
ФЕДЕРАЛЬНОЕ АГЕНТСТВО 

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

РЕКОМЕНДАЦИИ  
ПО СТАНДАРТИЗАЦИИ

Р 1323565.1.030—  
2020

Информационная технология

КРИПТОГРАФИЧЕСКАЯ ЗАЩИТА  
ИНФОРМАЦИИ

Использование российских криптографических 
алгоритмов в протоколе безопасности 

транспортного уровня (TLS 1.3)

Издание официальное

Стандартинформ
2020

шум технологического оборудования

https://meganorm.ru/Index2/2/4294853/4294853033.htm


Р 1323565.1.030—2020

П реди сл ов ие

1 РАЗРАБОТАНЫ Обществом с ограниченной ответственностью «КРИПТО-ПРО» (ООО «КРИПТО- 
ПРО»)

2 ВНЕСЕНЫ Техническим комитетом по стандартизации ТК 26 «Криптографическая защита ин­
формации»

3 УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ Приказом Федерального агентства по техническому 
регулированию и метрологии от 27 февраля 2020 г. № 84-ст

4 ВВЕДЕНЫ ВПЕРВЫЕ

Правила применения настоящих рекомендаций установлены в статье 26 Федерального закона 
от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изме­
нениях к настоящим рекомендациям публикуется в ежегодном (по состоянию на 1 января текущего 
года) информационном указателе «Национальные стандарты», а официальный текст изменений 
и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае 
пересмотра (замены) или отмены настоящих рекомендаций соответствующее уведомление бу­
дет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные 
стандарты». Соответствующая информация, уведомление и тексты размещаются также в ин­
формационной системе общего пользования — на официальном сайте Федерального агентства по 
техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© ISO, 2014 — Все права сохраняются 
© Стандартинформ, оформление, 2020

Настоящие рекомендации не могут быть полностью или частично воспроизведены, тиражирова­
ны и распространены в качестве официального издания без разрешения Федерального агентства по 
техническому регулированию и метрологии

https://meganorm.ru/Index2/1/4293845/4293845034.htm


Р 1323565.1.030—2020

С о д ер ж ание

1 Область применения.......................................................................................................................................1
2 Нормативные ссылки.......................................................................................................................................1
3 Термины, определения, обозначения и сокращения................................................................................2

3.1 Термины и определения..........................................................................................................................2
3.2 Обозначения.............................................................................................................................................3
3.3 Сокращения...............................................................................................................................................5

4 Обзор протокола TLS...................................................................................................................................... 5
4.1 Иерархия информационного обмена...................................................................................................5
4.2 Состояние соединения............................................................................................................................6

5 Протокол Handshake...................................................................................................................................... 6
5.1 Формат сообщений протокола Handshake.......................................................................................... 6
5.2 Базовые принципы работы протокола Handshake.............................................................................. 8
5.3 Схемы аутентифицированной выработки общего ключевого материала.................................... 10
5.4 Пересогласование открытых эфемерных ключей............................................................................ 15
5.5 Сообщения ключевого обмена........................................................................................................... 16
5.6 Расширения............................................................................................................................................ 20
5.7 Параметры сервера..............................................................................................................................31
5.8 Сообщения аутентификации............................................................................................................... 32
5.9 Post-handshake сообщения................................................................................................................. 35

6 Протокол R ecord .......................................................................................................................................... 39
6.1 Фрагментация........................................................................................................................................ 40
6.2 Формирование записи..........................................................................................................................40
6.3 Защита данных...................................................................................................................................... 42
6.4 Счетчик полученных/отправленных записей.................................................................................... 43
6.5 Дополнение данных..............................................................................................................................44

7 Протокол Alert.................................................................................................................................................44
7.1 Оповещения закрытия соединения.....................................................................................................45
7.2 Оповещения об ошибках......................................................................................................................46

8 Криптографические вычисления............................................................................................................... 48
8.1 Функции, используемые при выработке клю чей..............................................................................48
8.2 Иерархия ключей.................................................................................................................................. 49
8.3 Обновление секретных значений....................................................................................................... 52
8.4 Ключевой материал трафика............................................................................................................... 53
8.5 Выработка общего секретного значения ECDHE.............................................................................. 53
8.6 Выработка предварительно распределенного секрета PSK ........................................................... 54
8.7 Экспорт ключевого материала............................................................................................................. 55
8.8 Функция Transcript-Hash........................................................................................................................55
8.9 Значения Handshake Contexts Finished Secret................................................................................ 55

9 Прикладные данные.................................................................................................................................... 56
10 Использование российских криптографических алгоритмов.............................................................. 56

10.1 Идентификаторы криптонаборов из реестра «TLSCipherSuites».................................................56
10.2 Идентификаторы схем подписи из реестра «TLSSignatureScheme».......................................... 59
10.3 Идентификаторы кривых из реестра «TLSSupportedGroups».......................................................60

III



Р 1323565.1.030—2020

11 Вопросы реализации и безопасности.....................................................................................................61
11.1 Механизмы защиты от атак по побочным каналам...................................................................... 61
11.2 Механизмы защиты от downgrade-атак........................................................................................... 61

Приложение А (справочное) Рекомендации по использованию TLS 1.3 криптонаборов в СКЗИ . . .  .63 
Приложение Б (справочное) Язык представления данных в протоколе TLS..........................................64

IV



Р 1323565.1.030—2020

В ведение

Настоящие рекомендации содержат описание протокола безопасности транспортного уровня вер­
сии 1.3 (TLS 1.3) с криптонаборами на основе алгоритмов блочного шифрования «Магма» и «Кузнечик», 
описанных в ГОСТ Р 34.12.

Необходимость разработки настоящего документа вызвана потребностью в обеспечении совме­
стимости различных реализаций протокола TLS 1.3 с использованием российских государственных 
криптографических стандартов.

Примечание — Основная часть настоящих рекомендаций дополнена приложениями А и Б.

V



Р 1323565 .1 .030— 2020

Р Е К О М Е Н Д А Ц И И  П О  С Т А Н Д А Р Т И З А Ц И И

Информационная технология

КРИПТОГРАФИЧЕСКАЯ ЗАЩИТА ИНФОРМАЦИИ

Использование российских криптографических алгоритмов 
в протоколе безопасности транспортного уровня (TLS 1.3)

Information technology. Cryptographic data security.
The use of the Russian cryptographic algorithms in the Transport Layer Security protocol (TLS 1.3)

Дата введения — 2020—06—01

1 О б л асть  п рим енения

Настоящие рекомендации содержат описание протокола безопасности транспортного уровня (да­
лее — TLS), соответствующего версии TLS 1.3, описанной в [1], и содержат описание соответствую­
щих данному протоколу криптонаборов, предназначенных для установления защищенного соединения 
между клиент-серверными приложениями с использованием алгоритмов, определяемых российскими 
государственными криптографическими стандартами, для обеспечения аутентификации сторон, кон­
фиденциальности и целостности информации, передаваемой по каналу связи.

2 Н орм ати вны е ссы лки

В настоящих рекомендациях использованы нормативные ссылки на следующие стандарты:
ГОСТ Р 34.10—2012 Информационная технология. Криптографическая защита информации. 

Процессы формирования и проверки электронной цифровой подписи
ГОСТ Р 34.11—2012 Информационная технология. Криптографическая защита информации. 

Функция хэширования
ГОСТ Р 34.12 Информационная технология. Криптографическая защита информации. Блочные 

шифры
Р 50.1.113—2016 Информационная технология. Криптографическая защита информации. Крип­

тографические алгоритмы, сопутствующие применению алгоритмов электронной цифровой подписи и 
функции хэширования

Р 1323565.1.012 Информационная технология. Криптографическая защита информации. Прин­
ципы разработки и модернизации шифровальных (криптографических) средств защиты информации

Р 1323565.1.020 Информационная технология. Криптографическая защита информации. Исполь­
зование российских криптографических алгоритмов в протоколе безопасности транспортного уровня 
(TLS 1.2)

Р 1323565.1.023 Информационная технология (ИТ). Криптографическая защита информации. Ис­
пользование алгоритмов ГОСТ Р 34.10—2012, ГОСТ Р 34.11—2012 в сертификате, списке аннулирован­
ных сертификатов (CRL) и запросе на сертификат PKCS # 10 инфраструктуры открытых ключей Х.509

Р 1323565.1.024 Информационная технология. Криптографическая защита информации. Пара­
метры эллиптических кривых для криптографических алгоритмов и протоколов

Р 1323565.1.026 Информационная технология. Криптографическая защита информации. Режи­
мы работы блочных шифров, реализующие аутентифицированное шифрование

Издание официальное
1



Р 1323565.1.030— 2020

П р и м е ч а н и е  — При пользовании настоящими рекомендациями целесообразно проверить действие 
ссылочных документов в информационной системе общего пользования — на официальном сайте Федерального 
агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному 
указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по вы­
пускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссы­
лочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию 
этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на кото­
рый дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом 
утверждения (принятия). Если после утверждения настоящих рекомендаций в ссылочный документ, на который 
дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это поло­
жение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то 
положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения, обозначения и сокращения

3.1 Термины и определения

В настоящих рекомендациях применены следующие термины с соответствующими определени­
ями:

3.1.1 клиент (client): Сторона взаимодействия, инициирующая установление TLS-соединения.
3.1.2 сервер (server): Сторона взаимодействия, не инициирующая установлениеТЕБ-соединения.
3.1.3 TLS-соединение (connection): Соединение транспортного уровня между сторонами взаи­

модействия, возникающее в момент отправки клиентом сообщения приветствия ClientHello (далее —  
исходное сообщение C lientHellol для данного соединения) и перестающее существовать при закрытии 
соединения с помощью пересылки оповещений (см. раздел 7) либо при внештатном обрыве связи.

П р и м е ч а н и я
1 В настоящих рекомендациях установлено, что термины «соединение» и «TLS соединение» являются си­

нонимами, если не оговорено иное.
2 При повторной отправке сообщения ClientHello (далее — повторное сообщение ClientHello2) в ответ на сообще­

ние HelloRetryRequest (см. 5.5.3) новое соединение не создается.
3 В версии протокола TLS 1.3, описанной в текущих рекомендациях, термин «сессия», существовавший в 

предыдущих версиях протокола (см. Р 1323565.1.020), не используется, так как механизм возобновления соедине­
ния в настоящих рекомендациях заменен механизмом использования предварительно распределенного секрета.

3.1.4 текущее соединение: TLS-соединение, для которого исходное сообщение ClientHellol 
было отправлено до текущего момента времени, но закрытия соединения еще не произошло.

3.1.5 соединение, предшествующее текущему соединению: ТЕБсоединение, возникшее до 
момента пересылки исходного сообщения C lientHellol для текущего соединения.

3.1.6 инициализирующее соединение: Соединение, предшествующее текущему соединению, 
в рамках которого было выработано предварительно согласованное секретное значение, используемое 
в рамках текущего соединения.

3.1.7 трафик (traffic): Поток данных, передающийся в соединении.
3.1 .8 криптонабор (cipher suite): Набор криптографических алгоритмов и их параметров, опреде­

ляющий работу протокола TLS в рамках соответствующего данному криптонабору соединения.
3.1.9 согласованный криптонабор: Криптонабор, соответствующий идентификатору криптона­

бора, согласованному сторонами взаимодействия в процессе выполнения протокола Handshake, опи­
санного в разделе 5.

3.1.10 TLS 1.3 сервер/кпиент: Сервер/клиент, поддерживающий протокол TLS 1.3.
3.1.11 режим совместимости: Режим работы протокола TLS 1.3, в рамках которого TLS 1.3 сер­

вер/клиент допускает возможность работы с клиентом/сервером в рамках версии протокола TLS, пред­
шествующей версии TLS 1.3.

3.1.12 downgrade атака: Атака, в результате которой клиент и сервер устанавливают соедине­
ния в рамках версии протокола, предшествующей максимальной версии, поддерживающейся клиентом 
и сервером.

2



Р 1323565.1.030—2020

3.1.13____________________________________________________________________________________

ключ подписи: Элемент секретных данных, специфичный для субъекта и используемый только 
данным субъектом в процессе формирования цифровой подписи.

[ГОСТ Р 34.10— 2012, статья 3.1.2]

3.1.14____________________________________________________________________________________

ключ проверки подписи: Элемент данных, математически связанный с ключом подписи и 
используемый проверяющей стороной в процессе проверки цифровой подписи.

[ГОСТ Р 34.10— 2012, статья 3.1.3]

3.1.15 закрытый эфемерный ключ: Элемент секретных данных, генерируемый случайным об­
разом для каждого нового соединения и используемый только в рамках данного соединения. В рамках 
настоящих рекомендаций закрытый эфемерный ключ является числом, диапазон принимаемых значе­
ний которого задается в соответствии с выбранной эллиптической кривой (см. подробнее 8.5.1).

3.1.16 открытый эфемерный ключ: Элемент данных, математически связанный с эфемерным 
закрытым ключом, генерируемый для каждого нового соединения и используемый только в рамках дан­
ного соединения. В рамках настоящих рекомендаций открытый эфемерный ключ является парой коор­
динат (х, у), являющейся точкой некоторой эллиптической кривой (см. подробнее 8.5.1).

3.1.17 прикладные данные (application data): Данные прикладного уровня, пересылаемые в 
рамках работы протокола TLS (см. подробнее раздел 9).

3.1.18 предварительно распределенный секрет: энтропийные данные, используемые в неко­
тором соединении для выработки общих секретных значений в соответствии с иерархией ключей (см. 
8.2) и известные обеим сторонам до начала работы данного соединения.

П р и м е ч а н и е  — В настоящих рекомендациях установлено, что термины «предварительно распределен­
ный секрет» и «PSK-значение» являются синонимами.

3.1.19 внешний предварительно распределенный секрет: предварительно распределенный
секрет, выработанный сторонами вне протокола TLS.

3.1.20 внутренний предварительно распределенный секрет: предварительно распределен­
ный секрет, выработанный сторонами в рамках протокола TLS.

П р и м е ч а н и я
1 В настоящих рекомендациях в целях сохранения терминологической преемственности с действующими 

отечественными нормативными документами и опубликованными научно-техническими изданиями установлено, 
что термины «электронная подпись», «цифровая подпись», «электронная цифровая подпись» и «подпись» явля­
ются синонимами.

2 В настоящих рекомендациях используются обозначения параметров эллиптических кривых в соответствии 
с ГОСТ Р 34.10—2012 (раздел 5).

3 В настоящих рекомендациях под обозначениями «[sender]» и «[лэсе/Ver]» подразумевается переменная, при­
нимающая значения из множества {«client», «server»}. Например, под обозначением [sender]_write_key подразумевается 
переменная, принимающая значения из множества {client_write_key, server_write_key}.

3.2 Обозначения

В настоящих рекомендациях применены следующие обозначения:
Bs —  множество байтовых строк длины s, s > 0. Строка b = ф ь  ... , bs) принадлежит множеству

Bs, если Ь1........bs е {0, ... 255}. При s = 0 множество Bs состоит из единственной пустой
строки длины 0;

В* —  множество всех байтовых строк произвольной конечной длины;
|Ь| —  длина байтовой строки b e  В* (если b —  пустая строка, то |Ь| = 0);

| —  конкатенация двух байтовых строк; для двух строк а = (а^ ... , as1) eB s1, b = (b^, ... , bs2) 
6 Bs2 их конкатенацией а|Ь называется строка с = (а1, ... , as1, Ь1, ... bs2) е Bs1 + s2;

bs —  байтовая строка длины s вида bs = (Ь, Ь ,..., Ь) (=R где b е В1;

s

3



Р 1323565.1.030—2020

LMBt(b)
STRs(r)

strs(r)

&

n

KLen

IVLen

Qc
d c

Q s

d s

mj 

4  
P;
hi

(d 's' Q 's )

(rfc. Q'c)

0/

® v e r i f y  

d s i g r t

SIGN

HASH
HLen

HMAC

строка b[/.j] = bj+ ^  ... , by) 6 Sy_/+ ^  где 1 < i < j < s и b = (b1, ... , b^ 6 Bs; 
строка LMBt(b) = (bv  ... , bt) eBp соответствующая строке b = (b1, ... , b^ 6 Bs, 1 < t < s; 
строка STRs(r) =(bv ..., bs)e B s, соответствующая числу г = 256s-1 ■ b1 + ... + 256 ■ bs-1 + bs< 
< 256s -  1 (представление числа г в виде байтовой строки в формате big-endian); 
строка strs(r) = (bv  ... ,bs) 6 Bs, соответствующая числу г = 256s _ 1 ■ bs + ... + 256 ■ b2 + 
+ b1 < 256s -  1 (представление числа г в виде байтовой строки в формате little-endian); 
операция побитовой конъюнкции (побитовое "И"); 
наименьшее целое число, большее или равное г ;
параметр алгоритма блочного шифрования, называемый длиной блока, задаваемый со­
гласованным криптонабором (см. 10.1.1); в рамках данного документа измеряется в бай­
тах;
параметр алгоритма блочного шифрования, называемый длиной ключа, задаваемый со­
гласованным криптонабором (см. 10.1.1); в рамках данного документа измеряется в бай­
тах;
длина вектора инициализации в байтах, задаваемая согласованным криптонабором (см. 
10.1 .2);

открытый эфемерный ключ клиента; 
закрытый эфемерный ключ клиента; 
открытый эфемерный ключ сервера; 
закрытый эфемерный ключ сервера;
эллиптическая кривая, указанная клиентом в расширении supported_groups; 
порядок группы точек эллиптической кривой Е-,
порядок циклической подгруппы группы точек эллиптической кривой Е,; 
точка эллиптической кривой Е( порядка qf,
кофактор циклической подгруппы порядка ф группы точек эллиптической кривой Ер значе-

т,ние которого равно

эфемерная ключевая пара сервера: закрытый и открытый ключи, соответствующие кривой
щ
эфемерная ключевая пара клиента: закрытый и открытый ключи, соответствующие кривой
щ
нулевая точка эллиптической кривой Е-,
ключ проверки подписи, хранящийся в сертификате стороны взаимодействия; 
ключ подписи, соответствующий ключу Qverify',
функция формирования подписи, принимающая на вход произвольную байтовую строку 
М е В* и ключ подписи dsj и выдающая в качестве результата своей работы строку sgn 
(см. 10.2);
операция покомпонентного сложения по модулю 2 двух байтовых строк одинаковой длины; 
хэш-функция, задаваемая согласованным криптонабором (см. 10.1.4); 
длина выхода хэш-функции HASH в байтах (см. 10.1.4);
функция вычисления кода аутентификации сообщения, определяемая алгоритмом НМАС, 
описанным в Р 50.1.113—2016 (подраздел 4.1) и задающимся в соответствии с хэш- 
функцией, задаваемой согласованным криптонабором (см. 10.1.4).

Примечания
1 В настоящих рекомендациях все строковые константы приводятся в кавычках и представляются в коди­

ровке ASCII без терминирующего нуль-символа.
2 В настоящих рекомендациях установлен следующий порядок перевода чисел в строки, если иное не огова­

ривается: все числовые значения, имеющие тип uint8, uintl6, uint24, uint32, uint64, представляются в виде строк в

4



Р 1323565.1.030—2020

формате big-endian. Например, десятичное число 16909060 с типом uint32 представляется в виде байтовой строки 
01 02 03 04 в шестнадцатеричном виде.

3 В настоящих рекомендациях установлено, что весь трафик, пересылаемый в канале связи, имеет байто­
вое представление.

4 Байтовое представление данных, соответствующих определенной структуре, задается конкатенацией бай­
товых представлений значений полей структуры в порядке их объявления (сверху вниз). Байтовое представление 
значения поля, являющегося вектором элементов некоторого типа, задается конкатенацией байтовых представле­
ний элементов данного вектора в порядке их нумерации (слева направо). Все числовые значения представляются 
в виде байтовых строк в соответствии с примечанием 2.

5 В настоящих рекомендациях в целях сохранения терминологической преемственности с действующими 
отечественными нормативными документами и опубликованными научно-техническими изданиями установлено, 
что термины «хэш-функция», «криптографическая хэш-функция», «функция хэширования» и «криптографическая 
функция хэширования» являются синонимами.

6 Для описания протокола в настоящих рекомендациях используется общепринятый язык представления данных 
в протоколе TLS (далее язык представления TLS), описанный в приложении Б.

3.3 Сокращения

В настоящих рекомендациях применены следующие сокращения:
СКЗИ — средство криптографической защиты информации;
AEAD — (Authenticated Encryption with Associated Data) шифрование с имитозащитой и ассоцииро­

ванными данными;

TCP — (Transmission Control Protocol) протокол управления передачей.

4 Обзор протокола TLS
Основное назначение протокола TLS —  создание защищенного канала связи между двумя взаи­

модействующими сторонами, то есть обеспечение следующих свойств:
- аутентификация сторон: обеспечивается за счет проверки сформированного значения подпи­

си или за счет подтверждения (неявного) факта обладания общим предварительно распределенным 
секретом (PSK). Аутентификация сервера является обязательной, аутентификация клиента является 
опциональной;

- конфиденциальность и целостность: обеспечивается за счет использования AEAD алгоритма.
Протокол TLS содержит два основных подпротокола, отвечающих за обеспечение свойств, пере­

численных выше:
- протокол Handshake (раздел 5), отвечающий за согласование криптографических параметров, 

выработку общего ключевого материала и аутентификацию сторон;
- протокол Record (раздел 6), использующий криптографические параметры и общий ключевой 

материал, согласованные во время выполнения протокола Handshake, для защиты трафика между 
сторонами взаимодействия.

