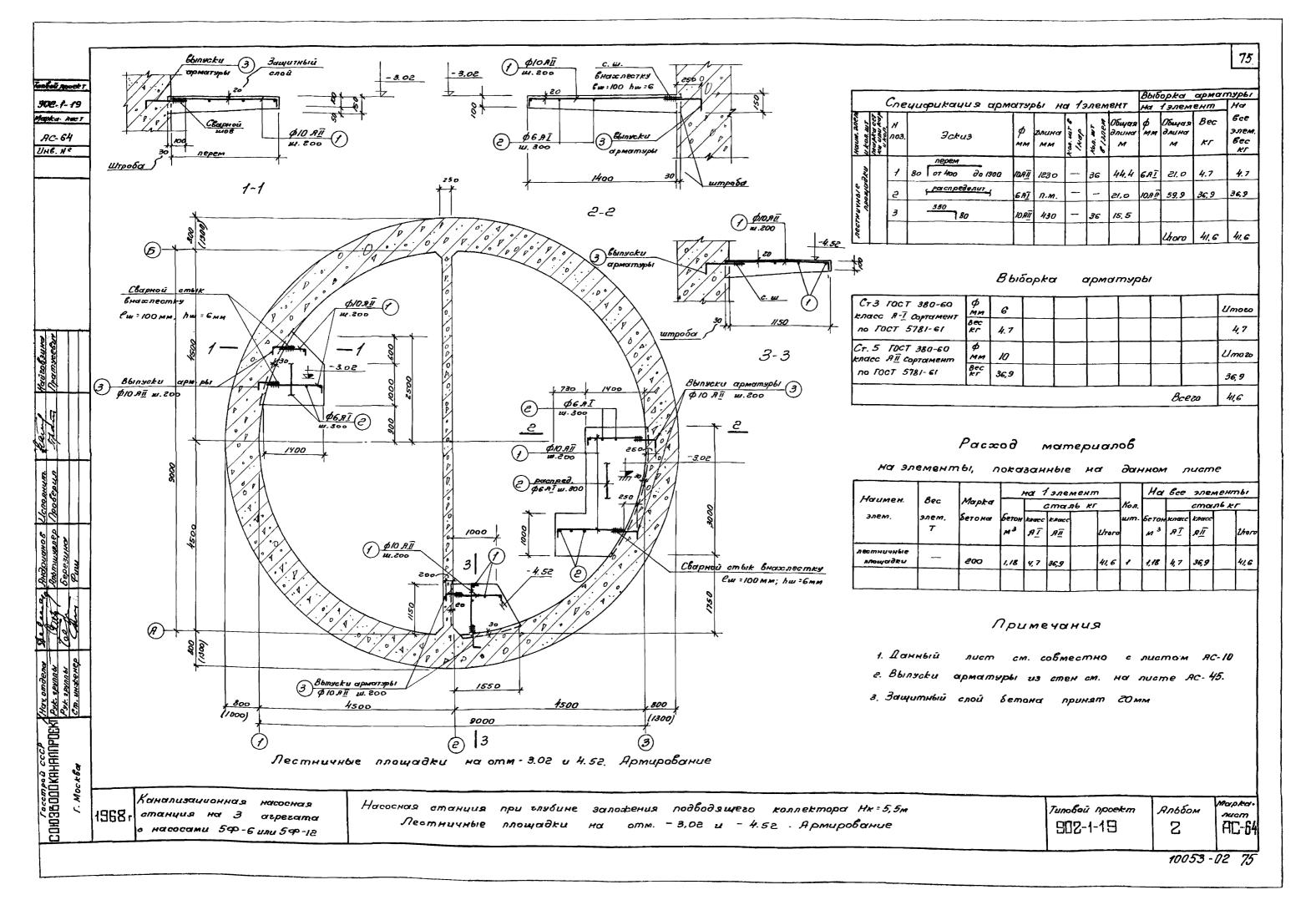
2. Защитный слоги бетона принят 20мм.

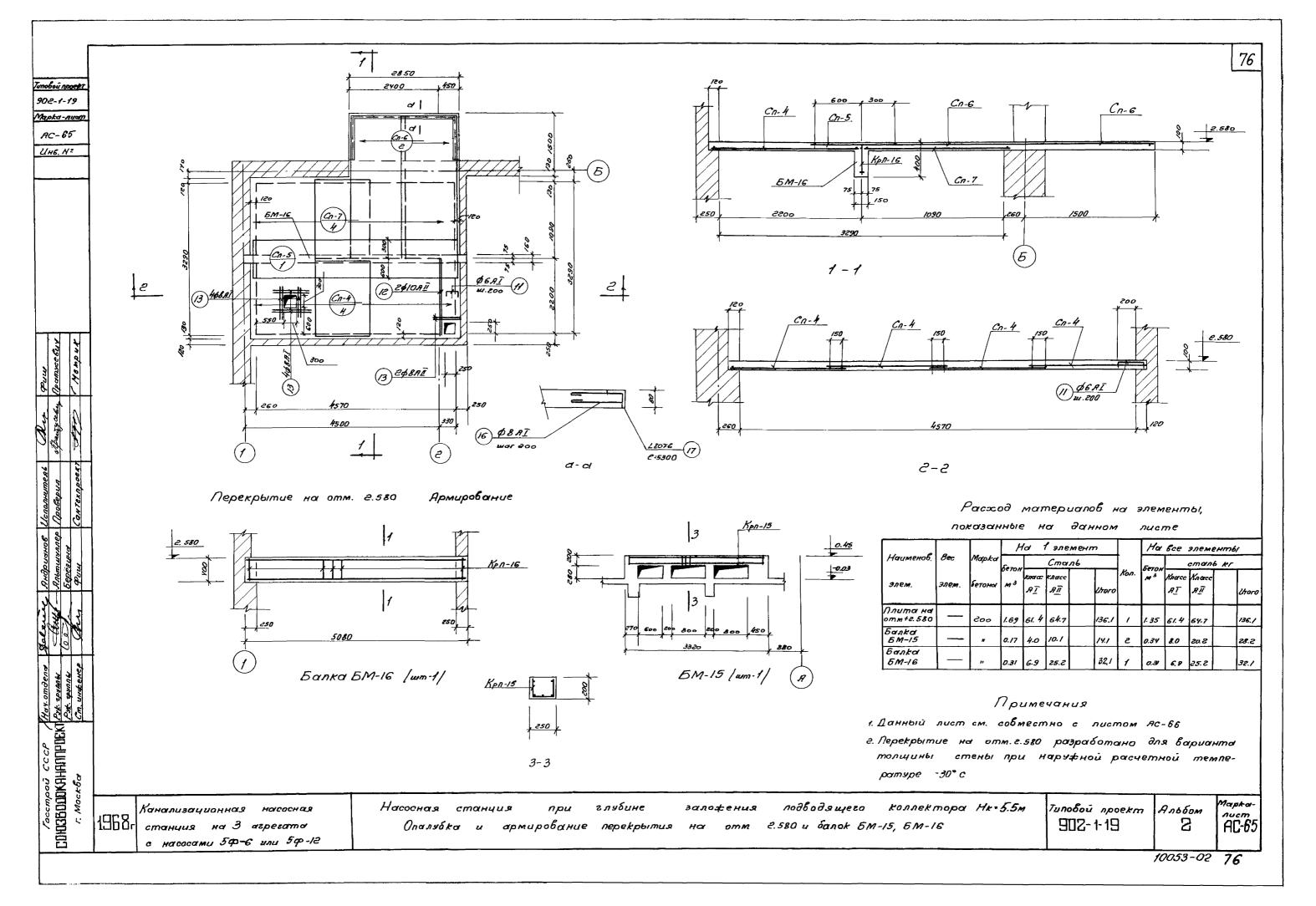
хахализациоххая хасосхая стахция ха 3 агрегата с хасосами 5Ф-6 или 5Ф-12

