Министерство строительства
и жилищно-коммунального хозяйства
Российской Федерации

Федеральное автономное учреждение
«Федеральный центр нормирования, стандартизации
и оценки соответствия в строительстве»

Методические рекомендации

ПРОЕКТИРОВАНИЕ, СТРОИТЕЛЬСТВО И ЭКСПЛУАТАЦИЯ
ЛЕСНЫХ ДОРОГ

Москва 2018
<table>
<thead>
<tr>
<th>Содержание</th>
<th>Страница</th>
</tr>
</thead>
<tbody>
<tr>
<td>Введение</td>
<td>4</td>
</tr>
<tr>
<td>1 Область применения</td>
<td>6</td>
</tr>
<tr>
<td>2 Нормативные ссылки</td>
<td>8</td>
</tr>
<tr>
<td>3 Термины и определения</td>
<td>11</td>
</tr>
<tr>
<td>4 Общие положения</td>
<td>14</td>
</tr>
<tr>
<td>4.1 Общие положения по планированию лесных дорог</td>
<td>14</td>
</tr>
<tr>
<td>4.2 Требования к изысканиям лесных дорог</td>
<td>15</td>
</tr>
<tr>
<td>4.3 Размещение лесных дорог</td>
<td>16</td>
</tr>
<tr>
<td>4.4 Отвод земли</td>
<td>23</td>
</tr>
<tr>
<td>5 Проектирование</td>
<td>24</td>
</tr>
<tr>
<td>5.1 Классификация дорог и основные параметры</td>
<td>24</td>
</tr>
<tr>
<td>5.2 План и продольный профиль</td>
<td>25</td>
</tr>
<tr>
<td>5.3 Поперечный профиль</td>
<td>29</td>
</tr>
<tr>
<td>5.4 Пересечения и примыкания</td>
<td>34</td>
</tr>
<tr>
<td>5.5 Земляное полотно</td>
<td>44</td>
</tr>
<tr>
<td>5.6 Дорожная одежда</td>
<td>59</td>
</tr>
<tr>
<td>5.7 Искусственные сооружения</td>
<td>68</td>
</tr>
<tr>
<td>5.8 Обстановка дороги и ее обустройство</td>
<td>73</td>
</tr>
<tr>
<td>5.9 Охрана окружающей среды при проектировании</td>
<td>79</td>
</tr>
<tr>
<td>6 Строительство</td>
<td>83</td>
</tr>
<tr>
<td>6.1 Строительство земляного полотна</td>
<td>83</td>
</tr>
<tr>
<td>6.2 Строительство дорожных одежд</td>
<td>89</td>
</tr>
<tr>
<td>6.3 Строительство искусственных сооружений</td>
<td>97</td>
</tr>
<tr>
<td>6.4 Охрана окружающей среды при строительстве дорог</td>
<td>103</td>
</tr>
<tr>
<td>7. Эксплуатация</td>
<td>113</td>
</tr>
<tr>
<td>7.1 Требование к транспортно-эксплуатационному состоянию дорог</td>
<td>113</td>
</tr>
<tr>
<td>7.2 Оценка состояния дорог</td>
<td>120</td>
</tr>
<tr>
<td>7.3 Организация дорожной службы</td>
<td>123</td>
</tr>
<tr>
<td>7.4 Ремонт дорог</td>
<td>126</td>
</tr>
<tr>
<td>7.5 Содержание лесных дорог в весенний, летний и осенний периоды</td>
<td>127</td>
</tr>
</tbody>
</table>
7.6 Содержание лесных дорог в зимний период .. 127
7.7 Содержание временных дорог ... 127
7.8 Охрана окружающей среды при эксплуатации лесных дорог 127
8 Правила приемки работ ... 130
 8.1 Правила приемки при капитальном ремонте 130
 8.2 Правила приемки работ при ремонте ... 130
 8.3 Правила приемки работ по содержанию дорог 131
9 Технический учет и паспортизация лесных дорог 132
 9.1 Задачи технического учета и паспортизации дорог 132
 9.2 Порядок проведения технического учета и паспортизации дорог и дорожных сооружений .. 132
Приложение А .. 135
Приложение Б ... 138
Приложение В .. 149
Приложение Г ... 156
Приложение Д ... 159
Приложение Е ... 165
Библиография ... 173
Введение

Методические рекомендации разрабатываются в развитии положений СП 288.1325800 «Дороги лесные. Правила проектирования и строительства» и СПЗ 18.1325800 «Дороги лесные. Правила эксплуатации» с целью повышения безопасности и эффективности использования автомобильного транспорта при освоении, охране, защите и воспроизводстве лесов.

В соответствии с ТЗ для реализации основных положений СП 288.1325800 «Дороги лесные. Правила проектирования и строительства» в представленных методических рекомендациях внесены разъяснения и дополнения по следующим вопросам.

При проектировании:
- уточнено функциональное назначение лесных дорог в таблице 1(Классификация);
- изложена процедура подготовки исходных данных для расчета дорожных одежд;
- требования к пересечению лесными дорогами железных дорог, линий связи и электропередачи, водопроводов, теплотрасс, нефте- и газопроводов;
- охраны окружающей среды при проектировании.

При строительстве:
строительство дорог сезонного действия;
- использование отходов лесозаготовок в качестве основания для дорог краткосрочного действия и невыраженного грузооборота;
- охрана окружающей среды при строительстве дороги.

Для реализации требований ТЗ основных положений СПЗ 18.1325800 «Дороги лесные. Правила эксплуатации» внесены следующие разъяснения и дополнения:
- требования к эксплуатационному состоянию и его оценка;
- охрана окружающей среды при эксплуатации лесных дорог.
Необходимость разработки «Методические рекомендации по проектированию, строительству и эксплуатации лесных дорог» обусловлена отсутствием современных методических документов по комплексному решению вопросов, связанных с проектированием, строительством и эксплуатацией лесных автомобильных дорог. Отсутствие современных требований к техническому состоянию лесных дорог и недостаточная техническая оснащенность дорожной службы способствует повышению себестоимости перевозок в 1,5–1,7 раза, снижению скорости движения на 15–25 %, сокращению выхода на линию автомобилей на 15–20 %.

В значительной степени это объясняется низкими транспортно-эксплуатационными параметрами лесных дорог (ровность, видимость, наличие пучин на проезжей части, недостаточный водоотвод и др. причины).

При назначении конструкций дорожных одежд недостаточно или неэффективно используются современные геоматериалы, способные в значительной степени повысить качество лесных дорог. В конструкциях отсутствуют современные инновационные материалы, способствующие повышению морозоустойчивости дорожных конструкций.

Анализ запроектированных дорожных конструкций показал, что в ряде случаев необоснованно приняты гидрогеологические характеристики с учетом срока использования дорог.

Предлагаемые «Методические рекомендации по проектированию, строительству и эксплуатации лесных дорог» охватывают весь круг вопросов, связанных с проектированием, строительством и эксплуатацией лесных автомобильных дорог различного назначения.

Методические рекомендации разработаны авторским коллективом в составе: д.т.н. Л.А. Андреева (руководитель темы), к.т.н. А.Г. Колчанов, инженеры: И.П. Потапов, П.А. Костюкевич, Н.Н. Левицкая, А.В. Багинов, И.В. Музыкин.
1 Область применения

Настоящие методические рекомендации распространяются на вновь строящиеся, реконструируемые и капитально ремонтируемые лесные дороги, расположенные на землях лесного фонда.

Методические рекомендации развивают отдельные положения СП 288.1325800 «Дороги лесные. Правила проектирования и строительства», а именно:

− Раздел 4 «Классификация и категории лесных дорог» в части упорядочения категорий лесных дорог в соответствии с Лесным кодексом РФ и введения п.5.1.2 «Расчетные нагрузки»;

− Раздел 5 «Основные указания по проектированию лесных дорог» в части определения годового грузооборота для вывозки древесины;

− Раздел 6 «Проектирование лесных дорог постоянного действия» в части основных параметров плана и продольного профиля лесных дорог, пересечения с железнодорожной дорогой, линиями связи и электропередач, теплотрассой, водопроводом, нефте- и газопроводом, проектирования земполотна на слабых грунтах, исходных данных для расчета дорожных одежд, характеристик дорожно-строительных материалов, условий установки ограждений и охраны окружающей среды при проектировании;

− Раздел 7 «Обеспечение безопасности дорожного движения». Вопросы обеспечения 5 «Методических рекомендаций…»;

− Раздел 8 «Охрана окружающей среды при проектировании и строительстве лесных дорог». Содержание этих разделов изложено в разделе 5 и 6 «Методических рекомендаций…» с учетом более подробного рассмотрения факторов, влияющих на окружающую среду и изложением рекомендаций по их снижению;

− Содержание раздела 9 и 10 изложено в разделе 6 «Методических рекомендаций…»;
Методические рекомендации рассматривают вопросы эксплуатации лесных дорог в развитие основных положений СП 318.1325800 «Дороги лесные. Правила эксплуатации», а именно:

– Раздел 4 «Классификация и категории лесных дорог» в «Методических рекомендациях...» переработан с учетом принятой классификации лесных дороги и дополнением условий движения и оценки безопасности движения;

– Раздел 6 «Организация эксплуатации лесных дорог» дополнен предельными значениями дефектных мест на проезжей части, оценки состояния покрытия, структурой дорожной службы и ее техническим оснащением, требованиям к элементам обстановки дороги и оценки их технического состояния;

– Раздел 13 «Охрана окружающей среды» дополнен подробным изложением факторов, оказывающих негативное воздействие на окружающую среду в процессе эксплуатации и рекомендаций по их снижению.
2 Нормативные ссылки

В настоящих «Методические рекомендации по проектированию, строительству и эксплуатации лесных дорог» использованы нормативные ссылки на следующие документы:

ГОСТ 12.1.046-2014 ССБТ. Система стандартов безопасности труда. Строительство. Нормы освещения строительных площадок
ГОСТ 17.4.3.02-85 Охрана природы. Почвы. Требования к охране плодородного слоя при производстве земляных работ
ГОСТ 17.5.1.03-86 Охрана природы. Земли. Классификация вскрышных и вмещающих пород для биологической рекультивации
ГОСТ 17.5.3.04-83 Охрана природы. Земли. Общие требования к рекультивации земель
ГОСТ 5180-2015 Грунты. Методы лабораторного определения физических характеристик
ГОСТ 8269.0-97 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний
ГОСТ 8736-2014 Песок для строительных работ. Технические условия
ГОСТ 21924.0-84 Плиты железобетонные для покрытий городских дорог. Технические условия
ГОСТ 23407-78 Ограждения инвентарные строительных площадок и участков производства строительно-монтажных работ. Технические условия
ГОСТ 23558-94 Смеси щебеночно-гравийно-песчаные и грунты, обработанные неорганическими вяжущими материалами, для дорожного и аэродромного строительства. Технические условия
ГОСТ 25100-2011 Грунты. Классификация
ГОСТ 25607-2009 Смеси щебеночно-гравийно-песчаные для покрытий и оснований автомобильных дорог и аэродромов. Технические условия
ГОСТ 25912.0-91 Плиты железобетонные предварительно напряженные ПАГ для аэродромных покрытий

ГОСТ 3344 – 83 Щебень и песок шлаковые для дорожного строительства. Технические условия;

ГОСТ Р 50970-2011 Технические средства организации дорожного движения. Столбики сигнальные дорожные. Общие технические требования. Правила применения

ГОСТ Р 50971-2011 Технические средства организации дорожного движения. Световозвращатели дорожные. Общие технические требования. Правила применения

ГОСТ Р 52289-2004 Национальный стандарт. Технические средства организации дорожного движения. Правила применения дорожных знаков, разметки, светофоров, дорожных ограждений и направляющих устройств

ГОСТ Р 52290-2004 Технические средства организации дорожного движения. Знаки дорожные. Общие технические требования

ГОСТ Р 52748-2007 Дороги автомобильные общего пользования. Нормативные нагрузки, расчетные схемы нагружения и габариты приближения

СП 18.13330.2011 «СНиП II-89-80* Генеральные планы промышленных предприятий»

СП 19.13330.2011 «СНиП II-97-76 Генеральные планы сельскохозяйственных предприятий»

СП 34.13330.2012 «СНиП 2.05.02-85* Автомобильные дороги»

СП 35.13330.2011 «СНиП 2.05.03-84* Мосты и трубы»

СП 36.13330.2012 «СНиП 2.05.06-85* Магистральные трубопроводы»

СП 37.13330.2012 «СНиП 2.05.07-91* Промышленный транспорт»

СП 42.13330.2016 «СНиП 2.07.01-89* Градостроительство. Планировка и застройка городских и сельских поселений»

СП 45.13330.2017 «СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты»

СП 46.13330.2012 «СНиП 3.06.04-91 Мосты и трубы»
СП 47.13330.2016 «СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения»
СП 48.13330.2011 «СНиП 12-01-2004 Организация строительства»
СП 64.13330.2017 «СНиП П-25-80 Деревянные конструкции»
СП 68.13330.2017 «СНиП 3.01.04-87 Приемка в эксплуатацию законченных строительством объектов. Основные положения»
СП 78.13330.2012 «СНиП 3.06.03-85 Автомобильные дороги»
СП 86.13330.2014 «СНиП III-42-80* Магистральные трубопроводы»
СП 99.13330.2016 «СНиП 2.05.11-83 Внутрихозяйственные автомобильные дороги в колхозах, совхозах и других сельскохозяйственных предприятиях и организациях»
СП 124.13330.2012 «СНиП 41-02-2003 Тепловые сети»
СП 288.1325800.2016 «Дороги лесные. Правила проектирования и строительства»
СП 318.1325800 «Дороги лесные. Правила эксплуатации»
СанПиН 2.2.1/2.1.1.1200-03 Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов
СанПиН 2.1.6.1032-01 Гигиенические требования к обеспечению качества атмосферного воздуха населенных мест
СанПиН 2.1.7.1287-03 Санитарно-эпидемиологические требования к качеству почвы
СанПиН 2.2.3.1384-03 Гигиенические требования к организации строительного производства и строительных работ
ГН 2.1.5.1315-03 Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования
3 Термины и определения

3.1 болота I типа: Заполненное болотными грунтами, прочность которых в природном состоянии обеспечивает возможность возведения насыпи высотой не более 3 м без возникновения процесса бокового выдавливания слабого грунта.
СП 313.1325800, (Раздел 3, п. 3.1)

3.2 болота II типа: Содержащее в пределах болотной толщи хотя бы один слой, который может выдавливаться при некоторой интенсивности возведения насыпи высотой не более 3 м, но не выдавливаются при меньшей интенсивности возведения насыпи.
СП 313.1325800, (Раздел 3, п. 3.2)

3.3 болота III типа: Содержащее в пределах болотной толщи хотя бы один слой, который при возведении насыпи высотой не более 3 м выдавливается независимо от интенсивности возведения насыпи.
СП 313.1325800, (Раздел 3, п. 3.3)

3.4 временные дороги: дороги, предназначенные для освоения лесных участков в весенне-летний или зимний периоды. После освоения лесных участков временные дороги подлежат рекультивации.

3.5 ГИС-технология: Геоинформационная система – система сбора, хранения, анализа и графической визуализации пространственных данных и связанной с ними информации о необходимых объектах.

3.6 гравийная оптимальная смесь: Обогащенная песчано-гравийная смесь с подобранным зерновым составом.

3.7 грунты крупнообломочные: Несвязный минеральный грунт, в котором масса частиц размером более 2 мм составляет более 50 %.
ГОСТ Р 25100, (Раздел 3, п. 3.15)
3.8 **колесопровод:** Проезжая часть в виде двух раздельных полос (кольей).

3.9 **лесная дорога:** Объект лесной инфраструктуры, создаваемый для освоения, охраны, защиты и воспроизводства лесов.

Распоряжение Правительства Российской Федерации от 17 июля 2012 года № 1283-р г. Москва «Перечень объектов лесной инфраструктуры для защитных лесов, эксплуатационных лесов и резервных лесов»

3.10 **лесная дорога лесовозная:** Лесная дорога, создаваемая для вывозки древесины при освоении лесных участков.

3.11 **лесная дорога лесохозяйственная:** Лесная дорога, создаваемая для охраны, защиты и воспроизводства лесов.

3.12 **лесная дорога временная:** Лесная дорога, создаваемая для освоения лесных участков в весенне-летний или зимний периоды.

3.13 **особо неблагоприятные условия погоды:** Состояние поверхности дороги, при котором движение автотransportных средств становится настолько затрудненным, что без принятия специальных мер движение может быть остановлено.

К особо неблагоприятным условиям погоды относятся: осадки в виде дождя и снегопада интенсивностью более 0,1 мм/мин, гололедица и гололед, метель со скоростью ветра более 9 м/с, ветер со скоростью более 20 м/с, туман с видимостью менее 200 м, температура воздуха летом выше +40°С в тени и зимой ниже -40°С.

СП 312.1325800 (Раздел 3, п. 3.34)

3.14 **Пересеченная местность:** Рельеф, прорезанный часто чередующимися глубокими долинами, с разницей отметок долин и водоразделов более 50 м на расстоянии не более 0,5 км, с боковыми глубокими балками и оврагами, с неустойчивыми склонами.

СП 99.13330 (Раздел 3, п. 3.19)
3.15 **Рабочий слой земляного полотна:** Верхняя часть полотна в пределах от низа дорожной одежды до уровня, соответствующего 2/3 глубины промерзания конструкции, но не менее 1,5 м, считая от поверхности покрытия.
СП 34.13330 (Раздел 3, п. 3.74)

3.16 **Стесненные условия строительства:** Строительство участков лесных дорог на застроенных территориях, а также на пересеченной местности (с уклоном территории более 40 %).

3.17 **Техногенный грунт:** Грунт, измененный, перемещенный или образованный в результате инженерно-хозяйственной деятельности человека.
4 Общие положения

4.1 Общие положения по планированию лесных дорог

4.1.1 Лесные дороги являются дорогами необщего пользования, создаваемые на землях лесного фонда, относятся к объектам лесной инфраструктуры [1] и представляют собой комплекс инженерно-технических сооружений, предназначенный для движения транспортных средств в т.ч. и специализированных и включающий в себя:
- дорожную конструкцию (земляное полотно и дорожная одежда);
- искусственные сооружения;
- обустройство дорог;
- технические средства организации дорожного движения;
- производственные объекты инфраструктуры для ремонта и содержания дорог.

4.1.2 Планирование развития сети лесных дорог осуществляется в соответствии с требованиями [1–5,19].

4.1.3 Основные этапы планирования лесных дорог:
- экономические изыскания;
- инженерные изыскания;
- камеральное трассирование вариантов прокладки трассы по топографическим картам;
- подготовку проекта схемы размещения лесных дорог;
- оценку экономической эффективности инвестиций в строительство лесных дорог;
- утверждение схемы размещения лесных дорог;
- включение схемы размещения лесных дорог в документы лесного планирования.
4.2 Требования к изысканиям лесных дорог

4.2.1 Целью экономических изысканий является получение данных, необходимых для обоснования оптимальных вариантов размещения лесных дорог, искусственных сооружений, а также обоснование очередности и экономической эффективности капитальных вложений.

4.2.2 Экономические изыскания выполняются на лесном участке, который будет обслуживаться проектируемой сетью автомобильных дорог с учетом автомобильных дорог общего пользования или отдельной лесной дорогой.

4.2.3 По результатам экономических изысканий должны быть получены:
- характеристика особенностей природных условий, лесных насаждений, и почвенно-грунтовых условий района изысканий;
- характеристика автомобильного транспорта и объемы перевозок;
- местоположение, состав, протяжение и качественное состояние существующих путей транспорта;
- перспектива развития сети дорог общего пользования;
- состояние строительства и содержание лесной дорожной инфраструктуры;
- обеспеченность района местными дорожно-строительными материалами;
- перспективные объемы перевозок древесины и хозяйственных грузов;
- перспективные направления освоения лесного участка;
- другие данные, позволяющие определить технические показатели и эффективность инвестиций в создание лесных дорог.

4.2.4 Сбор экономических показателей производится, как правило, за отчетный год и на перспективный расчетный срок с разбивкой на промежуточные сроки. За отчетный принимают год, предшествующий году проведения экономических изысканий.

4.2.5 На основе полученных данных определяют потребность в плотности сети, размеры и очередность капитальных вложений в строительство и
реконструкцию дорог с учетом наиболее рационального обеспечения транспортных связей; обосновывают технико-экономические рекомендации по строительству отдельных дорог, необходимые материальные ресурсы; рассчитывают экономическую эффективность затрат как в целом по сети, так и по отдельным объектам.

4.2.6 Инженерные изыскания проводятся в соответствии [5].
4.2.7 Инженерно-геодезические изыскания предусматривают визуальное обследование:
- существующих лесных дорог, а также той части дорог общего пользования, которые совпадают с основными перспективными грузопотоками, для оценки их технического состояния и возможности использования для охраны, защиты и воспроизводства лесов и определения объемов реконструкции;
- отдельных грунтовых проездов, расположенных в основном в благоприятных рельефных и гидрогеологических условиях, которые в зависимости от расчетных объемов перевозок могут быть использованы при реконструкции, повышении прочности, а также при переводе дороги в более высокую категорию;
- особо сложных участков наиболее важных магистральных направлений, определяющих принципиальное направление развития дорожной сети в целом в перспективе, когда это невозможно установить по топографическим картам, материалам лесоустройства, геологическим и другим данным.

4.3 Размещение лесных дорог.
4.3.1 Проектирование размещения лесовозных дорог и дорог лесохозяйственного назначения осуществляется по различным схемам с учетом поставленных задач.

Документацию по планированию размещения лесных дорог разрабатывают в соответствии с требованиями [1–5], [7,8,19]
4.3.2 При размещении лесовозных дорог необходимо учитывать [1,7]:
- степень лесистости выделенного участка;
- рассредоточенность лесохозяйственных работ по территории лесных участков;
- количество и площадь таксационных выделов;
- возрастной состав произрастающих на них лесонасаждений;
- существующую сеть автомобильных дорог и ее техническое состояние;
- необходимость многократного возвращения в одни и те же участки леса в течение длительного периода;
- проведение ряда работ в определенные агротехнические сроки.

4.3.3 Лесовозные дороги разделяются на постоянные и временные.

К постоянным относят магистральные дороги, обеспечивающие вывозку древесины на нижний склад.

К временным дорогам относят лесные дороги, которые примыкают с обеих сторон к постоянным дорогам и дороги сезонного действия.

4.3.4 Оптимальное значение угла примыкания веток к магистральной дороге целесообразно определять на основе технико-экономических расчетов, имея ввиду, что чем меньше угол примыкания, тем меньше расстояние перевозки. В практике освоения лесов в большинстве случаев угол примыкания принимается от 45° до 90°.

4.3.5 Величина угла примыкания влияет на плотность дорог, и, естественно, на капитальные вложения. Плотность лесных дорог принято выражать в км/1000га [8].

4.3.6 Ориентировочно значение плотности (км/1000га) может быть принято в размере:
- 3,0 при расстоянии между дорогами 4 км и угле примыкания 90°;
- 4,2 при расстоянии между дорогами 4 км и угле примыкания 45°;
- 2,4 при расстоянии между дорогами 5 км и угле примыкания 90°;
- 3,4 при расстоянии между дорогами 5 км и угле примыкания 45°;
- 2,0 при расстоянии между дорогами 6 км и угле примыкания 90°;
- 2,8 при расстоянии между дорогами 6 км и угле примыкания 45°;
- 1,7 при расстоянии между дорогами 7 км и угле примыкания 90°;
4.3.7 Плотность временных дорог зависит от расстояния трелевки древесины и угла взаимного расположения лесных дорог.
Ориентировочное значение плотности временных дорог при расстоянии трелевки 300 м составляет:
- 20,4 при расстоянии между дорогами 4 км и угле примыкания 900;
- 18,9 при расстоянии между дорогами 4 км и угле примыкания 450;
- 21,1 при расстоянии между дорогами 5 км и угле примыкания 900;
- 20,0 при расстоянии между дорогами 5 км и угле примыкания 450;
- 21,6 при расстоянии между дорогами 6 км и угле примыкания 900;
- 20,1 при расстоянии между дорогами 6 км и угле примыкания 450;
- 21,9 при расстоянии между дорогами 7 км и угле примыкания 900;
- 20,8 при расстоянии между дорогами 7 км и угле примыкания 450.
4.3.8 Для отнесения дороги постоянного действия к той или иной технической категории необходимо определить ее грузооборот.
Если дорога предназначена для вывозки древесины, ее грузооборот назначают с учетом годового объема заготовки древесины для данного участка \(Q_t \) млн. \(m^3 \), разрешенного проектом освоения лесов, при условии, что всю заготовленную древесину будут вывозить по проектируемой лесной дороге.
4.3.9 Грузооборот лесных дорог рассчитывают с учетом существующих потребностей по обеспечению охраны, защиты, воспроизводства лесов согласно.
4.3.10 Годовой грузооборот для вывозки древесины по каждой конкретной дороге определяется по формуле:
\[
\Gamma_{\text{млн.т.нетто}} = Q_{\text{млн.м}^3}^{\text{г}} K_{\text{о.в.}}
\]
где \(Q_{\text{млн.м}^3}^{\text{г}} \) — годовой объем вывозки древесины по конкретной дороге, \(\text{млн.м}^3 \)
\(K_{\text{о.в.}} \) — объемный вес древесины для конкретной породы и состояния.
Полученное значение в тоннах сравниваем с объемом перевозок, приведенного в таблице 1.
4.3.11 Направления основных дорог для вывозки древесины необходимо, по возможности, совмещать с существующими квартальными просеками, противопожарными разрывами [6].

4.3.12 В горных районах сеть лесных дорог должна размещаться так, чтобы большая часть ее протяжения обеспечивала выполнение целевых работ лесного хозяйства по кратчайшему направлению по склону сверху вниз. При соответствующем технико-экономическом обосновании прокладка дорог в горных условиях может осуществляться по водоразделам и через перевалы.

4.3.13 Плотность дорожной сети должна быть оптимизирована с учетом принятой технологии транспортировки, объема перевозок, типа подвижного состава и других факторов.

4.3.14 С целью снижения затрат на строительство автомобильных дорог целесообразно выделить лесные участки с обводненными грунтами для транспортировки древесины в зимний период.

Выделение лесных участков для зимней и летней вывозки рекомендуется выполнять обработкой картографических материалов с использованием ГИС-технологий и кластерного анализа.

4.3.15 Проектирование и строительство лесовозных дорог целесообразно начинать в тех лесных массивах, где имеется наибольшее количество таксационных выделов.

4.3.16 Размещение лесных дорог для вывозки древесины на лесном участке осуществляется с учетом требований правил заготовки древесины:

- площадь лесосек, на которых осуществляются сплошные рубки спелых, перестойных лесных насаждений в эксплуатационных лесах, не должна превышать 50 га при ширине лесосек не более 500 м;

- размещение лесосек в квартале или на лесном участке, отводимых в рубку в разные годы (примыкание), осуществляется с учетом срока, по истечении которого проводят рубку на непосредственно примыкающей лесосеке [7].
4.3.17 Целесообразность и очередность строительства лесных дорог устанавливается по величине экономического эффекта, достигаемого после строительства лесной дороги за счет транспортировки грузов, уменьшения себестоимости перевозок и ликвидации других потерь производства и прочих негативных последствий, вызванных отсутствием надлежащей дорожной сети [3].

4.3.18 Размещение лесохозяйственных дорог осуществляется в соответствии с рекомендациями схем транспортного освоения территории лесного фонда, разработанных в соответствии с развитием лесохозяйственного производства и подтверждающих экономическую целесообразность и хозяйственную необходимость их проектирования и строительства.

4.3.19 Проектирование лесохозяйственных дорог осуществляется исходя из полной мощности предприятия или его подразделения, но с учетом очередности его строительства, а также размеров и характера движения транспорта в период строительства. При этом проектирование должно начинаться с разработки схемы дорог на полное развитие предприятия или его части, а также с разработки основных проектных решений, необходимых для определения (по укрупненным показателям) стоимости строительства. Эти документы должны составлять неотъемлемую часть проекта (или рабочего проекта) на первую очередь строительства. На последующие очереди строительства должны разрабатываться проекты или рабочие проекты в установленном порядке.

4.3.20 Лесохозяйственные автомобильные дороги в предприятиях лесного хозяйства должны быть представлены разветвленной сетью постоянно действующих дорог различных назначений. Они должны отличаться простотой конструкции и иметь достаточную прочность для нормальной работы современных транспортных средств.

4.3.21 При разработке проектов лесохозяйственных автомобильных дорог необходимо учитывать требования норм проектирования СП 42.13330 в части дорог:
- прокладываемых в лесопарках, зеленых зонах городов и крупных населенных пунктов;
- включаемых в перспективные планы развития дорог общего пользования;
- со смешенным составом движения.

4.3.22 Для обеспечения соответствия уровня интенсивности развития лесного хозяйства уровню эксплуатации лесных массивов в пределах лесосырьевых баз лесозаготовительных предприятий необходимо предусматривать строительство новых и реконструкцию существующих лесохозяйственных дорог:
- на площадях свободных от лесов;
- на площадях древостоев, требующих проведения рубок промежуточного пользования;
- за пределами площадей расчетного пятилетия в противопожарных целях на территории наземной охраны, а также для нужд заготовки лесохимического сырья;
- реконструкцию в лесохозяйственных целях зимних автомобильных и железнных (колеи 750 мм) лесовозных дорог на свободных площадях.

На вновь построенных и реконструируемых дорогах необходимо предусматривать мероприятия по ремонту и содержанию дорог.

4.3.23 При размещении лесохозяйственных дорог необходимо учитывать:
- существующую сеть лесовозных дорог и дорог общего пользования и перспективу их развития;
- сохранение биологического разнообразия лесов и повышения их биоресурсного потенциала;
- обеспечение пожарной и лесопатологической безопасности;
- необходимость доставки людей, сельскохозяйственной и специальной техники и грузов к местам производства работ и лесным пожарам;
- необходимость и целесообразность зон рекреации;
- вывозки лесохимического сырья;
- подъезда к лесопитомникам;
- продолжительность цикла лесохозяйственного производства;
- подъезда к кордонам и егерским участках, а также для патрулирования лесных массивов.

Размещение этой категории дорог осуществляется после утверждения плана основных дорог в соответствии с [8].

4.3.24 Документация по размещению дорог лесохозяйственного назначения должна включать решение вопросов по следующим направлениям:
- протяженности сети дорог лесохозяйственного назначения и их основные параметры;
- объему капитальных вложений в строительство и реконструкцию дорог;
- охране, защите и воспроизводстве лесов;
- транспортированию древесины или других грузов, полученных в результате осуществления лесохозяйственной деятельности;
- организации работ на участке.

4.3.25 При проектировании лесных дорог для противопожарных целей необходимо учитывать сеть всех существующих автомобильных дорог, а также естественные грунтовые проезды в лесу, если они обеспечивают проезд современных транспортных средств пожаротушения в пожароопасные периоды года [19]. Если существующая сеть дорог и грунтовых естественных проездов не обеспечивает доставку сил и средств пожаротушения к участкам леса с высоким риском возникновения лесных пожаров в сроки, установленные действующими нормами, то на основе экономических расчетов могут быть приняты следующие решения:
- повышение прочности существующих дорог путем их ремонта или реконструкции;
- увеличение плотности сети лесных дорог за счет дополнительного строительства лесных дорог;
- наиболее рациональное размещение пожарно-химических станций.
Прокладка новых лесных дорог для выполнения мероприятий по охране лесов от пожаров должна осуществляться по направлениям лесных дорог, намеченных к строительству в перспективе.

4.4 Отвод земли

4.4.1 Ширина полосы, отводимой для строительства лесной дороги должна быть не менее суммарной ширины просеки и полосы насаждений, оставляемых для защиты дороги от снежных заносов.

4.4.2 Ширина просеки устанавливается с учетом размещения всех сооружений и устройств дороги и должна быть не менее [1]:
- 30 м для дорог категории Iл и IIл;
- 12 м для дорог категории IIIл и IVл.

4.4.3 Ширина защитной полосы леса устанавливается в соответствии с нормами лесохозяйственного регламента лесничества, на территории которого осуществляется строительство дороги.

4.4.4 Ширина полосы отвода земель вне земель лесного фонда устанавливается в соответствии с поперечными с поперечными профилями земляного полотна проектируемой дороги с учетом прилегающих к земляному полотну водоотводных канал и других сооружений. При этом расстояние от подошвы насыпи или от бровки выемки, а при наличии резервов, кавальеров и водоотводных канал от ближайших крайних их точек до границы полосы отвода должна быть не менее 2 м (в исключительных случаях 1 м).

4.4.5 При прохождении трассы по землям, используемым для выращивания особенно ценными культурами, а также в стесненных условиях (в пределах населенных пунктов), допускается проектировать земляное полотно без резервов и кавальеров используя другие способы водоотведения.

4.4.6 Ширина полосы отвода в местах, подверженных снежным заносам, устанавливаются с учетом дальности установки снегозащитных устройств.

4.4.7 На поймах, вблизи оврагов, на оползневых косогорах и других аналогичных местах, полоса отвода устанавливается с расчетом размещения укрепительных сооружений (включая защитные сооружения).
5 Проектирование

5.1 Классификация дорог и основные параметры

5.1.1 Классификация лесных дорог изложена в таблице 1.

Таблица 1 – Классификация лесных дорог

<table>
<thead>
<tr>
<th>Функциональное назначение</th>
<th>Грузооборот, млн. нетто т. в год</th>
<th>Категория</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лесная дорога, связывающая лесосырьевую базу с нижним лесным складом предприятия, пунктом потребления или дорогой общего пользования, пересекает лесной массив и объединяет все лесные дороги в единую сеть.</td>
<td>0,35 и выше</td>
<td>I₃</td>
</tr>
<tr>
<td>Лесная дорога, связывающая лесосырьевую базу с нижним лесным складом, пунктом потребления древесины или дорогой общего пользования.</td>
<td>0,14–0,34</td>
<td>II₃</td>
</tr>
<tr>
<td>Лесная дорога, примыкающая к лесным дорогам категории I₃ или II₃.</td>
<td>до 0,14</td>
<td>III₃</td>
</tr>
<tr>
<td>Лесные дороги, предназначенные для: - доставки людей, сельскохозяйственной и специальной техники и грузов к местам производства работ и лесным пожарам; - рекреации; - вывозки лесохимического сырья; - подъезда к лесопитомникам; к кордонам и егерским участках, а также для патрулирования лесных массивов, а также временные дороги (сезонного действия)</td>
<td>без определенного грузооборота</td>
<td>IV₃</td>
</tr>
</tbody>
</table>

5.1.2 Расчетные нагрузки

В качестве расчетной нагрузки при расчете дорожных одежд капитального типа принимается нагрузка – 115 кН на ось, при расчете дорожных одежд облегченного и переходного типов – 100 кН, при расчете мостовых сооружений – класс нагрузки должен соответствовать А 14.

