
ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Р Е К О М Е Н Д А Ц И И
ПО С Т А Н Д А Р Т И З А Ц И И

Р 1323565.1.028—
2019

Информационная технология

КРИПТОГРАФИЧЕСКАЯ ЗАЩИТА ИНФОРМАЦИИ

Криптографические механизмы защищенного
взаимодействия контрольных и измерительных

устройств

Издание официальное

Москва
Стандартинформ

2020

технический надзор

https://meganorm.ru/Index2/1/4294705/4294705298.htm

Р 1323565.1.028—2019

Предисловие

1 РАЗРАБОТАНЫ Обществом с ограниченной ответственностью Фактор-ТС (ООО Фактор-ТС)

2 ВНЕСЕНЫ Техническим комитетом по стандартизации ТК 26 «Криптографическая защита ин­
формации»

3 УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ Приказом Федерального агентства по техническому
регулированию и метрологии от 30 декабря 2019 г. № 1503-ст

4 ВВЕДЕНЫ ВПЕРВЫЕ

Правила применения настоящих рекомендаций установлены в статье 26 Федерального закона
от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изме­
нениях к настоящим рекомендациям публикуется в ежегодном (по состоянию на 1 января текущего
года) информационном указателе «Национальные стандарты», а официальный текст изменений
и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае
пересмотра (замены) или отмены настоящих рекомендаций соответствующее уведомление бу­
дет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные
стандарты». Соответствующая информация, уведомление и тексты размещаются также в ин­
формационной системе общего пользования — на официальном сайте Федерального агентства по
техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, оформление, 2020

Настоящие рекомендации не могут быть полностью или частично воспроизведены, тиражирова­
ны и распространены в качестве официального издания без разрешения Федерального агентства по
техническому регулированию и метрологии

https://meganorm.ru/Index2/2/4294853/4294853932.htm

Р 1323565.1.028—2019

Содержание

1 Область применения..1
2 Нормативные ссылки..1
3 Термины и определения.. 2
4 Обозначения... 3
5 Протокол выработки ключей...5

5.1 Общие сведения...5
5.2 Ключевая система... 6
5.3 Идентификация абонентов...7
5.4 Аутентификация абонентов..8
5.5 Формирование последовательностей октетов.. 9
5.6 Формирование ключевой информации... 11
5.7 Описание протокола.. 12
5.8 Формирование и проверка корректности расширений...20
5.9 Вспомогательный алгоритм проверки точки эллиптической кривой..23

6 Протокол передачи прикладных данных.. 24
6.1 Основные задачи... 24
6.2 Ключевая система... 24
6.3 Параметры протокола...25
6.4 Алгоритм преобразования ключевой информации... 25
6.5 Алгоритмы выработки производных ключей... 26
6.6 Протокол выработки ключа аутентификации iPSK... 28

7 Протокол транспортного уровня...29
7.1 Основные сведения... 29
7.2 Параметры протокола... 30
7.3 Алгоритм формирования уникальных номеров фреймов..30
7.4 Алгоритм формирования фрейма... 31
7.5 Алгоритм расшифрования фрейма... 34

Приложение А (справочное) Типовые схемы реализации протокола выработки ключей
с аутентификацией абонентов...37

А.1 Схема аутентификации на основе предварительно распределенного ключа................................. 37
А.2 Схема аутентификации на основе ключа проверки электронной подписи...................................... 37
A. З Схема аутентификации на основе предварительно распределенных ключей

проверки электронной подписи.. 38
Приложение Б (справочное) Механизмы формирования предварительно распределенных ключей....40

Б.1 Основные положения.. 40
Б.2 Идентификация участников защищенного взаимодействия.. 40
Б.З Операции в конечном поле F22se... 40
Б.4 Ключевая система... 41

Приложение В (обязательное) Форматы передаваемых данных.. 43
B. 1 Основные положения...43
В.2 Базовые типы данных... 43
В.З Перечислимые и служебные типы.. 44
В.4 Формат сообщений транспортного протокола.. 50
В.5 Формат сообщений протоколов сеансового уровня... 52
В.6 Формат расширений.. 55

Приложение Г (справочное) Рекомендуемые значения параметров защищенного взаимодействия....58
Библиография.. 60

Р 1323565.1.028—2019

Введение

Настоящие рекомендации определяют криптографические механизмы защищенного взаимодей­
ствия между двумя абонентами по незащищенному каналу связи.

Определяемые механизмы могут быть отнесены к сеансовому и транспортному уровням модели
взаимосвязи открытых систем (далее — ВОС) согласно ГОСТ Р ИСО/МЭК 7498-1 и предназначены для
аутентификации взаимодействующих абонентов, а также обеспечения целостности и, при необходимо­
сти, конфиденциальности передаваемой информации.

Механизмы формирования и обработки информации на прикладном уровне модели ВОС в на­
стоящем документе не рассматриваются. Защищенное взаимодействие на сеансовом уровне осущест­
вляется путем выполнения сеансов связи. В ходе каждого сеанса связи происходит последовательное
выполнение двух криптографических протоколов:

протокола выработки ключей, предназначенного для аутентификации взаимодействующих або­
нентов и выработки общей ключевой информации, используемой для обеспечения целостности и кон­
фиденциальности передаваемой информации;

протокола передачи прикладных данных, в рамках которого происходит взаимодействие между
абонентами на прикладном уровне.

Каждый из указанных протоколов использует единый транспортный протокол для отправки и полу­
чения информации из канала связи. Схема информационного обмена в ходе организации защищенного
взаимодействия приведена на рисунке 1.

Рисунок 1 — Схема информационного обмена

Допускается использование каналов связи, для которых свойство гарантированной доставки па­
кетов не обеспечивается.

IV

Р 1323565.1.028— 2019

Р Е К О М Е Н Д А Ц И И ПО С Т А Н Д А Р Т И З А Ц И И

Информационная технология

КРИПТОГРАФИЧЕСКАЯ ЗАЩИТА ИНФОРМАЦИИ

Криптографические механизмы защищенного взаимодействия
контрольных и измерительных устройств

Information technology. Cryptographic data security. Cryptographic mechanisms of secure interactions of control and
measuring devices

Дата введения — 2020—09—01

1 Область применения

Настоящие рекомендации предназначены для обеспечения защищенного взаимодействия меж­
ду двумя абонентами по незащищенному каналу связи, а также для реализации каналов удаленного
управления.

В качестве абонентов могут выступать контрольные и измерительные устройства, объекты «Ин­
тернета вещей», миниатюрные технические составляющие различных технологических процессов,
обменивающиеся служебной информацией, а также произвольные субъекты автоматизированных си­
стем, для которых необходим защищенный обмен информацией, не содержащей сведений, составля­
ющих государственную тайну.

Описываемые в настоящем документе механизмы могут применяться в средствах криптографи­
ческой защиты информации (далее — СКЗИ) всех классов, определяемых Р 1323565.1.012—2017.

Соответствие изложенным в Р 1323565.1.012—2017 принципам позволяет реализовать механизм
регулярного изменения ключевой информации, используемой для обеспечения целостности и, при не­
обходимости, конфиденциальности передаваемой информации.

Изменение ключевой информации в ходе одного сеанса связи позволяет передавать большие
объемы информации без установления нового сеанса связи. Это может быть востребовано устрой­
ствами, длительное время функционирующими без взаимодействия с человеком. При этом процедура
установления сеанса связи может выполняться при начальной инициализации таких устройств.

Значения параметров, определяющих максимальный объем информации, которая может быть
передана в ходе одного сеанса связи, приводятся в приложении Г.

2 Нормативные ссылки

В настоящих рекомендациях использованы нормативные ссылки на следующие стандарты:
ГОСТ Р 34.10—2012 Информационная технология. Криптографическая защита информации. Про­

цессы формирования и проверки электронной цифровой подписи
ГОСТ Р 34.11—2012 Информационная технология. Криптографическая защита информации.

Функция хэширования
ГОСТ Р 34.12—2015 Информационная технология. Криптографическая защита информации.

Блочные шифры
ГОСТ Р 34.13—2015 Информационная технология. Криптографическая защита информации. Ре­

жимы работы блочных шифров
ГОСТ Р ИСО/МЭК 7498-1 Информационная технология. Взаимосвязь открытых систем. Базовая

эталонная модель. Часть 1. Базовая модель

Издание официальное

1

Р 1323565.1.028—2019

Р 50.1.113—2016 Информационная технология. Криптографическая защита информации. Крип­
тографические алгоритмы, сопутствующие применению алгоритмов электронной цифровой подписи и
функции хэширования

Р 1323565.1.004— 2017 Информационная технология. Криптографическая защита информации.
Схемы выработки общего ключа с аутентификацией на основе открытого ключа

Р 1323565.1.005—2017 Информационная технология. Криптографическая защита информации.
Допустимые объемы материала для обработки на одном ключе при использовании некоторых вариан­
тов режимов работы блочных шифров в соответствии с ГОСТ Р 34.13— 2015

Р 1323565.1.012—2017 Информационная технология. Криптографическая защита информации.
Принципы разработки и модернизации шифровальных (криптографических) средств защиты информации

Р 1323565.1.017—2018 Информационная технология. Криптографическая защита информации.
Криптографические алгоритмы, сопутствующие применению алгоритмов блочного шифрования

Р 1323565.1.019—2018 Информационная технология. Криптографическая защита информации.
Криптографические механизмы аутентификации и выработки ключа фискального признака для при­
менения в средствах формирования и проверки фискальных признаков, обеспечивающих работу кон­
трольно-кассовой техники, операторов и уполномоченных органов обработки фискальных данных

Р 1323565.1.023—2018 Информационная технология. Криптографическая защита информации.
Использование алгоритмов ГОСТ Р 34.10— 2012, ГОСТ Р 34.11— 2012 в сертификате, списке аннули­
рованных сертификатов (CRL) и запросе на сертификат PKCS # 1 0 инфраструктуры открытых ключей
Х.509

Р 1323565.1.024—2019 Информационная технология. Криптографическая защита информации.
Параметры эллиптических кривых для криптографических алгоритмов и протоколов

Р 1323565.1.026—2019 Информационная технология. Криптографическая защита информации.
Режимы работы блочных шифров, реализующие аутентифицированное шифрование

П р и м е ч а н и е — При пользовании настоящими рекомендациями целесообразно проверить действие
ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального
агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному
указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по вы­
пускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссы­
лочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию
этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на кото­
рый дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом
утверждения (принятия). Если после утверждения настоящих рекомендаций в ссылочный стандарт, на который
дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это поло­
жение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то
положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящих рекомендациях применены следующие термины с соответствующими определениями.
3.1 абонент: Участник информационного, в том числе защищенного криптографическими мето­

дами, сетевого взаимодействия.
3.2 действительный сертификат открытого ключа; СОК: Сертификат ключа проверки элек­

тронной подписи, срок действия которого не истек, электронная подпись которого проверяется коррек­
тно, а сфера применения сертификата допускает его использование для аутентификации и выработки
общего ключа.

3.3 клиент: Абонент, являющийся обслуживаемой стороной информационного взаимодействия,
инициирующий выполнение защищенного взаимодействия.

3.4 ключ проверки электронной подписи: Уникальная последовательность символов, одно­
значно связанная с ключом электронной подписи и предназначенная для проверки подлинности элек­
тронной подписи.

3.5 ключ электронной подписи: Уникальная последовательность символов, предназначенная
для создания электронной подписи.

3.6 октет: Символ, который может быть представлен в виде двоичной последовательности длины
восемь.

3.7 опциональная последовательность: Последовательность октетов, значение которой может
быть определено и присутствовать в передаваемых по каналам связи данных, либо не определено и
отсутствовать в передаваемых по каналам связи данных.

2

Р 1323565.1.028—2019

3.8 сеанс связи: Полный цикл информационного обмена между абонентами, подразумевающий
установление соединения, согласование параметров связи, в том числе параметров защиты информа­
ции, передачу и/или получение данных или команд, а также закрытие соединения.

3.9 сервер: Абонент, являющийся источником установления соединения в информационном вза­
имодействии, отвечающий на запрос клиента.

3.10 сериализация: Процесс перевода структуры данных в последовательность октетов конеч­
ной длины.

3.11 сертификат ключа проверки электронной подписи: Электронный документ или документ
на бумажном носителе, выданный удостоверяющим центром либо доверенным лицом удостоверяюще­
го центра и подтверждающий принадлежность ключа проверки электронной подписи владельцу серти­
фиката ключа проверки электронной подписи.

3.12 удостоверяющий центр: Юридическое лицо или индивидуальный предприниматель, осу­
ществляющий функции по созданию и выдаче сертификатов ключей проверки электронной подписи, а
также иные функции, предусмотренные [1].

3.13 электронная подпись: Информация в электронной форме, которая присоединена к другой
информации в электронной форме (подписываемой информации) или иным образом связана с такой
информацией и которая используется для определения лица, подписывающего информацию.

3.14 эллиптическая кривая: Множество решений уравнения специального вида, образующее
конечную группу, в которой реализуется протокол выработки общих ключей.

3.15 фрейм: Последовательность октетов, имеющая внутреннюю логическую структуру и являю­
щаяся единицей обмена информацией между абонентами.

4 Обозначения

В настоящих рекомендациях использованы следующие обозначения:
V* — множество всех двоичных последовательностей конечной длины, включая последо­

вательность нулевой длины;
Vs — множество всех двоичных последовательностей, состоящих в точности из s элементов;
В* — множество всех последовательностей октетов конечной длины, включая последова­

тельность нулевой длины;
Bs — множество всех последовательностей октетов, состоящих в точности из s октетов; по­

следовательность октетов о е Bs записывается в виде о = (о0, ..., os - 1), где каждая
из координат о0, ..., os - 1 принадлежит множеству V8;

— функция, возвращающая в качестве значения длину последовательности октетовLen(s)

о[п]

о [п ,.., т]

Msbn(o)

Ser(t)

Р, q
Fpn
F 2 n[x]
F2n[x, y]

a, b

e, d

о e Bs, t. e. для о = (o0, ..., os - .,) выполнено равенство Len(o) = s;
— операция выбора из последовательности октетов о е Bs заданного октета с индексом

п, т. е. для о = (о0, ..., os - 1), где 0 < n < s, выполнено равенство о[п] = оп,
— для целых чисел 0 £ п ^ т операция выбора из последовательности октетов о е Bs под­

последовательности, начинающейся с индекса п и заканчивающейся индексом т , т. е.
для о = (о0, ... ,оп, ... , от , ... , os — 1) выполнено равенство о[п, ... , т] = (оп, ... , от);

— функция, возвращающая подпоследовательность октетов, состоящую из п октетов со
старшими номерами последовательности октетов о е Bs, т. е. для о = (о0, ... ,o s - .,)
выполнено равенство Msbn(o) = o[s - n, ... , s - 1];

— последовательность октетов конечной длины, являющаяся результатом сериализа­
ции одной из структур данных, определяемых в приложении В;

— простые числа;
— для натурального числа п и простого числа р конечное поле из рп элементов;
— кольцо многочленов от одной переменной с коэффициентами из конечного поля F2n;
— кольцо многочленов от двух переменных х и у с коэффициентами из конечного поля

F2n;
— эллиптическая кривая, определенная над полем Fp в канонической форме Вейерш-

трасса, либо в форме скрученной кривой Эдвардса, см. Р 1323565.1.024—2019;
— элементы поля FD, являющиеся коэффициентами эллиптической кривой, заданной в

~ . г ~ О _ п i f i vканонической форме Вейерштрасса сравнением у2 = ах + b (modp);
— элементы поля Fp, являющиеся коэффициентами эллиптической кривой, заданной в

форме скрученной кривой Эдвардса сравнением eu2 + v2 = 1 + du2v2 (modp);
3

Р 1323565.1.028—2019

О

RQ

x(Q)

y(Q)

юЕ

IDC. IDs

IDjpSK' ID ePSK

E(K,M)

Enc(K,M,l)

Dec(K,M)

{M}K

Streebogn

[M]

HMACn

Mac(K,M,l)

[M]K

Certc, Certs
Sign(d,M)

Veri(Q,M,s)

True, False

Validate(x)

— нейтральный элемент группы точек эллиптической кривой Е (бесконечно удаленная
точка);

— точки эллиптической кривой Е, определяемые парой координат (элементов поля Fp),
либо парой (х,у) в случае кривой, заданной в канонической форме Вейерштрасса,
либо парой (u,v) в случае кривой, заданной в форме скрученной кривой Эдвардса;

— функция, возвращающая в качестве значения первый элемент пары координат, опре­
деляющей точку Q эллиптической кривой, либо х, для точки принадлежащей кривой,
заданной в канонической форме Вейерштрасса, либо и, для точки принадлежащей
кривой, заданной в форме скрученной кривой Эдвардса;

— функция, возвращающая в качестве значения второй элемент пары координат, опре­
деляющей точку Q эллиптической кривой, либо у, для точки принадлежащей кривой,
заданной в канонической форме Вейерштрасса, либо v, для точки принадлежащей
кривой, заданной в форме скрученной кривой Эдвардса;

— идентификатор эллиптической кривой, используемый в ходе выполнения протокола
выработки ключей;

— последовательности октетов, определяющие идентификаторы, соответственно, кли­
ента и сервера;

— идентификаторы предварительно распределенных ключей аутентификации, см. 5.2;
— алгоритм зашифрования одного блока информации М на ключе К с помощью алго­

ритма блочного шифрования; перечень допустимых алгоритмов блочного шифрова­
ния определяется в В.3.8;

— алгоритм зашифрования (режим работы блочного шифра) сообщения М произволь­
ной длины на ключе К с использованием синхропосылки I; перечень допустимых ал­
горитмов зашифрования определяется в В.3.8;

— алгоритм расшифрования (режим работы блочного шифра) сообщения М произволь­
ной длины с помощью ключа К; перечень допустимых алгоритмов расшифрования
определяется в В.3.8;

— обозначение алгоритма зашифрования сообщения М произвольной длины на клю­
че К, используемое на содержащихся в настоящих рекомендациях рисунках; в слу­
чае, если значение ключа является не существенным, обозначение К может быть на
рисунке не указано;

— регламентируемая ГОСТ Р 34.11—2012 бескпючевая функции хэширования «Стри-
бог» с длиной блока п бит, где величина п принимает значение 256 либо 512;

— обозначение результата применения произвольной бесключевой функции хэширо­
вания к сообщению М, используемое на содержащихся в настоящих рекомендациях
рисунках;

— алгоритм выработки имитовставки FIMAC с длиной кода п бит, регламентируемый
рекомендациями Р 50.1.113—2016;

— алгоритм выработки имитовставки под сообщением М на ключе К с использованием
синхропосылки I (использование синхропосылки является опциональным); перечень
допустимых алгоритмов выработки имитовставки определяется в В.3.8;

— обозначение алгоритма выработки имитовставки под сообщением М на ключе К, ис­
пользуемое на содержащихся в настоящих рекомендациях рисунках;

— сертификат ключа проверки электронной подписи клиента и, соответственно, сервера;
— алгоритм выработки электронной подписи под сообщением М с помощью ключа элек­

тронной подписи d; перечень допустимых алгоритмов выработки электронной под­
писи определяется в В.3.8;

— алгоритм проверки электронной подписи s под сообщением М с помощью ключа про­
верки электронной подписи Q; перечень допустимых алгоритмов проверки электрон­
ной подписи определяется в В.3.8;

— булевы переменные, принимающее значения, соответственно, «истина» и «ложь», и
являющиеся результатом проверки электронной подписи и/или проверки совпадения
имитовставки;

— функция, проверяющая действительность сертификата х ключа проверки электрон­
ной подписи и возвращающая «истину» в случае действительности сертификата и
«ложь» в противном случае.

4

Р 1323565.1.028—2019

5 Протокол выработки ключей

5.1 Общие сведения

Цель протокола выработки ключей заключается в установлении соединения и выработке клиен­
том и сервером общей ключевой информации, предназначенной для зашифрования, расшифрования
и контроля целостности передаваемой на прикладном уровне информации. В основу протокола по­
ложена схема выработки общего ключа с аутентификацией на основе открытого ключа «Эхинацея-3»,
описываемая Р 1323565.1.004—2017.

Выполнение протокола выработки ключей инициируется клиентом и состоит из четырех этапов, в
ходе которых клиент и сервер обмениваются сообщениями. На каждом этапе один из участников прото­
кола формирует, отправляет и/или получает одно или несколько сообщений по незащищенному каналу
связи. При этом отправляемые абонентами сообщения могут передаваться как в незашифрованном,
так и зашифрованном виде.

Схема формирования, проверки и обмена сообщениями в ходе выполнения протокола выработки
ключей представлена на рисунке 2.

Клиент
формирует

ClientHelloMessage
ExtensionMessage*

ExtensionMessage*
отправляет

получает и проверяет
формирует

{ExtensionMessage}*

{ExtensionMessage}*
{VerifyMessage}

отправляет —> получает и проверяет

Рисунок 2 — Обмен сообщениями в ходе выполнения протокола выработки ключей

П р и м е ч а н и е — На рисунке 2 сообщения, которые являются опциональными, отмечены знаком «*»;
сообщения, которые передаются в зашифрованном виде, заключены в фигурные скобки; ExtensionMessage обо­
значает одно из расширений, определяемых в В.6.

В случае возникновения ошибки абонент (клиент или сервер), обнаруживший ошибку, отправляет
сообщение AlertMessage, после чего следует реакция, определяемая порядком поведения абонента
при получении сообщения об ошибке, см. В.5.5.

Протокол выработки ключей реализуется с использованием арифметических операций в группе
точек эллиптической кривой Е, удовлетворяющей требованиям, предъявляемым к эллиптическим кри­
вым в ГОСТ Р 34.10—2012, раздел 5, и являющейся параметром протокола. Для реализации протокола
выработки ключей рекомендуется использование эллиптических кривых, определяемых как в канони­
ческой форме, так и в форме скрученных кривых Эдвардса, см. В.3.9.

В ходе выполнения протокола в обязательном порядке происходит аутентификация сервера, а
также по желанию сервера аутентификация клиента. Аутентификация абонентов может реализовы­
ваться как с использованием механизма электронной подписи, так и с использованием механизма
предварительно распределенных симметричных ключей аутентификации.

Результатом выполнения протокола является набор ключей шифрования и выработки имито-
вставки, используемых абонентами в ходе выполнения протокола передачи прикладных данных для
обеспечения конфиденциальности и целостности передаваемой информации.

Сервер

— > получает и проверяет
формирует

ServerHelloMessage
{ExtensionMessage}*

{ExtensionMessage}*
{VerifyMessage}
отправляет

5

Р 1323565.1.028—2019

Описываемый протокол выработки ключей представляет собой объединение нескольких подхо­
дов к выработке общей ключевой информации, основанных на различных принципах аутентифика­
ции абонентов. Различные типы контрольных и измерительных устройств, в силу своих технических и
эксплуатационных особенностей, могут следовать рекомендуемой последовательности действий, но
реализовывать при этом только один из возможных принципов аутентификации. В приложении А при­
водятся типовые схемы реализации протокола выработки ключей.

5.2 Ключевая система
Ключевая система протокола выработки ключей состоит из следующего множества:
ключей аутентификации, предназначенных для аутентификации абонентов;
общей ключевой информации;
ключей шифрования и выработки имитовставки, предназначенных для обеспечения конфиденци­

альности и целостности информации, передаваемой в ходе выполнения протокола выработки ключей.
В результате выполнения протокола вырабатывается ключевая информация, используемая в

ходе выполнения протокола передачи прикладных данных для выработки производных ключей шифро­
вания и выработки имитовставки.

5.2.1 Ключи аутентификации
В протоколе выработки ключей могут быть использованы следующие ключи аутентификации:
dc е Fq— ключ электронной подписи клиента, удовлетворяющий ГОСТ Р 34.10—2012, раздел 5;
Qc е Е — ключ проверки электронной подписи клиента, математически связанный с ключом элек­

тронной подписи dc и удовлетворяющий ГОСТ Р 34.10—2012, раздел 5; корректность ключа проверки
электронной подписи клиента и его однозначное соответствие идентификатору клиента Юс должны
гарантироваться сертификатом Certc ключа проверки электронной подписи;

ds е Fq — ключ электронной подписи сервера, удовлетворяющий ГОСТ Р 34.10—2012, раздел 5;
Qs е Е — ключ проверки электронной подписи сервера, математически связанный с ключом элек­

тронной подписи сервера ds и удовлетворяющий ГОСТ Р 34.10—2012, раздел 5; корректность ключа
проверки электронной подписи сервера и его однозначное соответствие идентификатору сервера IDS
должны гарантироваться сертификатом Certs ключа проверки электронной подписи;

ePSK е Bs — предварительно распределенный, общий для клиента и сервера ключ аутентифика­
ции длиной s октетов, где s е {32, ... , 64}; ключ ePSK является опциональным;

iPSK е В32 — общий для клиента и сервера ключ аутентификации; вырабатывается в ходе вы­
полнения протокола передачи прикладных данных и может использоваться в ходе выполнения после­
дующего сеанса протокола выработки ключей.

Алгоритм выработки ключа аутентификации iPSK и связывания данного ключа с идентификато­
ром IDipsK описывается в 6.6. Рекомендации по выработке предварительно распределенных ключей
приводятся в приложении Б.