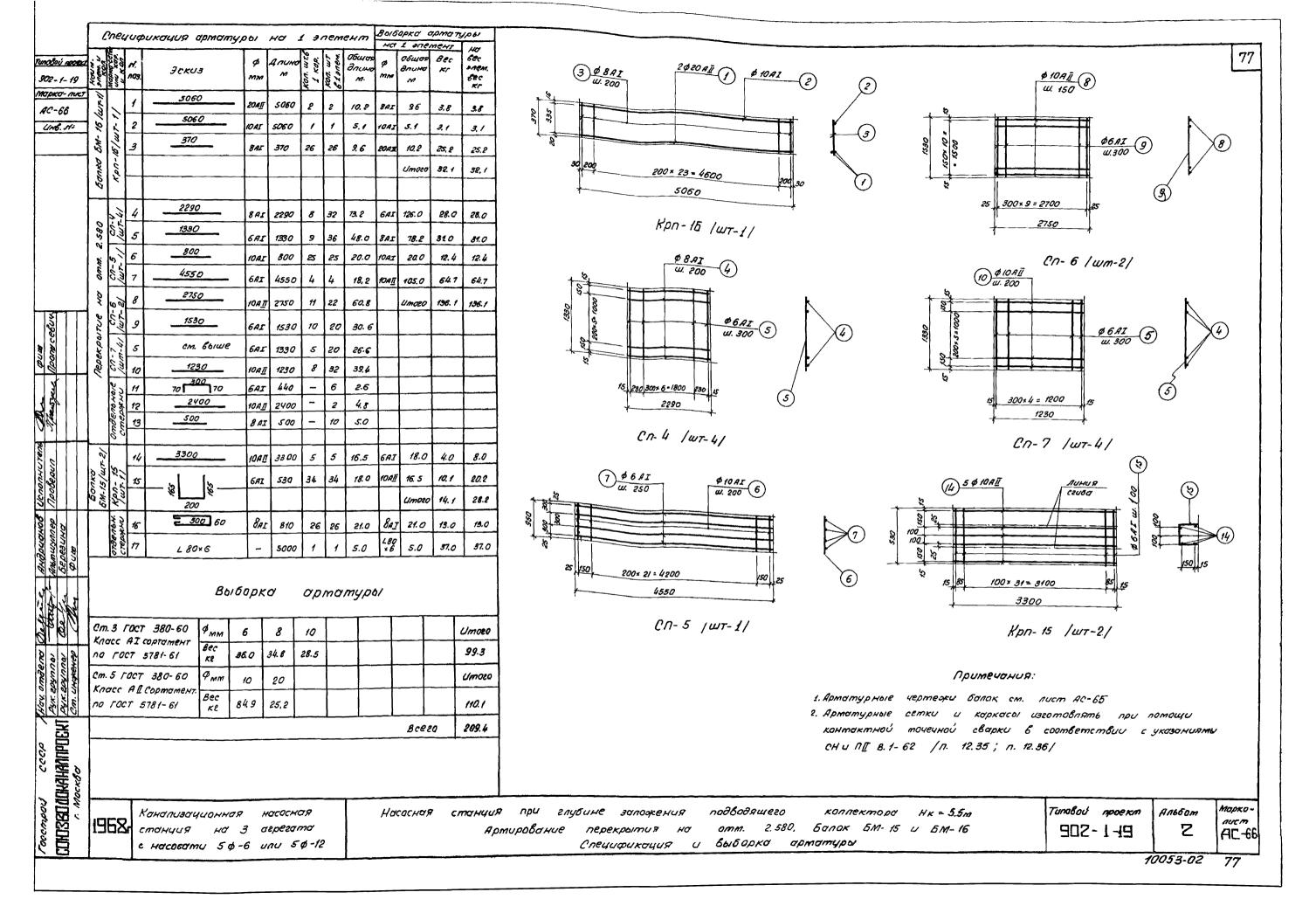
CHUSBUTIKHRITIPOEKT

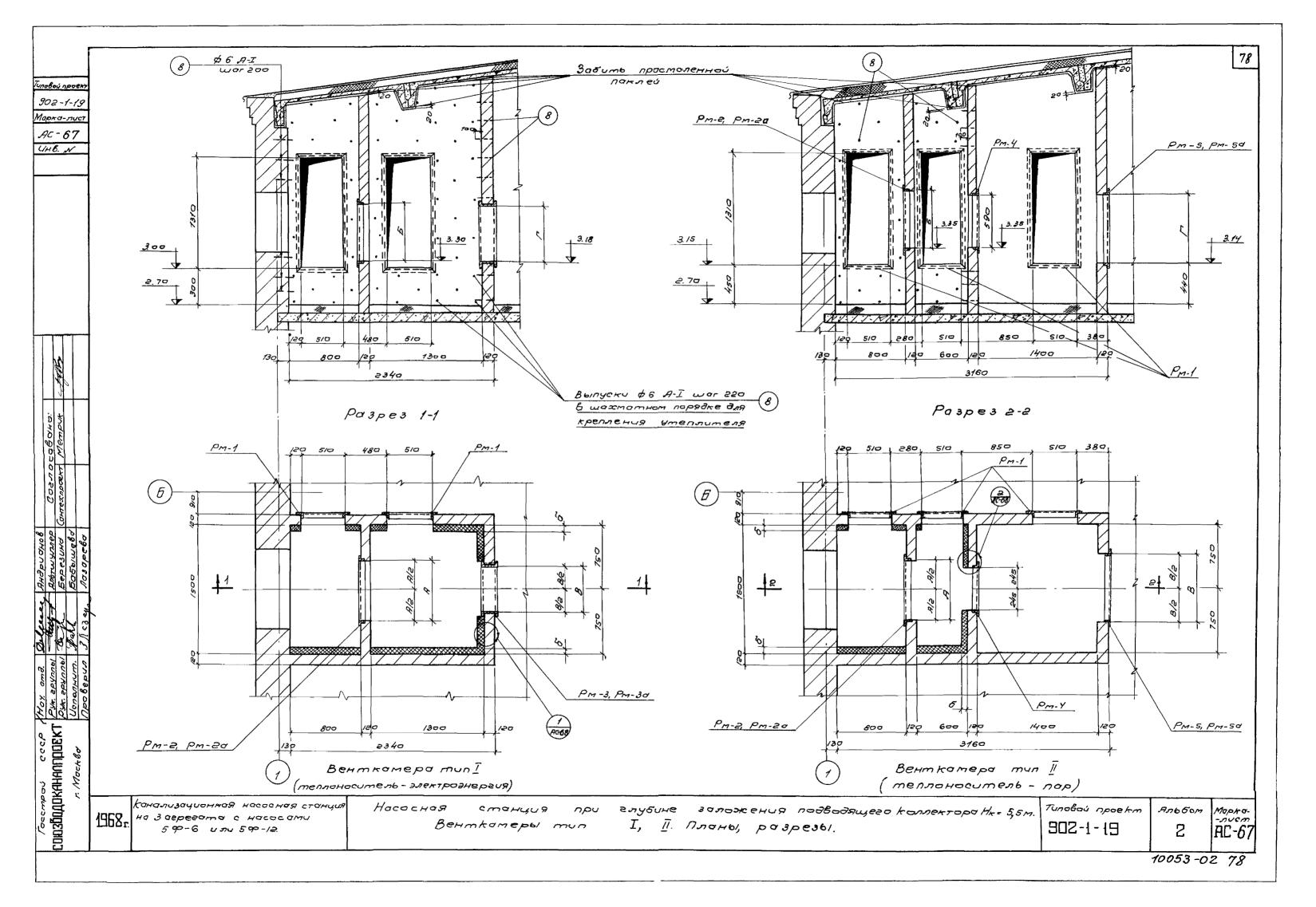
Насосная станция при елубине заложения подводящего коллектора H_{π} =5,5м. Лестничные площаджи на отм.