Удельное давление на покрытие принимается – 0,6 МПа. Расчетный диаметр отпечатка в статическом положении при осевой нагрузке 115 кН принимается равным 34 см, в динамическом положении – 39 см.; при осевой нагрузке 100 кН расчетный диаметр отпечатка в статическом положении принимается равным 33 см, в динамическом положении – 37 см.
В качестве расчетной нагрузки для второстепенных дорог принимается осевая нагрузка 60 кН. Расчетный диаметр отпечатка в статическом состоянии равен 23 см, в динамическом – 25 см. (ГОСТ Р 52748).

5.1.3 Расчётные скорости движения для определения параметров плана, продольного и поперечного профилей, а также других параметров, зависящих от скорости движения, принимают по таблице 2.

Таблица 2 – Рекомендуемые скорости движения

<table>
<thead>
<tr>
<th>Категория дороги</th>
<th>Рекомендуемая расчетная скорость, км/ч</th>
<th>Базовая</th>
<th>Допускаемая на участках пересеченной местности</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iₐ</td>
<td>60</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>IIₐ</td>
<td>50</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>IIIₐ</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>IVₐ</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

5.2 План и продольный профиль

5.2.1 Величины параметров плана и продольного профиля базового (рекомендуемого) варианта принимают по таблице 3.

Таблица 3 – Величины параметров плана и продольного профиля базового варианта

<table>
<thead>
<tr>
<th>Наименование параметров</th>
<th>Категории дорог</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Iₐ</td>
</tr>
<tr>
<td>Продольный уклон, % (не более)</td>
<td>30</td>
</tr>
<tr>
<td>Расстояние видимости, м (не менее):</td>
<td></td>
</tr>
<tr>
<td>- до остановки</td>
<td>150</td>
</tr>
<tr>
<td>- встречного автомобиля</td>
<td>300</td>
</tr>
<tr>
<td>Радиусы кривизны, м (не менее):</td>
<td></td>
</tr>
<tr>
<td>- для кривых в плане</td>
<td>300</td>
</tr>
<tr>
<td>- выпуклых</td>
<td>5000</td>
</tr>
<tr>
<td>- вогнутых</td>
<td>2500</td>
</tr>
</tbody>
</table>

5.2.2 На участках пересеченной местности, а также на других участках, выполнение которых связано со значительными объёмами работ и стоимостью строительства дороги, при проектировании допускается снижать нормы при
условии соблюдения требований к охране окружающей среды и безопасности дорожного движения. Предельно допустимые нормы надлежит принимать по таблице 4.

Таблица 4 – Допустимые величины параметров плана и продольного профиля

<table>
<thead>
<tr>
<th>Наименование параметров</th>
<th>Категории дорог</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I_д</td>
</tr>
<tr>
<td>Продольный уклон, % (не более)</td>
<td>60</td>
</tr>
<tr>
<td>Расстояние видимости, м (не менее):</td>
<td></td>
</tr>
<tr>
<td>- до остановки</td>
<td>125</td>
</tr>
<tr>
<td>- встречного автомобиля</td>
<td>250</td>
</tr>
<tr>
<td>Радиусы кривизны, м (не менее):</td>
<td></td>
</tr>
<tr>
<td>- для кривых в плане</td>
<td>200</td>
</tr>
<tr>
<td>для кривых в продольном профиле:</td>
<td></td>
</tr>
<tr>
<td>- выпуклых</td>
<td>4000</td>
</tr>
<tr>
<td>- вогнутых</td>
<td>1500</td>
</tr>
</tbody>
</table>

Примечания
1. Для участков автомобильных дорог, находящихся в особо неблагоприятных условиях величина продольного уклона должна быть снижена на 20 %.
2. При движении автопоездов в составе грузового автотранспорта в количестве 25 % и более величину продольного уклона необходимо снизить на 15 %.
3. В особо трудных условиях при соответствующем обосновании в районах с отсутствием гололеда наибольшие продольные уклоны, указанные в таблице 4, могут быть увеличены, но не более чем на 10 %.
4. При назначении предельных продольных уклонов необходимо выполнять проверку величины осевой нагрузки и сохранности груза.
5. В горных районах при высотах над уровнем моря, превышающих 1000 м при назначении максимальных продольных уклонов необходимо принимать во внимание снижение мощности двигателя.

5.2.3 На однополосных дорогах необходимо устраивать заездные остановочные площадки, частота расположения которых определяется погодными условиями в данной местности и типом транспортных средств. Размеры площадки определяются расчетом с учетом интенсивности и состава движения. Ориентировочно ширина площадки принимается 3,0 м, отгоны – по
10 м и длина основной части площадки для одиночного автомобиля принимается – 15 м. Для автопоездов длина отгонов принимается в размере 15 м, а длина площадки – 25 м.

5.2.4 Ширина земляного полотна на однополосных дорогах в случае необходимости (реконструкция отдельных участков и т. п.) может быть увеличена до ширины земляного полотна двухполосных дорог. Переход осуществляется на участке с величиной отгона не менее 1:10.

5.2.5 При радиусах горизонтальных кривых 300 м и менее следует устраивать переходные кривые, длину которых следует принимать по таблице 5. Для стесненных условий проектирования при невозможности устройства переходных кривых необходимо вводить ограничение скоростного режима для обеспечения безопасности дорожного движения.

Таблица 5 – Длина переходной кривой

<table>
<thead>
<tr>
<th>Расчетная скорость движения, км/ч</th>
<th>Диаметр переходной кривой при радиусе круговой кривой в плане, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>–</td>
</tr>
<tr>
<td>30</td>
<td>–</td>
</tr>
<tr>
<td>35</td>
<td>–</td>
</tr>
<tr>
<td>40</td>
<td>–</td>
</tr>
<tr>
<td>50</td>
<td>–</td>
</tr>
<tr>
<td>60</td>
<td>–</td>
</tr>
</tbody>
</table>

При мечание
В стесненных условиях допускается не устраивать переходные кривые.

5.2.6 Предельную длину участка с затяжным уклоном в горных условиях определяют в зависимости от величины уклона, но она не должна превышать значений, приведенных в таблице 6.
Таблица 6 — Предельная длина участка дороги с затяжным продольным уклоном [СП 34.13330].

<table>
<thead>
<tr>
<th>Продольный уклон, %</th>
<th>Длина участка, м над уровнем моря, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>60</td>
<td>2500</td>
</tr>
<tr>
<td>70</td>
<td>2200</td>
</tr>
<tr>
<td>80</td>
<td>2000</td>
</tr>
</tbody>
</table>

Примечание
В случае движения автопоездов на затяжных продольных уклонах необходимо предусматривать площадки для остановки 2–3 машин, частота расположения которых определяется погодными условиями в данной местности.

Размеры площадки определяются расчетом с учетом интенсивности и состава движения. Ориентировочно ширина площадки принимается 3,0 м, отгонь – по 15 м и длина основной части площадки принимается – 25 м.

5.2.7 Для разворота автомобилей в конце тупиковых дорог и для маневрирования в пунктах разгрузки и погрузки следует предусматривать петлевые объезды или площадки, размеры которых определяют расчетом в зависимости от габаритов транспортных средств и перевозимых грузов, но во всех случаях принимают:

- для одиночных автотранспортных средств общего назначения – не менее 12–12 м прямоугольного очертания или радиусом не менее 15 м для петлевых объездов;

- для тягача с полуприцепом диаметр разворотных площадок должен быть не менее 2,5;

- для автопоезда с одним прицепом диаметр разворотных площадок должен быть не менее 3,5;

- для автопоезда с двумя прицепами диаметр разворотных площадок должен быть не менее 4,0 конструктивных радиусов разворота по переднему наружному колесу.

5.2.8 Независимо от наличия площадок на затяжных спусках с уклонами более 50 % необходимо предусматривать противоаварийные съезды, которые
устраивают перед кривыми малых радиусов, расположенными в конце спуска, а также на прямых участках спуска через каждые 0,5–0,7 км с устройством в конце улавливающих тупиков, имеющих обратный уклон в пределах 150–200 °/о.

5.2.9 Необходимость устройства серпантин определяется условиями, приведенными в таблице 7.

Таблица 7 – Параметры серпантин

<table>
<thead>
<tr>
<th>Параметры элементов серпантин</th>
<th>Параметры элементов серпантин при расчетной скорости км/час</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Наименьший радиус кривых в плане, м</td>
<td>30</td>
</tr>
<tr>
<td>Поперечный уклон проезжей части на вираже, %</td>
<td>60</td>
</tr>
<tr>
<td>Длина переходной кривой в м</td>
<td>30</td>
</tr>
<tr>
<td>Уширение проезжей части, м</td>
<td>2.2</td>
</tr>
<tr>
<td>Наибольший продольный уклон в пределах серпантин, %</td>
<td>30</td>
</tr>
</tbody>
</table>

Примечание
Серпантинны радиусом менее 30 м допускаются только на дорогах категорий IIIл и IVл при запрещении движения автотранспортных средств длиной более 11 м.

5.2.10 Расстояние между концом сопрягаемой кривой одного серпантинна и началом сопрягающей кривой другого должно быть не менее 200 м для дорог категории I₃ и II₃ и не менее 100 м для дорог категории III₃ и IV₃.

5.2.11 Проезжую часть на серпантине допускается уширять на 0,5 м за счет внешней обочины, а остальную часть уширения предусматривают за счет внутренней обочины и дополнительного уширения земляного полотна.

5.3 Поперечный профиль

5.3.1 Основные параметры поперечного профиля проезжей части и земляного полотна автомобильных дорог принимают по таблице 8.
<table>
<thead>
<tr>
<th>Категория дороги</th>
<th>Число полос</th>
<th>Ширина полосы проезжей части, м</th>
<th>Ширина краевой полосы, м</th>
<th>Ширина обочины, м</th>
<th>Ширина земполотна, м (без ограждения)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Укрепленная часть</td>
<td>Ширина обочины без ограждения</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iа</td>
<td>2</td>
<td>3,75</td>
<td>0,5</td>
<td>0,75</td>
<td>1,5</td>
</tr>
<tr>
<td>IIа</td>
<td>2</td>
<td>3,50</td>
<td>0,5</td>
<td>0,5</td>
<td>1,5</td>
</tr>
<tr>
<td>IIIа</td>
<td>1</td>
<td>4,5</td>
<td>–</td>
<td>0,5</td>
<td>1,0</td>
</tr>
<tr>
<td>IVа</td>
<td>1</td>
<td>4,5</td>
<td>–</td>
<td>0,5</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Примечания

1. В случае движения нестандартных автотранспортных средств ширина проезжей части принимается равной трем габаритам автомобиля. При низкой интенсивности нестандартных транспортных средств необходимо рассмотреть целесообразность устройства разъездных площадок с установкой соответствующих дорожных знаков.

2. В случае экономической нецелесообразности устройства проезжей части шириной 4,5 м на лесохозяйственных дорогах категории IVа (низкая интенсивность, малогабаритные автомобили и т.п. самоходные средства), а также для временных дорог (летнего или зимнего использования) допускается снижение ширины проезжей части до 3,5 м с обочинами по 1 м. Безопасность движения выполнить в соответствии с ГОСТ Р 52289.

3. При установке транспортных ограждений ширина обочины должна быть увеличена в соответствии с ГОСТ Р 52289.

4. В случае экономической нецелесообразности устройства проезжей части шириной 4,5 м на дорогах категории IVа (низкая интенсивность, малогабаритные автомобили и т.п. самоходные средства) допускается снижение ширины проезжей части до 3,5 м с обочинами по 1 м. Безопасность движения выполнить в соответствии с ГОСТ Р 52289.

5. При установке транспортных ограждений ширина обочины должна быть увеличена в соответствии с ГОСТ Р 52289.

5.3.2 Поперечные уклоны на виражах необходимо принимать по таблице 9.
Таблица 9 – Поперечные уклоны на виражах

<table>
<thead>
<tr>
<th>Расчетная скорость движения, км/ч</th>
<th>Поперечный уклон, %, при радиусе горизонтальной кривой, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

5.3.3 Если расстояние между двумя смежными закруглениями, обращенными радиусами в одну сторону, меньше суммы длин отгонов виражей для этих закруглений, то между ними предусматривают также непрерывно односкатный профиль с уклоном этих виражей. Если уклоны этих смежных виражей неодинаковы, то предусматривают плавный отгон их разницы. При реконструкции, в целях уменьшения объемов работ по переустройству покрытия, на таких участках трассы допускается принимать переменные значения поперечных уклонов, соответствующие неполным отгонам этих смежных виражей.

5.3.4 Переход от двускатного профиля дороги к односкатному следует осуществлять на предшествующих виражу прямолинейном и криволинейном участках трассы.

Длину участка отгона виража определяют из условия обеспечения минимального и максимального дополнительного уклона наружной кромки проезжей части, по отношению к проектному продольному уклону.

На вираже поперечный уклон обочин и уклон проезжей части дороги принимают один и тот же. Переход от нормального уклона обочин при двускатном профиле к уклону проезжей части рекомендуется производить на протяжении 10 м до начала отгона виража.
5.3.5 При радиусах кривых в плане 1000 м и менее предусматривают уширение проезжей части с внутренней стороны за счет обочин, с тем чтобы ширина обочин была не менее 1,5 м для дорог категорий Iₜ и IIₜ и не менее 1 м – для дорог остальных категорий. Величины полного уширения двухполосной проезжей части дорог на криволинейных участках плана переменной кривизны должны быть пропорциональны кривизне трассы в каждой ее точке в соответствии с таблицей 10.

Таблица 10 – Уширение автомобильных дорог на горизонтальных кривых

<table>
<thead>
<tr>
<th>Радиус кривой в плане, м</th>
<th>Уширение для одиночного автомобиля и автопоезда, м, при расстоянии от переднего бампера до задней оси автомобиля или автопоезда, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>До 7 м для одиночного автомобиля и до 11 м для автопоезда</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>30</td>
<td>2,2</td>
</tr>
<tr>
<td>40</td>
<td>1,8</td>
</tr>
<tr>
<td>50</td>
<td>1,5</td>
</tr>
<tr>
<td>60</td>
<td>1,4</td>
</tr>
<tr>
<td>70</td>
<td>1,3</td>
</tr>
<tr>
<td>80</td>
<td>1,2</td>
</tr>
<tr>
<td>90–100</td>
<td>1,1</td>
</tr>
<tr>
<td>125–150</td>
<td>0,9</td>
</tr>
<tr>
<td>200–250</td>
<td>0,8</td>
</tr>
<tr>
<td>300–350</td>
<td>0,6</td>
</tr>
<tr>
<td>400–450</td>
<td>0,5</td>
</tr>
<tr>
<td>550–600</td>
<td>0,5</td>
</tr>
<tr>
<td>600–700</td>
<td>0,4</td>
</tr>
<tr>
<td>800–900</td>
<td>–</td>
</tr>
<tr>
<td>1000</td>
<td>–</td>
</tr>
</tbody>
</table>

5.3.6 В случае перевозки длинномерных грузов на участках дорог с горизонтальными кривыми, с внешней стороны которых расположены здания, сооружения и зеленые насаждения, значения расстояний до кромки проезжей части, предусмотренные СП 18.13330, следует увеличивать на величину, приведенную в таблице 11, но не менее расстояний, приведенных в ГОСТ Р 52748.

32
Таблица 11 – Увеличение расстояния на кривых до зданий и сооружений

<table>
<thead>
<tr>
<th>Радиус кривой в плане, м</th>
<th>Увеличение расстояний, м, при длине хлыста дерева или других длинномерных грузов, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>До 20</td>
</tr>
<tr>
<td>30</td>
<td>3,2</td>
</tr>
<tr>
<td>40</td>
<td>2,5</td>
</tr>
<tr>
<td>60</td>
<td>1,8</td>
</tr>
<tr>
<td>80</td>
<td>1,4</td>
</tr>
<tr>
<td>100</td>
<td>1,1</td>
</tr>
<tr>
<td>150</td>
<td>0,8</td>
</tr>
<tr>
<td>200</td>
<td>0,6</td>
</tr>
<tr>
<td>300</td>
<td>0,4</td>
</tr>
<tr>
<td>400</td>
<td>0,3</td>
</tr>
<tr>
<td>600</td>
<td>–</td>
</tr>
<tr>
<td>800</td>
<td>–</td>
</tr>
</tbody>
</table>

Примечание
При применении автомобилей, оборудованных уширенными (свыше 2,75 м) кониками, к указанным в таблице значениям увеличения расстояний следует добавлять 0,3 м (при габарите коника до 3,3 м) и 0,5 м (при габарите коника свыше 3,3 м).

5.3.7 Поперечные уклоны проезжей части (кроме участков кривых в плане, на которых предусматривается устройство виражей) принимают для:
- покрытий капитального типа в размере – 15–20 %;
- покрытий переходного типа в размере – 25–35 %;
- покрытий низшего типа в размере – 40–50 %.

5.3.8 Поперечные уклоны обочин при двускатном поперечном профиле следует принимать на 10–30 % больше поперечных уклонов проезжей части. В зависимости от климатических условий и типа укрепления обочин допускаются следующие величины поперечных уклонов: – 30–40 % – при укреплении с применением вяжущих; – 40–60 % – при укреплении гравием, щебнем, шлаком или замощении каменными материалами; – 50–60 % – при укреплении
дернованием или засевом трав. Для районов с небольшой продолжительностью снегоового покрова и отсутствием гололеда для обочин, укрепленных дернованием, может быть допущен поперечный уклон 50–80 %.

5.4 Пересечения и примыкания

5.4.1 Пересечения и примыкания автомобильных дорог проектируют, исходя из категорий пересекаемых дорог с учетом перспективной интенсивности и состава движения по отдельным направлениям в соответствии с СП 34.13330 и настоящих рекомендаций.

5.4.2 Пересечения и примыкания дорог в одном уровне независимо от схемы пересечений рекомендуется выполнять под прямым или близким к нему углом. В случаях, когда транспортные потоки не пересекаются, а разветвляются или сливаются, допускается устраивать пересечения дорог под любым углом с учетом обеспечения видимости.

5.4.3 Наименьший радиус кривых при сопряжениях дорог в местах пересечений или примыканий в одном уровне принимают в зависимости от категории дороги, с которой происходит съезд, независимо от угла пересечения и примыкания при съездах с дорог: категорий I₃, II₃ – не менее 30 м; категории III₃ – 20 м; категорий IV₃ – 15 м. Сопряжение дорог в одном уровне выполняют с применением переходных кривых.

5.4.4 Сопряжение дорог в одном уровне следует выполнять с применением переходных кривых, наименьшая длина которых приведена в таблице 12.

Таблица 12 – Наименьшая длина переходной кривой

<table>
<thead>
<tr>
<th>Радиус круговой кривой</th>
<th>Наименьшая длина переходной кривой, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Входной</td>
</tr>
<tr>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>

34
5.4.5 На пересечениях и примыканиях автомобильных дорог в одном уровне должна быть обеспечена видимость пересекающего или примыкающего направления в соответствии с таблицей 4. Расположение примыканий на участках выпуклых кривых в продольном профиле и с внутренней стороны закруглений в плане допускается только при техническом обосновании.

5.4.6 В зоне пересечения или примыкания необходимо обеспечить видимость водителям, подъезжающим по главной и второстепенной дорогам, из условия остановки автомобилей до пересекаемых полос движения (рисунок 1).

Рисунок 1 – Схемы обеспечения видимости:

\(a\) – на пересечениях автомобильных дорог в одном уровне; \(b\) – на примыканиях автомобильных дорог в одном уровне; \(L_a\) и \(L_o\) – расстояние видимости поверхности дороги; \(L_b\) – расстояние боковой видимости; граница зоны видимости показана пунктиром.
5.4.7 Расстояния видимости поверхности дороги должны соответствовать расчетным скоростям движения на пересекаемых дорогах и продольным уклонам на подходах в соответствии с СП 34.13330 (таблица 13).

Таблица 13 – Минимальные расстояния видимости на пересечениях дорог

<table>
<thead>
<tr>
<th>Продольный уклон, %</th>
<th>Расчетная скорость движения км/час</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Подъем 40</td>
<td>65</td>
</tr>
<tr>
<td>Подъем 20</td>
<td>70</td>
</tr>
<tr>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>Спуск 20</td>
<td>80</td>
</tr>
<tr>
<td>Спуск 40</td>
<td>85</td>
</tr>
</tbody>
</table>

5.4.8 При этом расположение глаз водителя принимают на расстоянии 1,75 м от кромки проезжей части и на высоте 1,20 м над проезжей частью. Автомобиль, подъезжающий по второстепенной дороге, должен останавливаться в 10 м от кромки проезжей части главной дороги.

5.4.9 Расстояние обзорности ($L_{обз}$) принимается в соответствии с рисунком 2 в размере:
- 300 м – при скорости движения по главной дороге 70 км/ч;
- 200 м – при скорости движения по главной дороге 60 км/ч;
- 100 м – при скорости движения по главной дороге 40 км/ч.

Указанные расстояния обеспечивают обзорность водителям в зоне пересечения при условии остановки автомобиля на второстепенной дороге на расстоянии 10 м от кромки проезжей части главной дороги.

Боковое расстояние видимости на съездах следует принимать не менее 15 м при расчетных скоростях до 60 км/ч и не менее 20 м – более 60 км/ч.
5.4.10 Пересечения и примыкания дорог в плане располагают на прямых участках или на кривых радиусами не менее 800 м – на дорогах категорий I_л и II_л и 600 м на дорогах III_л и IV_л. Продольные уклоны дорог на подходах к пересечениям и примыканиям в одном уровне на протяжении расстояний видимости для остановки автомобиля не должны превышать 40%.

5.4.11 Все съезды и въезды на подходах к дорогам категорий I_л и II_л должны иметь покрытия: при песчаных, супесчаных и легких суглинистых грунтах – на протяжении 30 м; при черноземах, глинистых, тяжелых и пылеватых суглинистых грунтах – 50 м. Протяженность покрытий въездов на дороги категории III_л предусматривают в два раза меньше, чем покрытий въездов на дороги категорий I_л и II_л. Обочины на съездах и въездах по всей длине следует укреплять на ширину не менее 0,5–0,75 м.

5.4.12 Для безопасного пересечения автомобильных дорог категорий I_л и II_л дикими животными и домашним скотом необходимо использовать ближайшие искусственные сооружения. В случае отсутствия искусственных сооружений в пределах 1–2 км, необходимо устраивать специальные проходы для пропуска животных. Размеры, местоположение и конструкции проходов принимаются с учетом вида, состава и количества животных [21].

На дорогах других категорий организованный пропуск животных и зверей осуществляется установкой соответствующих дорожных знаков и оградительной сеткой высотой 2,0 м и протяженностью 300–500 м с каждой стороны от прохода.
5.4.13 Пересечения лесных дорог всех категорий с железными дорогами осуществляется в одном уровне под углом не менее 60°.

5.4.14 Ширину проезжей части автомобильных дорог на пересечении с железной дорогой в одном уровне следует принимать в зависимости от ширины транспортных средств, но не менее 6 м на расстоянии 200 м в обе стороны от пересезда.

5.4.15 На нерегулируемых железнодорожных переездах водителям транспортных средств, находящихся на удалении не более 50 м от ближнего рельса, должна быть обеспечена видимость приближающегося с любой стороны поезда в соответствии с нормами, приведенными в таблице 14 [9].

Таблица 14 – Нормы обеспечения видимости поезда, приближающегося к железнодорожному переезду

<table>
<thead>
<tr>
<th>Скорость движения поезда, км/ч</th>
<th>141–200</th>
<th>121–140</th>
<th>81–120</th>
<th>41–80</th>
<th>26–40</th>
<th>25 и менее</th>
</tr>
</thead>
<tbody>
<tr>
<td>Расстояние видимости, м, не менее</td>
<td>600</td>
<td>500</td>
<td>400</td>
<td>250</td>
<td>150</td>
<td>100</td>
</tr>
</tbody>
</table>

5.4.16 На железнодорожных переездах на протяжении не менее 10 м от крайнего рельса автомобильная дорога в продольном профиле должна иметь горизонтальную площадку или вертикальную кривую большого радиуса или уклон, обусловленный превышением одного рельса над другим, когда пересечение находится в кривом участке железнодорожного пути.

5.4.17 Продольный уклон подходов автомобильной дороги к железнодорожному переезду на протяжении не менее 20 м перед площадкой составляет не более 50 %.

5.4.18 Подходы автомобильной дороги к железнодорожному переезду на протяжении не менее 50 м следует проектировать с продольным уклоном не более 30 %.
5.4.19 При подходах к железнодорожному переезду автомобильных грунтовых дорог на расстоянии не менее 10 м от ближайшего рельса должно быть устроено твердое покрытие.

5.4.20 Перед нерегулируемыми железнодорожными переездами, если водителям транспортных средств, находящимся на удалении не более 50 м от ближнего рельса, не обеспечена видимость поезда на расстоянии, равном расчетному расстоянию видимости дороги (таблица 12), на расстоянии 10 м до ближайшего рельса должен быть установлен дорожный знак приоритета 2.5 «Движение без остановки запрещено».

5.4.21 На электрифицированных железнодорожных линиях с обеих сторон железнодорожного переезда устанавливаются дорожные запрещающие знаки 3.13 «Ограничение высоты» с цифрой на знаке «4,5 м» на расстоянии не менее 5 м от шлагбаума, а при их отсутствии — не менее 14 м от крайнего рельса.

5.4.22 Электрическое освещение должны иметь все железнодорожные переезды I, II и III категорий, а также IV категории при наличии продольных линий электроснабжения или других постоянных источников электроснабжения.

Освещенность в пределах железнодорожных переездов, находящихся в эксплуатации до их реконструкции, должна быть не менее:
- для железнодорожных переездов I категории – 5 лк;
- для железнодорожных переездов II категории – 3 лк;
- для железнодорожных переездов III категории – 2 лк;
- для железнодорожных переездов IV категории – 1 лк.

5.4.23 Угол пересечения воздушных линий электропередачи с автомобильными дорогами не нормируется.

5.4.24 Наименьшее расстояние при пересечении и сближении ВЛ (воздушных линий) с автомобильными дорогами принимается по таблице 15 [10].
Таблица 15 – Параметры пересечения воздушных линий электропередач с автомобильными дорогами.

<table>
<thead>
<tr>
<th>Пересечение или сближение</th>
<th>Наименьшее расстояние, м, при напряжении ВЛ, кВ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>до 20</td>
</tr>
<tr>
<td>Расстояние по вертикали:</td>
<td></td>
</tr>
<tr>
<td>а) от провода до полотна дороги:</td>
<td></td>
</tr>
<tr>
<td>в нормальном режиме ВЛ</td>
<td>7</td>
</tr>
<tr>
<td>при обрыве провода в соседнем пролете</td>
<td>5</td>
</tr>
<tr>
<td>б) от провода до транспортных средств в нормальном режиме ВЛ</td>
<td>2,5</td>
</tr>
<tr>
<td>Расстояния по горизонтали:</td>
<td></td>
</tr>
<tr>
<td>а) от основания опоры до бровки земляного полотна дороги при пересечении</td>
<td>Высота опоры</td>
</tr>
<tr>
<td>б) то же, но при параллельном следовании</td>
<td>Высота опоры плюс 5 м</td>
</tr>
<tr>
<td>в) то же, но на участках в стесненных условиях от любой части опоры до подошвы насыпи дороги или до наружной бровки кювета:</td>
<td></td>
</tr>
<tr>
<td>при пересечении лесных дорог всех категорий</td>
<td>1,5</td>
</tr>
<tr>
<td>г) при параллельном следовании от крайнего провода при не отклоненном положении до бровки земляного полотна дороги</td>
<td>2</td>
</tr>
</tbody>
</table>

При сооружении новых автомобильных дорог и прохождении их под действующими ВЛ 400 и 500 кВ переустройство ВЛ не требуется, если расстояние от нижнего провода ВЛ до полотна дороги составляет не менее 9 м и от фундамента опоры до бровки полотна дороги – не менее 25 м.
5.4.25 Во всех случаях сближения ВЛ с криволинейными участками автомобильных дорог, проходящих в насыпи, минимальные расстояния от проводов ВЛ до бровки дороги должны быть не менее указанных в таблице 13 расстояний по вертикали.

5.4.26 Расстояния по вертикали в нормальном режиме проверяются при наибольшей стреле провеса без учета нагрева проводов электрическим током.

В аварийном режиме расстояния проверяются для ВЛ с проводами сечением менее 185 мм² при среднегодовой температуре, без гололеда и ветра. Для ВЛ с проводами сечением 185 мм² и более проверка по аварийному режиму не требуется.

5.4.27 В местах пересечения ВЛ с автомобильными дорогами, по которым предусматривается передвижение автомобилей и других транспортных средств высотой более 3,8 м, с обеих сторон ВЛ на дорогах должны устанавливаться дорожные знаки, указывающие допустимую высоту движущегося транспорта с грузом.

5.4.28 При расстояниях по вертикали от провода ВЛ до полотна автомобильной дороги, превышающих указанные в таблице 13 более чем на 2 м, дорожные знаки, ограничивающие допустимую высоту движущегося транспорта допускается не устанавливать.

Установка дорожных знаков в местах пересечения ВЛ с дорогами в пределах охранных зон не допускается.

5.4.29 Прокладка кабеля технологической связи трубопровода на переходах через автомобильные дороги допускается в одном футляре с трубопроводом [11].

5.4.30 Кабель технологической связи трубопровода при автономном пересечении с автомобильными дорогами следует прокладывать на глубине не менее 0,8 м ниже дна кювета. В случае дополнительной защиты кабеля от механических повреждений в кювете это расстояние допускается уменьшать до от 0,5 до 0,4 м.
5.4.31 Кабель связи при пересечении с инженерными коммуникациями следует прокладывать в асбестоцементных трубах на расстоянии между ними по вертикали в свету не менее:
- 0,15 м – с газопроводами, нефтепроводами и нефтепродуктопроводами;
- 0,15 м – выше водопроводных и канализационных труб;
- 0,15 м – ниже теплопроводных сетей;
- 0,15 м – силовыми кабелями;
- 0,1 м – с другими кабелями связи.

5.4.32 Пересечение автомобильных дорог газопроводов, как правило, осуществляется подземным способом [12].
Как исключение, допускается прокладка газопроводов надземным способом в горных условиях, болотистой местности, в районах ММГ и оползней.

5.4.33 Угол пересечения подземных газопроводов должен быть не менее 60°.

5.4.34 При пересечении подземными газопроводами автомобильных дорог расстояние по горизонтали до автодорожных мостов на автомобильных дорогах I класса категорий, а также до пешеходных мостов должно быть не менее 30 м, а дорогах остальных категорий – 15 м.

5.4.35 Подземные газопроводы, независимо от внутреннего давления, при пересечении с автомобильными дорогами должны быть защищены футляром.

5.4.36 Концы футляров должны располагаться на расстоянии не менее 3 м от края водоотводного сооружения дорог (кувета, канавы, резерва), но не менее 2 м от подошвы насыпи.

5.4.37 Глубина укладки газопровода от верха покрытия дороги (или от подошвы насыпи) до верха футляра должна быть не менее:
- 1,0 м – при производстве работ открытым способом;
- 1,5 м – при производстве работ методом продавливания, горизонтального бурения или щитовой проходки;
- 2,5 м – при производстве работ методом прокола.
5.4.38 Угол пересечения нефтепроводов с автомобильными дорогами должен быть не менее 60°.

5.4.39 Участки трубопроводов, прокладываемых на переходах через автомобильные дороги всех категорий с усовершенствованным покрытием капитального и облегченного типов, должны предусматриваться в защитном футляре (кожухе) из стальных труб, диаметр которых определяется условием производства работ и конструкцией переходов. При этом наружный диаметр защитного футляра (кожуха) из стальных труб должен быть больше наружного диаметра нефтепровода не менее чем на 200 мм.

5.4.40 Концы футляра должны выводиться на расстояние от бровки земляного полотна — 25 м, но не менее 2 м от подошвы насыпи. Концы футляров, устанавливаемых на участках переходов нефтепроводов и нефтепродуктопроводов через автомобильные дороги всех категорий, должны выводиться на 5 м от бровки земляного полотна.

5.4.41 Пересечение лесных дорог I категории с водопроводами, защищенными футляром, необходимо осуществлять закрытым способом [13].

Под автодорогами остальных категорий допускается устройство переходов водопроводов без футляров, при этом, как правило, должны применяться стальные трубы и открытый способ производства работ.

5.4.42 Минимальное заглубление водопровода в месте его пересечения с автомобильными дорогами должно превышать глубину промерзания грунта для данной местности не менее чем на 0,5 м.

Уменьшение глубины заложения водопровода возможно при использовании теплоизолирующих материалов, параметры которых определяются теплотехническим расчетом. Кроме того, необходимо выполнить расчет на прочность.

5.4.43 Расстояние в плане от обреза футляра, а в случае устройства в конце футляра колодца — от наружной стенки колодца, должно приниматься не менее 3м от бровки земляного полотна или подошвы насыпи, бровки выемки, наружной бровки нагорной канавы или другого водоотводного сооружения;
5.4.44 Расстояние в плане от наружной поверхности футляра следует принимать не менее 30 м до мостов, водопропускных труб и других искусственных сооружений.

5.4.45 Внутренний диаметр футляра надлежит принимать при производстве работ:
- открытым способом – на 200 мм больше наружного диаметра трубопровода;
- закрытым способом – в зависимости от длины перехода и диаметра водопровода.

5.4.46 Пересечение автомобильных дорог тепловыми сетями осуществляется под углом не менее 450.

5.4.47 При подземном пересечении тепловыми сетями автомобильных дорог расстояние по горизонтали до мостов и других искусственных сооружений необходимо принимать не менее 30 м.

5.4.48 Прокладку тепловых сетей при подземном пересечении следует предусматривать:
- в каналах – при возможности производства работ открытым способом;
- в футлярах – при длине перехода 40 м и более и невозможности производства работ открытым способом [14].

5.4.49 Длину каналов или футляров в местах пересечений необходимо принимать в каждую сторону не менее чем на 3 м больше размеров пересекаемых сооружений.

5.5 Земляное полотно

5.5.1 Проектирование земляного полотна осуществляется в соответствии с СП 34.13330 [6,14] и настоящими рекомендациями.

5.5.2 Возведению земляного полотна предшествуют подготовительные работы по расчистке трассы дороги от лесных насаждений.