Способы выработки и доведения до абонентов ключей электронной подписи, ключей проверки
электронной подписи и сертификатов ключей проверки электронной подписи в настоящих рекоменда­
циях не рассматриваются.

5.2.2 Общая ключевая информация
Входе выполнения протокола клиентом выбирается эллиптическая кривая Е из множества эллип­

тических кривых, идентификаторы которых определены в В.3.9. Данная кривая характеризуется следу­
ющими параметрами:

выделенной точкой эллиптической кривой Р;
простым числом q — порядком точки Р;
кофактором с — натуральным числом таким, что произведение cq определяет порядок группы

точек эллиптической кривой Е.
Общая ключевая информация вырабатывается в ходе выполнения каждой сессии протокола и

представляет собой точку Q, принадлежащую эллиптической кривой Е и удовлетворяющую равенству
Q = кР,

где k = kcksc (mod q), а величины кс, kg е Fq — случайные вычеты, вырабатываемые, соответственно,
клиентом и сервером независимо друг от друга, см. 5.7.1 и 5.7.2. Требования к механизмам генерации
случайных значений k,., kg определяются в Р 1323565.1.012—2017, см. раздел 5.

5.2.3 Ключи шифрования и ключи выработки имитовставки
В ходе выполнения протокола клиентом и сервером вырабатывается ключевая информация,

предназначенная для шифрования и контроля целостности сообщений, передаваемых в ходе выпол­
нения протокола выработки ключей:
6

Р 1323565.1.028—2019

а) ключевая информация SHTS е В64, предназначенная для зашифрования и контроля целост­
ности сообщений, передаваемых от сервера к клиенту. Данная ключевая информация используется
клиентом для расшифрования и проверки целостности получаемых от сервера сообщений. Ключевая
информация SHTS позволяет определить следующие ключи:

-eSHTK е В32 — ключ, предназначенный для зашифрования сообщений, направляемых сервером
клиенту. Данный ключ используется клиентом для расшифрования полученных от сервера сообщений;

- iSHTK е В32 — ключ, предназначенный для выработки имитовставки сообщений, направляемых
сервером клиенту. Данный ключ используется клиентом для проверки целостности полученных от сер­
вера сообщений.

Указанные ключи определяются равенствами:

eSHTK = SHTS[0 ,..., 31], iSHTK = SHTS[32, 63];

б) ключевая информация CHTS е В64, предназначенная для зашифрования и контроля целост­
ности сообщений, передаваемых от клиента к серверу. Данная ключевая информация используется
сервером для расшифрования и проверки целостности получаемых от клиента сообщений.

Ключевая информация CHTS позволяет определить следующие ключи:
- еСНТК е В32 — ключ, предназначенный для зашифрования сообщений, направляемых клиентом

серверу. Данный ключ используется сервером для расшифрования полученных от клиента сообщений;
- iCHTK е В32 — ключ, предназначенный для выработки имитовставки сообщений, направляемых

клиентом серверу. Данный ключ используется сервером для проверки целостности полученных от кли­
ента сообщений.

Указанные ключи определяются равенствами:

еСНТК = CHTS[0, ...,31], iCHTK = CHTS[32, ..., 63]

Определенная выше ключевая информация вырабатывается клиентом и сервером в ходе вы­
полнения протокола выработки ключей. Для выработки используется общая ключевая информация Q,
ключи аутентификации iPSK и/или ePSK, а также сообщения, передаваемые в ходе выполнения про­
токола. Алгоритм выработки указанной ключевой информации описывается в 5.6.1.

5.2.4 Ключевая информация для протокола передачи прикладных данных
В результате выполнения протокола выработки ключей формируется следующая ключевая ин­

формация:
а) ключевая информация SATS е В64, предназначенная для выработки производных ключей, ис­

пользуемых для зашифрования и контроля целостности сообщений, передаваемых в ходе выполнения
протокола передачи прикладных данных от сервера к клиенту. Ключевая информация используется
клиентом для расшифрования и проверки целостности получаемых от сервера сообщений;

б) ключевая информация CATS е В64, предназначенная для выработки производных ключей, ис­
пользуемых для зашифрования и контроля целостности сообщений, передаваемых в ходе выполнения
протокола передачи прикладных данных от клиента к серверу. Ключевая информация используется
сервером для расшифрования и проверки целостности получаемых от клиента сообщений.

Определенная выше ключевая информация вырабатывается клиентом и сервером в ходе выпол­
нения протокола выработки ключей. Для выработки ключей используется общая ключевая информация
Q, ключи аутентификации iPSK и/или ePSK, а также сообщения, передаваемые в ходе выполнения про­
токола. Алгоритм выработки указанной ключевой информации описывается в 5.6.2.

5.3 Идентификация абонентов

Сервер и опционально клиент должны обладать собственными идентификаторами — последова­
тельностями октетов произвольной длины, обозначаемыми, соответственно IDS и Юс.

Длины идентификаторов должны быть отличны от нуля и могут принимать произвольные нату­
ральные значения. Рекомендуется определять идентификаторы последовательностями октетов дли­
ной не менее восьми.

5.3.1 Определение идентификаторов
Идентификаторы клиента и сервера могут быть определены следующими способами:
а) при помощи сертификатов ключей проверки электронной подписи, обеспечивающих однознач­

ное связывание идентификатора абонента с его ключом проверки электронной подписи; в этом случае
в качестве идентификатора абонента выступает значение поля owner сертификата ключа проверки
электронной подписи, представленное в ber-кодировке, см. Р 1323565.1.023—2018;

7

Р 1323565.1.028—2019

б) назначены на этапе производства контрольного и измерительного устройства либо в процессе
штатной смены ключа аутентификации ePSK; рекомендуемый механизм связывания идентификаторов
контрольных и измерительных устройств с предварительно распределенными ключами аутентифика­
ции описывается в приложении Б.

5.3.2 Обмен идентификаторами
Идентификаторы могут быть переданы от одного абонента к другому при помощи следующих

механизмов:
а) путем направления расширения CertificateExtension, содержащего сертификат ключа проверки

электронной подписи абонента, см. 5.7.2 и 5.7.3;
б) путем направления расширения RequestldentifierExtension, содержащего идентификатор або­

нента, см. 5.8.5;
в) путем предварительного распределения сертификатов ключей проверки электронной подписи

и/или идентификаторов абонентов на этапе производства контрольного и измерительного устройства,
либо в процессе штатной смены ключа аутентификации ePSK; данные механизмы настоящими реко­
мендациями не регламентируются.

5.4 Аутентификация абонентов

Протокол выработки общих ключей позволяет обеспечить как одностороннюю, так и взаимную
аутентификацию абонентов. В случае односторонней аутентификации клиент всегда выполняет аутен­
тификацию сервера.

Аутентификация может быть реализована при помощи следующих криптографических механизмов:
а) механизма ключей проверки электронной подписи; данный механизм позволяет реализовать

как одностороннюю, так и взаимную аутентификацию;
б) механизма предварительно распределенных ключей аутентификации; данный механизм по­

зволяет реализовать только взаимную аутентификацию;
в) использования общего для клиента и сервера ключа аутентификации iPSK, см. 5.2.1, вырабо­

танного в ходе предыдущего сеанса защищенного взаимодействия; данный механизм аутентификации
позволяет наследовать свойство односторонней или взаимной аутентификации из предыдущего сеан­
са защищенного взаимодействия.

Механизм аутентификации выбирается клиентом при инициализации протокола выработки общих
ключей, см. 5.7.1.

5.4.1 Аутентификация с использованием ключей электронной подписи
В данном криптографическом механизме аутентификация сервера (клиента) производится путем

проверки клиентом (сервером) истинности следующих утверждений:
а) сервер (клиент) обладает действительным сертификатом ключа проверки электронной подпи­

си, позволяющим однозначно связать уникальный идентификатор сервера (клиента) с ключом провер­
ки электронной подписи; алгоритм подтверждения того, что сертификат ключа проверки электронной
подписи является действительным, описывается в 5.8.4;

б) сервер (клиент) обладает ключом электронной подписи, однозначно связанным с ключом про­
верки электронной подписи, для сертификата которого была проверена действительность.

Подтверждение того, что сервер (клиент) обладает ключом проверки электронной подписи прово­
дится путем проверки истинности электронной подписи, выработанной сервером (клиентом) под слу­
чайным сообщением, формируемым клиентом и сервером в ходе выполнения протокола выработки
ключей.

Сертификаты ключей проверки электронной подписи, используемые для аутентификации участ­
ников защищенного взаимодействия, могут распределяться следующим образом:

а) обмен сертификатами может производиться в ходе выполнения протокола выработки общих
ключей;

б) путем предварительного распределения на этапе производства либо в процессе штатной экс­
плуатации контрольных и измерительных устройств; механизм предварительного распределения на­
стоящими рекомендациями не регламентируются;

Допускается ситуация, в которой сертификаты, обмен которыми произошел в ходе одного сеанса
защищенного взаимодействия, рассматриваются как предварительно распределенные и используются
в последующих сеансах защищенного взаимодействия без обмена в ходе выполнения протокола вы­
работки общих ключей.
8

Р 1323565.1.028—2019

В ходе выполнения протокола выработки ключей клиент (сервер) может:
а) запросить у сервера (клиента) сертификат ключа проверки электронной подписи, который будет

использован для аутентификации сервера (клиента) (в запросе может быть указан конкретный удосто­
веряющий центр, выдавший сертификат ключа проверки электронной подписи); такой запрос должен
быть направлен в случае, когда обмен сертификатами осуществляется в ходе выполнения протокола
выработки общих ключей.

П р и м е ч а н и е — Запрос сертификата должен производиться с помощью расширения
RequestCertificateExtension в ходе первого или второго этапов протокола выработки общих ключей, см. 5.7.1 и
см. 5.7.2. В ответ на запрос клиента (сервера) сервер (клиент) должен направить сертификат ключа проверки
электронной подписи, используя для этого расширение CertificateExtension;

б) указать серверу (клиенту) сертификат ключа проверки электронной подписи, который должен
использоваться для аутентификации сервера (клиента), при этом может быть указан как номер серти­
фиката ключа проверки электронной подписи, так и идентификатор удостоверяющего центра, выдав­
шего сертификат ключа проверки электронной подписи; такое указание должно направляться в случае,
когда осуществлен предварительный обмен сертификатами ключей проверки электронной подписи.

П р и м е ч а н и е — Указание об использовании сертификата должно направляться с помощью расширения
SetCertificateExtension в ходе первого или второго этапов протокола выработки общих ключей, см. 5.7.1 и 5.7.2.
В случае указания об использовании сертификата с заданным удостоверяющим центром сервер (клиент) должен
направить клиенту (серверу) сертификат ключа проверки электронной подписи, используя для этого расширение
CertificateExtension;

в) указать серверу (клиенту) номер сертификата ключа проверки электронной подписи, который
должен использоваться для собственной аутентификации клиента (сервера); такое указание должно
направляться в случае, когда осуществлен предварительный обмен сертификатами ключей проверки
электронной подписи.

П р и м е ч а н и е — Указание номера используемого сертификата должно направляться с помощью рас­
ширения InformCertificateExtension в ходе первого или второго этапов протокола выработки общих ключей, см. 5.7.1
и 5.7.2. Направление данного расширения не подразумевает ответа от сервера (клиента).

В случае, если клиентом выбран механизм аутентификации с использованием сертификатов клю­
чей проверки электронной подписи и не направлен запрос или указание на использование заданного
сертификата ключа проверки электронной подписи, сервер в обязательном порядке должен отправить
клиенту расширение CertificateExtension, содержащее сертификат ключа проверки электронной подписи.

5.4.2 Аутентификация с использованием предварительно распределенных ключей
В данном криптографическом механизме выполняется взаимная аутентификация клиента и сер­

вера. Аутентификация производится путем проверки истинности следующего утверждения:
а) сервер (клиент) обладает секретным предварительно распределенным ключом аутентифика­

ции, значение которого совпадает со значением предварительно распределенного ключа аутентифика­
ции, которым обладает клиент (сервер);

В качестве предварительно распределенного ключа аутентификации может выступать ключ ePSK,
либо ключ iPSK, выработанный в ходе предыдущего сеанса защищенного взаимодействия, см. 5.2.1.

Подтверждение того, что сервер (клиент) обладает предварительно распределенным ключом ау­
тентификации проводится клиентом (сервером) путем проверки совпадения значения кода целостности
случайного сообщения, выработанного совместно клиентом и сервером в ходе выполнения протокола
выработки общих ключей, со значением, полученным от сервера (клиента), в зашифрованном виде.

5.5 Формирование последовательностей октетов

Для выработки ключей шифрования и ключей выработки имитовставки, используемых в ходе вы­
полнения протокола выработки ключей, а также ключевой информации для протокола передачи при­
кладных данных, используются последовательности октетов R.,, R2 и Н2, Н3, Н4 и Н5.

Формирование последовательностей октетов R1 и R2 происходит в соответствии со следующими
правилами:

а) последовательность октетов R1 полагается равной Ser(x(Q)); способ преобразования опреде­
лен в В.3.10;

б) последовательность октетов R2 полагается равной IDg, где IDS — идентификатор сервера;

9

Р 1323565.1.028—2019

в) если сервером после формировании сообщения ServerHelloMessage был запрошен сертифи­
кат ключа проверки подписи клиента Certc или идентификатор клиента Юс, см. 5.7.2, то текущее значе­
ние последовательности октетов R2 конкатенируется со значением Юс, т. е.

r2 = r2h|Dc;
г) если при создании сообщения ClientHelloMessage клиентом был использован идентификатор

Ю|р8к ключа аутентификации iPSK, см. 5.7.1, то текущее значение последовательности октетов R1 и
текущее значение последовательности октетов R2 конкатенируются со значением ключа iPSK, т. е.

R1 = RJpPSK, R2 = R2||iPSK;

д) если при создании сообщения ClientHelloMessage клиентом был использован идентификатор
ЮеР8К ключа аутентификации ePSK, см. 5.7.1, то текущее значение последовательности октетов R1
и текущее значение последовательности октетов R2 конкатенируются со значением ключа ePSK, т. е.

R1 = R ^leP S K , R2 = R2||ePSK.

П р и м е ч а н и е — В краткой форме последовательности октетов R1 и R2 могут быть записаны в виде

R1 = Seг(х(Q))11iPSK*||еPSK*, R2 = IDs||IDc||iPSK*||ePSK*,

где знак «*» означает, что данная последовательность октетов является опциональной и ее включение в со­
став последовательностей октетов R1 и/или R2 зависит от действий клиента и сервера при создании сообщений
ClientHelloMessage и ServerHelloMessage.

Формирование последовательностей октетов Н2, Н3, Н4 и Н5 происходит по следующим пра­
вилам.

1 Последовательность октетов Н1 формируется следующим образом
- последовательность октетов Н1 полагается равной сообщению ClientHelloMessage;
-если клиентом после отправки сообщения ClientHelloMessage отправлялись расширения

ExtensionMessagel,... , ExtensionMessageNc, то текущее значение последовательности октетов Н1 кон­
катенируется с указанными сообщениями в порядке их отправления, т. е.

Н1 = H1||ExtensionMessage1||...||ExtensionMessageNc

-текущее значение последовательности октетов Н1 объединяется с сообщением
ServerHelloMessage, то есть Н1 = HJIServerHelloMessage.

П р и м е ч а н и е — Последовательность октетов Н1 представляет собой последовательную конкатенацию
всех переданных в открытом виде сообщений. Правильный порядок отправки расширений может быть определен
с помощью уникальных номеров фреймов, см. 7.3.

2 Последовательность октетов Н2 формируется следующим образом
- последовательность октетов Н2 определяется равенством Н2 = Н.,;
-если сервером после сообщения ClientHelloMessage отправлялись расширения

ExtensionMessagel, ... , ExtensionMessageNs, то текущее значение последовательности октетов Н2 кон­
катенируется с указанными расширениями в незашифрованном виде, в порядке их отправления, т. е.

Н2 = H2||ExtensionMessage1||...||ExtensionMessageNs

3 Последовательность октетов Н3 формируется следующим образом
- последовательность октетов Н3 определяется равенством Н3 = Н2;
-текущее значение последовательности октетов Н3 конкатенируется с отправленным сервером

клиенту сообщением VerifyMessage в незашифрованном (расшифрованном) виде, т. е.

Н3 = Н3|| VerifyMessage.

4 Последовательность октетов Н4 формируется следующим образом
- последовательность октетов Н4 определяется равенством Н4 = Н3;
-если клиентом в ответ на сообщение ServerHelloMessage отправлялись расширения

Extension M essaged, ... , ExtensionMessageCc, то текущее значение последовательности октетов Н4
конкатенируется с указанными расширениями в незашифрованном виде, в порядке их отправления, т. е.

Н4 = H4||ExtensionMessageC1||...||ExtensionMessageCc

5 Последовательность октетов Н5 формируется следующим образом
10

Р 1323565.1.028—2019

- последовательность октетов Н5 определяется равенством Н5 = Н4,
-текущее значение последовательности октетов Н5 конкатенируется с отправленным клиентом

серверу сообщением VerifyMessage в незашифрованном (расшифрованном) виде, т. е.

Н5 = H5||VerifyMessage.

П р и м е ч а н и я
1 Последовательности октетов Н1, Н5 представляют собой конкатенации сообщений и расширений, по­

следовательно передаваемых в ходе выполнения протокола выработки ключей. Схема процесса выработки по­
следовательностей октетов ЬЦ, Н5 изображена на рисунке 3.

2 Поскольку отправка расширений является опциональной, то последовательности октетов Н1 и Н2, а также
Н3 и Н4, могут совпадать.

ClientHel loMessage
Extension Messagel

ExtensionMessageNc
ServerHelloMessage
ExtensionMessagel

ExtensionMessageNs
VerifyMessage
ExtensionMessageC 1

ExtensionMessageCc
VerifyMessage

Рисунок 3 — Схема формирования последовательностей октетов

5.6 Формирование ключевой информации

В этом подразделе описываются алгоритмы формирования ключевой информации, определен­
ной в 5.2.

5.6.1 Формирование ключей шифрования и ключей выработки имитовставки
Ключи шифрования eSHTK, еСНТК и ключи выработки имитовставки iSHTK, iCHTK вырабатыва­

ются клиентом и сервером в ходе выполнения протокола выработки ключей.
Указанные ключи используются для шифрования информации, передаваемой только в ходе вы­

полнения протокола выработки ключей.
При формировании ключей eSHTK, еСНТК и iSHTK, iCHTK используется общая ключевая инфор­

мация Q, а также определенные в 5.5 последовательности октетов R1 и Н.,, Н3.
Для формирования ключей необходимо выполнить последовательность действий:
а) вычислить последовательность октетов К е В64, определяемую равенством

К = Streebog512(R1);

б) вычислить последовательность октетов SHTS е В64, удовлетворяющую равенству

SHTS = НМАС512 (К, Streebog512(H1)),

и определить ключи eSHTS и iSHTS равенствами

eSHTK = SHTS[0, ... , 31], iSHTK = SHTS[32, ... , 63];

в) вычислить последовательность октетов CHTS е В64, удовлетворяющую равенству

CHTS = НМАС512 (К, Streebog512 (Н3));

и определить ключи eCHTS и iCHTS равенствами

еСНТК = CHTS[0, ... ,31], iCHTK = CHTS[32, ... , 63].

Описанная выше последовательность действий схематично изображена на рисунке 4.

Л *4 *\ *Ч

>н-\
УН, УН,

ун .
>Н5

11

Р 1323565.1.028—2019

Рисунок 4 — Схема выработки ключей для шифрования сообщений в ходе выполнения протокола формирования
общей ключевой информации

5.6.2 Формирование ключей шифрования и ключей выработки имитовставки протокола
передачи прикладных данных

Ключевая информация CATS, SATS является целью выполнения протокола выработки клю­
чей. При формировании указанной ключевой информации используется алгоритм PRF_TLS_
GOSTR3411_2012_512, регламентируемый Р 50.1.113— 2016, а также общая ключевая информация Q
и последовательности октетов R2, Н5, определенные в 5.5.

Для формирования ключевой информации CATS, SATS необходимо выполнить последователь­
ность действий:

а) вычислить последовательность октетов Т е В64, определяемую равенством

Т = НМАС512 (Ser(x(Q)), R2);

б) вычислить последовательность октетов А0 е В64, определяемую равенством

А0 = Streebog512 (Н5);

в) вычислить последовательность октетов А1 е В64, определяемую равенством

А, = НМАС512(Т,А0);

г) определить последовательность октетов CATS е В64равенством

CATS = НМАС512 (Т, A ^IA q),

в котором операция сжатия применяется последовательно сначала к последовательности октетов Av а
потом к последовательности А0;

д) вычислить последовательность октетов А2 е В64, определяемую равенством

А2 = НМАС512(Т, А,);

е) определить последовательность октетов SATS е В64 равенством

SATS = НМАС512(Т,А2||А0),

в котором операция сжатия применяется последовательно сначала к последовательности октетов А.,, а
потом к последовательности А0.

Описанная выше последовательность действий схематично изображена на рисунке 5.

5.7 Описание протокола

В этом подразделе дается детальное описание последовательности действий, производимых кли­
ентом и сервером в ходе выполнения протокола выработки ключей.

Действия, описываемые в 5.7.1 и 5.7.3, выполняются клиентом; действия, описываемые в 5.7.2 и
5.7.4, выполняются сервером.

5.7.1 Формирование сообщения ClientHelloMessage
На первом этапе протокола выработки ключей клиентом выполняется процедура инициализации,

в ходе которой клиент формирует сообщение ClientHelloMessage, см. В.5.1, а также, при необходимо­
сти, дополнительные расширения.

Для формирования сообщения ClientHelloMessage клиент выполняет последовательность действий:
а) клиент вырабатывает случайную последовательность октетов длиной 32 октета и помещает ее

в поле ClientHelloMessage.random;
б) клиент выбирает идентификатор ЮЕ одной из эллиптических кривых, определяемых типом

данных EllipticCurvelD, см. В.3.9;

12

Р 1323565.1.028— 2019

Рисунок 5 — Схема выработки ключей для протокола передачи прикладных данных

в) клиент вырабатывает случайное целое число кс, удовлетворяющее неравенствам 0 < кс < q,
где q порядок точки Р, определяемой параметрами эллиптической кривой, выбранной клиентом на пре­
дыдущем шаге.

П р и м е ч а н и я
1 Вырабатываемое клиентом значение кс является криптографически опасной информацией, знание кото­

рой может привести к определению вырабатываемой ключевой информации и нарушению конфиденциальности
передаваемой информации. В связи с этим рекомендуется удалять значение кс на следующем шаге, сразу после
использования.

2 Использование одного и того же генератора случайных чисел для выработки значения кс и случайной
последовательности онтетов длиной 32 октета может быть потенциально опасным — нарушитель может исполь­
зовать передаваемые в открытом виде элементы последовательности для определения секретного значения кс.
В связи с этим рекомендуется использование различных генераторов случайных чисел для генерации значения кс
и случайной последовательности октетов длиной 32 октета. В случае невозможности применения различных гене­
раторов, рекомендуется использовать генератор, удовлетворяющий Р 1323565.1.012—2017;

г) клиент вычисляет точку кривой Рс = ксР и помещает координаты вычисленной точки в поля
структуры ClientHelloMessage. EllipticCurvePoint, т. е.

ClientHelloMessage. point, id = ЮЕ;

ClientHelloMessage.point.x = Ser(x(Pc));

ClientHelloMessage.point.y = Ser(y(Pc));

д) если клиент хочет использовать для аутентификации сервера предварительно распределен­
ный ключ аутентификации ePSK, то клиент определяет:

ClientHelloMessage. idpsk.present = isPresent;

ClientHelloMessage.idpsk.type = ePSKKey;

ClientHelloMessage.idpsk.length = Len(IDePSK);

ClientHelloMessage.idpsk.id = IDePSK,

где IDePSK— идентификатор ключа ePSK, а значения isPresent и notPresent определены в B.3.2, В про­
тивном случае клиент определяет

ClientHelloMessage.idpsk.present = notPresent.

П р и м е ч а н и я
1 В случае аутентификации по ключу ePSK аутентификация сервера с использованием ключа аутентифика­

ции iPSK или сертификата ключа проверки электронной подписи, см. 5.2.1, может не проводиться.
2 Если клиент хочет выполнить аутентификацию сервера как с использованием ключа аутентификации ePSK,

так и с использованием сертификата ключа проверки подписи, то после отправки сообщения ClientHelloMessage
клиент должен сформировать и направить серверу расширение RequestCertificateExtension;

13

Р 1323565.1.028— 2019

е) если клиент хочет использовать для аутентификации сервера вычисленный входе выполнения
предыдущего сеанса защищенного взаимодействия ключ аутентификации iPSK, то клиент определяет:

ClientHelloMessage.idpsk.present = isPresent;

ClientHelloMessage.idpsk.type = iPSKKey;

ClientHelloMessage.idpsk.length = Len(IDjpsK);

ClientHelloMessage.idpsk.id = IDjPSK,

где IDipSK — идентификатор ключа iPSK, а значения isPresent и notPresent определены в B.3.2. В про­
тивном случае клиент определяет:

ClientHelloMessage.idpsk. present = notPresent.