Стороны могут обмениваться информацией о закрытии соединения или о возникшей ошибке с 
помощью передачи соответствующих оповещений в рамках протокола Alert (раздел 7).

4.1 Иерархия информационного обмена

Протокол TLS 1.3 работает поверх транспортного протокола (например, TCP) с гарантированной 
доставкой пакетов данных, который обеспечивает доставку сообщений с сохранением их очередности, 
отсутствием потерь и дублирований. Поверх протокола TLS 1.3, в свою очередь, работают протоколы 
прикладного уровня.

Схема обмена данными в протоколе TLS 1.3 изображена на рисунке 1.

5



Р 1323565.1.030—2020

Рисунок 1 — Схема обмена данными в протоколе TLS 1.3

Иерархия информационного обмена протокола TLS 1.3 включает в себя соединения, в рамках 
которых пересылается поток сообщений различных типов, инкапсулированный в записи.

4.2 Состояние соединения

Состояние соединения определяет порядок обработки данных, передаваемых в рамках этого со­
единения. В каждый момент времени выделяется текущее состояние чтения и текущее состояние за­
писи для каждой из сторон взаимодействия.

Для каждой из сторон с состоянием чтения/записи связаны следующие параметры:
- номер получаемой/пересылаемой записи seqnum (число от 0 до SNMAX-1 включительно, где 

параметр SNMAXзадается выбранным криптонабором, см. 10.1.3), который увеличивается на единицу 
после каждой полученной/отправленной записи;

- ключевой материал трафика: [sender]_write_кеу, [sender\_write_iv (см. 8.4).
В каждый момент времени все записи обрабатываются в соответствии с текущим состоянием со­

единения. При инициализации соединения номеру записи присваивается нулевое значение, ключевой 
материал не определен (записи передаются в открытом виде). Смена состояния чтения/записи проис­
ходит при каждом изменении ключевого материала трафика, при этом соответствующий данному со­
стоянию номер пересылаемой/получаемой записи обнуляется.

В рамках настоящих рекомендаций выделяется три этапа состояний соединения:
- этап ключевого обмена: сообщения ClientHello, HelloRetryRequest, ServerHello протокола 

Handshake (см. 5.5), всегда пересылаемые сторонами в открытом виде;
- этап выработки параметров соединения и аутентификации: все сообщения протокола Handshake, 

начиная с сообщения Encrypted Extensions и заканчивая сообщением Finished со стороны клиента, всег­
да передаются в защищенном виде с помощью ключей, выработанных на основе секретного значения 
[sender]_handshake_traffic_secret (см. 8.2);

- этап пересылки прикладных данных (см. раздел 9) и post-handshake сообщений (см. 5.9): все 
данные, посылаемые в рамках этого этапа, передаются в защищенном виде. Для их защиты использу­
ются ключи, выработанные на основе секретного значения [sender]_application_traffic_secret_N (см. 8.2).

Примечания
1 Прикладные данные, пересылаемые в защищенном на ключах [sender]_application_traffic_secret_N виде, 

могут быть посланы сервером до получения сообщения Finished со стороны клиента в случае односторонней ау­
тентификации (см. подробнее раздел 9).

2 В рамках этапа пересылки прикладных данных может проходить смена состояния соединения путем сме­
ны ключевого материала трафика с помощью механизма сообщений KeyUpdate (см. 5.9.3).

5 Протокол Handshake
5.1 Формат сообщений протокола Handshake

Протокол Handshake используется для согласования параметров безопасности соединения, вы­
работки общего ключевого материала и аутентификации сторон. Сообщения протокола Handshake 
передаются протоколу Record для последующей инкапсуляции в одну или несколько TLSPIaintext или



Р 1323565.1.030—2020

TLSCiphertext структур (см. раздел 6), которые обрабатываются и передаются в канале связи в соот­
ветствии с текущим состоянием соединения (см. 4.2).

Каждое сообщение протокола Handshake содержит специальный заголовок, состоящий из четы­
рех байтов. Первый байт содержит код типа сообщения (поле msg_type), три следующих байта — длину 
данных сообщения (поле length). После заголовка следуют пересылаемые в данном сообщении дан­
ные.

enum {
client_hello(0x01),
server_hello(0x02),
new_session_ticket(0x04),
end_of_early_data(0x05),
encrypted_extensions(0x08),
certificate(OxOB),
certificate_request(OxOD),
certificate_verify(OxOF),
finished(0x14),
key_update(0x18),
message_hash(OxFE),
(OxFF)

} HandshakeType;

struct {
HandshakeType msg_type; /* handshake type */ 
uint24 length; /* remaining bytes in message */ 
select (Handshake.msg_type) {

case client_hello: ClientHello;
case server_hello: ServerHello;
case end_of_early_data: EndOfEarlyData;
case encrypted_extensions: Encrypted Extensions;
case certificate_request: CertificateRequest;
case certificate: Certificate;
case certificate_verify: CertificateVerify;
case finished: Finished;
case new_session_ticket: NewSessionTicket;
case key_update: KeyUpdate;

};
} Handshake;

Далее по тексту установлено, что под терминами «сообщение ClientHello», «сообщение
ServerHello»......«сообщение KeyUpdate» подразумевается набор данных, соответствующих структуре
Handshake (в частности, имеющий поля Handshake.msg_type и Handshake.length), описанной выше,
для которых поле Handshake.msg_type содержит значения client_hello(0x01), server_hello(0x02)......key_
update(0x18) соответственно.

Далее по тексту установлено, что строки ClientHello, ServerHello, ..., KeyUpdate являются байтовы­
ми представлениями сообщений ClientHello......KeyUpdate соответственно (см. 3.2).

Далее по тексту установлено, что под термином «первое сообщение Finished со стороны клиента» 
подразумевается сообщение Finished, посылаемое впервые в рамках текущего соединения.

7



Р 1323565.1.030—2020

Далее по тексту установлено, что под термином «main-handshake сообщения» подразумеваются 
сообщения, посылаемые сторонами взаимодействия в рамках работы протокола Handshake, начиная 
с исходного сообщения ClientHello и заканчивая первым сообщением Finished со стороны клиента, при 
этом сообщения NewSessionTicket и KeyUpdate, которые могут быть посланы сервером до получения 
первого сообщения Finished со стороны клиента в случае односторонней аутентификации (см. подроб­
нее 5.9.1 и 5.9.3), не включаются в множество main-handshake сообщений.

Далее по тексту установлено, что под термином «post-handshake сообщения» подразумеваются 
все сообщения, посылаемые сторонами взаимодействия в рамках работы протокола Handshake, кото­
рые не являются main-handshake сообщениями.

Сообщения протокола Handshake должны пересылаться в строгом фиксированном порядке, ко­
торый определяется следующим образом: ClientHello/(ClientHello1, HelloRetryRequest, ClientHello2), 
ServerHello, EncryptedExtensions, CertificateRequest, Certificate со стороны сервера, CertificateVerify со 
стороны сервера, Finished со стороны сервера, Certificate со стороны клиента, CertificateVerify со сторо­
ны клиента, Finished со стороны клиента, post-handshake сообщения (см. 5.9). При этом опциональные 
сообщения из данного списка могут опускаться. Сторона взаимодействия, получившая сообщение про­
токола Handshake, которое не соответствует данному порядку, должна прервать работу протокола с 
оповещением об ошибке unexpected_message (см. 7.2).

Примечание — В настоящих рекомендациях не описывается сообщение EndOfEarlyData, указанное в [1], так 
как в версии протокола TLS 1.3, соответствующей настоящим рекомендациям, пересылка 0-RTT данных запрещена.

5.2 Базовые принципы работы протокола Handshake

В рамках протокола TLS 1.3 существует два типа энтропийных данных, которые могут быть ис­
пользованы для выработки общих секретных значений в соответствии с иерархией ключей (см. 8.2):

а) общее секретное значение ECDHE, вырабатываемое при использовании протокола Диффи- 
Хеллмана на основе эллиптических кривых1) в соответствии с 8.5. Для выработки данного значения 
стороны взаимодействия обмениваются открытыми эфемерными ключами в рамках сообщений клю­
чевого обмена;

б) предварительно распределенный секрет, известный обеим сторонам до начала работы теку­
щего соединения и выработанный в соответствии с одним из следующих способов (см. подробнее 8.6):

1) выработан в рамках работы протокола Handshake — внутренний предварительно распре­
деленный секрет /PSK;

2) распределен между сторонами вне протокола TLS 1.3 — внешний предварительно рас­
пределенный секрет ePSK. Настоящие рекомендации не фиксируют механизм формирования и рас­
пределения значения ePSR. При необходимости использования данного типа предварительно рас­
пределенного секрета описание данного механизма, исследование предоставляемого посредством 
использования данного значения ePSK функционала, а также анализ стойкости протокола должны про­
водиться отдельно.

В рамках протокола TLS 1.3 существует два способа аутентификации сторон:
а) аутентификация за счет использования сертификатов и подписи. При этом аутентификация 

сервера является обязательной и происходит только в рамках пересылки соответствующих main- 
handshake сообщений, а аутентификация клиента является опциональной, выполняется по запро­
су от сервера и проходит в рамках пересылки как main-handshake, так и post-handshake сообщений 
(см. 5.9.2);

б) аутентификация за счет подтверждения (неявного) факта обладания предварительно распре­
деленным секретом. При этом тип аутентификации (двусторонняя или односторонняя) либо определя­
ется типом аутентификации сторон в соединении на момент пересылки сообщения NewSessionTicket, 
ассоциированного с используемым внутренним предварительно распределенным секретом iPSK, либо 
всегда является двусторонней2) в случае использования внешнего предварительно распределенного 
секрета ePSK.

1) В соответствии с [1] протокол TLS 1.3 допускает возможность работы протокола Handshake на основе ис­
пользования протокола Диффи-Хеллмана в мультипликативной группе конечного поля, однако этот способ в на­
стоящих рекомендациях не поддерживается.

2) Данное требование отсутствует в [1] и является дополнительным условием, накладываемым на внешний 
предварительно распределенный секрет в рамках настоящих рекомендаций.
8



Р 1323565.1.030—2020

П р и м е ч а н и я
1 Далее по тексту под «сертификатом сервера, ассоциированным со значением iPSK», подразумевается серти­

фикат, который был использован сервером для успешной аутентификации при установлении первоначального соеди­
нения из цепочки соединений, в рамках которой было выработано данное значение iPSK. Под «сертификатом клиента, 
ассоциированным со значением iPSK», подразумевается сертификат, который был использован клиентом для успешной 
аутентификации при установлении некоторого соединения из цепочки соединений, в рамках которой было выработано 
данное значение iPSK, и который определяет состояние аутентификации клиента в соединении на момент пересылки 
сообщения NewSessionTicket, ассоциированного с данным значением iPSK.

2 Далее по тексту установлено, что под термином «значение ePSK, ассоциированное со значением iPSK», подра­
зумевается значение ePSK, согласованное в рамках первоначального соединения из цепочки соединений, в результате 
которой было выработано данное значение iPSK.

В настоящих рекомендациях описываются три схемы аутентифицированной выработки общего 
ключевого материала, используемые в режимах работы протокола TLS 1.3:

а) ecdhe_ke (см. подробнее 5.3.1). В качестве энтропийных данных для выработки общего ключе­
вого материала соединения используется общее секретное значение ECDHE, вырабатываемое сторо­
нами на этапе пересылки сообщений ключевого обмена (см. 8.5). Аутентификация сторон осуществля­
ется за счет использования сертификатов и подписи;

б) psk_ke (см. подробнее 5.3.2.1). В качестве энтропийных данных для выработки общего клю­
чевого материала соединения используется общее секретное PSK-значение, вырабатываемое в со­
ответствии с 8.6 (в рамках настоящих рекомендаций допускается использование только внутреннего 
предварительно распределенного секрета iPSK). Аутентификация сторон осуществляется за счет под­
тверждения (неявного) факта обладания PSK-значением;

в) psk_ecdhe_ke (см. подробнее 5.3.2.2): на основе использования двух подходов, перечислен­
ных выше. В качестве энтропийных данных для выработки общего ключевого материала соединения 
используется предварительно распределенный секрет PSK, вырабатываемый в соответствии с 8.6, ко­
торый может быть как внутренним (iPSK), так и внешним (ePSK), и общее секретное значение ECDHE, 
вырабатываемое сторонами на этапе пересылки сообщений ключевого обмена (см. 8.5). Аутентифика­
ция сторон осуществляется за счет подтверждения (неявного) факта обладания значением PSK.

Режимы работы протокола Handshake подразделяются на два следующих типа:
а) полная схема обмена сообщениями (Full Handshake): к данному типу относятся ECDHE-only и 

ePSK-ECDHE режимы;
б) возобновление соединения (Resumption): к данному типу относятся iPSK-only и iPSK-ECDHE 

режимы. Данные режимы работы являются аналогами механизма возобновления соединения за счет 
использования идентификаторов сессии, применяемого в более ранних версиях протокола TLS (см. 
Р 1323565.1.020), и используются для быстрого восстановления параметров с помощью внутреннего 
предварительно распределенного секрета iPSK.

В таблице 1 приводится информация о соответствии режимов работы протокола Handshake схе­
мам аутентифицированной выработки общего ключевого материала и типам используемых энтропий­
ных данных.

Та б л и ц а  1 — Соответствие режимов работы протокола Handshake схемам аутентифицированной выработки 
общего ключевого материала

Режим работы протокола Handshake Схема аутентифицированной выработки 
общего ключевого материала Используемые энтропийные данные

ECDHE-only ecdhe_ke ECDHE

ePSK-ECDHE psk_ecdhe_ke ePSK и ECDHE

iPSK-only psk_ke iPSK

iPSK-ECDHE psk_ecdhe_ke iPSK и ECDHE

Соотношение режимов работы протокола Handshake приведено на рисунке 2. Основной принцип 
заключается в следующем: внешне распределенный секрет ePSK  может быть использован только в 
рамках ePSK-ECDHE режима.

9



Р 1323565.1.030—2020

ePSK

Рисунок 2 — Соотношение режимов работы протокола Handshake

П р и м е ч а н и е  — В соответствии с [1] протокол TLS 1.3 допускает использование 0-RTT данных, однако при 
работе протокола в соответствии с настоящими рекомендациями, данный функционал запрещен.

5.3 Схемы аутентифицированной выработки общего ключевого материала

В настоящем разделе описываются три схемы аутентифицированной выработки общего ключево­
го материала ecdhe_ke, psk_ecdhe_ke, psk_ke, для каждой из которых приводится схема режимов рабо­
ты протокола Handshake (см. рисунки 3—5), содержащая список всех сообщений протокола Handshake, 
которые могут быть посланы в рамках данного режима [кроме сообщения HelloRetryRequest, которое 
может посылаться в рамках ecdhe_ke и psk_ecdhe_ke режимов (см. подробнее 5.4 и 5.5.3)], а также ба­
зовый набор расширений, непосредственно используемых для аутентифицированной выработки обще­
го ключевого материала в каждом конкретном режиме.

Полный список всех расширений приведен в таблице 2. Подробное описание каждого из сообще­
ний приводится в 5.5—5.9.

5.3.1 Схема ecdhe_ke
Схема аутентифицированной выработки общего ключа ecdhe_ke основывается на использовании 

протокола Диффи-Хеллмана на основе эллиптических кривых. В качестве энтропийных данных для 
выработки общего ключевого материала соединения используется общее секретное значение ECDHE, 
вырабатываемое сторонами на этапе пересылки сообщений ключевого обмена (см. 8.5). Аутентифи­
кация сторон происходит за счет использования сертификатов и подписи, пересылаемых в рамках со­
общений Certificate и Certificate Verify (см. подробнее 5.8.1 и 5.8.2).

Схема ecdhe_ke используется в рамках ECDHE-only режима работы протокола Handshake.
Схема обмена сообщениями в ECDHE-only режиме работы протокола Handshake приведена на 

рисунке 3.

10



Р 1323565.1.030— 2020

Клиент Сервер

ClientHello:
• supported_versions
• signature_algorithms
• signature_algorithms_cert*
• supported_groups
• key_share

------------►

ServerHello: 
supported_versions • 

key_share •
EncryptedExtensions: 
supported_groups* •

CertificateRequest*: 
signature_algorithms • 

signature_algorithms_cert*»
Certificate

CertificateVerify
Finished

◄--------------
Application Data*

NewSessionTicket*
KeyUpdate*

Certificate*

--------------►

CertificateVerify*

Finished

Application Data
◄----------- ►

Application Data

◄--------------
NewSessionTicket*

KeyUpdate*
◄----------- ►

KeyUpdate*

Используемая система обозначений:
•  -  расширения, посылаемые в рамках сообщения, под которым они указаны;
* -опциональные данные;

-сообщения, защищенные на ключах, выработанных из секретного значения
[sender\ handshake traffic secret (см. подробнее 8.4);

-  сообщения, защищенные на ключах, выработанных из секретного значения
[sender] application traffic secret N (см. подробнее 8.4).

Рисунок 3 — Схема обмена сообщениями в ECDHE-only режиме работы протокола Handshake

П р и м е ч а н и я
1 На рисунке 3 прикладные данные Application Data не относятся к сообщениям протокола Handshake.
2 Прикладные данные (Application Data), пересылаемые сервером до получения первого сообщения Finished со 

стороны клиента, могут быть посланы только в случае односторонней аутентификации (см. подробнее раздел 9).
3 Сообщения NewSessionTicket и Key Update, пересылаемые сервером до получения первого сообщения Finished 

со стороны клиента, могут быть посланы только в случае односторонней аутентификации (см. подробнее 5.9.1, 5.9.3).

Для установления соединения в рамках ecdhe_ke схемы в сообщении ClientHello необходимо ука­
зать следующий минимальный набор расширений:

а) обязательное расширение supported_versions, используемое для согласования версии прото­
кола TLS (см. 5.6.1);

11



Р 1323565.1.030—2020

б) обязательное расширение signature_algorithms, содержащее информацию об алгоритмах под­
писи, поддерживаемых клиентом, и отвечающее за возможность аутентификации сторон с помощью 
сертификатов (см. 5.6.2);

в) обязательные расширения supported_groups (см. 5.6.3) и key_share (см. 5.6.4), отвечающие за 
выработку общего секретного значения ECDHE, где:

1) расширение supported_groups содержит информацию об эллиптических кривых, поддержи­
ваемых клиентом и указываемых в порядке убывания предпочтения;

2) расширение key_share содержит информацию об открытых эфемерных ключах Q1 с, Q2C......
предлагаемых клиентом и указываемых в порядке убывания предпочтения.

Для установления соединения в рамках ecdhe_ke схемы в сообщении ServerHello необходимо 
указать следующий минимальный набор расширений:

а) обязательное расширение supported_versions, используемое для согласования версии прото­
кола TLS (см. 5.6.1);

б) обязательное расширение key_share, содержащее информацию об открытом эфемерном клю­
че сервера Qs, принадлежащему той же кривой, что и некоторый открытый эфемерный ключ клиента 
Q'c, выбранный сервером из списка, указанного в расширении key_share со стороны клиента. При этом 
данное расширение посылается, в случае если сервер готов работать сданными, переданными в рас­
ширениях supported_groups и key_share со стороны клиента.

Примечания
1 Расширение supported_groups является опциональным для сервера и содержит информацию об эллипти­

ческих кривых, поддерживаемых сервером.
2 Расширение signature_algorithms является обязательным для сервера в случае двусторонней аутентифи­

кации и должно пересылаться в сообщении CertificateRequest.
3 Расширение signature_algorithms_cert является опциональным для клиента и сервера (см. подробнее

5.6.2).

После обмена сообщениями ключевого обмена стороны вырабатывают общее секретное значе­
ние ECDHE в соответствии с 8.5. Данное значение используется в качестве энтропийных данных для 
формирования иерархии ключей (см. 8.2).

Сервер может воспользоваться процедурой пересогласования открытых эфемерных ключей кли­
ента (см. 5.4). Если какая-либо из сторон не может использовать параметры, предложенные второй 
стороной, то она должна завершить соединение либо с оповещением handshake_failure, либо с опове­
щением insufficient_security (см. 7.2).

В случае необходимости смены ключевого материала трафика любая из сторон может послать 
сообщение KeyUpdate (см. 5.9.3).

5.3.2 Схемы, использующие предварительно распределенный секрет
Для установления защищенного соединения между клиентом и сервером может быть использова­

но PSK-значение, известное обеим сторонам до начала работы текущего соединения и выработанное 
в соответствии с одним из следующих способов:

а) выработано в рамках работы протокола Handshake в соединении, предшествующем текущему 
(инициализирующем соединении), в соответствии с 8.6: внутренний предварительно распределенный 
секрет iPSK. При этом значение iPSK может быть использовано в рамках работы iPSK-only и iPSK- 
ECDHE режимов;

б) распределено между сторонами вне протокола TLS 1.3: внешний предварительно распреде­
ленный секрет ePSK. При этом значение ePSK должно обеспечивать двустороннюю аутентификацию 
сторон и может быть использовано только в рамках работы ePSK-ECDHE режима.