При расчистке допускается оставлять пни высотой не более 10 см в основании насыпи высотой не менее 1,5 м при устройстве всех типов дорожных одежд, кроме капитального.
Корчевку пней производят при устройстве насыпи высотой до 0,5 м, а также в местах придорожных резервов или карьеров. Одновременно производится снятие почвенно-растительного слоя.

На участках переувлажненных грунтов необходимо осуществить предварительное осушение. Осушение производится с учетом рельефа местности, типа грунта, степени переувлажненности и т.п.

5.5.3 Скальные слабовыветривающиеся и выветривающиеся, неразмягчаемые при увлажнении, крупнообломочные и крупнообломочные с песчаным заполнителем, пески дренирующие, металлургические шлаки могут быть использованы для устройства насыпи без ограничений.

5.5.4 Мелкие недренирующие и пылеватые пески, супеси легкие могут быть использованы для устройства насыпи при условии соблюдения минимального возвышения бровки насыпей на сырых и мокрых основаниях.

5.5.5 Глинистые грунты, крупнообломочные грунты с глинистым заполнителем, легковыветривающиеся размягчаемые скальные грунты (за исключением перечисленных ниже) могут быть использованы при возведении насыпи во всех случаях при влажности, не превышающей установленные нормы; на сухом основании – без ограничения высоты насыпей.

5.5.6 Глинистые грунты с влажностью более 0,4 от границы текучести, выветрелые слюдяные и слюдистые сланцы, размокаемые и выветрелые тальковые, хлоритовые и глинистые сланцы, техногенные грунты могут быть использованы при для отсыпки ядра насыпи на сухом основании. Необходимо индивидуальное проектирование. Не допускаются для отсыпки на сырые и мокрые основания.

5.5.7 При применении техногенных грунтов в проектах должны предусматриваться мероприятия по обеспечению стабильности и по защите откосов от ветровой и водной эрозии.

5.5.8 Разрешается использовать в исключительных случаях для дорог IIIₘ–IVₜ категорий при соответствующем технико-экономическом обосновании и
при обязательном осуществлении мер, обеспечивающих требуемую устойчивость земляного полотна следующие грунты:

- глинистые с влажностью, превышающей допустимую;
- глинистые избыточно засоленные и сильно набухающие, жирные глины (приложение Б);
- торф, ил, мел, заторфованные грунты, содержащие более 15 % органических веществ;
- грунты заторфованные (содержащие органические вещества в количестве 10–15 %) – для верхнего трехметрового слоя насыпей;
- грунты с примесью органических веществ (в количестве 3–10 %) – для верхнего метрового слоя насыпи (под основной площадкой);
- грунты, содержащие гипс в количестве, превышающем 30 % – для насыпей на сухом основании, 20 % – для насыпей на мокром основании, 5 % – для подтопляемых насыпей.

5.5.9 Для нижней части постоянно подтопленных насыпей, при сооружении которых требуется отсыпка грунта в воду, рекомендуется применять скальные (слабовыветривающиеся выветривающиеся неразмягчаемые), крупнообломочные грунты (в том числе с песчаным заполнителем), пески гравелистые, крупные, средней крупности. Допускаются также мелкие и пылеватые пески и супеси легкие при условии ограничений по крутизне откосов и технологии производства работ. При этом отметка верха отсыпки указанных грунтов назначается с учетом высоты капиллярного поднятия. Для периодически подтопляемых насыпей, при отсыпке их на незатопленное основание, нижнюю подтопляемую часть насыпи следует отсыпать из дренирующих грунтов или песчанистых супесей.

5.5.10 Для предварительной оценки пригодности использования имеющихся грунтов для устройства земляного полотна можно принять во внимание, что:
- суглинистые грунты являются достаточно хорошим материалом для земляного полотна, не размываются при надлежащем уплотнении и устойчивы в откосных частях насыпи;

- глинистые грунты можно использовать для устройства насыпей в сухих местах и в местах с краткосрочным увлажнением;

- пылеватые грунты и суглинки имеют склонность зимой накапливать влагу и пучинить. Они легко размываются в откосных частях насыпи земляного полотна. При необходимости их использования верхнюю часть насыпи следует на 0,4–0,8 м отсыпать из песчаных или супесчаных грунтов;

- супесчаные грунты в сухом состоянии имеют хорошую связность и достаточно устойчивы во влажном состоянии. Поэтому насыпи из них можно устраивать в сухих и переувлажненных местах. Однако мелкозернистые супесчаные грунты менее устойчивы в переувлажненном состоянии, а при промерзании склонны к накоплению влаги и пучению;

- песчаные и гравийные грунты устойчивы даже при насыщении водой, при промерзании не накапливают влагу. Это лучший материал для насыпей на заболоченных участках и в поймах рек. После спада высоких вод они быстро просыхают. Такими же устойчивыми являются каменистые и щебеночные грунты, т. е. обломки скальных горных пород;

- илистые и торфяные грунты являются малопригодными. Илистые при увлажнении теряют связанность и прочность, а торфяные сильно сжимаются. Последние можно использовать в нижней части высоких насыпей при условии устройства сверху слоя из песчаных или супесчаных грунтов толщиной не менее 1 м.

5.5.11 Для местности типа I (по условиям увлажнения) земляное полотно автомобильных дорог допускается отсыпать небольшой высоты таким образом, чтобы расстояние от низа дорожной одежды до поверхности земли, а также над расчетным уровнем воды в кюветах или от дна безрасчетных кюветов было не менее 0,2 м.
5.5.12 На участках местности с необеспеченым стоком и глубоким залеганием грунтовых вод, где поверхностные воды застаиваются только весной и осенью, а летом верхняя толща грунта с ненарушенной структурой просыхает до оптимальной влажности и ниже, высоту бровки земляного полотна насыпей и значения их прочностных характеристик принимают такими же, как для типа местности I, при условии, что расстояния от бровки земляного полотна до уреза воды будут больше значений, указанных в таблице 16.

Таблица 16 — Безопасное расстояние от бровки земляного полотна до уреза воды, м

<table>
<thead>
<tr>
<th>Грунты верхней толщи грунта с ненарушенной структурой</th>
<th>Число пластичности</th>
<th>Безопасное расстояние от бровки земляного полотна до уреза воды, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>Супесь</td>
<td>1</td>
<td>11,0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7,0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5,0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4,0</td>
</tr>
<tr>
<td>Легкий и легкий пылеватый суглинок</td>
<td>8</td>
<td>3,0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2,0</td>
</tr>
<tr>
<td>Тяжелый и тяжелый пылеватый суглинок</td>
<td>14</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>1,0</td>
</tr>
<tr>
<td>Глина</td>
<td>Более 17</td>
<td>Менее 1,0</td>
</tr>
</tbody>
</table>

Примечания
1. Признаком просыхания верхней толщи грунтов с ненарушенной структурой в летний период является отсутствие поверхностного заболачивания.
2. При наличии признаков поверхностного заболачивания участка необходимо установить влажность грунта.

5.5.13 Для обеспечения устойчивости и прочности рабочего слоя земляного полотна и дорожной одежды возвышение поверхности покрытия над расчетным уровнем грунтовых вод, верховодки или длительно (более 30 сут) стоящих поверхностных вод, а также над поверхностью земли на участках с необесепченным поверхностным стоком или над уровнем кратковременно (менее 30 сут) стоящих поверхностных вод должно соответствовать требованиям таблицы 17.

За расчетный уровень грунтовых вод надлежит принимать максимально возможный осенний (перед промерзанием) уровень за период между
восстановлениями капитальными ремонтами. В районах, где наблюдаются частые продолжительные оттепели, за расчетный принимают максимально возможный весенний уровень грунтовых вод. В районах с глубиной промерзания менее толщины дорожной одежды за расчетный уровень принимают максимальный возможный уровень грунтовых вод требуемой вероятности превышения в период его сезонного максимума. При отсутствии указанных данных, а также при наличии верховодки за расчетный допускается принимать уровень, определяемый по верхней линии оголения грунтов.

Возвышения поверхности покрытия дорожной одежды над уровнем подземных вод или в слабо- и среднезасоленных грунтах следует увеличивать на 20% (для суглинков и глин – 30%), а при сильнозасоленных грунтах – 40%–60%.

5.5.14 При невозможности или нецелесообразности обеспечения требуемого возвышения должны быть предусмотрены специальные меры по регулированию водно-теплового режима рабочего слоя:

- улучшение или укрепление грунта рабочего слоя земляного полотна, в том числе с использованием геосинтетических материалов;
- создание гидроизолирующих, капилляропрерывающих, теплоизолирующих, дренирующих слоёв (прослоек) для регулирования водно-теплового режима земляного полотна;
- применение армирующих слоёв (прослоек) для усиления отдельных элементов земляного полотна, в частности, прослоек из геотекстильных материалов, георешеток;
- применение дренажей для понижения уровня грунтовых вод;
- применение специальных поперечников земляного полотна (уполненные откосы, бермы) для снижения влияния поверхностных вод.
<table>
<thead>
<tr>
<th>Грунт рабочего слоя</th>
<th>Наименьшее возвышение поверхности покрытия, м, в пределах дорожно-климатических зон (ДКЗ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Песок мелкий, супесь легкая крупная, супесь легкая</td>
<td>1,1</td>
</tr>
<tr>
<td>Песок пылеватый, супесь пылеватая</td>
<td>Устанавливается на основе теплотехнических расчетов, но не менее чем для II ДКЗ</td>
</tr>
<tr>
<td>Суглинок легкий, суглинок тяжелый, глины</td>
<td>2,2</td>
</tr>
<tr>
<td>Супесь тяжелая пылеватая, суглинок легкий пылеватый, суглинок тяжелый пылеватый</td>
<td>2,4</td>
</tr>
</tbody>
</table>

Примечания
1. Возведение высоких насыпей из неблагоприятных грунтов, отмеченных в таблице знаком *, допускается в исключительных случаях при соответствующем технико-экономическом обосновании по сравнению с вариантами отсыпки насыпи из привозных дренирующих грунтов.
2. Для крупных песков (более 0,5 мм), не теряющих устойчивости во влажном состоянии, возвышение низа дорожной одежды над уровнем воды не нормируется.
3. За расчетный уровень грунтовых вод следует принимать расчетный осенний уровень, а при отсутствии необходимых данных – наивысший возможный уровень, определяемый по верхней линии оголения грунтов.
4. Возвышение низа дорожной одежды над уровнем грунтовых вод, пониженных посредством дренажа, следует принимать на 25 % меньше указанного в настоящей таблице.
5. Низ дорожной одежды принимают по границе последнего по глубине конструктивного слоя одежды, учитываемого при расчете на прочность.
6. Возвышение низа дорожной одежды в случаях устройства морозозащитных слоев допускается уменьшить по сравнению с нормами настоящей таблицы на основе расчета конструкций дорожных одежд.

5.5.15 При наличии в рабочем слое различных грунтов возвышение следует назначать по грунту, для которого требуемое возвышение имеет наибольшее значение.
5.5.16 При использовании в пределах 2/3 глубины промерзания грунтов групп III–V по пучинистости (таблицы Б.4 и Б.5 Приложения Б) при назначении конструкции дорожной одежды величину морозного пучения проверяют расчетом по результатам испытаний. Для дорог в II и III ДКЗ при глубине промерзания до 1,5 м допускается величину морозного пучения определять по таблице Б.4 Приложения Б.

В условиях IV дорожно-климатической зоны рабочий слой должен состоять из ненабухающих и непросадочных грунтов (таблицы Б.2 и Б.3 Приложения Б) на глубину 1 и 0,8 м от поверхности цементобетонного и асфальтобетонного покрытий соответственно.

5.5.17 Степень уплотнения грунта рабочего слоя, определяемая величиной коэффициента уплотнения, должна отвечать требованиям таблицы 18.

Таблица 18 – Коэффициент уплотнения грунта

<table>
<thead>
<tr>
<th>Элементы земляного полотна</th>
<th>Глубина расположения слоя от поверхности покрытия, м</th>
<th>Наименьший коэффициент уплотнения грунта при типе дорожных одежд</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>капиталном</td>
<td>облегченном и переходном</td>
</tr>
<tr>
<td></td>
<td></td>
<td>в дорожно-климатических зонах</td>
<td></td>
</tr>
<tr>
<td>Рабочий слой</td>
<td>До 1,5</td>
<td>0,96–0,98</td>
<td>0,98–1,0</td>
</tr>
<tr>
<td>Неподтопляемая часть насыпи</td>
<td>Свыше 1,5 до 6</td>
<td>0,93–0,95</td>
<td>0,95</td>
</tr>
<tr>
<td></td>
<td>Свыше 6</td>
<td>0,95</td>
<td>0,98</td>
</tr>
<tr>
<td>Подтопляемая часть насыпи</td>
<td>Свыше 1,5 до 6</td>
<td>0,95–0,96</td>
<td>0,95–0,98</td>
</tr>
<tr>
<td></td>
<td>Свыше 6</td>
<td>0,96</td>
<td>0,98</td>
</tr>
<tr>
<td>В рабочем слое в выемки ниже</td>
<td>До 1,2</td>
<td>–</td>
<td>0,95</td>
</tr>
</tbody>
</table>

51
| зоны сезонного промерзания | До 0,8 | – | 0,92–0,95 | – | – | – | 0,90 |

Примечание
Для капитальных дорожных одежд большие значения коэффициента уплотнения грунта следует принимать для жестких дорожных одежд, меньше—для нежестких дорожных одежд. Для облегченных дорожных одежд следует принимать большие значения коэффициента уплотнения грунта, для переходных—меньшие значения.

5.5.18 Требуемую степень уплотнения крупнообломочных природных и техногенных грунтов в рабочем слое устанавливают по результатам пробного уплотнения.

5.5.19 Не допускается использовать в пределах рабочего слоя грунты с влажностью больше значений, приведенных в таблицах Б.8, Б.9 Приложения Б без технико-экономического обоснования.

5.5.20 Для устройства насыпей ниже границы рабочего слоя разрешается без ограничений применять грунты и отходы промышленности, мало меняющие прочность и устойчивость под воздействием погодно-климатических факторов. Грунты, а также отходы промышленного производства, изменяющие прочность и устойчивость под воздействием этих факторов и нагрузок с течением времени, в том числе особые грунты, допускается применять с ограничениями, обосновывая их применение результатами испытаний и специальных расчетов. В необходимых случаях предусматривают специальные конструктивные меры по защите неустойчивых грунтов от воздействия погодно-климатических факторов.

При использовании крупнообломочных грунтов с обломками более 0,2 м предусматривают выравнивающий слой между насыпью и дорожной одеждой толщиной не менее 0,5 м из грунта размерами обломков не более 0,2 м.

5.5.21 На сопряжении с мостами насыпи на длине поверху не менее высоты насыпи плюс 2 м (считая от устоя) и понизу не менее 2 м необходимо возводить из непучинистых дренирующих грунтов.
5.5.22 Наибольшая крутизна откосов насыпей при высоте откоса насыпи до 2 м – не круче 1:3.

5.5.23 Крутизна откосов насыпей, приведенная в 5.5.22 предполагает их укрепление методом травосеяния или одерновки. При применении более капиталных методов укрепления, например с использованием геосинтетических материалов, крутизна может быть увеличена при соответствующем обосновании.

5.5.24 Для насыпей из грунтов, влажность которых превышает допустимую (таблица Б.9), предусматривают специальные мероприятия, обеспечивающие необходимую устойчивость земляного полотна. К числу таких мероприятий относят:

- осушение грунтов как естественным путем, так и за счет обработки их активными веществами типа негашенной извести, активных зол уноса и др.;
- ускорение консолидации грунтов повышенной влажности в нижней части насыпей (горизонтальные дренажи из зернистых или геосинтетических материалов – нетканых геотекстилей, дренажных матов, полимерных дренажных труб и др.) и предупреждение деформаций насыпей, связанных с их располагаем (уполнение откосов и защита их от размыва, устройство горизонтальных прослоек из зернистых или армирующих геосинтетических материалов и т.д.).

Устройство покрытий дорожных одежд капитального и облегченного типов на таких насыпях предусматривают после завершения консолидации грунта насыпи.

При влажности грунтов ниже 0,9 оптимальной предусматривают в проекте специальные меры по их уплотнению (доувлажнение, уплотнение более тонкими слоями и т.п.).

5.5.25 Для участков дорог I₀ и II₀ категорий с обеспеченным поверхностным стоком или пониженным уровнем грунтовых вод возвышение бровки насыпи над расчетным уровнем снежного покрова с учетом снегозадержания, следует принимать не менее 0,5 м, а выемки глубиной до 1 м.
5.5.26 Возвышение бровки насыпи над расчетным уровнем снегового покрова необходимо назначать, м, не менее:
- 0,5 – для дорог категории I и II;
- 0,4 – для дорог категории IV.

5.5.27 В районах, где расчетная высота снегового покрова превышает 1 м, необходимо проверять достаточность возвышения бровки насыпи над снеговым покровом по условию беспрепятственного размещения снега, сбрасываемого с дороги при снегоочистке, используя формулу

\[\Delta h_{sc} = 0,375h_sB/a, \]

где \(\Delta h_{sc} \) – возвышение бровки насыпи над расчетным уровнем снегового покрова по условиям снегоочистки, м;
\(B \) – ширина земляного полотна, м;
\(a \) – расстояние отбрасывания снега с дороги снегоочистителем, м; для дорог с регулярным режимом зимнего содержания допускается принимать, \(a = 8 \) м.
\(h_s \) – высота снегового покрова, м.

5.5.28 Насыпи на затопляемых пойменных участках, пересечении водоемов и подходах к мостовым сооружениям предусматривают с учетом волнового воздействия, а также гидростатического и эрозионного воздействия воды в период подтопления. Для обеспечения возможности ремонта и укрепления откосов в период эксплуатации на таких участках при технико-экономическом обосновании допускается предусматривать устройство берм шириной не менее 4 м.

5.5.29 Выемки глубиной до 1 м в целях предохранения от снежных заносов предусматривают раскрытыми с крутизной откосов от 1:5 до 1:10 или разделенными под насыпь. Выемки глубиной от 1 до 5 м на снегозаносимых участках предусматривают с крутыми откосами (1:1,5–1:2) и дополнительными полками или обочинами шириной не менее 4 м.

5.5.30 Выемки глубиной более 2 м в мелких и пылеватых песках, переувлажненных глинистых грунтах, легковыветривающихся или
трещиноватых скальных породах, в пылеватых лессовидных и лессовых породах предусматривают с закюветными полками. Ширину закюветных полок принимают при мелких и пылеватых песках равной 1 м.

Поверхности закюветных полок придается уклон 20–40% в сторону кювета. Уклон можно не предусматривать в случае скальных пород, а также песков в условиях засушливого климата.

5.5.31 Для отвода поверхностных вод и предохранения основания дорожной одежды от переувлажнения используют продольные каналы или резервы от насыпей и нагорные каналы, или кюветы от выемок:

- глубина канав (кюветов) должна быть такой, чтобы расстояние от низа дренажных устройств, отводящих воду из основания дорожной одежды, до расчетного уровня воды в них или до дна безрасчетных кюветов было не менее 0,2 м;
- дну продольных канал придают уклон не менее 5 % и в исключительных случаях – 3 % в песчаных, гравийных и других хорошо дренирующих грунтах канавы допускается не устраивать.

Для предотвращения распространения лесных пожаров в сухой период рекомендуется устраивать пожаропрерывающие минеральные полосы, каналы и валы вдоль лесных дорог

5.5.32 При наличии опасности размыва или оползания откосов земляного полотна от поверхностных вод с нагорной стороны склонов крутизной более 1:5 следует предусматривать нагорные канавы.

5.5.33 Минимальные размеры и типы укрепления водоотводных устройств следует назначать на основе гидравлических расчетов.

5.5.34 Откосы, дно канав, лотков и кюветов укрепляют в случаях, когда расчетные скорости течения воды, установленные гидравлическими расчетами, превышают допустимые для соответствующих грунтов.

При недостаточности средств обычного укрепления для погашения скоростей течения воды допускается предусматривать перепады, водобойные колодцы, быстротоки и т. д.
Канавы укрепляют по всему периметру выше расчетного горизонта на 0,1 м.

5.5.35 Сейсмобезопасность земляного полотна лесных автомобильных дорог следует обеспечивать в соответствии с СП 14.13330.

Конструкции земляного полотна на косогорах следует обосновывать соответствующими расчетами с учетом устойчивости косогора как в природном состоянии, так и после сооружения дороги.

5.5.36 При сооружении земляного полотна в насыпях на слабых основаниях предъявляются дополнительные требования:

- боковое выравнивание слабого грунта в основании насыпи в период эксплуатации должно быть исключено;

- интенсивная часть осадки основания должна завершиться до устройства покрытия;

- упругие колебания насыпей на торфяных основаниях при движении транспортных средств не должны превышать величины, допустимой для данного типа дорожных одежд;

- торфяной слой толщиной до 0,5 м, лежащий на твердом минеральном дне (песок, гравелистый или каменистый грунт, скала), необходимо удалить;

- нижнюю часть насыпей на болотах, погружающуюся ниже уровня поверхности болота на 0,2–0,5 м, следует предусматривать, как правило, из дренирующих песчаных или крупнообломочных грунтов. Применение других грунтов, включая торф, должно обосновываться индивидуальными расчетами. На болотах 1 типа насыпи могут возводиться без выторфовывания, так называемого «плавающего типа», или при устройстве усовершенствованных покрытий и небольшой глубине болота (2–4 м) – с полным или частичным выторфовыванием.

5.5.37 На болотах 2 и 3 типа насыпи, как правило, должны возводиться с посадкой на минеральное дно вместе со сплавиною. На болотах 1 типа допускается возведение насыпей на сланях для всех видов дорог, а на болотах 3 типа – только для дорог категории IVₜ.
Время, необходимое для достижения заданной степени консолидации насыпи на болоте плавающего типа без вертикального дренирования, можно определить по формуле [14]:

$$t = \frac{H^2}{C} T_v$$ \hspace{1cm} (2)

gде H – толщина залежи, м;

T_v – безразмерный коэффициент, называемый фактором времени;

C – коэффициент консолидации, определяемый на основании лабораторных компрессионных испытаний торфа по формуле:

$$\Delta = \frac{K(1+E_0)}{a \Delta}$$

gде K – коэффициент фильтрации (средние расчетные значения для торфа низинного слаборазложившегося – 0,005, среднеразложившегося – 0,0008, торфа верхового слаборазложившегося – 0,004 и среднеразложившегося – 0,0005);

E_0 – коэффициент пористости (начальный);

a – коэффициент сжимаемости;

Δ – объемная масса воды. Величина коэффициента сжимаемости определяется по формуле $a = \frac{\xi_p - \xi_0}{\Delta p}$

gде Δp – нагрузка, вызвавшая изменение коэффициента пористости;

ξ_p – коэффициент пористости, полученный при нагрузке $p + \Delta p$ (рекомендуется принимать ее равной расчетному давлению насыпи на основание). Обычно для массивных плавающих насыпей назначают годичный срок для стабилизации земляного полотна. Однако в ряде случаев этого срока бывает недостаточно.

5.5.38 Для ускорения процесса консолидации полотна дороги используются следующие меры, направленные на улучшение и сокращение пути фильтрации воды, выжимаемой из насыпи, в зависимости от местных условий и технической оснащенности строительства:

- полное или частичное выторфовывание (особенно целесообразно при малой несущей способности торфа);
- устройство вертикальных песчаных дрен (диаметром 0,35–0,45 м с расстоянием между ними 1,5–3,0 м) или продольных дренажных прорезей (шириной 0,8–1,2 м), засыпанных песком, которые резко сокращают период консолидации и обеспечивают, кроме того, повышение устойчивости основания.

5.5.39 Конструкцию земляного полотна на болотах назначают на основе технико-экономического сравнения вариантов, предусматривающих удаление грунтов в болоте или их использование в качестве основания насыпи с принятием в необходимых случаях специальных мер по обеспечению устойчивости, снижению и ускорению осадок и исключению недопустимых упругих колебаний.

Нижнюю часть насыпей на болотах, погружающуюся ниже уровня поверхности болота на 0,2–0,5 м, рекомендуется предусматривать из дренирующих песчаных или крупнообломочных грунтов.

5.5.40 При устройстве выемок или насыпей с использованием специфических грунтов, предусматривают мероприятия по предохранению земляного полотна от деформаций (ограничение по расположению и толщине слоев из этих грунтов, устройство защитных слоев из устойчивых грунтов, армирующие, гидроизолирующие и т. д.).

5.5.41 Конструкцию земляного полотна, возводимого в сложных природных условиях (на засоленных грунтах, на поймах рек и болотах, в районах ММГ, оползней и т. п.), а также при необходимости применения сложных конструкций, когда устойчивость и прочность земляного полотна должны быть проверены расчетом, необходимо проектировать индивидуально, используя нормативные документы и опыт проектирования и строительства земляного полотна в подобных районах.

5.5.42 В конструкциях земляного полотна необходимо использовать прослойки из геосинтетических материалов, выполняющих армирующую, дренирующую, фильтрующую или разделяющую роль:

- в основании насыпей на слабых грунтах;
- в теле насыпей – для повышения устойчивости откосов;
- в качестве защитного фильтра в дренажных конструкциях;
- в качестве дрен, обеспечивающих отвод воды из водонасыщенного массива грунта;
- в качестве разделяющей прослойки на контакте слоев грунта или зернистых материалов с различным гранулометрическим составом (препятствующую перемешиванию материалов слоев);
- в основании технологических проездов на грунтах с низкой несущей способностью.

5.5.43 При разработке выемок в неблагоприятных грунтово-гидрологических условиях для обеспечения проезда строительной техники целесообразно предусматривать устройство технологических прослоек из армирующего геосинтетического материала с засыпкой дренирующим грунтом.

5.5.44 Сооружение земляного полотна в первой дорожно-климатической зоне в связи с значительным различием грунтовых и гидрогеологических условий на территории небольших районов целесообразно проектировать по индивидуальному проекту.

5.5.45 Наиболее характерные конструкции земляного полотна, встречающиеся на лесных дорогах, приведены на рисунках В.1–В.19 Приложения В.

5.6 Дорожная одежда

5.6.1 Дорожную одежду следует проектировать в соответствии с СП 34.13330, [16] и настоящими рекомендациями.

Дорожная одежда должна обеспечивать необходимые транспортно-эксплуатационные показатели в течение заданного срока использования дороги, с целью повышения безопасности и эффективности работы автомобильного транспорта.

5.6.2 Выполнение этих требований обеспечивается выбором конструкции дорожной одежды, типом покрытия проезжей части, конструкции сопряжения проезжей части с обочинами, типом укрепления обочин и откосов и т.д.
5.6.3 Конструкция дорожной одежды принимается с учетом:
- объема перевозок (для лесовозных дорог);
- типом транспортного средства;
- срока использования дороги;
- гидрогеологических условий района проектирования;
- наличия дорожно-строительных материалов и т.п.

5.6.4 Типы дорожных одежд, основные виды покрытий и оснований и область их применения приведены в таблице 19.

Таблица 19 – Типы дорожных одежд, основные виды покрытий и оснований и область их применения

<table>
<thead>
<tr>
<th>Категории дорог</th>
<th>Тип дорожных одежд</th>
<th>Виды покрытий для верхнего слоя</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iп, IIп</td>
<td>Капитальный</td>
<td>Цементобетонный монолитный или сборный. Асфальтобетонное однослойное или двухслойное с верхним слоем из горячих смесей типа Б, Г, В, Д I- II марки, щебенно-мастичный асфальтобетон</td>
</tr>
<tr>
<td>Iп, IIп</td>
<td>Облегченные</td>
<td>Асфальтобетонные двухслойные с верхним слоем из смесей I марок, типов Бх, Вх, Гх и Дх, укладываемых в холодном состоянии. Асфальтобетонные однослойные из смесей III марки, укладываемой в горячем состоянии, II марки, укладываемой в холодном состоянии типов Бх, Вх, Гх и Дх. Из подобранного щебеночного или гравийного материала, обработанного вязким или жидким битумом в установке</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Из фракционированного щебня, обработанного вязким битумом в установке или методом пропитки с поверхностной обработкой. Из щебеночных или гравийных смесей, обработанных жидким битумом методом смешения на дороге</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Из крупнообломочных (до 40 мм) или песчаных грунтов, обработанных битумной эмульсией с цементом в установке и последующей поверхностной обработкой на дороге</td>
</tr>
</tbody>
</table>

60
Шл Переходные и низшие Из фракционированного щебня, укладываемого по способу заклинки.
Из подобранного щебеночного или гравийного материала.
Из местных каменных материалов и песчаных грунтов, обработанных органическими и минеральными вяжущими с применением поверхностно - активных веществ (ПАВ)

IV, Низшие Из грунтов, укрепленных или улучшенных различными скелетными добавками (щебнем, гравием, дресвой, шлаком, горелыми породами и другими местными материалами)
Из местных каменных материалов, грунтов, укрепленных местными вяжущими (гранулированными доменными шлаками, активными золами уноса, фосфогипсом и т.д.)

Примечание
Целесообразность применения асфальтобетонных и цементобетонных покрытий на лесных дорогах должна быть обоснована технико-экономическим расчетом.

5.6.5 Расчет конструкций дорожных одежд нежесткого типа для I₃−III₃ категорий осуществляют в соответствии [16], для IV₃ – по региональным техническим нормам или на основе сложившейся практики строительства. Расчет конструкций жесткого типа осуществляют в соответствии с [17].

5.6.6 При расчете дорожных одежд используется суммарная интенсивность движения [18].

Суммарная интенсивность движения расчетных автомобилей за весь срок службы определяется по формуле

\[\sum N_p = \sum_1^n \frac{V_{\text{пит.дето}}}{T_{\text{трдг}}} \frac{K_c}{T_{\text{трдг}}} T_{\text{сл}} \]

Где Кс – коэффициент сезонной неравномерности вывозки древесины, принимается равным 1,2–1,35;

Ттрдг – количество расчетных дней в году. Принимается по таблице П 6.1[15];

Тсл – срок службы дороги. Принимается по таблице 20.
Таблица 20 – Рекомендуемый срок службы дорог

<table>
<thead>
<tr>
<th>Категория дороги</th>
<th>Тип дорожной одежды</th>
<th>Срок службы в зависимости от дорожно-климатических зон</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I, II</td>
</tr>
<tr>
<td>Iₐ</td>
<td>Капитальный</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Облегченный</td>
<td>8-10</td>
</tr>
<tr>
<td>IIₐ</td>
<td>Капитальный</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Облегченный</td>
<td>8-10</td>
</tr>
<tr>
<td>IIIₐ</td>
<td>Переходный</td>
<td>3-5</td>
</tr>
<tr>
<td>IVₐ</td>
<td>Переходный</td>
<td>3-5</td>
</tr>
<tr>
<td></td>
<td>Низший</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Полученная суммарная интенсивность движения расчетных автомобилей за весь срок службы используется для расчета дорожных одежд в соответствии с [15].

5.6.7 Независимо от результатов расчета толщину конструктивных слоев дорожных одежд нежесткого типа следует принимать не менее значений, приведенных в таблице 21.

Таблица 21 – Минимальные толщины конструктивных слоев дорожных одежд

<table>
<thead>
<tr>
<th>Материалы покрытий и других слоев дорожной одежды</th>
<th>Толщина слоя, см</th>
</tr>
</thead>
<tbody>
<tr>
<td>Крупнозернистый асфальтобетон (с размером зерен до 40 мм)</td>
<td>7</td>
</tr>
<tr>
<td>Мелкозернистый асфальтобетон (до 20 мм)</td>
<td>5</td>
</tr>
<tr>
<td>Щебеночно-мастичный асфальтобетон (до 10 мм) и песчаный асфальтобетон (до 5 мм)</td>
<td>3</td>
</tr>
<tr>
<td>Щебеночные (гравийные) материалы, обработанные органическим вяжущим</td>
<td>8</td>
</tr>
<tr>
<td>Щебень, обработанный органическим вяжущим по способу пропитки</td>
<td>8</td>
</tr>
<tr>
<td>Щебеночные и гравийные материалы, не обработанные вяжущим:</td>
<td></td>
</tr>
<tr>
<td>- на песчаном основании</td>
<td>15</td>
</tr>
<tr>
<td>- на прочном основании (каменном или из укрепленного грунта)</td>
<td>8</td>
</tr>
<tr>
<td>Каменные материалы и грунты, обработанные органическими или неорганическими вяжущими</td>
<td>10</td>
</tr>
</tbody>
</table>
5.6.8 Цементобетон для устройства покрытий и оснований дорожных одежд должен соответствовать ГОСТ 25192, ГОСТ 26633, ГОСТ 10180, ГОСТ 18105.

Минимальную проектную марку бетона по морозостойкости следует принимать по таблице 22.

Таблица 22— Минимальную проектную марку бетона по морозостойкости

<table>
<thead>
<tr>
<th>Конструктивный слой дорожной одежды</th>
<th>Минимальные проектные марки бетона по морозостойкости F для районов со среднемесячной температурой воздуха наиболее холодного месяца, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Покрытие</td>
<td>От 0 до минус 5</td>
</tr>
<tr>
<td>Основание</td>
<td>25</td>
</tr>
</tbody>
</table>

Примечания
1. Среднемесячную температуру воздуха наиболее холодного месяца для районов строительства следует определять по СП 131.13330.
2. Марку по морозостойкости принимают по результатам испытаний по ГОСТ 26633 и по ГОСТ 10060.2 для бетона покрытий и по ГОСТ 10060.1 – для бетона оснований.

5.6.9 Асфальтобетон и материал из смесей каменных материалов и грунтов, обработанных органическими вяжущими, должны соответствовать требованиям ГОСТ 9128, ГОСТ 31015, ГОСТ 30491 соответственно.

5.6.10 Каменные материалы и грунты, обработанные неорганическими вяжущими, для покрытий и оснований должны соответствовать требованиям ГОСТ 23558 и таблице 23.

Таблица 23 — Показатели свойств материалов, обработанных неорганическими вяжущими

<table>
<thead>
<tr>
<th>Показатели свойств материалов, обработанных неорганическими вяжущими</th>
<th>Показатели свойств</th>
</tr>
</thead>
<tbody>
<tr>
<td>Предел прочности на сжатие в возрасте 28 сут, МПа, не менее</td>
<td>для покрытий: 7,5, для оснований: 2,0</td>
</tr>
<tr>
<td>Марка по морозостойкости для районов со среднемесячной температурой наиболее</td>
<td></td>
</tr>
</tbody>
</table>

63
Таблица 24

<table>
<thead>
<tr>
<th>Температура, °С, не менее:</th>
<th>F15</th>
<th>F10</th>
</tr>
</thead>
<tbody>
<tr>
<td>от 0 до минус 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>от минус 5 до минус 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>от минус 15 до минус 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ниже минус 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.6.11 При устройстве оснований дорожных одежд по способу заклинки применяют щебень, отвечающий требованиям ГОСТ 8267, ГОСТ 3344 и ГОСТ 25607. При этом в качестве основного материала используют щебень фракции 40–70 (80) мм с расклинивающими фракциями 10–20 мм в количестве 15 м³ на 1000 м² и фракциями 5–10 мм в количестве 10 м³ на 1000 м³. Если в качестве основной фракции используют щебень фракции 70 (80)–120 мм, то для расклинивания используют фракции 20–40 мм в количестве 10 м³ на 1000 м², фракции 10–20 мм в количестве 10 м³ на 1000 м² и фракции 5–10 мм в количестве 10 м³ на 1000 м². При устройстве оснований дорожных одежд из щебня фракции 40–70 (80) мм для расклинивания допускается применять щебенно-песчаные смеси СЮ, С11 по ГОСТ 25607 вместо фракции 5–10 мм.