П р и м е ч а н и я
1 Использование ключа аутентификации iPSK допускается только после его выработки в ходе предыдущего

сеанса защищенного взаимодействия в соответствии с 6.6.
2 В случае аутентификации по ключу iPSK аутентификация сервера с использованием ключа аутентифика­

ции ePSK или сертификата ключа проверки электронной подписи, см. 5.2.1, может не проводиться.
3 Если клиент хочет выполнить аутентификацию сервера как с использованием ключа аутентификации iPSK,

так и с использованием сертификата ключа проверки подписи, то после отправки сообщения ClientHelloMessage
клиент должен сформировать и направить серверу расширение RequestCertificateExtension.

4 Если клиент не указал ни одного идентификатора предварительно распределенного ключа, то клиент обя­
зан выполнить аутентификацию сервера с использованием сертификата ключа проверки подписи;

ж) клиент определяет количество расширений Nc, которые будут направлены им серверу, и поме­
щает это число в поле ClientHelloMessage.countOfExtensions;

з) клиент выбирает криптографический механизм контроля целостности сообщений и расшире­
ний, которые будут передаваться в незашифрованном виде; идентификатор выбранного криптографи­
ческого механизма должен определяться перечислением CryptoMechanism и помещаться клиентом в
поле ClientHelloMessage.algorithm.

П р и м е ч а н и я
1 В большинстве случае для контроля целостности рекомендуется использовать алгоритм бесключевого

хеширования.
2 В случае, когда для аутентификации сервера используются ключи iPSK или ePSK, для контроля целост­

ности передаваемых в незашифрованном виде сообщений и расширений клиентом может быть выбрать алгоритм
выработки имитовставки. При этом, для выработки имитовставки используется ключ аутентификации iPSK или
ePSK.

3 Клиент может поместить в поле ClientHelloMessage.algorithm значение идентификатора с указанием пара­
метров криптографических механизмов, используемых для обеспечения конфиденциальности и целостности со­
общений и расширений, передаваемых в зашифрованном виде; данные значения могут быть учтены сервером при
выборе значения идентификатора криптографических механизмов, выбираемого сервером в ходе формирования
сообщения ServerHelloMessage, см. 5.7.2;

и) в соответствии с описанным в В.5.1 методом созданное сообщение ClientHelloMessage пред­
ставляется в виде последовательности октетов и передается транспортному протоколу для отправки
серверу в незашифрованном виде.

В случае если клиентом принято решение об отправке серверу расширений, см. перечисление ж),
то клиент переходит к их формированию. Допускается использование клиентом следующих расширений:

RequestCertificateExtension или SetCertificateExtension;
RequestldentifierExtension;
KeyMechanism Extension.
Для обеспечения целостности формируемых клиентом расширений используется алгоритм кон­

троля целостности, установленный клиентом в поле ClientHelloMessage.algorithm. После формирова­
ния расширения передаются транспортному протоколу для отправки серверу в незашированном виде.

П р и м е ч а н и е — Выбранный клиентом способ аутентификации сервера влияет на содержимое обяза­
тельного сообщения VerifyMessage, отправляемого сервером клиенту, см. 5.7.2. В случае, когда клиентом выбрана
аутентификация по предварительно распределенному ключу iPSK или ePSK, отправляемое сервером сообщение
VerifyMessage всегда содержит код целостности и выполнено

VerifyMessage. mac. present = isPresent.

14

Р 1323565.1.028—2019

В случае, когда идентификаторы предварительно распределенных ключей в сообщении
ClientHelloMessage не указаны, либо клиентом добавлено расширение RequestCertificateExtension, от­
правляемое сервером сообщение VerifyMessage содержит значение электронной подписи и

VerifyMessage.sign. present = isPresent.

5.7.2 Формирование сообщения ServerHelloMessage
На втором этапе выполнения протокола выработки общих ключей сервер получает отправленные

клиентом сообщения и, при наличии, расширения, выполняет контроль целостности полученных дан­
ных, формирует сообщение ServerHelloMessage, а также, при необходимости, формирует собственные
расширения.

При получении от клиента сообщения ClientHelloMessage сервер выполняет следующие проверки:
а) сервер проверяет, что значение поля ClientHelloMessage.algorithm содержит константу, определяе­

мую типом данных Crypto Meehan ism. Если это не так, то сервер отправляет клиенту сообщение AlertMessage
со значением unsupportedCryptoMechanism и завершает сеанс защищенного взаимодействия.

П р и м е ч а н и е — Сообщение AlertMessage со значением ошибки unsupportedCryptoMechanism может от­
правляться клиенту также в том случае, когда сервер не поддерживает реализацию указанного алгоритма;

б) если значение поля ClientHelloMessage.idpsk.present содержит константу isPresent, то выполня­
ются следующие проверки:

1) сервер определяет тип переданного идентификатора ключа аутентификации, содержащийся в
поле ClientHelloMessage.idpsk.type;

2) если идентификатор ключа, содержащийся в поле ClientHelloMessage.idpsk.id, отвергается сер­
вером, то сервер отправляет клиенту сообщение AlertMessage со значением wrongPreSharedKey и за­
вершает сеанс защищенного взаимодействия;

П р и м е ч а н и е — Причины, по которым сервер может отвергнуть ключ аутентификации ePSK или iPSK
настоящими рекомендациями не регулируются. В качестве примеров таких причин могут выступать: неизвестное
значение идентификатора ключа, исчерпание временного интервала использования ключа, превышение числа до­
пустимых использований ключа, компрометация ключа и т. п.;

3) если значение поля ClientHelloMessage.algorithm содержит в себе значение алгоритма выра­
ботки имитовставки, то сервер выполняет контроль целостности сообщения ClientHelloMessage с ис­
пользованием указанного алгоритма и ключа аутентификации ePSK или iPSK; в случае нарушения
целостности сервер отправляет клиенту сообщение AlertMessage со значением wronglntegrityCode и за­
вершает сеанс защищенного взаимодействия; в случае успешной проверки целостности сервер пере­
ходит к перечислению г);

в) сервер выполняет контроль целостности сообщения ClientHelloMessage с использованием алго­
ритма беекпючевого хеширования; в случае нарушения целостности сервер отправляет клиенту сооб­
щение AlertMessage со значением wronglntegrityCode и завершает сеанс защищенного взаимодействия;

г) сервер проверяет корректность идентификатора эллиптической кривой, содержащегося в поле
ClientMessageHello. point, id; если значение данного идентификатора не является допустимым, то сер­
вер отправляет клиенту сообщение AlertMessage со значением unsupportedEllipticCurvelD и завершает
сеанс защищенного взаимодействия;

д) используя алгоритм из 5.9.1, сервер проверяет корректность точки эллиптической кривой Р со­
держащейся в структуре ClientHelloMessage.point; в случае нарушения корректности точки эллиптиче­
ской кривой сервер отправляет клиенту сообщение AlertMessage со значением wrongEllipticCurvePoint
и завершает сеанс защищенного взаимодействия;

е) в случае если поле ClientHelloMessage.countOfExtensions содержит отличное от нуля значение,
то сервер переходит к получению из канала связи и проверке целостности полученных от клиента рас­
ширений, используя при этом алгоритм, определенный значением поля ClientHelloMessage.algorithm. В
случае, если целостность хотя бы одного расширения нарушена, сервер отправляет клиенту сообще­
ние AlertMessage со значением wronglntegrityCode и завершает сеанс защищенного взаимодействия;

ж) для каждого из полученных расширений сервер проверяет корректность содержащегося в
расширении запроса; в случае неверного запроса или отсутствии возможности удовлетворить запрос
клиента, сервер отправляет клиенту сообщение AlertMessage с информацией об ошибке и завершает
сеанс защищенного взаимодействия. Коды возможных ошибок приводятся в 5.8.

П р и м е ч а н и е — Процедура контроля целостности сообщения ClientHelloMessage и последующих за ним
расширений может быть реализована на уровне транспортного протокола, см. 7.5.1.

15

Р 1323565.1.028—2019

После успешного прохождения всех перечисленных выше проверок сервер формирует сообще­
ние ServerHelloMessage и, в случае необходимости, расширения, см. 5.8.

Для этого сервер выполняет следующие действия:
з) сервер вырабатывает случайную последовательность октетов длиной 32 октета и помещает ее

в поле ServerHelloMessage.random;
и) сервер вырабатывает случайное целое число ks, удовлетворяющее неравенствам 0 < kg < q,

где q порядок точки Р, определяемой параметрами эллиптической кривой, идентификатор которой вы­
бран клиентом и содержится в поле ClientHelloMessage.point.id.

П р и м е ч а н и е — Высказанные ранее при формировании сообщения ClientHelloMessage положения,
см. 5.7.1, примечание к перечислению в), о необходимости использования различных генераторов случайных чи­
сел для выработки значения ks и случайной последовательности октетов длиной 32 октета, также должны приме­
няться при формировании сообщения ServerHelloMessage;

к) сервер вычисляет точку кривой Ps = ksP и помещает координаты вычисленной точки в поля
структуры ServerHelloMessage. EllipticCurvePoint, т. е.:

ServerHelloMessage.point.id = ClientHelloMessage.point.id,

ServerHelloMessage. point.x = Ser(x(Ps)),

ServerHelloMessage.point.y = Ser(y(Ps));

л) сервер определяет количество расширений Ng, которые будут направлены им клиенту, и поме­
щает это число в поле ServerHelloMessage.countOfExtensions;

м) сервер выбирает криптографические механизмы, используемые для шифрования и контроля
целостности передаваемых далее сообщений и расширений; идентификатор выбранных криптографи­
ческих механизмов помещается сервером в поле ServerHello Message, algorithm.

П р и м е ч а н и я
1 Решение о выборе криптографических механизмов, используемых для шифрования и контроля целост­

ности передаваемых сообщений, принимается сервером. При выборе механизмов сервер может учесть «пожела­
ния» клиента, содержащиеся в поле ClientHelloMessage.algorithm, однако такое поведение сервера не является
обязательным.

2 Выбранные сервером в перечислении м) криптографические механизмы используются далее для переда­
чи зашифрованных сообщений как в протоколе выработки ключей, так и в протоколе передачи прикладных данных;

н) сервер передает сформированное сообщение Serve гНеПоМеэвадетранспоргному протоколу для
отправки клиенту в незашифрованном виде. Для контроля целостности сообщения ServerHelloMessage
используется алгоритм, указанный в поле ClientHelloMessage.algorithm;

о) согласно 5.2.2 сервер вырабатывает общую ключевую информацию Q, определяемую равен­
ством Q = cksPc, где значение кофактора с определяется параметрами используемой эллиптической
кривой;

п) сервер вырабатывает ключевую информацию SHTS — для этого сервер формирует определен­
ную в 5.5 последовательность октетов Н1 и применяет определенный в 5.6.1 алгоритм формирования
ключевой информации;

р) если поле idpsk.present сообщения ClientHelloMessage не содержит значение isPresent или кли­
ентом направлено одно из расширений RequestCertificateExtension или SetCertificateExtension, то сер­
вер выполняет следующие действия:

1) сервер выбирает ключ проверки электронной подписи Qs, который будет использован клиентом
для аутентификации сервера; если клиентом направлено расширение RequestCertificateExtension или
SetCertificateExtension, то выбор ключа Qg проводится с учетом значений, помещенных клиентом в со­
ответствующее расширение. В случае отсутствия у сервера ключ проверки электронной подписи Qg,
удовлетворяющего запрашиваемым клиентом требованиям, то сервер отправляет клиенту сообщение
AlertMessage с информацией об ошибке, см. В.3.15, и завершает сеанс защищенного взаимодействия.

П р и м е ч а н и е — Факт того, что значения, указанные клиентом в расширении, являются корректными,
проверен сервером ранее в перечислении ж);

2) за исключением случая, когда выполнено равенство SetCertificateExtension.certproctype = number,
сервер формирует:

либо расширение CertificateExtension, содержащее сертификат ключа проверки электронной под­
писи Qs;

либо расширение InformCertificateExtension, содержащее номер предварительно распределенно­
го сертификата ключа проверки электронной подписи Qg;
16

Р 1323565.1.028—2019

после этого сервер передает сформированное расширение транспортному протоколу для отправ­
ки клиенту в зашифрованном виде; для шифрования и контроля целостности сформированного расши­
рения используются криптографические механизмы, указанные в поле ServerHelloMessage.algorithm, и
выработанная ранее ключевая информация SHTS.

П р и м е ч а н и е — Случай равенства SetCertificateExtension.certproctype = number означает, что клиент
обладает сертификатом ключа проверки электронной подписи сервера и в явном виде указывает его номер. В этом
случае передача сертификата от сервера к клиенту является избыточной;

с) если сервер хочет аутентифицировать клиента с помощью механизма электронной подписи,
сервер формирует расширение RequestCertificateExtension или SetCertificateExtension, содержащее
запрос сертификата ключа проверки электронной подписи клиента и передает сформированное рас­
ширение транспортному протоколу для отправки клиенту в зашифрованном виде; для шифрования и
контроля целостности передаваемого расширения используются криптографические механизмы, ука­
занные в поле ServerHelloMessage.algorithm, и выработанная ранее ключевая информация SHTS;

т) в случае необходимости, в соответствии с 5.8, сервером могут быть сформированы расширения:
RequestldentifierExtension;
KeyMechanismExtension.
Данные расширения передаются транспортному протоколу для отправки клиенту в зашифрован­

ном виде; для шифрования и контроля целостности передаваемых расширений используются крипто­
графические механизмы, указанные в поле ServerHelloMessage.algorithm, и выработанная ранее клю­
чевая информация SHTS;

у) сервер формирует сообщение Verify Message. Для этого он выполняет следующие действия:
1) если ранее, см. перечисление р), сервером определен ключ проверки электронной подписи Qs,

то сервер формирует электронную подпись под последовательностью октетов Н2, см. 5.5, и помещает
электронную подпись в сообщение VerifyMessage, т. е.:

Verify Message, sign, present = isPresent;

VerifyMessage.sign.length = len;

VerifyMessage.sign.code = Sign(ds, Streebog512 (H2)),

где ds — ключ электронной подписи сервера, соответствующий ключу проверки подписи Qs, a len —
размер электронной подписи, определяемый ключом проверки подписи Qs. В противном случае сервер
определяет значение

VerifyMessage.sign.present = notPresent;

2) если клиентом в составе сообщения ClientHelloMessage был использован идентификатор пред­
варительно распределенного ключа iPSK или ePSK, то сервер формирует код целостности под после­
довательностью октетов Н2, см. 5.5, и помещает код целостности в сообщение VerifyMessage, т. е.:

VerifyMessage. mac. present = isPresent;

VerifyMessage. mac. length = 16;

VerifyMessage.mac.code = Streebog512 (H2)[0, ... , 15].

В противном случае сервер определяет значение

VerifyMessage. mac. present = notPresent;

ф) после формирования сообщения VerifyMessage сервер передает его транспортному прото­
колу для отправки клиенту в зашифрованном виде; для шифрования и контроля целостности пере­
даваемого сообщения VerifyMessage используются криптографические механизмы, указанные в поле
ServerHelloMessage.algorithm, и выработанная ранее ключевая информация SHTS.

5.7.3 Завершающие действия клиента
На третьем этапе выполнения протокола выработки ключей клиент завершает аутентификацию

сервера и формирует расширения, необходимые для собственной аутентификации и подтверждения
выработанной ключевой информации.

После получения ответа от сервера клиент выполняет следующие проверки:
а) в случае получения сообщения AlertMessage клиент завершает сеанс защищенного взаимодей­

ствия; в противном случае клиент переходит к анализу полученного сообщения ServerHelloMessage;

17

Р 1323565.1.028—2019

б) клиент проверяет, что значение поля ServerHelloMessage.algorithm содержит константу, опре­
деляемую типом данных CryptoMechanism. Если это не так, то клиент отправляет серверу сообщение
AlertMessage со значением ошибки unsupportedCryptoMechanism и завершает сеанс защищенного вза­
имодействия.

П р и м е ч а н и е — Сообщение AlertMessage со значением ошибки unsupportedCryptoMechanism может от­
правляться клиентом также в случае, когда клиент не поддерживает реализацию указанного алгоритма;

в) клиент выполняет контроль целостности сообщения ServerHelloMessage с использованием ал­
горитма, определенного в поле ClientHelloMessage.algorithm. В случае нарушения целостности клиент
отправляет серверу сообщение AlertMessage со значением wronglntegrityCode и завершает сеанс за­
щищенного взаимодействия;

г) используя алгоритм из 5.9.1, клиент проверяет корректность точки эллиптической кривой Ps, со­
держащейся в структуре ServerHelloMessage.point; в случае нарушения корректности точки эллиптиче­
ской кривой клиент отправляет серверу сообщение AlertMessage со значением wrongEllipticCurvePoint
и завершает сеанс защищенного взаимодействия;

д) согласно 5.2.2 клиент вырабатывает общую ключевую информацию Q — точку кривой, опре­
деляемую равенством Q = ckcPs, где значение кофактора с определяется парметрами используемой
эллиптической кривой;

е) клиент вырабатывает ключевую информацию SHTS — для этого клиент формирует определен­
ную в 5.5 последовательность октетов Н1 и применяет определенный в 5.6.1 алгоритм формирования
ключевой информации;

ж) используя алгоритм, указанный в поле ServerHelloMessage.algorithm, клиент проверяет це­
лостность и расшифровывает, при наличии, полученные от сервера расширения, а также сообщение
VerifyMessage. Если при расшифровании указанных сообщений клиент определяет нарушение целост­
ности хотя бы одного из полученных расширений и/или сообщений, клиент отправляет серверу сообще­
ние AlertMessage со значением wronglntegrityCode и завершает сеанс защищенного взаимодействия.

П р и м е ч а н и е — Процедура контроля целостности сообщения ServerHelloMessage и последующих за
ним расширений может быть реализована на уровне транспортного протокола, см. 7.5.1;

з) в случае, если поле ServerHelloMessage.countOfExtensions содержит отличное от нуля значе­
ние, то для каждого из полученных от сервера расширений клиент проверяет корректность содержа­
щегося в расширении запроса; в случае неверного запроса или отсутствии возможности удовлетворить
запрос сервера, клиент отправляет серверу сообщение AlertMessage с информацией об ошибке и за­
вершает выполнение протокола; коды возможных ошибок приводятся в 5.8;

и) если клиентом ранее направлялось расширение RequestCertificateExtension или
SetCertificateExtension с указанием конкретного сертификата ключа проверки электронной подписи,
или клиентом было получено от сервера корректное расширение CertificateExtension, содержащее сер­
тификат ключа проверки электронной подписи, или корректное расширение InformCertificateExtension,
содержащее номер сертификата ключа электронной подписи, то клиент:

1) выбирает соответствующий сертификату ключ проверки электронной подписи Qs;
2) проверяет, что поле VerifyMessage.sign.present принимает значение isPresent; если это не так,

то клиент отправляет серверу сообщение AlertMessage со значением ошибки lost I nteg rity Code и завер­
шает сеанс защищенного взаимодействия;

3) с использованием ключа проверки электронной подписи Qs проверяет истинность подписи под
последовательностью октетов Н2, см. 5.5, содержащейся в VerifyMessage.sign.code, т. е. выполнение
тождества:

Verify(Q_g, Streebog_512 (Н_2), VerifyMessage.sign.code) = True;

если тождество не выполнено, то клиент отправляет серверу сообщение AlertMessage со значени­
ем wronglntegrityCode и завершает сеанс защищенного взаимодействия;

к) если клиентом в составе сообщения ClientHelloMessage был использован идентификатор пред­
варительно распределенного ключа iPSK или ePSK, то клиент:

1) проверяет, что поле VerifyMessage. mac.present принимает значение isPresent; если это не так,
то клиент отправляет серверу сообщение AlertMessage со значением ошибки lost I nteg rity Code и завер­
шает сеанс защищенного взаимодействия;

2) формирует код целостности под последовательностью октетов Н2, см. 5.5, и проверяет выпол­
нимость равенства

VerifyMessage.mac.code = Streebog512 (H2)[0, ... , 15];

18

Р 1323565.1.028—2019

если равенство не выполнено, то клиент отправляет серверу сообщение AlertMessage со значени­
ем ошибки wronglntegrityCode и завершает сеанс защищенного взаимодействия.

После успешного выполнения всех перечисленных выше проверок клиент принимает решение об
успешной аутентификации сервера и переходит к формированию и отправке серверу сообщений и, при
необходимости, расширений. Для этого клиент выполняет следующие действия:

k) клиент вырабатывает ключевую информацию CHTS — для этого клиент формирует определен­
ную в 5.5 последовательность октетов Н3 и применяет определенный в 5.6.1 алгоритм формирования
ключевой информации;

л) если сервером направлено одно из расширений RequestCertificateExtension или
SetCertificateExtension, то клиент:

l) выбирает ключ проверки электронной подписи Qc, который будет использован сервером для
аутентификации клиента; выбор ключа Qc производится с учетом значений, помещенных сервером в
соответствующее расширение;

2)заисключениемслучая, когда выполнено paBeHCTBoSetCertificateExtension.certproctype = number,
клиент формирует:

либо расширение Certificate Extension, содержащее сертификат ключа проверки электронной под­
писи Qc,

либо расширение InformCertificateExtension, содержащее номер предварительно распределенно­
го сертификата ключа проверки электронной подписи 6 С,

после этого клиент передает сформированное расширение транспортному протоколу для отправ­
ки серверу в зашифрованном виде; для шифрования и контроля целостности сформированного расши­
рения используются криптографические механизмы, указанные в поле ServerHelloMessage.algorithm, и
выработанная ранее ключевая информация CHTS.

П р и м е ч а н и е — Случай равенства SetCertificateExtension. certproctype = number означает, что сервер
обладает сертификатом ключа проверки электронной подписи клиента и в явном виде указывает его номер. В этом
случае передача сертификата от клиента к серверу является избыточной;

м) клиент формирует сообщение VerifyMessage. Для этого он выполняет следующие действия:
1) если на предыдущем шаге клиентом был определен сертификат ключа проверки электронной

подписи Qc, то клиент формирует электронную подпись под последовательностью октетов Н4, см. 5.5,
и помещает электронную подпись в сообщение VerifyMessage, т. е.:

VerifyMessage.sign, present = isPresent;

VerifyMessage.sign.length = len;

VerifyMessage.sign.code = Sign(dc, Streebog512 (H4)),

где dc — ключ электронной подписи клиента, соответствующий ключу проверки подписи Qc, a len — раз­
мер электронной подписи, определяемый ключом проверки подписи Qc.

В противном случае клиент определяет значение

VerifyMessage.sign.present = notPresent;

2) если клиентом в составе сообщения ClientHelloMessage был использован идентификатор
предварительно распределенного ключа iPSK или ePSK, или сформированное клиентом значение
VerifyMessage.sign, present равно notPresent, то клиент формирует код целостности под последователь­
ностью октетов Н4, см. 5.5, и помещает код целостности в сообщение VerifyMessage, т. е.:

VerifyMessage. mac. present = isPresent;

VerifyMessage. mac. length = 16;

VerifyMessage.mac.code = Streebog512 (H4)[0, ... , 15].

В противном случае сервер определяет значение

VerifyMessage. mac. present = notPresent;

н) после формирования сообщения VerifyMessage клиент передает его транспортному протоколу
для отправки серверу в зашифрованном виде; для шифрования и контроля целостности сообщения
VerifyMessage используются криптографические механизмы, указанные в поле ServerHelloMessage.
algorithm, и выработанная ранее ключевая информация CHTS;

19

Р 1323565.1.028—2019

0) клиент формирует ключевую информацию для протокола передачи прикладных данных — для
этого клиент формирует определенную в 5.5 последовательность октетов Н5 и применяет определен­
ный в 5.6.2 алгоритм формирования ключевой информации.

После формирования ключевой информации клиент успешно завершает протокол выработки
ключей.