Двусторонняя аутентификация с помощью использования внешнего предварительно распреде­
ленного секрета ePSK обеспечивается с помощью механизма внешнего распределения секрета между 
двумя сторонами, гарантирующего, что данный секрет неизвестен никому, кроме данных сторон. При 
этом в рамках данного механизма должны быть однозначно зафиксированы роли сторон взаимодей­
ствия (клиент или сервер), причем каждой стороне может соответствовать только одна роль на протя­
жении всего срока жизни ePSK.

Примечания
1 Требование двусторонней аутентификации отсутствует в [1] и является дополнительным условием, накла­

дываемым на внешний предварительно распределенный секрет ePSK в рамках настоящих рекомендаций.

12



Р 1323565.1.030—2020

2 Значение iPSK не рекомендуется использовать в качестве энтропийных данных для аутентифицирован­
ной выработки общего ключевого материала более чем для одного соединения.

Для выработки значения iPSK  в рамках работы инициализирующего соединения сервер может 
послать сообщение NewSessionTicket (см. подробнее 5.9.1), содержащее данные, однозначно ассоци­
ированные с секретным значением iPSK  (см. подробнее 8.6).

Аутентификация сторон в рамках psk_ke и psk_ecdhe_ke схем аутентифицированной выработ­
ки общего ключевого материала всегда происходит за счет подтверждения (неявного) факта облада­
ния PSK-значением, при этом сообщения CertificateRequest, Certificate и CertificateVerify посылаться не 
должны.

Для установления соединения в рамках psk_ke или psk_ecdhe_ke схем в сообщении ClientHello 
необходимо указать следующий минимальный набор расширений:

а) обязательное расширение supported_versions, используемое для согласования версии прото­
кола TLS (см. 5.6.1);

б) обязательные для каждой из двух схем (psk_ke или psk_ecdhe_ke) расширения pre_shared_key 
(см. 5.6.5) и psk_key_exchange_modes (см. 5.6.6), отвечающие за согласование PSK-значения и режима 
его использования:

1) расширение pre_shared_key содержит список данных, связанных со значениями предвари­
тельно распределенных секретов, которые клиент готов использовать в качестве энтропийных данных;

2) расширение psk_key_exchange_modes, содержащее информацию о схемах аутентифици­
рованной выработки общего ключевого материала, поддерживаемых клиентом;

в) обязательные для psk_ecdhe_ke схемы расширения key_share и supported_groups, отвеча­
ющие за выработку общего секретного значения ECDHE и посылаемые клиентом в случае, если он 
готов поддерживать данный функционал.

П р и м е ч а н и е  — Чтобы предоставить серверу возможность при необходимости отклонить процедуру во­
зобновления соединения, клиенту рекомендуется всегда посылать расширения, обязательные для установления 
соединений в соответствии с полной схемой обмена сообщениями.

Для установления соединения в рамках psk_ke или psk_ecdhe_ke схем в сообщении ServerHello 
необходимо указать следующий минимальный набор расширений:

а) обязательное расширение supported_versions, используемое для согласования версии прото­
кола TLS (см. 5.6.1);

б) обязательное для каждой из двух схем (psk_ke или psk_ecdhe_ke) расширение pre_shared_key, 
содержащее информацию о выбранном сервером значении PSK  и посылаемое в случае, если сервер 
готов работать сданными, переданными в расширениях pre_shared_key и psk_key_exchange_modes со 
стороны клиента;

в) обязательное для psk_ecdhe_ke схемы расширение key_share, отвечающее за выработку об­
щего секретного значения ECDHE. В случае psk_ke схемы данное расширение посылаться не должно.

П р и м е ч а н и е  — Расширение supported_groups является опциональным для сервера и содержит инфор­
мацию об эллиптических кривых, поддерживаемых сервером.

После обмена сообщениями ключевого обмена стороны взаимодействия согласовывают общее 
значение PSK и, опционально, вырабатывают общее секретное значение ECDHE (см. подробнее 8.5), 
используемые в качестве энтропийных данных для формирования иерархии ключей (см. 8.2).

Если какая-либо из сторон не может работать на параметрах, предложенных второй стороной, 
то она должна завершить соединение либо с оповещением handshake_failure, либо с оповещением 
insufficient_security (см. 7.2).

П р и м е ч а н и е  — Если при возобновлении соединения сервер не может согласовать параметры, пере­
сылаемые в расширениях pre_shared_key и psk_key_exchange_modes со стороны клиента, но при этом клиент 
предоставил набор расширений, необходимый для перехода на полную схему обмена сообщениями, сервер может 
не разрывать соединение и перейти на полную схему обмена сообщениями, указав соответствующий ответный 
набор расширений.

В случае необходимости смены ключевого материала трафика любая из сторон может послать 
сообщение KeyUpdate (см. 5.9.3).

Подробная схема режимов работы протокола Handshake в рамках psk_ke и psk_ecdhe_ke схем 
аутентифицированной выработки общего ключевого материала приводится в 5.3.2.1 и 5.3.2.2 соответ­
ственно.

13



Р 1323565.1.030— 2020

П р и м е ч а н и е  — В соответствии с [1] протокол TLS 1.3 допускает использование 0-RTT данных, однако 
при работе протокола в соответствии с настоящими рекомендациями данный функционал запрещен.

5.3.2.1 Схема psk_ke
Схема psk_ke используется в рамках iPSK-only режима работы протокола Handshake, схема рабо­

ты которого приведена на рисунке 4.

Клиент | Сервер
ClientHello

• supported_versions
• [signature_algorithms]*
• [key_share]*
• [supported_groups]*
• pre_shared_key
• psk_key_exchange_modes

--------------►

ServerHello 
supported_versions • 

pre_shared_key •
EncryptedExtensions

Finished

◄--------------
Application Data*

NewSessionTicket*
KeyUpdate*

Finished
--------------►

Application Data
◄----------- ►

Application Data

◄--------------
NewSessionTicket*

KeyUpdate*
◄----------- ►

KeyUpdate*

Используемая система обозначений:
• -  расширения, посылаемые в рамках сообщения, под которым они указаны;
* -  опциональные данные;
[] -расширение, посылаемое клиентом в режиме возобновления 

возможности перехода к полной схеме обмена сообщениями;
соединения для обеспечения

-сообщения, защищенные на ключах, выработанных
[sender] handshake traffic secret (см. подробнее 8.4);

ИЗ секретного значения

-сообщения, защищенные на ключах, выработанных
[sender] application traffic secret N (см. подробнее 8.4).

из секретного значения

Рисунок 4 — Схема обмена сообщениями в iPSK-only режиме работы протокола Handshake

П р и м е ч а н и я
1 Прикладные данные Application Data не относятся к сообщениям протокола Handshake.
2 На рисунке 4 прикладные данные Application Data, пересылаемые сервером до получения первого со­

общения Finished со стороны клиента, могут быть посланы только в случае односторонней аутентификации (под­
робнее раздел 9).

3 Сообщения NewSessionTicket и KeyUpdate, пересылаемые сервером до получения первого сообщения 
Finished со стороны клиента, могут быть посланы только в случае односторонней аутентификации (см. подробнее 
5.9.1, 5.9.3).

5.3.2.2 Схема psk_ecdhe_ke
Схема psk_ecdhe_ke используется в рамках ePSK-ECDHE или iPSK-ECDHE режимов работы про­

токола Handshake, схема работы которых приведена на рисунке 5.
14



Р 1323565.1.030— 2020

Используемая система обозначений:
• -  расширения, посылаемые в рамках сообщения, под которым они указаны;
* -  опциональные данные;
□ -  расширение, посылаемое клиентом в режиме возобновления 

возможности перехода к полной схеме обмена сообщениями;
соединения для обеспечения

-сообщения, защищенные на ключах, выработанных
[sender] handshake traffic_secret (см. подробнее 8.4);

ИЗ секретного значения

-сообщения, защищенные на ключах, выработанных
[sender] application traffic_secret_N (см. подробнее 8.4).

из секретного значения

Рисунок 5 — Схема обмена сообщениями в ePSK-ECDHE и iPSK-ECDHE 
режимах работы протокола Handshake

П р и м е ч а н и я
1 Прикладные данные Application Data не относятся к сообщениям протокола Handshake.
2 На рисунке 5 прикладные данные Application Data, пересылаемые сервером до получения первого со­

общения Finished со стороны клиента, могут быть посланы только в случае односторонней аутентификации (под­
робнее раздел 9).

3 Сообщения NewSessionTicket и KeyUpdate, пересылаемые сервером до получения первого сообщения 
Finished со стороны клиента, могут быть посланы только в случае односторонней аутентификации (см. подробнее 
5.9.1, 5.9.3).

В случае если сервер не поддерживает параметры, указанные в расширении key_share, он может 
воспользоваться процедурой пересогласования открытых эфемерных ключей клиента (см. 5.4).

5.4 Пересогласование о ткр ы ты х  эф ем ерны х клю чей

Если в рамках режимов на основе ecdhe_ke и psk_ecdhe_ke схем аутентифицированной выработ­
ки общего ключевого материала данные, переданные клиентом в расширении key_share сообщения 
C lien tH e llo l, не могут быть согласованы сервером (например, соответствуют параметрам эллиптиче-

15



Р 1323565.1.030—2020

ских кривых, не поддерживаемых сервером), но в расширении supported_groups указаны параметры, 
поддерживаемые сервером, сервер может инициировать процедуру пересогласования открытых эфе­
мерных ключей клиента. Для этого он должен послать клиенту сообщение HelloRetryRequest (см. 5.5.3).

При получении сообщения HelloRetryRequest клиенту необходимо послать модифицированное 
сообщение ClientHello2, содержащее расширение key_share с параметрами, скорректированными в со­
ответствии с полученным ранее сообщением HelloRetryRequest.

Примечание — Обозначения «ClientHellol», «ClientHello2», используемые в настоящем разделе, под­
робно объясняются в 5.5.1.

5.5 Сообщения ключевого обмена

5.5.1 ClientHello
Сообщение приветствия ClientHello посылается клиентом в одном из следующих случаев:
- клиент впервые подключается к серверу (исходное сообщение ClientHello);
- в ответ на сообщение HelloRetryRequest, посланное сервером (повторное сообщение ClientHello).

Примечание — Далее по тексту установлено, что под терминами «сообщение ClientHellol», «сообщение 
ClientHello2» подразумеваются исходное и повторное сообщение соответственно, а строки ClientHellol, ClientHello2 
являются байтовыми представлениями сообщений ClientHellol, ClientHello2 соответственно.

При получении сообщения ClientHello в любом другом случае, не перечисленном выше, сервер 
должен завершить соединение оповещением unexpected_message(CM. 7.2), поскольку версия протоко­
ла, описанная в настоящих рекомендациях, не поддерживает процедуру пересогласования соединения 
(renegotiation), определенную в Р 1323565.1.020.

В случае если сервер устанавливает соединение в рамках протокола TLS версии ниже 1.3 и полу­
чает в рамках процедуры пересогласования соединения (renegotiation) сообщение ClientHello, сформи­
рованное в соответствии с протоколом TLS 1.3, он должен сохранить предыдущую версию протокола 
TLS. В частности, сервер не должен согласовывать протокол TLS версии 1.3 в указанном случае.

В случае получения сообщения HelloRetryRequest клиент должен отправить сообщение 
ClientHello2, содержащее следующие изменения по сравнению с сообщением ClientHellol:

- если расширение key_share было указано в сообщении HelloRetryRequest, список эфемерных 
ключей KeyShareClientHello должен содержать один элемент KeyShareEntry, соответствующий группе 
эллиптической кривой, указанной в расширении key_share сообщения HelloRetryRequest (см. 5.6.4.2);

- если расширение cookie(CM. 5.6.8) было указано в сообщении HelloRetryRequest, оно должно 
присутствовать в сообщении ClientHello2;

- расширение pre_shared_key, если оно присутствовало в сообщении ClientHellol, должно быть 
обновлено в сообщении ClientHello2 путем перевычисления поля obfuscated_ticket_age структуры 
Pskldentity в структуре PreSharedKeyExtension, описанной в 5.6.5, и binder-значений, описанных в 
5.6.5.3; а также путем (опционального) удаления тикетов (и всей связанной сданными тикетами инфор­
мации), несовместимых с криптонабором, указанным сервером;

- могут быть проведены модификации других опциональных расширений, определенных вне дан­
ных рекомендаций и присутствующих в сообщении HelloRetryRequest, однако возможность таких моди­
фикаций должна оговариваться отдельно и не рассматривается в рамках текущего документа.

Структура ClientHello сообщения ClientHello задается следующим образом:

uint16 ProtocolVersion;
opaque Random[32];
uint8 CipherSuite[2]; /* Cryptographic suite selector */
struct {

ProtocolVersion legacy_version = 0x0303; /* TLS v1.2 */
Random random;
opaque legacy_session_id<0..32>;
CipherSuite cipher_suites<2..2A16-2>;
opaque legacy_compression_methods<1 ,.2A8-1>;
Extension extensions<8..2A16-1>;

} ClientHello;
16



Р 1323565.1.030—2020

где legacy_version — поле длиной в 2 байта, отвечающее в более ранних версиях протокола
TLS за индикацию максимальной версии протокола, поддерживаемой 
клиентом, и сохраненное в текущей версии протокола в целях 
поддержки совместимости форматов сообщений.
В протоколе TLS 1.3 информация о поддерживаемых клиентом верси­
ях указывается в расширении supported_versions, описанном в 5.6.1.
В рамках протокола TLS 1.3 данное поле должно принимать значе­
ние 0x0303 (соответствующее значению поля client_version сообщения 
ClientHello для протокола TLS 1.2);

random — строка данных длиной в 32 байта, выработанная клиентом случайным 
образом;

legacy_session_id — поле, отвечающее в более ранних версиях протокола TLS за механизм 
возобновления соединения, определенный в Р 1323565.1.020, за­
мененный в настоящих рекомендациях механизмом использования 
значений iPSK, и сохраненное в текущей версии протокола в целях 
поддержки совместимости форматов сообщений.
В рамках работы протокола TLS 1.3 не в режиме совместимости 
данное поле должно содержать вектор нулевой длины.
В рамках работы протокола TLS 1.3 в режиме совместимости 
данное поле должно содержать строку данных длиной в 32 байта, 
сгенерированную клиентом. При этом данное значение не обязательно 
должно быть случайным, но должно быть непредсказуемым (таким, что 
его нельзя заранее определить с достаточно большой вероятностью);

cipher_suites — список криптонаборов, которые поддерживает клиент. Порядок крип­
тонаборов в списке отражает их степень предпочтения (предпочти­
тельные идут первыми). Если список содержит криптонаборы, которые 
сервер не распознает, не поддерживает или не желает использовать, 
сервер должен их проигнорировать. Если клиент пытается устано­
вить соединение в рамках psk_ecdhe_ke или psk_ke схемы аутенти­
фицированной выработки общего ключевого материала, ему следует 
предъявить по меньшей мере один криптонабор, поддерживающий 
алгоритм хэширования, ассоциированный с предложенными тикетами 
(см. 5.6.5.2).
Значения криптонаборов, допустимых к использованию в рамках дан­
ного документа, задаются в 10.1;

legacy_compression_methods — поле, содержащее вектор длиной 1 со значением, равным 0 (соответству­
ющее методу null), отвечавшее в более ранних версиях протокола TLS 
за выбор метода сжатия, использование которого запрещено в рамках 
текущей версии протокола. Если в полученном сообщении ClientHello 
значение этого поля отлично от нуля, сервер должен прекратить работу 
протокола Handshake с оповещением illegal_parameter (см. 7.2).
В режиме совместимости сервер может получать сообщения ClientHel­
lo протокола TLS версии 1.2 и ниже, содержащие методы сжатия. В 
этом случае сервер должен следовать процедурам, соответствующим 
указанной версии TLS;

extensions — расширения, посылаемые со стороны клиента. Расширения выбираются 
из списка, приведенного в таблице 2. Серверы должны игнорировать 
нераспознанные расширения.
Можно выделить три типа расширений: расширение supported_ 
versions, необходимое для согласования версии протокола (см. 5.6.1); 
расширения, необходимые для обеспечения корректной работы про­
токола Handshake, использующего одну из трех схем аутентифици­
рованной выработки общего ключевого материала: psk_ke, psk_ec-

17



Р 1323565.1.030—2020

dhe_ke или ecdhe_ke, описанную в 5.3.2 и 5.3.1 соответственно; а 
также опциональные расширения, отвечающие за использование 
дополнительного функционала протокола.
В случае если сервер отказался поддерживать какое-либо из расши­
рений, предложенных клиентом, клиент может прекратить работу про­
токола Handshake, послав соответствующее оповещение (например, 
missing_extension, см. подробнее 7.2).

В случае если клиент указывает значение 0x0304 в расширении supported_versions (см. 5.6.1), со­
общение ClientHello должно удовлетворять следующим условиям:

- если указано расширение pre_shared_key, данное сообщение должно содержать расширение 
psk_key_exchange_modes (см. 5.6.6);

- если не указано расширение pre_shared_key, данное сообщение должно содержать расширения 
signature_algorithms и supported_groups;

- если указано расширение supported_groups, данное сообщение должно содержать расширение 
key_share, и наоборот. При этом список client_shares, указываемый клиентом в расширении key_share, 
может быть пустым (см. 5.6.4.1).

Сервер, получивший сообщение ClientHello, которое не удовлетворяет указанным условиям, дол­
жен завершить работу протокола Handshake с оповещением missing_extension(cM. 7.2).

После отправки сообщения ClientHello клиент ожидает от сервера сообщения ServerHello или 
HelloRetryRequest.

5.5.2 ServerHello
Данное сообщение отправляется сервером после получения им сообщения ClientHello при усло­

вии, что среди параметров, переданных клиентом в сообщении приветствия, присутствует поддержива­
емый сервером набор параметров, необходимый для продолжения установления соединения.

Структура ServerHello сообщения ServerHello задается следующим образом:

struct {
ProtocolVersion legacy_version = 0x0303; /* TLS v1.2 */
Random random;
opaque legacy_session_id_echo<0..32>;
CipherSuite cipher_suite;
uint8 legacy_compression_method = 0;
Extension extensions<6..2A16-1>;

} ServerHello;

где legacy_version — поле длиной в 2 байта, отвечающее в более ранних версиях протокола
TLS за индикацию версии протокола, поддерживаемой сервером, и со­
храненное в текущей версии протокола в целях поддержки совмести­
мости форматов сообщений.
В протоколе TLS 1.3 информация о выбранной сервером версии ука­
зывается в расширении supported_versions, описанном в 5.6.1.
В рамках протокола TLS 1.3 данное поле должно принимать значение 
0x0303 (соответствующее значению поля server_version сообщения 
ServerHello для протокола TLS 1.2);

random — строка данных длиной в 32 байта, выработанная сервером случайным 
образом и не зависящая от значения, переданного клиентом в поле 
ClientHello.random.
В случае если TLS 1.3 сервер согласовывает параметры соединения в 
рамках режима совместимости и максимально поддерживаемая вер­
сия протокола TLS, указанная клиентом в сообщении ClientHello, со­
ответствует версии, предшествующей версии 1.3, в целях защиты от 
downgrade атак сервер использует механизм формирования значения 
поля random в соответствии с 11.2.1;

18



Р 1323565.1.030—2020

legacy_session_id_echo — поле, содержащее данные, указанные клиентом в поле legacy_session_
id сообщения ClientHello, и заполняемое таким образом даже в случае, 
если значение, указанное клиентом в поле legacy_session_id сообще­
ния ClientHello, соответствует кэшированному значению сессии, соот­
ветствующей версии протокола TLS 1.2 и ниже.
Клиент, получивший сообщение ServerHello или HelloRetryRequest со 
значением поля legacy_session_id_echo, не соответствующим значе­
нию, посланному в сообщении ClientHello, должен прекратить работу 
протокола Handshake с оповещением illegal_parameter(CM. 7.2);

cipher_suite — криптонабор, выбранный сервером из списка ClientHello.cipher_suites, 
предложенного клиентом. Клиент, получивший криптонабор, который 
не был предложен им в списке ClientHello.cipher_suites, должен пре­
кратить работу протокола Handshake с оповещением illegal_parameter 
(см. 7.2);

legacy_compression_method — поле длиной в 1 байт, которое должно принимать значение 0 (соответ­
ствующее методу null);

extensions — список расширений. Сообщение ServerHello может содержать только 
те расширения, которые были перечислены в поле extensions сообще­
ния ClientHello.
Сообщение ServerHello должно всегда содержать расширение 
supported_versions, необходимое для согласования версии протокола. 
Сообщение ServerHello должно содержать набор расширений, не­
обходимых для формирования криптографического контекста, соот­
ветствующего одной из трех схем аутентифицированной выработки 
общего ключевого материала psk_ke, psk_ecdhe_ke или ecdhe_ke, 
описанных в 5.3.2 и 5.3.1 соответственно, в рамках которой сервер 
планирует дальнейшее взаимодействие с клиентом. Таким образом, 
данное поле должно содержать либо расширение pre_shared_key (в 
случае использования psk_ke схемы), либо расширение key_share (в 
случае использования ecdhe_ke схемы), либо оба указанных расши­
рения (в случае использования psk_ecdhe_ke схемы). Все остальные 
расширения должны пересылаться в сообщении EncryptedExtensions.

TLS 1.3 клиент, выполняющий процедуру пересогласования соединения в рамках протокола TLS 
версии 1.2 и ниже и получивший сообщение ServerHello, соответствующее протоколу TLS 1.3, в момент 
повторного согласования, должен прекратить работу протокола Handshake с оповещением protocol_ 
version (см. 7.2).