При устройстве щебеночных слоев допускается в качестве расклинивающего материала использовать асфальтобетонные смеси, а также мелкозернистые щебенно-песчаные смеси, обработанные цементом.

Требования к щебню для устройства оснований по способу заклинки приведены в таблице 24.
Таблица 24— Требования к щебню для устройства оснований

<table>
<thead>
<tr>
<th>Показатели свойств каменных материалов</th>
<th>Категория автомобильной дороги</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$I_{\text{ав}}, I_{\text{пв}}$ и $I_{\text{шв}}$</td>
</tr>
<tr>
<td>Марка по прочности на сжатие (раздавливание) в цилиндре в водонасыщенном состоянии, не менее:</td>
<td></td>
</tr>
<tr>
<td>- щебня из изверженных и метаморфических пород</td>
<td>800</td>
</tr>
<tr>
<td>- щебня из осадочных пород</td>
<td>400</td>
</tr>
<tr>
<td>- щебня из шлаков черной и цветной металлургии, фосфорных</td>
<td>400</td>
</tr>
<tr>
<td>- щебня из гравия</td>
<td>400</td>
</tr>
<tr>
<td>Марка по истираемости в полочном барабане, не менее</td>
<td>И4</td>
</tr>
<tr>
<td>Марка по морозостойкости, не менее, для районов со среднемесячной температурой воздуха наиболее холодного месяца, °C, не менее:</td>
<td></td>
</tr>
<tr>
<td>- от 0 до минус 5</td>
<td>-</td>
</tr>
<tr>
<td>- от минус 5 до минус 15</td>
<td>F15</td>
</tr>
<tr>
<td>- от минус 15 до минус 30</td>
<td>F25</td>
</tr>
<tr>
<td>- ниже минус 30</td>
<td>F50</td>
</tr>
<tr>
<td>Содержание зерен пластинчатой (лещадной) и игловатой формы, %, по массе, не более</td>
<td>35</td>
</tr>
<tr>
<td>Марка по водостойкости, не менее</td>
<td>B3</td>
</tr>
<tr>
<td>Марка по пластичности, не менее</td>
<td>ПЛЗ</td>
</tr>
<tr>
<td>Устойчивость структуры:</td>
<td></td>
</tr>
<tr>
<td>- потери при испытаниях, % по массе, не более</td>
<td>7</td>
</tr>
<tr>
<td>- марка по устойчивости, не менее</td>
<td>УСЗ</td>
</tr>
</tbody>
</table>

5.6.12 При устройстве конструктивных слоев дорожных одежд из плотных смесей применяемые материалы по зерновому составу должны отвечать требованиям ГОСТ 25607 и ГОСТ 3344.

Требования к щебню (гравию), входящему в состав смесей, приведены в таблице 25.
Таблица 25 — Требования к щебню (гравию), входящему в состав смесей

<table>
<thead>
<tr>
<th>Показатели свойств естественных каменных материалов и шлаков</th>
<th>Для покрытий</th>
<th>Для оснований</th>
</tr>
</thead>
<tbody>
<tr>
<td>Категория автомобильной дороги</td>
<td>IVл</td>
<td>Iл, IIл и IIIл</td>
</tr>
<tr>
<td>Марка по дробимости щебня в водонасыщенном состоянии, не ниже:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- щебня из изверженных и метаморфических пород;</td>
<td>800</td>
<td>600</td>
</tr>
<tr>
<td>- щебня из осадочных пород;</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>- гравия и щебня из гравия;</td>
<td>600</td>
<td>400</td>
</tr>
<tr>
<td>- щебня из шлаков черной и цветной металлургии и из фосфорных шлаков;</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td>Марка по истираемости, не ниже</td>
<td>И3</td>
<td>И4</td>
</tr>
<tr>
<td>Марка по морозостойкости для районов со среднемесячной температурой воздуха наиболее холодного месяца, °С:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- от 0 до минус 5</td>
<td>F15</td>
<td>-</td>
</tr>
<tr>
<td>- от минус 5 до минус 15</td>
<td>F25</td>
<td>F15</td>
</tr>
<tr>
<td>- от минус 15 до минус 30</td>
<td>F50</td>
<td>F25</td>
</tr>
<tr>
<td>- ниже минус 30</td>
<td>F75</td>
<td>F50</td>
</tr>
<tr>
<td>Содержание зерен пластинчатой (лещадной) и игловатой формы, % по массе, не более</td>
<td>25</td>
<td>Не нормируется</td>
</tr>
<tr>
<td>Марка по водостойкости, не ниже</td>
<td>B1</td>
<td>B3</td>
</tr>
<tr>
<td>Марка по пластичности, не ниже</td>
<td>ПЛ1</td>
<td>ПЛЗ</td>
</tr>
<tr>
<td>Устойчивость структуры:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- потери при испытаниях, % по массе,</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>- марка по устойчивости, не ниже</td>
<td>УС2</td>
<td>УСЗ</td>
</tr>
</tbody>
</table>

5.6.13 Устойчивость структуры определяется только для щебня из попутно добываемых вскрышных и вмещающих пород и некондиционных отходов горных предприятий по переработке руд, неметаллических ископаемых и других отраслей промышленности и щебня из шлаков черной и цветной металлургии, фосфорных шлаков.
Требования по прочности, истираемости и морозостойкости к щебню из активных и высокоактивных шлаков, входящих в состав готовых смесей, не предъявляются.

5.6.14 Для оснований из фосфополутидриата сульфата кальция в качестве материала слоя или расклинивающего материала при устройстве щебеночных оснований применяют материал непосредственно с технологических линий завода.

Водостойкость уплотненного материала в возрасте 28 сут должна отвечать требованиям ГОСТ 25607.

По морозостойкости, определяемой по ГОСТ 23558, материал должен иметь марку Мрз 15 или Мрз 25.

5.6.15 Для устройства дополнительных слоев основания могут быть применены смеси C3–C11 по ГОСТ 25607 и пески по ГОСТ 8736. Коэффициент фильтрации смесей и песков должен быть не менее 1 м/сут.

5.6.16 Для морозозащитных слоев допускается применять слабопучинистые песчаные грунты, которые удовлетворяют требованиям коэффициента пучения и сдвиговым характеристикам, устанавливаемым расчетом на прочность и морозостойкость дорожной одежды, и имеют коэффициент фильтрации не менее 0,2 м/сут.

5.6.17 Для устройства прослоек различного назначения в слоях дорожных одежд необходимо применять геосинтетические материалы в соответствии с Приложением Г.

5.6.18 При проектировании дорожной одежды на реконструируемых участках дорог необходимо использовать добавки органических или минеральных веществ (битум, вспененный битум, битумная эмульсия цемент, известь, фосфогипс и т.п.), которые вносятся одновременно с разрыхлением и перемешиванием старого покрытия.

5.6.19 С целью ускорения темпа строительства и снижения их стоимости необходимо использовать технологию холодного восстановления старых покрытий в т. ч повышения прочности грунтовых дорог.
5.7 Искусственные сооружения

5.7.1 Искусственные сооружения на лесных автомобильных дорогах следует проектировать в соответствии с СП 35.13330 и настоящими рекомендациями.

5.7.2 Выбор типа водопропускного сооружения определяется рельефом местности, расходом воды пересекаемого водного потока, гидрогеологических условий в месте пересечения, необходимостью пропуска пешеходов, скота, диких животных и других местных условий.

5.7.3 К искусственным сооружениям относят: трубы, мосты, виадуки, акведуки, противооползневые галереи, подпорные стенки, эстакады.

5.7.4 Искусственные сооружения на лесовозных дорогах являются ответственными инженерными сооружениями, которые должны удовлетворять производственным, эксплуатационным, конструктивным, экономическим и архитектурным требованиям.

5.7.5 Производственные и эксплуатационные требования заключаются в том, что движение по мосту или другому искусственному сооружению должно быть удобным, безопасным и беспрепятственным, без снижения скорости. Ширина проезжей части и тротуаров сооружения должна соответствовать расчетной пропускной способности с учетом перспективы роста грузооборота. Полотно проезжей части должно быть выполнено из прочного износостойкого материала. Конструкция моста, величина пролетов и возвышение нижних конструкций над горизонтом воды в реке должны обеспечивать безопасный пропуск паводков, ледохода, лесосплава и удовлетворять требованиям судоходства. Все конструкции сооружения должны обеспечивать длительный срок службы и возможность удобного доступа для их осмотра в процессе эксплуатации. Предпочтение следует отдавать тем материалам, которые в процессе эксплуатации сооружения требуют минимальных эксплуатационных затрат на его содержание и ремонт в конкретных условиях. Искусственные сооружения должны отвечать современным требованиям индустриального
изготовления и механизированного возведения, что обеспечит быстрые темпы строительства при высоком качестве работ.

Конструктивные требования сводятся к тому, чтобы сооружение в целом и отдельные его элементы были прочными, жесткими и устойчивыми. Выполнение этих требований обеспечивается методом расчета конструкций по предельным состояниям.

Экономические требования заключаются в правильном выборе при проектировании такого решения, при котором затраты капитальных вложений и стоимость эксплуатационных расходов будут наименьшими. Это возможно при наименьшем расходе материалов и невысокой трудоемкости работ.

Архитектурные требования заключаются в том, чтобы искусственное сооружение гармонически было увязано с окружающей местностью и имело привлекательный вид.

5.7.6 На лесных автомобильных дорогах хозяйственного назначения при малых расходах воды (3–4 м³/с) и незначительном количестве взвешенных частиц грунта в воде разрешается устраивать фильтрующие насыпи, а при узких логах и больших расходах воды – комбинированные сооружения, состоящие из фильтрующей насыпи и трубы.

5.7.7 Класс нагрузки К для нормативной нагрузки АК и НК следует принимать равным для мостовых сооружений и труб на лесных дорогах всех категорий – 14 и деревянных мостов – 11. (ГОСТ Р 52748).

5.7.8 На лесных дорогах категории Iл целесообразно проектировать железобетонные мосты. На дорогах категории IIл необходимо сравнивать варианты железобетонного и деревянного моста. На дорогах категории IIIл, как правило, оправдано строительство деревянных мостов или труб большого сечения.

5.7.9 Деревянные конструкции мостов следует применять преимущественно заводского изготовления с учетом мероприятий, обеспечивающих их долговечность.
5.7.10 Для деревянных мостов следует применять пиломатериалы и круглые лесоматериалы хвойных пород 2-го сорта.

Качество лесоматериалов в отношении допускаемых пороков древесины должно соответствовать требованиям, предъявляемым к элементам II категории (СП 64.13330).

5.7.11 В проекте должны быть предусмотрены мероприятия по защите основных несущих деревянных элементов от увлажнения независимо от того, производится антисептирование древесины или нет (гидроизоляция, сливные доски, козырьки и др.).

5.7.12 Опоры деревянных мостов следует предусматривать свайные во всех случаях, когда грунты допускают забивку свай. В вечномерзлых грунтах погружение свай следует принимать на глубину, равную тройной толщине сезонно оттаивающего грунта.

Рамно-лежневые опоры в вечномерзлых грунтах не применяются, а взамен их, где невозможна забивка свай, применяются ряжевые опоры.

5.7.13 На лесных дорогах всех категорий не рекомендуется проектировать деревянные мосты длиной более 25 м.

5.7.14 Проезжую часть на деревянных мостах следует назначать в виде деревянного настила, по которому делается поверхностная обработка битумом с крупным песком.

5.7.15 Однопролетные мосты и малые искусственные сооружения допускается располагать на любых сочетаниях плана и профиля, предусмотренных нормами проектирования лесных дорог.

5.7.16 Средние мосты рекомендуется располагать в плане на прямых участках автодороги. В стесненных условиях допускается располагать средние мосты на кривых радиусом не менее 100 м.

5.7.17 Расчет искусственных сооружений, а также пойменных насыпей на воздействие водного потока следует производить по гидрографам расчетных паводков, а при их отсутствии – по расчетным расходам и соответствующим им
уровням. Вероятность превышения расходов воды и соответствующих им уровней на пиках паводков указана в таблице 26.

Таблица 26 – Вероятность превышения расходов воды.

<table>
<thead>
<tr>
<th>Вид сооружения</th>
<th>Расчетная вероятность превышения, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мосты малые и средние капитальные</td>
<td>2</td>
</tr>
<tr>
<td>Деревянные мосты средние</td>
<td>3</td>
</tr>
<tr>
<td>Деревянные мосты малые</td>
<td>3</td>
</tr>
<tr>
<td>Трубы на дорогах:</td>
<td></td>
</tr>
<tr>
<td>- на дорогах категорий Iв, IIв</td>
<td>5</td>
</tr>
<tr>
<td>- на дорогах категорий IIIв и IVв</td>
<td>7</td>
</tr>
<tr>
<td>Водоотводные каналы:</td>
<td></td>
</tr>
<tr>
<td>- на дорогах категорий Iв, IIв</td>
<td>7</td>
</tr>
<tr>
<td>- на дорогах категорий IIIв и IVв</td>
<td>10</td>
</tr>
</tbody>
</table>

5.7.18 Возвышение элементов мостов над уровнями воды и ледохода в несудоходных и несплавных пролетах следует назначать в зависимости от местных условий и принятой схемы моста в соответствии с СП 35.13330.

5.7.19 Для пропуска селевых потоков, карчехода и ледохода следует предусматривать однопролетные мосты с отверстием не менее 4 м.

5.7.20 Габариты мостов на лесных автодорогах следует принимать по таблице 27.

Габариты мостов, расположенных на кривых, принимаются с уширениями, величина которых назначается по нормам проектирования автодорог.
Таблица 27 — Габариты мостовых сооружений

<table>
<thead>
<tr>
<th>Виды и категории дорог</th>
<th>Число полос движения</th>
<th>Ширина проезжей части при ширине транспортного средства, м</th>
<th>Ширина полос безопасности, м</th>
<th>Габарит моста (Г) при ширине транспортного средства, м</th>
<th>Ширина тротуаров, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>до 2,5</td>
<td>2,5–5,0</td>
<td>до 2,5</td>
<td>2,5–5,0</td>
</tr>
<tr>
<td>I_1</td>
<td>2</td>
<td>7,5</td>
<td>7,5*</td>
<td>1,0</td>
<td>9,5</td>
</tr>
<tr>
<td>II_2</td>
<td>2</td>
<td>7,0</td>
<td>7,0*</td>
<td>1,0</td>
<td>9,0</td>
</tr>
<tr>
<td>III_3</td>
<td>1</td>
<td>4,5</td>
<td>4,5*</td>
<td>0,5</td>
<td>5,5</td>
</tr>
<tr>
<td>IV_3</td>
<td>1</td>
<td>4,5</td>
<td>4,5*</td>
<td>0,5</td>
<td>5,5</td>
</tr>
</tbody>
</table>

При промежуточных значениях ширины транспортных средств минимальные значения габаритов моста определяются интерполяцией с округлением в большую сторону до 0,5 м. Проезд нестандартных автомобилей по мостам должен регулироваться дорожными знаками.

5.7.21 Предпочтение следует отдавать типам труб, которые помимо экономической целесообразности, отличаются простотой строительства и эксплуатации. Такими характеристиками обладают, в частности, пластиковые трубы (желательно с гладкой внутренней поверхностью), одним из важных достоинств которых является сохранение целостности трубы в случае продольных деформаций из-за неравномерной осадки грунта или морозного пучения.

5.7.22 Металлические гофрированные трубы допускается проектировать без устройства оголовков [18]. При этом нижняя часть трубы должна выступать из насыпи не менее чем на 0,2 м, а сечение трубы со срезанным концом должно выступать из тела насыпи не менее чем на 0,5 м.

5.7.23 Диаметр отверстия и высоту в свету труб следует назначать не менее:

- 0,75 м при длине трубы до 15 м;
- 1,0 м при длине трубы от 15 до 20 м;
- 1,25 м при длине трубы от 20 до 30 м.

72
5.7.24 В местах возможного образования наледей вместо труб следует проектировать деревянные мосты. В отдельных случаях разрешается применение прямоугольных бетонных труб с отверстием не менее 3 м и высотой не менее 2 м в комплексе с постоянными противоналедными сооружениями.

Трубы диаметром 0,75 м и 0,5 м следует укладывать с уклоном не менее 20 % для возможности самопромывы.

5.7.25 Трубы следует проектировать безнапорные. Пропуск расходов воды в полунапорном и напорном режимах допускается только при устройстве неразмываемых противофильтрационных экранов или оголовков с коническими входными звенями на фундаментах. Кроме того, должна быть обеспечена водонепроницаемость швов между звенями и устойчивость насыпи против фильтрации. Безнапорные трубы с отверстием до 1,25 м допускается проектировать без оголовков.

5.7.26 Трубы во всех случаях следует проектировать на полную ширину земляного полотна.

5.7.27 Толщина засыпки над трубами считаая от верха звена трубы до низа конструкции дорожной одежды должна быть:
- над железобетонными трубами – не менее 0,5 м;
- над металлическими гофрированными и пластиковыми трубами – не менее 0,5 м, и не менее 0,8 м от верха трубы до поверхности дорожного покрытия.

5.7.28 Трубы следует укладывать на бетонные фундаменты или на уплотненные щебенистые или гравийно-песчаные подушки.

5.8 Обстановка дороги и ее обустройство
5.8.1 В состав работ входит:
- технические средства регулирования дорожного движения;
- размещение предприятий сервиса;
- проектирование освещения.
5.8.2 Дорожные ограждения по условиям применения разделяются на две группы.

К ограждениям первой группы относятся барьерные конструкции (высотой не менее 0,75 м) и парапеты (высотой не менее 0,6 м), предназначенные для предотвращения вынужденных съездов транспортных средств на опасных участках дороги, с мостов, путепроводов, а также столкновений со встречными транспортными средствами и наездов на массивные препятствия и сооружения.

К ограждениям второй группы относятся сетки, конструкции перильного типа и т.п. (высотой 0,8–1,5 м), предназначенные для упорядочения движения пешеходов и предотвращения выхода животных на проезжую часть.

5.8.3 Дорожные ограждения применяют в зависимости от назначения ограждений, их расположения, принципа работы. Ограждение должно соответствовать требованиям к уровню удерживающей способности, который выбирают с учетом степени сложности дорожных условий, а также прогибу, рабочей ширине и минимальной высоте.

5.8.4 Дорожные условия в соответствии с ГОСТР 52289 в зависимости от сложности подразделяются на группы: А, Б, В, Г, Д, Е, Ж.

5.8.5 К группе А относятся участки автомобильных дорог:
- на насыпи высотой более 5 м;
- расположенные на склоне местности круче 1:4;
- проложенные вдоль железнодорожных путей, болот, водных потоков или водоемов глубиной более 1 м, оврагов и горных ущелий, находящихся на расстоянии менее 15 м от края проезжей части.

5.8.6 К группе Б относят участки автомобильных дорог:
- проложенные вдоль железнодорожных путей, болот, водотоков или водоемов глубиной более 1 м, оврагов и горных ущелий, находящихся на расстоянии от 15 до 25 м от края проезжей части;
- подходы к мостовым сооружениям при высоте насыпи менее 2 м, на автомобильных дорогах Iд, IIд категорий протяженностью 18 и 12 м соответственно;
- на насыпи с откосами круче 1:4.

5.8.7 К группе В относят участки дорог категорий:
Iд – радиус горизонтальной кривой 600 м и менее, продольный уклон – 60%о;
IIд – радиус горизонтальной кривой 500 м и менее, продольный уклон – 50%о.

5.8.8 К группе Г относят участки дорог категорий:
Iд – радиус горизонтальной кривой 600–1500 м и менее, продольный уклон – 50%о;
IIд – радиус горизонтальной кривой 500–1000 м и менее, продольный уклон – 50–60%о.

5.8.9 К группе Д относят участки дорог категорий:
Iд – радиус горизонтальной кривой 1500 м и более, продольный уклон – 40%о;
IIд – радиус горизонтальной кривой 1000 м и более, продольный уклон – 50%о и менее.

5.8.10 К группе Е и Ж относят участки городских дорог и улиц.
5.8.11 Требования к условиям установки ограждений первой группы и величине их удерживающей способности на автомобильных дорогах категории Iд, IIд условиям установки и величине удерживающей способности для дорог общего пользования III и IV категории соответственно.

5.8.12 Ограждения проезжей части на мостах следует предусматривать с минимальным уровнем удерживающей способности для дорог категории:
- Iд и группы дорожных условий
 B – 250 кДж; Г – 190 кДж; Д – 190 кДж;
- IIд и группы дорожных условий
 B – 190 кДж; Г – 130 кДж; Д – 130 кДж
- III₃ (кроме внутриплощадочных дорог) и группы дорожных условий

В - 190 кДж; Г - 130 кДж; Д - 130 кДж

- IV₃ и группы дорожных условий

В - 190 кДж; Г - 130 кДж; Д - 130 кДж

А случае отсутствия тротуаров или служебных проходов минимальные уровни удерживающей способности принимают увеличенными на один разряд в соответствии с ГОСТ Р52289.

5.8.13 На обочине автомобильной дороги барьерное ограждение устанавливают на расстоянии 0,50–0,85 м от бровки земляного полотна до стойки барьерного ограждения, парапетное – на расстоянии 0,50 м от бровки земляного полотна до ближнего края парапетного ограждения и не менее 1,00 м от кромки проезжей части до лицевой поверхности балки ограждения или до ближнего края парапетного ограждения.

Ширина обочин от кромки проезжей части до ближайшей плоскости дорожного ограждения должна составлять не менее 1,5 м, а на особо трудных участках в горной местности – не менее 0,5 м.

5.8.14 Необходимо предусматривать ограждение опор путепроводов, консольных и рамных опор информационно-указательных дорожных знаков, опор освещения и связи, расположенных на расстоянии менее 4 м от кромки проезжей части.

5.8.15 При сопряжении дорожных барьерных металлических энергопоглощающих ограждений с мостовыми ограждениями предусматривают постепенное доведение шага стоек дорожных ограждений до 1 м. При этом протяженность участков с одинаковым шагом стоек должна быть не менее 8 м.

В пределах переходных плит в местах соединения пролетных строений мостов и путепроводов с земляным полотном дороги применяют ограждения той же конструкции, что и на пролетных строениях.

В местах деформационных швов стыки балки ограждений выполняют с телескопирующим устройством.
5.8.16 Сопряжение двух односторонних металлических ограждений барьерного типа, расположенных на обочине в местах пересечений и примыканий, выполняют радиусом не менее 1 м.

5.8.17 При необходимости отклонения линии ограждения в плане его следует выполнять с отгоном не менее 10:1.

5.8.18 Ограждения второй группы должны устанавливаться на участках дорог категории Iл, IIл, IIIл, когда не требуются искусственное освещение и установка ограждений первой группы, должны быть оборудованы направляющими устройствами в виде отдельно стоящих сигнальных столбиков высотой 0,75–0,8 м.

5.8.19 Сигнальные столбики устанавливают на обочине на расстоянии 0,35 м от бровки земляного полотна, при этом расстояние от края проезжей части до столбика должно составлять не менее 1,0 м.

5.8.20 Места установки сигнальных столбиков и их расположение принимают в соответствии с ГОСТ Р 52289.

5.8.21 Установка дорожных знаков должна соответствовать требованиям ГОСТ Р 52289, дорожные знаки должны соответствовать требованиям ГОСТ Р 52290, опоры дорожных знаков - требованиям ГОСТ 25458 и ГОСТ 25459.

5.8.22 Применение дорожной разметки должно соответствовать требованиям ГОСТ Р 52289, элементы дорожной разметки – требованиям ГОСТ Р 51256.

5.8.23 Стационарное электрическое освещение на автомобильных дорогах Iл и IIл категории:
- на пересечении с железными дорогами;
- с другими автомобильными дорогами;
- на мостах;
- на пешеходных переходах;
- в местах расположения пунктов сервиса.
Если расстояние между соседними освещаемыми участками составляет менее 250 м, рекомендуется устраивать непрерывное освещение дороги, исключающее чередование освещенных и неосвещенных участков.

5.8.24 Средняя яркость покрытия участков автомобильных дорог Iₕ и IIₕ категории – 0,4 кд/м².

Показатель ослепленности установок наружного освещения не должен превышать 150.

Освещение участков автомобильных дорог в пределах населенных пунктов следует выполнять в соответствии с требованиями СП 52.13330.

5.8.25 Опоры светильников на дорогах следует, как правило, располагать за бровкой земляного полотна.

5.8.26 Включение освещения участков автомобильных дорог следует предусматривать при снижении уровня естественной освещенности до 15–20 лк, а отключение – при его повышении до 10 лк.

5.8.27 Управление сетями наружного освещения следует предусматривать централизованным дистанционным.

5.8.28 В необходимых случаях для автомобильной дороги должна быть предусмотрена защита участков дороги от опасных геологических процессов (оползней, обвалов, селей, водной и ветровой эрозии и т. д.). При этом следует руководствоваться положениями СП 116.13330.

5.8.29 Защита от опасных геологических процессов должна осуществляться с учетом механизма развития процесса, выявляемого на основе детальных инженерно-геологических изысканий, охватывающих зону развития процесса.

5.8.30 Для защиты от водной и ветровой эрозии необходимо использовать специальные насаждения, конструкции укрепления склонов и откосов, в том числе с использованием геосинтетических материалов, в сочетании с комплексом геотехнических инженерных мероприятий, проектируемых с учетом местных конкретных условий и опыта.
5.8.31 Защита дорог от оползневых процессов должна включать планировочные работы, устройство грунтовых контрбанкетов, подпорных стен различных типов, анкерных удерживающих конструкций, свайных противооползневых конструкций и др.

5.8.32 Для защиты дорог от селей следует предусматривать: лесонасаждение, селезадерживающие сооружения, селепропускные сооружения, селеотводящие сооружения и др.

5.9 Охрана окружающей среды при проектировании

5.9.1 Проектная документация должна удовлетворять требованиям СП 34.13330, [20], настоящих методических рекомендаций и содержать раздел «Охрана окружающей природной среды», целью которого является разработка мероприятий по исключению и смягчению воздействия объекта на окружающую среду, определение размеров компенсаций за нанесенный ущерб, а также подготовка документов и материалов для отвода земель.

5.9.2 В состав раздела «Охрана окружающей среды» должны входить:
- краткая пояснительная записка, обосновывающая для заказчика и органов экспертизы проектные решения по природоохранным инженерным мероприятиям;
- материалы, предназначенные для реализации проекта, включающие в себя основные чертежи, ведомости объемов работ, технические спецификации, перечень ГОСТ, отраслевых стандартов, СНиП, типовых проектов, привязанных к условиям данного проекта и обязательных для использования при сооружении природоохранных сооружений и мероприятий;
- материалы для оформления отвода земель.

5.9.3 Основные виды негативного влияния проектных решений на окружающую среду и возможные пути решения проблем изложены в таблице 27 [21].

79
<table>
<thead>
<tr>
<th>Виды предполагаемых воздействий</th>
<th>Возможные меры по исключению или смягчению воздействия</th>
</tr>
</thead>
<tbody>
<tr>
<td>Нарушение путей сообщения местных жителей, увеличение времени на дорогу к местам работы и отдыха, расчленение сельскохозяйственных угодий.</td>
<td>Устройство подъездов, пересечений и примыканий.</td>
</tr>
<tr>
<td>Ухудшение условий движения для транспорта, прогона скота.</td>
<td>Устройство переездов и путей для движения транспорта, скотопрогонов, ограждение полосы отвода дороги.</td>
</tr>
<tr>
<td>Расчленение ландшафта.</td>
<td>Применение методов ландшафтного проектирования, исключение по возможности глубоких выемок и высоких насыпей, устройство декоративного озеленения.</td>
</tr>
<tr>
<td>Оползни, осыпи, сплывы, другие виды подвижек земляных масс вследствие их подрезки в процессе строительных работ.</td>
<td>Исключение подрезок склонов при неблагоприятных геологических условиях, обеспечение водоотвода, другие инженерные сооружения.</td>
</tr>
<tr>
<td>Эрозия земель вследствие концентрации водных потоков искусственными сооружениями, кюветами и канавами.</td>
<td>Укрепление русел и выходов из водоотводных сооружений, увеличение количества сбросов воды из систем водоотвода для уменьшения расхода воды.</td>
</tr>
<tr>
<td>Изменение условий поверхностного стока.</td>
<td>Проектирование соответствующих систем водоотвода.</td>
</tr>
<tr>
<td>Изменение условий протекания грунтовых вод, осушение и переувлажнение почв.</td>
<td>Отказ от устройства въездов при близком залегании грунтовых вод, проектирование насыпей из условия недопущения прерывания водоносных слоев.</td>
</tr>
<tr>
<td>Нарушение гидрологического режима рек, изменение береговой линии, сечения водотоков, активизация руссловых процессов при строительстве мостов.</td>
<td>Устройство регуляционных сооружений, укрепление берегов, проектирование мостов с оптимальным стеснением русла.</td>
</tr>
<tr>
<td>Изменение гидрологического режима болот, приводящее к негативному влиянию на экосистемы.</td>
<td>Проектирование трассы в обход болот, устройство мостов, труб.</td>
</tr>
<tr>
<td>Нарушение условий произрастания растений.</td>
<td>Исключение подтопления и осушения территорий, эрозии почв, деградации почв от транспортных загрязнений, рекультивация нарушенных при строительстве земель, устройство организованных площадок отдыха и стоянок для автомобилей, обход особо охраняемых территорий и ценных насаждений.</td>
</tr>
<tr>
<td>Нарушение условий обитания диких животных.</td>
<td>Обход особо охраняемых территорий и мест обитания, питания и размножения охраняемых видов животных,</td>
</tr>
<tr>
<td>Нарушение условий обитания рыб при строительстве мостов.</td>
<td>Обустройство пересечений автодорогой путей миграции животных, установка дорожных знаков, предупреждающих о вероятности столкновения с животным, устройство скотопрогонов и установка ограждений.</td>
</tr>
<tr>
<td>Биологические нарушения</td>
<td>Обходы мест нагула, нерестилищ. Проведение работ с учетом периода массового нереста и выклева рыб, применение шпунтовых ограждений, удаление из русла строительных остатков.</td>
</tr>
<tr>
<td>Создание условий для размножения комаров, клещей.</td>
<td>Планировка территорий, исключение мест застоя воды, своевременная уборка и захоронение порубочных остатков.</td>
</tr>
<tr>
<td>Загрязнение воздушной среды, шумовое воздействие при движении потока транспорта.</td>
<td>Проектирование дороги с параметрами, обеспечивающими оптимальный режим движения автомобилей, устройство защитных зеленых насаждений и экранов, строительство обходов населенных пунктов.</td>
</tr>
<tr>
<td>Загрязнение почв соединениями свинца.</td>
<td>Проектирование дороги с параметрами, обеспечивающими оптимальный режим движения автомобилей, устройство защитных зеленых насаждений и экранов.</td>
</tr>
<tr>
<td>Запыление территории.</td>
<td>Проектирование непылящих дорожных одежд, устройство защитных зеленых насаждений, мероприятия по обезпыливанию покрытий.</td>
</tr>
<tr>
<td>Загрязнение придорожной полосы бытовым мусором.</td>
<td>Устройство организованных площадок отдыха и стоянок для автомобилей.</td>
</tr>
<tr>
<td>Усиление наносов и заиливания русел водотоков продуктами размывов мест строительства, неукрепленного земляного полотна, а также при строительстве опор мостов, загрязнение русел бытовым и строительным мусором.</td>
<td>Планировка, уплотнение и укрепление грунта на строительных площадках, применение шпунтовых ограждений при строительстве опор мостов, проведение рекультивационных работ, своевременная уборка мусора и строительных остатков.</td>
</tr>
<tr>
<td>Загрязнение водных объектов поверхностным стоком с автомобильных дорог и мостов.</td>
<td>Очистка под поверхностного стока, отвод загрязненных вод за пределы пойм водотоков, рассредоточение сбросов по протяжению дороги.</td>
</tr>
<tr>
<td>Загрязнение грунтов и вод маслами, топливом автомобилей и дорожно-строительных машин на строительных площадках и предприятиях.</td>
<td>Планировка территории, устройство канав и водоотводных систем для сбора и очистки вод, ограждение территории, организация заправки техники а специально установленных местах или на автозаправочных станциях общего пользования.</td>
</tr>
<tr>
<td>Загрязнение территорий вблизи временных баз строительных организаций мусором, бытовыми отходами.</td>
<td>Обустройство временных баз строительных организаций местами для сбора и уничтожения отходов и мусора, строительство туалетов, ограждение территории, рекультивация земель после строительства.</td>
</tr>
<tr>
<td>Загрязнение воздушной среды на асфальтобетонных и цементобетонных заводах, других притрасовых предприятиях.</td>
<td>Обустройство заводов оборудованием для очистки выбросов.</td>
</tr>
<tr>
<td>Загрязнение окружающей среды при работе строительных машин и механизмов.</td>
<td>Принятие наиболее современной экологически чистой строительной техники к технологии.</td>
</tr>
</tbody>
</table>

5.9.4 Показатели экологически безопасного состояния автомобильной дороги делятся на две группы: экологические и экологически значимые.

5.9.5 При проектировании лесных дорог необходимо, в первую очередь, уделить внимание соблюдению требований, предъявляемые к экологически значимым показателям:

- устройства и сооружения для пропуска животных на путях их миграции;
- укрепление откосов в проблемных местах, особенно, в месте сопряжения автомобильной дороги и моста и других местах, где возможны размывы насыпи;
- защите лесонасаждений от усыхания и вредителей.

5.9.6 Оценка проектных решений производится по показателю экологической безопасности в соответствии с [20], который определяется:

- техническим состоянием автомобильной дороги и дорожных сооружений;
- уровнем загрязнения природной среды придорожной полосы;
- влиянием технического состояния автомобильной дороги на выбросы вредных веществ автомобильным транспортом.