-3,02 и -4.52. Армирование.

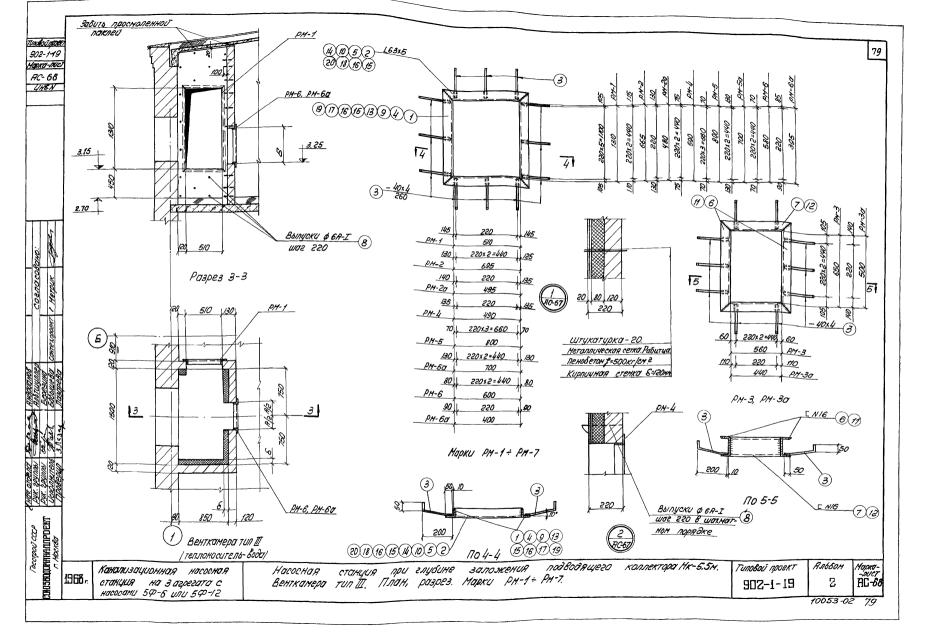
Ф10-A <u>II</u> Ш. 200


4500


1550


Лестничные площавки на отм. -3.02 и 4.52. Армирование.