5.5.3 HelloRetryRequest
Сервер может отправить сообщение HelloRetryRequest в ответ на сообщение ClientHello (далее — 

ClientHellol), в случае если сервер смог выбрать подходящие для работы параметры, но клиент не 
указал в сообщении ClientHellol достаточного количества данных, необходимых для завершения этапа 
ключевого обмена. Например, клиент мог указать идентификатор поддерживаемой сервером эллипти­
ческой кривой в расширении supported_groups, но не указать соответствующий ей открытый эфемер­
ный ключ в расширении key_share. Также сервер может отправить сообщение HelloRetryRequest для 
того, чтобы воспользоваться механизмом, предоставляемым расширением cookie (см. 5.6.8).

Сообщение HelloRetryRequest имеет точно такой же тип (server_hello, см. подробнее раздел 5) и 
структуру, что и сообщение ServerHello. При этом значения полей данного сообщения задаются в со­
ответствии с теми же правилами, что и поля сообщения ServerHello, за исключением полей random и 
extensions:

а) поле random сообщения HelloRetryRequest должно задаваться строкой, содержащей значение 
хэш-функции SHA-256 от сообщения "HelloRetryRequest", равное

CF21 AD 74 Е5 9А61 11 BE 1D 8С 02 1Е65 В8 91

С2А2 11 16 7АВВ 8С 5Е 07 9Е 09 Е2 С8А8 33 9С;
19



Р 1323565.1.030—2020

б) поле extensions сообщения HelloRetryRequest должно соответствовать следующим требовани­
ям:

1) может содержать только те расширения, которые были перечислены в поле extensions со­
общения ClientHellol, за исключением опционального расширения cookie(CM. подробнее 5.6.8);

2) должно содержать расширение supported_versions и минимальный набор расширений, не­
обходимый для того, чтобы клиент сгенерировал корректные параметры для выполнения этапа ключе­
вого обмена.

После получения сообщения с типом server_hello клиент должен проверить значение поля random 
и, если это значение окажется равным фиксированной строке, указанной выше, выполнять действия в 
соответствии со случаем получения сообщения HelloRetryRequest (см. 5.5.1).

Если сообщение HelloRetryRequest не привело ни к одному изменению в сообщении ClientHello, 
клиент должен завершить работу протокола Handshake с оповещением illegal_parameter(CM. 7.2). В слу­
чае повторного получения сообщения HelloRetryRequest в рамках текущего соединения клиент должен 
завершить работу протокола Handshake с оповещением unexpected_message(CM. 7.2).

Клиент, получивший криптонабор, который не содержится в предложенном им списке криптона­
боров, должен завершить работу протокола Handshake с оповещением illegal_parameter (см. 7.2). При 
получении сообщения ClientHello2 сервер должен убедиться в том, что был выбран тот же крипто­
набор, который указывался сервером в сообщении HelloRetryRequest. После получения сообщения 
ServerHello клиент должен проверить, что криптонабор, указанный сервером в сообщении ServerHello, 
совпадает с криптонабором, указанным в сообщении HelloRetryRequest. В противном случае клиент 
должен завершить работу протокола Handshake с оповещением illegal_parameter(CM. 7.2).

В сообщении ClientHello2 клиент не должен предлагать использовать тикеты, которые ассоцииру­
ются с хэш-функцией, отличной от хэш-функции, задающейся в рамках выбранного сервером крипто­
набора, указанного в сообщении HelloRetryRequest.

При получении сообщений ServerHello и HelloRetryRequest клиент должен проверить, что значе­
ние поля selected_version расширения supported_versions сообщения ServerHello совпадает с соответ­
ствующим значением, указанным в сообщении HelloRetryRequest. В противном случае клиент должен 
завершить работу протокола Handshake с оповещением illegal_parameter(CM. 7.2).

5.6 Расширения

Сообщения протокола TLS 1.3 могут содержать расширения, задающиеся структурой Extension, 
определяемой следующим образом:

struct {
ExtensionType extension_type; 
opaque extension_data<0..2A16-1>;

} Extension;

где:
- поле extension_type содержит значение типа расширения, которое задается в соответствии с 

таблицей 2;
- поле extension_data содержит данные, характерные для конкретного расширения.
Настоящие рекомендации определяют набор расширений в соответствии с таблицей 2.

Таблица 2 — Расширения

Название расширения Тип расширения Сообщение, в котором оно может пересылаться

server_name 0x0000 СН, ЕЕ

supported_groups 0x000A СН, ЕЕ

signature_algorithms OxOOOD СН, CR

pre_shared_key 0x0029 СН, SH

supported_versions 0x002B СН, SH, HRR

cookie 0x002C HRR, СН

20



Р 1323565.1.030—2020

Окончание таблицы 2
Название расширения Тип расширения Сообщение, в котором оно может пересылаться

psk_key_exchange_modes 0x002D СН

post_handshake_auth 0x0031 СН

signature_algorithms_cert 0x0032 СН, CR

key_share 0x0033 СН, SH, HRR

Примечания
1 В таблице 2 используются следующие обозначения для типов сообщения: СН — ClientHello, SH — 

ServerHello, ЕЕ — EncryptedExtensions, CR — CertificateRequest, HRR — HelloRetryRequest.
2 В настоящих рекомендациях не рассматриваются следующие расширения, указанные в [1]: тах_ 

fragment_length(0x0001), status_request(0x0005), use_srtp(0x000E), heartbeat(OxOOOF), application_layer_protocol_ 
negotiation(0x0010), signed_certificate_timestamp(0x0012), client_certificate_type(0x0013), server_certificate_ 
type(0x0014), padding(0x0015), certificate_authorities(0x002F), oid_filters(0x0030). Настоящие рекомендации не 
запрещают использовать данные расширения, однако их описание, исследование функционала, предоставляе­
мого данными расширениями, а также анализ стойкости протокола в случае использования данных расширений 
должны проводиться отдельно.

3 В настоящих рекомендациях расширение early_data, описанное в [1], запрещено к использованию, так как 
в версии протокола TLS 1.3, соответствующей настоящим рекомендациям, пересылка 0-RTT данных запрещена.

Все реализации должны поддерживать следующие расширения при предоставлении соответству­
ющего функционала:

- расширение supported_versions при согласовании версии протокола TLS 1.3 (см. 5.6.1);
- расширение signature_algorithms при установлении соединения в рамках использования ecdhe_ 

ke схемы аутентифицированной выработки общего ключевого материала для указания поддерживае­
мых алгоритмов формирования и проверки подписи (см. 5.6.2);

- расширение supported_groups при установлении соединения в рамках использования ecdhe_ke 
или psk_ecdhe_ke схемы аутентифицированной выработки общего ключевого материала для указания 
информации о поддерживаемых эллиптических кривых (см. 5.6.3);

- расширение key_share при установлении соединения в рамках использования ecdhe_ke или 
psk_ecdhe_ke схемы аутентифицированной выработки общего ключевого материала для указания дан­
ных, используемых при выработке общего секретного значения ECDHE (см. 5.6.4);

- расширения pre_shared_key и psk_key_exchange_modes при установлении соединения в рамках 
использования psk_ke или psk_ecdhe_ke схемы аутентифицированной выработки общего ключевого 
материала для указания данных, используемых при согласовании общего секретного значения PSK 
(см. 5.6.5 и 5.6.6);

- расширение post_handshake_auth для поддержки механизма post-handshake аутентификации 
(см. 5.6.7).

Клиенту рекомендуется поддерживать обработку расширения cookie (см. 5.6.8). Клиенту и серве­
ру рекомендуется поддерживать расширения signature_algorithms_cert и server_name (см. 5.6.2 и 5.6.9).

В большинстве случаев расширения реализованы в формате запрос/ответ, однако в некоторых 
ситуациях они могут не предполагать ответного расширения. Клиент может послать расширения в ка­
честве запроса в сообщении ClientHello, сервер может послать расширения в качестве ответа в со­
общениях HelloRetryRequest, ServerHello, EncryptedExtensions и Certificate. Сервер посылает набор 
расширений в качестве запроса в сообщениях HelloRetryRequest (для отправки расширения cookie) и 
CertificateRequest, на которые клиент может ответить с помощью расширений сообщений ClientHello и 
Certificate соответственно.

Сторона взаимодействия не должна посылать расширения в качестве ответа, если другая сто­
рона не присылала соответствующего расширения в качестве запроса. При получении расширения в 
качестве ответа на расширение, которое не было послано, сторона взаимодействия должна завершить 
работу протокола Handshake с оповещением unsupported_extension(CM. 7.2).

Если расширение пересылается в сообщении, отличном от определенных в соответствии с та­
блицей 2 сообщений, сторона взаимодействия, получающая данное расширение, должна завершить 
работу протокола Handshake с оповещением illegal_parameter(CM. 7.2).

21



Р 1323565.1.030—2020

В случае присутствия в одном сообщении нескольких различных расширений данные расширения 
могут быть переданы в произвольном порядке, за исключением расширения pre_shared_key, которое 
должно быть последним в списке расширений сообщения ClientHello. При этом указанное расширение 
может появиться в любом месте списка расширений сообщения ServerHello (см. 5.6.5).

5.6.1 Расширение supported_versions
Расширение supported_versions используется для согласования версии протокола TLS, является 

обязательным в рамках использования любой из схем аутентифицированной выработки общего ключе­
вого материала и посылается клиентом или сервером в следующих случаях:

- клиентом в сообщении ClientHello и содержит список поддерживаемых версий протокола TLS, 
расположенных в порядке убывания предпочтения. Если клиент поддерживает версию TLS 1.3, расши­
рение supported_versions должно содержать как минимум значение 0x0304. Если поддерживаются пре­
дыдущие версии протокола TLS, то они также должны быть указаны в списке поддерживаемых версий;

- сервером в сообщении ServerHello и HelloRetryRequest и содержит информацию о выбранной 
версии протокола TLS.

Поле extension_data расширения supported_versions задается структурой SupportedVersions, опре­
деляемой следующим образом:

struct {
select (Handshake.msg_type) { 

case client_hello:
ProtocolVersion versions<2..254>; 

case server_hello:
ProtocolVersion selected_version;

};
} SupportedVersions;

где:
- поле versions, указываемое клиентом в структуре SupportedVersions, содержит список поддер­

живаемых версий протокола TLS, расположенных в порядке убывания предпочтения;
- поле selected_version, указываемое сервером в структуре SupportedVersions, содержит значе­

ние версии, выбранной сервером из списка versions структуры SupportedVersions.
Если расширение supported_versions отсутствует в полученном сообщении ClientHello, TLS 1.3 

сервер, работающий в режиме совместимости и поддерживающий более ранние версии протокола 
TLS, должен согласовать версию протокола TLS способом, соответствующим данной версии протокола 
(например, версию TLS 1.2 в соответствии с Р 1323565.1.020), даже если значение поля ClientHello. 
legacy_version больше либо равно 0x0304.

Если расширение supported_versions было указано в сообщении ClientHello, сервер не должен ис­
пользовать значение поля ClientHello.legacy_version для установления версии протокола TLS и должен 
использовать только информацию, указанную в расширении supported_versions.

Сервер должен выбрать только одну версию протокола TLS из тех, что присутствуют в расшире­
нии supported_versions структуры ClientHello, а также игнорировать любые (присутствующие в струк­
туре ClientHello) нераспознанные версии. Сервер должен быть готов получать сообщения ClientHello, 
содержащие расширение supported_versions, но не содержащие значение 0x0304 в списке поддержи­
ваемых версий.

Сервер, согласовывающий протокол TLS версии ниже 1.3, должен выбрать и зафиксировать зна­
чение поля ServerHello.legacy_version и не должен указывать расширение supported_versions в струк­
туре ServerHello. Сервер, согласовывающий протокол TLS версии 1.3, должен указать расширение 
supported_versions, содержащее выбранное значение версии протокола TLS (то есть 0x0304). При этом 
сервер должен установить значение поля ServerHello.legacy_version равным 0x0303 (соответствующим 
значению TLS 1.2). Клиент должен проверить это расширение перед обработкой последующих данных 
сообщения ServerHello. Если расширение присутствует, клиент должен игнорировать значение поля 
ServerHello.legacy_version и должен использовать только расширение supported_versions, чтобы опре­
делить выбранную сервером версию. Если расширение supported_versions в сообщении ServerHello 
содержит версию протокола TLS, которая не была предложена клиентом, или версию протокола ниже

22



Р 1323565.1.030—2020

протокола TLS 1.3, клиент должен завершить работу протокола Handshake с оповещением illegal_ 
parameter (см. 7.2).

5.6.2 Расширения signature_algorithms и signature_algorithms_cert
Для указания поддерживаемых алгоритмов проверки подписи (и, соответственно, алгоритмов, ко­

торые противоположная сторона может использовать для ее формирования) клиент и сервер исполь­
зуют следующие расширения:

- расширение signature_algorithms, содержащее список алгоритмов, которые могут быть исполь­
зованы для формирования подписи в сообщении CertificateVerify. Данное расширение является обя­
зательным в рамках использования ecdhe_ke схемы аутентифицированной выработки общего ключе­
вого материала и должно быть указано клиентом в сообщении ClientHello и сервером в сообщении 
CertificateRequest (в случае двусторонней аутентификации). Если аутентификация сервера осущест­
вляется с помощью подписи (в рамках ecdhe_ke схемы), но клиент не указал расширение signature_ 
algorithms, сервер должен завершить работу протокола Handshake с оповещением missing_extension 
(см. 7.2). Если сообщение CertificateRequest не содержит расширение signature_algorithms, клиент дол­
жен завершить работу протокола Handshake с оповещением missing_extension (см. 7.2);

- расширение signature_algorithms_cert, содержащее список алгоритмов подписи, которые могут 
быть использованы для формирования подписей сертификатов из цепочки сертификатов соответству­
ющей стороны. Данное расширение является опциональным и посылается в рамках использования 
ecdhe_ke схемы аутентифицированной выработки общего ключевого материала и может быть указано 
клиентом в сообщении ClientHello и сервером в сообщении CertificateRequest (в случае двусторонней 
аутентификации). Если данное расширение не указывается стороной взаимодействия, считается, что 
допустимые для подписи сертификатов алгоритмы задаются расширением signature_algorithms.

Открытые ключи, присутствующие в сертификатах сообщения Certificate, должны соответствовать 
согласованным в рамках обмена расширениями signature_algorithms и signature_algorithms_cert алго­
ритмам подписи.

Поле extension_data в расширениях signature_algorithms_cert и signature_algorithms задается 
структурой SignatureSchemeList, определяемой следующим образом:

struct {
SignatureScheme supported_signature_algorithms<2..2A16-2>;

} SignatureSchemeList;

где поле supported_signature_algorithms содержит список схем подписи, каждая из которых задает алго­
ритм подписи и используемую эллиптическую кривую. Значения элементов списка supported_signature_ 
algorithms, допустимые к использованию в рамках данного документа, задаются в 10.2.

Элементы поля supported_signature_algorithms указываются в порядке убывания предпочтения.

Примечание  — Значение подписи под корневым сертификатом обычно не проверяется при проверке 
цепочки сертификатов, указанной в сообщении Certificate. Поэтому алгоритм подписи, с помощью которого под­
писан этот сертификат, может не удовлетворять значениям, указанным в расширениях signature_algorithms и 
signature_algorithms_cert.

5.6.3 Расширение supported groups
Расширение supported_groups используется для передачи информации о поддерживаемых сторо­

нами взаимодействия эллиптических кривых и посылается клиентом или сервером в следующих слу­
чаях:

- клиентом в сообщении ClientHello и содержит необходимую для выработки общего энтропийно­
го значения ECDHE информацию о кривых, поддерживаемых клиентом. Данное расширение является 
обязательным в рамках использования ecdhe_ke и psk_ecdhe_ke схем аутентифицированной выработ­
ки общего ключевого материала;

- сервером в сообщении EncryptedExtensions и содержит информацию о кривых, поддерживае­
мых сервером, не влияющую на выработку общего энтропийного значения ECDHE в текущем соедине­
нии и предназначенную для информирования клиента. Данное расширение является опциональным и 
посылается в рамках использования ecdhe_ke и psk_ecdhe_ke схем аутентифицированной выработки 
общего ключевого материала.

Поле extension_data расширения supported_groups задается структурой NamedGroupList, опреде­
ляемой следующим образом:

23



Р 1323565.1.030—2020

struct {
NamedGroup named_group_list<2..2A16-1 >;

} NamedGroupList;

где поле named_group_list содержит список кривых, поддерживаемых стороной взаимодействия, в по­
рядке убывания предпочтения. Значения элементов списка named_group_list, допустимые к использо­
ванию в рамках данного документа, задаются в 10.3.

Если у сервера есть кривая, которая является предпочтительнее кривых, указанных клиентом в 
расширении key_share, и при этом сервер желает принять сообщение ClientHello, ему следует послать 
расширение supported_groups, чтобы предоставить клиенту информацию о своих предпочтениях отно­
сительно кривых. В этом расширении серверу рекомендуется указать все поддерживаемые им кривые, 
вне зависимости от того, поддерживаются ли они клиентом. Клиент не должен реагировать на инфор­
мацию, полученную от сервера в расширении supported_groups, до момента успешного выполнения 
протокола Handshake, но может использовать полученную информацию для того, чтобы изменить спи­
сок кривых, используемых им, в расширении key_share в последующих соединениях.

В случае получения от клиента расширения supported_groups, не содержащего поддерживае­
мые сервером кривые, сервер должен завершить работу протокола Handshake либо с оповещением 
handshake_failure, либо с оповещением insufficient_security (см. 7.2).

5.6.4 Расширение key_share
Расширение key_share отвечает за выработку общего энтропийного значения ECDHE, является 

обязательным в рамках использования ecdhe_ke и psk_ecdhe_ke схем аутентифицированной выработ­
ки общего ключевого материала и посылается клиентом или сервером в следующих случаях:

- клиентом в сообщении ClientHello (см. подробнее 5.6.4.1) и содержит информацию об открытых 
эфемерных ключах Q1C, ... , QNC, N>  1, предлагаемых клиентом;

- сервером в сообщении HelloRetryRequest (см. подробнее 5.6.4.2) и содержит идентификатор 
кривой, выбранной сервером из списка named_group_list сообщения ClientHello (см. 5.6.3);

- сервером в сообщении ServerHello (см. подробнее 5.6.4.3) и содержит информацию об открытом 
эфемерном ключе Qs, принадлежащем кривой, которой соответствует открытый эфемерный ключ кли­
ента Qc из списка client_shares.

При этом информация о каждом открытом эфемерном ключе задается структурой KeyShareEntry 
следующим образом:

struct {
NamedGroup group;
opaque key_exchange<1 ,.2Л16-1>;

} KeyShareEntry;

где group— поле длиной в 2 байта, в котором указывается идентификатор кривой; 
key_exchange— открытый эфемерный ключ, принадлежащий кривой, идентификатор которой указан 

в поле group. Значение данного поля определяется в соответствии с 8.5 и представ­
ляется в формате, указанном в 5.6.4.4.

5.6.4.1 Расширение key_share в сообщении ClientHello
В сообщении ClientHello поле extension_data расширения key_share задается структурой 

KeyShareClientHello, определяемой следующим образом:

struct {
KeyShareEntry client_shares<0..2A16-1>;

} KeyShareClientHello;

где поле client_shares содержит список предлагаемых клиентом структур KeyShareEntry, перечисленных 
в порядке убывания предпочтения. Данный список может быть пустым (таким образом, клиент может 
запросить от сервера сообщение HelloRetryRequest, чтобы вычислять значение открытого эфемерного 
24



Р 1323565.1.030—2020

ключа только для кривой, поддерживаемой сервером). Каждый элемент поля client_shares должен со­
ответствовать кривой, указанной в поле named_group_list расширения supported_groups. Порядок эле­
ментов поля client_shares должен соответствовать порядку кривых, указанных в поле named_group_list 
расширения supported_groups. При этом в поле client_shares могут отсутствовать элементы, соответ­
ствующие некоторым (в том числе наиболее предпочтительным для сервера) кривым, указанным в 
поле named_group_list.

Примечание — Подобная ситуация может возникнуть, если наиболее предпочтительные группы являют­
ся новыми и вероятно не будут поддерживаться в достаточном числе реализаций.

Количество элементов поля client_shares не должно превышать количество кривых, указанных 
в поле named_group_list расширения supported_groups. При этом каждой кривой соответствует только 
один элемент поля client_shares, и клиент не должен предлагать большее количество структур для 
одной и той же группы. Значения полей key_exchange каждой структуры KeyShareEntry должны быть 
сформированы независимым образом. Клиент не должен предлагать элементы поля client_shares для 
кривых, не указанных в поле named_group_list расширения supported_groups. В случае нарушений ука­
занных выше правил серверу рекомендуется завершить работу протокола Handshake с оповещением 
illegal_parameter (см. 7.2).

5.6.4.2 Расширение key_share в сообщении HelloRetryRequest
В сообщении HelloRetryRequest поле extension_data расширения key_share задается структурой 

KeyShareHelloRetryRequest, определяемой следующим образом:

struct {
NamedGroup selected_group;

} KeyShareHelloRetryRequest;

где поле selected_group содержит кривую, поддерживаемую обеими сторонами, которую сервер пред­
почитает согласовать.