5.9.7 Экологически безопасным считается такое состояние автомобильной дороги, при котором:

- нарушение и загрязнение природной среды придорожной территории, формируемое и обусловленное инженерными сооружениями и конструкциями дороги, отсутствуют или являются минимально возможными при существующих технологиях и современных требованиях;
- созданы условия, обеспечивающие минимально возможное воздействие на природу со стороны автомобильного транспорта, находящегося на дороге.
6 Строительство

6.1 Строительство земляного полотна

6.1.1 Строительство земляного полотна необходимо выполнять в соответствии с СП 78.13330, СП 288.1325800 и настоящими методическими рекомендациями.

6.1.2 Подготовительные работы по строительству земляного полотна (прокладка трассы дороги) выполняются, как правило, в зимнее время.

6.1.3 После работ по расчистке просеки выполняют восстановление трассы:
- повторно разбивают пикетаж;
- восстанавливают угловые столбы, обозначают границы корчевки и спиливания пней, срезки кустарника и подроста.

Корчевку пней производят на насыпях высотой до 0,5 м, а также в местах расположения боковых карьеров и каналов. Параллельно проводят снятие растительного слоя.

6.1.4 На избыточно увлажненных участках дорог производят отвод воды в пониженные места и, по возможности, замену грунта.

6.1.5 До начала основных работ по сооружению земляного полотна необходимо выполнить работы по устройству:
- нагорных канал, валов, водосборных колодцев и других сооружений, предназначенных для перехвата и отвода от дорожной полосы ливневых, паводковых и талых вод;
- дренажей и прокладке различных коммуникаций в основании земляного полотна.

6.1.6 Земляное полотно сооружается в виде насыпи из местных грунтов, которые используют в местности I и II типа. При III типе местности при переувлажненных грунтах земляное полотно возводят из привозного материала (Таблица Б1 Приложение Б).
6.1.7 При III типе местности по увлажнению в нижние слои необходимо укладывать грунты с более высокой фильтрующей способностью (песчано-гравийная смесь, гравийный материал и т.п.).

6.1.8 Наиболее распространенным способом возведения насыпи является отсыпка грунта «от себя».

6.1.9 В случае переувлажненных грунтов, подготовительные работы (просушка, корчевка пней и снятие растительного слоя) производятся за 2–3 года до возведения земляного полотна. Кроме того, проводят устройство осушительных и нагорных каналов, устройство сланей и разбивку земляных работ.

6.1.10 Устройство осушительных и нагорных каналов производится сразу после корчевки пней и снятие растительного горизонта. Прежде всего, осушительные каналы должны быть сделаны на болотах, где не будут укладываться сланы. Осушительные каналы устраивают в грунтах при III типе местности. Глубина каналов 0,8–1,0 м, откосы 1:1,5 м, ширина бермы не менее 3,0 м.

6.1.11 Нагорные каналы делают на косогорах с верховой стороны земляного полотна. Подготовка косогоров производится с целью увеличения их устойчивости от оползания. При крутизне косогор: от 1:10 до 1,5 – снимают дерн и корчевателем вспахивают основание насыпи в 1–2 прохода; при крутизне от 1:5 до 1:3 косогор делают уступами; более 1:3 – необходимо устраивать подпорные стенки.

6.1.12 При строительстве дорог на болотах I и II типа при глубине торфа до 2,0 м в нижней части насыпи может найти применение нетканое геополотно или слань. Сланы рекомендуются укладывать зимой.

6.1.13 При сооружении земляного полотна в местности I и II типа ведущей машиной, как правило, является бульдозер, а в местности III типа-экскаватор.
6.1.14 Возведение насыпи из привозных грунтов осуществляется, как правило, в случае невозможности или нецелесообразности использования местных грунтов.

Технологический процесс возведения насыпи включает следующие рабочие операции:
- разработку и погрузку грунта экскаватором;
- подвозку грунта автосамосвалом, скрепером;
- разравнивание бульдозером;
- уплотнение грунта виброкатком;
- планировка верха и откосов земляного полотна автогрейдером.

6.1.15 Земляные работы в зимний период производят в сухих несвязных грунтах – песке, ПГС), в глубоких выемках, в сосредоточенных резервах.

Разработка грунтов должна осуществляться непрерывно, укладка грунта в земляное полотно и его уплотнение должно быть выполнено в течение 2–3 часов при температуре воздуха до -10⁰.

Грунт в насыпь укладывают слоями, толщина которых зависит от средств уплотнения. Зимой лучшее уплотнение дают решетчатые катки и трамбующие машины.

При отсыпке насыпей следует предусматривать запас на осадку, 3–5 % высоты насыпи (для местностей с резко континентальным климатом и 2–3 % с умеренным).

6.1.16 При возведении земляного полотна необходимо выполнять требования, изложенные в таблице 29.

<table>
<thead>
<tr>
<th>Конструктивный элемент, вид работ и контролируемый параметр</th>
<th>Значение нормативных требований</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Подготовка основания земляного полотна</td>
<td></td>
</tr>
<tr>
<td>1.1 Толщина снимаемого плодородного слоя грунта</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений в пределах до +/-40%, остальные - до +/- 20%</td>
</tr>
</tbody>
</table>

85
<table>
<thead>
<tr>
<th>1.2 Снижение плотности естественного основания</th>
<th>Не более 10% результатов определений могут иметь отклонения от проектных значений в пределах до 4%, остальные должны быть не ниже проектных значений</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Возведение насыпей и разработка выемок</td>
<td></td>
</tr>
<tr>
<td>2.1 Снижение плотности слоев земляного полотна</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений в пределах до 4%, а остальные должны быть не ниже проектных значений</td>
</tr>
<tr>
<td>2.2 Высотные отметки продольного профиля</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений в пределах до 20 мм; остальные - до 10 мм</td>
</tr>
<tr>
<td>2.3 Расстояния между осью и бровкой земляного полотна</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений в пределах до +/- 20 см; остальные - до +/- 10 см</td>
</tr>
<tr>
<td>2.4 Поперечные уклоны</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений в пределах от минус 0,010 мм до плюс 0,015 мм, остальные - до +/- 0,005</td>
</tr>
<tr>
<td>2.5 Уменьшение крутизны откосов</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений в пределах до 20%, остальные - до 10%</td>
</tr>
<tr>
<td>3 Устройство водоотвода</td>
<td></td>
</tr>
<tr>
<td>3.1 Увеличение поперечных размеров кюветов, нагорных и других канав (по дну)</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений в пределах до 10 см, остальные - до 5 см</td>
</tr>
<tr>
<td>3.2 Глубина кюветов, нагорных и других канав (при условии обеспечения стока)</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений в пределах до +/- 10 см, остальные - до +/- 5 см</td>
</tr>
<tr>
<td>3.3 Поперечные размеры дренажей</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений в пределах до +/- 10 см, остальные - до +/- 5 см</td>
</tr>
<tr>
<td>3.4 Продольные уклоны дренажей</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений в пределах до +/- 0,002, остальные - до +/- 0,001</td>
</tr>
<tr>
<td>3.5 Ширина насыпных берм</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений в пределах до +/- 30 см, остальные - до +/- 15 см</td>
</tr>
<tr>
<td>4 Устройство присыпных обочин</td>
<td></td>
</tr>
<tr>
<td>4.1 Снижение плотности грунта в обочинах</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений в пределах до 4%, остальные должны быть не ниже проектных значений</td>
</tr>
<tr>
<td>4.2 Толщина укрепления</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений в пределах от минус 22 до 30 мм, остальные - до +/- 15 мм</td>
</tr>
<tr>
<td>4.3 Поперечные уклоны</td>
<td>Не более 10% результатов определений могут иметь</td>
</tr>
</tbody>
</table>
6.1.17 В структуре лесных дорог существенное место занимают временные дороги. Временные дороги подразделяются дороги зимнего и летнего использования.

6.1.18 Изыскания по прокладке дорог для зимнего использования целесообразно выполнять зимой. Выполнение этой работы в зимних условиях позволяет находить наилучшие варианты дорог независимо от того, проходимы болота летом или нет. Кроме того, при выборе трассы в натуре можно легко установить степень подверженности местности заносам, глубину промерзания болот. Для зимних дорог ширину трассы выбирают с расчетом возможно большего затенения ее растущими деревьями от солнечных лучей, а также с учетом размещения снега при расчистке дороги.

6.1.19 Перед устройством земляного полотна необходимо выполнить работы по расчистке полосы трассы дороги от пней, снятию растительного слоя и водоотведению на переувлажненных участках.

Уровень воды в водоотводных каналах должен быть ниже поверхности канавы не менее чем на 0,15 м.

Все подготовительные работы необходимо выполнить до наступления отрицательных температур.

6.1.20 На временных дорогах земляное полотно, как правило, устраивается в нулевых отметках или же в небольших насыпях (до 0,35 м). На слабых грунтах, болотах и заболоченных участках устраивают выстилку из хвороста и сучьев или укладывают сплошной поперечный настил из древесины, который засыпают слоем привозного грунта. Насыпи и выемки могут

<table>
<thead>
<tr>
<th>обочин</th>
<th>отклонения от проектных значений в пределах от минус 0,010 до плюс 0,015, остальные - до +/- 0,005 (+/- 0,010) 2)</th>
</tr>
</thead>
</table>

Примечания
1. При отсыпке земляного полотна из скальных (крупнообломочных) грунтов этот показатель для оценки качества не используется.
2. Значения, приведенные в скобках, относятся к видам работ, выполняемым без автоматических систем выдерживания заданных высотных отметок и уклона для дорог категорий Iₕ-IIIₜ.
применяться на коротких участках при примыкании к ветке и при пересечении водотоков в пониженных местах.

6.1.21 Для устройства земляного полотна можно использовать все виды грунтов, за исключением ила, торфа и сильногумусированных глин и плывунов. Пылеватые грунты могут быть использованы в сухих местах с глубоким залеганием грунтовых вод.

Как правило, для возведения земляного полотна временных дорог используется грунт, получаемый при устройстве водоотводных канал.

6.1.22 Насыпи следует отсыпать из однородных грунтов горизонтальными слоями на всю ширину земляного полотна. Если однородность грунтов сохранить не удается, то необходимо следить за горизонтальностью укладки слоев с тем, чтобы не могли образоваться плоскости скольжения и грязевые мешки.

6.1.23 При уплотнении грунтов земляного полотна необходимо использовать высокоэффективные уплотняющие машины – виброкатки.

6.1.24 Уплотнение грунтов следует проводить при влажности, близкой к оптимальной. Выбор рациональной технологии уплотнения (толщина слоя, количество проходов по следу, масса и тип катка) следует устанавливать пробным уплотнением.

7.2.9 Рекомендуемая влажность грунтов при уплотнении приведена в таблице 30.

Таблица 30 – Рекомендуемая влажность грунтов при уплотнении

<table>
<thead>
<tr>
<th>Вид грунта</th>
<th>Влажность, в долях от оптимальной, при требуемом коэффициенте уплотнения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пески пылеватые</td>
<td>0,98–1,0</td>
</tr>
<tr>
<td>Не более 1,35</td>
<td>Не более 1,6</td>
</tr>
<tr>
<td>Супеси легкие</td>
<td>0,8–1,25</td>
</tr>
<tr>
<td>Супеси пылеватые, суглиники легкие</td>
<td>0,85–1,15</td>
</tr>
<tr>
<td>Суглинки тяжелые, глины</td>
<td>0,95–1,05</td>
</tr>
</tbody>
</table>
6.2 Строительство дорожных одежд

6.2.1 Строительство дорожных одежд необходимо выполнять в соответствии с СП 78.13330, СП 288.1325800 и настоящими методическими рекомендациями.

6.2.2 До начала устройства каждого слоя основания и покрытия следует проводить разбивочные работы по закреплению положения бровок и высотных отметок слоев. Разбивочные работы и их контроль следует проводить с использованием поверенных в установленном порядке геодезических инструментов.

6.2.3 Устройство слоев дорожной одежды в зимнее время разрешается только по земляному полотну, полностью законченному и принятому до наступления отрицательных температур, за исключением строительства в условиях вечной мерзлоты и при строительстве в две стадии.

6.2.4 Перед началом работ по устройству слоев дорожной одежды в зимнее время земляное полотно или нижележащий слой должны быть очищены от снега и льда на участке сменной захватки. В снегопад и метель работы по устройству дорожной одежды не допускаются.

6.2.5 Подбор составов смесей для устройства оснований и покрытий следует проводить в соответствии с требованиями соответствующих нормативных документов к этим материалам.

6.2.6 Используемые геосинтетические материалы (ГМ) должны соответствовать указанным в проекте характеристикам, а их укладка должна быть проведена согласно технологическим регламентам. (Приложение Д)

6.2.7 При строительстве дорожных одежд необходимо соблюдать требования, изложенные в таблице 31.
Таблица 31 – Основные нормативные требования при устройстве дорожной одежды

<table>
<thead>
<tr>
<th>Конструктивный элемент, вид работ и контролируемый параметр оснований и покрытий дорожных одежд</th>
<th>Значения нормативных требований</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Высотные отметки по оси</td>
<td></td>
</tr>
<tr>
<td>* Округление высотных отметок продольного профиля должно осуществляться до 0,001 м. Отклонения высотных отметок по оси покрытия допускаются только при условии обеспечения продольной ровности.</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений в пределах до +/- 20 мм (+/- 50 мм), остальные - до +/- 10 мм (+/- 25 мм).</td>
</tr>
<tr>
<td>** Отклонения высотных отметок по оси покрытия допускаются только при условии обеспечения продольной ровности.</td>
<td></td>
</tr>
<tr>
<td>2. Поперечные уклоны</td>
<td></td>
</tr>
<tr>
<td>3. Ширина слоя</td>
<td></td>
</tr>
<tr>
<td>3.1. Основания и покрытия асфальтобетонные, цементобетонные, мостовые и из каменных материалов и грунтов, обработанных вяжущими</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений до +/- 10 см, остальные - до +/- 5 см</td>
</tr>
<tr>
<td>4. Толщина слоя</td>
<td></td>
</tr>
<tr>
<td>4.1. Основания асфальтобетонные, цементобетонные</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений до +/- 10%, остальные - до +/- 5% (+/- 10%)</td>
</tr>
<tr>
<td>4.2. Основания и покрытия из каменных материалов и грунтов, обработанных вяжущими</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений до +/- 10%, остальные - до +/- 7% (+/- 10%)</td>
</tr>
<tr>
<td>4.3. Основания и покрытия из каменных материалов и грунтов, не обработанных вяжущими</td>
<td>Не более 10% результатов определений могут иметь отклонения от проектных значений до +/- 10%, но не более +/- 20 мм, остальные - до +/- 7%, но не более +/- 15 мм</td>
</tr>
<tr>
<td>5. Ровность (просвет под рейкой длиной 3 м) **</td>
<td></td>
</tr>
<tr>
<td>5.1. Основания и покрытия</td>
<td>Не более 5% результатов определений могут иметь значения просветов до 6 мм, остальные - до 3 мм</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>асфальтобетонные, цементобетонные, мостовые и из каменных материалов и грунтов, обработанных вяжущими</td>
<td></td>
</tr>
<tr>
<td>5.2. Все остальные виды покрытий, оснований и выравнивающих слоев</td>
<td>Не более 5% результатов определений могут иметь значения просветов под рейкой до 10 мм, остальные - до 5 мм</td>
</tr>
<tr>
<td>5.3. Превышение граней цементобетонных смежных плит в швах:</td>
<td>Не более 10% результатов определений могут иметь значения до 4 мм, остальные - до 2 мм</td>
</tr>
<tr>
<td>- покрытий</td>
<td>Не более 20% результатов определений могут иметь значения до 5 мм, остальные - до 3 мм</td>
</tr>
<tr>
<td>- оснований</td>
<td></td>
</tr>
<tr>
<td>6. Прямолинейность продольных и поперечных швов покрытия и основания</td>
<td>Не более 5% результатов определений могут иметь отклонения от прямой линии до 10 мм, остальные - до 5 мм</td>
</tr>
<tr>
<td>7. Ширина пазов деформационных швов</td>
<td>Не менее проектной, но не более 30 мм всех видов покрытий</td>
</tr>
</tbody>
</table>

Примечания

1. Значения, приведенные в скобках, относятся к видам работ, выполняемым без автоматических систем выдерживания заданных высотных отметок и уклона.
2. Применение средств механизации без автоматических систем выдерживания заданных высотных отметок и уклона допускается только при наличии технико-экономического обоснования и согласия заказчика. В этом случае контроль ровности в продольном направлении при приемке работ не выполняется.

6.2.8 Строительство дорожных одежд для дорог круглогодичного действия осуществляют в соответствии с СП 78.13330.

6.2.9 Для временных дорог применяются следующие типы покрытий:

- колейный настил из железобетонных плит;
- деревянные щиты;
- грунтовые, улучшенные скелетными добавками;
- снежно уплотненные;
- снежно ледяные;
- грунтовые.
6.2.10 Временные грунтовые дороги применяются при благоприятных грунтовых условиях в районах с преобладанием сухой погоды в теплые периоды года. Их строят в лесосеках с дренирующими или слабодренирующими грунтами (крупнообломочные, песчаные и супесчаные грунты), на плотных слабоувлажненных грунтах, на плотных глинистых грунтах, имеющих включения обломочных материалов. В первом случае дороги строят без водоотводных канав.

В районах с избыточным увлажнением и неблагоприятными климатическими условиями продолжительность нерабочего периода может достигать 60–70 дней в году. В целях повышения прочности и работоспособности грунтовых дорог необходимо:

- заблаговременно подготовить просеку;
- заблаговременно устроить продольные водоотводные каналы на недренирующих грунтах;
- уложить деревянные инвентарные щиты по колее для обеспечения проезда в особо неблагоприятный период.

Наиболее целесообразно строительство таких дорог осуществлять за год до начала разработки лесосек.

6.2.11 Грунт для насыпи используется при устройстве водоотводных каналов.

6.2.12 Уплотнение необходимо осуществлять виброкатками. После этого выполняется профилирование с придаением поперечного уклона 2–3 %.

6.2.13 После окончания разработки лесосеки, такая дорога может быть использована для лесохозяйственных целей и противопожарных целей.

6.2.14 Строительство зимних автомобильных дорог осуществляется двумя способами:

- расчисткой от снега и последующим уплотнением;
- послойного разравнивания снега с поливом водой.

92
6.2.15 Снежно-ледяные дороги в меньшей степени подвержены температурным колебаниям воздуха и обеспечивают пропуск большого объема грузоперевозок.

6.2.16 Технология строительства снежноуплотненных дорог предусматривает два варианта:

- уплотнением снежного покрова тонкими слоями;
- уплотнением предварительно перемешанного и разрыхленного снега (при мощном снежном покрове).

6.2.17 При первом способе строительства на хорошо промерзших грунтах целесообразно уплотнять снег толщиной не более 15 см. При выпадении снега на талую почву – не более 10 см.

6.2.18 При строительстве снежноуплотненных дорог по второму методу (уплотнение снежного покрова значительной толщины) снег первоначально необходимо перемешать, а затем уплотнить.

Перемешивание снега необходимо для достижения более равномерной плотности и прочности снежного покрытия по глубине. Максимальная толщина снежного покрова при этом способе строительства 60 см.

6.2.19 Технология строительства снежно-ледяных дорог состоит в последовательном разравнивании слоя снега и поливке его водой.

6.2.20 Первую поливку обычно начинают при достижении прочности поверхности дороги, позволяющей осуществлять проезд автомашины. При этом толщина промерзшего слоя должна быть не менее 8–12 см. При первых поливах следует обледенять полосу шириной около 3 м по оси проезжей части с целью создания ледяной подушки. При последующих поливах вода, растекаясь, образует ледяной покров на всю ширину проезжей части. Боковые стороны поливают позднее. В дальнейшем дорогу поливают на всю ширину проезжей части. Поливать дорогу следует с таким расчетом, чтобы к началу движения автопоездов вода успела замерзнуть. Наиболее благоприятно производить работы при температуре воздуха от -5° до -15° и умеренном ветре. При более высокой температуре медленно замерзает вода, а при низких
температурах ухудшаются условия льдообразования, затрудняется работа поливочных машин. Количество воды, выливаемое на единицу пути, регулируется скоростью движения поливомоечной машины и сечением сливного отверстия. При первичной поливке расход воды составляет 50 м³ на 1 км. Средний расход воды за сезон на устройство 1 км дороги со сплошным оленением 150–200 м³.

6.2.21 Систематическая поливка дороги позволяет к концу зимы создать снежно-ледяное покрытие толщиной 35–45 см, что дает возможность удлинить срок эксплуатации дороги в весенний период на 10–15 дней по сравнению с расчищенными автозимниками.

6.2.22 В районах, где имеется дефицит каменных материалов, для повышения проездаемости грунтовых дорог, в грунт добавляют некоторое количество каменного материала.

Добавка каменного материала осуществляется разными путями:
- транспортировкой каменного материала в расчетном количестве на проезжую часть с дальнейшим перемешиванием с грунтом автогрейдером и уплотнением виброкатком;
- россыпь каменного материала автоскрепером или пескоразбрасывателем по спрофилированной проезжей части и дальнейшим уплотнением виброкатком;
- транспортировкой песчано-гравийной смеси природного состава из карьера и устройством покрытия из этого материала.

6.2.23 В практике строительства временных дорог получило распространение устройство основания и покрытия дорог из отходов заготовки древесины — хворост (сучья, ветки, вершинная часть деревьев).

6.2.24 Покрытие из лесосечных отходов рекомендуется применять на слабых грунтах в сухих лесосеках, так как оно не обеспечивает устойчивой работы временных дорог в период увлажнения и в пониженных местах.

6.2.25 Толщина хворостяной выстилки, состоящей из сучьев и вершинной части, должна составлять 60–90 см. При уплотнении достигается
значительная осадка хворостяной выстилки. Среднее количество сучьев, веток
и вершинной части, идущей на устройство покрытия, составляет 12–15% от
среднего запаса древесины на гектаре. При строительстве дорог в лесосеках с
необеспеченным водоотводом хворостяная выстилка укладывается на
сплошной поперечный настил из вершинной части и дровяной древесины
диаметром 8–16 см.

6.2.26 Ширина настила 4,5–5,0 м. На сильно заболоченных участках
производится укладка продольных лаг, на которые укладывается поперечный
настил, а затем хворостяная выстилка.

6.2.27 В случае близости карьера с каменным материалом может
оказаться целесообразным устройство гравийного покрытия на хворостяной
выстилке. Практика показала, что такая конструкция может работать
длительное время и после освоения лесосеки будет служить для
лесохозяйственных и противопожарных целей.

6.2.28 Грунтогравийный материал может отсыпаться только на
уплотненную хворостяную подушку. В этом случае расход гравийных
материалов значительно сокращается. Толщина отсыпки грунтогравийного
слоя составляет в уплотненном состоянии 10–15 см. Расход на 1 км дороги
грунтогравия 500–700 м³. Ширина хворостяной выстилки 5–6 м. Ширина
проезжей части из грунтогравия 4 м. В местах разъездов делаются уширения –
хворостяная выстилка 8–9 м, проезжая часть из грунтогравия – 6 м.

6.2.29 Грунтогравийная смесь, уложенная на дренирующую прокладку из
лесосечных отходов, не водонасыщается и может успешно эксплуатироваться в
весенний и осенний периоды.

6.2.30 Использование железобетонных плит для колейных
автомобильных дорог значительно сокращает сроки строительства,
обеспечивает проезд автопоездов в любое время года и, практически, в любых
климатических и гидрогеологических условиях.

6.2.31 Опыт применения железобетонных плит позволил рекомендовать
следующие дорожные конструкции:
- укладка плит на спланированное грунтовое основание из дренирующих и недренирующих грунтов, без устройства водоотводных канав (тип местности по увлажнению I);

- укладка плит на земляное полотно, построенное из грунтов водоотводных канав (тип местности по увлажнению II);

- укладка плит на земляное полотно из привозного грунта, отсыпванного на хворостяную подушку (в местах с необеспеченным водоотводом и непригодными для укладки в земляное полотно грунтами).

6.2.32 Укладка плит осуществляется после окончания и приемки работ по подготовке основания. Перед началом укладки восстанавливают ось проезжей части дороги, затем размечают положение колесопроводов и укладывают плиты по шнуру. Положение плит второго колесопровода определяется по шаблону, который устанавливают между укладываемыми плитами.

6.2.33 Укладка плит осуществляется автокраном. В первую очередь укладывают плиту в тот колесопровод, внешняя кромка которого обозначена натянутым шнуром. Если при укладке плиты к основанию прилегают неплотно, то основание следует выправить, предварительно удалив плиту в сторону. После достижения требуемого качества основания плиту укладывают и стропы отцепляют. Второй колесопровод укладывается по шаблону. По ширине между колесопроводами отклонения при укладке не должны превышать 2 см в большую сторону и 1 см в меньшую.

6.2.34 Правильность положения плиты в продольном направлении проверяется трехметровой деревянной рейкой. Рейку кладут сразу на две плиты – на вновь уложенную и примыкающую к ней плиту в колесопроводе. При этом следят за тем, чтобы просвет под рейкой в любом месте колесопровода не превышал 0,5 см.

Аналогичная технология принята и при укладке деревянных щитов.

6.2.35 С целью ускорения темпов строительства и снижения их стоимости необходимо использовать технологию холодного восстановления старых покрытий, а также повышения прочности грунтовых дорог.
Принципиальная технология восстановления состоит в разрыхлении существующего материала покрытия или грунта с помощью высокопроизводительных фрез с добавлением органических или неорганических вяжущих. Темп строительства дорог по такой технологии составляет до 1 км в день при ширине полосы 2 м.

6.3 Строительство искусственных сооружений

6.3.1 Строительство искусственных сооружений необходимо осуществлять, руководствуясь указаниями СП 35.13330, СП 46.13330, а металлических гофрированных труб — указаниями [18] и настоящих методических рекомендаций.

6.3.2 При строительстве труб котлован под фундамент трубы разрабатывают, как правило, бульдозерами непосредственно перед устройством фундамента с соблюдением мер безопасности по осыпанию его стен. При расположении котлована трубы вблизи постоянно действующего водотока его следует отвести в сторону за пределы котлована.

6.3.3 При малых расходах воды и узком русле со стороны входного оголовка трубы устраивают запруду и пропускают воду по лотку или по временно уложенной трубе. При интенсивном притоке грунтовых вод или неустойчивых грунтах и длине котлована более 15—18 м выемку грунта и устройство фундаментов производят посекционно.

6.3.4 Для сохранения во время эксплуатации уклона трубы, предусмотренного проектом, поверхности фундамента придают строительный подъем, величиной которого учитывают возможные осадки. Величину строительного подъема основания ориентировочно можно принимать в \(\frac{1}{80} \) высоты насыпи при отсыпке ее из плотного песка, гравия, гальки, а также глин и суглинков в твердом состоянии и в \(\frac{1}{40} \) высоты насыпи, состоящей из супесей и песков средней плотности, пластичных глин и суглинков.

6.3.5 Устройство основания производится после освидетельствования и приемки котлована. Основание трубы в виде песчаной, щебеночной или
гравийной подушки отсыпают послойно с тщательным разравниванием и уплотнением.

6.3.6 Сборные блоки фундаментов перед монтажом должны быть очищены от грязи. Установку блоков ведут посекционно в направлении от выходного оголовка трубы к входному. Каждый блок или ряды блоков в пределах секции надо укладывать горизонтально и выравнивать по наружным граням. Блоки укладывают на слой цементного раствора в проектное положение, дополнительная подливка раствора под блок и его смещение после схватывания раствора толщиной 1–2 см не допускается. Уступы в рядах по высоте не должны превышать 10 мм. После укладки каждого ряда блоков вертикальные швы заливают цементным раствором, затем кладут слой раствора горизонтальных швов для укладки последующего ряда блоков.

6.3.7 При устройстве бесфундаментных труб на грунтовых подушках котлованы (траншеи) следует заполнять дренирующим грунтом слоями по 20–30 см и уплотнять механизмами виброударного и вибротрамбующего действия или катками.

6.3.8 Сборку надфундаментной части трубы начинают с установки открылков выходного оголовка, затем монтируют звенья трубы в направлении к входному оголовку и после их укладки открылки входного оголовка. Перед началом монтажа строповочные петли в торцах звеньев трубы должны быть срезаны вровень с поверхностью бетона. Строповка звеньев в процессе монтажа производится скобами, универсальными стропами или траверсами. Стыки между звеньями, величина которых строго выдерживается по проекту (обычно 1–1,5 см), по внешнему контуру очищают и просушивают, затем заполняют пропитанной в битуме паклей и заливают битумом. Все гидроизоляционные работы следует выполнять в сухую погоду при температуре воздуха не ниже + 5° C.

6.3.9 Засыпку готовой трубы производят после освидетельствования качества и проверки соответствия проекту выполненных работ по возведению конструкций, засыпаемых грунтом, и устройству гидроизоляции. Засыпка труб
производится тем грунтом, из которого выполняется насыпь: при низких насыпях — до проектной отметки земляного полотна, одновременно с обеих сторон трубы, при высоких насыпях — в две очереди. Сначала засыпают участок насыпи шириной не менее 4 м в каждую сторону от трубы и на высоту не менее 2 м над верхней ее поверхностью. Отсыпку ведут одновременно и равномерно с обеих сторон трубы с тщательным трамбованием каждого слоя, толщина которого должна быть не более 20 см. Толщина грунтового слоя над трубой должна быть не менее 1 м.

6.3.10 Уплотнять грунт в непосредственной близости от трубы необходимо ручным механизированным или легким навесным инструментом. Нельзя уплотнять грунт тяжелыми трамбовочными машинами ударного действия на расстоянии от боковых стенок трубы менее 3 м и при высоте засыпки над трубой менее 2 м. Во вторую очередь отсыпают остальную часть насыпи над трубой. Последовательность работ, толщина слоев и способы уплотнения зависят от общей технологии отсыпки земляного полотна на данном участке работ.

6.3.11 При засыпке трубы необходимо обеспечить сохранность гидроизоляции. Если отсыпка тела насыпи производится скальными грунтами или грунтами с большим включением камней крупностью более 10 см, то во избежание механических повреждений трубу сначала засыпают на высоту не менее 50 см песчаным или глинистым грунтом. Ширина этой засыпки поверху с каждой стороны трубы должна быть не менее ширины трубы плюс 0,5 м.

6.3.12 При строительстве деревянных труб для удлинения срока их службы древесину нужно антисептировать. Если элементы труб не антисептируются, то соединения, врубки и наружные поверхности труб следует покрывать битумом или антисептической пастой. Кроме того, обшивку с наружной стороны изолируют мятой глиной толщиной 10 см или слоем грунта, пропитанного битумом. Вокруг трубы отсыпка земляного полотна производится из дренирующих грунтов.
6.3.13 При устройстве монолитного фундамента в зимнее время необходимо применять жесткие смеси, приготавливаемые на быстротвердеющем цементе с пластифицирующими добавками.

После этого фундамент защищают от охлаждения и замерзания тепляками, обогреваемыми горячим воздухом, электричеством или паром.

6.3.14 При монтаже железобетонных труб запрещается укладка звеньев труб «насухо». Во всех случаях должна быть предусмотрена подготовка из цементного раствора марки 150 с водоцементным отношением не выше 0,65 при глубине погружения конуса 6–8 см.

6.3.15 Монтаж металлических гофрированных труб и устройство дополнительного защитного покрытия должны быть выполнены в соответствии с требованиями [18].

Чтобы повысить несущую способность гофрированной трубы и надежность ее работы, рекомендуется до засыпки придать ее поперечному сечению овальность с большей осью по вертикали, увеличив вертикальный диаметр до 3 % номинального, путем закрепления сечения стойками или путем устройства жесткого слоя засыпки.

6.3.16 На автомобильных дорогах IIIₐ и IVₐ категорий в качестве водопропускных труб допускается применять некондиционные толстостенные металлические трубы.

6.3.17 Материал для укрепления подводящих и отводящих русел (дерн, мох, торф, бутовый камень и бетонные плиты) заготавливают и завозят к месту строительства заблаговременно, а укрепительные работы проводят в весенний период до начала таяния грунта основания.

6.3.18 Технология строительства моста определяется выбором типа его конструкции. Конструкции определяется задачами и условиями, которые стоят перед проектировщиками. Большинство современных мостов имеют следующие типы пролетов: балочные, арочные и подвесные.
6.3.19 При строительстве деревянных мостов глубину забивки свайных опор (отдельных свай) определяют расчетным отказом, она должна быть не менее 4 м с учетом возможного размыва русла.

6.3.20 При невозможности забивки свай на суходолах и пойменных участках рек (без ледохода) при низком уровне воды, позволяющем отрывку котлованов без устройства шпунтового ограждения применяют рамно-лежневые опоры. Изготовление и сборку рам следует производить в стационарных условиях.

6.3.21 Ряжевые опоры собирают из брусьев с обзолом, а при их отсутствии — из бревен, обработанных по всей длине на два канта до постоянной толщины.

Для предохранения ряжей от подмыва по их внешнему периметру предусматривают отсыпку из камня на высоту 0,5–0,8 м. Для создания лучшей обтекаемости опор каменной отсыпке придают заостренную форму в плане.

6.3.22 Пролетные строения собирают без устройства строительного подъема, верх прогонов при укладке должен находиться в одной плоскости. Применение для выравнивания прогонов различного рода подкладок не допускается.

6.3.23 В процессе строительства деревянных мостов следует контролировать:
- соответствие применяемых материалов проекту;
- размеры отдельных элементов, их соединений и отсутствие зазоров, трещин, сколов и т.д.;
- качество антисептирования элементов, узлов, врубок, сопряжений свай, непроветриваемых плоскостей и торцов, отверстий для болтов и штырей;
- выполнение предусмотренных проектом конструктивных мер, обеспечивающие их просыхание, проветривание и защиту конструкций от увлажнения.

6.3.24 Технология строительства железобетонных мостов включает:
- разгрузку элементов, прибывающих на строительную площадку;
- подготовку элементов к монтажу;
- подготовку фундаментов и опор к установке элементов;
- подача элементов к монтажному крану;
- установку, выверку и временное закрепление элементов;
- окончательное закрепление элементов и омоноличивание монтируемой конструкции.

6.3.25 Монтаж сборных опор (при строительстве малых мостов) осуществляется автомобильным краном с береговой площадки. В случае необходимости устраивают специальные подъезды для автокрана. При глубокой воде водотока, работы ведутся краном, установленным на барже или на понтоне.

6.3.26 Монтаж свайных опор заключается в установке на головы свай блоков насадок с последующим омоноличиванием насадок со сваями.

6.3.27 Монтаж стоек опор включает:
- установку стоек в гнезда, оставляемых в фундаменте опоры, или в подколенники (стаканы) на верхнем обрезе фундамента;
- установку блоков ригелей (насадок) и омоноличивание всей конструкции.