5.7.4 Завершающие действия сервера
На четвертом этапе сервер завершает выполнение протокола выработки общих ключей. После

получения ответа от клиента сервер выполняет следующие действия:
а) в случае получения сообщения AllertMessage сервер завершает сеанс защищенного взаимо­

действия. В противном случае сервер переходит к анализу полученных сообщений;
б) сервер вырабатывает ключевую информацию CHTS— для этого сервер формирует определен­

ную в 5.5 последовательность октетов Н3 и применяет определенный в 5.6.1 алгоритм формирования
ключевой информации;

в) используя алгоритм, указанный в поле ServerHelloMessage.algorithm и выработанную ключевую
информацию CHTS, сервер расшифровывает, при наличии, отправленные клиентом расширения, а
также полученное от клиента сообщение VerifyMessage; если при расшифровании сервер определяет
нарушение целостности хотя бы одного из полученных сообщений и/или расширений, сервер отправ­
ляет клиенту сообщение AlertMessage со значением ошибки wronglntegrityCode и завершает сеанс за­
щищенного взаимодействия;

г) если сервером ранее направлялось расширение RequestCertificate Extension с запросом сер­
тификата или SetCertificateExtension с указанием конкретного сертификата ключа проверки электрон­
ной подписи, или сервером было получено от клиента корректное расширение CertificateExtension,
содержащее сертификат ключа проверки электронной подписи, или корректное расширение
InformCertificateExtension, содержащее номер сертификата ключа электронной подписи, то сервер:

1) выбирает соответствующий сертификату ключ проверки электронной подписи Qc;
2) проверяет, что поле VerifyMessage.sign.present принимает значение isPresent; если это не так,

сервер отправляет клиенту сообщение AlertMessage с сообщением lostlntegrityCode и завершает сеанс
защищенного взаимодействия;

3) с использованием ключа проверки электронной подписи Qc проверяет истинность подписи под
последовательностью октетов Н4, см. 5.5, содержащейся в VerifyMessage.sign.code, т. е. выполнение
равенства

Verify(Qc, Streebog512 (Н4), VerifyMessage.sign.code) = True;

если равенство не выполнено, то сервер отправляет клиенту сообщение AlertMessage со значени­
ем wronglntegrityCode и завершает сеанс защищенного взаимодействия;

д) если клиентом в составе сообщения ClientHelloMessage был использован идентификатор пред­
варительно распределенного ключа iPSK или ePSK, или значение поля VerifyMessage.sign.present рав­
но notPresent, то сервер:

1) проверяет, что поле VerifyMessage. mac.present принимает значение isPresent. Если это не так,
сервер отправляет клиенту сообщение AlertMessage со значением lostlntegrityCode и завершает сеанс
защищенного взаимодействия;

2) формирует код целостности под последовательностью октетов Н4, см. 5.5, и сравнивает ее зна­
чение с полученным в составе сообщения VerifyMessage, т. е. выполнимость равенства

VerifyMessage.mac.code = Streebog512 (H4)[0, ... , 15];

если равенство не выполнено, то сервер отправляет клиенту сообщение AlertMessage со значени­
ем wronglntegrityCode и завершает сеанс защищенного взаимодействия;

е) сервер формирует ключевую информацию для протокола передачи прикладных данных — для
этого сервер формирует определенную в 5.5 последовательность октетов Н5 и применяет определен­
ный в 5.6.2 алгоритм формирования ключевой информации.

После формирования ключевой информации сервер успешно завершает протокол выработки
ключей.

5.8 Формирование и проверка корректности расширений

Правила формирования расширений, связанных с идентификацией и аутентификацией абонен­
тов, изложены в 5.3 и 5.4. В этом подразделе излагаются механизмы проверки корректности данных

20

Р 1323565.1.028—2019

расширений с указанием перечня возникающих ошибок, а также принципы формирования расширений,
не связанных с идентификацией и аутентификацией.

5.8.1 Расширение RequestCertificateExtension
Расширение RequestCertificateExtension формируется абонентами с целью запроса сертификата

ключа проверки электронной подписи. Расширение может направляться клиентом после сообщения
ClientHelloMessage и сервером после сообщения ServerHelloMessage.

После получения расширения RequestCertificateExtension абонент должен проверить его коррект­
ность, выполнив следующие проверки:

а) если поле RequestCertificateExtension.certproctype содержит значение any, а абонент не об­
ладает сертификатом ключа проверки электронной подписи, то абонент принимает решение о не­
корректности сертификата и отправляет второму абоненту сообщение AlertMessage со значением
wrongCertificate Processed;

б) если поле RequestCertificateExtension.certproctype содержит значение number:
1) если поле RequestCertificateExtension.identifier содержит последовательность октетов, кото­

рая не может быть интерпретирована абонентом в качестве номера конкретного сертификата, то або­
нент принимает решение о некорректности сертификата и отправляет второму абоненту сообщение
AlertMessage со значением wrongCertificateNumber;

2) если поле RequestCertificateExtension.identifier содержит номер сертификата, которым абонент
не владеет, то абонент принимает решение о некорректности сертификата и отправляет второму або­
ненту сообщение AlertMessage со значением unsupportedCertificateNumber;

3) если поле RequestCertificateExtension.identifier содержит номер сертификата, которым владеет
абонент, то абонент, используя описанный в 5.8.4 алгоритм, проверяет действительность указанного
сертификата; в случае нарушения действительности сертификата абонент принимает решение о некор­
ректности сертификата и отправляет сообщение AlertMessage со значением notValidCertificateNumber.

П р и м е ч а н и е — Абонентам рекомендуется регулярно проводить проверки подлинности имеющихся у
них сертификатов проверки электронной подписи. Удаление недействительных сертификатов до начала выполне­
ния протокола выработки ключей позволит существенно сократить время его выполнения;

в) если поле RequestCertificateExtension.certproctype содержит значение issuer:
1) если поле RequestCertificateExtension.identifier содержит последовательность октетов, которая

не может быть интерпретирована абонентом в качестве удостоверяющего центра, имеющего право
выдавать сертификаты ключей проверки электронной подписи, то абонент принимает решение о не­
корректности сертификата и отправляет сообщение AlertMessage со значением wrongCertificatelssuer;

2) если абонент не владеет сертификатом ключа проверки электронной подписи, выданным
удостоверяющим центром, указанным в поле SetCertificateExtension.identifier, то абонент принима­
ет решение о некорректности сертификата и отправляет сообщение AlertMessage со значением
unsupportedCertificatelssuer.

В случае, если в ходе выполненных проверок абонент принял решение о корректности получен­
ного расширения, он выбирает сертификат ключа проверки электронной подписи для дальнейшего ис­
пользования.

5.8.2 Расширение SetCertificateExtension
Расширение SetCertificateExtension формируется абонентами с целью явного указания сертифи­

ката ключа проверки электронной подписи, предполагаемого к использованию для аутентификации
второго абонента. Расширение может направляться клиентом после сообщения ClientHelloMessage,
сервером после сообщения ServerHelloMessage и не может отправляться одновременно с расширени­
ем RequestCertificateExtension. Данное расширение рекомендуется использовать в случае предвари­
тельного распределения сертификатов ключей проверки электронной подписи.

После получения расширения SetCertificateExtension абонент должен проверитьего корректность,
выполнив следующие проверки:

а) если поле SetCertificateExtension.certproctype содержит значение any, то абонент принимает
решение о некорректности сертификата и отправляет второму абоненту сообщение AlertMessage со
значением wrongCertificateProcessed;

б) если поле SetCertificateExtension.certproctype содержит значение number:
1) если поле SetCertificateExtension. identifier содержит последовательность октетов, которая не мо­

жет быть интерпретирована абонентом в качестве номера конкретного сертификата, то абонент прини­
мает решение о некорректности расширения и отправляет второму абоненту сообщение AlertMessage
со значением wrongCertificateNumber;

21

Р 1323565.1.028—2019

2) если поле SetCertificateExtension.identifier содержит номер сертификата, которым абонент не
владеет, то абонент принимает решение о некорректности расширения и отправляет второму абоненту
сообщение AlertMessage со значением unsupportedCertificateNumber;

3) если поле SetCertificateExtension. identifier содержит номер сертификата, которым владеет або­
нент, то абонент, используя описанный в 5.8.4 алгоритм, проверяет действительность указанного сер­
тификата; в случае нарушения действительности сертификата, абонент принимает решение о некор­
ректности расширения и отправляет сообщение AlertMessage со значением notValidCertificateNumber.

в) если поле SetCertificateExtension.certproctype содержит значение issuer:
1) если поле RequestCertificateExtension. identifier содержит последовательность октетов, которая

не может быть интерпретирована абонентом в качестве удостоверяющего центра, имеющего право
выдавать сертификаты ключей проверки электронной подписи, то абонент принимает решение о не­
корректности сертификата и отправляет сообщение AlertMessage со значением wrongCertificatelssuer;

2) если абонент не владеет сертификатом ключа проверки электронной подписи, выданным
удостоверяющим центром, указанным в поле SetCertificateExtension.identifier, то абонент принима­
ет решение о некорректности сертификата и отправляет сообщение AlertMessage со значением
unsupportedCertificatelssuer.

В случае, если в ходе выполненных проверок абонент принял решение о корректности получен­
ного расширения, он выбирает сертификат ключа проверки электронной подписи для дальнейшего ис­
пользования.

5.8.3 Расширение InformCertificateExtension
Расширение InformCertificateExtension формируется абонентами с целью указания номера серти­

фиката ключа проверки электронной подписи, используемого абонентом для подтверждения собствен­
ной аутентичности.

Данное расширение должно использоваться в случае предварительного распределения сертифи­
катов ключей проверки электронной подписи. Данное расширение может направляться абонентами в
ходе второго и третьего этапов протокола выработки общих ключей и не может отправляться одновре­
менно с расширением CertificateExtension.

После получения расширения InformCertificateExtension абонент должен проверить его коррект­
ность, выполнив следующие проверки:

а) если последовательность октетов InformCertificateExtension.identfier, которая не может быть
интерпретирована абонентом в качестве номера конкретного сертификата, то абонент принимает ре­
шение о некорректности расширения и отправляет второму абоненту сообщение AlertMessage со зна­
чением wrongCertificateNumber;

б) если последовательность октетов InformCertificateExtension.identifier содержит номер сертифи­
ката, которым абонент не владеет, то абонент принимает решение о некорректности расширения и от­
правляет второму абоненту сообщение AlertMessage со значением unsupportedCertificateNumber;

в) если последовательность октетов InformCertificateExtension.identifier содержит номер сертифи­
ката, которым владеет абонент, то абонент, используя алгоритм, описанный в 5.8.4, перечисление б),
проверяет действительность указанного сертификата; в случае нарушения действительности сертифи­
ката, абонент принимает решение о некорректности расширения и отправляет сообщение AlertMessage
со значением notValidCertificateNumber.

В случае, если в ходе выполненных проверок абонент принял решение о корректности получен­
ного расширения, он выбирает сертификат ключа проверки электронной подписи для дальнейшего ис­
пользования.

5.8.4 Расширение CertificateExtension
Расширение CertificateExtension формируется абонентами с цепью передачи другому абоненту

сертификата ключа проверки электронной подписи. Данное расширение может направляться абонен­
тами в ходе второго и третьего этапов протокола выработки общих ключей и не может отправляться
одновременно с расширением InformCertificateExtension.

После получения расширения CertificateExtension абонент должен проверить его корректность,
выполнив следующие проверки:

а) проверить, что поле CertificateExtension.format содержит значение, определяемое типом
CertificateFormat; если поле не содержит значение из данного типа, либо указанный в данном поле
формат не поддерживается абонентом, то он должен принять решение о некорректности расширения
и оправить сообщение AlertMessage со значением unsupportedCertificateFormat;

22

Р 1323565.1.028—2019

б) выполнить проверку действительности сертификата, содержащегося в поле CertificateExtension.
certificate; для этого необходимо выполнить следующие проверки:

1) определить удостоверяющий центр, выдавший содержащийся в поле CertificateExtension.
certificate сертификат, и проверить наличие действительного сертификата удостоверяющего центра,
выдавшего этот сертификат; в случае, если такого сертификата не обнаружено, либо сертификат не
является действительным, то абонент должен принять решение о некорректности расширения и опра­
вить сообщение AlertMessage со значением unsupportedCertificatelssuer.

П р и м е ч а н и е — В случае, если цепочка сертификатов, удостоверяющих действительность полученного
в расширении CertificateExtension сергификагга, состоит более чем из одного сертификата, то проверка действи­
тельности должна быть проведена для каждого сертификата в цепочке. Рекомендуется проводить данную провер­
ку до начала выполнения сеанса защищенного взаимодействия;

2) проверить, что текущее время попадает во временной интервал действия сертификата, со­
держащегося в поле CertificateExtension.certificate; в противном случае необходимо принять решение о
некорректности расширения и оправить сообщение AlertMessage со значением expiredCertificate;

3) проверить, что область использования сертификата определена и заключается в выработке
электронной подписи или в выработке ключа; если указанное утверждение неверно, то необходимо
принять решение о некорректности расширения и отправить сообщение AlertMessage со значением
wrongCetificateApplication;

4) с использованием сертификата удостоверяющего центра, выдавшего сертификат, содержащий­
ся в расширении CertificateExtension, проверить истинность электронной подписи под содержащимся в
расширении сертификатом; если подпись не верна, то необходимо принять решение о некорректности
расширения и оправить сообщение AlertMessage со значением wrongCertificatelntegrityCode.

В случае, если в ходе выполненных проверок абонент принял решение о корректности получен­
ного расширения, он выбирает сертификат ключа проверки электронной подписи для дальнейшего ис­
пользования.

5.8.5 Расширение RequestldentifierExtension
Расширение RequestldentifierExtension формируется абонентами с целью указания своего иден­

тификатора и запроса идентификатора другого абонента. Данное расширение может направляться в
ходе первого и второго этапов выполнения протокола выработки общих ключей. Расширение может
использоваться в случае предварительно распределенных ключей аутентификации.

Проверка корректности содержащейся в расширении последовательности октетов при получении
расширения не проводится, поскольку корректность идентификатора проверяется позднее путем про­
верки кодов целостности, содержащихся в сообщении VerifyMessage.

5.8.6 Расширение KeyMechanismExtension
Расширение KeyMechanismExtension представляет собой средство для комплексного контроля

за используемыми криптографическими механизмами. С помощью данного расширения можно устано­
вить следующие параметры транспортного протокола:

а) криптографические алгоритмы, используемые для выработки ключевой информации и произ­
водных ключей шифрования и контроля целостности передаваемой информации;

б) объем информации, шифруемой на одном ключе;
в) граничные значения для счетчиков, используемых для выработки уникальных номеров фрейма;
г) механизм формирования уникальных номеров фреймов.
Детальное описание параметров и криптографических механизмов, которые могут быть измене­

ны с помощью расширения KeyMechanismExtension, приводится в 7.3 и приложении Г.
Расширение KeyMechanismExtension может формироваться клиентом и направляться серверу в

ходе первого этапа выполнения протокола выработки ключей.
Если сервер, получивший расширение KeyMechanismExtension, не может использовать крип­

тографические механизмы и/или параметры, определяемые значением типа KeyMechanismType,
сервер должен отправить сообщение об ошибке AlertMessage со значением кода ошибки, равным
unsupportedKeyMechanism, и завершить сеанс защищенного взаимодействия.

5.9 Вспомогательный алгоритм проверки точки эллиптической кривой

В состав сообщений ClientHelloMessage и ServerHelloMessage входит структура EllipticCurvePoint,
содержащая в себе координаты выработанной абонентом точки эллиптической кривой.

23

Р 1323565.1.028—2019

Для проверки того, что данная точка определена корректно, получатель указанного сообщения
должен выполнить следующие проверки:

а) проверить, что поле EllipticCurvePoint.id содержит идентификатор эллиптической кривой, опре­
деляемый перечислением EllipticCurvelD, см. В.3.9; если поле EllipticCurvePoint.id содержит значение,
отличное от определяемого перечислением EllipticCurvelD, или абонент не поддерживает вычисления
на эллиптической кривой с данным идентификатором, то абонент должен направить сообщение об
ошибке AllertMessage со значением unsuppoiiedEllipticCurvelD;

б) если идентификатор EllipticCurvePoint.id определяет эллиптическую кривую, заданную в кано­
нической форме Вейерштрасса, то абонент должен:

1) определить величину х значением поля EllipticCurvePoint.x;
2) определить величину у значением поля EllipticCurvePoint.y;
3) проверить выполнение сравнения у2 = х3 + ах + b (mod р), где параметры а, Ь, р определены

идентификатором эллиптической кривой согласно В.3.9; если указанное сравнение не выполняется, то
абонент должен направить сообщение об ошибке AllertMessage со значением wrongEllipticCurvePoint;

в) если идентификатор EllipticCurvePoint.id определяет эллиптическую кривую, заданную в форме
скрученной кривой Эдвардса, то абонент должен:

1) определить величину и значением поля EllipticCurvePoint.x;
2) определить величину v значением поля EllipticCurvePoint.y;
3) проверить выполнение сравнения eu2 + v2 = 1 + du2v2 (mod р), где параметры e,d, р определе­

ны идентификатором эллиптической кривой согласно В.3.9; если указанное сравнение не выполняется,
то абонент должен направить сообщение об ошибке AllertMessage со значением wrongEllipticCurvePoint;

г) в случае успешного выполнения одного из указанных сравнений в зависимости от значения
идентификатора EllipticCurvePoint.id, определить точку Р эллиптической кривой либо парой (х, у), либо
(u, v);

д) в случае, если определяемый идентификатором эллиптической кривой Е кофактор с, см. 5.2.2,
удовлетворяет неравенству с > 1, то необходимо проверить, что точка сР отлична от нейтрального
элемента группы точек эллиптической кривой (бесконечно удаленной точки О).

Эллиптическая кривая, определяемая значением идентификатора EllipticCurvePoint.id, и опреде­
ленная в перечислении г) точка Р должны быть использованы при выработке общей ключевой инфор­
мации, см. 5.2.2.

6 Протокол передачи прикладных данных

6.1 Основные задачи

Основные задачи протокола передачи прикладных данных заключаются в следующем:
формировании из поступающей с прикладного уровня информации фреймов заданной длины (со­

общений ApplicationDataMessage),
выработке ключевой информации, используемой для зашифрования и контроля целостности

сформированных фреймов,
передаче сформированных фреймов данных и выработанной ключевой информации протоколу

транспортного уровня.
Длина формируемых фреймов ограничивается параметром транспортного протокола

maxFrameLength, см. 7.2, — максимально допустимой длиной фреймов, в которые вкладываются по­
ступающие с прикладного уровня сообщения.

6.2 Ключевая система

Ключевая система протокола передачи прикладных данных состоит из следующего множества:
ключевой информации SATS и CATS, выработанной в ходе выполнения протокола выработки об­

щих ключей; данная ключевая информация используется для выработки производных ключей шиф­
рования и выработки имитовставки; в зависимости от объема переданных или принятых данных, клю­
чевая информация CATS и SATS преобразуется в ходе выполнения протокола передачи прикладных
данных; ее текущее состояние обозначается символами

SATSn, CATSn,

где п — натуральное число, принимающее значения п = 1,2, . . . ; алгоритм преобразования ключевой
информации описан в 6.4;

24

Р 1323565.1.028—2019

пары производных ключей сервера — ключа шифрования eSFK и ключа выработки имитовставки
iSFK, предназначенных для обеспечения конфиденциальности и целостности информации, передава­
емой от сервера клиенту; ключи eSFK и iSFK вырабатываются из текущего состояния ключевой инфор­
мации SATSn и обозначаются символами

eS FK n, m1 iSFKn, m1

где m — натуральное число, принимающее значения m = 1, 2, алгоритм выработки производных
ключей сервера описан в 6.5;

пары производных ключей клиента — ключа шифрования eCFK и ключа выработки имитовставки
iCFK, предназначенных для обеспечения конфиденциальности и целостности информации, передава­
емой от клиента серверу; ключи eCFK и iCFK вырабатываются из текущего состояния ключевой инфор­
мации CATSn и обозначаются символами

eCFKn m, iCFKn m,

ключа аутентификации iPSK, который может быть выработан клиентом и сервером в ходе выпол­
нения протокола передачи прикладных данных; данный ключ может быть использован в ходе после­
дующего сеанса защищенного взаимодействия для аутентификации абонентов; протокол выработки
ключа аутентификации iPSK описан в 6.6.

6.3 Параметры протокола

Параметрами протокола передачи прикладных данных являются следующие значения:
maxApplicationSecretCount — максимально возможное количество преобразований ключевой ин­

формации CATSn и SATSn, допустимое в рамках одного сеанса защищенного взаимодействия; данная
величина является максимально возможным значением счетчика числа преобразований п;

maxFrameKeysCount — максимально допустимое количество преобразований производных клю­
чей шифрования eSFKn m, eCFKn m и производных ключей выработки имитовставки iSFKn m, iCFKn m
для одного фиксированного состояния ключевой информации CATSn и SATSn; данная величина явля­
ется максимально возможным значением счетчика выработанных производных ключей т .

П р и м е ч а н и е — Указанные параметры не могут выбираться произвольно. Значения параметров долж­
ны зависеть от используемых криптографических механизмов, см. В.3.8, класса СКЗИ, реализующего настоящие
рекомендации по стандартизации, а также параметров транспортного протокола, см. 7.2. Рекомендуемые значения
указанных выше величин для различных криптографических механизмов приведены в приложении Г.

6.4 Алгоритм преобразования ключевой информации

В результате выполнения протокола выработки ключей клиентом и сервером вырабатывается
ключевая информация CATS и SATS, предназначенная для выработки ключей шифрования и ключей
выработки имитовставки. В настоящем подразделе описывается механизм преобразования данной ин­
формации в ходе выполнения транспортного протокола.

Пусть п счетчик, принимающий значения в интервале от 1 до maxApplicationSecretCount. Счет­
чик п может представляться как переменная типа LengthOctet — в случае, если значение параметра
maxApplicationSecretCount удовлетворяет неравенству

maxApplicationSecretCount < 255,

либо как переменная типа LengthShortlnt — в случае, если значение параметра maxApplicationSecretCount
удовлетворяет неравенствам

256 < maxApplicationSecretCount < 65535.

Точный способ представления счетчика п определяется константой типа KeyMechanismType.
Последовательность ключевых значений CATSn и SATSn определяется равенствами

CATS1 = CATS,

SATS1 = SATS,

CATSn = HMAC512 (T, CATSn _ .,||Ser(n)),

SATSn = HMAC512 (T, SATSn _ .,||Ser(n)),

где CATS, SATS — ключевая информация, выработанная в ходе выполнения протокола выработки ключей,
а величина Т представляет собой общую для клиента и сервера ключевую информацию, определенную при

25

Р 1323565.1.028—2019

выполнении протокола выработки ключей, см. 5.6.2, а п = 2, ... , maxApplicationSecretCount. При этом
длина последовательности октетов Ser(n) должна совпадать с длиной последовательности октетов,
представляющей значение п, и может принимать значение 1 либо 2.

П р и м е ч а н и я
1 Указанная выше последовательность действий схематично изображена на рисунке 6.
2 Указанный способ преобразования ключевой информации, по сути, представляет собой описанный в [2\

алгоритм HKDF-Expand на основе отечественной функции хэширования Streebog, независимо примененный к клю­
чевой информации CATS и SATS. Отличия от [2] заключаются в способе определения начального значения и ис­
пользовании состоящего из двух октетов счетчика ключей.

Рисунок 6 — Схема преобразования ключевой информации

При исчерпании всех допустимых значений счетчика п абонент должен направить сообщение
AllertMessage с кодом ошибки keyResourceTimeUp и завершить сеанс защищенного взаимодействия.
После этого, если абонент является клиентом, он может начать новое защищенное взаимодействие,
инициировав выполнение протокола выработки ключей. Если абонент является сервером, то он дол­
жен перейти в состояние, ожидающее начало выполнения протокола выработки ключей.

6.5 Алгоритмы выработки производных ключей

Производные ключи вырабатываются из ключевой информации CATSn и SATSn для каждого зна­
чения счетчика и используются непосредственно для шифрования и контроля целостности передава­
емых по каналам связи фреймов.

Пусть m счетчик, принимающий значения в интервале от 0 до maxFrameKeysCount. Счетчик
m может представляться как переменная типа LengthOctet — в случае, если значение параметра
maxFrameKeysCount удовлетворяет неравенству

maxFrameKeysCount £ 255,

либо как переменная типа Lengths ho rtlnt— в случае, если значение параметра maxFrameKeysCount
удовлетворяет неравенствам

256 £ maxFrameKeysCount £ 65535.

Точный способ представления счетчика m определяется константой типа KeyMechanismType.
Алгоритм выработки производных ключей шифрования eCFKn m, eSFKn m зависит от алгоритма

блочного шифрования, определяемого значением поля ServerHelloMessage.algorithm, см. 5.7.2, и опре­
деляется для каждого фиксированного значения п следующими равенствами

eCFKn 0 = CATSn [0, ... , 31],

eCFKn m = ACPKM(eCFKn m _ 1),

eSFKn о = SATSn [0, ... , 31],

eSFKn m = ACPKM(eSFKn m _ 1),

где m = 1, ... , maxFrameKeysCount, а отображение ACPKM, предназначенное для преобразования
ключевой информации, определяется в Р 1323565.1.017—2018 следующим образом:

а) для алгоритма блочного шифрования «Магма» значение параметра J определяется равенством
J = 4; для алгоритма «Кузнечик» — равенством J = 2;

26

Р 1323565.1.028—2019

б) отображение АСРКМ определяется равенством

Кт = АСРКМ(Кт _ ,) = Е(Кт _ „ D1)||■ ||Е(Кт _ ,, Dj),

где К т — ключ, вырабатываемый из ключа Km _ ,, a D.,|| ■■■ ||Dj — константная последовательность
октетов, определяемая следующим образом:

D = (0x80110x81110x82110х83| 10х84| 10x85110х86| 10х87| |
0x88||0x89||0x8A||0x8B||0x8C||0x8D||0x8E||0x8F||
0x90110x91110х92| 10x93110х94| 10х95| 10x96110х97| |
0x98||0x99||0x9A||0x9B||0x9C||0x9D||0x9E||0x9F),

и
D[0] = 0x80;
D[1] = 0x81;

D[30] = 0х9Е;
D[31] = 0x9F;
Алгоритм выработки ключей выработки имитовставки iCFKn m, iSFKn m соответственно, кли­

ента и сервера также зависит от алгоритма блочного шифрования, определяемого значением поля
ServerHelloMessage.algorithm, см. 5.7.2, и определяется следующим образом.