9000


Tunobor' npoexm 902-I-19 Anedom Mapkanuom AC-63

Γ			Cneuug	pukay	ИЯ	CA	nant	,			Τ.	T - 2	T //-														
				T	7	00	. 0			-	2	3	4	5	6	7	8	9	T	В	HMKO	мера	/77	110 10			
	Mapka	NN nos.	Профиль	MIUHA	KON.	Aeran	W 80 02	MODEL	примечания:	PM- 4	/3	L 63×5	716	2	3,5	7.0			מפת	pass	enmko eme h		7 59	D-12	N= 10	KBM.	80
-19 won		2	2	L L	+					, , ,	14	L 63×5	616	2	2,9	5,8			7	2	3	4	5	6	7 8		9
9	704	naha	Вентка!	мера	mul	n Į		18	1 9		3	-40×4	260	10	4,3	3,0	15,8		Ì	1	1.63×5	636	2	3,1 6	,2		
		1	L63×5				- F		40 KBM.		15	163×5	926	4	4,5	18,0			PM-1	2	L 63×5	1436	2	6,9 1.	24,8	,	
				636	5			:		PM-5	3	-40×4	260	16	0.3	4,8				3	- 40× 4	260	16	0.3	4.8		
/	PM-1	2	L 63×5	1436	2	6,9	13, 8	24.8			_	,		"	0,3	4,8	22,8			19	L63×5	521			,0	1	
L		3	- 40×4	260	16	0,3	4.8	-""			 		 						PM-60	20	L 63×5	526	I T			,	
- 1		4	L 63×5	791	5	3,8	7.6			ОТ <i>депьн</i> ы С Герженц		φ 6R- <u>T</u>	350	130		0,08	10,4				- 40× 4	260	\vdash	— 	3,4 12,4	· 	
1,	PM- 2	5	4 63×5	821	2	4.0	8.0	19,2		Стериени		<u> </u>	<u> </u>						0.2-	 			 			+	
ľ		3	-40×4	260	12			_		npu	pa	Beumke Gome	амера Насос	0	5 do-1	9			Отдельн и Стержени		<i>♦ 6 A-</i> Ī	350	120	_ a	9,6		
1				 	+		+				1	L 63×5	636	2			N= 1	OKEM.	2,5,5-,-,-			<u> </u>					
- 1		6	CN16	778	2		+				-		† .		3,1	6,2											
Į,	PM-3	7	E N 16	688	٤	9,7	19, 4	45.0		PM-1	2	L 63×5	1436	2	6,9	13,8	24.8										
		3	-40×4	260	12	0,3	3,6	;			3	-40×4	260	16	0,3	4,8											
J 6	ПВельные	В	ϕ 6 <i>R-</i> I	350	180		0,08	, ,			9	L63×5	606	2	2,9	5,8			Παδί	ηυμα	разме	POB 1	проел	408 E	BeHM	камер	pase
Метрик	тержни				100		10,00	14,4		PM-Ea	10	463×5	621	2	3,0		11				0.40	-					
je j		ļ	Вент	rkamer	Da.	mu	10.2		<u> </u>		3	L63×5	260	8	0.0		14,2			- //	חטח	вент	ran	rep	777	_	
		npu	pasom	e Hace	ecα	59	P-12	N= 10	kBm.		+				0,3	2,4			Gyk Bermue	Που ασσοτέ	Onu nasar e	One parinte	Ovenad	ora Cau as	<u> </u>	6.70	
4		1	L63×5	636	2	3,1	6,2	?		,	13	L 63×5	7/6	2	3,5	7,0	4		BOTEMONE MOS	Hacacol	Hacoca	насосов	Hacace	Hacoc	B Hacoc	fore ca Npume 1 Br	PYAH
	PM-1	2	∠63×5	1436	2	6,9	13,	8 ,	PM-4	PM-4	14	L63×5	6/6	2	2,9	5,8 15,8			N=40K8T	N=10 KBT	X=40KBT	7=10KE	87 N=401	87 N=10K	BT		
1		3	-40×4	260	16		+-,-	24.8		3	-40×4	260	10	0,3	3,0			Я	695	495	695	495			4		
Сантежпроект		9		+	+	 			 		16	L63×5	826	4	4,0	16,0			Б	665	480	665	480	58	0 39	5	
od.	.	\vdash	L 63×5	606	2	2,6	5,8	<u>'</u>			3	-40×4	260	12	0.3		19,6		В	560	440	800	700	, _	_	.	
E L	PM-2a	10	L 63×5	621	2	3,0	6,0	14.2		PM-5a						5,6	/3//0		P	650	500	800	700	<i>_</i>	_		
		3	- 40×4	260	8	0,3	2.4	4	1 1	Oranhuh		\$ 6A-I	755	/20						200	300	800	100				
2000 2000		11	E N 16	628	2	9,0	18,0	,		СТЕРНОНО		9 5 11-1	350	130		0,08	10,4						 				
100	OM-3α	12	CN16	568	2			T .	,			1	1					1	L		<u> </u>	<u> </u>	ļ				
Sadeum		3	- 40× 4	1					'	ПРЬ	pac	some H	m Kam acocob	ερα 590	mu -6: 6	OD IO	N.	4-0									
	<u> </u>	+		260	8	0,3	2,	4			1		636					40 KEM.									
1 2	Паельные Этержни		φ6 <i>R-</i> <u>Γ</u>	350	180	1=	0,00	9 14, 4				1				6,2	}				Npume	40 409	?;				
NO COT	ine poleric					<u> </u>			1 1	PM-1	2		1436	1	6,9	13,8	24.8		1. Совмеетно с данным смотрите листы ЯС-67,								c7 0
	при	ραδ	Венткам Соте на	ιερα π αςοςοδ	70 N N	<u>//</u> 30-6:	<i>5 9</i> 0,	12 N	= 40 5 6m	-	3	- 40× 4	260	16	0,3	4,8				7661111	ט כ פט	77017	CMO	יוויטקנוי	SIUC)	761 76-0	61, M
000		,	L63×5	636							17	L63×5	706	2	3,4	6,8			ЯС-70.								
EDC.	<i>при</i> Рм-1	1						- i		PM-6	18	163×5	726	2	3,6	7,2	l										
Ucmau Npo6	PM-1	1		1436	2	6,5		2 7/6	9	1	3	-40×4	260	12	0,3		17.6										
200		3	-40×4	260	16	0,3	3 4,	8		0тдельна			350				 										
CORISBODORAHAMOPOEKO e. Mocked		4	L 63×5	791	5	3, 1	8 7.	6		Стержени		45/13	330	120	+=	0,08	9,6										
貫」	PM-2	5	L63×5	821		7				отперыене	+	+	+	┼	 		<u> </u>										
黒島	-					1	0 8,	0 19,2	2			_		_			1										
夏島		3	-40×4	260			_	<u> </u>									1										
園も	1968-	Far	Hanusay	ионна.	я на	COCI	чая			Насосна	9 C	танция	npu en	you!	4e 30	nonee	HUR I	подводящево к	onnekmo	DOL HA	= 5,5 /	7. Pu	noBoú	npoek	m An	650M	Мар
≝i	1000	\cm	анция	Ha 30	zepe	ee a.	mα	1		Вен	ran	nepbi .	mun	II	. <i>iII</i> .	Care	,,,,,,,	IKAYUA CME			-	1		•	1		AC-
晋 !		۔ سا	c ocamu	E 4 -			(10								_		, uyu c	muyuy cme	anu.			1	41 リンー	1-15	ı		1011 - 1