Если сервер указал расширение key_share в сообщении HelloRetryRequest, клиент должен про­
верить, что:

- поле selected_group соответствует одной из кривых, указанных в поле named_group_list расши­
рения supported_groups сообщения ClientHellol;

- поле selected_group не соответствует никакой кривой, указанной в расширении key_share со­
общения ClientHellol.

Если не выполняется любое из перечисленных условий, клиент должен завершить работу про­
токола Handshake с оповещением illegal_parameter (см. 7.2). В противном случае при отправлении 
сообщения ClientHello2 клиент должен заменить список в поле client_shares расширения key_share 
на единственный элемент, в котором в поле group указана кривая, соответствующая кривой из поля 
selected_group сообщения HelloRetryRequest, а в поле key_exchange содержится открытый эфемерный 
ключ, принадлежащий кривой, указанной в поле group.

5.6.4.3 Расширение key_share в сообщении ServerHello
В сообщении ServerHellonone extension_data расширения key_share задается структурой 

KeyShareServerHello, определяемой следующим образом:

struct {
KeyShareEntry server_share;

} KeyShareServerHello;

где поле server_share имеет структуру KeyShareEntry, в которой поле group должно соответствовать не­
которой кривой, для которой указан элемент в поле client_shares.

В рамках ecdhe_ke и psk_ecdhe_ke схем аутентифицированной выработки общего ключевого ма­
териала сервер указывает ровно одну структуру KeyShareEntry в сообщении ServerHello. Сервер не 
должен посылать структуру KeyShareEntry для кривой, не указанной клиентом в расширении supported_ 
groups. Сервер не должен посылать расширение key_share в рамках psk_ke схемы аутентифициро-

25



Р 1323565.1.030—2020

ванной выработки общего ключевого материала. В случае если клиентом было получено сообщение 
HelloRetryRequest с расширением key_share, при получении сообщения ServerHello клиент должен убе­
диться, что идентификатор кривой, указанный в сообщении ServerHello, совпадает с идентификатором 
кривой, указанным в сообщении HelloRetryRequest. Если указанное условие не выполняется, клиент 
должен завершить работу протокола Handshake с оповещением illegal_parameter (см. 7.2).

5.6.4.4 Представление открытых эфемерных ключей
Каждый открытый эфемерный ключ Q, записываемый в поле key_exchange структуры 

KeyShareEntry, задается следующим образом:

struct {
opaque X[coordinateJength]; 
opaque Y[coordinate_length];

} PlainPointRepresentation;

где:
- поля Х и  У содержат байтовые представления координат х и уточки Q(Q = (х, у)) в формате little- 

endian, сформированные следующим образом:

*  = strcoordinate lengthW -
_ (1)

^  -  coordinateJength^} ’

- значение параметра coordinatejength определяется в соответствии с таблицей 17.

Примечание — В соответствии с [1 ] допускается использование других форматов представления откры­
того эфемерного ключа, однако при работе протокола в соответствии с настоящими рекомендациями данный функци­
онал запрещен.

5.6.5 Расширение pre_shared_key
Расширение pre_shared_key отвечает за согласование общего энтропийного значения PSK, яв­

ляется обязательным в рамках использования psk_ke или psk_ecdhe_ke схемы аутентифицированной 
выработки общего ключевого материала и посылается клиентом или сервером в следующих случаях:

- клиентом в сообщении ClientHello и содержит список данных, соответствующих предлагаемым 
PSK-значениям, и последовательность связанных с ними binder-значений (см. 5.6.5.3);

- сервером в сообщении ServerHello и содержит индекс элемента, выбранного сервером из полу­
ченного от клиента списка данных, соответствующих PSK-значениям.

Поле extension_data расширения pre_shared_key содержит элемент PreSharedKeyExtension, за­
дающийся следующей структурой:

struct {
select (Handshake.msg_type) {

case client_hello: OfferedPsks;
case server_hello: uint16 selectedjdentity;

};
} PreSharedKeyExtension;

где структура OfferedPsks и индекс selectedjdentity определены в 5.6.5.1 и 5.6.5.2 соответственно.
5.6.5.1 Структура OfferedPsks
Структура OfferedPsks задается следующим образом:

opaque PskBinderEntry<32..255>;
struct {

Pskldentity identities<7..2A16-1 >;
PskBinderEntrybinders<33..2A16-1>;

} OfferedPsks;

26



Р 1323565.1.030—2020

где identities — список данных, соответствующих значениям PSK, предлагаемым клиентом для согла­
сования общего энтропийного значения;

binders — последовательность binder-значений, соответствующих каждой структуре Pskldentity 
из списка identities и указанных в том же порядке. Процесс вычисления binder-значений 
описан в 5.6.5.3.

Структура Pskldentity, содержащая данные, соответствующие значению PSK, задается следую­
щим образом:

struct {
opaque identity<1..2A16-1>; 
uint32 obfuscated_ticket_age;

} Pskldentity;

где identity — идентификатор (тикет) значения PSK. Для значения iPSK данное поле
принимает значение поля NewSessionTicket.ticket (см. 5.9.1.1). Настоящие 
рекомендации не фиксируют механизм формирования тикета для значения 
ePSK (см. 5.2);

obfuscated_ticket_age — маскированное время жизни тикета.
Для каждого значения iPSK значение данного поля равно времени жизни 
(clients_ticket_age) тикета на стороне клиента, сложенному по модулю 232 
со значением поля NewSessionTicket.ticket_age_add. При этом время жизни 
тикета на стороне клиента исчисляется в миллисекундах, прошедших с мо­
мента получения соответствующего сообщения NewSessionTicket со стороны 
сервера.
Клиент не должен использовать значение iPSK, время жизни тикета которо­
го превышает указанное в поле NewSessionTicket.ticketJifetime время жизни 
тикета, ассоциированного сданным значением iPSK.
Для каждого значения ePSK значение данного поля рекомендуется устанав­
ливать равным 0, при этом серверы должны игнорировать данное значение.

5.6.5.2 Значение selectedjdentity
Значение selectedjdentity, указываемое сервером в структуре PreSharedKeyExtension, определя­

ется как индекс элемента, выбранного сервером из списка identities структуры OfferedPsks. При этом 
индексация элементов в указанном списке начинается с нуля.

С каждым тикетом, соответствующим значению PSK, однозначно ассоциируется алгоритм хэши­
рования HASH (см. подробнее 5.9.1.1). При этом алгоритм хэширования для значения iPSK должен 
соответствовать алгоритму, который использовался в инициализирующем соединении. Сервер должен 
убедиться в том, что он выбирает криптонабор и тикет, соответствующие одинаковому алгоритму хэши­
рования.

В рамках работы iPSK-only и iPSK-ECDHE режимов наиболее простым способом реализации со­
ответствия значения тикета криптонабору является согласование криптонабора и затем исключение 
несовместимых с ним тикетов. Любые нераспознанные значения тикетов (то есть те, которые не были 
найдены в базе данных тикетов или были зашифрованы на нераспознанном ключе) должны быть про­
игнорированы. В случае если сервер не обнаружил ни одного тикета, соответствующего выбранному 
им криптонабору, он должен по возможности продолжить работу протокола Handshake в ECDHE-only 
режиме, в противном случае сервер должен завершить работу протокола Handshake с оповещением 
unknown_pskJdentity.

Прежде чем подтвердить выбор тикета (и соответствующего ему значения PSK), сервер должен 
выполнить следующие проверки:

- необходимо проверить, что binder-значение (см. 5.6.5.3), соответствующее данному значению 
PSK,сформировано корректно. Если данное значение отсутствует или сформировано некорректно, 
сервер должен завершить работу протокола Handshake с оповещением decrypt_error (см. 7.2). Сервер 
не должен проверять все binder-значения, вместо этого он должен выбрать только один тикет (PSK) 
и проверить binder-значение, соответствующее выбранному PSK. В качестве подтверждения выбора 
тикета сервер указывает значение selectedjdentity в расширении pre_shared_key;

27



Р 1323565.1.030—2020

- в случае если выбранное значение selected_identity соответствует значению iPSK, необходимо 
убедиться, что время жизни данного тикета на стороне сервера не превышает максимально допусти­
мого значения (см. 5.9.1);

- в случае если выбранное значение selectedjdentity соответствует значению iPSK, сервер дол­
жен извлечь из полученного от клиента значения obfuscated_ticket_age значение времени жизни тике­
та на стороне клиента clients_ticket_age, используя значение ticket_age_add (данное значение должно 
быть известно серверу, см. подробнее 5.9.1), и сравнить его с ожидаемым значением expected_ticket_ 
age, полученным путем вычитания времени создания тикета creation_time (значение которого должно 
быть известно серверу, см. подробнее 5.9.1) из текущего времени: разница между значениями clients_ 
ticket_age и expected_ticket_age не должна превышать допустимой задержки в канале связи, установ­
ленной политикой безопасности сервера.

Если хотя бы одна из указанных выше проверок не прошла успешно, сервер должен завершить 
работу протокола Handshake с оповещением handshake_failure (см. 7.2).

Получив расширение pre_shared_key от сервера, клиент должен проверить, что:
- выбранное сервером значение selectedjdentity находится в пределах длины списка identities 

структуры OfferedPsks, предоставленной клиентом;
- сервер выбрал криптонабор, включающий алгоритм хэширования, который ассоциируется со 

значением тикета, соответствующим значению selectedjdentity;
- в рамках psk_ecdhe_ke схемы аутентифицированной выработки общего ключевого материала в 

сообщении ServerHello указано расширение key_share.
Если не выполняется хотя бы одно из указанных выше требований, клиент должен завершить 

работу протокола Handshake с оповещением illegal_parameter (см. 7.2).
Расширение pre_shared_key должно быть указано последним в списке extensions сообщения 

ClientHello. Сервер должен убедиться, что данное расширение указано последним, и в противном слу­
чае завершить работу протокола Handshake с оповещением illegal_parameter (см. 7.2).

5.6.5.3 Binder-значение
Binder-значение содержит контрольные данные, сформированные с помощью функции НМАС 

и предназначенные для проверки корректности значения PSK, соответствующего данному binder- 
значению, на стороне сервера. Binder-значение, соответствующее iPSK, связывает инициализирующее 
соединение с текущим соединением.

Список всех binder-значений, предлагаемых клиентом, указывается в поле binders расширения 
pre_shared_key. Каждое binder-значение имеет тип PskBinderEntry, описанный в 5.6.5.1, и вычисляется 
следующим образом:

binder = HMAC(HMAC_binder_key, Transcript-Hash (Messages))

HMAC_binder_key = HKDF-Expand-Label (BS, "finished", HLen),

где BS (binder_secref) — секретное значение, определенное в 8.2;
HKDF-Expand-Label— функция, определенная в 8.1.3;

Transcript-Hash — хэш-функция, определенная в 8.8;
Messages — упорядоченное множество строк, являющихся входными параметрами хэш- 

функции Transcript-Hash, задающееся следующим образом.

Если сервером не было послано сообщение HelloRetryRequest, то:

Messages = {Truncate(ClientHello)}. (3)

Если сервером было послано сообщение HelloRetryRequest, то:

Messages = {ClientHello 1, HelloRetryRequest, Truncate (ClientHello2)}. (4)

Здесь Truncate(ClientHello — строка, соответствующая сообщению ClientHello, в котором удалено 
поле binders структуры OfferedPsks расширения pre_shared_key. При этом длины сообщения ClientHello, 
поля extensions и расширения pre_shared_key не изменяются (остаются такими же, как если бы поле 
binders не исключалось).
28



Р 1323565.1.030—2020

Примечание — Поле binders удаляется из сообщения ClientHello для того, чтобы binder-значение, со­
ответствующее одному значению PSK из списка, предложенного клиентом, не зависело от остальных binder- 
значений, соответствующих значениям PSK из данного списка.

5.6.6 Расширение psk_key_exchange_modes
Расширение psk_key_exchange_modes отвечает за согласование режима использования значения 

PSK, является обязательным в рамках использования psk_ke и psk_ecdhe_ke схем аутентифицирован­
ной выработки общего ключевого материала и посылается только клиентом в сообщении ClientHello.

Данное расширение содержит информацию о режимах использования PSK-значений, которые 
клиент готов поддержать. Если клиент указывает расширение pre_shared_key без указания расширения 
psk_key_exchange_modes, сервер должен завершить выполнение протокола Handshake с оповещени­
ем missing_extension (см. 7.2). Данное расширение также налагает требования по использованию PSK- 
значений, соответствующих тикетам (см. 5.9.1), посланным в сообщениях NewSessionTicket в рамках 
текущего соединения: значения iPSK, соответствующие данным тикетам, не должны использоваться в 
последующих соединениях в рамках режимов, не поддерживаемых в текущем соединении.

Сервер не должен выбирать режим работы, неуказанный в расширении psk_key_exchange_modes.
Поле extension_data расширения psk_key_exchange_modes задается структурой 

PskKeyExchangeModes, определяемой следующим образом:

enum {
psk_ke(0x00),
psk_dhe_ke(0x01),
(OxFF)

} PskKeyExchangeMode;
struct {

PskKeyExchangeMode ke_modes<1 ,.255>;
} PskKeyExchangeModes;

где поле ke_modes содержит список следующих значений, предлагаемых клиентом:
- значение psk_ke(0x00), соответствующее режиму использования предлагаемых PSK-значений в 

рамках psk_ke схемы аутентифицированной выработки общего ключа;
- значение psk_dhe_ke(0x01), соответствующее режиму использования предлагаемых PSK- 

значений в рамках psk_ecdhe_ke схемы аутентифицированной выработки общего ключа.

5.6.7 Расширение post_handshake_auth
Расширение post_handshake_auth используется для указания того, что клиент поддерживает воз­

можность проведения post-handshake аутентификации (см. подробнее 5.9.2), является опциональным 
в рамках использования любой из схем аутентифицированной выработки общего ключевого материала 
и посылается только клиентом в сообщении ClientHello.

Если клиент поддерживает процедуру post-handshake аутентификации, он должен указать рас­
ширение post_handshake_auth в сообщении ClientHello. При получении данного расширения от кли­
ента сервер может отправить запрос на аутентификацию клиента путем пересылки сообщения 
CertificateRequest (см. 5.7.2) в любой момент времени после получения main-handshake сообщения 
Finished со стороны клиента.

Если данное расширение не было указано в сообщении ClientHello, то сервер не должен запраши­
вать аутентификацию клиента с помощью post-handshake сообщения CertificateRequest, в противном 
случае клиент должен ответить оповещением об ошибке unexpected_message (см. 7.2).

Поле extension_data расширения post_handshake_auth содержит пустой вектор и определяется 
следующей структурой:

struct {} PostHandshakeAuth;

5.6.8 Расширение cookie
Расширение cookie используется для передачи сервером некоторых данных для хранения на сто­

роне клиента. Данное расширение является опциональным в рамках использования любой из схем 
аутентифицированной выработки общего ключевого материала и может быть послано клиентом и сер­
вером в следующих случаях:

29



Р 1323565.1.030—2020

- сервером в сообщении HelloRetryRequest, что является исключением из правила, согласно кото­
рому сервер может отправлять только те расширения, которые присутствуют в сообщении ClientHello;

Примечание — Данное расширение может содержать хэш значение, сформированное от сообщения 
ClientHellol, что позволит серверу не хранить сообщение ClientHellol (см. 8.8) и отличать сообщения ClientHellol
и ClientHello2.

- клиентом в сообщении ClientHello2 в качестве ответа на сообщение HelloRetryRequest, содер­
жащее данное расширение.

Поле extension_data расширения cookie задается структурой Cookie, определяемой следующим
образом:

struct {
opaque cookied ,.2Л16-1>;

} Cookie;

Настоящие рекомендации не фиксируют механизм формирования содержимого данного расши­
рения на стороне сервера. В случае использования данного расширения его описание, исследование 
функционала, предоставляемого данным расширением, а также анализ стойкости протокола должны 
проводиться отдельно.

В целях совместимости различных реализаций клиентам рекомендуется всегда поддерживать об­
работку данного расширения посредством пересылки содержимого расширения cookie, полученного 
в сообщении HelloRetryRequest, в ответном сообщении ClientHello2 без каких-либо дополнительных 
изменений.

Клиенты не должны указывать расширение cookie в сообщениях ClientHello, посылаемых не в от­
вет на сообщение HelloRetryRequest.

5.6.9 Расширение server_name
В случае если на сервере с некоторым IP адресом размещается несколько хостов со своим уни­

кальным именем и сертификатом (не обязательно уникальным), предоставляющих некоторый сервис, 
будем называть данные хосты виртуальными серверами с одним IP адресом.

Расширение server_name используется для выбора виртуального сервера, с которым клиент уста­
навливает соединение, является опциональным в рамках использования любой из схем аутентифици­
рованной выработки общего ключевого материала и посылается клиентом или сервером в следующих 
случаях:

- клиентом в сообщении ClientHello для указания имени виртуального сервера, с которым клиент 
устанавливает соединение. Данный механизм предоставляет возможность различным виртуальным 
серверам на одном IP-адресе использовать различные сертификаты;

- сервером в сообщении Encrypted Extensions для информирования о том, что запрос клиента по 
выбору соответствующего сервиса был учтен.

Поле extension_data расширения server_name формируется следующим образом:
- в случае, если данное расширение посылается сервером, поле должно содержать пустой век­

тор;
- в случае, если данное расширение посылается клиентом, поле должно содержать структуру 

ServerNameList, определяемую следующим образом:

struct {
ServerName server_name_list<1..2A16-1>

} ServerNameList;

struct {
NameType name_type;
select (name_type) {

case host_name: HostName;
} name;

} ServerName;

30



Р 1323565.1.030—2020

enum {
host_name(0), (255)

} NameType;
opaqueHostName<1..2A16-1>;

Примечание  — В соответствии с [1 ] допускается возможность использования других типов имен, отлич­
ных от указанных в перечислении NameType. Настоящие рекомендации не запрещают использовать данные типы, 
однако их описание, исследование функционала, а также анализ стойкости протокола в случае использования 
данных типов имен должны проводиться отдельно.

Поле server_name_list не должно содержать более одного имени, соответствующего типу 
NameType. В случае если сервер не может распознать имя, указанное клиентом в данном расширении, 
он может либо завершить работу протокола Handshake с оповещением unrecognized_name (см. 7.2), 
либо продолжить работу протокола Handshake.

Поле HostName содержит полное доменное имя виртуального сервера, представляющее собой 
байтовую строку в кодировке ASCII без точки в конце своей записи. Указанное представление позволя­
ет поддерживать использование многоязычных доменных имен. Поле HostName не должно содержать 
IPv4 или IPv6 адрес в качестве своего значения.

Если клиент возобновляет соединение на основе значения iPSK, которое было выработано в со­
ответствии с 8.6 в результате цепочки соединений, где первоначальное соединение устанавливалось 
в рамках ecdhe_ke схемы аутентифицированной выработки общего ключевого материала, и отправ­
ляет расширение server_name, то он должен указать в данном расширении значение, являющееся 
действительным для сертификата виртуального сервера, отправленного в рамках первоначального 
соединения. При этом клиенту рекомендуется указывать то же значение, которое было указано им в 
расширении server_name в рамках первоначального соединения для выбора виртуального сервера. 
Данная рекомендация предназначена для оптимизации производительности, поскольку часто различ­
ные виртуальные серверы, использующие один и тот же сертификат, могут не поддерживать механизм 
возобновления соединения на основе значения PSK, выработанного в рамках соединения с другим 
виртуальным сервером.

5.7 Параметры сервера

5.7.1 Сообщение EncryptedExtensions
Данное сообщение является обязательным, отправляется сервером сразу после сообщения 

ServerHello во всех режимах работы протокола Handshake и является первым сообщением, передаю­
щимся в защищенном виде с помощью ключей, выработанных на основе секретного значения [sender]_ 
handshake_traffic_secret (см. 8.2). Данное сообщение не посылается клиентом.

Сообщение EncryptedExtensions содержит список расширений extensions, содержащих информа­
цию, не влияющую на выработку общего ключевого материала и не ассоциированную с данными о 
конкретных сертификатах. Список всех расширений, которые могут посылаться в рамках сообщения 
EncryptedExtensions, указан в таблице 2.

Клиент должен проверить наличие запрещенных расширений в сообщении EncryptedExtensions 
и, в случае если они есть, завершить работу протокола Handshake с оповещением illegal_parameter 
(см. 7.2).

Структура EncryptedExtensions сообщения EncryptedExtensions задается следующим образом:

struct {
Extension extensions<0..2A16-1>;

} EncryptedExtensions;

5.7.2 Сообщение CertificateRequest
Данное сообщение является опциональным и посылается сервером в случае необходимости за­

проса на аутентификацию клиента на основе сертификатов и подписи.
Сервер может отправить сообщение CertificateRequest в одном из следующих случаев:
- во время работы протокола Handshake в рамках ecdhe_ke схемы аутентифицированной выра­

ботки общего ключевого материала при обмене main-handshake сообщениями, причем данное сообще­
ние должно следовать за сообщением EncryptedExtensions;

31



Р 1323565.1.030—2020

- в рамках post-handshake аутентификации при условии, что ранее клиент отправлял расширение 
post_handshake_auth в сообщении ClientHello (см. 5.9.2).