Для алгоритма блочного шифрования «Магма» значение натурального числа Ctr определяется
равенством

Ctr = 18446744069414584320., 0 = FFFFFFFF0000000016,

а для алгоритма «Кузнечик» — равенством

Ctr = 340282366920938463444927863358058659840., 0 =
= FFFFFFFFFFFFFFFF000000000000000016.

Тогда
CKn = CATSn [32, 63],

SKn = SATSn [32, 63],

iCFKn m = E(CKn, Ser(Ctr + mJ))|| - ||E(CKn, Ser(Ctr + (m + 1)J - 1)),

iSFKn m = E(SKn, Ser(Ctr + mJ))|| ■■■ || E(CKn, Ser(Ctr + (m + 1)J - 1)),

где величина J определена выше в перечислении а).

П р и м е ч а н и е — Описанные выше алгоритмы выработки ключей клиента — производных ключей шиф­
рования eCFKn и ключей выработки имитовставки iCFKn m схематично изображены на рисунке 7. Схема выра­
ботки ключей сервера — производных ключей шифрования eSFKn m и ключей выработки имитовставки iSFK,, m
аналогична изображенной на рисунке 7.

Рисунок 7 — Схема выработки производных ключей

27

Р 1323565.1.028—2019

6.6 Протокол выработки ключа аутентификации iPSK

Выработка ключа аутентификации iPSK представляет собой отдельный протокол, выполняемый в
рамках протокола передачи прикладных данных.

Целью выработки ключа аутентификации iPSK является снижение объема информации, переда­
ваемой в ходе выполнения следующего сеанса протокола выработки ключей, с сохранением свойства
аутентификации абонентов. Выполнение протокола выработки ключа аутентификации не является обя­
зательным.

Протокол выработки ключа аутентификации iPSK инициируется клиентом путем формирования
сообщения GeneratePSKMessage и отправки данного сообщения серверу.

Для формирования сообщения GeneratePSKMessage клиент выполняет следующие действия:
а) вырабатывает случайную последовательность октетов Randc длиной 32 октета и помещает ее

в поле GeneratePSKMessage.random;
б) помещает в поле GeneratePSKMessage.id.present значение notPresent.
Сформированное сообщение передается клиентом транспортному протоколу для отправки в ка­

нал связи в зашифрованном виде. При этом для зашифрования сообщения GeneratePSKMessage и
контроля его целостности используются текущие производные ключи eCFKn m, iCFKn m и текущие зна­
чения счетчиков n, т .

После получения сообщения GeneratePSKMessage сервер выполняет следующие действия:
в) вырабатывает случайную последовательность октетов Rands длиной 32 октета и помещает ее

в поле GeneratePSKMessage.random;
г) вырабатывает последовательность октетов PSK, определяемую равенством

PSK = НМАС512(Т, Rands||Randc||IDs||IDc*||FNs||FNc),

где Т — общая для клиента и сервера ключевая информация, используемая для преобразования клю­
чевой информации, см. 6.4;

Randc, Rands — случайные октеты, выработанные ранее, соответственно, клиентом и сервером;
IDS, IDC — идентификаторы сервера и клиента (опционально), использованные клиентом и серве­

ром в процессе выполнения протокола выработки ключей;
FNS, FNC — уникальные номера фреймов, в которых клиент отправил свой запрос на инициализа­

цию протокола выработки ключа аутентификации iPSK и сервер планирует отправить
свой ответ на запрос клиента;

д) определяет идентификатор выработанного ключа iPSK равенством

IDjpsK = PSK[0, ... , 31];

е) определяет ключ аутентификации iPSK равенством

iPSK = PSK[32, 63];

ж) формирует поле GeneratePSKMessage.id равенствами:

GeneratePSKMessage.id. present = isPresent,

GeneratePSKMessage. id. length = 32,

GeneratePSKMessage. id. id = IDiPSK.

Сформированное сообщение передается сервером транспортному протоколу для отправки в ка­
нал связи в зашифрованном виде. При этом для зашифрования сообщения GeneratePSKMessage и
контроля его целостности используют текущие производные ключи eCFKn m, iCFKn m и значения счет­
чиков n, т , использованные при формировании уникального номера FNS.

После получения ответа от сервера клиент также вычисляет значение ключа аутентификации
iPSK. Для этого он выполняет следующие действия:

з) вырабатывает последовательность октетов PSK, определяемую равенством

PSK = НМАС512(Т, Rands||Randc||IDs||IDc*||FNs||FNc),

где Т — общая для клиента и сервера ключевая информация, используемая для преобразования клю­
чевой информации, см. 6.4;

28

Р 1323565.1.028—2019

Randc, Randg — случайные октеты, выработанные ранее, соответственно клиентом и сервером;
IDS, IDC — идентификаторы сервера и клиента (опционально), использованные клиентом и серве­

ром в процессе выполнения протокола выработки ключей;
FNS, FNC — уникальные номера фреймов, в которых клиент и сервер отправляли сообщения

GeneratePSKMessage;
и) определяет идентификатор выработанного ключа iPSK равенством

IDipsK = PSK[0, ... , 31]

и сравнивает полученное значение со значением, содержащимся в поле GeneratePSKMessage.
id.id; если данные значения не совпадают, то клиент направляет серверу в зашифрованном виде со­
общение AlertMessage со значением ошибки, равным wronglnternalPSKIdentifier;

к) если значения идентификаторов ключа совпали, то клиент определяет ключ аутентификации
iPSK равенством

iPSK = PSK[32, ... ,63]

и завершает выполнение протокола выработки ключа аутентификации iPSK.

7 Протокол транспортного уровня

7.1 Основные сведения

Протокол транспортного уровня предназначен для обеспечения конфиденциальности и целостно­
сти фреймов информации, передаваемых в рамках защищенного взаимодействия между абонентами.

Сообщения, сформированные протоколами сеансового уровня — протоколом выработки клю­
чей и протоколом передачи прикладных данных, передаются транспортному протоколу для отправ­
ки в канал связи. В ходе выполнения транспортного протокола сообщения вкладываются во фреймы,
см. В.4.1, которые, при необходимости, шифруются, дополняются кодом целостности и направляются
в канал связи.

Выработка ключевой информации, используемой для шифрования и контроля целостности пе­
редаваемых сообщений, выполняется протоколами сеансового уровня. Информация о ключах и ис­
пользуемых криптографических механизмах передается протоколу транспортного уровня протоколом
сеансового уровня. После получения фреймов из канала связи проводится проверка их целостности,
расшифрование и передача содержащихся в фреймах сообщений протоколу сеансового уровня. Канал
связи, с которым взаимодействует протокол транспортного уровня, может быть реализован с помощью
различных протоколов сетевого уровня. Настоящие рекомендации не накладывают ограничений на ис­
пользование протоколов сетевого уровня.

П р и м е ч а н и е — Сетевой протокол, используемый для реализации канала связи, не обязательно дол­
жен соответствовать сетевому уровню взаимодействия модели ВОС. Для реализации канала связи допускается
использование как протоколов, находящихся выше сетевого уровня в модели ВОС, например TCP/IP, так и про­
токолов находящихся ниже.

В случае, если используемый для организации канала связи сетевой протокол не гарантирует
поточную передачу данных (это подразумевает, что данные, первыми отправленные одним абонентом
с сеансового уровня, будут первыми получены на сеансовом уровне другим абонентом), реализация
протокола транспортного уровня должна обеспечивать данную возможность.

Для реализации контроля за последовательностью передаваемых фреймов настоящими реко­
мендациями вводится механизм нумерации передаваемых в канал связи фреймов. Данный механизм
позволяет не только присвоить фрейму его уникальный номер, см. В.3.13, но и связать фрейм с крип­
тографическими ключами, обеспечивающими конфиденциальность и целостность содержащихся во
фрейме сообщений.

Настоящие рекомендации используют параметрический подход к выработке уникальных номеров
фреймов. Значения используемых параметров существенным образом зависят от:

а) используемого протокола сетевого уровня взаимодействия;
б) криптографических требований по безопасности, устанавливающих максимальный объем за­

шифровываемой на одном ключе информации.
Детальное рассмотрение вопросов формирования уникальных номеров фреймов и механизмов

связи уникальных номеров фреймов с криптографическими ключами содержится в 7.2 и 7.3.

29

Р 1323565.1.028—2019

Настоящими рекомендациями не вводится обязательное требование гарантированной доставки
фреймов, передаваемых в ходе выполнения протокола передачи прикладных данных. Если данное
свойство является необходимым, оно также должно обеспечиваться реализацией протокола транспорт­
ного уровня.

При реализации методов обеспечения свойств поточной передачи данных и гарантированной до­
ставки сообщений должны применяться не криптографические механизмы, при этом повторное шиф­
рование содержащейся в фреймах информации для различных значений синхропосылок и ключевой
информации не допускается. Описание методов обеспечения указанных выше свойств выходит за рам­
ки настоящих рекомендаций и должно регламентироваться соответствующими нормативными доку­
ментами отдельно для каждого типового механизма реализации канала связи.

7.2 Параметры протокола

Параметрами протокола транспортного уровня, а также алгоритма формирования последователь­
ности октетов FrameNumber, содержащей уникальный номер фрейма, являются следующие значения:

maxFrameLength — максимально допустимая длина последовательности октетов, являющейся
сериализованным представлением структуры данных Frame (максимальная длина фрейма);

maxFrameCount — максимально допустимое количество фреймов, конфиденциальность и це­
лостность которых обеспечивается одной парой ключей шифрования и выработки имитовставки.

П р и м е ч а н и е — Указанные параметры не могут выбираться произвольно. С цепью удовлетворения
криптографическим требованиям по безопасности, должно выполняться условие

maxFrameLength * maxFrameCount < Bmax,

где Bmax — максимально возможный размер последовательности октетов, которая может быть зашифрована на
одном ключе. Данное значение зависит от используемых криптографических механизмов, см. В.3.8,
класса СКЗИ, реализующего настоящие рекомендации по стандартизации, и не может превосходить
величины, определенной в Р 1323565.1.005—2017. Рекомендуемые значения указанных величин для
различных криптографических механизмов приведены в приложении Г.

7.3 Алгоритм формирования уникальных номеров фреймов

Уникальный номер фрейма, представляющий собой последовательность из пяти октетов,
см. В.3.13, позволяет однозначно связать фрейм с криптографическими ключами, используемыми для
обеспечения конфиденциальности и целостности передаваемых данных.

Для связывания фрейма с криптографическими ключами используется набор из трех целых неот­
рицательных чисел (счетчиков):

а) I — число, принимающее значения в интервале от 0 до maxFrameCount-1, определяет количе­
ство фреймов, зашифрованных на одной паре ключей шифрования и выработки имитовставки. Зна­
чение счетчика I для первого фрейма полагается равным 0 и увеличивается на единицу для каждого
последующего переданного фрейма. При изменении значений счетчиков т и п значение счетчика I
обнуляется.

При передаче незашифрованных сообщений начальное значение счетчика I также полагается
равным 0 для сообщений ClientHelloMessage и ServerHelloMessage, см. 5.7.1 и 5.7.2, и увеличивается
на единицу для каждого последующего незашифрованного фрейма;

б) m — число, принимающее значения в интервале от 0 до maxFrameKeysCount, где величина
maxFrameKeysCount определяет количество допустимых преобразований производных ключей шифро­
вания и выработки имитовставки. При изменении значения счетчика п значение счетчика m обнуляется;

в) п — число, принимающее значения в интервале от 0 до maxApplicationSecretCount, где величи­
на maxApplicationSecretCount определяет количество допустимых преобразований ключевой информа­
ции, производимых в ходе выполнения протокола передачи прикладных данных.

П р и м е ч а н и я
1 Значения величин m, п передаются протоколу транспортного уровня протоколами сеансового уровня и не

изменяются в ходе формирования и проверки фреймов.
2 При выполнении протокола выработки ключей значение величины m равно нулю для сообщений, переда­

ваемых в открытом виде, и равно единице для сообщений, передаваемых в зашифрованном виде.
3 При выполнении протокола выработки ключей значение величины п всегда равно нулю. При выполнении

протокола передачи прикладных данных значение величины п начинает изменяться со значения п = 1.
4 Значения счетчиков изменяются независимо для клиента и сервера.

30

Р 1323565.1.028—2019

Максимальные значения для констант, ограничивающих сверху величины указанных счетчиков,
приводятся в приложении Г. Размер памяти, выделяемой под хранение значений указанных счетчиков,
определяется значением константы типа KeyMechanismType, определяющей текущий набор параме­
тров криптографических механизмов.

Уникальный номер фрейма (последовательность октетов FrameNumber) формируется из значе­
ний указанных счетчиков следующим образом:

а) если текущий используемый криптографический механизм определяет, что счетчики I, m есть
переменные типа LengthShortlnt, а счетчик п есть переменная типа LengthOctet, то значение уникаль­
ного номера number определяется равенствами:

number[0] = п,
number[1] = m[0],
number[2] = m[1],
number[3] = l[0],
number[4] = l[1];
б) если текущий используемый криптографический механизм определяет, что счетчик I есть пере­

менная типа LengthOctet, а счетчики m, п есть переменные типа LengthShortlnt, то значение уникально­
го номера number определяется равенствами:

number[0] = п[0];
number[1] = п[1];
number[2] = m[0];
number[3] = m[1];
number[4] = I.

7.4 Алгоритм формирования фрейма

Для формирования фрейма, см. В.4.1, необходимы следующие параметры, передаваемые про­
токолом сеансового уровня:

а) сформированное на сеансовом уровне сообщение или расширение message, представленное
в виде последовательности октетов (сериализованного представления одной из определенных в В.5 и
В.6 структур данных);

б) тип сообщения или расширения, см. определитель MessageType;
в) длина сообщения или расширения Len(message) — целое неотрицательное число, не превос­

ходящее 216 - 1;
г) идентификатор криптографического механизма, используемого для контроля целостности и,

при необходимости, зашифрования помещаемого во фрейм сообщения или расширения, см. опреде­
литель CryptoMechanism;

д) два целых неотрицательных числа, определяющих значения счетчиков п и т ;
е) пара ключей — ключ выработки имитовставки iK е В32 и, при необходимости, ключ шифрования

еКе В32;
ж) не обязательная дополнительная информация adata, представленная в виде последователь­

ности октетов длины Len(adata), не превосходящей 64. Данная информация, при ее наличии, будет
помещена во фрейм в открытом виде, а ее целостность будет обеспечена используемым криптографи­
ческим механизмом.

П р и м е ч а н и е — При формировании фрейма необязательная дополнительная информация adata по­
мещается в заголовок фрейма и может служить, например для идентификации канала связи.

7.4.1 Процедура вложения
После проверки перечисленных выше параметров на корректность выполняется последователь­

ность действий:
а) формируется заголовок — часть фрейма, всегда передаваемая в незашифрованном виде:
1) поле tag принимает значение

ftype + 4*hlen,
где ftype полагается равным plainFrame, для фреймов, передаваемых в незашифрованном виде,

или encryptedFrame, для фреймов, передаваемых в зашифрованном виде, a hlen определяется равен­
ством

hlen = 8 + Len(adata)
и обозначает длину заголовка.

31

Р 1323565.1.028—2019

Необходимость того, должен ли быть зашифрован фрейм, определяется идентификатором крип­
тографического механизма, см. В.3.8, и значениями счетчиков n, m, см. 7.3.

П р и м е ч а н и е — Согласно 5.7.1 и 5.7.2 в незашифрованном виде могут передаваться сообщения, форми­
руемые в ходе выполнения первого и второго этапов протокола выработки ключей, а также сообщения об ошибках;

2) согласно 7.4.3 формируется дополнение padding — последовательность октетов длины
Len(padding);

3) поле length полагается равным

hlen + 3 + Len(message) + Len(padding) + Len(icode),

где icode — сериализованное представление кода целостности, см. В.3.12. Длина кода целостности
однозначно определяется значением используемого идентификатора криптографического механизма.

П р и м е ч а н и е — Величина hlen+З представляет собой сумму 8 обязательных октетов заголовка, длину
необязательной информации, помещаемой в заголовок, а также одного октета, отводимого под хранение типа со­
общения message, и двух октетов, отводимых под сохранение длины сообщения message;

4) поле number полагается равным уникальному номеру фрейма;
5) в поле adata помещается передаваемая в открытом виде не обязательная дополнительная

информация;
6) формируется тело фрейма, содержащее сообщение message и дополнение. Данная часть

фрейма, как правило, передается в зашифрованном виде:
1) поле type полагается равным типу помещаемого во фрейм сообщения;
2) поле meslen полагается равным значению Len(message);
3) в поле message помещается собственно передаваемое сообщение;
4) в поле padding помещается дополнение;
в) если сообщение должно передаваться в открытом виде, то, с использованием функции хеши­

рования или функции вычисления имитовставки и ключа iK, формируется код целостности или имито-
вставка под частью фрейма, начинающейся с поля type и оканчивающейся окончанием дополнения,
которая помещается в поле icode. Алгоритм выработки кода целостности или имитовставки определя­
ется идентификатором криптографического механизма, см. В.3.8;

г) если сообщение должно передаваться в зашифрованном виде, то применяется процедура за­
шифрования и вычисления имитовставки, описываемая в следующем разделе.

Сформированный фрейм передается в канал связи.
7.4.2 Процедура зашифрования и вычисления имитовставки
Процедура зашифрования сообщения и вычисления имитовставки формируемого фрейма зави­

сит от идентификатора используемого криптографического механизма.
В случае, если идентификатор используемого криптографического механизма равен

magmaCTRplusOMAC или kuznechikCTRplusOMAC, то:
а) для сформированного фрейма, начиная с его начала и заканчивая окончанием дополнения, вы­

числяется значение имитовставки с использованием режима выработки имитовставки, регламентиру­
емого ГОСТ Р 34.13—2015, раздел 5.6, блочного шифра, определяемого идентификатором криптогра­
фического механизма, и ключа выработки имитовставки iK; данное значение помещается в поле icode;

б) после вычисления имитовставки фрейм зашифровывается, начиная с поля type и закан­
чивая окончанием дополнения, с использованием режима гаммирования, регламентируемого
ГОСТ Р 34.13—2015, раздел 5.2, блочного шифра, определяемого идентификатором криптографиче­
ского механизма, и ключа шифрования еК;

в) для блочного шифра «Кузнечик» (значение идентификатора — kuznechikCTRplusOMAC) в каче­
стве синхропосылки должна выступать последовательность октетов, сформированная первыми вось­
мью октетами заголовка (начиная с нулевого и заканчивая седьмым октетом);

г) для блочного шифра «Магма» (значение идентификатора — magmaCTRplusOMAC) в качестве
синхропосылки должна выступать последовательность октетов, сформированная четырьмя октетами
заголовка (начиная с четвертого и заканчивая седьмым октетом).

П р и м е ч а н и е — В случае использования блочного шифра «Магма» согласно ГОСТ Р 34.13—2015, раз­
дел 5.2, синхропосылка должна состоять из четырех октетов, что меньше, чем длина уникального номера фрейма.
Этот факт приводит к необходимости ограничения общего числа фреймов, отправляемых и получаемых в ходе
выполнения одного сеанса защищенного взаимодействия, величиной 232. Данное ограничение учтено при выборе
рекомендуемых значений параметров защищенного взаимодействия, см. приложение Г

32

Р 1323565.1.028—2019

В случае если идентификатор используемого криптографического механизма равен magmaAEAD
или kuznechikAEAD, то:

а) вычисление имитовставки и зашифрование сообщений выполняются с помощью режима, осу­
ществляющего одновременно шифрование и аутентификацию (режим AEAD), см. Р 1323565.1.026—2019,
блочного шифра, определяемого идентификатором криптографического механизма, ключа шифрова­
ния еК и ключа выработки имитовставки iK;

б) заголовок фрейма является «ассоциированными данными», а тело фрейма — данными, кото­
рые подлежат зашифрованию; вычисленное в ходе выполнения режима, осуществляющего одновре­
менное шифрование и аутентификацию, значение имитовставки помещается в поле icode;

Способ выработки синхропосылки зависит от алгоритма блочного шифрования, определяемого
идентификатором криптографического механизма:

в) в случае блочного шифра «Магма» (значение идентификатора — magmaAEAD) в качестве син­
хропосылки должен выступать двоичный вектор длины 63 бита, являющийся результатом однократного
сдвига в сторону младших разрядов вектора, образованного первыми восемью октетами заголовка (на­
чиная с нулевого и заканчивая седьмым октетом); т. е.

iv = (frame[0]||...||frame[7]) >> 1;

где frame это последовательность октетов, являющаяся сериализованным представлением сформиро­
ванного фрейма, см. В.4.1;

г) в случае блочного шифра «Кузнечик» (значение идентификатора — kuznechikAEAD) в качестве
синхропосылки должен выступать двоичный вектор длины 127 бит, в котором первые восемь октетов
совпадают с первыми восемью октетами заголовка (начиная с нулевого и заканчивая седьмым окте­
том), а оставшиеся октеты принимают нулевые значения, т. е.:

iv[0] = frame[0];

iv[7] = frame[7];
iv[8] = 0;

iv[15] = 0;
Схематично, механизм зашифрования помещаемого во фрейм сообщения и вычисления кода

целостности фрейма изображен на рисунке 8.

Рисунок 8 — Схема зашифрования и вычисления кода целостности фрейма

П р и м е ч а н и е — На рисунке 8 символами еКеу и iKey обозначены ключи, соответственно, шифрования
и выработки имитовставки, а символом iv — синхропосылка, вырабатываемая в соответствии с рекомендациями,
изложенными в перечислениях в) и г).

7.4.3 Процедура генерации дополнения
Дополнение представляет собой последовательность октетов длины Len(padding). Последова­

тельность вкладывается во фрейм одновременно с сообщением. Основная причина использования
дополнения заключается в сокрытии длины передаваемого сообщения.

33

Р 1323565.1.02&—2019

Для выработки дополнения необходимо использовать генератор случайных (псведо-случай-
ных) чисел. Используемый генератор случайных чисел не должен допускать возможности восста­
новления прослушивающим канал нарушителем значения дополнения, например с использованием
случайных данных, передаваемых в открытом виде в составе сообщений ClientHelloMessage и/или
ServerHelloMessage, см. 5.7.1 и 5.7.2. Использование в качестве дополнения последовательности фик­
сированных значений не рекомендуется.

При выборе длины дополнения Len(padding) рекомендуется применять одну или несколько стра­
тегий, зависящих от типа передаваемого сообщения и потребностей приложений прикладного уровня:

а) длина дополнения может выбираться равной нулю, т. е. дополнение может отсутствовать; та­
кую стратегию выбора дополнения рекомендуется применять для сообщений, передаваемых в откры­
том виде, а также в ситуациях, когда сокрытие длины передаваемых сообщений полагается излишним;

б) длина дополнения может выбираться таким образом, чтобы длина фрейма была постоянной
(константой) для всех фреймов, независимо от типа вкладываемого во фрейм сообщения; при этом зна­
чение константы может выбираться так, чтобы максимизировать пропускную способность канала связи;

в) длина дополнения может выбираться случайным образом так, чтобы длина фрейма была крат­
ной длине блока используемого алгоритма блочного шифрования; это может оказаться существенным
при эффективной реализации алгоритмов шифрования и вычисления имитовставки;

г) длина дополнения может выбираться минимально возможной величиной, дополняющей длину
фрейма до величины, кратной длине блока используемого алгоритма блочного шифрования; при такой
стратегии размер дополнения минимизируется;

д) длина дополнения может выбираться случайно.
Во всех перечисленных случаях длина дополнения Len(padding) должна удовлетворять условию

hlen + 3 + Len(message) + Len(padding) + Len(icode) < maxFrameLength,

которое, согласно 7.4.1, следует из определения суммарной длины фрейма.

7.5 Алгоритм расшифрования фрейма

При получении фреймов из канала связи протокол транспортного уровня должен проверить их
целостность, при необходимости расшифровать и передать полученные сообщения протоколу при­
кладного уровня.

Последовательность действий, которые выполняет абонент при получении фрейма, зависит от
того, зашифрован ли данный фрейм, а также от значения уникального номера фрейма.

Для определения криптографических механизмов, используемых для контроля целостности и
расшифрования полученных фреймов, должен использоваться идентификатор криптографическо­
го механизма. Значение данного идентификатора может быть определено при получении сообщений
ClientHelloMessage и ServerHelloMessage, см. 5.7.1 и 5.7.2, либо установлено или изменено протоколом
сеансового уровня.

7.5.1 Действия при получении незашифрованного фрейма
Согласно описанию протокола выработки общих ключей, см. 5.7, первый фрейм, который получа­

ет абонент, должен содержать незашифрованное сообщение. Вслед за ним могут передаваться фрей­
мы, содержащие как незашифрованные, так и зашифрованные сообщения или расширения.