				В	BOPKO	cma	nu		
inoboŭ ne	ve	Z	MPU Pad	Be. Some	нткаме насосов		UN I ; 510-12	2 N=4	Orkm
902-1-1	9		cm. 3 NPOKAM	профиль	L63×5	EN16	δ=4		Bcezo:
Marka - pa	cn	4	IPOKUIII	Bec	55,6	41.4	16.8		113.8
AC - 70 UHB. Nº	2	4	cm.3/0CT 380-60 KNACC A-I	\$ NOW	6				Bcero:
479. N-		٦	СОРТИМЕНТ	Bec				 	Deero:
		-	no 1º0CT 5181-61	Kr	14.4	L	I		14.4
		Ì		Bau				mazo :	128.2
			MPU	pabon	nkameri Pe Hai		1411 I P - 12	N=10 KB	^e m
			cm. 3	профиль	L63×5	EN16	8=4		Bcezo:
			npokam	Bec Kr	51,8	34:0	14. 4		100, 2
			cm.31°0CT 380-60 Knacc A-I	Ø MY	6		1		Bcezo:
			COPMAMEHM NO POCT 5781-61	Bec Kr	14.4			†	14.4
					167		-	/mann:	
	Т	\dashv		Вент	KOMEPO	mun	77	Imazo:	114. 6
			при ст. 3	Pabom	e HOCO	cob 54	-6; 5¢	-12 N	= 40 KBM
	Mesting		ст. э прокат	nroduns Bec	163×5	8=4			Beero:
4	1/46	_	cm.3 1907 380 - 60	Kr 6	106, 4	25,8			132. 2
		KNACC A-I	MM	6				Bcero :	
110			COPMOMENM NO FOCT 5781-61	Bec kr	10,4				10,4
lba	1	١						mozo:	142.6
aci	200		npu	Behn	Kamera	m m	UN II	4/-	
Погласо	антежпрое		cm 3	}		Hacoca .	<i>5Ψ -12</i>	// // /	10 k8m
	ZHZ.		npokam	npodune Bec	L63×5	S=4			Bcezo:
	2	+	cm 3 1007 380-60	Kr	103,0	21.0		ļ	124.0
1116	80	3	KNACC A-I COPMAMEHM	₩M MM	6				Bcero:
Дидепанов Впотиченор Березина	10/01	300	no FOCT 5781-61	Bec	10,4				10,4
10 P	00	8					4	lmaeo:	134.4
1	4	2	\ nF	Ben vu pad	MKAMEPE OMB HA	a mun cocob 5	φ-6; 59	5-12 N	=40 KBm
AND THE	20	143	ст. З	профиль	L63×5	<i>6=4</i>			Baro:
91118	<u>,</u>	Ĭ,	npokam	Bec	34.0				42.4
20 /9/2	PONHUMEN	2	cm.3 [OCT 380 - 60	ø		8, 4	 	-	Bcero
OYK ZPYTAN OYK ZPYTAN OYK ZPYTAN	DHILL	beru.	KNACC A-I COPMAMEHM	Bec	6				9.6
X 25 25		100	no [OCT 578]-61	KT	9.6	L	· /	lmoro:	52.0
7. =		1					4	IIIVCV.	22.0

Канализационная

станция на 3 агрегата

с насосами 5Ф-6 или 5Ф-12.

HACOCHAS

neu pa		жамера насоса			ID KBM	
cm. 3	n r opu,16	L63x5	8=4			Bcezo:
npokam	Bec Kr	30,0	7.2			37.2
om.31007 380-60 knocc A-I	Ø MM	6				Всего:
COPMANIEHM NO POCT 5781-61	Bec tr	9.6		<u></u>		9,6
					Umazo:	46,8