В случае если режим работы протокола Handshake подразумевает использование предварительно 
распределенного секрета (в рамках psk_ke или psk_ecdhe_ke схемы аутентифицированной выработки 
общего ключевого материала), сообщение CertificateRequest не должно посылаться сервером в рамках 
обмена main-handshake сообщениями. Клиент, получивший сообщение CertificateRequest в указанном 
случае, должен завершить работу протокола Handshake с оповещением unexpected_message (см. 7.2).

Структура CertificateRequest сообщения CertificateRequest задается следующим образом:

struct {
opaque certificate_request_context<0..2A8-1>;
Extension extensions<2..2A16-1>;

} CertificateRequest;

где certificate_request_context — идентификатор сообщения CertificateRequest.
Если запрос посылается сервером при обмене main-handshake 
сообщениями, данное поле содержит вектор нулевой длины.
Если запрос посылается сервером в рамках post-handshake 
аутентификации (см. 5.9.2), данное поле должно содержать уникаль­
ное значение в рамках текущего соединения. Данное значение также 
рекомендуется выбирать непредсказуемым образом в целях противо­
действия атакам, в рамках которых противник имеет возможность по­
лучать кратковременный доступ к интерфейсу подписания произволь­
ных сообщений с помощью ключа подписи клиента; 

extensions — набор расширений, задающих параметры запрашиваемого 
сертификата. Расширение signature_algorithms, описанное в 5.6.2, яв­
ляется обязательным. Опционально может быть указано расширение 
signature_algorithms_cert. Настоящие рекомендации не запрещают 
использовать другие расширения, разрешенные для данного сообще­
ния, однако их описание, исследование функционала, предоставля­
емого данными расширениями, а также анализ стойкости протокола 
в случае использования данных расширений должны проводиться 
отдельно. Нераспознанные расширения должны игнорироваться 
клиентом.

5.8 Сообщения аутентификации

5.8.1 Сообщение Certificate
Данное сообщение может посылаться сервером или клиентом и содержит цепочку сертификатов 

отправителя.
Сервер должен отправлять сообщение Certificate только при использовании схемы ecdhe_ke ау­

тентифицированной выработки общего ключевого материала.
Клиент должен отправлять сообщение Certificate в том и только в том случае, если сервер послал 

ему сообщение CertificateRequest (см. 5.7.2).
Структура Certificate сообщения Certificate задается следующим образом:

struct {
opaque cert_data<1 ,.2Л24-1>;
Extension extensions<0..2A16-1>;

} CertificateEntry;

struct {
opaque certificate_request_context<0..2A8-1>;
CertificateEntry certificate_list<0..2A24-1 >;

} Certificate;
32



Р 1323565.1.030—2020

где certificate_request_context — идентификатор запроса сертификата. Если сообщение Certificate
посылается сервером, то данное поле должно оставаться пустым. 
Если данное сообщение посылается клиентом, то поле certificate_ 
request_context должно содержать то же значение, что и поле 
certificate_request_context сообщения CertificateRequest; 

certificatejist — цепочка сертификатов, представленная в виде последовательности 
структур CertificateEntry, каждая из которых содержит один сертифи­
кат в формате х.5091), описанном в Р 1323565.1.023, в кодировке DER 
и набор опциональных расширений. Расширения, пересылаемые в 
этом сообщении сервером, должны соответствовать расширениям, 
посланным ему клиентом в сообщении ClientHello. Расширения, по­
сылаемые в сообщении Certificate клиентом, должны соответствовать 
расширениям, которые были ранее указаны сервером в сообщении 
CerificateRequest.
Сертификат отправителя должен следовать первым в данной цепочке 
и содержать ключ проверки подписи Qverjfy, посылаемой отправите­
лем в сообщении CertificateVerify.

Сертификаты в цепочке рекомендуется располагать в таком порядке, чтобы каждый следующий 
сертификат подтверждал подлинность ключа проверки подписи предыдущего. В некоторых случаях 
корневые сертификаты могут не добавляться в пересылаемую цепочку (например, если известно, что 
сторон а-получатель обладает этим корневым сертификатом).

В сообщении Certificate, посылаемом сервером, поле certificatejist не должно быть пустым. Если 
сервер посылает сообщение Certificate с пустым полем certificatejist, клиент должен завершить работу 
протокола Handshake с оповещением decode_error (см. 7.2).

Пр и меч ан и е  — Если сервер не может сформировать цепочку сертификатов, подписанных с помощью 
алгоритмов, задающихся с помощью схем подписи, указанных клиентом в расширении signature_algorithms_cert 
(signature_algorithms) (например, вследствие того, что сертификаты в цепочке сертификатов сервера подписаны 
устаревшими алгоритмами подписи, для которых не существует идентификаторов, которые клиент может указать 
в расширении signature_algorithms_cert), он может попробовать указать цепочку сертификатов по своему усмотре­
нию. Клиент, получив сообщение Certificate, содержащее сертификат, подписанный алгоритмом, не поддерживае­
мым клиентом, должен завершить соединение с оповещением bad_certificate (см. 7.2).

Если сервер послал сообщение CertificateRequest, клиент должен послать серверу сообщение 
Certificate. Если у клиента нет сертификата, соответствующего параметрам, указанным сервером в со­
общении CertificateRequest (или если клиент решает отклонить запрос об аутентификации, см. 5.9.2), 
то клиент должен указать поле certificatejist пустым (нулевой длины).

Если клиент не может сформировать цепочку сертификатов, подписанных с помощью поддер­
живаемых сервером алгоритмов (алгоритмы задаются в соответствии с 5.6.2), и при этом решает за­
вершить работу протокола Handshake, то он должен завершить работу протокола Handshake с соответ­
ствующим оповещением (по умолчанию таким является unsupported_certificate, см. 7.2).

Если клиент указал поле certificatejist пустым в сообщении Certificate, сервер может по своему 
усмотрению либо продолжить работу протокола Handshake без аутентификации клиента, либо завер­
шить работу протокола Handshake с оповещением сеrtificate_required. Кроме того, если какой-то из 
сертификатов в цепочке сертификатов клиента оказался неподдерживаемым (например, не был издан 
доверенным удостоверяющим центром), сервер может либо продолжить работу протокола Handshake 
(считая при этом, что клиент не аутентифицировался), либо завершить работу протокола Handshake с 
оповещением bad_certificate (см. 7.2).

П р и меч ан и е  — Следует отметить, что сертификат, содержащий ключ, соответствующий одному алго­
ритму подписи, может быть подписан с помощью другого алгоритма подписи, однако все используемые алгорит-

1) В соответствии с [1] протокол TLS 1.3 допускает возможность использования сертификатов формата 
RawPublicKey, содержащих только открытый ключ, однако настоящие рекомендации не описывают данный ва­
риант использования сертификатов. При необходимости использования сертификатов в формате RawPublicKey 
описание данного формата, исследование функционала, предоставляемого данным форматом, а также анализ 
стойкости протокола в случае использования данного формата должны проводиться отдельно.

33



Р 1323565.1.030—2020

мы подписи должны соответствовать схемам подписи, которые вторая сторона указала в расширении signature_ 
algorithms_cert (или расширении signature_algorithms в случае если расширение signature_algorithms_cert не было 
указано). При этом для криптонаборов, описанных в настоящих рекомендациях (см. 10.1), могут использоваться 
только те алгоритмы подписи, которые соответствуют схемам подписи, перечисленным в 10.2.

5.8.2 Сообщение CertificateVerify
За счет пересылки данного сообщения осуществляется доказательство того, что отправитель об­

ладает ключом подписи, соответствующим ключу проверки подписи, переданному им ранее в сообще­
нии Certificate. Также с помощью данного сообщения обеспечивается целостность переданных ранее 
сообщений протокола Handshake.

Если сторона посылает сообщение CertificateVerify, то оно посылается непосредственно после 
сообщения Certificate и перед сообщением Finished.

Сервер должен отправлять сообщение CertificateVerify только при использовании схемы ecdhe_ 
ke аутентифицированной выработки общего ключевого материала. Поскольку сервер не может от­
править пустой список сертификатов в сообщении Certificate, то сервер должен посылать сообщение 
CertificateVerify всегда.

Клиент должен отправить сообщение CertificateVerify, если сервер запросил аутентификацию кли­
ента с помощью сообщения CertificateRequest и поле certificatejist, указанное клиентом в пересланном 
ранее сообщении Certificate, не являлось пустым.

Данное сообщение не должно пересылаться клиентом, в случае если он указал пустой список 
сертификатов в сообщении Certificate.

Структура CertificateVerify сообщения CertificateVerify задается следующим образом: 

struct {
Signature Scheme algorithm; 
opaque signature<0..2A16-1>;

} CertificateVerify;

где algorithm — значение схемы подписи, задающей алгоритм подписи и используемую эллиптическую 
кривую. Значения, допустимые к использованию в рамках данного документа, 
задаются в 10.2 в перечислении SignatureScheme.
Алгоритм подписи, задающийся схемой подписи, должен соответствовать алгоритму 
проверки подписи, указанному в сертификате соответствующей стороны в сообщении 
Certificate.
Если сервер отправляет сообщение CertificateVerify, значение схемы подписи долж­
но соответствовать одному из указанных значений схем подписи в списке supported_ 
signature_algorithms расширения signature_algorithms сообщения ClientHello. Исклю­
чением является случай, когда сервер не может сформировать цепочку сертификатов, 
подписанных с помощью указываемых клиентом схем подписи (см. 5.8.1).
Если клиент отправляет сообщение CertificateVerify, значение схемы подписи долж­
но соответствовать одному из указанных значений схем подписи в списке supported_ 
signature_algorithms расширения signature_algorithms сообщения CertificateRequest; 

signature — значение подписи, формируемое стороной с помощью схемы подписи, значение 
которой указано в поле algorithm.

Значение подписи sgn, указываемой стороной в поле signature, формируется следующим образом:

sgn = SIGN(c\context\0xO0\HM, d_sign), (5)

где SIGN — функция формирования подписи, задаваемая схемой подписи (см. 10.2); 
с — строка, содержащая 64 подряд идущих байта 0x20; 

context — строковая константа, принимающая следующее значение: "TLS 1.3, server CertifcateVerify" 
в случае формирования подписи на стороне сервера, "TLS 1.3, client CertifcateVerify" в 
случае формирования подписи на стороне клиента;

НМ — байтовая строка, соответствующая значению Transcript-Hash (Handshake Context, 
Certificate), где параметр Handshake Context определяется в соответствии с 8.9.

34



Р 1323565.1.030—2020

Отправитель подписывает вышеперечисленные данные с помощью ключа подписи c/S(gn, которо­
му однозначно соответствует ключ проверки подписи Qverify, указанный в сертификате отправителя в 
сообщении Certificate.

Получатель проверяет подпись, указанную в поле signature сообщения CertificateVerify, с помощью 
ключа проверки подписи Qven/y, полученного из сертификата отправителя, переданного им ранее в со­
общении Certificate. Если проверка подписи не завершилась успешно, получатель должен завершить 
работу протокола Handshake с оповещением decrypt_error(CM. 7.2).

5.8.3 Сообщение Finished
Сообщение Finished является последним сообщением, пересылаемым в рамках сообщений ау­

тентификации протокола Handshake, и посылается в следующих случаях:
- сервером или клиентом в рамках обмена main-handshake сообщениями;
- клиентом в рамках post-handshake аутентификации (см. 5.9.2).
Структура Finished сообщения Finished задается следующим образом:

struct {
opaque verify_data[Hash.length];

} Finished;

где Hash.length принимает значение HLen (см. подробнее 10.1.4), а значение поля verify_data вычисля­
ется следующим образом:

verify_data = НМ АС ([sender]_finished_key, 

Transcript-Hash(Handshake Context, Certificate*, CertificateVerify*)),

где
- параметр Handshake Context определяется в соответствии с 8.9;
- параметры Certificate*, Certificate Verify* являются строками, соответствующими байтовым пред­

ставлениям сообщений Certificate, CertificateVerify, если соответствующие сообщения были отправлены 
в рамках протокола Handshake, и пустыми строками в противном случае;

- ключ вычисления кода аутентификации [sender]_finished_key вырабатывается согласно следу­
ющей формуле:

[sender]_finished_key = HKDF-Expand-Label (Finished Secret, "finished", " ",HLen), (7)

где Finished Secret — секретное значение, задаваемое в соответствии с 8.9, HKDF-Expand-Label — 
функция, определенная в 8.1.3.

Сторона, получившая сообщение Finished, должна проверить корректность содержащихся в со­
общении данных и в случае их некорректности должна завершить работу протокола Handshake с опо­
вещением decrypt_error (см. 7.2).

После отправки сообщений Finished и проверки корректности данных, содержащихся в получен­
ном сообщении Finished, клиент и сервер могут начать обмен прикладными данными в рамках текущего 
соединения. При этом сервер может отправлять прикладные данные сразу после отправки сообщения 
Finished, не дожидаясь ответного сообщения клиента, в случае если текущее соединение соответству­
ет соединению с односторонней аутентификацией.

Все записи, отправляемые после сообщения Finished, должны быть зашифрованы с помощью 
соответствующего ключевого материала трафика, выработанного на основе секретного значения 
[sender]_application_traffic_secret_N. В частности, это относится ко всем посылаемым оповещениям.

5.9 Post-handshake сообщения

Протокол TLS 1.3 позволяет отправлять сообщения после обмена main-handshake сообщения­
ми в рамках протокола Handshake. Данные сообщения содержат набор данных, имеющих структуру 
Handshake, и зашифрованы с помощью соответствующего ключевого материала трафика, выработан­
ного на основе секретного значения [sender]_application_traffic_secret_N.

35



Р 1323565.1.030—2020

5.9.1 Сообщение NewSessionTicket
В любое время после получения первого сообщения Finished от клиента сервер может послать 

клиенту сообщение NewSessionTicket, соответствующее некоторому значению iPSK и содержащее 
данные, необходимые для выработки значения iPSK из значения RMS (resumption_master_secref) на 
стороне клиента. Для краткости информацию, передаваемую в данном сообщении в поле ticket, будем 
называть тикетом.

Пр и меч ание  — Несмотря на то, что секретное значение RMS зависит от первого сообщения Finished 
со стороны клиента, сервер, не запрашивающий аутентификацию клиента, может вычислить секретное значение 
RMS, самостоятельно сгенерировав строку Finished, соответствующую байтовому представлению первого сообще­
ния Finished со стороны клиента, недостающую для хэш-функции Transcript-Hash. В этом случае сервер может 
отправить сообщение NewSessionTicket сразу после отправленного им сообщения Finished, не дожидаясь первого 
сообщения Finished со стороны клиента. Данные действия со стороны сервера могут быть уместны в случае, когда 
ожидается, что клиент откроет несколько параллельных соединений протокола TLS и выиграет от сокращения за­
трат вычислительных ресурсов на возобновление протокола Flandshake.

Клиент может использовать значение iPSK для установления последующих соединений в рамках 
iPSK-only и iPSK-ECDHE режимов работы протокола Handshake, указав в поле identity расширения 
pre_shared_key значение поля ticket сообщения NewSessionTicket, соответствующего данному значе­
нию iPSK (см. подробнее 5.6.5).

Сервер может посылать не более 1024 сообщений NewSessionTicket в рамках одного соединения.
При этом тип аутентификации (двусторонняя или односторонняя), предоставляемый в рамках об­

ладания значением iPSK, определяется типом аутентификации сторон в соединении на момент пере­
сылки сообщения NewSessionTicket, ассоциированного сданным значением. Таким образом, значения 
iPSK, соответствующие сообщениям NewSessionTicket, пересылаемым до и после сообщений post­
handshake аутентификации, будут обеспечивать разный тип аутентификации сторон в последующих 
соединениях.

Каждый тикет должен быть использован в рамках возобновления соединения только с крипто­
набором, поддерживающим тот алгоритм хэширования, который использовался в инициализирующем 
соединении.

Структура NewSessionTicket сообщения NewSessionTicket задается следующим образом:

struct {
uint32 ticketjifetime; 
uint32 ticket_age_add; 
opaque ticket_nonce<0..255>; 
opaque ticket<1 ,.2Л16-1 >;
Extension extensions<0..2A16-2>;

} NewSessionTicket;

где ticket_lifetime — срок жизни тикета в секундах, являющийся 32-битным значением, представленным 
в формате big-endian, и задающийся в соответствии с 5.9.1.2; 

ticket_age_add — случайное 32-битное значение, которое используется для маскирования времени 
жизни тикета на стороне клиента.
Время жизни тикета на стороне клиента складывается с этим значением по модулю 
232, и полученное значение передается в расширении pre_shared_key сообщения 
ClientHello (см. подробнее 5.6.5). Сервер должен генерировать новое значение для 
каждого отправляемого им тикета;

ticket_nonce — значение, которое является уникальным среди всехтикетов, выпущенных в рамках 
текущего соединения;

ticket — идентификатор (тикет) значения iPSK, формирующийся в соответствии с 5.9.1.1; 
extensions — набор опциональных расширений. В случае если расширения не указываются, 

значение данного поля содержит пустую строку. Клиенты должны игнорировать 
нераспознанные расширения. В рамках настоящих рекомендаций не описываются 
расширения, которые могут использоваться в сообщении NewSessionTicket, и в

36



Р 1323565.1.030— 2020

случае необходимости их использования их описание, исследование функционала, 
предоставляемого данными расширениями, а также анализ стойкости протокола долж­
ны проводиться отдельно.

Значение iPSK, ассоциированное стикетом, вычисляется в соответствии с 8.6.
5.9.1.1 Формирование поля ticket сообщения NewSessionTicket
Поле ticket сообщения NewSessionTicket может содержать следующие данные:
- уникальный ключ поиска в базе данных тикетов сервера (аналог значения идентификатора сес­

сии session_id, используемого в протоколе TLS 1.2, описанном в Р 1323565.1.020);
- данные, передаваемые клиенту в защищенном с помощью долговременного ключа сервера 

виде для того, чтобы не хранить на своей стороне параметры, необходимые для проверки данного тике- 
та. Настоящие рекомендации не фиксируют данный способ формирования тикета. При необходимости 
использования данного способа его описание, исследование предоставляемого функционала, а также 
анализ стойкости протокола должны проводиться отдельно.

При формировании тикета в соответствии с первым способом, описанным выше, сервер должен 
хранить у себя базу данных тикетов, где каждому тикету соответствует следующий минимальный набор 
необходимых параметров:

а) время формирования тикета creation_time;

П р и м е ч а н и е  — Формат представления времени не фиксируется и выбирается на усмотрение сервером. 
Одним из вариантов представления может быть значение текущего времени в 32-битном формате UNIX (количе­
ство секунд, прошедших с полуночи (00:00:00 UTC) 1 января 1970 года).

б) значение ticketjife tim e, равное значению, указываемому в соответствующем сообщении 
NewSessionTicket;

в) значение ticket_age_add, равное значению, указываемому в соответствующем сообщении 
NewSessionTicket;

г) используемый алгоритм хэширования;
д) значение iPSK, соответствующее данному тикету;
е) допустимый режим использования данного значения iPSK  (см. подробнее 5.6.6);
ж) тип аутентификации, соответствующий данному значению iPSK  (двусторонняя или односто­

ронняя);
и) значение global_expiration_time, равное одному из следующих значений:

1) наиболее ранней из дат окончания сроков действия сертификатов, ассоциированных с дан­
ным значением iPSK  (см. 5.2);

2) дате окончания срока действия значения ePSK, ассоциированного с данным значением 
iPSK  (см. 5.2);

П р и м е ч а н и е  — Формат представления времени должен соответствовать формату представления зна­
чения creation_time.

к) оставшееся количество попыток использования данного тикета (в случае, если максимально 
допустимое количество попыток, соответствующее политике безопасности сервера, превышает значе­
ние 1). В случае, когда в соединении, устанавливаемом в рамках режима работы протокола Handshake, 
использующего значение iPSK, сторонами было послано хотя бы одно сообщение, следующее за со­
общением ServerHello, сервер должен уменьшить допустимое количество попыток использования дан­
ного значения iPSK  на 1 вне зависимости от успешности установления данного соединения. В случае 
если оставшееся количество попыток использования достигло значения 0, сервер должен удалить из 
своей базы данных тикетов всю информацию, соответствующую данному тикету, и считать данный ти- 
кет недействительным.

В случае если используемое значение iPSK было выработано в результате цепочки соединений, 
где в рамках первоначального соединения клиент аутентифицировался за счет использования своего 
сертификата (в рамках ecdhe_ke схемы аутентифицированной выработки общего ключевого материа­
ла), серверу также рекомендуется проверять сертификаты в цепочке сертификатов на отозванность. 
Для этого серверу необходимо хранить в базе данных тикетов сертификат клиента в случае, если на 
момент формирования данного тикета клиент аутентифицировался с помощью использования данного 
сертификата. При этом в случае если в базе данных тикетов стикетом, на основе которого устанавлива­
лось текущее соединение, ассоциируется некоторый сертификат, то любой тикет, выработанный в ходе 
текущего соединения, также должен ассоциироваться сданным сертификатом.

37



Р 1323565.1.030—2020

Пр и меч ание  — Тикет должен быть уникальным в рамках всех тикетов, хранимых в базе данных тикетов 
на текущий момент.