При извлечении из фрейма незашифрованного сообщения или расширения, абонент должен вы­
полнить следующие действия:

а) определить, что полученный фрейм передан в незашифрованном виде. Для этого абонент дол­
жен проверить выполнение равенства

frame[0] (mod 4) = plainFrame.
Также, согласно 7.3, должно быть проверено выполнение равенств:
frame[3] = 0;

frame[6] = 0 ;
frame[7] = number,
где number это уникальное для каждого незашифрованного фрейма натуральное число;
б) определить длину заголовка hlen = frame[0] » 2 ;
в) если frame[hlen-1] = 0, то определить значение идентификатора криптографического механиз­

ма, см. В.3.8, используя для этого октеты frame[hlen+3] и frame[hlen+4]. В случае если frame[hlen-1] > 0,
то использовать идентификатор криптографического алгоритма, определенный ранее;
34

Р 1323565.1.028—2019

г) согласно значению идентификатора криптографического механизма определить длину кода
целостности L. Проверить, что для полученного фрейма данное значение удовлетворяет условиям:

frame[idx - 1] = isPresent,

frame[idx] = L,

где idx = Len(frame) - L, a Len(frame) — длина всего фрейма, определяемая значениями октетов
frame[1] Hframe[2], см. В.4.1;

д) согласно значению идентификатора криптографического механизма вычислить значение кода
целостности или имитовставки от фрагмента фрейма, начинающегося с frame[0] и заканчивающегося
frame[idx - 2], где значение idx определено в перечислении г).

П р и м е ч а н и я
1 В случае вычисления имитовставки идентификатор используемого предварительно распределенного ключа

должен быть получен путем разбора вложенного во фрейм сообщения ClientHelloMessage или ServerHelloMessage,
см. 5.7.1 и 5.7.2.

2 Для сообщения AlertMessage идентификатор алгоритма выработки кода целостности должен определяться
значением поля algorithm;

е) проверить, что полученное значение кода целостности или имитовставки совпадает со значе­
нием, содержащимся во фрагменте полученного фрейма, начинающемся с frame[idx + 1] и заканчива­
ющемся окончанием фрейма, где значение idx определено в перечислении г).

В случае если одна из перечисленных выше проверок не выполняется, то абонент должен отпра­
вить незашифрованное сообщение об ошибке AlertMessage со значением wronglntegrityCode и завер­
шить выполнение сеанса защищенного взаимодействия.

Если все перечисленные проверки успешно пройдены, то протокол транспортного уровня дол­
жен передать протоколу сеансового уровня начинающееся с frame[hlen+3] сообщение или расширение
message, длина которого определяется значением полей frame[hlen+1] и frame[hlen+2], а также тип со­
общения или расширения, определяемый значением поля frame[hlen],

7.5.2 Действия при получении зашифрованных фреймов
При получении зашифрованного фрейма должна быть выполнена последовательность действий:
а) определить, что полученный фрейм передан в зашифрованном виде. Для этого абонент дол­

жен проверить выполнение равенства

frame[0] (mod 4) = encryptedFrame.

б) определить длину заголовка hlen = frame[0] >> 2 ;
в) согласно значению идентификатора криптографического механизма определить длину кода

целостности L. Проверить, что для полученного фрейма данное значение удовлетворяет условиям:

frame[idx - 1] = isPresent,

frame[idx] = L,

где idx = Len(frame) - L, a Len(frame) — длина всего фрейма, определяемая значениями октетов
frame [1] и frame [2], см. В.4.1;

г) используя значения полей frame [3], ... , frame [7] определить значения счетчиков n, т , см. 7.3,
и пару ключей шифрования и выработки имитовставки, однозначно связанных с вычисленными значе­
ниями счетчиков;

д) используя значение идентификатора криптографического механизма, ключи шифрования и вы­
работки имитовставки, а также процедуры, описанные в 7.4.2, расшифровать фрагмент полученного
фрейма, начинающийся с frame[hlen+3] и заканчивающийся frame[idx - 2], где значение idx определе­
но в перечислении в);

е) вычислить значение имитовставки от фрагмента фрейма, начинающегося с frame [0] и заканчи­
вающегося frame[idx-2], где значение idx определено в перечислении в).

П р и м е ч а н и е — В случае режима шифрования с одновременной выработкой имитовставки, см. В.3.8,
перечисления г) и д) должны выполняться одновременно;

ж) проверить, что полученное значение имитовставки совпадает со значением, содержащимся во
фрагменте полученного фрейма, начинающемся с frame[idx+1] и заканчивающемся окончанием фрей­
ма, где значение idx определено в перечислении в).

35

Р 1323565.1.028—2019

В случае если одна из перечисленных выше проверок не выполняется, то абонент должен отпра­
вить зашифрованное сообщение об ошибке AlertMessage со значением wronglntegrityCode и завершить
выполнение сеанса защищенного взаимодействия.

Если все перечисленные проверки успешно пройдены, то протокол транспортного уровня дол­
жен передать протоколу сеансового уровня начинающееся с frame[hlen+3] сообщение или расширение
message, длина которого определяется значением полей frame[hlen+1] и frame[hlen+2], а также тип со­
общения или расширения, определяемый значением поля frame[hlen].

36

Р 1323565.1.028—2019

Приложение А
(справочное)

Типовые схемы реализации протокола выработки ключей с аутентификацией абонентов

А.1 Схема аутентификации на основе предварительно распределенного ключа

Схема с аутентификацией на основе предварительно распределенного ключа может применяться в устрой­
ствах, использующих предварительно распределенный секретный ключ PSK для взаимной аутентификации кли­
ента и сервера. Механизмы выработки предварительно распределенных ключей для данного класса устройств
приведены в приложении В.

С точки зрения сеансового уровня схема протокола выработки ключей с аутентификацией на основе пред­
варительно распределенного ключа изображена на рисунке А.1.

Клиент Сервер
ClientHello = Rc, kJP, JDPSK

-->

{
ServerHello = Rs, ksP

VerifyMessages = L ClientHello, ServerHelloJ

VerifyMessagec = [ClientHello, ServerHello, VerifyMessages J

Рисунок A.1 — Схема аутентификации на основе предварительно распределенного ключа. Сеансовый уровень

В данной схеме символом IDPSK обозначается идентификатор предварительно распределенного секретного
ключа PSK, известного абонентам до момента начала выполнения протокола выработки ключей. В качестве ключа
PSK могут выступать ключи ePSK или iPSK, определенные в 5.2.1.

Символами Rc, Rs обозначаются случайные последовательности октетов длины 32 октета, вырабатываемые,
соответственно клиентом и сервером при формировании сообщений ClientHelloMessage и ServerHelloMessage. Сим­
волами kcP, ksP обозначаются случайныеточки некоторой фиксированной эллиптической кривой, вырабатываемые,
соответственно клиентом и сервером при формировании сообщений ClientHelloMessage и ServerHelloMessage.

На сеансовом уровне сообщения рассматриваются как сериализованные представления вводимых спе­
цификацией защищенного взаимодействия структур данных. Сточки зрения сеансового уровня сообщения пере­
даются в ходе выполнения протокола выработки ключей в незашифрованном виде и без имитовставок, подтверж­
дающих целостность передаваемых сообщений.

Зашифрование передаваемых сообщений и вычисление для них имитовставки производится на транспорт­
ном уровне защищенного взаимодействия. Это приводит к схеме обмена сообщениями, полностью отражающей
выполняемые процедуры зашифрования и контроля целостности передаваемых сообщений и изображенной на
рисунке А.2.

Клиент Сервер
C lie n tH e llo , L C lie n tH e llo JPSK

{
ServerHello.LServerHelloJpsK,
{V e rifyM essages}eSHrK,LVerifyM essagesJ/SHrK

-<5--
{V e rifyM essa g e c} eCH7-K,LVerifyM essagecJ(CH7-K

-- >

Рисунок A.2 — Схема аутентификации на основе предварительно распределенного ключа. Транспортный уровень

В данной схеме символами eSHTS и eCHTS обозначаются ключи шифрования, а символами iSHTS и iCHTS
обозначаются ключи имитозащиты, используемые для обеспечения конфиденциальности и целостности информа­
ции, передаваемой от сервера к клиенту и, соответственно от клиента к серверу.

П р и м е ч а н и е — Формально протоколы, использующие рассматриваемую схему протокола выработки
ключей, различаются в зависимости от того, какой из предварительно распределенных ключей ePSK или iPSK
используется. Различие состоит в способе формирования константы R2, используемой в алгоритме выработки
ключевой информации SHTS и CHTS, см. 5.5.

А.2 Схема аутентификации на основе ключа проверки электронной подписи

Схема с аутентификацией на основе ключа проверки электронной подписи предназначена для контроль­
ных и измерительных устройств, срок службы которых превышает срок действия предварительно распределен­
ных ключей аутентификации. Для аутентификации используются ключи электронной подписи и ключи проверки
электронной подписи, сертификаты которых не известны абонентам до начала выполнения протокола.

37

Р 1323565.1.028—2019

Рассматриваемая схема в основном применима для класса устройств, цепью которых является предостав­
ление услуги доступа к защищенному взаимодействию различным физическим лицам — обладателям пары асим­
метричных ключей аутентификации.

При этом в качестве ключей аутентификации выступают ключ электронной подписи и ключ проверки элек­
тронной подписи.

С точки зрения сеансового уровня схема протокола выработки ключей с аутентификацией на основе ключа
проверки электронной подписи изображена на рисунке А.З.

Клиент Сервер
ClientHello = Rc, ксР

{
ServerHello = Rs, ksP,

C ertifica te^

VerifyMessages = Signs(ClientHello, ServerHello, C ertifica te^

{
Certificate,,,

VerifyMessagec = Signc(ClientHello, ServerHello, C ertifica te^

VerifyMessages, Certificate,.)Рисунок A.3 — Схема аутентификации на основе ключа проверки электронной подписи. Сеансовый уровень

Как и ранее, приведенная схема не учитывает факт передачи части сообщений в зашифрованном виде, а
также не содержит в себе передаваемых имитовставок. Поскольку зашифрование и вычисление имитовставки
производится на транспортном уровне защищенного взаимодействия, полная схема взаимодействия, отражающая
реально выполняемые процедуры зашифрования и контроля целостности передаваемых сообщений, изображена
на рисунке А.4.

Клиент Сервер
ClientHello, [ClientHelloJ

--->

{
ServerHello, [ServerHelloJ,
{Certificates}eSH7K, [CertificatesJ;SH7K

{VerifyMessages}eSH7K, [.VerifyMessagesJ(-SH7K
<---
/ {Certificatec}eCH7/<, [Certificated,-с н ж
\ {VerifyMessagec}eCH7K, LVerifyMessagecJ/CH7K

<---

Рисунок A.4 — Схема аутентификации на основе ключа проверки электронной подписи. Транспортный уровень

А.З Схема аутентификации на основе предварительно распределенных ключей проверки
электронной подписи

Схема со взаимной аутентификацией на основе предварительно распределенных ключей проверки элек­
тронной подписи может применяться в устройствах, использующих для взаимной аутентификации сервера и кли­
ента ключи проверки электронной подписи, которые не передаются абонентами в ходе выполнения протокола, а
распределены заранее и известны абонентам до начала выполнения протокола.

Сточки зрения сеансового уровня данная схема протокола выработки ключей изображена на рисунке А.5.

Клиент Сервер
(ClientHello = Rc, ксР

\ SetCertificatec

{
ServerHello = Rs, ksP,

SetCertificates,

VerifyMessages = Signs(ClientHello, SetCertificatec,
ServerHello, SetCertificate J

<-- --------
VerifyMessagec = Signc(ClientHello, SetCertificatec,

ServerHello, SetCertificates, VerifyMessages)

38

Рисунок A.5 — Схема со взаимной аутентификацией на основе предварительно распределенных ключей
проверки электронной подписи. Сеансовый уровень

Р 1323565.1.028—2019

Как и ранее, приведенная схема не учитывает факт передачи части сообщений в зашифрованном виде, а
также не содержит в себе передаваемых имитовставок. Поскольку зашифрование и вычисление имитовставки
производится на транспортном уровне защищенного взаимодействия, полная схема взаимодействия, отражающая
реально выполняемые процедуры зашифрования и контроля целостности передаваемых сообщений, изображена
на рисунке А.6 следующим образом.

Клиент Сервер
Г ClientHello, [ClientHelloJ

SetCertificatec, LSetCertificatecJ
--->

{
ServerHello, [ServerHelloJ,
{SetCertificates}eSHrK, LSetCertificatesJ/SHrK

{Verify Messages}eSH7K, LVerifyMessagesJ(SHrK
<--------------------------------------

{Verify Messagec}eCH7K, |VerifyMessagecJ)CH7K
--- >

Рисунок A .6 — Схема со взаимной аутентификацией на основе предварительно распределенных ключей провер­
ки электронной подписи. Транспортный уровень

39

Р 1323565.1.028—2019

Приложение Б
(справочное)

Механизмы формирования предварительно распределенных ключей

Б.1 Основные положения

Спецификацией криптографических механизмов защищенного взаимодействия контрольных и измеритель­
ных устройств порядок выработки предварительно распределенных ключей аутентификации ePSK и соответству­
ющих им идентификаторов IDePSK не регламентируется.

Настоящее приложение содержит один из допустимых механизмов формирования предварительно распреде­
ленных ключей аутентификации, являющийся модификацией подхода, регламентируемого Р 1323565.1.019—2018.

Предполагается, что при взаимодействии контрольные и измерительные устройства могут выступать в роли
клиентов и передавать информацию единому центру, в качестве которого выступает сервер, а также могут взаимо­
действовать между собой по типу «каждый с каждым», выступая как в роли клиента, так и в роли сервера.

Б.2 Идентификация участников защищенного взаимодействия

Для идентификации участников защищенного взаимодействия контрольных и измерительных устройств ис­
пользуется двухуровневая схема, расширяющая множество идентификаторов, вводимых в 5.3. Каждый участник
защищенного взаимодействия обладает следующими идентификаторами:

а) идентификатором первого уровня, в качестве которого должен выступать идентификатор клиента Юс либо
идентификатор сервера IDS, определяемый спецификацией криптографических механизмов защищенного взаимо­
действия; наличие идентификатора первого уровня, согласно 5.3, является обязательным.

П р и м е ч а н и е — Интерпретация значения, содержащегося в идентификаторе первого уровня, должна
зависеть от конкретной ситуации применения контрольных и измерительных устройств. Например, при реализации
защищенного взаимодействия серии контрольных и измерительных устройств, передающих информацию единому
центру (серверу), идентификатор первого уровня может содержать информацию о производителе устройств, но­
мере серии устройств, дате ввода серии устройств в эксплуатацию и т.п. С другой стороны, при реализации связи
типа «каждый с каждым» идентификатор первого уровня может являться уникальным номером устройства;

б) идентификатором второго уровня, в качестве которого может выступать последовательность октетов про­
извольной конечной длины, обозначаемая символом Юср для клиента и символом — IDsp для сервера; идентифи­
катор второго уровня является опциональным, т. е. он может быть не определен, и, в случае определения, должен
принимать уникальные значения в рамках одного контрольного или измерительного устройства.

П р и м е ч а н и я
1 Интерпретация значения, содержащегося в идентификаторе второго уровня также должна зависеть от кон­

кретной ситуации применения контрольных и измерительных устройств. В случае реализации защищенного взаи­
модействия серии контрольных и измерительных устройств, передающих информацию единому центру (серверу),
идентификатор второго уровня может содержать номер устройства, дату выпуска, максимальный срок эксплуата­
ции и т. п. Данный идентификатор может иметь ограниченный временной интервал и изменяться в ходе эксплуата­
ции устройства, например при замене содержащегося в устройстве блока СКЗИ.

С другой стороны, при реализации связи типа «каждый с каждым» идентификатор второго уровня может
определять уникальный номер процесса или пользователя устройства.

2 Поскольку идентификаторы второго уровня являются опциональными, их применение целесообраз­
но в рамках системы защищенного взаимодействия, поддерживающей единый формат (размер и содержа­
ние) и механизмы распознавания идентификаторов второго уровня; пример такой системы рассматривается в
Р 1323565.1.019—2018.

Б.З Операции в конечном поле F2256

Каждый двоичный вектор из V256 может быть представлен в виде элемента конечного поля F2256. Данное
представление взаимно однозначно и может быть задано следующим образом.

255

Пусть вектор а = (а0...... а255) из V256, тогда ему будет соответствовать многочлен а (х) = ^ а ^ ' е Р2 [х] ,
/=о

deg(a(x)) < 256. Используя данное соответствие определим операции сложения и умножения двоичных векторов
из V256 следующим образом.

Определим неприводимый многочлен

р(х) = х256 + х10 + х5 + х2 + 1 g V2[x],

Рассмотрим произвольные а = (а0, ..., а255), Ь= (Ь0, b255) е V256, а также соответствующие им многочлены

40

Р 1323565.1.028—2019

255 255

а (х) = 5 > ;У , b (x) = £ b ,x ' , a (x),b (x) е F2 [х],
1=0 /=0

тогда
вентор а + b определяется равенством а + b = с где с = (с0, с255) есть вектор, которому соответствует

многочлен
с(х) = а(х) + b(x) (mod р(х)),

где mod р(х) обозначает взятие остатка от деления многочлена а(х) + Ь(х) на многочлен р(х);
вектор а * b определяется равенством а * b = с, где с = (с0, с255) есть вектор, которому соответствует мно­
гочлен

с(х) = а(х) * b(x) (mod р(х)),

где mod р(х) обозначает взятие остатка от деления многочлена а(х) х ь(х) на многочлен р(х).

Б.4 Ключевая система

Ключевая система, используемая при взаимодействии контрольных и измерительных устройств, представ­
ляет собой вариант схемы распределения ключей Блома, см. [3], и состоит из следующих секретных ключей, ис­
пользуемых для выработки уникальных ключей аутентификации.

Б.4.1 Мастер-ключ
Пусть и натуральное число. Мастер-ключ МК представляет собой симметричную матрицу А={а^} размера

(и + 1) х (и + 1), где
Эу = ау|, 0 ^ i ^ и, 0 s j < и, и ay е V256.

Значение параметра и зависит от максимального срока действия ключевой системы, используемой для вы­
работки ключей аутентификации. По умолчанию, значение и полагается равным и = 2048.

П р и м е ч а н и я
1 Максимальное количество различных элементов матрицы А равно

1/2 * (и + 1) х (и + 2).
2 Коэффициенты матрицы А однозначно связаны с многочленом:

Г(Х’ У) = X X aijx ‘y J с F2256 l x ’ y l
1=0 j=0

3 Значение мастер-ключа является криптографически опасной информацией и не должно быть известно
участникам защищенного взаимодействия. Формирование мастер-ключа и вырабатываемой из него ключевой ин­
формации должно производиться уполномоченной на данную деятельность организацией. Если СКЗИ планиру­
ется использовать в областях, регулируемых в соответствии с действующим законодательством и нормативными
актами, то формирование мастер-ключа должно производиться в соответствии с Р 1323565.1.012—2017.

Б.4.2 Ключи, соответствующие идентификаторам первого уровня
Идентификаторам первого уровня, см. Б.2, соответствуют следующие ключи:
а) идентификатору клиента Юс соответствует уникальный ключ клиента К_с, зависящий от мастер-ключа МК

и идентификатора сервера Юс. Ключ Кс представляет собой вектор:

(Ь0, ..., bu), bj g V256, i = 0, . . . , u,
определяемый равенством

и
f(x,Streebog256(lDc)) = £ б ,х ' е Я,25б [х],

/=0

где многочлен f(x, у) определен ранее в Б.4.1.
Эквивалентным определением величин Ц е V256 является равенство

и
Ь , - Х a,j(Streebog256(lDc))J,

i=о
выполненное для всех i = 0, и.

П р и м е ч а н и е — Значение ключа клиента К,, должно быть известно только клиенту и может использо­
ваться им для формирования ключей аутентификации непосредственно в ходе выполнения протокола выработки
ключей. Формирование ключа клиента К;, должно производиться непосредственно после выработки мастер-ключа
МК в условиях, указанных в Б.4.1;

б) идентификатору сервера IDS соответствует уникальный ключ сервера К., зависящий от мастер-ключа МК
и идентификатора сервера IDS. Ключ Ks представляет собой вектор:

41

Р 1323565.1.028—2019

(со зц), С: е V256, j = 0, , и,

определяемый равенством

f(Streebog256(IDs), у) = £ С]У] е F225B М >
/ = о

где многочлен f(x, у) определен ранее в Б.4.1.
Эквивалентным определением величин Cj е V256 является равенство

U \
ф = Z a<j (Streebog256 (IDS))

i=о
выполненное для всех j = 0, , u.

П р и м е ч а н и е — Значение ключа сервера Ks должно быть известно только серверу и может использо­
ваться им для формирования ключей аутентификации непосредственно в ходе выполнения протокола выработки
ключей. Формирование ключа сервера Ks должно производиться непосредственно после выработки мастер-ключа
М Кв условиях, указанных в Б.4.1.

БАЗ Ключ аутентификации ePSK
Ключ аутентификации ePSK представляет собой двоичную последовательность длины 256 бит и зависит от

следующих значений:
мастер ключа МК, см. Б.4.1;
идентификаторов первого уровня — идентификатора клиента Юс и идентификатора сервера IDS, см. Б.2;
идентификаторов второго уровня — идентификатора клиента Юср и идентификатора сервера IDsp, при их

наличии, см. Б.2.
Для определения ключа ePSK введем промежуточный ключ К*, удовлетворяющий равенству

К = f[Streebog256(lDs),Streebog256 (/Dc))= £ £ (Streebog25e (lDs) j (Streebog256(lDc))J.
i=o]=о

П р и м е ч а н и е — Значение промежуточного ключа К* может быть вычислено клиентом без знания ма­
стер-ключа— для этого достаточно знания ключа клиента поскольку из определения многочлена f(x,у) следует
равенство

К* = X Ь, (Streebog25G (/Ds))'.
/=о

Аналогично, сервер может вычислить промежуточный ключ К*, используя равенство

К = 2 > ; (Sfreeftog25fi (ID c))J -
i =о

Ключ ePSK определяется равенством ePSK = HMAC256(K*,R3) где последовательность октетов R3 опреде­
ляется как конкатенация

R3 = IDcp*||Qx00||IDsp*||0x00||0x01.

П р и м е ч а н и я
1 Символом «*» отмечены последовательности октетов, которые могут отсутствовать.
2 Значение ключа аутентификации ePSK должно быть известно только двум абонентам, участвующим в за­

щищенном взаимодействии. Формирование ключа аутентификации может производиться в СКЗИ либо уполномо­
ченной на данную деятельность организацией в соответствии с Р 1323565.1.012—2017.

В зависимости от метода хранения ключевой информации в СКЗИ идентификатор IDePSK ключа ePSK может
определяться одним из следующих способов:

а) IDePSK = IDC||ID ||IDS||ID ;
б) ID ePSK “ Streebog256 (ID JID cp||IDs||IDsp).
Первый способ определения идентификатора IDePSK позволяет серверу вычислять значение ключа ePSK в

процессе выполнения протокола выработки ключей. Второй способ позволяет скрыть информацию о контрольном
или измерительном устройстве, передаваемую в открытом виде в составе сообщения ClientHelloMessage.

42

Р 1323565.1.028—2019

Приложение В
(обязательное)

Форматы передаваемых данных

В.1 Основные положения

В приложении приводится формальное описание форматов данных, используемых при реализации крипто­
графических механизмов защищенного взаимодействия. Данные представляются в виде формальных описаний
(типов), согласно принятой в языке Си нотации, см. [4]. Указанные структуры данных предполагаются упакован­
ными, т. е. занимающими в памяти вычислительного средства объем, являющийся в точности суммой объемов
памяти, занимаемых элементами структур данных, см. [4].

При передаче в канал связи данные сериализуются в последовательности октетов фиксированной длины,
в которых нумерация начинается с младших адресов и заканчивается старшими. В канал связи передаются по­
следовательности октетов.

В.2 Базовые типы данных

Базовые типы данных представляют собой последовательности октетов конечной длины и не требуют явного
описания процесса сериализации.

В.2.1 Описатель Octet
typedef unsigned char Octet
Описатель Octet определяет минимально возможную единицу передаваемых по каналу связи данных —

один октет.
В.2.2 Описатель Octetstring
typedef octet *OctetString
Описатель Octetstring определяет последовательность октетов произвольной конечной длины. Данный опи­

сатель используется для определения сообщений или их фрагментов без учета внутренней структуры.
Octetstring рассматривается как нумерованная последовательность октетов, у которой в начале (слева)

располагаются элементы с младшими номерами, а в конце (справа) — элементы со старшими номерами: такой
способ представления соответствует естественному представлению массивов данных в памяти вычислительного
средства.

В.2.3 Описатель LengthOctet
typedef Octet LengthOctet
Описатель LengthOctet определяет тип данных, состоящий из одного октета. Данный тип данных предна­

значен для определения целых неотрицательных чисел, как правило, длин последовательностей, принимающих
значения от 0 до 255.

В.2.4 Описатель LengthShortlnt
typedef Octet LengthShortl nt[2]
Описатель LengthShortlnt определяет тип данных, состоящий из последовательности октетов длины два.

Данный тип данных предназначен для определения целых неотрицательных чисел, как правило, длин последова­
тельностей, не превосходящих 65535 = 216 - 1.

Описатель LengthShortlnt определяет целое неотрицательное число I, принадлежащее интервалу от 0
до216 - 1 , согласно следующему правилу

I = 256 • len[0] + 1еп[1],

где len является последовательностью типа LengthShortlnt.
Процесс сериализации целого неотрицательного числа I, принадлежащего интервалу от 0 до 216

следовэтепьносгь октетов len типа LengthShortlnt, заключается в выполнении равенств:

len [0] = / -
l(m od 256)

256

len [1] = I (mod 256).