После установки в гнезда фундаментов стоек их раскрепляют деревянными клиньями и при высоте более 8 м расчаливают тросами, с помощью которых затем придают стойке вертикальное положение.

6.3.28 Монтаж сборных железобетонных балочно-разрезных ребристых и плитных пролетных строений ведут автокранами, для которых должна быть оборудована площадка и подходы к ней, обеспечивающих безопасное ведение работ.

6.3.29 После установки балок пролетного строения производят омоноличивание сборных балочно-разрезных пролетных строений и устройство проезжей части. Омоноличивание бетоном продольных швов производят, предварительно соединяя по швам поперечные выпуски арматуры в плитах соседних балок.
6.3.30 После омоноличивания приступают к устройству проезжей части, сточного треугольника, установке тротуарных блоков и перил.

После сборки элементов-блоков перил, проверки их в профиль и в плане стойки монолитно связывают с тротуарами, приваривая закладные части и укладывая в гнезда бетонную смесь.

6.3.31 В устройство проезжей части с гидроизоляцией входят:
- установка водоотводных трубок;
- устройство деформационных швов;
- укладка гидроизоляционных слоев;
- устройство защитного слоя;
- установка бордюрного камня;
- устройство тротуаров.

6.3.32 При строительстве металлических мостов выполняют следующие виды работ:
- подготовительные;
- монтаж пролетных строений собирают вблизи моста, а затем перемещают и устанавливают на опоры;
- контроль выполненных работ.

6.4 Охрана окружающей среды при строительстве дорог

6.4.1 При проведении работ по строительству автомобильных дорог и искусственных сооружений необходимо:
- обеспечить сохранение или улучшение существующего ландшафта, защиту почв, растительности и животного мира;
- обеспечить рекультивацию земель, временно используемых для размещения применяемых при строительстве оборудования, материалов, подъездных путей, территории карьеров и других зон деятельности;
- обеспечить повышение устойчивости земляного полотна на оползневых участках, создание благоприятных условий для дальнейшего использования земель, временно изымаемых под строительство;
- осуществить защиту поверхностных и грунтовых вод от загрязнения дорожной пылью, горюче-смазочными материалами, обспыливающими, противогололедными и другими химическими веществами, используемыми во время строительства;

- разработать мероприятия по предупреждению и снижению загрязнения атмосферного воздуха выбросами пыли и отработавшими газами, а также защиту от шума, вибрации, электромагнитного загрязнения населения, проживающего в непосредственной близости от строящегося участка автомобильной дороги;

- обеспечить контроль за радиационным уровнем используемых строительных материалов;

- обеспечить во время строительства уборку бытового мусора и других загрязнений, включая отходы строительного производства на временных площадках, расположенных в полосе отвода;

- восстановить естественное течение проточных водоемов и обустроить стоячие водоемы.

6.4.2 Основные виды негативного влияния процесса строительства на окружающую среду и возможные пути решения проблем изложены в таблице 32.

Таблица 32 - Основные виды негативного влияния процесса строительства на окружающую среду и возможные пути решения проблем

<table>
<thead>
<tr>
<th>Виды предполагаемых воздействий</th>
<th>Возможные меры по исключению или смягчению воздействия</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вырубка деревьев, корчевка пней и транспортировка в места складирования</td>
<td>Расчистку дорожной полосы и площадей для дорожных сооружений выполняют строго в отведенных границах. Складирование леса, порубочных остатков, материалов, оставшихся после разборки сооружений по краям полосы отвода, допускается только на период выполнения расчистки, до вывоза в специально отведенные проектом места.</td>
</tr>
<tr>
<td>Расчистка полосы отвода и снятие почвенного слоя может привести к усилению эрозии и дефляции грунтовой</td>
<td>Снятие подлежит плодородный грунт по всей площади, ограниченной внешними контурами земляного полотна и других</td>
</tr>
<tr>
<td>поверхности, переносу грунта, нарушению структуры биогеоценоза</td>
<td>дорожных сооружений. Толщина снимаемого слоя задается проектом</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>На вырубках в полосе землеотвода при неглубоком уровне грунтовых вод в благоприятствующих для этого геоморфологических условиях активизируются процессы заболачивания</td>
<td>Рекомендуется предусматривать водоотводные и водопропускные сооружения, гарантирующие улучшенные условия для строительства и эксплуатации автомобильной дороги.</td>
</tr>
<tr>
<td>Разработка котлованов и траншей, перемещение, укладка грунта и других материалов при возведении земляного полотна, транспортировка грунта самосвалами, устройство подстилающих слоев и оснований дорожных одежд;</td>
<td>При транспортировке грунта самосвалами грунт должен быть накрыт тентом. При разравнивании грунта в процессе возведения насыпи при необходимости грунт дополнительно увлажняют. Аналогично необходимо поступать и при разравнивании песчаного подстилающего слоя и других дисперсных материалов</td>
</tr>
<tr>
<td>Загрязнение почвы нефтепродуктами в результате проливов, протечек (сливов, смывов с дорожной полосы и испарения) горючесмазочных материалов при заправке, эксплуатации, обслуживании техники</td>
<td>Дорожно-строительные машины должны быть технически исправны и не допускать протечек. В случае повреждения оборудования загрязненное место должно быть удалено и складировано в контейнер для отходов</td>
</tr>
<tr>
<td>Заболачивание (изменение водного режима земель из-за необеспеченностн водоотвода или поднятия грунтовых вод)</td>
<td>При строительстве насыпей через болото с поперечным (по отношению к трассе дороги) движением воды в водонасыщенном горизонте, предусматривают мероприятия, исключающие увеличение уровня воды и площади заболачивания в верховой части болота, путем отсыпки насыпи или ее нижней части из дренирующих материалов; устройства вдоль земляного полотна продольных канал, а в пониженных местах, если это необходимо, - искусственных сооружений.</td>
</tr>
<tr>
<td>Строительство мостовых переходов вызывает переформирование береговой линии, изменение сечения водотока и контуров водоема, при этом нарушается гидрологический режим, проявляются размывы и потеря общей устойчивости массива, одновременно зачастую возникает необходимость охраны рыбных запасов, так как могут быть уничтожены нерестилища и зимовальные ямы, в которые ежегодно устремляются косаки рыбы</td>
<td>В случае значительного изменения гидрологического режима необходимо дополнительно выполнить работы по восстановлению сечения водотока, при необходимости укрепить береговые конуса мостов. В период массового нереста, выклева личинок и ската молоди рыб, работы в пределах акватории, а также перемещения по воде работы необходимо прекратить и принять меры по снижению шума</td>
</tr>
</tbody>
</table>
строительных машин и механизмов, работающих на берегах реки;
Для ограждения котлованов при сооружении русловых опор больших мостов предпочтительно применять инвентарные металлические перемычки из понтонов типа КС;
В целях уменьшения стеснения реки и снижения взмучиваемости потока при устройстве песчаных островков и котлованов под опоры целесообразно применять шпунтовые ограждения. При устройстве свайных оснований под опоры целесообразно применять буровые и бурообсадные сваи или столбы; вибропогружение свай, а при наличии шпунтового ограждения котлована — погружение свай с подмывом.
Извлекаемый из котлована, опускного колодца или свайных оболочек грунт вывозят для использования в насыпях подходов к мосту и регуляционных сооружений или складируют за пределами пойменных и водоохранных зон.

<table>
<thead>
<tr>
<th>Устройство насыпей и выемок в заболоченной местности вызывает изменение системы питания болота и изменение уровня грунтовых вод по сторонам насыпи;</th>
<th>Перед возведением насыпи необходимо обеспечить водоотвод от дороги на расстояние, позволяющее понизить уровень грунтовых вод. При устройстве вертикальных дрен необходимо использовать дренирующие материалы с высокой фильтрующей способностью. (Коэффициент фильтрации рекомендуется принимать не менее 5м/сут)</th>
</tr>
</thead>
</table>
Устройство насыпей и выемок в горной местности приводит к активации оползневых процессов, осыпи и изменению гидрологического режима (стока)

<table>
<thead>
<tr>
<th></th>
<th>До начала основных работ по строительству дороги необходимо провести весь комплекс защитных мероприятий. Перед строительством противообвальных сооружений с верхней части горных склонов и откосов должны быть удалены камни и неустойчивые глыбы скальных грунтов. При циклическом характере оползневых и обвальных процессов на склоне строительство защитных сооружений следует осуществлять в период относительной стабильности склона. При ведении работ на склонах нагорные канавы и отражающие валы для отвода поверхностных вод должны быть устроены до начала работ по возведению насыпей и разработке выемок. Для предотвращения обрушения грунта с откоса и обеспечения устойчивости насыпи на горном склоне нарезка уступов должна производиться с верхнего уступа с перемещением грунта вниз по склону. В необходимых случаях для обеспечения устойчивости склонов следует использовать геоматериалы.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Регулирование русла у мостовых переходов вызывает эрозию берегов и изменение сечения русла.</td>
<td>По возможности: следует избегать устройства временных опор и подмостей в русле реки. Отвод, обвалование или преграждение русел на время строительства водопропускного сооружения на водотоках (водоемах), используемых в рыбохозяйственных целях, допускается только с разрешения органов рыбоохраны.</td>
</tr>
</tbody>
</table>
Автомобильная дорога-материоемкое сооружение и площадь загрязнения прилегающей территории отходами от строительства (асфальт, песок, щебень и т.п.) также весьма значительна. Это вызывает разрушение почвенного слоя, нарушает продольный водосток и ухудшает внешний вид.

Взвешенные минеральные частицы, попадающие в водотоки при перепланировке береговой линии, при работе строительной техники в руслах и на берегах рек, ухудшают качество воды, оказывают негативное влияние на динамику численности популяции гидробионтов, как следствие нарушаются биотические связи в водном сообществе. При оседании минеральных частиц обширная зона вдоль берегов покрывается осадком, в результате этого разрушаются сложившиеся биотопы, цикличность размножения зоопланктона, наблюдается гибель организмов на личиночной стадии развития.

| Автомобильная дорога-материоемкое сооружение и площадь загрязнения прилегающей территории отходами от строительства (асфальт, песок, щебень и т.п.) также весьма значительна. Это вызывает разрушение почвенного слоя, нарушает продольный водосток и ухудшает внешний вид. Взвешенные минеральные частицы, попадающие в водотоки при перепланировке береговой линии, при работе строительной техники в руслах и на берегах рек, ухудшают качество воды, оказывают негативное влияние на динамику численности популяции гидробионтов, как следствие нарушаются биотические связи в водном сообществе. При оседании минеральных частиц обширная зона вдоль берегов покрывается осадком, в результате этого разрушаются сложившиеся биотопы, цикличность размножения зоопланктона, наблюдается гибель организмов на личиночной стадии развития. | Для защиты придорожной территории от загрязнения дорожной пылью, горюче-смазочными материалами, обезспыливающими, противогололедными и другими химическими веществами, используемыми во время строительства необходимо принимать меры, способствующие снижению вредного воздействия на окружающую среду. Ограждение строительных площадок с упорядочением отвода поверхностного стока по временной системе открытых лотков, осветлением его на 50–70% в отстойниках и последующим сбросом на рельеф местности или дальнейшей очисткой; В случае значительных засорений водотоков отходами при строительстве рекомендуется строить очистные сооружения простейшего типа: пруды-отстойники или каскадного типа с использованием габионов и биофильтров. При невозможности достигнуть требуемой степени очистки простейшими очистными сооружениями, проектируются очистные сооружения модульного типа. |
| При строительстве дорог на болотах отмечается гибель мохового покрова, исчезновение ряда болотных видов и появление рудеральных, а также корневищных гидрофильтных растений (хвощей, вейниковых, пушицы). | Необходимо принимать меры по снижению пылеобразования во время строительства |
| Строительство автодорог затрагивает территорию местообитаний животных, их кормовые угодья. Животные испытывают факторы беспокойства (шум, вибрация, свет от работающей транспортно-строительной техники). В ходе сооружения дороги возникают барьерные факторы, препятствующие свободной их миграции к местам временного и постоянного обитания, что затрудняет обмен генофонда и поиск кормовых ресурсов. | При строительстве автомобильных дорог необходимо:
- в целях сохранение путей миграции устраивать искусственные сооружения для организованного прохода скота и диких животных;
- для организованного прохода животных с обеих сторон прохода устанавливают заградительные сетки высотой 2–2,5 м на расстоянии не менее 500 м от прохода с обеих сторон. Сетки должны быть оборудованы отпугивающими устройствами (катафотами, сигнальными лампами, звуковыми сигналами и др). |
| Возможные воздействия автомобильной дороги на геологическую среду, почвенный покров и земли могут проявиться в изменении стабильности грунтовых масс, сопротивляемости эрозии, плодородия почвенного покрова, проявлении неблагоприятных экзогенных процессов - разработка карьеров и резервов для получения грунта, песка, гравия вызывает очаги эрозии, оползни, местное изменение стока, нарушение связей и единства биогеоценоза; | Сокращение, по возможности, площади земель, занимаемых под карьеры и резервы за счет увеличения числа и высоты уступов при разработке вскрышных пород. Глубина карьеров и резервов устанавливается с учетом прогноза изменения гидрогеологических условий прилегающих территорий и направления рекультивации нарушенных земель. В сухую и теплую погоду для снижения пылевыделения производят гидроорошение мест разработки. При дроблении, сортировке, очистке каменных материалов места наибольшего пылевыделения (места загрузки, разгрузки, выдачи материала на конвейер, грохот, дробилки, конвейеры) изолируют укрытиями. После окончания разработки карьера производят рекультивацию |
| Основное возможное воздействие на подземные воды при производстве строительно-монтажных работ связано с сооружением земляного полотна и искусственных сооружений, что вызывает изменение и перераспределение поверхностного и в меньшей степени подземного стока, условий увлажнения грунтов на прилегающей к дороге | Не разрешается сброс сточных вод и (или) дренажных вод в водные объекты: - содержащие природные лечебные ресурсы; - отнесенные к особо охраняемым водным объектам. Не разрешается сброс сточных вод и (или) дренажных вод в водные объекты, расположенные в границах: |
территории.
- зон санитарной охраны источников питьевого хозяйственно-бытового водоснабжения;
- первой, второй зон округов санитарной (горно-санитарной) охраны лечебно-
оздоровительных местностей и курортов;
- рыбоохранных зон, рыбохозяйственных заповедных зон, участков массового
нереста, нагула рыбы и расположения зимовальных ям.

Работа дорожно-строительной техники (кranы, автопогрузчики, передвижные
компрессоры, экскаваторы, катки, автогудронаторы и пр.) несмотря на
временной характер воздействия на окружающую среду (зывает от
продолжительности строительства (ремонта) дороги) способствует:
- выделению загрязняющих веществ с отходящими газами;
- загрязнению почвы нефтепродуктами в результате проливов, протечек (сливов,
смывов с дорожной полосы и испарение) горючесмазочных материалов при заправке,
эксплуатации, обслуживании техники;
- появлению шума, создаваемого
работающей техникой (оборудованием);
- образованию пыли при движении
транспорта и при транспортировке
строительных материалов.

Параметры применяемых машин,
оборудования, транспортных средств в
части состава отработавших газов, шума,
вибрации и др. воздействий на
окружающую среду в процессе
эксплуатации должны соответствовать
установленным стандартам и техническим
условиям предприятия-изготовителя,
согласованным с санитарными органами.
Определяющим условием минимального
загрязнения атмосферы отработавшими
газами дизельных двигателей дорожных
машин и оборудования является правильная
эксплуатация двигателя, своевременная
регулировка системы подачи и ввода
топлива.
При проведении технического
обслуживания дорожных машин следует
особое внимание уделять контрольным и
регулировочным работам по системе
питания, зажигания и
gазораспределительному механизму
двигателя. Эти меры обеспечивают полное
сгорание топлива, снижают его расход,
значительно уменьшают выброс токсичных
веществ.
При необходимости снижения уровня шума
dорожных машин следует применять
следующие меры:
- технические средства борьбы с шумом
(применение технологических процессов с
меньшим шумообразованием и др.);
- защитные акустические устройства
(шумоизоляцию, ограждения, специальные
помещения для источников звука и др.);
- организационные мероприятия (выбор режима работы, ограничение времени работы и др.);
- применять защитные кожухи и капоты с многослойными покрытиями, применением резины, поролона и т.п. За счет применения изоляционных покрытий и приклейки виброизолирующих матов и войлока шум можно снизить на 5 дБА. Для изоляции локальных источников шума следует использовать противошумные экраны, завесы, палатки. Помещение передвижного компрессора ДК-9М в звукопоглощающую палатку снижает шум на 20 дБА.
Заправка автомобилей, тракторов и др. самоходных машин топливом и маслами должна производиться на стационарных или передвижных заправочных пунктах в специально отведенных местах, удаленных от водных объектов. Заправка стационарных машин и механизмов с ограниченной подвижностью (экскаваторы и др.) производится автозаправщиками. Заправка во всех случаях должна производиться только с помощью шлангов, имеющих затворы у выпускного отверстия. Применение для заправки ведер и др. открытой посуды не допускается. На каждом объекте работы машин должен быть организован сбор отработанных и заменяемых масел с последующей отправкой их на регенерацию. Слив масла на растительный, почвенный покров или в водные объекты запрещается

| Кроме добычи каменных материалов, песка и других материалов, в карьерах, как правило, осуществляется переработка каменного материала на шебень, приготовление асфальтобетонных смесей, эмульсий и других материалов, что способствует дополнительному источнику выделения вредных веществ окружающую среду. | Основным негативным фактором при дроблении каменного материала является шум и пыль. Наиболее эффективным мероприятием для снижения вредного воздействия на окружающую среду является устройство навесных сооружений легкого типа. Для пылеподавления может быть использовано орошение. При приготовлении асфальтобетонных смесей, предназначенных для устройства |
верхних слоев покрытия, в качестве добавок поверхности активных веществ (ПАВ) рекомендуется использовать менее токсичные анионактивные вещества.

<table>
<thead>
<tr>
<th>Основные источники шума в карьере:</th>
<th>Для снижения шумового воздействия от:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- буровые станки, экскаваторы,</td>
<td>- буровых станков необходимо место бурения</td>
</tr>
<tr>
<td>камнерезные машины и д;</td>
<td>ограждать переносными ограждающими</td>
</tr>
<tr>
<td>- карьерные автодороги;</td>
<td>конструкциями;</td>
</tr>
<tr>
<td>- стационарные дробильные агрегаты и</td>
<td>- взрывов следует использовать</td>
</tr>
<tr>
<td>установки для грохочения, транспортеры и</td>
<td>мелкошпуровые заряды.</td>
</tr>
<tr>
<td>др.;</td>
<td></td>
</tr>
<tr>
<td>- автосамосвалы;</td>
<td></td>
</tr>
<tr>
<td>- взрывы.</td>
<td></td>
</tr>
</tbody>
</table>
7 Эксплуатация

7.1 Требование к транспортно-эксплуатационному состоянию дорог

7.1.1 К основным транспортно-эксплуатационным показателям лесных дорог относятся: обеспеченная скорость, непрерывность, безопасность движения, способность пропускать автомобили и автопоезда с осевой нагрузкой, общей массой и в заданном объеме, соответствующими категориям дороги.

7.1.2 Нормативные значения транспортно-эксплуатационных показателей дорог достигаются за счет соблюдения проектных решений и должны быть поддержаны в течение эксплуатационного периода.

7.1.3 Лесные дороги должны обеспечивать возможность безопасного движения автомобилей при благоприятных погодных условиях с максимальными скоростями близкими к расчетным соответствующей категории. В неблагоприятных погодно-климатических условиях допускается снижение обеспечиваемой максимальной скорости по отношению к расчетной, но не ниже значений, приведенных в таблице 33.

Таблица 33 – Допустимые значения обеспеченной скорости движения

<table>
<thead>
<tr>
<th>Категория дороги</th>
<th>Допустимые значения обеспеченной в процессе эксплуатации скорости движения, км/ч</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>На участках пересеченной местности</td>
</tr>
<tr>
<td></td>
<td>Благоприятные</td>
</tr>
<tr>
<td>I₃</td>
<td>50</td>
</tr>
<tr>
<td>II₃</td>
<td>40</td>
</tr>
<tr>
<td>III₃</td>
<td>40</td>
</tr>
<tr>
<td>IV₃</td>
<td>30</td>
</tr>
</tbody>
</table>
7.1.4 Оценка безопасности дорожного движения производится по коэффициенту безопасности и коэффициенту относительной аварийности. Величина коэффициентов безопасности движения приведена в таблице 34.

Таблица 34 – Величины показателей по степени аварийности

<table>
<thead>
<tr>
<th>Показатели безопасности движения</th>
<th>Величины показателей по степени аварийности</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Неопасный</td>
</tr>
<tr>
<td>Коэффициент безопасности</td>
<td>Более 0,8</td>
</tr>
<tr>
<td>Коэффициент относительной аварийности</td>
<td>Менее 0,3</td>
</tr>
</tbody>
</table>

7.1.5 Безопасность движения автомобилей по мостам, путепроводам, тоннелям и наплавным мостам считается обеспеченной, если их габариты и состояние покрытия соответствуют показателям категории дороги, а ограждения соответствуют техническим требованиям и находятся в исправном состоянии.

7.1.6 Технические требования к элементам дорог должны соответствовать показателям, приведенным в таблицах 8 и 26.

7.1.7 Прочность дорожной одежды необходимо оценивать коэффициентом запаса прочности, который представляет собой отношение фактической прочности (фактического модуля упругости) к требуемой прочности (требуемого модуля упругости) для данной нормативной нагрузки и интенсивности движения. Требуемый модуль упругости и коэффициент запаса прочности должен быть принят в соответствии с [16].

7.1.8 Для дорожных одежд с цементобетонными покрытиями прочность необходимо оценивать в соответствии с «Методические рекомендации по проектированию жестких дорожных одежд» [17].

7.1.9 Дорожные одежды капитального типа должны иметь прочность, обеспечивающую в расчетный период беспрепятственный пропуск
автомобилей с осевой нагрузкой 115 кН, облегченного и переходного типа – 100 кН. Мостовые сооружения должны соответствовать классу нагрузки А 14.

7.1.10 Обочины дороги должны обеспечивать заезд и остановку автомобилей без существенных деформаций и разрушения и иметь уклоны, способствующие быстрому отводу поверхностных вод.

7.1.11 В зимний период не допускается возвышение обочин с уплотненным слоем снега над проезжей частью толщиной более 3 см.

7.1.12 Не допускаются снежные валы перед дорожным ограждением высотой более 15 см.

7.1.13 Состояние покрытия проезжей части дорог по ровности оценивается коэффициентом ровности, представляющим собой отношение предельно допустимых значений ровности к фактическому. Покрытие по ровности удовлетворяет условиям эксплуатации, если коэффициент ровности больше 1. Предельно допустимые значения ровности приведены в таблице 35.

Таблица 35 — Значения предельно допустимой ровности покрытия

<table>
<thead>
<tr>
<th>Категория дороги</th>
<th>Тип дорожной одежды</th>
<th>Предельно допустимое состояние покрытия по ровности</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Количество просветов под 3-метровой рейкой, %</td>
</tr>
<tr>
<td>I на</td>
<td>Капитальный</td>
<td>8</td>
</tr>
<tr>
<td>II на</td>
<td>Капитальный</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Облегченный</td>
<td>12</td>
</tr>
<tr>
<td>III на</td>
<td>Облегченный</td>
<td>14</td>
</tr>
<tr>
<td>IV на</td>
<td>Переходный Низший</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

7.1.14 Сцепные качества покрытий характеризуются коэффициентом сцепления, который определяется как отношение фактического коэффициента продольного сцепления к допустимому значению по условиям безопасности движения. Покрытие по сцеплению соответствует требованиям безопасности движения, если коэффициент сцепления больше или равен 1.

Коэффициент сцепления не должен быть меньше 0,4 при скорости движения 60 км/час и 0,45 на опасных участках.
7.1.15 В зимний период с целью обеспечения нормативного значения коэффициента сцепления проезжую часть необходимо посыпать абразивным материалом (песком с солью, отходами от дробления каменных материалов и т.п.).

7.1.16 На покрытии проезжей части дорог Iₐ, IIₐ категории не допускается образование колей глубиной более 35 мм, на дорогах IIIₐ категории — более 45 мм, на дорогах IVₐ категории — более 55 мм.

7.1.17 На покрытии проезжей части не допускается наличие выбоин, проломов и просадок с размерами по длине, ширине и глубине более, чем 15-60-5 см, а количество более мелких повреждений и дефектов в весенне-летне-осенний периоды менее значений, приведенных в таблице 36 [21].

Таблица 36 — Допустимые значения параметров дефектных мест

<table>
<thead>
<tr>
<th>Показатели состояния конструктивных элементов дорог</th>
<th>Допустимые значения параметров для дорог категорий</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Iₐ</td>
</tr>
<tr>
<td>Проезжая часть</td>
<td></td>
</tr>
<tr>
<td>Допустимая глубина колеи, мм</td>
<td>35</td>
</tr>
<tr>
<td>Повреждения (выбоины) размером не более</td>
<td>6,0</td>
</tr>
<tr>
<td>15-60-5 см, площадью м²/на 1000 м² покрытия</td>
<td></td>
</tr>
<tr>
<td>Отдельные раскрытые необработанные трещины на покрытии шириной >5 мм. п. м. / на 1000 м²</td>
<td>40</td>
</tr>
<tr>
<td>Наличие полос загрязнения у кромок покрытия шириной до 0,5 м, площадью в % от общей площади покрытия не более</td>
<td>8</td>
</tr>
</tbody>
</table>
Земляное полотно
Наличие отдельных повреждений, просадок и застоя воды на обочинах в весенний период:
а) укрепленных:
- площадь, м²/1000 м² покрытия
 6 7 8 9
 глубиной, см
 4 4 5 5
б) неукрепленных:
- площадь. м²/1000 м² покрытия
 12 15 18 20
 глубиной, см
 4 4 5 5

7.1.18 Откосы насыпей и выемок должны обладать стойкостью к воздействию местных климатических факторов. Они должны обеспечивать быстрый отвод поверхностных вод, быть укреплены с учетом типа грунтов и погодно-климатических условий местности. Откосы особенно глубоких выемок и высоких насыпей должны иметь обеспеченную общую устойчивость, которая представляет собой отношение безопасной нагрузки, для грунта насыпи (выемки), находящегося в данном состоянии по «плотности-влажности» к проектной. Общая устойчивость считается обеспеченной, если это отношение больше или равно 1.

7.1.19 Системы устройства дренирования, сбора и отвода поверхностных и грунтовых вод должны постоянно находиться в работоспособном состоянии, обеспечивать пропуск и отвод расчетных объемов воды.

7.1.20 Мостовой переход или водопропускная труба должны обеспечивать пропуск расчетного водного потока. Показателями обеспечения пропуска расчетных объемов воды являются равномерное распределение скоростей по ширине отверстия, отсутствие водоворотов и отложений наносов в зонах, охватываемых мостом и струенаправляющими дамбами, отсутствие образования новых проток на поймах, подтопления, а также размывов откосов насыпи у оголовков и развития оврагов.
7.1.21 К основным параметрам искусственных сооружений, которые в значительной степени определяют эксплуатационную надежность дороги, следует отнести: габариты проезжей части и тротуаров, грузоподъемность и ограждающие конструкции.

7.1.22 Соответствие мостовых сооружений нормам по грузоподъемности обеспечивается, если отношение фактической грузоподъемности к проектной составляет не менее 0,9.

7.1.23 Габариты проезжей части и тротуаров должны соответствовать требованиям ГОСТ Р 52748, а удерживающая способность – ГОСТ Р 52289.

7.1.24 В случае несоответствия фактической грузоподъемности и ширины проезжей части нормативным требованиям в соответствии с ГОСТ Р 52289 должны быть установлены соответствующие дорожные знаки.

7.1.25 Не допускаются трещины в железобетонных пролетных строениях и опорах мостов, сколы бетона и обнажения арматуры.

7.1.26 Тротуары на мостах и путепроводах должны обеспечивать безопасный пропуск пешеходов. Лестничные сходы выполняются шириной не менее 0,75 м и высотой ступенек не более 0,2 м, с перилами с обеих сторон. Их устраивают на подходах к искусственным сооружениям с одной стороны насыпи на обоих концах мостового сооружения при насыпях высотой 4 м и более. Высота перил лестничных сходов принимается не менее 1,1 м.

7.1.27 Не допускается:
- загрязнение проезжей части мостовых сооружений и тротуаров толщиной более 1 см;
- застой воды на проезжей части и тротуарах. При невозможности своевременной ликвидации застоя воды на проезжей части место необходимо оградить соответствующими техническими средствами организации дорожного движения в течение 1 часа;
- выбоины в покрытии тротуаров, проломы в тротуарных плитах;
- засорение и заиливание водоотводных трубок, лотков и окон в тротуарных блоках;
- размыв русла у оголовков труб и их повреждения;
- смещение секций трубы в плане и в профиле;
- раскрытие швов между звеньями водопропускных труб;
- застой воды у оголовков водопропускных труб;
- древесно-кустарниковая растительность высотой более 25 см у оголовков и в русле водопропускных труб в пределах полосы отвода.

7.1.28 Дорожные знаки должны быть установлены и отвечать требованиям ГОСТ Р52289, а разметка – требованиям ГОСТ Р52290.

7.1.29 На поверхность дорожных знаков должна быть нанесена пленка со светоотражающими элементами. Дорожный знак должен быть хорошо виден в сложных погодно-климатических условиях.

7.1.30 Дорожная разметка должна быть восстановлена, если в процессе эксплуатации износ по площади (для продольной разметки измеряется на участке протяженностью 50 м) составляет более 50% при выполнении ее краской и более 25% – термопластичными массами (ГОСТ Р 50597).

7.1.31 Светофоры должны соответствовать требованиям ГОСТ Р 52282, а их размещение и режим работы – требованиям ГОСТ Р 52289.

7.1.32 Опасные для движения участки местных дорог, проходящие по мостам и путепроводам, должны быть оборудованы ограждениями в соответствии с ГОСТ 26804, ГОСТ Р 52289.

7.1.33 Ограждения должны быть очищены от грязи и окрашены в соответствии с ГОСТ 13508. Не требуют окраски оцинкованные поверхности ограждений.

7.1.34 Не допускаются к эксплуатации железобетонные стойки и балки ограждений с раскрытой сеткой трещин, сколами бетона до арматуры, металлические деформированные стойки, компенсаторы и продольные элементы, а деревянные стойки и балки с механическими повреждениями или уменьшенным расчетным поперечным сечением.

Поврежденные элементы ограждений подлежат восстановлению или замене в течение 5 суток после обнаружения дефектов.
7.1.35 Не допускается несоответствие высоты ограждений нормам.

7.1.36 Оцинкованные металлические ограждения должны быть оборудованы световозвращающими элементами в соответствии с ГОСТ Р 50971.

7.1.37 Перильные ограждения тротуаров должны иметь высоту не менее 110 см.

7.1.38 Не допускается эксплуатация перильного ограждения с деформированными элементами и неполным перильным заполнением.

7.1.39 Сигнальные столбики и маяки следует устанавливать в соответствии с требованиями ГОСТ Р 52289.

7.1.40 Сигнальные столбики должны соответствовать ГОСТ Р 50970, не должны иметь видимых разрушений и деформаций и должны быть отчетливо видны в светлое время суток с расстояния не менее 100 м.

7.1.41 Сигнальные столбики должны иметь окраску, вертикальную разметку и световозвращатели в соответствии с требованиями ГОСТ Р 51256.

7.1.42 Поврежденные сигнальные столбики должны быть заменены в течение 5 суток после обнаружения повреждения.

7.1.43 Опоры дорожных знаков должны отвечать требованиям ГОСТ 25458 и ГОСТ 25459.

7.2 Оценка состояния дорог

7.2.1 Работы по оценке состояния дорог и дорожных сооружений включают:
- ежедневные (или еженедельные) текущие осмотры;
- периодические (1 раз в месяц или квартал) осмотры;
- сезонные осмотры, выполняемые в начале каждого текущего сезона или в конце предыдущего.

7.2.2 Оценка состояния дорог производится путем визуального осмотра элементов дороги (обочин, откосов, водоотводных и дренажных сооружений) или с помощью простейших мерных инструментов и видеосъемки на основании которых ориентировочно могут быть выявлены и в первом приближении,
установлены виды и причины деформаций и разрушений, назначены ремонтно-восстановительные и профилактические мероприятия, определены объёмы работ и требуемые затраты на ремонт и содержание.

7.2.3 Визуальная оценка состояния покрытия и дорожной одежды производится в соответствии с таблицей 37.

Таблица 37 — Оценка состояния дорожной одежды

<table>
<thead>
<tr>
<th>Состояние проезжей части</th>
<th>Кoeffициент прочности K пр</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Без дефектов и отдельные трещины на расстоянии более 40 м</td>
<td>1,00</td>
</tr>
<tr>
<td>Отдельные трещины на расстоянии 20–40 м между трещинами</td>
<td>0,98–1,00</td>
</tr>
<tr>
<td>То же, на расстоянии между соседними трещинами 10–20 м</td>
<td>0,95–0,98</td>
</tr>
<tr>
<td>Редкие трещины на расстоянии между соседними трещинами 8–10 м</td>
<td>0,90–0,95</td>
</tr>
<tr>
<td>То же, 6–8 м</td>
<td>0,88–0,90</td>
</tr>
<tr>
<td>То же, 4–6 м</td>
<td>0,85–0,88</td>
</tr>
<tr>
<td>Частые трещины на расстоянии между соседними трещинами 3–4 м</td>
<td>0,80–0,85</td>
</tr>
<tr>
<td>То же, 2–3 м</td>
<td>0,78–0,80</td>
</tr>
<tr>
<td>То же, 1–2 м</td>
<td>0,75–0,78</td>
</tr>
<tr>
<td>Сетка трещин при относительной площади, занимаемой сеткой, менее 30 %</td>
<td>0,70–0,75</td>
</tr>
<tr>
<td>То же, от 60 до 30 %</td>
<td>0,68–0,70</td>
</tr>
<tr>
<td>То же, 90–60 %</td>
<td>0,65–0,68</td>
</tr>
<tr>
<td>Искажение продольного микропрофиля и поперечного профиля (волны, колея)</td>
<td>0,68–0,70</td>
</tr>
<tr>
<td>Просадки при относительной площади просадок до 20 %</td>
<td>0,68–0,70</td>
</tr>
</tbody>
</table>
То же, от 50 до 20 % | 0,60–0,65
То же, более 50 % | 0,58–0,60
Проломы дорожной одежды при относительной площади
проломов менее 10 % | 0,55–0,58
То же, от 30 до 10 % | 0,60–0,65
То же, более 30 % | 0,58–0,60

7.2.4 Оценка состояния искусственных сооружений производится по результатам текущего, периодического и специального осмотров.