5.9.1.2 Формирование поля ticketjifetim e сообщения NewSessionTicket
Значение поля ticketjifetim e сообщения NewSessionTicket не должно превышать 604800 секунд 

(7 дней). Нулевое значение данного поля означает, что тикет должен быть сразу использован и удален. 
Клиенты не должны хранить тикеты дольше 7 дней независимо от значения поля ticketjifetim e и могут 
удалять тикеты раньше окончания установленного сервером срока жизни в соответствии с локальной 
политикой. Сервер может считать максимальным допустимым сроком жизни тикета значение, меньшее, 
чем указано в поле ticketjifetime.

В соответствии с [1] и настоящими рекомендациями допускается создание новых тикетов в рамках 
соединения, установленного с помощью iPSK-ECDHE и iPSK-only режимов работы (режимов восстанов­
ления соединения). Такая возможность позволяет неограниченно продлевать срок жизни общего клю­
чевого материала, выработанного в рамках изначального Full Handshake соединения. В связи с этим 
при работе протокола в соответствии с настоящими рекомендациями значение поля NewSessionTicket. 
ticketjifetim e не должно превышать минимума из следующих значений:

- 604800 секунд (7 дней);
- разницы между значениями переменных global_expirationJime и creationjim e (см. 5.9.1.1);
- количества секунд, продиктованное другими локальными политиками сервера. Например, если 

к моменту создания тикета сертификат клиента, с помощью которого устанавливалось исходное соеди­
нение, отозван, то сервер может принять решение о запрете создания новых тикетов.

5.9.2 Post-handshake аутентификация
Если клиент готов аутентифицироваться после обмена main-handshake сообщениями (осуще­

ствить post-handshake аутентификацию), то он должен указать расширение post_handshake_auth в 
сообщении ClientHello. В случае получения данного расширения от клиента сервер может отправить 
запрос на аутентификацию клиента путем пересылки сообщения CertificateRequest (см. 5.7.2) в любой 
момент времени после получения main-handshake сообщения Finished со стороны клиента.

Если расширение post_handshake_auth не было указано в сообщении ClientHello, то сервер не 
должен запрашивать аутентификацию клиента после завершения протокола Handshake, в противном 
случае клиент должен ответить оповещением об ошибке unexpected_message (см. 7.2).

При получении CertificateRequest в рамках post-handshake аутентификации клиент должен отве­
тить сообщениями аутентификации Certificate, CertificateVerify, Finished (см. 5.8). Если клиент отклоняет 
запрос на аутентификацию, то он должен ответить сообщениями Certificate nFinished, причем сообще­
ние Certificate не должно содержать сертификатов (размер поля certificatejist должен быть равен нулю).

При проведении post-handshake аутентификации и формировании сообщений CertificateVerify и 
Finished в функцию Transcript-Hash подаются все main-handshake сообщения, переданные в рамках 
данного соединения, и только те post-handshake сообщения, которые определяют текущую проце­
дуру проведения аутентификации (т. е. CertificateRequest и Certificate при формировании сообщения 
CertificateVerify и сообщения CertificateRequest, Certificate и CertificateVerify (если оно было послано) 
при формировании сообщения Finished).

Поскольку при аутентификации клиента может потребоваться взаимодействие с пользователем, 
сервер должен быть готов к получению произвольного количества сообщений между моментом отправ­
ки сообщения CertificateRequest и ответом клиента на данное сообщение. Кроме того, клиент, полу­
чивший несколько сообщений CertificateRequest, посланных сервером в близкой последовательности, 
может ответить на них в порядке, отличном от порядка, в котором сообщения CertificateRequest были 
посланы сервером, поскольку уникальное значение поля CertificateRequest.certificate_request_context 
позволяет серверу однозначно определить ответ клиента на запрос на аутентификацию.

5.9.3 Сообщение Keyllpdate
Сообщение Keyllpdate протокола Handshake посылается стороной (клиентом или сервером) для 

указания того, что отправляющая сторона обновляет ключевой материал трафика для формирования 
записи (значения [sender]_write_key, [sender\_write_iv, см. 8.4 и 6.3).

Данное сообщение может быть отправлено соответствующей стороной в любой момент времени 
после отправки ею main-handshake сообщения Finished. Если сообщение Keyllpdate было отправлено 
до main-handshake сообщения Finished, получающая его сторона должна завершить соединение с опо­
вещением unexpected_message (см. 7.2).

38



Р 1323565.1.030—2020

Примечание — Сообщение KeyUpdate может быть послано сервером до получения main-handshake со­
общения Finished со стороны клиента только в случае односторонней аутентификации.

Отправитель обязан посылать все последующие сообщения после передачи сообщения 
KeyUpdate, используя обновленный ключевой материал, вычисленный способом, описанным в 8.3. По­
лучатель сообщения KeyUpdate должен обновить ключевой материал трафика для чтения записи (зна­
чения [receiver]_read_key, [receiver]_read_iv, см. 6.3).

Структура KeyUpdate сообщения KeyUpdate задается следующим образом:

enum {
u pd ate_n ot_req u ested (0x00), 
u pd ate_req u ested (0x01),
(OxFF)

} KeyUpdateRequest;

struct {
KeyUpdateRequest request_update;

} KeyUpdate;

Поле request_update структуры KeyUpdate может принимать следующие значения:
- update_not_requested(0x00), в случае если отправитель не ожидает ответного сообщения 

KeyUpdate от получателя;
- update_requested(0x01), в случае если отправитель ожидает ответного сообщения KeyUpdate 

для обновления своего ключевого материала трафика для чтения записей.
В случае если в поле request_update записано значение update_requested, получатель должен 

отправить сообщение KeyUpdate с установленным значением update_not_requested до передачи даль­
нейших прикладных данных. Такой механизм позволяет обеим сторонам обновить ключевой материал 
трафика сразу для чтения и для записи. При этом, если сторона получила сразу несколько сообщений 
KeyUpdate с установленным значением update_requested, например, в период, когда эта сторона не от­
правляла никаких сообщений, она может ответить только одним сообщением KeyUpdate.

После отправки отправителем (S) сообщения KeyUpdates получателю (R), где поле KeyUpdates 
request_update принимает значение update_requested, отправитель должен быть готов получить произ­
вольное количество сообщений до получения ответного сообщения KeyUpdateR от стороны R, посколь­
ку эти сообщения могут быть отправлены R до получения сообщения KeyUpdates.

В случае если стороны независимо друг от друга и одновременно посылают сообщения KeyUpdate 
со значением поля request_update, равным update_requested, каждая из сторон должна отправить от­
ветное сообщение, и обновление ключевого материала трафика для чтения и для записи произойдет 
дважды.

Отправитель и получатель должны зашифровывать сообщения KeyUpdate на необновленном 
ключевом материале трафика.

6 Протокол Record

Получив данные от протоколов более высокого уровня, протокол Record формирует из них после­
довательность структур, которые называются записями. Затем сформированные записи передаются 
транспортному протоколу.

Записи состоят из заголовка, описывающего передаваемые данные, и самих данных, которые 
передаются в открытом или защищенном виде в зависимости от текущего состояния соединения (см. 
подробнее 4.2). Заголовок всегда передается в открытом виде.

Данные, полученные от протокола транспортного уровня, протокол Record интерпретирует как за­
писи и формирует из них сообщения для протоколов верхнего уровня, опираясь на заголовки записей.

Выделяют следующие типы данных, пересылаемых в рамках протокола Record:

39



Р 1323565.1.030—2020

enum {
invalid(OxOO),
change_cipher_spec(0x14), 
alert(0x15), 
handshake(0x16), 
application_data(0x17),
(OxFF)

} ContentType;

где change_cipher_spec — тип данных, отмененный в рамках версии протокола TLS 1.3 и сохраненный
в целях поддержки режима совместимости; 

alert — тип, соответствующий сообщениям протокола Alert; 
handshake — тип, соответствующий сообщениям протокола Handshake; 

application_data — тип, соответствующий сообщениям, содержащим прикладные данные.

6.1 Фрагментация

Принятые с верхнего уровня данные разбиваются протоколом Record на фрагменты, помеща­
емые в поля TLSPIaintext.fragment (см. подробнее 6.2). Значение поля TLSPIaintext.length не должно 
превышать 214 (то есть размер поля TLSPIaintext.fragment не должен превышать 16 Кбайт). Если состо­
яние соединения не подразумевает защиты данных, каждая запись задается структурой TLSPIaintext 
(см. подробнее 6.2). Если состояние соединения подразумевает защиту данных, каждая запись задает­
ся структурой TLSCiphertext. При этом размер защищенных данных, являющихся результатом работы 
AEAD алгоритма, может оказаться больше размера исходного фрагмента данных (это приводит к тому, 
что значение поля TLSCiphertext.length становится больше значения поля TLSPIaintext.length).

П р и м е ч а н и е  — При работе протокола в соответствии с криптонаборами, описанными в настоящих реко­
мендациях, значение поля TLSCiphertext.length не должно превышать 214 + 1 + S, где S — размер имитовстав- 
ки в режиме MGM, определенный в 10.1.2.

Сообщения протокола Handshake могут быть разбиты на несколько фрагментов или объединены 
в один, при этом:

- сообщения протокола Handshake не могут объединяться сданными других типов в рамках од­
ной записи;

- если сообщения протокола Handshake объединены в один фрагмент, в рамках работы протоко­
ла TLS 1.3 между этими сообщениями не должны пересылаться данные других типов;

- все сообщения протокола Handshake, объединенные в один фрагмент, должны быть обработа­
ны в рамках одного и того же состояния соединения;

- запрещается посылать фрагменты нулевой длины для сообщений протокола Handshake.
Сообщения, содержащие прикладные данные, могут быть разбиты на несколько фрагментов или

объединены в один, при этом:
- прикладные данные всегда пересылаются в защищенном виде и передаются протоколу Record 

без дополнительного форматирования;
- разрешается посылать фрагменты нулевой длины для сообщений, содержащих прикладные 

данные.
Сообщения протокола Alert не должны фрагментироваться. Запрещено объединять сообщения 

протокола Alert в один фрагмент.
Способы фрагментации не влияют на корректность работы всего протокола TLS 1.3 и должны 

определяться на этапе его реализации.

6.2 Формирование записи

Выделяют защищенные и незащищенные записи. Каждая запись содержит заголовок длины 
5 байт, передаваемый в открытом виде, и фрагмент данных, передаваемых в открытом или защищен­
ном виде. Заголовок состоит из трех полей: type, legacy_record_version, length в случае незащищенной 
записи и opaque_ type, legacy_record_version, length в случае защищенной. Поля заголовка указывают 
на тип сообщения, версию протокола и длину передаваемых данных соответственно. Поле fragment 
40



Р 1323565.1.030—2020

незащищенной записи содержит фрагмент данных, передаваемых в открытом виде. Поле encrypted_ 
record защищенной записи содержит фрагмент данных, передаваемых в защищенном виде. При этом с 
каждой записью неявно ассоциируется ее порядковый номер seqnum (см. подробнее 6.4).

В случае формирования незащищенной записи часть данных, полученных от протоколов бо­
лее высокого уровня и выделенных при фрагментации в соответствии с 6.1, переводится в структуру 
TLSPIaintext, которая задается следующим образом:

struct {
ContentType type;
ProtocolVersion legacy_record_version;
uint16 length;
opaque fragment[TLSPIaintext.length];

} TLSPIaintext;

где type — тип сообщения длиной в 1 байт, указывающий на протокол верхнего уровня,
используемый для обработки фрагмента данных, содержащегося в текущей 
записи;

legacy_record_version — версия протокола длиной в 2 байта. Данное поле должно принимать значение 
0x0303 для всех сообщений протокола TLS 1.3, за исключением исходного 
сообщения приветствия ClientHello (см. подробнее 5.5.1), то есть сообщения, 
отправленного до получения сообщения HelloRetryRequest, которое может 
также принимать значение 0x0301 в целях поддержки режима совместимости. 
Данное поле должно игнорироваться сторонами взаимодействия; 

length — длина фрагмента данных в байтах (2 байта). Данный параметр определяет 
количество байтов, передаваемых в записи после ее заголовка. Значение 
поля TLSPIaintext.length должно удовлетворять ограничениям, определенным 
в 6.1;

fragment — фрагмент данных, передаваемых в открытом виде.

При формировании защищенной записи в соответствии с текущим состоянием соединения про­
токол Record вначале формирует данные в виде незащищенной структуры TLSPIaintext, а затем фор­
мирует из них данные защищенной структуры TLSCiphertext, которая задается следующим образом:

struct {
ContentType opaque_type = application_data; /* 0x17 */
ProtocolVersion legacy_record_version = 0x0303;
uint16 length;
opaque encrypted_record[TLSCiphertext.length];

} TLSCiphertext;

где opaque_type — тип сообщения длиной в 1 байт. Данное поле должно принимать значение 
0x17, соответствующее типу application_data. После расшифрования данных 
поля encrypted_record структуры TLSCiphertext тип данных незащищенной 
записи содержится в поле TLSInnerPlaintext.type;

legacy_record_version — версия протокола длиной в 2 байта. Данный параметр всегда должен иметь 
значение 0x0303;

length — длина фрагмента данных в байтах (2 байта). Данный параметр определяет 
количество байтов, передаваемых в записи после ее заголовка. Значение поля 
TLSCiphertext.length должно удовлетворять ограничениям, определенным в 6.1;

encrypted_record — фрагмент данных, передаваемых в защищенном виде и формирующийся 
из структуры TLSPIaintext в соответствии с согласованным криптонабором. 
Процесс формирования этого поля описан в 6.3.

41



Р 1323565.1.030—2020

6.3 Защита данных

В настоящем разделе все действия будут описаны для одной фиксированной стороны взаимодей­
ствия (клиента/сервера), которая обладает:

- ключевым материалом ([sender]_write_key, [sender]_write_IV) для формирования защищенных 
записей, принимающим значение (client_write_key; client_write_IV) для клиента, и значение (server_ 
write_key, server_write_IV) для сервера;

- ключевым материалом ([receiver]_read_key, [receiver]_read_IV для обработки защищенных за­
писей, принимающим значение [server_write_key, server_write_IV) для клиента, и значение (client_write_ 
key, client_write_IV) для сервера.

П р и м е ч а н и е  — Режимы работы протокола TLS 1.3, описанные в настоящих рекомендациях, соответству­
ют симметричной схеме защиты данных: ключ шифрования и уникальный вектор, которые используются для фор­
мирования защищенной записи одной стороной, используются для расшифрования сообщения другой стороной.

Формирование защищенной записи из фрагмента данных, выделенного при фрагментации в со­
ответствии с 6.1, выполняется в соответствии со следующими этапами, схематично отраженными на 
рисунке 6:

- формирование незащищенной записи, имеющей структуру TLSPIaintext;
- формирование структуры TLSInnerPlaintext;
- формирование значения попсе и additional_data;
- зашифрование данных структуры TLSInnerPlaintext с использованием ассоциированных данных 

additional_data и значения попсе;
- формирование защищенной записи, имеющей структуру TLSCiphertext.

Фрагмент данных

1
HDR ■ TLSPIaintext

Ч _________________ ___________________ '

- TLSInnerPlaintext

П р и м е ч а н и е  — На рисунке 6 под HDR и HDR’ подразумеваются заголовки незащищенной и защищенной 
записей соответственно.

Для каждой формируемой записи с номером seqnum поле encrypted_record структуры TLSCiphertext 
содержит значение ENCrecord, которое формируется в соответствии с формулой:

42



Р 1323565.1.030—2020

ENCrecord = AEAD-Encrypt([sender]_write_key, nonce, additional_data, plaintext), (8)

где:
- функция аутентифицированного шифрования AEAD-Encrypt задается согласованным криптона­

бором (см. 10.1, 10.1.2);
- значение попсе формируется из номера формируемой записи seqnum и уникального вектора 

[sender]_write_IV в соответствии с формулой:

попсе = STRIVLen(seqnum) ® [sender]_write_IV;

- значение additional_data формируется в соответствии с формулой 

additional_data = TLSCiphertext.opaque_type\ 

TLSCiphertext. legacy_record_ version \ TLSCiphertext. length;

(9)

(10)

- значение plaintext содержит в себе данные структуры TLSInnerPlaintext, которая задается сле­
дующим образом:

struct {
opaque content[TLSPIaintext.length];
ContentType type; 
uint8 zeros[length_of_padding];

} TLSInnerPlaintext;

где content — значение поля TLSPLaintext.fragment; 
type — значение поля TLSPLaintext.type;

zeros — поле, содержащее строку нулевых значений произвольной длины length_of_padding 
(см. 6.5).

Общий размер структуры TLSInnerPlaintext не должен превышать 214 + 1 байт.
Для каждой полученной записи с номером seqnum значение plaintext вычисляется из значения 

ENCrecord поля TLSCiphertext.encrypted_record в соответствии с формулой

plaintext = AEAD-Decrypt([receiver]_read_key, попсе, additional_data, ENCrecord); (11)

где:
- значение plaintext содержит в себе данные структуры TLSInnerPlaintext, задающейся выше;
- функция расшифрования AEAD-Decrypt задается согласованным криптонабором (см. 10.1, 

10.1.2);

- значение попсе формируется из номера получаемой записи seqnum и уникального вектора 
[receiver]_write_IV в соответствии с формулой

попсе = STRjVLen(seqnum) ® [receiver]_write_IV\ (12)

- значение additional_data формируется в соответствии с формулой (10).
В случае если в рамках работы функции AEAD-Decrypt произошла ошибка, получающая сторона 

должна завершить соединение с оповещением bad_record_mac (см. 7.2).

6.4 Счетчик полученных/отправленных записей

Каждая из сторон взаимодействия ведет счетчик полученных и отправленных записей seqnurrfead 
и seqnumwrite, каждый из которых может принимать значения от 0 до SNMAX-1 включительно. Таким 
образом, с каждой полученной/отправленной записью неявно ассоциируется 64-битный уникальный 
порядковый номер, соответствующий текущему значению счетчика seqnumreadlseqnumwrite. Максималь­
ное количество записей, которые могут передаваться в рамках одного значения [sender]_write_key, мо­
жет быть меньше 264 и может зависеть от выбранного криптонабора (см. подробнее 10.1.3).

43



Р 1323565.1.030—2020

В начале соединения, а также при смене ключевого материала трафика (см. 8.3) (при смене со­
стояния соединения, см. подробнее 4.2) всем счетчикам присваивают нулевые значения. После полу- 
чения/отправки очередной записи значение соответствующего счетчика увеличивается на 1.

6.5 Дополнение данных

Для того, чтобы скрыть размер передаваемой записи от стороннего наблюдателя, отправитель 
может использовать поле TLSInnerPlaintext.zeros, которое позволяет увеличить размер зашифровывае­
мых данных. При этом отправитель сам решает, будет ли он дополнять данные или нет. В случае если 
сторона решает не дополнять данные, поле TLSInnerPlaintext.zeros должно содержать вектор нулевой 
длины. В случае дополнения поле TLSInnerPlaintext.zeros должно содержать только нулевые байты.

Для прикладных данных поле TLSInnerPlaintext.content может быть пустым (его размер может 
быть равен нулю). Стороны не должны отправлять записи типа handshake и alert, для которых поле 
TLSInnerPlaintext.content является пустым (содержит пустой вектор).

Дополнение данных автоматически проверяется механизмом защиты записи. После того, как по­
лучатель успешно расшифровал данные в поле TLSCiphertext.encrypted_record, осуществляется поиск 
первого ненулевого байта, начиная с конца полученных данных, который является типом записи. Ука­
занный механизм также обеспечивает проверку того, что дополнение содержит только нулевые байты, 
что позволяет отследить ошибки при некорректном дополнении.

При реализации необходимо четко следить за тем, что поиск ненулевого байта должен ограничи­
ваться тем массивом данных, который был возвращен в качестве результата расшифрования. В случае 
если получатель не находит ненулевой байт в расшифрованных данных, он должен завершить соеди­
нение протокола TLS с оповещением unexpected_message (см. 7.2).

Наличие дополнения не меняет ограничения на размер структуры TLSInnerPlaintext: общий раз­
мер указанной структуры не должен превышать 214 + 1 байт.

7 Протокол Alert

Сообщение протокола Alert содержит информацию о пересылаемом оповещении и посылается в 
одном из следующих случаев:

- стороны хотят корректно завершить соединение (см. 7.1);
- при работе протокола TLS произошла ошибка (см. 7.2).
Информация об оповещении в сообщении протокола Alert определяется структурой Alert, задаю­

щейся следующим образом:

struct {
AlertLevel level;
AlertDescription description;

} Alert;

Поле level указывает на уровень оповещения и задается следующим образом:

enum {
warning(OxOI), 
fata I (0x02),
(OxFF)

} AlertLevel;

Поле description содержит тип оповещения, который задается следующим образом:

enum {
close_notify(0x00), 
unexpected_message(0x0A), 
bad_record_mac(0x14),

44



Р 1323565.1.030— 2020

recond_overflow(0x16),

handshake_failure(0x28),

bad_certificate(0x2A),

unsupported_certificate(0x2B),

certificate_revoked(0x2C),

certificate_expired (0x2D),

certificate_unknown(0x2E),

illegal_parameter(0x2F),

unknown_ca(0x30),

access_d en ied (0x31),

decode_error(0x32),

decrypt_error(0x33),

protocol_version(0x46),

insufficient_secu rity(0x47),

internal_error(0x50),

inappropriate_fallback(0x56),

user_canceled (0x5A),

missing_extension(0x6D),

unsupported_extension(0x6E),

unrecognized_name(0x70),

bad_certificate_status_response(0x71),

unknown_psk_identity(0x73),

certifi cate_req u i red (0x7 4),

no_application_protocol(0x78),

(OxFF)

} AlertDescription;

П р и м е ч а н и я
1 В соответствии с [1] в рамках работы протокола TLS 1.3 оповещения decryption_failed_RESERVED(0x15), 

decompression_failure_RESERVED(0x1 Е), no_certificate_RESERVED(0x29), export_restriction_RESERVED(0x3C) и 
no_renegotiation_RESERVED(0x64) пересылаться не должны. Клиенту и серверу рекомендуется поддерживать об­
работку данных оповещений с целью поддержки совместимости с более ранними версиями протокола TLS.