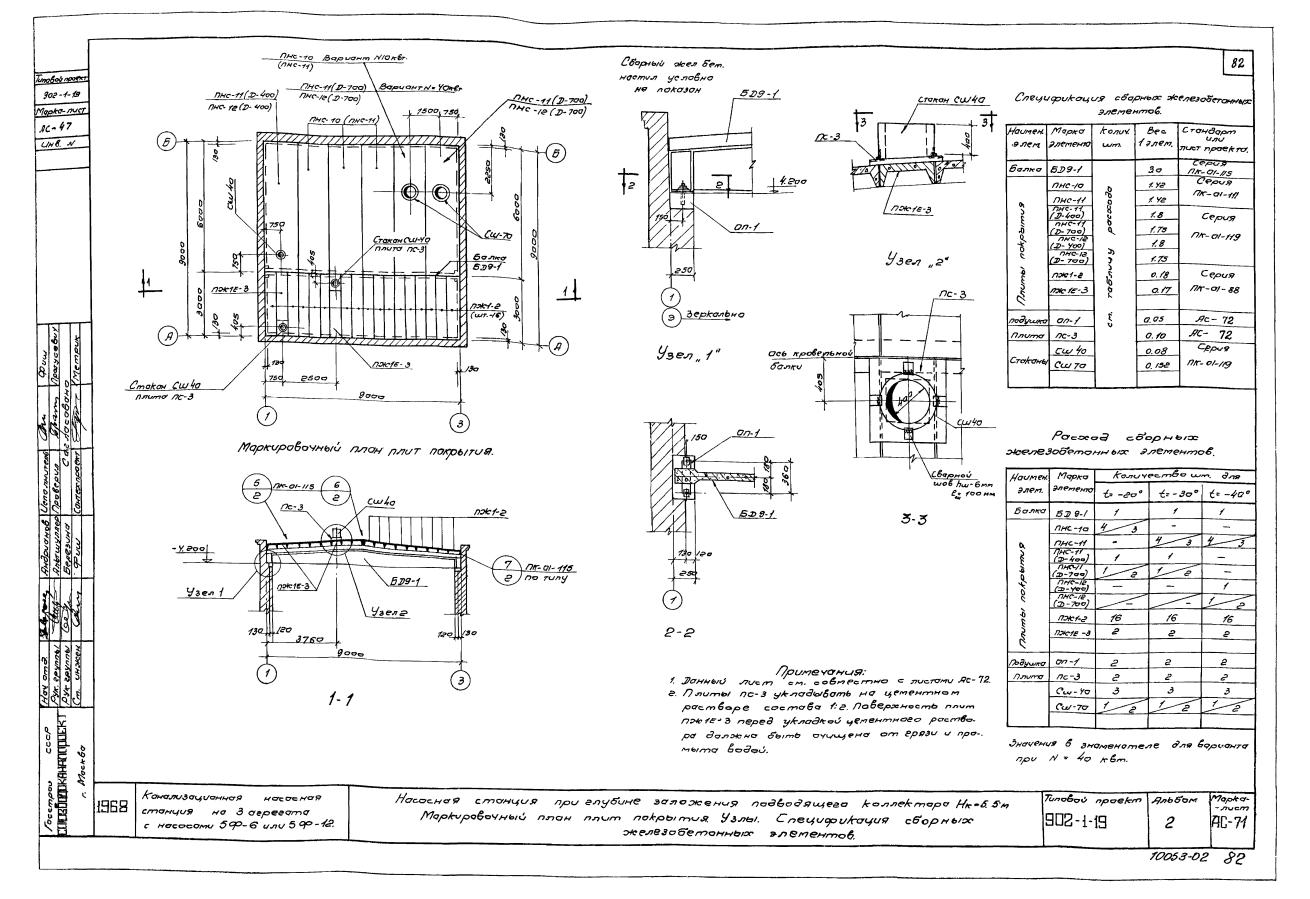
Выборка марок

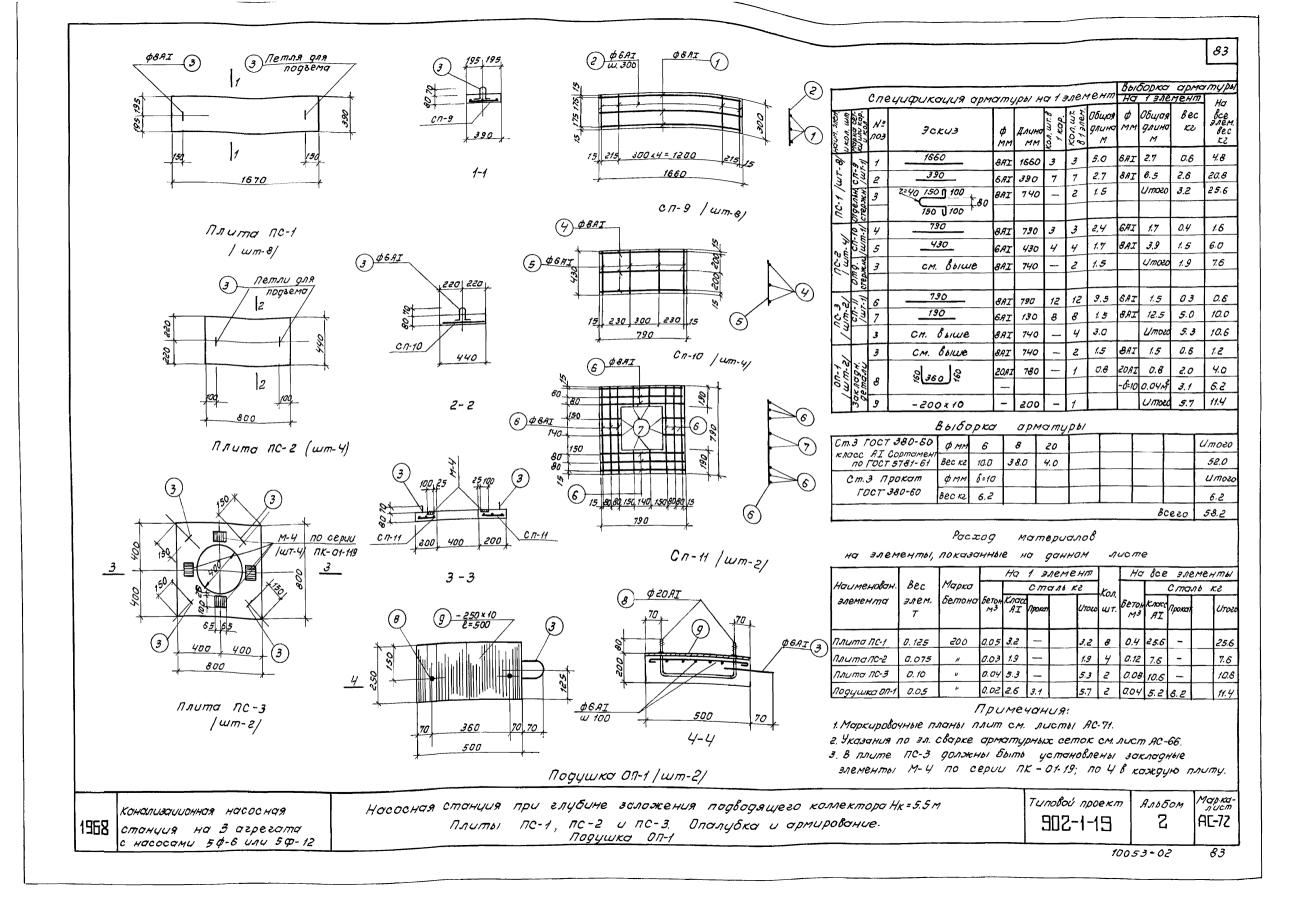
Mapka	Колич. шт	Bec Kr Imarky	Oòmun bec kr	Марка	Колуч. шт.	Bec kr Imarku	Obuyuis bec Kr			
1	2	3	4	1	2.	3	4			
Венткам при работе	era m e nacocob 5	oun I 59-6:54-1	12 N=40KBT	Вентка при работе	MEPA 1 Macoca 59	mun I 5-12 N=1	OKBM			
PH-1	2	24,8	49,6	PM-1	2	24.8	49.6			
PH-2	1	19,2	19.2	PH-2a	1	14.2	14. 2			
PM-3	1	45,0	45,0	PH-301	1	36, 4	36.4			
огдельные Стержни		_	14,4	отдельные стержни			14.4			
		Bcero:	128, 2			Bceeo:	114.6			
	nera mur re nacocob :		12 N=40BT	Венткамера тип <u>II</u> при работе насоса 5Ф-12 N=10 квт						
PM-1	3	24. 8	74: 4	PM-1	3	24.8	74: 4			
PH-2	1	19.2	19.2	PN-RA	1	14.2	14. 2			
PM - 4	1	15.8	15,8	PM-4	1	15.8	15, 8			
PM - 5	1	22,8	22.1	PN-59	1	19.6	19.6			
CTEP JK HU		ļ <u>. —</u>	10.4	CTEP SCHU		-	10, 4			
0		Всего:	142,6	<u> </u>		Всего:	134.4			
Венткам при г аботе	era mui r nacocob 5	n <u>III</u> 19-6;519-11	2 N=408T	Вентка при работ	inepa m ne nacoca s	un <u>II</u> 59-12 N=	10 kbm			
PM-1	1	24.8	24.1	PM-1	1	24.8	24.8			
PM-6	1	17.6	17, 6	PM - 69	/	12.4	12.4			
отдельные стержени		_	9,1	वारी ९ गाउम ७१९ ८७ इस्ट्रास्ट्र		9.6	9, 6			
		Bcezo:	52,1			Boero:	46,8			