в по-

П р и м е ч а н и е — При сериализации целых неотрицательных чисел используется сетевой порядок сле­
дования октетов.

В.2.5 Описатель RandomOctetString
typedef Octet RandomOctetString[32]
Описатель RandomOctetString определяет тип данных, состоящий из последовательности октетов фикси­

рованной длины 32 октета. Данный тип данных используется для хранения и передачи по каналам связи данных,
выработанных с использованием генераторов случайных чисел.

43

Р 1323565.1.028—2019

В.З Перечислимые и служебные типы

В.3.1 Описатель FrameType
typedef enum {

plainFrame = OxOOU,
encryptedFrame = 0x02U

} FrameType
Описатель FrameType предназначен для определения типа передаваемого фрейма данных, см. В.4.1. Ука­

занные выше константы описывают следующие возможности:
а) plainFrame — фрейм передается в незашифрованном виде;
б) encryptedFrame — фрейм передается в зашифрованном виде.
При сериализации объект типа FrameType представляется в виде последовательности, состоящей из одного

октета, значение которого определяется приведенной выше константой.
В.3.2 Описатель PresentType
typedef enum {

notPresent = OxBO,
isPresent = 0xB1

} PresentType
Описатель PresentType предназначен для указания: установлено ли значение некоторой опциональной

переменной или нет. Используется только в опциональных переменных. Указанные выше константы описывают
следующие возможности:

а) notPresent— переменная не используется и ее значение не определено;
б) isPresent— переменная используется и ее значение определено.
При сериализации объект типа PresentType представляется в виде последовательности, состоящей из одно­

го октета, значение которого определяется приведенной выше константой.
В.3.3 Описатель RequestType
typedef enum {

notRequested = OxBO,
isRequested = 0xB1

} PresentType
Описатель RequestType предназначен для установки запроса на получение идентификатора абонента. Ука­

занные выше константы описывают следующие возможности:
а) notRequested — запрос идентификатора не проводится;
б) isRequested — запрос идентификатора выполняется.
При сериализации объект типа RequestType представляется в виде последовательности, состоящей из од­

ного октета, значение которого определяется приведенной выше константой.
В.3.4 Описатель CertificateFormat
typedef enum {

plain = 0x10,
x509 = 0x19,
cvc = 0x20

} CertificateFormat
Описатель CertificateFormat предназначен для указания формата используемого сертификата ключа провер­

ки электронной подписи, см. 5.2.1. Указанные выше константы описывают следующие возможности:
а) plain — сертификатом ключа проверки электронной подписи является последовательность октетов, полу­

ченная в результате сериализации объекта типа EllipticCurvePoint, см. В.З.10;
б) х509 — сертификат ключа проверки электронной подписи соответствует Р 1323565.1.023—2018;
в) cvc — сертификат ключа проверки электронной подписи соответствует формату сертификатов, рекомен­

дуемых к применению в контрольных и измерительных устройствах.
При сериализации объект типа CertificateFormat представляется в виде последовательности, состоящей из

одного октета, значение которого определяется приведенной выше константой.
В.3.5 Описатель CertificateProcessedType
typedef enum {

any = 0x00,
number = 0x10,
issuer = 0x20

} CertificateProcessedType
Описатель CertificateProcessecfType предназначен для указания предлагаемого к использованию сертифика­

та ключа проверки электронной подписи. Указанные выше константы описывают следующие возможности:
а) any — предполагается к использованию любой действительный сертификат ключа проверки электронной

подписи;
б) number — предполагается к использованию действительный сертификат ключа проверки электронной

подписи с заданным номером;

44

Р 1323565.1.028—2019

в) issuer — предполагается к использованию любой действительный сертификат ключа проверки электрон­
ной подписи с заданным центром сертификации (с явным указанием субъекта, выдавшего предполагаемый к ис­
пользованию сертификат ключа проверки электронной подписи).

При сериализации объект типа CertificateProcessedType представляется в виде последовательности, состо­
ящей из одного октета, значение которого определяется приведенной выше константой.

В.3.6 Описатель Certificate
typedef Octetstring Certificate
Описатель Certificate определяет последовательность октетов произвольной конечной длины, предназначен­

ную для представления сертификата ключа проверки электронной подписи, см. 5.2.1. Допускается использование
сертификатов ключей проверки электронной подписи, хранящихся в различных форматах. Перечень допустимых
форматов определяется в В.3.4.

П р и м е ч а н и е — Сертификат ключа проверки электронной подписи передается от одного абонента к друго­
му при помощи расширения CertificateExtension, см. 5.7.2 и 5.7.3. Поскольку длина расширения CertificateExtension
указывается при его вложении во фрейм, см. В.4.1, это позволяет однозначно восстановить длину передаваемого
сертификата ключа проверки электронной подписи.

В.3.7 Описатель MessageType
typedef enum {

clientHello = 0x11,
serverHello = 0x12,
verify = 0x13,
applicationData = 0x14,
alert = 0x15,
generatePSK = 0x16,
extensionRequestCertificate = 0x21,
extensionCertificate = 0x22,
extensionSetCertificate = 0x23,
extensionlnformCertificate = 0x24,
extensionRequestldentifer = 0x25,
extensionKeyMechanism = 0x26

} MessageType
Описатель MessageType предназначен для указания типа сообщения, вкладываемого во фрейм передачи

данных. Каждому типу соответствует сообщение со своей собственной формальной структурой представления
данных. Указанные выше константы описывают следующие структуры данных:

а) clientHello — структура ClientHelloMessage, см. В.5.1, определяющая формат сообщения, с помощью кото­
рого клиент инициализирует выполнение защищенного взаимодействия;

б) serverHello — структура ServerHelloMessage, см. В.5.2, определяющая формат сообщения, с помощью
которого сервер передает ответ на инициализирующий запрос клиента;

в) verify — структура VerifyMessage, см. В.5.3, определяющая формат сообщения, содержащего один или
несколько кодов аутентификации;

г) applicationData — структура ApplicationDataMessage, см. В.5.4, определяющая формат сообщений, пере­
даваемых в ходе выполнения протокола передачи прикладных данных;

д) alert — структура AlertMessage, см. В.5.5, определяющая формат сообщения, содержащего код ошибки
выполнения протокола;

е) generatePSK — структура GeneratePSKMessage, см. В.5.6, определяющая формат сообщения, передава­
емого в процессе протокола выработки ключа аутентификации;

ж) extensionRequestCertificate — структура RequestCertificateExtension, см. В.6.1, определяющая формат рас­
ширения, используемого для запроса сертификата ключа проверки электронной подписи;

з) extensionCertificate — структура CertificateExtension, см. В.6.2, определяющая формат расширения, ис­
пользуемого для передачи сертификатов ключей проверки электронной подписи;

и) extensionSetCertificate — структура SetCertificateExtension, см. В.6.3, определяющая формат расширения,
используемого для указания использования конкретного сертификата ключа проверки электронной подписи;

к) extensionlnformCertificate — структура InformCertificateExtension, см. В.6.4, определяющая формат расши­
рения, используемого для информирования о номере используемого сертификата ключа проверки электронной
подписи;

л) extensionRequestldentifier — структура RequestldentifierExtension, см. В.6.5, определяющая формат рас­
ширения, используемого для запроса и/или указания используемого идентификатора абонента;

м) extensionKeyMechanism — структура KeyMechanismExtension, см. В.6 .6, определяющая криптографиче­
ские механизмы выработки производных ключей.

При сериализации объект типа MessageType представляется в виде последовательности, состоящей из од­
ного октета, значение которого определяется приведенной выше константой.

45

Р 1323565.1.028—2019

В.3.8 Описатель CryptoMechanism
typedef enum {

streebog256 = 0x0013,
streebog512 = 0x0023,
magmaGOST3413ePSK = 0x2051,
kuznechikGOST3413ePSK = 0x2052,
magmaGOST3413iPSK = 0x3101,
kuznechikGOST3413iPSK = 0x3102,
hmac256ePSK = 0x2033,
hmac512ePSK = 0x2043,
hmac256iPSK = 0x3033,
hmac512iPSK = 0x3043,
magmaCTRplusHMAC256 = 0x1131,
magmaCTRplusGOST3413 = 0x1151,
kuznechikCTRplusHMAC256 = 0x1132,
kuznechikCTRplusGOST3413 = 0x1152,
magmaAEAD = 0x1201,
kuznechikAEAD = 0x1202,

} CryptoMechanism
Описатель CryptoMechanism предназначен для указания клиентом и сервером криптографических преоб­

разований, используемых для обеспечения конфиденциальности и целостности передаваемой ими информации.
Указанные константы представляют собой целые неотрицательные числа от 0 до 216 - 1, см. В.2.4, и сфор­

мированы в соответствии со следующим правилом — значение константы представляет собой двоичный вектор
длины шестнадцать, в котором фиксированные биты определяют конкретный вид криптографического алгоритма
и его параметры в соответствии с рисунком В.1.

Рисунок В.1 — Порядок назначения значений бит в определении криптографического механизма
1 Для используемого алгоритма блочного шифрования допускаются следующие значения параметров:
а) 0x0 — алгоритм блочного шифрования не определен;
б) 0x1 — используется алгоритм блочного шифрования «Магма» с длиной блока 64 бита, регламентируемый

ГОСТ Р 34.12—2015;
в) 0x2 — используется алгоритм блочного шифрования «Кузнечик» с длиной блока 128 бит, регламентируе­

мый ГОСТ Р 34.12—2015;
г) 0x3 — алгоритм блочного шифрования не используется (конфиденциальность данных не обеспечивается).
2 Для используемого алгоритма вычисления кода целостности допускаются следующие значения параметров:
а) 0x0 — алгоритм вычисления кода целостности не определен;
б) 0x1 — используется бесключевая функция хеширования «Стрибог» с длиной кода 256 бит, регламентиру­

емая ГОСТ Р 34.11—2012;
в) 0x2 — используется бесключевая функция хеширования «Стрибог» с длиной кода 512 бит, регламентиру­

емая ГОСТ Р 34.11 — 2012;
г) 0x3 — используется ключевая функция хеширования НМАС256 с длиной кода 256 бит, регламентируемая

Р 50.1.13—2016;
д) 0x4 — используется ключевая функция хеширования НМАС512 с длиной кода 512 бит, регламентируемая

Р 50.1.13—2016;
е) 0x5 — используется ключевая функция хеширования, регламентируемая ГОСТ Р 34.13—2015.
3 Для используемого режима работы блочного шифра допускаются следующие значения параметров:
а) 0x0 — режим работы блочного шифра не определен;
б) 0x1 — режим гаммирования блочного шифра, регламентируемый ГОСТ Р 34.13—2015;
в) 0x2 — режим работы блочных шифров, обеспечивающий одновременное шифрование и аутентификацию

в соответствии с Р 1323565.1.026—2019.
4 Для параметра, определяющего используемые ключи криптографических преобразований, допускаются

следующие значения параметров:
а) 0x0 — криптографические ключи не определены;
б) 0x1 — используются производные ключи шифрования, см. 6.5; данный флаг должен быть установлен для

криптографических механизмов, используемых при передаче прикладных данных;
в) 0x2 — используется ключ аутентификации ePSK, см. 5.2.1;
г) 0x3— используется ключ аутентификации iPSK, см. 5.2.1.

46

Р 1323565.1.028—2019

5 Старшие (зарезервированные) биты константы, определяющей криптографический механизм, полагаются
равными нулю.

При сериализации объект типа CryptoMechanism представляется в виде последовательности октетов анало­
гично типу данных LengthShortlnt.

В.3.9 Описатель EllipticCurvelD

typedef enum {
tc26_gost3410_2012_256_paramsetA = 0x01,
tc26_gost3410_2012_256_paramsetB = 0x02,
tc26_gost3410_2012_256_paramsetC = 0x03,
tc26_gost3410_2012_256_paramsetD = 0x04,
tc26_gost3410_2012_512_paramsetA = 0x05,
tc26_gost3410_2012_512_paramsetB = 0x06,
tc26_gost3410_2012_512_paramsetC = 0x07,

} EllipticCurvelD
Описатель EllipticCurvelD предназначен для указания параметров эллиптической кривой, используемых в

протоколе выработки общих ключей, см. 5.2.2. Под параметрами эллиптической кривой подразумевается следую­
щий набор значений:

а) простое число р;
б) коэффициенты эллиптической кривой:
либо пара a, be Fp, определяющая эллиптическую кривую Е, заданную в канонической форме Вейерштрасса

сравнением
у2 = х3 + ах + b(mod р),

либо пара е, de Fp,
сравнением

определяющая эллиптическую кривую Е, заданную в форме скрученной кривой Эдвардса

eu2 + v2 е 1 + du2v2(mod р);

в) точка эллиптической кривой Р, заданная парой своих координат;
либо пара х, у е Fp — для эллиптической кривой, заданной в канонической форме Вейерштрасса,
либо пара u ,ve Fp — для эллиптической кривой, заданной в форме скрученной кривой Эдвардса;
г) простое число q, определяющее порядок подгруппы, порожденной точкой Р;
д) кофактор с — натуральное число такое, что произведение cq определяет порядок всей группы точек эл­

липтической кривой Е.
Указанные при определении типа EllipticCurvelD константы определяют наборы параметров эллиптических

кривых, регламентируемые следующими документами:
Р 1323565.1.024—2019, раздел 3 — эллиптические кривые, заданные в канонической форме Вейерштрасса

tc26_gost3410_2012_256_paramsetB = 0x02,
tc26_gost3410_2012_256_paramsetC = 0x03,
tc26_gost3410_2012_256_paramsetD = 0x04,
tc26_gost3410_2012_512_paramsetA = 0x05,
tc26_gost3410_2012_512_paramsetB = 0x06;

P 1323565.1.024—2019, раздел 4 — эллиптические кривые, заданные в форме скрученной кривой Эдвардса
- id-tc26-gost-3410-2012-256-paramSetA,
- id-tc26-gost-3410-2012-512-paramSetC;

П р и м е ч а н и е — Поскольку указанные при определении типа EllipticCurvelD константы однозначно
связаны с конкретными наборами параметров эллиптической кривой, это позволяет избавиться от необходимости
передавать в ходе выполнения защищенного взаимодействия информацию о размерах параметров и форме эл­
липтической кривой (канонической формой Вейерштрасса или формой скрученной кривой Эдвардса).

При сериализации объект типа EllipticCurvelD представляется в виде последовательности, состоящей из
одного октета, значение которого определяется приведенной выше константой.

В.3.10 Описатель EllipticCurvePoint
typedef struct {

EllipticCurvelD id;
Octetstring x;
Octetstring y;

} EllipticCurvePoint
Описатель EllipticCurvePoint определяет структуру данных, предназначенную для хранения точки эллиптиче­

ской кривой, заданной двумя координатами. Данная структура состоит из следующих полей:
а) id — идентификатор эллиптической кривой, которой принадлежит точка; значение идентификатора опре­

деляется типом EllipticCurvelD;
б) х — х-координата точки кривой, заданной в канонической форме Вейерштрасса, либо u-координага точки

кривой, заданной в форме скрученной кривой Эдвардса;

47

Р 1323565.1.028—2019

в) у — у-координага точки кривой, заданной в канонической форме Вейерштрасса, либо и-координата точки
кривой, заданной в форме скрученной кривой Эдвардса.

При сериализации объект типа EllipticCurvePoint преобразуется в последовательность октетов следующим
образом

point = id||x||y,

и
point[0] = id;
point[1] = x[0];

point[l] = x[l-1];
point[l+1] = y[0];

point[2l] = у[И].
где I определяется в зависимости от используемой эллиптической кривой либо равенством I = 32 (для 256-битных
эллиптических кривых), либо I = 64 (для 512-битных эллиптических кривых).

При этом предполагаем, что переменные х и у типа Octetstring представляют собой результат сериализации
вычетов х и у, которые удовлетворяют равенствам

/-1 1-1
х = 5>[/]х256'- У = 5> ['] *256'.

i=0 i =о

В.3.11 Описатель PreSharedKeylD
typedef struct {

PresentType present;
KeyType type;
LengthOctet length;
Octetstring id;

} PreSharedKeylD
Описатель PreSharedKeylD определяет структуру данных, предназначенную для хранения и передачи по ка­

налам связи идентификаторов предварительно распределенных симметричных ключей. Структура PreSharedKeylD
состоит из следующих полей:

а) present — флаг того, определен ли данный идентификатор; если значение флага равно notPresent, то
идентификатор не определен;

б) type — тип предварительно распределенного ключа; может принимать значения ePSKKey и iPSKKey;
в) length — длина идентификатора (количество октетов, занимаемых полем id);
г) id — произвольная последовательность октетов конечной длины, определяемой значением поля length.

П р и м е ч а н и е — Если в качестве предварительно распределенного ключа выступает ключ iPSK (предва­
рительно распределенный ключ, выработанный в ходе выполнения предыдущего сеанса защищенного взаимодей­
ствия), то его идентификатором является последовательность октетов фиксированной длины 32 октета, см. 6.6 .

При сериализации объект типа PreSharedKeylD преобразуется в последовательность октетов следующим
образом:

key id = present,

если present = notPresent, либо

keyid = present| |type|| length|| id,

если present = isPresent и
keyid[0] = present;
keyed[1] = type;
keyid[2] = length;
key id [3] = id[0];

keyid[length + 3] = id[length - 1]
B.3.12 Описатель IntegrityCode
typedef struct {

PresentType present;
LengthOctet length;
Octetstring code;

} IntegrityCode
Описатель IntegrityCode определяет структуру данных, предназначенную для передачи кодов целостности

или имитовставок, вырабатываемых в ходе криптографического взаимодействия абонентов для обеспечения и
проверки целостности передаваемой информации.

Структура InegrityCode состоит из следующих полей:

48

Р 1323565.1.028—2019

present — флаг того, определен ли данный код целостности или имитовставка; если значение флага равно
notPresent, то значение не определено;

length — длина кода целостности (имитовставки) (количество октетов, занимаемых полем code);
code — произвольная последовательность октетов конечной длины, определяемой значением поля length.

Точное значение длины кода целостности или имитовставки определяется выбранным клиентом или сервером
криптографическим алгоритмом, см. тип данных CryptoMechanism.

При сериализации объект типа IntegrityCode преобразуется в последовательность октетов следующим
образом

icode = present,
если present = notPresent, либо

icode = present||length||code,
если present = isPresent и
icode[0] = present;
icode[1] = length;
icode[2] = code[0];

icode[length + 1] = code[length - 1]
B.3.13 Описатель FrameNumber

typedef Octet FrameNumber[5]
Описатель FrameNumber определяет последовательность из пяти октетов, предназначенную для указания

криптографических номеров фреймов, см. В.4.1. Данный тип позволяет однозначно связать фрейм с криптографи­
ческими ключами, используемыми для обеспечения его конфиденциальности и целостности.

Последовательность из пяти октетов, образующих объект типа FrameNumber, может допускать различную
интерпретацию, зависящую от выбранного клиентом механизма выработки производных ключей — допустимые
варианты таких механизмов определяются значениями типа KeyMechanismType. Детальное описание алгоритма
формирования номера фрейма содержится в 7.3.

В.3.14 Описатель KeyMechanismType
typedef enum {

baseKeyMechanismMagma = 0x14,
baseKeyMechanismKuznechik = 0x34,
shortKCmagma = 0x18,
shortKCkuznechik = 0x38,
longKCmagma = 0x19,
longKCkuznechik = 0x39,
shortKAmagma = 0x1 c,
shortKAkuznechik = 0x3c,
longKAmagma = 0x1 d,
longKAkuznechik = 0x3d

} KeyMechanismType
Описатель KeyMechanismType предназначен для указания конкретных значений параметров алгоритмов

преобразования ключевой информации и выработки производных ключей, используемых транспортным протоко­
лом. Смысловое описание приведенных констант может быть найдено в приложении Г

При сериализации объект типа KeyMechanismType представляется в виде последовательности, состоящей
из одного октета, значение которого определяется приведенной выше константой.

В.3.15 Описатель AlertType
typedef enum {

unknown Error = 0x1000,
unsupportedCryptoMechanism = 0x1001,
wrongPreSharedKey = 0x1002,
wronglnternalPSKIdentifier = 0x1003,
wronglntegrityCode = 0x1004,
lostlntegrityCode = 0x1005,
wrongCertificateProcessed = 0x100a,
wrongCertificateNumber = 0x100b,
expiredCertificate = 0x100c,
unsupportedCertificateNumber = 0x1 OOd,
notValidCertificateNumber = 0x1 OOe,
wrongCertificateApplication = 0x1 OOf,
wrongCertificatelssuer = 0x1010,
unsupportedCertificatelssuer = 0x1011,
unsupportedCertificateFormat = 0x1012,
wrongCertificatelntegrityCode = 0x1013,

49

Р 1323565.1.028—2019

usupportedKeyMechanism = 0x1020,
unsupportedEllipticCurvelD = 0x1031,
wrongEllipticCurvePoint = 0x1032,
terminateConnection = 0x1041,
keyResourceTimeUp = 0x1042

} AlertType
Описатель AlertType предназначен для указания конкретных значений кодов ошибок, возникающих при реа­

лизации защищенного взаимодействия. Каждый код ошибки представляет собой целое неотрицательное число в
интервале от 0 до 65535 = 216 - 1.

При сериализации объекты типа AlertType преобразуются в последовательность октетов в соответствии с
алгоритмом, определенным для типа LengthShortlnt.

Указанные выше коды определяют следующие ошибки защищенного взаимодействия:
unknownError — неизвестная ошибка; такой код может отправляться как клиентом, так и сервером в случае

возникновения ситуации, не предписанной настоящими рекомендациями;
usupportedCryptoMechanism — использование недопустимого или не поддерживаемого криптографического

механизма;
wrongPreSharedKey — использование неверного идентификатора предварительно распределенного ключа

аутентификации;
wronglnternalPSKIdentifier— переданный идентификатор выработанного абонентами ключа аутентификации

не может быть подтвержден;
wronglntegrityCode— переданные данные содержат неверный код целостности или имитовставку;
lostlntegrityCode — переданные данные не содержат ожидаемый результат контроля целостности;
wrongCertificateProcessed — неверный тип запроса или указания на использование сертификата ключа про­

верки электронной подписи;
wrongCertificateNumber— неверный номер сертификата ключа проверки электронной подписи;
expiredCertificate — запрос или указание на использование сертификата с неверным интервалом времени

использования;
unsupportedCertificateNumber — неподдерживаемый номер сертификата ключа проверки электронной подписи;
notValidCertificateNumber — недопустимый номер сертификата ключа проверки электронной подписи;
wrongCertificateApplication — неверная область применения сертификата ключа проверки электронной подписи;
wrongCertificatelssuer — запрос или указание на использование сертификата с неизвестным центром серти­

фикации (идентификатором удостоверяющего центра);
unsupportedCertificatelssuer — запрос или указание на использование сертификата с неподдерживаемым

центром сертификации (идентификатором удостоверяющего центра);
unsupportedCertificateFormat — запрос или указание на использование сертификата с неизвестным или не­

поддерживаемым форматом;
wrongCertificatelntegrityCode — запрос или указание на использование сертификата, содержащего неверное

значение электронной подписи;
usupportedKeyMechanism — запрос на использование неизвестного или неподдерживаемого набора параме­

тров криптографических механизмов;
unsupportedEllipticCurvelD— переданные данные содержат неверный или неподдерживаемый идентифика­

тор эллиптической кривой;
wrongEllipticCurvePoint— переданные данные содержат неверную точку эллиптической кривой;
terminateConnection — абонент неожиданно оборвал защищенное взаимодействие;
keyResourceTimeUp — исчерпан ключевой ресурс, необходимо повторно выполнить протокол выработки

ключей.
В.3.16 Описатель Key Туре
typedef enum {

unknownKey = 0x00,
derivativeKey = 0x01,
ePSKKey = 0x02,
iPSKKey = 0x03

} KeyType
Описатель KeyType предназначен для указания типа ключа, используемого при реализации криптографиче­

ского механизма. Указанные константы определены в соответствии со значениями, определяемыми значениями
типа CryptoMechanism.

При сериализации объект типа KeyType представляется в виде последовательности, состоящей из одного
октета, значение которого определяется приведенной выше константой.

В.4 Формат сообщений транспортного протокола

В.4.1 Фрейм — Frame
typedef struct {

50

Р 1323565.1.028—2019

FrameType tag;
LengthShortlnt length;
FrameNumber number;
Octetstring adata;
MessageType type;
LengthShortlnt meslen;
Octetstring message;
Octetstring padding;
IntegrityCode icode;

} Frame
Описатель Frame определяет структуру данных, являющуюся основным контейнером для передачи данных

по каналам связи. Каждый фрейм предназначен для передачи в точности одного сообщения, формат которого
определяется одной из структур, определяемых в В.5.

Процедура вложения сообщения во фрейм описана в 7.4.1. Процедура получения сообщения из фрейма
описана в 7.5.