7.2.5 Текущий осмотр включает визуальный осмотр всех элементов мостового перехода, включая конструкцию проезжей части и тротуаров, деформационные швы и сопряжения моста с насыпью, пролетные строения, опорные части и опоры, русло и регуляционные сооружения, конусы насыпи и подходы к мосту.

7.2.6 Текущий осмотр водопропускных труб включает визуальный осмотр состояния русла и лотков оголовков и звеньев труб, укрепления откосов насыпи и состояния проезжей части над трубой.

7.2.7 В процессе осмотра мостов и труб необходимо выявлять строительные и эксплуатационные дефекты с выделением требующих незамедлительного устранения. К числу дефектов, требующих незамедлительного устранения, относятся дефекты, снижающие грузоподъемность сооружения и безопасность движения.

Изменение размеров дефекта во времени выявляют путем сопоставления и анализа данных по двум и более осмотрам.

7.2.8 Периодический осмотр предполагает оценку общего состояния искусственных сооружений с выявлением дефектов, требующих устранения и причин их возникновения, составление перечня ремонтных работ и оценки качества текущих осмотров и устранения отмеченных недостатков.

В необходимых случаях выполняют контрольно-инструментальные измерения.
7.2.9 Текущие осмотры деревянных мостов, паромных переправ, наплавных мостов выполняются не реже одного раза в квартал, а железобетонных, бетонных и каменных мостов и труб – не реже одного раза в полугодие.

7.2.10 Специальный осмотр осуществляет специализированная организация, оснащенная соответствующими приборами и инструментом.

Специальные осмотры деревянных мостов выполняются один раз в 3–4 года, каменных, бетонных и железобетонных – один раз в 10–12 лет, а металлических – один раз в 6–8 лет.

7.2.11 Визуальный осмотр технических средств регулирования дорожного движения состоит в установлении целостности дорожных знаков и опор, их исправности, видимости (в т.ч. в темное время суток).

7.2.12 Визуальный осмотр транспортных и пешеходных ограждений состоит в установлении имеющихся механических повреждений, надежности установки стоек и крепления всех элементов ограждений, загрязненности в т.ч. светоотражателей.

7.3 Организация дорожной службы

7.3.1 Работа дорожной службы осуществляется на основе годового плана работ по ремонту и содержанию дорог, утверждаемого руководителем организации, которая занимается освоением лесного участка.

7.3.2 В обязанности дорожной службы входит:

- инвентаризация и паспортизация лесных дорог и дорожных сооружений;

- обеспечение требуемого технического уровня и эксплуатационного состояния лесных дорог и дорожных сооружений, безопасности движения транспорта и пешеходов;

- организация работ по содержанию и ремонту и благоустройству дорог;

- содержание в постоянной исправности и обеспечение эффективного использования основных фондов, предназначенных для эксплуатации лесных дорог;
- принятие необходимых мер по предотвращению перерывов и ограничений движения, сезонных деформаций и разрушений дорог и искусственных сооружений, по ликвидации последствий стихийных бедствий, своевременной информации участников движения и заинтересованных организаций об условиях движения на дорогах;

- обеспечение сохранности дорог включает в себя комплекс мероприятий по предупреждению преждевременного разрушения и износа проезжей части, земляного полотна, искусственных сооружений и обустройства лесных дорог, а также по сохранению их текущего транспортно-эксплуатационного состояния.

7.3.3 Органы, осуществляющие управление лесными дорогами в целях обеспечения сохранности дорог:

- устанавливают начало и окончание периода временного ограничения движения на обслуживаемой сети дорог в расчетный период (в весной) года.

Ограничение движения не распространяется на автотранспортные средства, осуществляющие перевозки пассажиров, а также грузов, связанных с жизнеобеспечением соответствующих регионов, предотвращением или ликвидацией последствий чрезвычайных ситуаций.

- организуют контроль за ограничением перевозимого груза при въезде на дороги общего пользования.

7.3.4 С целью решения возложенных на дорожную службу задач необходимо своевременно выполнять комплекс работ по ремонту и содержанию лесных дорог, включающий:

- реконструкцию;
- капитальный ремонт;
- ремонт;
- содержание.

7.3.5 Ремонт и содержание лесных дорог осуществляется дорожно-мастерскими участками (ДМУ), возглавляемые дорожным мастером, которые подчиняются начальнику дорожной службы.
7.3.6 В задачи ДМУ входят систематически выполняемые работы, сезонные работы по содержанию дорог в течение года и работы по ремонту дорог и сооружений на них. Протяженность обслуживаемых ДМУ дорог может быть принята ориентировочно 40–50 км. В зависимости от категории дорог и местных условий протяженность обслуживаемых дорог ДМУ уточняется начальником дорожной службы.

7.3.7 В зависимости от обслуживаемой протяженности дорог, типа дорожной одежды и погодно-климатических условий района комплектуется штат работников ДМУ и его техническая оснащенность.

7.3.8 Ориентировочно штат ДМУ должен включать:

- начальник;
- инженер – 1;
- техник – 1;
- механик – 1;
- электрик – 1;
- диспетчер – 1;
- рабочие – 3–5 человек.

7.3.9 Для осуществления производственной деятельности ДМУ должен иметь:

- административно-бытовой корпус;
- производственный корпус по ремонту и техническому обслуживанию дорожных машин и автомобилей;
- стоянки (холодные и теплые) на списочный состав парка машин;
- производственный корпус по техническому обслуживанию дорожных машин и автомобилей;
- базы по приготовлению и хранению противогололедных химических материалов;
- склады.
7.3.10 Для решения задач оперативного управления дорожно-ремонтными работами диспетчер ДМУ должен иметь постоянную связь со всеми машинистами дорожных машин, работающими на линии.

7.3.11 Для выполнения задач по ремонту и содержанию лесных дорог ДМУ должен иметь парк дорожных машин, состав которого зависит от протяженности обслуживаемых дорог и местных условий (погодно-климатических, рельефа и др. факторов, влияющих на количество машин и структуру парка).

7.3.12 Ориентировочно парк дорожных машин должен иметь следующий состав:

- автомашина для перевозки рабочих и инвентаря – 1;
- автогрейдер (средний) – 2.

При высоте снежного покрова от 100 до 150 см требуется 3 автогрейдера, а при высоте снежного покрова выше 150 см – 4 автогрейдера. Высота снежного покрова принимается по метеоданным региона:

- комбинированная дорожная машина с навесным оборудованием (в числите с бункером, в знаменателе – с цистерной – 1/1;
- погрузчик с объемом ковша до 3 м³ – 1;
- трактор средней мощности с навесным оборудованием (косилка, щетка, плужный снегоочиститель) – 1. При высоте снежного покрова от 100 до 150 см требуется 2 трактора, а при высоте снежного покрова свыше 150 см – 3 трактора;
- вибротрамбовка - 1;
- оборудование для мойки элементов обустройства дорог – 1;
- бензокосилка – 2.

7.4 Ремонт дорог

7.4.1 Требования к капитальному ремонту и ремонту, включая состав работ, земляного полотна, дорожной одежды, искусственных сооружений и обстановки лесных дорог принять в соответствии с СП 312.1325800.
7.5 Содержание лесных дорог в весенний, летний и осенний периоды
7.5.1 Требования к содержанию лесных дорог в весенний, летний и осенний периоды принять в соответствии с СП 312.1325800.

7.6 Содержание лесных дорог в зимний период
7.6.1 Требования к содержанию лесных дорог в зимний период принять в соответствии с СП 312.1325800.

7.7 Содержание временных дорог
7.7.1 Содержание временных дорог и текущий ремонт необходимо принять в соответствии с СП 318.1325800.

7.8 Охрана окружающей среды при эксплуатации лесных дорог
7.8.1 В процессе эксплуатации лесных автомобильных дорог необходимо:
- снизить уровень запыленности окружающей среды;
- снизить уровень загрязнения противогололедными материалами за счет применения инновационных разработок;
- обеспечить мониторинг за состоянием почвы и поверхностного стока;
- обеспечить регулярную очистку от мусора и бытовых отходов придорожной полосы;
- обеспечить очистку от зарослей кустарником придорожной полосы.

7.8.2 Основные виды негативного влияния автомобильной дороги в процессе эксплуатации на окружающую среду и возможные пути решения проблем изложены в таблице 38.

Таблица 38 – Основные виды негативного влияния автомобильной дороги в процессе эксплуатации на окружающую среду и возможные пути решения проблем

<table>
<thead>
<tr>
<th>Виды предполагаемых воздействий</th>
<th>Возможные меры по исключению или смягчению воздействия</th>
</tr>
</thead>
<tbody>
<tr>
<td>Загрязнение атмосферы выхлопными газами в процессе движения автомобильного транспорта</td>
<td>Ограничение скоростного режима автомобильного транспорта, контроль за регулировкой систем подготовки топлива</td>
</tr>
<tr>
<td>Загрязнение почвы отработанными маслами</td>
<td>Предусмотреть емкости для сбора</td>
</tr>
<tr>
<td>Смазками и т.п. в процессе ремонтных работ</td>
<td>отработанных масел и их временного хранения</td>
</tr>
<tr>
<td>Загрязнение атмосферы пылью, особенно, при движении автомобилей по дорогам с переходным и низшим типом покрытия</td>
<td>Розлив органических вяжущих, раствора хлоридов кальция, пластовые воды при добыче углеводородов и другие пылеподавляющие материалы</td>
</tr>
<tr>
<td>Загрязнение окружающей среды в результате воздействия близлежащих источников - карьеров, промышленных предприятий и других производств</td>
<td>Очистка покрытия от пыли с помощью поливомоек, проверка загрязненности почвы и при необходимости установка локальных очистных сооружений во избежание попадания загрязненных стоков в водоемы</td>
</tr>
<tr>
<td>В процессе эксплуатации автодороги окружающая среда загрязняется: - мусором с мостов, развязок в разных уровнях и путепроводов, с территории площадок отдыха; - бытовыми отходами от площадок отдыха; - отходами обслуживания сооружений очистки сточных вод; - отходами дорожно-мастерских участков, обслуживающих трассу.</td>
<td>Своевременно производить очистку трассы и придорожной полосы от мусора, площадки отдыха оборудовать контейнерами для сбора мусора и повысить культуру производства выполняемых работ</td>
</tr>
<tr>
<td>Загрязнение твердыми отходами при производстве ремонта и обслуживания машин и механизмов (детали машин, фильтрующие элементы и т.п. материалами)</td>
<td>В месте производства работ предусмотреть установку контейнеров для раздельного сбора металлических, пластмассовых и стеклянных отходов.</td>
</tr>
<tr>
<td>Особую опасность для загрязнения окружающей среды представляет поверхностный сток, который содержит минеральные и органические примеси естественного происхождения, образующиеся в результате выноса грунта с грунтовых дорог и обочин и эрозии почвы, - грубодисперсные примеси (частицы песка, глины, гумуса), а также растворенные органические и минеральные вещества; - вещества техногенного происхождения - потери нефтепродуктов, продукты сгорания топлива и износа транспортных средств, шин, истирания дорожных покрытий, соли и другие антигололедные реагенты, потери при транспортировке различных грузов, а</td>
<td>Организация регулярной уборки территорий полосы отвода; повышение технического уровня эксплуатации автотранспорта; локализация участков, где неизбежны просыпки и проливы загрязняющих веществ с последующим отведением и очисткой поверхностного стока; упорядочение складирования и транспортирования сыпучих и жидких материалов; регулярная проверка состава поверхностного стока и, при необходимости, очистка стока с помощью мобильных или стационарных очистных сооружений</td>
</tr>
</tbody>
</table>
также при авариях.

| Влияние автодороги в процессе эксплуатации на животный мир | Мероприятия по снижению вредного влияния автомобильной дороги в эксплуатационный период на животный мир должны разрабатываться индивидуально с учетом мест обитания животных, их вида и количества. В любом случае в процессе борьбы с гололедом и запыленностью необходимо применять экологически чистые пылеподавляющие и противогололедные материалы. Не допускать зарослей кустарника в придорожной полосе. |
| В особенности сильное влияние на водную среду оказывают противогололедные средства, зона распространения которых не ограничивается только придорожной полосой 10м. Необходимость очистки вод поверхностного стока с дорог и мостов (и подходов к ним) определяют на основании расчетов предельно-допустимых сбросов (ПДС) загрязняющих веществ, поступающих в водные объекты со сточными водами. В случае водоохранных зон необходимо использовать противогололедные материалы, не оказывающие вредное влияние на водную среду. |
| Необходимо очистить воду поверхностного стока с дорог и мостов (и подходов к ним) определяют на основании расчетов предельно-допустимых сбросов (ПДС) загрязняющих веществ, поступающих в водные объекты со сточными водами. В случае водоохранных зон необходимо использовать противогололедные материалы, не оказывающие вредное влияние на водную среду. | Мероприятия по снижению вредного влияния автомобильной дороги в эксплуатационный период на животный мир должны разрабатываться индивидуально с учетом мест обитания животных, их вида и количества. В любом случае в процессе борьбы с гололедом и запыленностью необходимо применять экологически чистые пылеподавляющие и противогололедные материалы. Не допускать зарослей кустарника в придорожной полосе. |
| Влияние автодороги в процессе эксплуатации на животный мир проявляется в первую очередь в изменении их пространственной и сезонной динамике. Загрязнение вызывает снижение плодовитости, продолжительности жизни, скорости личиночного развития, жизнеспособности яиц, морфологических признаков отдельных особей. Придорожная полоса, если она засажена плотной древесно-кустарниковой растительностью, привлекает животных и является местом для гнездования ряда птиц, что может привести к их гибели при столкновении с транспортом. | Мероприятия по снижению вредного влияния автомобильной дороги в эксплуатационный период на животный мир должны разрабатываться индивидуально с учетом мест обитания животных, их вида и количества. В любом случае в процессе борьбы с гололедом и запыленностью необходимо применять экологически чистые пылеподавляющие и противогололедные материалы. Не допускать зарослей кустарника в придорожной полосе. |
8 Правила приемки работ

8.1 Правила приемки при капитальном ремонте

Приемка дорог в эксплуатацию после капитального ремонта осуществляется в соответствии с СП 78.13330 «Автомобильные дороги».

8.2 Правила приемки работ при ремонте

8.2.1. Приемка в эксплуатацию отремонтированных участков автомобильных дорог и сооружений на них производится приемочными комиссиями, состав которых входит представители ДМУ, лесного пункта и леспромхоза.

8.2.2 В состав приемочных комиссий по приемке участков автомобильных дорог, законченных комплексным ремонтом, включаются представители: заказчика, эксплуатационной организации, подрядчика, автотранспортных и при необходимости - других организаций. Председателями приемочных комиссий при этом назначаются ответственные работники леспромхоза.

8.2.3 В состав приемочных комиссий по приемке участков автомобильных дорог, на которых выполнены отдельные виды ремонтных работ, включаются представители лесопункта (председатель), ДМУ и представитель подрядной организации (при необходимости).

Приемка отремонтированного участка автомобильной дороги оформляется актом (приложение 1, форма А-1).

8.2.4 При приемке участка автомобильной дороги, на которой выполнены лишь отдельные виды ремонтных работ (например, поверхностная обработка, ямочный ремонт и т.д.), приложения 1и Зк указанному акту не оформляются.

8.2.5 Акт приемки отремонтированного участка автомобильной дороги составляется в трех экземплярах, один из которых остается в ДМУ, один передается и хранится в лесопункте и один в леспромхозе.
8.2.6 При приемке законченных ремонтом автомобильных дорог приемочной комиссии представляются акты освидетельствования скрытых работ и промежуточных приемок ответственных конструкций и сооружений;

8.2.7 Акты приемки законченных ремонтом автомобильных дорог утверждаются в месячный срок со дня приемки.

8.3 Правила приемки работ по содержанию дорог

8.3.1 Приемка работ по содержанию дорог должна осуществляться ежемесячно, а в зимнее время по фактическому состоянию проезжей части (после снегопадов и гололеда).

8.3.2 Приемка работ по содержанию дорог осуществляется комиссией в составе: председатель комиссии – представитель леспромхоза, представитель лесопункта и представитель ДМУ.

8.3.3 Акт о приемке работ по содержанию лесных дорог передается членам комиссии.
9 Технический учет и паспортизация лесных дорог

9.1 Задачи технического учета и паспортизации дорог

9.1.1 Технический учет и паспортизацию автомобильных дорог проводят с целью получения данных о наличии дорог и дорожных сооружений, их протяженности и техническом состоянии для рационального планирования работ по дальнейшему развитию дорожной сети, реконструкции, ремонту и содержанию эксплуатируемых дорог.

9.1.2 Техническому учету и паспортизации подлежат автомобильные дороги постоянного действия в границах лесничества. Учет и паспортизацию проводят по каждой автомобильной дороге в отдельности, руководствуясь действующими требованиями.

Учет и паспортизацию лесохозяйственных дорог выполняется органами местного самоуправления в области лесных отношений за счет бюджетных средств

9.1.3 Элементами дороги, подлежащими техническому учету, являются: полоса отвода, земляное полотно, проезжая часть, искусственные сооружения, здания дорожной службы, дорожные инженерные устройства, обстановка и озеленение дорог.

9.1.4 При обследовании дорог максимально используют инструментальные методы. Измерение геометрических параметров, оценку степени разрушения покрытия, сбор данных о состоянии обстановки пути и обустройства.

9.2 Порядок проведения технического учета и паспортизации дорог и дорожных сооружений

9.2.1 Технический учет и паспортизацию вновь построенных лесных дорог проводят после ввода в эксплуатацию в соответствии с планом работ собственника дороги, но не позднее чем через полгода после утверждения актов приемочной комиссий.
9.2.2 Технический учет и паспортизацию ранее построенных (реконструированных) дорог, но не имеющих паспорт, выполняет собственник дороги в соответствии с графиком ремонта (реконструкции) этих дорог.

9.2.3 В паспорта дорог и документы технического учета ежегодно вносят изменения по состоянию на 1 января. (Приложение А).

Работы по проведению технического учета и паспортизации разделяются на полевые и камеральные.

9.2.4 Все документы технического учета и паспортизации, дорог должны быть составлены отдельно по каждой дороге (участку) по предлагаемой форме.

9.2.5 При проведении полевых работ на автомобильных дорогах (кроме грунтовых участков дорог) оформляются следующие документы:

- технический паспорт с линейным графиком;
- карточка на мост (путепровод);
- карточка на трубу;
- карточка на служебное, производственное, жилое здание;
- ведомости наличия и технического состояния мостов (путепроводов), труб, паромных переправ, подпорных стенок, зданий дорожной службы, дорожных знаков, ограждений, направляющих устройств, озеленения, укрепления обочин, съездов;
- ведомость наличия коммуникаций, находящихся в пределах полосы отвода;
- ведомость размеров полосы отвода.

На лесных дорогах категории IV-л заполняют только линейный график, карточки на мосты (путепроводы), пикетажную книжку, угломерный и нивелировочный журналы.

9.2.6 Материалы полевых обследований направляются собственнику дороги для составления по каждой дороге технического паспорта и сводной ведомости, а также ведомости наличия и технического состояния зданий и сооружений по каждой дороге.
9.2.7 Паспорт автомобильной дороги оформляется в виде альбома размером 297-428 мм и содержит: схему автомобильной дороги, общие данные о ней, техническую характеристику, денежные затраты и основные объемы выполненных работ; линейный график. (Приложение Б)

9.2.8 По каждой дороге составляется график и оформляется карточка на мосты (путепроводы). (Приложение В)
Приложение А

ДОРОЖНО-КЛИМАТИЧЕСКОЕ РАЙОНИРОВАНИЕ И ОБРАЗЕЦ
ТЕХНИЧЕСКОГО ПАСПОРТА ДОРОГИ

A1. Дорожно-климатическое районирование необходимо принять в соответствии с СП 288.132580. В случае имеющихся утвержденных региональных норм районирования и расчетной влажности местных грунтов следует руководствоваться при проектировании региональными нормами.

Технический паспорт

Наименование дороги

Наименование организации, на балансе которой находится дорога и адрес

Схематическое изображение дороги не приводится.

Примечание

Схематическое изображение дороги вычерчивается в виде схемы с указанием масштаба, пикетажа, основной ситуации и инженерной сети (с привязкой по месту), находящейся в полосе отвода.

I. Общие сведения

<table>
<thead>
<tr>
<th>№</th>
<th>Наименование</th>
<th>Единица измерения</th>
<th>20__ г.</th>
<th>20__ г.</th>
<th>20__ г.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Общие геометрические параметры АДНП:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>длина</td>
<td>пог. м</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ширина (средняя)</td>
<td>пог. м</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>площадь</td>
<td>кв. м</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Характеристики проезжей части АДНП:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ширина (средняя)</td>
<td>пог. м</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>площадь</td>
<td>кв. м</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>преобладающий тип покрытия</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Технические средства организации дорожного движения:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>предупреждающие</td>
<td>шт.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>запрещающие</td>
<td>шт.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>предписывающие</td>
<td>шт.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>знаки приоритета</td>
<td>шт.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>прочие знаки</td>
<td>шт.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>разметка горизонтальная и вертикальная</td>
<td>пог. м</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>светофоры</td>
<td>шт.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>дорожное ограждение</td>
<td>пог. м</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>направляющие устройства</td>
<td>шт.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Мосты</td>
<td>шт.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Путепроводы</td>
<td>шт.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

135
| N | Дата | Номера | Наименование | Год | Нор- | Мате- | Длин- | Сред- | Пло- | Объем, | Ном | Млм | Пром. | Кабл. | Кабл- | Метр | Кв. м |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |

Водосточная сеть, трубы, стоимость их элементов, тыс. рублей

| N | Дата | Номера | Наименование | Год | Нор- | Мате- | Длин- | Сред- | Пло- | Объем, | Ном | Млм | Пром. | Кабл. | Кабл- | Метр | Кв. м |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |

II. Экспликация площадей дороги

| Дата | Номера | Наименование | Год | Нор- | Мате- | Длин- | Сред- | Пло- | Объем, | Ном | Млм | Пром. | Кабл. | Кабл- | Метр | Кв. м |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
III. Карточка денежных затрат и физических объемов выполненных дорожных работ
1. Денежные затраты, тыс. рублей

<table>
<thead>
<tr>
<th>Год</th>
<th>Затраты</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

По смете:
- на ремонт
- на капитальный ремонт
- на реконструкцию

Ассигновано, всего
- на ремонт
- на капитальный ремонт
- на реконструкцию

2. Физические объемы

<table>
<thead>
<tr>
<th>Год</th>
<th>Вид работы (ремонт, капитальный ремонт, реконструкция)</th>
<th>Дорожная одежда</th>
<th>Искусственные сооружения</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Перечень документов, приложенных к техническому паспорту дороги

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование</th>
<th>Дата составления</th>
<th>Масштаб</th>
<th>Количество листов</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание
На каждый мост (путепровод) составляется карточка моста (путепровода) и прикладывается к техническому паспорту на дорогу

<table>
<thead>
<tr>
<th>Дата записи</th>
<th>Исполнители</th>
<th>Проверил:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

137
Приложение Б
Классификация типов местности и грунтов

Таблица Б.1 — Типы местности по характеру и степени увлажнения

<table>
<thead>
<tr>
<th>Тип местности</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-й</td>
<td>Поверхностный сток обеспечен; грунтовые воды не влияют на увлажнение верхней толщи грунтов; мощность деятельного слоя более 2,5 м при непросадочных грунтах влажностью менее 0,7</td>
<td>Поверхностный сток обеспечен; грунтовые воды не влияют на увлажнение верхней толщи; почвы слабо- и средне-подзолистые или дерново-подзолистые без признаков заболачивания</td>
<td>Поверхностный сток обеспечен; грунтовые воды не влияют на увлажнение верхней толщи; почвы серые, лесные слабоподзолистые или, в северной части зоны - темно-серые лесные и черноземы оподзоленные и выщелоченные</td>
<td>Поверхностный сток обеспечен; грунтовые воды не влияют на увлажнение верхней толщи; почвы - темно-серые лесные и каштановые черноземы,</td>
</tr>
<tr>
<td>2-й</td>
<td>Поверхностный сток не обеспечен; грунтовые воды не влияют на увлажнение верхней толщи; почвы тундровые с резко выраженными признаками</td>
<td>Поверхностный сток не обеспечен; грунтовые воды не влияют на увлажнение верхней толщи; почвы средне- и сильно подзолист</td>
<td>Поверхностный сток не обеспечен; грунтовые воды не влияют на увлажнение верхней толщи; почвы подзолистые или</td>
<td>Поверхностный сток не обеспечен; грунтовые воды не влияют на увлажнение верхней толщи; почвы - сильносолонцеватые черноземы,</td>
</tr>
<tr>
<td>Болотничавания; мощность сезонно-оттаивающего слоя от 1,0 до 2,5 м при наличии глинистых просадочных грунтов влажностью более 0,8</td>
<td>Полуболотные с признаками заболачивания</td>
<td>Полуболотные с признаками оглеения, в южной части - лугово-черноземные солонцы и солоди</td>
<td>Каштановые, солонцы и солоди</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>3-й</td>
<td>Грунтовые или длительно (более 30 сут) стоящие поверхностные воды оказывают влияние на увлажнение верхней толщи грунтов; почвы тундровые и болотные; торфяники; мощность сезоннооттаивающего слоя до 1 м при наличии глинистых сильнопросадочных грунтов, содержащих в пределах двойной мощности сезонного оттаивания линзы льда толщиной более 10 см</td>
<td>Грунтовые воды или длительно (более 30 сут) стоящие поверхностные воды влияют на увлажнение верхней толщи; почвы торфяно-болотные или полуболотные</td>
<td>То же, что для зоны II</td>
<td>Грунтовые воды или длительно (более 30 сут) стоящие поверхностные воды влияют на увлажнение верхней толщи; почвы болотные или полуболотные, солончаки и солончаковатые солонцы</td>
</tr>
</tbody>
</table>
Таблица Б.2 – Типы и подтипы глинистых грунтов

<table>
<thead>
<tr>
<th>Грунты</th>
<th>Показатели</th>
<th></th>
<th>Число пластичности</th>
</tr>
</thead>
<tbody>
<tr>
<td>Типы</td>
<td>Подтипы</td>
<td>Содержание песчаных частиц, % по массе</td>
<td></td>
</tr>
<tr>
<td>Супесь</td>
<td>Легкая крупная</td>
<td>Свыше 50</td>
<td>1-7</td>
</tr>
<tr>
<td></td>
<td>Легкая</td>
<td>50</td>
<td>1-7</td>
</tr>
<tr>
<td></td>
<td>Пылеватая</td>
<td>50-20</td>
<td>1-7</td>
</tr>
<tr>
<td></td>
<td>Тяжелая пылеватая</td>
<td>Менее 20</td>
<td>1-7</td>
</tr>
<tr>
<td>Суглинок</td>
<td>Легкий</td>
<td>Свыше 40</td>
<td>7-12</td>
</tr>
<tr>
<td></td>
<td>Легкий пылеватый</td>
<td>Менее 40</td>
<td>7-12</td>
</tr>
<tr>
<td></td>
<td>Тяжелый</td>
<td>Свыше 40</td>
<td>12-17</td>
</tr>
<tr>
<td></td>
<td>Тяжелый пылеватый</td>
<td>Менее 40</td>
<td>12-17</td>
</tr>
<tr>
<td>Глина</td>
<td>Песчанистая</td>
<td>Свыше 40</td>
<td>17-27</td>
</tr>
<tr>
<td></td>
<td>Пылеватая</td>
<td>Менее 40</td>
<td>17-27</td>
</tr>
<tr>
<td></td>
<td>Жирная</td>
<td>Не нормируется</td>
<td>Свыше 27</td>
</tr>
</tbody>
</table>

Примечание
1 Для супесей легких крупных учитываются содержание песчаных частиц размером 2-0,25 мм, для остальных грунтов - 2-0,05 мм.
2 При содержании в грунте 25-50% (по массе) частиц крупнее 2 мм к названию глинистых грунтов добавляется слово "гравелистый" (при окатанных частицах) или "щебенистый" (при неокатанных частицах).

Таблица Б.3 – Классификация грунтов по степени пучинистости при замерзании

<table>
<thead>
<tr>
<th>Группы грунтов</th>
<th>Степень пучинистости</th>
<th>Относительное морозное пучение образца, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Непучинистые</td>
<td>I и менее</td>
</tr>
<tr>
<td>II</td>
<td>Слабопучинистые</td>
<td>Свыше 1 до 4</td>
</tr>
<tr>
<td>III</td>
<td>Пучинистые</td>
<td>От 4 до 7</td>
</tr>
<tr>
<td>IV</td>
<td>Сильно пучинистые</td>
<td>" 7 " 10</td>
</tr>
<tr>
<td>V</td>
<td>Чрезмерно пучинистые</td>
<td>" 10</td>
</tr>
</tbody>
</table>

Примечание
1 Испытание на пучинистость при промерзании осуществляется в лаборатории по специальной методике с подтоком воды. Допускается группу по пучинистости определять по таблице В.7 настоящего приложения.
2 При оценке величины морозного пучения расчетом испытания грунтов на интенсивность морозного пучения ведут по специальной методике.
3 В случаях, когда испытание на морозное пучение проводятся, группу по пучинистости допускается устанавливать по таблице В.7 настоящего приложения, а среднюю относительную величину морозного пучения зоны промерзания - по таблице В.8.

Таблица Б.4 – Группы грунтов по степени пучинистости

<table>
<thead>
<tr>
<th>Грунт</th>
<th>Группа</th>
</tr>
</thead>
<tbody>
<tr>
<td>Песок гравелистый, крупный и средней крупности с содержанием частиц мельче 0,05 мм до 2%</td>
<td>I</td>
</tr>
<tr>
<td>Песок гравелистый, крупный и средней крупности с содержанием частиц мельче 0,05 мм от 2% до 15%, мелкий с содержанием частиц мельче 0,05 мм до 5%, супесь легкая крупная</td>
<td>II</td>
</tr>
<tr>
<td>Песок мелкий с содержанием частиц мельче 0,05 мм до 8%; супесь легкая; суглинок легкий и тяжелый; глины</td>
<td>III</td>
</tr>
<tr>
<td>Песок мелкий с содержанием частиц мельче 0,05 мм до 15%; супесь пылеватая; суглинок тяжелый пылеватый</td>
<td>IV</td>
</tr>
<tr>
<td>Песок пылеватый; супесь тяжелая пылеватая; суглинок легкий пылеватый</td>
<td>V</td>
</tr>
</tbody>
</table>

Примечание
Величина коэффициента морозного пучения щебенистых, гравелистых, дресвяных песков при содержании частиц мельче 0,05 мм свыше 15% ориентировочно принимается как для пылеватого песка и проверяется в лаборатории.
<table>
<thead>
<tr>
<th>Грунт</th>
<th>Среднее значение относительного морозного пучения при промерзании 1,5 м, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Песок гравелистый, крупный и средней крупности с содержанием частиц mельче 0,05 мм до 2%</td>
<td>1</td>
</tr>
<tr>
<td>Песок гравелистый, крупный и средней крупности с содержанием частиц mельче 0,05 мм до 15%; песок мелкий с содержанием частиц мельче 0,05 мм до 2%</td>
<td>1-2</td>
</tr>
<tr>
<td>Песок мелкий с содержанием частиц мельче 0,05 мм менее 5%; супесь легкая крупная</td>
<td>1-2, 2-4</td>
</tr>
<tr>
<td>Супесь пылеватая; суглинок тяжелый пылеватый; песок мелкий с содержанием частиц мельче 0,05 мм до 15%</td>
<td>2-4, 7-10</td>
</tr>
<tr>
<td>Супесь легкая; песок мелкий с содержанием частиц мельче 0,05 мм до 8%</td>
<td>1-2, 4-7</td>
</tr>
<tr>
<td>Супесь тяжелая пылеватая; суглинок легкий пылеватый; песок пылеватый</td>
<td>4-7</td>
</tr>
<tr>
<td>Суглинок тяжелый; глины</td>
<td>2-4, 4-7</td>
</tr>
</tbody>
</table>

Примечание
В числитеle - при 1-й расчетной схеме увлажнения согласно таблице B.13 настоящего приложения, в знаменателе - при 2-й и 3-й схемах.
Таблица Б.6 – Тип местности в I дорожно-климатической зоне по условиям увлажнения и мерзлотно-грентовым особенностям

<table>
<thead>
<tr>
<th>Типы местностей</th>
<th>Условия увлажнения грунтов</th>
<th>Мерзлотные процессы и явления</th>
<th>Грунт</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-й</td>
<td>Сухие места</td>
<td>Отсутствует</td>
<td>Крупнообломочный; песчаный</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Массивная текстура; непросадочный или талый</td>
</tr>
<tr>
<td>2-й</td>
<td>Сырые места. В летнее время возможно избыточное увлажнение грунтов деятельного слоя поверхностными водами</td>
<td>Заболачивание; морозное пучение (сезонные бугры пучения)</td>
<td>Песчаный, глинистый</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Массивная и слоистая текстуры; малольдистый и малопросадочный</td>
</tr>
<tr>
<td>3-й</td>
<td>Мокрые места. В летнее время постоянное избыточное увлажнение грунтов деятельного слоя поверхностными и надмерзлотными водами</td>
<td>Заболачивание; морозное пучение (многолетние бугры пучения); термокарстовый рельеф; солифлюкция</td>
<td>Глинистый; возможно наличие подземных льдов</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Слоистая и сетчатая текстуры; льдистый и сильнольдистый; просадочный, сильнопросадочный и чрезмерно-просадочный</td>
</tr>
</tbody>
</table>
Таблица Б.7 - Классификация грунтов по льдистости и просадочности в I дорожно-климатической зоне

<table>
<thead>
<tr>
<th>Разновидность по просадочности при оттаивании</th>
<th>Льдистость грунта вечномерзлой толщи</th>
<th>Суммарная влажность грунтов деятельного слоя</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>пески, пески, пылеватые, супеси, легкие, супеси торф</td>
</tr>
<tr>
<td>Непросадочный</td>
<td>Без ледяных включений (0-0,01)</td>
<td>Менее 0,18, Менее 0,2, Менее 0,2, -</td>
</tr>
<tr>
<td>Слабопросадочный</td>
<td>Малольдистый (0,01-0,1)</td>
<td>От 0,18 до 0,25, От 0,2 до 0,4, От 0,2 до 0,4, Менее 2</td>
</tr>
<tr>
<td>Просадочный</td>
<td>Льдистый (0,1-0,4)</td>
<td>Свыше 0,25, Свыше 0,4, Свыше 0,4 до 1,1, От 2 до 12</td>
</tr>
<tr>
<td>Сильнопросадочный</td>
<td>Сильноольдистый (0,4-0,6)</td>
<td>- , - , Свыше 1,1 , Свыше 12</td>
</tr>
<tr>
<td>Чрезмерно просадочный</td>
<td>С крупными включениями подземного льда (0,6-1,0)</td>
<td>- , - , Свыше 1,1 , Свыше 12</td>
</tr>
</tbody>
</table>

Отношение объема прослоек льда к объему мерзлого грунта (с учетом включений частиц льда).
Таблица Б.8 – Разновидности грунтов по степени увлажнения

<table>
<thead>
<tr>
<th>Разновидности грунтов</th>
<th>Влажность</th>
</tr>
</thead>
<tbody>
<tr>
<td>Недоувлажненные</td>
<td>Менее 0,9</td>
</tr>
<tr>
<td>Нормальной влажности</td>
<td>От 0,9 до</td>
</tr>
<tr>
<td>Повышенной влажности</td>
<td>От до</td>
</tr>
<tr>
<td>Переувлажненные</td>
<td>Свыше</td>
</tr>
</tbody>
</table>

Примечание - максимально возможная влажность грунта при коэффициенте уплотнения 0,9.