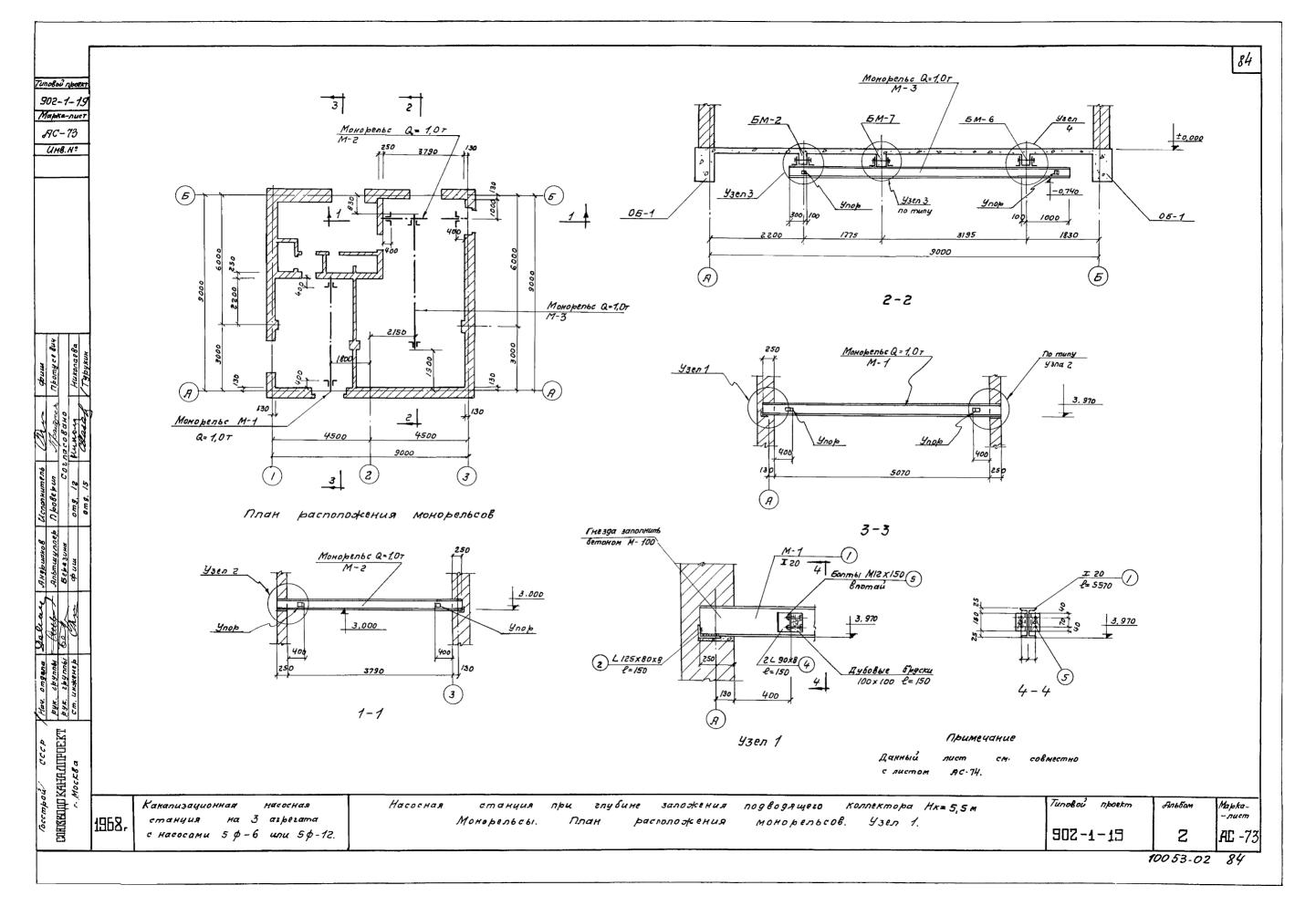
Насосная станция при глябине заложения подводящего коппектора Нк = 5.5 м.