Структура данных Frame состоит из следующих полей:
а) tag — тип фрейма, см. В.3.1, представленный в виде одного октета с фиксированным значением;
б) length — длина всего фрейма (в октетах), представленная в виде целого числа, записываемого двумя

октетами, см. В.2.4;
в) number— криптографический номер фрейма, см. В.3.13, который позволяет однозначно связать данный

фрейм с набором криптографических ключей, используемых для обеспечения конфиденциальности и целостности
передаваемой информации;

г) adata — опциональная дополнительная информация, помещаемая в заголовок фрейма в открытом виде;
длина данной информации определяется старшими 6 битами значения поля tag, см. 7.4;

д) type — тип вложенного во фрейм сообщения, см. В.3.7;
е) meslen — длина вложенного во фрейм сообщения (в октетах), представленная в виде целого числа, за­

писываемого двумя октетами, см. В.2.4;
ж) message— вложенное во фрейм сообщение;
и) padding — произвольная последовательность октетов конечной длины (дополнение);
к) icode — код целостности или имитовставка, см. В.3.12.
При сериализации объект типа Frame преобразуется в последовательность октетов путем последовательной

конкатенации своих полей, см. рисунок В.2.

frame = tag ||length||number||adata||type||meslen||message||padding|| icode
'--------------------- .--------------------- м-------------------------- »-------------------------- '

Заголовок Тело

Рисунок В.2 — Формат фрейма

Для описания взаимосвязи между длинами различных фрагментов фрейма определим следующие величины:
I = Len(frame) — длина всего фрейма;
h — длина заголовка, включающего в себя, при наличии, опциональную дополнительную информацию;
m = Len(meslen) — длина сообщения, вкладываемого во фрейм;
р = Len(padding) — длина дополнения;
i = Len(icode) — длина сериализованного представления типа IntegrityCode, содержащего значение кода

целостности, тогда выполнено равенство I = h+3 + m + р + i. Данное равенство позволяет однозначно восста­
новить длину дополнения при получении фрейма, поскольку

р = I - (h+3 + m + i).

Сериализация объекта типа Frame выполняется в соответствии со следующими равенствами:
frame[0] = tag;
frame[1] = length [0];
frame[2] = length[1];
frame[3] = number[0];
frame[4] = number[1];
frame[5] = number[2];
frame[6] = number[3];
frame[7] = number[4];
frame[8] = adata[0];

frame[h] = type;
frame[h+1] = meslen[0];
frame[h+2] = meslen[1];

51

Р 1323565.1.028—2019

frame[h+3] = message[0];

frame[m+h+2] = message[m-1];
frame[m+h+3] = padding[0];

frame[m+p+h+2] = padding[p-1];
frame[m+p+h+3] = icode[0];

frame[l-1] = icode[i-1].

П р и м е ч а н и е — При передаче по каналу связи первые h октетов фрейма всегда передаются в неза­
шифрованном виде.

В.5 Формат сообщений протоколов сеансового уровня

В.5.1 Сообщение ClientHelloMessage
typedef struct {

CryptoMechanism algorithm;
PreSharedKeylD idpsk;
RandomOctetString random;
EllipticCurvePoint point;
LengthOctet countOfExtensions;

} ClientHelloMessage
Описатель ClientHelloMessage вводит структуру данных, определяющую формат сообщения, которым кли­

ент инициирует начало протокола выработки общего ключа. Данное сообщение должно вкладываться в структуру
Frame со значением поля type, равным clientHello.

Сообщение ClientHelloMessage должно передаваться в незашифрованном виде, процедура его формирова­
ния описывается в 5.7.1.

Структура данных ClientHelloMessage состоит из следующих попей:
а) algorithm — алгоритм, используемый для подтверждения целостности данных, передаваемых в незашиф­

рованном виде. Возможные значения данного поля определяются типом CryptoMechanism.
б) idpsk — идентификатор предварительно распределенного ключа аутентификации ePSK или iPSK. Данный

параметр является опциональным — если идентификатор не определен, то должно быть установлено значение

idpsk. present = notPresent.

П р и м е ч а н и е — Ключи аутентификации iPSK и ePSK определяются в 5.2.1. Механизмы формирования
ключей iPSK и ePSK описываются, соответственно в 6.6 и приложении Б;

в) random — случайная (псевдослучайная) последовательность октетов фиксированной длины;
г) point — точка эллиптической кривой, используемая в протоколе выработки ключей;
д) countOfExtensions — определяемое описателем LengthOctet целое неотрицательное число, указы­

вающее количество расширений, которые будут отправлены клиентом серверу после отправки сообщения
ClientHelloMessage.

При сериализации типа данных ClientHelloMessage используется последовательная конкатенация полей
структуры:

clienthello = algorithm||idpsk||random||point||countOfExtension.
Обозначим р = Len(point), I = Len(idpsk) — длины соответствующих полей сообщения ClientHelloMessage,

тогда
clienthello[0] = algorithm[0];
clienthello[1] = algorithm^];
clienthello[2] = idpsk[0];

clienthello[l+1] = idpsk [1+1];
clienthello[l+2] = random[0];

clienthello[l+34] = random[31];
clienthello[l+35] = point[0];

clienthello[l+p+34] = point[p-1];
clienthello[l+p+35] = countOfExtension
B.5.2 Сообщение ServerHelloMessage
typedef struct {

CryptoMechanism algorithm;
RandomOctetString random;

52

Р 1323565.1.028—2019

EllipticCurvePoint point;
LengthOctet countOfExtensions;

} ServerHelloMessage
Описатель ServerHelloMessage вводит структуру данных, определяющую формат сообщения, которым сер­

вер отвечает клиенту на сообщение ClientHelloMessage. Сообщение ServerHelloMessage должно помещаться в
структуру Frame со значением поля type, равным serverHello и передаваться в незашифрованном виде. Процедура
формирования сообщения ServerHelloMessage описывается в 5.7.2.

Структура данных Sen/erHelloMessage состоит из следующих попей:
а) algorithm— криптографические механизмы, которые будут использованы для шифрования и имитозащиты

сообщений, передаваемых в ходе защищенного взаимодействия. Возможные значения данного поля определяют­
ся типом CryptoMechanism;

б) random — случайная (псевдослучайная) последовательность октетов фиксированной длины;
в) point — точка эллиптической кривой, используемая в протоколе выработки ключей;
г) countOfExtensions — определяемое описателем LengthOctet целое неотрицательное число, указы­

вающее количество расширений, которые будут отправлены сервером клиенту после отправки сообщения
Sen/erHelloMessage.

При сериализации типа данных Sen/erHelloMessage используется последовательная конкатенация полей струк­
туры — переменная типа ServerHelloMessage преобразуется в последовательность октетов следующим образом.

serverhello = algorithm||random||point||countOfExtension,
или
serverhello[0] = algorithm[0];
serverhello[1] = algorithm[1];
serverhello[2] = random[0];

serverhello[33] = random[31];
serverhello[34] = point[0];

serverhello[p + 33] = point[p-1];
serverhello[p + 34] = countOfExtension,

где p = Len(point) — длина сериализованного представления точки эллиптической кривой.
В.5.3 Сообщение VerifyMessage
typedef struct {

IntegrityCode mac;
Integrity Code sign;

} VerifyMessage
Описатель VerifyMessage вводит структуру данных, определяющую формат сообщения, используемого обе­

ими сторонами в ходе выполнения протокола выработки ключей для верификации абонентов и подтверждения
ключей, выработанных в ходе выполнения протокола выработки ключей.

Сообщение должно помещаться в структуру Frame со значением поля type, равным verify, и передаваться по
каналам связи в зашифрованном виде.

Структура VerifyMessage состоит из следующих полей:
а) mac — определяемое типом IntegrityCode значение кода целостности, выработанное в соответствии с

5.7.2 или 5.7.3; данное значение является опциональным;
б) sign — определяемое типом IntegrityCode значение электронной подписи, выработанное в соответствии с

5.7.2 или 5.7.3; данное значение является опциональным.

П р и м е ч а н и е — Протоколом выработки ключей не допускается одновременное отсутствие значения
кода целостности mac и значения электронной подписи sign.

При сериализации типа данных VerifyMessage используется последовательная конкатенация полей структу­
ры — переменная типа VerifyMessage преобразуется в последовательность октетов следующим образом

verify = mac || sign,
или
verify[0] = mac[0];

verify[m-1] = mac[m-1];
verify[m] = sign[0];

verify[m + s - 1] = s ig n [s -1],
где m = Len(mac), s = Len(sign) — длины соответствующих сериализованных полей сообщения VerifyMessage.

В.5.4 Сообщение ApplicationDataMessage
typedef Octetstring ApplicationDataMessage

53

Р 1323565.1.028—2019

Сообщение ApplicationDataMessage представляет собой последовательность октетов произвольной, быть
может нулевой, длины. Формат данных, помещаемых в сообщение ApplicationDataMessage, определяется на при­
кладном уровне и в настоящих рекомендациях не рассматривается.

Данное сообщение должно помещаться в структуру Frame со значением поля type, равным applicationData.
В.5.5 Сообщение AlertMessage
typedef struct {

AlertType code;
CryptoMechanism algorithm;
PresentType present;
Octetstring message;

} AlertMessage
Описатель AlertMessage вводит структуру данных, определяющую формат сообщения, используемого обеи­

ми сторонами защищенного взаимодействия в случае возникновения ошибки или получения некорректных данных.
Сообщение AlertMessage должно помещаться в структуру Frame со значением поля type, равным alert и мо­

жет передаваться по каналам связи как в зашифрованном, так и в незашифрованном виде.
Структура данных AlertMessage состоит из следующих полей:
а) code — код ошибки;
б) algorithm— идентификатор криптографического механизма, см. В.3.8, используемый для контроля целост­

ности сообщений, передаваемых в открытом виде; данное значение может отличаться от значения, выбранного
клиентом при инициализации протокола выработки общих ключей, см. 5.7.1;

в) present — флаг того, что сообщение содержит дополнительное текстовое сообщение;
г) message — последовательность октетов, которая может содержать произвольное текстовое сообщение;

данное поле является опциональным; если попе message присутствует, то поле present должно принимать значе­
ние isPresent.

П р и м е ч а н и е — Сообщения об ошибках, передаваемые в ходе выполнения протокола выработки
ключей, должны передаваться в незашифрованном виде. Поскольку на момент возникновения ошибки абоненты
могут не завершить процесс аутентификации и не согласовать ключевую информацию, механизм контроля целост­
ности сообщений об ошибках, передаваемых в открытом виде, должен определяться отправителем сообщения
AlertMessage и указываться в поле AlertMessage.algorithm.

После окончания протокола выработки ключей, сообщения об ошибках должны передаваться в зашифро­
ванном виде. В атом случае целостность сообщений AlertMessage должна обеспечиваться криптографическим
механизмом, указанным в поле ServerHelloMessage.algorithm, с использованием текущих производных ключей
шифрования и имитозащиты.

При сериализации объект типа AlertMessage представляется в виде конкатенации полей структуры, т. е.

alert = code||algorithm||present||message
или
alert[0] = code[0];
alert[1] = code[1];
alert[2] = algorithm[Q];
alert[3] = algorithm[1];
alert[4] = notPresent

если последовательность октетов message не определена, либо
alert[0] = code[0];
alert[1] = code[1];
alert[2] = algorithm^;
alert[3] = algorithm[1];
alert[4] = isPresent;
alert[5] = message[0];

alert[l + 4] = message[l-1],
где I = Len(message).

B.5.6 Сообщение GeneratePSKMessage
typedef struct {

RandomOctetString random;
PreSharedKeylD id;

} GeneratePSKMessage
Описатель GeneratePSKMessage вводит структуру данных, определяющую формат сообщения, используе­

мого обеими сторонами защищенного взаимодействия в протоколе выработки ключа аутентификации iPSK, см. 6 .6.
Сообщение GeneratePSKMessage должно помещаться в структуру Frame со значением поля type, равным

generatePSK и передаваться по каналам связи в зашифрованном виде.

54

Р 1323565.1.028—2019

Структура данных GeneratePSKMessage состоит из следующих полей:
а) random — случайная последовательность октетов длины 32 октета;
б) id — идентификатор выработанного ключа аутентификации iPSK; возвращается инициатору протокола

для подтверждения корректности выработанного ключа аутентификации.
При сериализации типа данных GeneratePSKMessage используется последовательная конкатенация попей

структуры — переменная типа GeneratePSKMessage преобразуется в последовательность октетов следующим
образом:

pskmessage = random || id
или
pskmessage[0] = random[0];

pskmessage[31] = random[31];
pskmessage[32] = id [0];

pskmessage[l + 31] = id[l -1],
где I — длина сериализованного представления поля id.

В.6 Формат расширений

В.6.1 Расширение RequestCertificateExtension
typedef struct {

CertificateProcessedType certproctype;
Octetstring identifier;

} RequestCertificateExtension
Описатель RequestCertificateExtension вводит структуру данных, определяющую формат расширения, ис­

пользуемого сторонами протокола для запроса используемых сертификатов ключей проверки электронной под­
писи, подробнее см. 5.4.1.

Расширение RequestCertificateExtension должно помещаться в структуру Frame со значением поля type, рав­
ным extensionRequestCertificate. Допускается передача расширения по каналам связи как в зашифрованном, так и
в незашифрованном виде.

Структура RequestCertificateExtension состоит из следующих полей:
а) certproctype — способ уточнения параметров запрашиваемого к использованию сертификата клю­

ча проверки электронной подписи; значение данного поля должно определяться значением из множества
CertificateProcessedT уре;

б) identifier — последовательность октетов, определяющая запрашиваемый сертификат ключа проверки
электронной подписи.

При сериализации типа данных RequestCertificateExtension используется последовательная конкатенация
полей структуры:

reqcertext = certproctype || identifier,
и
reqcertext[0] = certproctype;
reqcertextjl] = identifier^];

reqcertext[l] = identifier^ - 1],
где I = Len(identifier) — длина сериализованного представления поля identifier.

В.6.2 Расширение CertificateExtension
typedef struct {

CertificateFormat format;
Certificate certificate;

} CertificateExtension
Описатель CertificateExtension вводит структуру данных, определяющую формат расширения, используемо­

го сторонами протокола для передачи сертификатов ключей проверки электронной подписи, см. подробнее 5.4.1.
Расширение CertificateExtension должно помещаться в структуру Frame со значением поля type, равным

extensionCertificate, и передаваться по каналам связи в зашифрованном виде.
Структура CertificateExtension состоит из следующих полей:
а) format — формат передаваемого сертификата ключа проверки электронной подписи, определяется значе­

нием CertificateFormat;
б) certificate — последовательность октетов конечной длины, содержащая в себе сертификат ключа проверки

электронной подписи.
При сериализации типа данных CertificateExtension используется последовательная конкатенация полей струк­

туры — переменная типа CertificateExtension преобразуется в последовательность октетов следующим образом

55

Р 1323565.1.028—2019

certext = format| (certificate,
или
certext[0] = format;
certext[1] = certificate[0];

certext[l] = certificate[l-1],
где I = Len(certificate) — длина сериализованного представления поля certificate.

В.6.3 Расширение SetCertificateExtension
typedef RequestCertificateExtension SetCertificateExtension
и
typedef struct{

CertificateProcessedType certproctype;
Octetstring identifier;

} SetCertificateExtension
Описатель SetCertificateExtension вводит струнтуру данных, определяющую формат расширения, использу­

емого сторонами протокола для информирования получателя расширения об используемом сертификате ключа
проверки электронной подписи отправителя расширения, подробнее см. 5.4.1.

Расширение SetCertificateExtension должно помещаться в структуру Frame со значением поля type, равным
extensionSetCertificate. Допускается передача расширения по каналам связи как в зашифрованном, так и в неза­
шифрованном виде.

Структура SetCertificateExtension состоит из следующих полей:
а) certproctype — способ указания параметров запрашиваемого к использованию сертификата клю­

ча проверки электронной подписи; значение данного поля должно определяться значением из множества
CertificateProcessedType и принимать значение number или issuer; значение any полагается недопустимым;

б) identifier — последовательность октетов, определяющая запрашиваемый сертификат ключа проверки
электронной подписи.

При сериализации типа данных RequestCertificateExtension используется последовательная конкатенация
полей структуры:

setcertext = certproctype| identifier,

или
setcertext[0] = certproctype;
setcertext[1] = identifier[0];

setcertext[l] = identifier^ - 1]
где I = Len(identifier) — длина сериализованного представления поля identifier.
В.6.4 Расширение InformCertificateExtension
typedef Octetstring InformCertificateExtension
Описатель InformCertificateExtension вводит тип данных, определяющий формат расширения, используемого

сторонами протокола для указания номера используемого отправителем расширения сертификата ключа проверки
электронной подписи, подробнее см. 5.4.1.

Тип данных представляет собой последовательность октетов, содержащую номер сертификата ключа про­
верки электронной подписи.

Расширение InformCertificateExtension должно помещаться в структуру Frame со значением поля type, рав­
ным extensionlnformCertificate. Допускается передача расширения по каналам связи как в зашифрованном, так и в
незашифрованном виде.

В.6.5 Расширение RequestldentifierExtension
typedef struct {

RequestType request;
Octetstring identifier;

} RequestldentifierExtension
Описатель RequestldentifierExtension вводит структуру данных, определяющую формат расширения, исполь­

зуемого сторонами протокола для информирования и, при необходимости, запроса идентификатора абонента.
Данные идентификаторы используются при выработке общей ключевой информации, см. 5.5.

Расширение RequestldentifierExtension должно помещаться в структуру Frame со значением поля type, рав­
ным extensionRequestldentifier. Допускается передача расширения по каналам связи как в зашифрованном, так и в
незашифрованном виде.

Структура RequestldentifierExtension состоит из следующих полей:
a) request — флаг запроса идентификатора; если значение данного поля равно isRequested, то абонент,

получивший данное расширение, должен отправить в ответ расширение RequestldentifierExtension со значением
собственного идентификатора; если расширение отправляется в ответ на запрос RequestldentifierExtension, либо
ответ не требуется, то значение поля request должно полагаться равным notRequested;

56

Р 1323565.1.028—2019

б) identifier — последовательность октетов, содержащая идентификатор абонента.
При сериализации типа данных RequestldentifierExtension используется последовательная конкатенация по­

лей структуры

reqidext = request || identifier

или, обозначается
reqidext[0] = request;
reqidext[1] = identifier^];

reqidext[1] = identifier^ - 1],
где I = Len(identifier) — длина сериализованного представления поля identifier.
В.6.6 Расширение KeyMechanism Extension
typedef struct{

KeyMechanismType mechanism;
} KeyMechanismExtension
Описатель KeyMechanismExtension вводит структуру данных, определяющую формат расширения, исполь­

зуемого сторонами протокола для указания криптографических механизмов выработки производных ключей.
Расширение KeyMechanismExtension должно помещаться в структуру Frame со значением поля type, равным

extensionKeyMechanism. Допускается передача расширения по каналам связи как в зашифрованном, так и в неза­
шифрованном виде. Случаи, в которых должно применяться расширение KeyMechanismExtension, рассматрива­
ются в 5.8.6.

При сериализации переменная типа данных KeyMechanismExtension представляется в виде одного октета,
значение которого совпадает с константой из множества KeyMechanismType.

57

Р 1323565.1.028—2019

Приложение Г
(справочное)

Рекомендуемые значения параметров защищенного взаимодействия

В настоящем приложении приведены рекомендуемые значения параметров защищенного взаимодействия,
которые позволяют обеспечить гибкую настройку СКЗИ в зависимости от области их применения.

Регулируемые государством области применения СКЗИ, в соответствии с приказом [5], определяются
Положением о разработке, производстве, реализации и эксплуатации шифровальных (криптографических) средств
защиты информации (Положение ПКЗ—2005).

Для СКЗИ, попадающих под действие Положения ПКЗ—2005, рекомендациями Р 1323565.1.012—2017 вво­
дится классификация СКЗИ. На СКЗИ, не попадающие под действие Положения ПКЗ—2005, регулирование и клас­
сификация не распространяются. Далее приведены значения параметров защищенного взаимодействия для СКЗИ
как попадающих, так и не попадающих под действие Положения ПКЗ—2005.

Определяем значения следующих параметров:
maxFrameCount — максимально допустимое количество фреймов, конфиденциальность и целостность кото­

рых обеспечивается одной парой производных ключей шифрования и выработки имитовставки, см. 7.2;
maxFrameKeysCount — максимально допустимое количество пар производных ключей шифрования eSFKn m,

eCFKn m и производных ключей выработки имитовставки iSFK,, m, iCFKp m для одного фиксированного состояния
ключевой информации CATSn и SATSn, см. 6.3;

maxApplicationSecretCount — максимально возможное количество преобразований ключевой информации
CATSn и SATSn, допустимое в рамках одного сеанса защищенного взаимодействия, см. 6.3.

Все указанные параметры должны принимать натуральные значения и зависеть от используемого при за­
щищенном взаимодействии алгоритма блочного шифрования, а также от размера фрейма, определяемого пара­
метром maxFrameLength, см. 7.2.

а) Для СКЗИ, не попадающих под действие Положения ПКЗ—2005, могут быть использованы следующие
значения параметров

maxFrameLength s 16384 «Магма» «Кузнечик»

maxFrameCount 213 216

maxFrameKeysCount 216 _ 1 216 _ -i

maxApplicationSecretCount 28 - 1 2s - 1

Данный наборпараметровобозначаетсязнач ен иями baseKeyMechanismMagmaHbaseKeyMechanismKuznechik
перечисления KeyMechanismType для алгоритма блочного шифрования «Магма» и, соответственно алгоритма
«Кузнечик».

б) Для СКЗИ, попадающих под действие Положения ПКЗ—2005 и относящихся к классам КС1, КС2, КСЗ,
могут быть использованы следующие значения параметров

maxFrameLength ^ 1500 «Магма» «Кузнечик»

maxFrameCount 211 216

maxFrameKeysCount 216 - 1 216 - 1

max Appl icationSecretCou nt 28 - 1 2s - 1

Данный набор параметров обозначается значениями shortKCmagma и shortKCkuznechik перечисления
KeyMechanismType для алгоритма блочного шифрования «Магма» и, соответственно алгоритма «Кузнечик».

maxFrameLength < 16384 «Магма» «Кузнечик»

maxFrameCount 28 212

maxFrameKeysCount 216 _ 1 216 _ -i

maxApplicationSecretCount 216 _ 1 2s - 1

Данный набор параметров обозначается значениями longKCmagma и longKCkuznechik перечисления
KeyMechanismType для алгоритма блочного шифрования «Магма» и, соответственно алгоритма «Кузнечик».

в) Для СКЗИ, попадающих под действие Положения ПКЗ — 2005 и относящихся к классам КВ, КА, могут быть
использованы следующие значения параметров

58

Р 1323565.1.028—2019

maxFrameLength < 1500 «Магма» «Кузнечик»

maxFrameCount 25 28

maxFrameKeysCount 216 - 1 216 - 1

maxApplicationSecretCount 216 - 1 216 _ 1

Данный набор параметров обозначается значениями shortKAmagma и shortKAkuznechik перечисления
KeyMechanismType для алгоритма блочного шифрования «Магма» и, соответственно, алгоритма «Кузнечик».

maxFrameLength ^ 16384 «Магма» «Кузнечик»

maxFrameCount 22 26

maxF rameKeysCou nt 216 - 1 216 - 1

maxApplicationSecretCount 214 - 1 216 - 1

Данный набор параметров обозначается значениями longKAmagma и longKAkuznechik перечисления
KeyMechanismType для алгоритма блочного шифрования «Магма» и, соответственно алгоритма «Кузнечик».

59

Р 1323565.1.028—2019

Библиография

[1] Федеральный закон от 6 апреля 2011 г. № 63-ФЗ «Об электронной подписи»
[2] RFC 5869 Krawczyk Н. HMAC-based Extract-and-Expand Key Derivation Function (HKDF)
[3] Blom R. Nonpublic key distribution//Advances in Cryptology. — Proceedings of EUROCRYPT’82.— 1983.— pp. 231—

236.
[4] ISO/IEC 9899:2018 Информационная технология. Языки программирования (Information technology —

Programming languages)
[5] Приказ ФСБ России от 9 февраля 2005 г. № 66 «Об утверждении Положения о разработке, производстве,

реализации и эксплуатации шифровальных (криптографических) средств защиты информации (Положение
П КЗ—2005)»

60

Р 1323565.1.028—2019

УДК 681.3.06:006.354 ОКС 35.040

Ключевые слова: информационная технология, криптографическая защита информации, защищен­
ное взаимодействие, контрольные и измерительные устройства

61

БЗ 1—2020/66

Редактор Н.А. Аргунова
Технический редактор И.Е. Черепкова

Корректор М.В. Бучная
Компьютерная верстка Е.О. Асташина

Сдано в набор 14.01.2020. Подписано в печать 10.06.2020. Формат 60х841/8. Гарнитура Ариал.
Уел. печ. л. 7,44. Уч.-изд. л. 5,95.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного
фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2.

www.gostinfo.ru info@gostinfo.ruР 1323565.1.028-2019

https://meganorm.ru/Data1/26/26658/index.htm
https://meganorm.ru/mega_doc/norm_update_30082025/gesn_gosudarstvennye-elementnye-smetnye-normy/0/gesn_81-02-40-2022_smetnye_normy_na_stroitelnye_raboty.html
https://meganorm.ru/Index2/1/4293753/4293753607.htm