Таблица Б.9 – Допустимая влажность грунтов при уплотнении

<table>
<thead>
<tr>
<th>Грунты</th>
<th>Допустимая влажность в долях от оптимальной при требуемом коэффициенте уплотнения грунта</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Свыше 1,0</td>
</tr>
<tr>
<td>Пески пылеватые; супеси легкие и пылеватые</td>
<td>1,30</td>
</tr>
<tr>
<td>Супеси легкие и пылеватые</td>
<td>1,20</td>
</tr>
<tr>
<td>Супеси тяжелые пылеватые; суглинки легкие и легкие пылеватые</td>
<td>1,10</td>
</tr>
<tr>
<td>Суглинки тяжелые и тяжелые пылеватые, глины</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Примечание
1. При воздействии насыпей из пылеватых песков в летних условиях допустимая влажность не ограничивается.
2. Настоящие ограничения не распространяются на насыпи, возводимые гидронамывом.
3. При возведении насыпей в зимних условиях влажность не должна, как правило, быть более 1,3 при песчаных и непылеватых супесчаных, 1,2 - при супесчаных пылеватых и суглинках легких и 1,1 - для других связных грунтов.
4. Величина допустимой влажности грунта может уточняться с учетом технологических возможностей, имеющихся в наличии конкретных уплотняющих средств в соответствии с нормами.
Таблица Б.10 – Расчетные схемы увлажнения

<table>
<thead>
<tr>
<th>Расчетная схема увлажнения рабочего слоя</th>
<th>Источники увлажнения</th>
<th>Условия отнесения к данной расчетной схеме увлажнения</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Атмосферные осадки</td>
<td>Для насыпей на участках 1-го типа местности по условиям увлажнения (7.3 настоящего свода правил и таблица В.1 настоящего приложения). Дополнительные условия: для насыпей на участках местности 2-го и 3-го типов при приблизительно равном воззвышении поверхности покрытия над расчетным уровнем грунтовых и поверхностных вод или над поверхностью земли, более чем в 1,5 раза превышающем требование таблицы 7.1. Для насыпей на участках 2-го типа при расстоянии от уреза поверхностной воды (отсутствующей не менее 2/3 летнего периода) более 5-10 м при супесях; 2-5 м при легких пылеватых суглинках и 2 м при тяжелых пылеватых суглинках и глинах (меньшие значения принимают для грунтов с большим числом пластичности; при залегании различных грунтов - принимать наибольшие значения). В выемках в песчаных и глинистых грунтах при уклонах кюветов более 20% (в дорожно-климатических зонах I-III) и при возвышении поверхности покрытия над расчетным уровнем грунтовых вод, более чем в 1,5 раза превышающем требования таблицы 7.1. При применении специальных методов регулирования водно-теплового режима (капилляропрерывающие, гидроизолирующие, теплоизолирующие и армирующие)</td>
</tr>
<tr>
<td></td>
<td>Кратковременно стоящие (до 30 сут) поверхностные воды, атмосферные осадки</td>
<td>прослойки, дренаж и т.п.), назначаемых по специальным расчетам</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>Для насыпей на участках 2-го типа местности по условиям увлажнения (7.3 настоящего свода правил и таблица В.1 настоящего приложения) при возвышении поверхности покрытия, не менее требуемого по таблице 7.1 и не более чем в 1,5 раза превышающего эти требования, и при крутизне откосов не менее 1:1,5 и простом (без берм) поперечном профиле насыпи. Для насыпей на участках 3-го типа местности при применении специальных мероприятий по защите от грунтовых вод (капилляропрерывающие и гидроизолирующие слои, дренаж), назначаемых по специальным расчетам, при отсутствии длительно стоящих (более 30 сут) поверхностных вод и выполнении условий предыдущего абзаца. В выемках в песчаных и глинистых грунтах при уклонах кюветов менее 20% (в зонах I, II) и возвышении поверхности покрытия над расчетным уровнем грунтовых вод, более чем в 1,5 раза превышающем требования таблицы 7.1.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Грунтовые или длительно стоящие (более 30 сут) поверхностные воды; атмосферные осадки</td>
<td>Для насыпей на участках 3-го типа местности по условиям увлажнения (7.3 настоящего свода правил и таблица В.1 настоящего приложения) при возвышении поверхности покрытия, отвечающем требованиям таблицы 7.1, но не превышающем их более чем в 1,5 раза. То же, для выемок, в основании которых имеется уровень грунтовых вод, расположение которого по глубине не превышает требования таблицы 7.1 более чем в 1,5 раза.</td>
</tr>
</tbody>
</table>
Таблица Б.11 – Значения коэффициентов относительного уплотнения

<table>
<thead>
<tr>
<th>Требуемый коэффициент уплотнения грунта</th>
<th>Значение коэффициентов относительного уплотнения для грунтов</th>
<th>Пески, супеси, суглинки, глины</th>
<th>Лесссы и лессовидные грунты</th>
<th>Скальные разрабатываемые грунты при объемной массе, г/см</th>
<th>Шлаки, отвалы перерабатывающей промышленности</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,9-2,2</td>
<td>2,2-2,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,4-2,7</td>
<td></td>
</tr>
<tr>
<td>1,00</td>
<td>1,10</td>
<td>1,05</td>
<td>1,30</td>
<td>0,95</td>
<td>0,89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,26-1,47</td>
</tr>
<tr>
<td>0,95</td>
<td>1,05</td>
<td>1,00</td>
<td>1,15</td>
<td>0,90</td>
<td>0,85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,20-1,40</td>
</tr>
<tr>
<td>0,90</td>
<td>1,00</td>
<td>0,95</td>
<td>1,10</td>
<td>0,85</td>
<td>0,80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,13-1,33</td>
</tr>
</tbody>
</table>
Приложение В
КОНСТРУКЦИИ ЗЕМЛЯНОГО ПОЛОТНА НА ЛЕСНЫХ ДОРОГАХ

Рисунок В1 – Насыпь на слабых грунтах и болотах I типа с применением тканого геопотолна.

Рисунок В2 – Насыпь на слабых грунтах и болотах II типа с применением тканого геопотолна в виде полубоймы.

Рисунок В3 – Насыпь на слабых грунтах и болотах III типа с применением тканого геопотолна в виде обоймы.
Рисунок В4 – Насыпь на суходоле в болотах I и II типа с применением тканого геополотна

Рисунок В5 – Насыпь на обводненных участках и болотах III типа с применением тканого геополотна

Рисунок В6 – Насыпь на обводненных участках с применением тканого геополотна
Рисунок В7 – дорожная одежда с покрытием переходного типа (а) и низшего типа (б) с применением тканого геополотна

Рисунок В8 – Дорожная одежда с заменой пучинистого грунта на стабильный и использованием георешетки и геополотна
Рисунок В9 – Дорожная конструкция на земляном полотне из глинистых грунтов с обоймой из тканого геополотна и прослойкой из георешетки

Рисунок В10 – Дорожная одежда капитального типа (а) и переходного типа (б) с применением георешетки и тканого геополотна
Рисунок B11 – а- Дорожная одежда из сборных железобетонных плит с применением георешетки и тканого геополотна; б- площадка для погрузочно-разгрузочных и маневровых работ колесного автотранспорта.

Рисунок B12 – Дорожная одежда переходного типа с применением георешетки

Рисунок B13 – Временная дорога с применением георешетки
Дорожная одежда
Грунт насыпи (ПГС, песок)
Геокомпозит с нетканой подложкой
Слабые грунты (глины, переувлажненные суглинки)

Рисунок В14 – Насыпь на переувлажненных грунтах с применением геокомпозита на нетканой подложке

Рисунок В15 – Применение геокомпозита с нетканой подложкой в насыпях с высоким уровнем грунтовых вод

Плита железобетонная
Щебень гранитный фракционный
Геотекстиль
Песок мелкой или средней крупности
Грунтовое основание

Щебень гранитный фракционный
Геотекстиль
Песок мелкой или средней крупности
Грунтовое основание
Рисунок В16 – а-дорожные одежды с покрытием из железобетонных плит и с использованием георешетки; б-дорожные одежды с переходным покрытием и с использованием георешетки для временных дорог

Рисунок В17 – Конструкция дорожной одежды для парковок грузовых автомобилей
Г1. На рисунках Г1-Г2 представлены дорожные конструкции колейного типа для II и III типа местности по увлажнению сезонных дорог.

Рисунок Г1- Поперечный профиль лесных дорог из железобетонных плит для условий типа местности II на грунтах.

Рисунок Г2- Поперечный профиль лесных дорог из железобетонных плит для условий типа местности III.

Г2. На рисунках Г3 и Г4 представлены дорожные конструкции на болотах с различной толщиной торфяных отложений.
Рисунок Г3 – Поперечный профиль лесных дорог на болотах II типа при толщине торфа до 2м.

Рисунок Г4 – Поперечный профиль лесных дорог на болотах II типа при толщине торфа свыше 2м.

Г3. На рисунке Г5 представлена конструкция с использованием хворостяной выстилки.

Рисунок Г5 - Поперечный профиль лесной дороги с использованием хворостяной выстилки
Г4. На рисунках Г6-Г8 представлены конструкции, сооружаемые и эксплуатируемые в зимний период.

Рисунок Г6 – Поперечный профиль лесной дороги, построенной в зимний период

Рисунок Г7 – Поперечный профиль лесной дороги, построенной в зимний период на болоте при толщине торфа до 1м.

Рисунок Г8 – Поперечный профиль лесной дороги, построенной в зимний период на болоте при толщине торфа свыше 2м.
Приложение Д
НАЗНАЧЕНИЕ И ХАРАКТЕРИСТИКА ГЕОМАТЕРИАЛОВ

Д.1 При проектировании дорог в сложных мерзлотно-грунтовых условиях следует рассматривать варианты конструктивно-технологических решений с использованием геотекстильных материалов отечественного и зарубежного производства.

Д.2 Сравнение вариантов необходимо проводить с учетом функции, выполняемой геотекстильным материалом:

- армирующих прослоек, усиливающих грунтовый массив, повышающих его устойчивость и уменьшающих деформации;
- разделяющих прослоек, исключающих перемешивание слоев различных по составу и состоянию грунтов, улучшающих условия работы слоев и конструкции в целом;
- дренирующих прослоек, обеспечивающих фильтрацию воды из основания или тела насыпи и ускоряющих ее осадку. Эту функцию могут выполнять только иглопробивные материалы, имеющие толщину не менее 3 мм;
- фильтра, задерживающего грунтовые частицы, перемещаемые потоком воды;
- покрытия, защищающего откосы от водной или ветровой эрозии.

Д.3 Геосинтетические материалы в общем случае должны отвечать требованиям по следующим физико-механическим свойствам:

- поверхностная плотность;
- геометрические параметры (толщина и ширина полотна, размеры ячеек для георешеток и геосеток);
- прочность при растяжении;
- прочность при длительном статическом нагружении;
- деформативность;
- сопротивление местным повреждениям;
- водопроницаемость и фильтрующая способность (для геотекстиля и геокомпозитов на его основе);
- показатели климатического старения (долговечности) в составе дорожных конструкций.

Д.4 Основные параметры геотекстильных материалов, используемых в дорожном строительстве, приведены в таблицах Д.1 и Д.2.

Д.5 При выборе геосинтетического материала следует учитывать вид материала (грунта), отсыпаемого непосредственно на геосинтетический материал, и условия выполнения строительных работ.

Таблица Д.1

<table>
<thead>
<tr>
<th>Показатели свойств геосинтетического материала</th>
<th>Армирование дорожных конструкций</th>
<th>Разделение на контакте грунтовых слоев</th>
<th>Защита гидроизоляции</th>
<th>Эрозионная защита поверхности</th>
<th>Дренажирование</th>
<th>Гидроизоляция</th>
</tr>
</thead>
<tbody>
<tr>
<td>Дороги категорий I-II</td>
<td>Дороги категорий III-IV</td>
<td>Дороги категорий V, дороги временные</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Прочность и деформативность при растяжении:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- прочность при растяжении, кН/м, не менее</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>5</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>- деформация при максимальной нагрузке, %, не более</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>Прочность при длительном статическом нагружении, %, не менее (см. п. 4 таблицы Д.1)</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>Сопротивление местным повреждениям (снижение прочности при</td>
<td>10</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Водопроницаемость (коэффициент фильтрации) в направлении, перпендикулярно плоскости полотна, м/сут, не менее (см. п.8 таблицы Д.1)</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Фильтрующая способность (эффективный размер пор), мкм (см. п.9 таблицы Ж..1)</td>
<td>40-120</td>
<td>70-200</td>
<td>120-200</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Климатическое старение (долговечность) (см. п.10 таблицы Ж..1)</td>
<td>Не менее срока службы дорожной конструкции</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Таблица Д.2 – Физико-механические показатели геоматериалов

<table>
<thead>
<tr>
<th>Вид геоматериала</th>
<th>Номинальная прочность на разрыв при 20°C, кН/м не менее</th>
<th>Долговременна прочность (120 лет при 20°C) на разрыв кН/м</th>
<th>Относительное удлинение при разрыве, %</th>
<th>Нагрузка при 2% удлинении, кН/м</th>
<th>Нагрузка при 5% удлинении, кН/м</th>
<th>Поверхностная плотность, кг/м²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Одноосная георешетка</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50,0</td>
<td>-</td>
<td>22,7(-1,0)</td>
<td>-</td>
<td>11,0(±3,0)</td>
<td>-</td>
<td>≥12,7</td>
</tr>
<tr>
<td>65,0</td>
<td>-</td>
<td>28,9(-1,3)</td>
<td>-</td>
<td>11,0(±3,0)</td>
<td>-</td>
<td>≥16,1</td>
</tr>
<tr>
<td>90,0</td>
<td>-</td>
<td>37,8(-1,7)</td>
<td>-</td>
<td>11,0(±3,0)</td>
<td>-</td>
<td>≥23,7</td>
</tr>
<tr>
<td>110,0</td>
<td>-</td>
<td>47,2(-2,2)</td>
<td>-</td>
<td>11,0(±3,0)</td>
<td>-</td>
<td>≥29,9</td>
</tr>
<tr>
<td>130,0</td>
<td>-</td>
<td>59,6(-2,6)</td>
<td>-</td>
<td>11,0(±3,0)</td>
<td>-</td>
<td>≥38,0</td>
</tr>
<tr>
<td>150,0</td>
<td>-</td>
<td>68,0(-3,0)</td>
<td>-</td>
<td>11,0(±3,0)</td>
<td>-</td>
<td>≥47,0</td>
</tr>
<tr>
<td>170,0</td>
<td>-</td>
<td>71,4(-3,1)</td>
<td>-</td>
<td>11,0(±3,0)</td>
<td>-</td>
<td>≥52,5</td>
</tr>
<tr>
<td>Двухосная георешетка</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20,0</td>
<td>20,0</td>
<td>12,0(±3,0)</td>
<td>12,0(±3,0)</td>
<td>10,7(±2,1)</td>
<td>11,6(±2,5)</td>
<td>10,7(±2,1)</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>12,0(±3,0)</td>
<td>12,0(±3,0)</td>
<td>9</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>12,0(±3,0)</td>
<td>12,0(±3,0)</td>
<td>9</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>12,0(±3,0)</td>
<td>12,0(±3,0)</td>
<td>9</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>55</td>
<td>30</td>
<td>12,0(±3,0)</td>
<td>12,0(±3,0)</td>
<td>9</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>12,0(±3,0)</td>
<td>12,0(±3,0)</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>80</td>
<td>30</td>
<td>12,0(±3,0)</td>
<td>12,0(±3,0)</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>12,0(±3,0)</td>
<td>12,0(±3,0)</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>110</td>
<td>30</td>
<td>12,0(±3,0)</td>
<td>12,0(±3,0)</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>12,0(±3,0)</td>
<td>12,0(±3,0)</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>12,0(±3,0)</td>
<td>12,0(±3,0)</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Противоэрозионная георешетка (геомат)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>12,0(±3,0)</td>
<td>12,0(±3,0)</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>12,0(±3,0)</td>
<td>12,0(±3,0)</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>12,0(±3,0)</td>
<td>12,0(±3,0)</td>
<td>-</td>
</tr>
<tr>
<td>35</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>12,0(±3,0)</td>
<td>12,0(±3,0)</td>
<td>-</td>
</tr>
<tr>
<td>Вид геоматериала</td>
<td>Прочность при растяжении в продольном/поперечном направлении, кН/м</td>
<td>Относительное удлинение при максимальной нагрузке в продольном/поперечном направлении, %</td>
<td>Прочность растяжения при 6% удлинении (продольная), кН/м</td>
<td>Поверхностная плотность, кг/м²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>≤10</td>
<td>≤20</td>
<td>25</td>
<td>0,10±0,02</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>≤10</td>
<td>≤20</td>
<td>50</td>
<td>0,32±0,02</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>≤10</td>
<td>≤20</td>
<td>60</td>
<td>0,33±0,02</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>≤10</td>
<td>≤20</td>
<td>60</td>
<td>0,35±0,02</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>45</td>
<td>≤9</td>
<td>≤20</td>
<td>75</td>
<td>0,35±0,02</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>150</td>
<td>≤10</td>
<td>≤20</td>
<td>75</td>
<td>0,50±0,02</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>45</td>
<td>≤9</td>
<td>≤20</td>
<td>75</td>
<td>0,43±0,02</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>≤10</td>
<td>≤20</td>
<td>100</td>
<td>0,68±0,02</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>45</td>
<td>≤10</td>
<td>≤20</td>
<td>150</td>
<td>0,55±0,02</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>100</td>
<td>≤10</td>
<td>≤20</td>
<td>150</td>
<td>0,68±0,02</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>50</td>
<td>≤10</td>
<td>≤18</td>
<td>200</td>
<td>0,83±0,02</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>100</td>
<td>≤10</td>
<td>≤18</td>
<td>200</td>
<td>0,90±0,02</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>100</td>
<td>≤10</td>
<td>≤18</td>
<td>250</td>
<td>0,102±0,02</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>50</td>
<td>≤10</td>
<td>≤18</td>
<td>300</td>
<td>0,115±0,02</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>100</td>
<td>≤10</td>
<td>≤18</td>
<td>300</td>
<td>0,123±0,02</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>50</td>
<td>≤10</td>
<td>≤18</td>
<td>400</td>
<td>0,135±0,02</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>100</td>
<td>≤10</td>
<td>≤18</td>
<td>400</td>
<td>0,145±0,02</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>50</td>
<td>≤10</td>
<td>≤18</td>
<td>500</td>
<td>0,170±0,02</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>≤10</td>
<td>≤18</td>
<td>500</td>
<td>0,180±0,02</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>100</td>
<td>≤10</td>
<td>≤18</td>
<td>600</td>
<td>0,235±0,02</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>100</td>
<td>≤10</td>
<td>≤18</td>
<td>800</td>
<td>0,275±0,02</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>100</td>
<td>≤10</td>
<td>≤18</td>
<td>1000</td>
<td>0,330±0,02</td>
<td></td>
</tr>
</tbody>
</table>

Примечание
Одиночную георешетку рекомендуется использовать при армировании грунта подпорных стен, устоев мостов, крутых склонов, восстановление оползне
2 Двухосную георешетку рекомендуется использовать для стабилизации и усиления грунтовых оснований, армирования грунтовых сооружений, усиления конструкций транспортных грунтовых сооружений и элементов из зернистых материалов.

3 Противоэрозионная георешетка (геомат) предназначена для защиты грунтовых откосов от поверхностной почвенной эрозии и создания прочного дернового покрытия на поверхности грунтовых сооружений.

4. Геополотно тканое используется для разделения слоев, выполняет функции фильтрации и усиления слабого грунта, а также для укрепления откосов и склонов с высоким углом заложения.
Приложение Е

АКТ ПРИЕМКИ ЗАКОНЧЕННЫХ РАБОТ ПО РЕМОНТУ УЧАСТКА ЛЕСНОЙ АВТОМОБИЛЬНОЙ ДОРОГИ

E1. Акт приёма выполненных работ по ремонту лесной дороги (участка лесной дороги)

_________ (наименование участка, с какого по какой километр, значение, техническая категория)

Адрес __
" _______________ 20 г.

Комиссия, действующая на основании (указать № и дату Постановления) в составе: председателя

(должность, фамилия, и., о.) ________ членов

(должность, фамилия, и., о.) ________

Зовела приемку работ, выполненных ________ (указать организацию, выполнявшую работы) в период с " _______________ 20 г.
" _______________ 20 г. по ремонту лесной дороги (участка лесной дороги)

_________ (наименование дороги, технической категории) с ______ км по ______ км, находящейся на балансе

__ (наименование организации) Комиссии представлены и ею рассмотрены нижеследующие документы, относящиеся к производству работ по ремонту участка:

Перечислить проектно-сметную документацию и локальные сметы с указанием, кем и когда она утверждена, и документы, относящиеся

к производству работ и представленные комиссией при приемке работ) На основании рассмотрения предъявленной документации и осмотра участка в натуре, контрольных измерений и испытаний комиссия установила следующее:

1. В процессе ремонта имелись следующие отступления от утвержденного проекта (рабочих чертежей), технических правил по ремонту лесной дороги, согласованные с проектной организацией и заказчиком ________
(перечислить все выявленные отступления, указать, по какой причине эти отступления произошли, с кем и когда согласованы)

2. Полная сметная стоимость ремонта (по утверждённой сметной документации) ___________________ тыс. руб.

3. Фактическая стоимость ремонта _____________________ тыс. руб.

4. Заключение Работы по ремонту ______________________________ (наименование участка дороги) выполнены в полном объёме в соответствии с муниципальным контрактом, проектно-сметной документацией, локальными сметами, строительными нормами и правилами, техническими правилами ремонта и содержания лесных дорог и отвечают требованиям правил приемки работ, утверждённых Минстроем РФ. Решение приемочной комиссии Предъявленная к приёмке отремонтированная лесная дорога (участок лесной дороги)

__

__

Акт составлен в ___ экземплярах, которые вручены или разосланы следующим организациям

Передать на хранение рассмотренные комиссией документы

__

(перечислить, какие, число экземпляров и организаций)

Приложения к акту:
1. Ведомость выполненных работ
2. Ведомость контрольных измерений и испытаний
3. Графическая схема дороги с указанием принятых работ

Председатель комиссии

(подпись, фамилия, и., о.)

Члены комиссии

(подписи, фамилии, и., о.)

Приложение № 1 к акту приёмки выполненных работ

Ведомость выполненных работ по ремонту лесной дороги (участка лесной дороги)
(наименование участка, с какого по какой километр) в период с "__"___________20____г. по "__"___________20____г.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Место производства работ (от км + до км +)</th>
<th>Наименование работ</th>
<th>Единица измерения</th>
<th>Объемы работ по проектно-сметной документации фактически выполнено на "__" 20__г.</th>
<th>Сметная цена за единицу, руб.</th>
<th>Сметная стоимость фактически выполненных работ, тыс.руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Итого ____________________ тыс. руб.

Заказчик: Руководитель организации

(подпись, фамилия, и., о.)

Подрядчик: Руководитель организации

(подпись, фамилия, и., о.)

"__"___________20__г.

Примечание. В наименовании работ должны указываться размеры всех конструктивных элементов (основание, покрытие, уширение и т.д.).

Приложение № 2 к акту приёмы выполненых работ

Е2. Ведомость контрольных измерений и испытаний, произведенных при приёме выполненных работ по ремонту лесной дороги (участка лесной дороги)

(наименование участка)
с "__"___________20__г. по "__"___________20__г.

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование измерений и испытаний</th>
<th>Место, км и пк</th>
<th>Данные контрольных проверок по проекту фактически</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Председатель комиссии
Члены комиссии

"___" ___________ 20__ г.

Примечание: перечень параметров, по которым проводятся измерения и испытания при приёмке:

Трубы
1. Качество очистки русла входного и выходного лотков;
2. Продольный уклон трубы;
3. Состояние оголовков и соответствие их проектным данным;
4. Состояние стыков железобетонных звеньев.

Земляное полотно
1. Поперечные сечения водоотводных каналов (глубина и ширина по низу, продольный уклон) - на всем протяжении в характерных точках;
2. Укрепительные работы откосов насыпей, конусов мостов, лотков водопропускных труб (площадь укрепления, толщина защитного слоя) - на каждом сооружении в полном объеме;
3. Заложение откосов земляного полотна - на 1 км земляного полотна 20 измерений (на каждом пикете "лево" и "право");
4. Ширина обочин - на 1 км земляного полотна 20 измерений;
5. Ширина и толщина слоя укрепления обочин - на каждом пикете;
6. Коэффициент уплотнения - в 1,5 м от бровки каждые 200 м слева и справа.

Основания и покрытия
1. Ширина - на 1 км 20 измерений (через каждые 100 м);
2. Толщина - объем тот же;
3. Поперечный уклон - объем тот же;
4. Ровность - на каждой захватке длиной 300 - 400 м 100 - 130 измерений;
5. Определение вертикальных отметок продольного профиля - через каж-дые 5 м и на плюсовых точках;
6. Плотность - 3 точки на 7000 м2 основания и покрытия;
7. Шероховатость покрытия - на каждой полосе движения по одной полосе наката на каждые 1000 м 3 - 5 измерений.

Цементобетонные покрытия
1. Состояние деформационных швов - все швы;
2. Превышение граней смежных плит - через 100 м;
3. Равномерность нанесения пленки из кремнийорганических и других соединений - на всем участке.

168
Приложение 3к акт1 приёмы выполненных работ

Графическая схема ремонтируемой дороги

Дорога

(наименование, значение, техническая категория)
протяжением ________ км отремонтирована на участке с _____________ км
по ________________ км в период с «_____» ___________ 20_____г. По

«___» _____________ 20____г. (на схеме условными знаками и цветными
карандашами указываются отремонтированные участки по настоящему акту с
выделением земляного полотна, мостов, видов покрытия, зданий и сооружений
дорожной службы на километрах всего объекта.)

К настоящему акту приложено ________________ шт. фотодокументов.
Заказчик

(подпись, фамилия, и., о.)

Подрядчик

(подпись, фамилия, и., о.)

ЕЗ. Линейный график лесной дороги

<table>
<thead>
<tr>
<th>Уклоны более допустимых</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Радиусы горизонтальных кривых менее допустимых</td>
<td>2</td>
</tr>
<tr>
<td>Местоположение (км +)</td>
<td>3</td>
</tr>
<tr>
<td>Ситуация</td>
<td>Слева от дороги</td>
</tr>
<tr>
<td></td>
<td>Справа от дороги</td>
</tr>
<tr>
<td>Тип покрытия, ширина проезжей части и земляного полотна, основные виды работ</td>
<td>На 01.01.20....</td>
</tr>
<tr>
<td></td>
<td>На 01.01.20....</td>
</tr>
<tr>
<td>Толщины конструктивных слоев дорожной одежды</td>
<td>6</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>На 01.01.20....</td>
<td></td>
</tr>
<tr>
<td>На 01.01.20....</td>
<td></td>
</tr>
<tr>
<td>На 01.01.20....</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Искусственные сооружения</th>
<th>7</th>
<th>Г-6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>На 01.01.20....</td>
<td></td>
<td></td>
</tr>
<tr>
<td>На 01.01.20....</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Грунт земляного полотна</th>
<th>8</th>
<th>суглиниок</th>
</tr>
</thead>
<tbody>
<tr>
<td>Слева от дороги</td>
<td></td>
<td>Пк 8 + 20 - 9+10 подтопляем во время весеннего паводка</td>
</tr>
<tr>
<td>Справа от дороги</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Снегозаносимые участки, объем снегоприноса и снегозащитные ограждения</th>
<th>9</th>
<th>Щиты деревянные</th>
</tr>
</thead>
<tbody>
<tr>
<td>Слева от дороги</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Справа от дороги</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Затопляемые участки и другие участки дороги, находящихся в специфических условиях</th>
<th>10</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Слева от дороги</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Справа от дороги</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Состояние покрытия проезжей части</th>
<th>11</th>
<th>Неудовлетворительное (по прочности) на участке Пк 1 +70 - Пк 2 +90</th>
</tr>
</thead>
<tbody>
<tr>
<td>На 01.01.20....</td>
<td></td>
<td></td>
</tr>
<tr>
<td>На 01.01.20....</td>
<td></td>
<td></td>
</tr>
<tr>
<td>На 01.01.20....</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Е4. Карточка моста

Карточка моста (путепровода)
Дорога Километр Пикет............
Наименование сооружения............
Наименование водотока............
Ближайшие к мосту:
Населенный пункт.......................
Расстояние от него....................
1. Данные о грузоподъемности
(отмечается принятая схема нагрузки от колонны автомобилей и одиночная, дата ее назначения и основание)

2. Ограничения движения (должительные)

<table>
<thead>
<tr>
<th>Дата введения ограничения</th>
<th>Характер ограничения</th>
<th>Причины ограничения</th>
<th>Дата снятия ограничения</th>
<th>Мероприятия, послужившие к отмене ограничения</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

3. Происшествия на мосту

<table>
<thead>
<tr>
<th>Дата происшествия</th>
<th>Описание происшествия и повреждений</th>
<th>Время ликвидации повреждений и кем произведены работы</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

4. Осмотры и ремонты мостового полотна

<table>
<thead>
<tr>
<th>Дата осмотра, фамилия И.О., производившего осмотр</th>
<th>Описание повреждений, обнаруженных при осмотре</th>
<th>Дата исправления и исполнитель работ</th>
<th>Метод ремонта и стоимость работ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

5 – 7. Осмотры и ремонты пролетных строений, опор и регуляционных сооружений записывают отдельно по форме, указанной в п. iv.

8. Наблюдения за дефектами пролетных строений и пР.

<table>
<thead>
<tr>
<th>Дата наблюдения</th>
<th>Объекты наблюдения</th>
<th>В чем состоят наблюдения</th>
<th>Результаты наблюдения</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

9. Окраска или антисептирование пролетных строений и опор

<table>
<thead>
<tr>
<th>Дата нанесения каждого слоя</th>
<th>Наименование пролетных строений, опор или их отдельных частей</th>
<th>Материал слоя</th>
<th>Объем работ, м²</th>
<th>Качество окраски</th>
<th>Стоимость окраски или антисептирования</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

10. Профили промеров русла реки и планы их расположения
(Профили русла за различные периоды вычерчивают совмещенными на одном чертеже)

11. Замечания и распоряжения по содержанию и ремонту
(Должны быть указаны: дата, фамилия, должность и подпись лица, давшего замечания или распоряжение; текст замечания с указанием срока исполнения; отметка исполнения распоряжения)
Библиография

2. Федеральный закон от 23 июля 2013 г. № 196-ФЗ «О внесении изменений в Кодекс Российской Федерации об административных правонарушениях и статью 28 Федерального закона «О безопасности дорожного движения»
3. Федеральный закон от 8 ноября 2007 г. № 257-ФЗ «Об автомобильных дорогах и о дорожной деятельности в Российской Федерации и о внесении изменений в отдельные законодательные акты Российской Федерации»
4. Федеральный закон от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений»
5. Постановление Правительства Российской Федерации от 19 января 2006 г. № 20 «Об инженерных изысканиях для подготовки проектной документации, строительства, реконструкции объектов капитального строительства» (редакция от 12.05.2017 № 563)
6. СН 449–72 Указания по проектированию земляного полотна железных и автомобильных дорог
7. Приказ Минприроды РФ от 13.09.2016 г. № 474 «Об утверждении Правил заготовки древесины и особенностей заготовки древесины в лесничествах, лесопарках, указанных в статье 23 Лесного кодекса Российской Федерации»
8. ВСН 7–82 Инструкция по проектированию лесохозяйственных автомобильных дорог
9. Приказ Минтранса РФ от 31 июля 2015 г. № 237 «Об утверждении Условий эксплуатации железнодорожных переездов»
10. Правила устройства электроустановок. Раздел 2
11. РД 45.120–2000 (НТП 45.320-76) Нормы технологического проектирования. Городские и сельские телефонные сети
12. Магистральные трубопроводы. Актуализированная редакция СНиП .05.06-85 Москва 2013
13. ТПР 901-09-9-87 «Переходы трубопроводами водопровода и канализации под ж.д. путями на станциях и перегонах и под автомобильными дорогами».

14. Пособие по проектированию земляного полотна автомобильных дорог на слабых грунтах (введено в действие распоряжением Минтранса России № ОС-1067-р от 03.12.2003)

15. ОДН 218.046-01 Проектирование нежестких дорожных одежд

16. ОДМ 218.2.046–2014 Рекомендации по выбору и контролю качества геосинтетических материалов, применяемых в дорожном строительстве

17. Методические рекомендации по проектированию жестких дорожных одежд (взамен ВСН 197-91)

18. ОДМ 218.2.001–2009 Рекомендации по проектированию и строительству водопропускных сооружений из металлических гофрированных структур на автомобильных дорогах общего пользования с учетом региональных условий (дорожно-климатических зон).

19. Приказ Рослесхоза от 27 апреля 2012г. № 174 «Об утверждении Нормативов противопожарного обустройства лесов» (зарегистрирован в Минюсте России 7 июня 2012 г., рег. № 24488)

20. Рекомендации по учету требований по охране окружающей среды при проектировании автомобильных дорог и мостовых переходов М.Минтранс РФ, 1995 г.

21. ОДМ 218.3.031-2013 Методические рекомендации по охране окружающей среды при строительстве, ремонте и содержании автомобильных дорог

22. ОДМД Методические рекомендации по ремонту и содержанию автомобильных дорог общего пользования. Введены в действие 17.03.2004 №ОС-25/1270 взамен ВСН 24-88.