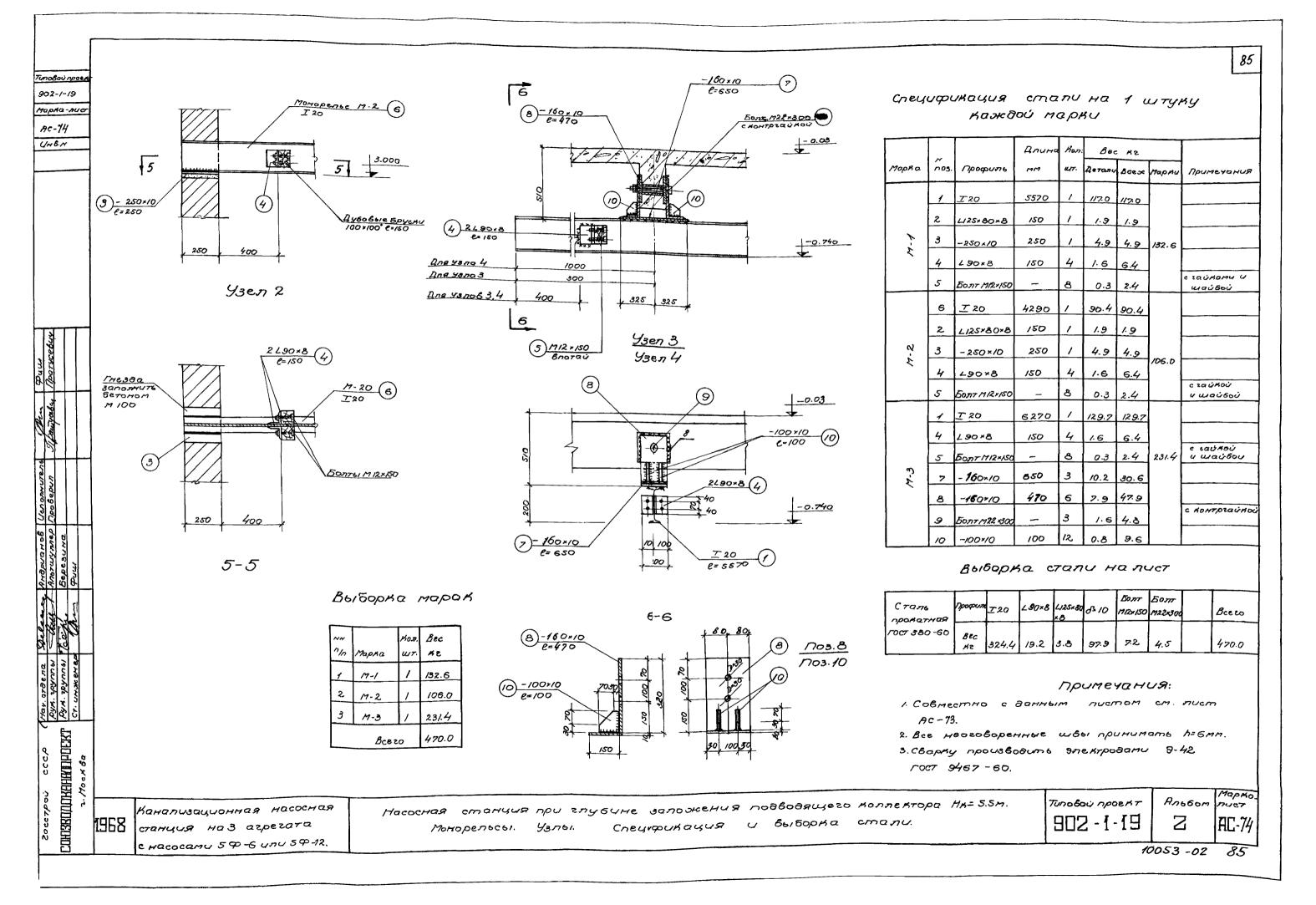
Венткамеры тип I, II, III. Выборки тали и марок.

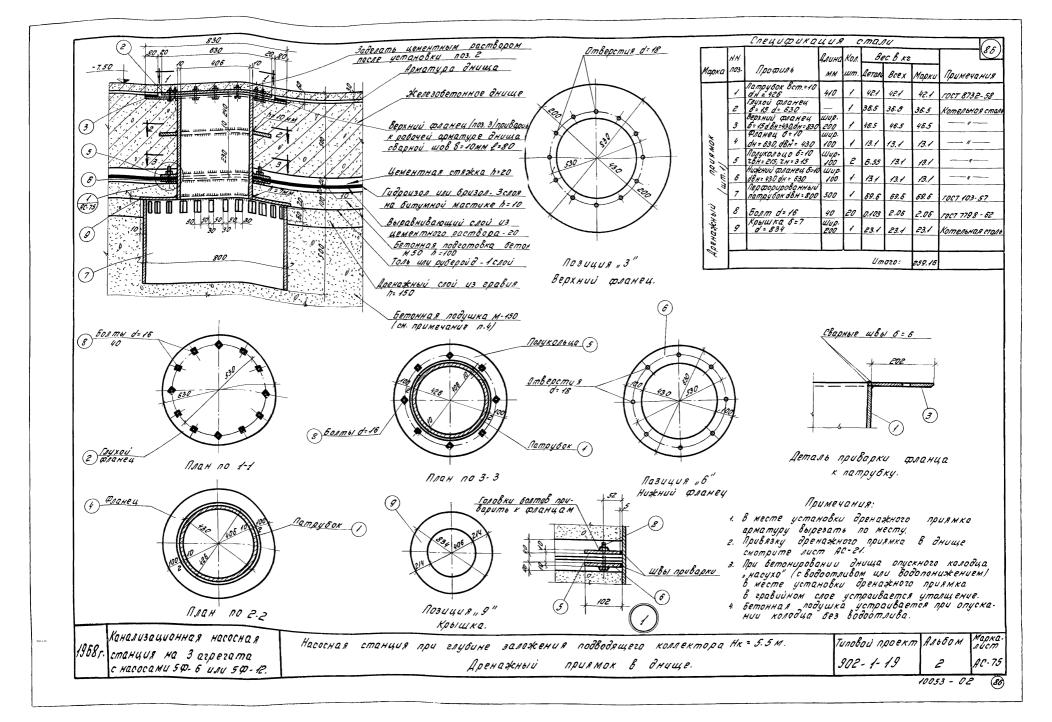
ित्रकारपंत्र कार्यायम कार्यामानात्र है


81


t	бин
-20°	60
-30°	60
-400	90


Примечания:


1. Совместно с данным смотеите листы АС-67, АС-68, АС-69.


> Пиповой проект Яльбом 902—1—19 2