2 В рамках протокола TLS 1.3 уровень оповещения задается неявным образом с помощью типа пересыла­
емого оповещения, поэтому данное поле может быть проигнорировано. Все оповещения об ошибке должны от­
правляться с уровнем fatal и быть распознанными таковыми вне зависимости от значения поля level. Оповещения, 
не встречающиеся среди указанных в перечислении AlertDescription, должны быть распознаны как оповещения об 
ошибке.

7.1 Оповещения закрытия соединения

Для того, чтобы клиент и сервер могли корректно завершить соединение, отправляются следую­
щие оповещения:

close_notify —  оповещение, сигнализирующее о том, что его отправитель закрыл соединение для 
отправки данных и больше не отправит ни одного сообщения в рамках данного 
соединения. При этом указанные действия не влияют на чтение данных на стороне 
отправителя1).

11 Данное свойство является особенностью протокола TLS 1.3. В рамках работы протокола TLS версии ниже
1.3 при получении оповещения close_notify сторона взаимодействия должна была закрывать соединение для от­
правки данных, посылая ответное оповещение close_notify и удаляя все записи, ожидаемые к отправке, что вело к 
усечению при чтении данных на противоположной стороне.

45



Р 1323565.1.030— 2020

Данное оповещение должно быть отправлено каждой стороной в случае, если ранее 
в процессе работы протокола TLS 1.3 не было послано ни одного оповещения об 
ошибке.

Любые данные, полученные после оповещения с типом close_notify, должны игнори­
роваться. В случае если закрытие соединения на транспортном уровне происходит 
до получения оповещения close_notify, получающая сторона не может быть увере­
на в получении всех данных, отправленных противоположной стороной взаимодей­
ствия.

Рекомендуется присваивать оповещению закрытия соединения close_notify уровень 
warning.

user_canceled —  оповещение, сигнализирующее о том, что его отправитель завершает работу 
протокола Handshake по причине, не связанной с возникновением ошибок в 
рамках работы данного протокола. В указанном случае рекомендуется отправлять 
оповещение close_notify сразу после оповещения user_canceled.

В случае возникновения ошибки после завершения работы протокола Handshake по 
причине, не связанной с возникновением ошибок в рамках работы протокола TLS, 
стороне рекомендуется закрыть соединение только с отправкой оповещения close_ 
notify.

Рекомендуется присваивать оповещению user_canceled уровень warning.

7.2 Оповещения об ошибках

В случае возникновения ошибки в процессе работы протокола TLS сторона взаимодействия по­
сылает оповещение об ошибке. Все оповещения об ошибке, указанные в настоящем разделе, имеют 
уровень fatal. При получении оповещения об ошибке сторона должна отправить в ответ соответствую­
щее оповещение и закрыть соединение для чтения и записи данных.

Настоящие рекомендации определяют оповещения об ошибке в соответствии с таблицами 3— 5.

Т а б л и ц а  3 — Оповещения об ошибке, которые могут возникнуть в процессе работы протокола Handshake

Название оповещения Описание оповещения

handshake_failure Отправитель не смог согласовать необходимые параметры безопасности

illegal_parameter Поле сообщения протокола Handshake некорректно, либо не согласуется с другими по­
лями. Данное оповещение используется для указания ошибок, связанных с некоррект­
ным значением

unknown_ca Сертификат удостоверяющего центра (УЦ) не был найден или не совпал ни с одним из 
известных сертификатов доверенных УЦ

access_denied Был получен корректный сертификат, однако при применении политики контроля досту­
па отправитель решил не продолжать согласование соединения

decrypt_error При выполнении криптографической операции (например, при проверке подписи, про­
верке содержимого сообщения Finished или проверке binder-значения) во время работы 
протокола Handshake возникла ошибка

protocol_version Работа по указанной версии протокола не поддерживается

insufficient_security Посылается вместо оповещения handshake_failure в том случае, если сервер требует 
криптонаборы, обеспечивающие более высокий уровень стойкости, чем те, что поддер­
живаются клиентом

unsupported_
extension

Посылается сторонами в случае, если было получено сообщение протокола Handshake, 
содержащее расширение, использование которого запрещено. Кроме того, данное опо­
вещение посылается в случае, если в сообщении ServerHello или Certificate содержится 
расширение, не указанное ранее в сообщениях ClientHello или CertificateRequest соот­
ветственно

46



Р 1323565.1.030— 2020

Окончание таблицы 3

Название оповещения Описание оповещения

bad_certificate Целостность сертификата нарушена (например, сертификат поврежден или изменен), 
сертификат содержит некорректную подпись и т. п.

unsupported_
certificate

Был получен сертификат неподдерживаемого типа

certificate_revoked Сертификат был отозван подписывающей стороной

certificate_expired Срок действия сертификата истек или сертификат не действует в настоящее время

certificate^ n known При обработке сертификата возникла ошибка, не соответствующая ни одному из вы­
шеперечисленных случаев

inappropriate_fallback Отправляется сервером в случае обнаружения несанкционированного понижения ис­
пользуемой версии протокола TLS (см. подробнее 11.2.2)

missing_extension Отправляется в случае, если полученное сообщение протокола Handshake не содержит 
расширение, являющееся обязательным в рамках текущего режима работы протокола

unrecognized_name Отправляется сервером в случае, если не существует виртуального сервера, соответ­
ствующего имени, указанному клиентом в расширении server_name

bad_certificate_
status_response

Отправляется клиентом в случае, если сервер указал некорректный OCSP ответ в рас­
ширении statu s_request

unknown_psk_identity Отправляется сервером в случае, если он желает установить соединение в рамках 
psk_ke или psk_ecdhe_ke схемы аутентифицированной выработки общего ключевого 
материала, однако клиент не предоставил ни одного корректного PSK-значения. Данное 
оповещение об ошибке является опциональным и вместо него сервер может отправить 
оповещение decrypt_error

certificate_required Отправляется сервером в случае, если требуется аутентификация клиента, но клиент 
не прислал ни одного сертификата

no_application_
protocol

Отправляется сервером в случае, если клиент не указал в расширении application_layer_ 
protocol_negotiation ни одного протокола, поддерживаемого сервером

Т а б л и ц а  4 — Оповещения об ошибке, которые могут возникнуть в процессе работы протокола Record

Название оповещения Описание оповещения

bad_record_mac Данное оповещение посылается в том случае, если при расшифровании полученной 
защищенной записи в рамках работы функции AEAD-Decrypt возникла ошибка

record_overflow Данное оповещение посылается в том случае, если длина полученной или расшифро­
ванной записи превышает максимально допустимое значение

Т а б л и ц а  5 — Общие оповещения об ошибке, которые могут возникнуть в процессе работы протокола TLS 1.3

Название оповещения Описание оповещения

unexpected_message Было получено некорректное сообщение

decode_error Сообщение не может быть обработано, так как содержит одно или несколько некор­
ректных полей. Данное оповещение используется для указания ошибок, связанных с 
синтаксисом протокола TLS

internal_error Произошла внутренняя ошибка, не связанная с работой протокола (например, ошибка 
выделения памяти), которая делает невозможным продолжение дальнейшей работы 
протокола

47



Р 1323565.1.030—2020

8 Криптографические вычисления

8.1 Функции, используемые при выработке ключей

8.1.1 Функция HKDF-Extract
Функция HKDF-Extract задается следующим образом.
Входные аргументы:
- Salt е Bs, s > 0, опциональный аргумент; если данный аргумент не был подан на вход функции 

HKDF-Extract, то его значение устанавливается равным 0HLen;
- IKM е Bs, s > 0, входной ключевой материал.
Результат работы:
- PRK е BHLen, псевдослучайный ключ.
Функция HKDF-Extract задается в соответствии со следующей формулой:

HKDF-Extract (Salt, IKM) = HMAC(Salt, IKM) = PRK. (13)

8.1.2 Функция HKDF-Expand
Функция HKDF-Expand задается следующим образом.
Входные аргументы:
- PRK е Bs, s > HLen, псевдослучайный ключ;
- info е Bs, s > 0, строка с опциональными контекстными данными;
- L < 255 ■ HLen, байтовая длина ключевого материала, являющегося результатом работы функ­

ции HKDF-Expand.
Результат работы:
- ОКМ е BL, ключевой материал длины L.
Функция HKDF-Expand задается в соответствии со следующей формулой:

/ = Г U HLen], 

Т =  Ti\T21 ... |Т„
(14)

где:
7} = НМАС (PRK, Tj _ i\info\i), /е  {1, . . . , / } ,  Т0 е В0,

HKDF-Expand (PRK, info, L) = LMBl(T) = OKM.

П р и м е ч а н и е  — В формуле (14) при вычислении значения функции НМАС параметр / конкатенируется 
с остальными байтовыми строками без дополнительного форматирования, поскольку принимаемые им значения 
представимы в виде 1 байта.

8.1.3 Функция HKDF-Expand-Label
Функция HKDF-Expand-Label задается следующим образом.
Входные аргументы:
- Secrete Bs, s > HLen, псевдослучайный ключ;
- Label е  Bs, 1 < s < 249, строковая константа;
- Context е  Bs, 0 < s < 255, строка с опциональными контекстными данными;
- Length < 255 ■ HLen, длина ключевого материала в байтах, являющегося результатом работы 

функции HKDF-Expand-Label.
Результат работы:
- ключевой материал длины Length.
Функция HKDF-Expand-Label задается в соответствии со следующей формулой:

HKDF-Expand-Label (Secret, Label Context, Length) =

HKDF-Expand (Secret, HkdfLabel, Length),  ̂ ^

где значение HkdfLabelзадается следующей структурой:

48



Р 1323565.1.030—2020

struct {
uint16 length = Length;
opaque label<7..255> = "tls13" + Label;
opaque context<0..255> = Context;

} HkdfLabel;

8.1.4 Функция Derive-Secret
Функция Derive-Secret задается следующим образом.
Входные аргументы:
- Secrete Bs, s > HLen, псевдослучайный ключ;
- Label e Bs, 1 < s < 249, строковая константа;
- Messages = {M1, , Mn}, M, 6 Bs, где / 6 {1, ... , n}, s1 > 0 при n = 1, s( > 0 при n > 1.
Результат работы:
- ключевой материал длины HLen.
Функция Derive-Secret задается в соответствии со следующей формулой:

Derive-Secret (Secret, Label, Messages) = 

HKDF-Expand-Label (Secret, Label, Transcript-Hash (Messages), HLen).
(16)

8.2 Иерархия ключей

В рамках работы протокола TLS 1.3 можно выделить следующую ключевую иерархию:
а) энтропийные данные PSK (значение iPSK или ePSK, вырабатываемое в соответствии с 8.6) 

и ECDHE (вырабатываемое в соответствии с 8.5), с помощью которых вырабатываются значения 
EarlySecret, HandshakeSecret, MasterSecret,

б) секретные значения (значения Secret), перечисленные в таблице 6:

Т а б л и ц а  6 — Секретные значения S ecre t

Секретное значение Secret Краткое обозначение

b in d e r_ se cre t BS

d ie n t_ h a n d sh a ke _ tra ffic_ se c re t C H TS

se rve r_ h an d sh a ke _ tra ffic_ sec re t S H TS

c lie n t_app lica tion_ tra ffic_secre t_N , N  > 0 c a t s n

se rve r_ a pp lica tion_ tra ffic_secre t_N , N  > 0 s a t s n

exp o rte r_m a s te r_ se c re t E M S

resum  p tio n _m a s te r_ se c re t R M S

П р и м е ч а н и е  — В таблице 6 отсутствуют секретные значения c lie n t_ ea rly_ tra ffic_ se c re t и early_expo rte r_  

m aste r_secre t, описанные в [1], так как в версии протокола TLS 1.3, соответствующей настоящим рекомендациям, 
пересылка 0-RTT данных запрещена.

в) ключевой материал, вырабатываемый из секретных значений Secret:
1) ключ HMAC_binder_key, используемый для формирования binder-значения (см. 5.6.5.3);
2) значение exporter_value (см. 8.7).

П р и м е ч а н и е  — Настоящие рекомендации не определяют функцию TLS-Exporter, используемую в [1 ] для 
формирования значения exporte r_va lue , и значения ее аргументов la b e l и con tex t_va lue  (см. рисунок 7);

3) ключевой материал трафика, состоящий из ключей [sender]_write_key и вектора инициали­
зации [sender]_write_iv, используемый для защиты записей в протоколе Record (см. 8.4);

4) ключи [sender]_finished_key, используемые для формирования данных verify_data сообще­
ния Finished (см. 5.8.3).

49



Р 1323565.1.030—2020

Описанная ключевая иерархия представлена в виде схемы на рисунке 7. Ее основной принцип 
заключается в следующем: энтропийные данные, обозначенные в левой части схемы, не зависят от 
сообщений протокола Handshake, пересылаемых в рамках установления текущего соединения, в то 
время как секретные значения множества Secret, находящиеся в правой части схемы, зависят от со­
общений протокола Handshake, пересылаемых в рамках установления текущего соединения, поэтому 
могут использоваться для выработки ключевого материала трафика.

Секретные значения множества Secret формируются с помощью энтропийных данных (ECDHE 
и PSK), подающихся на вход функциям HKDF-Extract и Derive-Secret в соответствии со схемой, пред­
ставленной на рисунке 7. Если одно из значений PSK или ECDHE не определено в момент выработки 
ключа обработки записей, то подразумевается, что вместо него на вход функции HKDF-Extract подается 
строка oHLen. При этом одновременное отсутствие энтропийных значений PSK и ECDHE не допускается 
в рамках работы протокола TLS 1.3.

50



Энтроп.
данные

j

1
PSK---------►[iHKDF-Extract] = EarlySecret Secret

-----►(Derive-Secret(.Jabeli,"") ) -► BS

(Derive-SecretC,,,derived,,r ) )

ECDHE--------►(l-IKDF-Extract) = HandshakeSecret

->(  Deri ve-Secret(., label2, H Mj ))-► C HTS: 

-K ^Derive-Secret(.,label3,HMi))->SI-ITS —

-►Finished , . ,, . .   tt.— ^server_timsned_Ke>
> Secret ->(HKDF-Expand-Label(., finished , ,HLen>; client_finished_key

->(H KDF-Expand-Label(.,"finished","",HLen])->-HMAC_binder_key

se rver_fi n ish ed_key

(Deri ve-Secret(., "derived",""))

Гн KDF-Extract) = MasterSecret

Ключевой 
материал трафика 

client_write_key,
-► Traffic 
-► Secret

-►(Derive-Secret(.Jabel4,HM2T)~^CATSo-^~»(KevUpdat^'>  CATSj 

^Derive-Secret(.,labels, HM27)^SATSo-L-K{<ev~Updat^- ^  SATSj

(HKDF-Expand-Label(.,"key","",KLen§j^*l_client_write_iv 
CHKDF-Expand-Label(.,"ivl,,"l,,IVLen)) \ J " ~  server__write_key,

server write iv

►( Derive-Secret(.,label6, HM2))~  ̂ EMS

►CDerive-Secret(.,label7,HM3))~^ RMS ■

KjLS-Exporter(.,label,context,value, KLen^>  expo rte revalue 

KfHKDF-Expand-Labelf.,"resumption", ticket nonce^HLen^iPSKi

KHKDF-Expand-Label(.,"resumption", ticket noncei.HLen^iPSKj

Рисунок 7 —  Иерархия ключей

P
 1

32
35

65
.1

.03
0

—
2020



Р 1323565.1.030—2020

П р и м е ч а н и я
1 На рисунке 7 подразумевается, что для функции HKDF-Extract (см. 8.1.1) аргумент Salt содержит данные, 

поступившие сверху, аргумент IKM содержит данные, поступившие слева, а результат работы данной функции на­
правляется вниз, при этом обозначение данного результата приводится справа.

2 На рисунке 7 под обозначением BS (binder_secret) подразумевается обозначение binder_key, используе­
мое в [1].

3 Значение EarlySecret определяется конкретным значением PSK. Таким образом, до момента выбора сер­
вером конкретного тикета, соответствующего значению PSK, из списка, предложенного клиентом, клиент должен 
вычислять значение EarlySecret для каждого из значений PSK, соответствующих предложенным им значениям 
тикетов.

Аргументами функции Derive-Secret, помимо значений, являющихся результатом функции HKDF- 
Extract, являются метки /айе/,, 1 < / < 7 (см. таблицу 7) и упорядоченные множества строк HMj, 1 < j  < 3 
(см. таблицу 8).

Т а б л и ц а  7 — Задание меток label ,■

Метка Значение

label1 "res binder'7'ext binder"

label2 "с hs traffic"

label3 "s hs traffic"

label 4 "c ap traffic"

label5 "s ap traffic"

label6 "exp master"

label 7 "res master"

П р и м е ч а н и е  — Под обозначением «"res bindefText binder'» в данной таблице подразумевается одна 
из двух строковых констант: "res binder1, если секретное значение BS формируется с помощью значения iPSK, и 
"ext binder', если секретное значение BS формируется с помощью значения ePSK.

Т а б л и ц а  8 — Задание множеств HMj

Множество Содержимое

НЛ4, {ClientHello, ... , ServerHello}

HM2 {ClientHello, ... , Finished со стороны сервера}

HM3 {ClientHello, ... , Finished со стороны клиента}

8.3 Обновление секретных значений

После завершения работы протокола Handshake обе стороны могут инициировать обновление 
текущего секретного значения [sender]_application_traffic_secret_N  из множества Secret, используя со­
общение KeyUpdate, определенное в 5.9.3.

Новое значение [sendef\_application_traffic_secret_(N + 1) вырабатывается из текущего значения 
[sender\_application_traffic_secret_N  в соответствии со следующей формулой:

[sender\_application_traffic_secret_(N  + 1) = 

HKDF-Expand-Label([sendef\_application_traffic_secret_N, "traffic u p d ' , H L e n ) .

Сразу после выработки нового значения [sender\_application_traffic_secret_(N  + 1 )  прежнее зна­
чение [sendef\_application_traffic_secret_(N) и ассоциированный с ним ключевой материал трафика 
(см. 8.4) должны быть удалены.

52



Р 1323565.1.030—2020

8.4 Ключевой материал трафика

Ключевой материал трафика [sender]_write_key, [sender]_write_iv вычисляется следующим образом: 

[sender]_write_key = HKDF-Expand-Label (Traffic Secret, "key", KLeri),
(18)

[sender]_write_iv = HKDF-Expand-Label (Traffic Secret, "iv", IVLen),

где секретное значение Traffic Secret зависит от этапа состояния соединения, на котором происходит 
обработка данных. Возможные значения Traffic Secret указаны в таблице 9.

Таблица 9 — Соответствие значения Traffic Secret этапу состояния соединения

Этап состояния соединения Значение Traffic Secret

Этап выработки параметров соединения и аутентификации [sender]_handshake_traffic_secret

Этап пересылки прикладных данных и post-handshake сообщений [sender]_application_traffic_secret_N

При изменении значения Traffic Secret [при обновлении ключевого материала с помощью сообще­
ния KeyUpdate (см. 8.3) или при переходе между этапами состояния соединения] ключевой материал 
трафика должен перевычисляться.

8.5 Выработка общего секретного значения ECDHE

Общее секретное значение ECDHE вырабатывается сторонами в случае установления соедине­
ния в рамках ecdhe_ke или psk_ecdhe_ke схемы аутентифицированной выработки общего ключевого 
материала в ходе обмена сообщениями ClientHello, ServerHello, HelloRetryRequest в соответствии с
8.5.1 и 8.5.2.

Примечания
1 Операции над точками эллиптических кривых задаются в соответствии с ГОСТ Р 34.10.
2 Описанный в разделах 8.5.1 и 8.5.2 порядок выработки секретного значения ECDHE на стороне клиента и 

на стороне сервера применим только для кривых, перечисленных в разделе 10.3. В случае появления в будущем 
новых стандартизованных кривых указанный порядок подлежит пересмотру и возможным изменениям.

8.5.1 Выработка значения ECDHE на стороне клиента
Клиент вырабатывает значение ECDHE следующим образом:
а) из списка поддерживаемых клиентом кривых Еь .. . ,  ER выбирает набор кривых Е;- , . . . ,  Eir, 

1 < /, < ir < R, где:
1) г > 1 в случае первичной отправки сообщения;
2) г = 1 в случае ответа на сообщение HelloRetryRequest, при этом Е(1 соответствует кривой, 

указанной в расширении key_share сообщения HelloRetryRequest (см. 5.6.4.2);
б) генерирует эфемерные ключевые пары (d11С, Q''c), ... , (d '1c, Q ^ ,  соответствующие кривым

Ejy ..., Ej где для любого / е ......./г}:
1) d'c выбирается случайно из множества {1, ... , qr, -  1};
2) Q'c = d>c ■ Р,\

в) отправляет серверу сообщение ClientHello, сформированное в соответствии с 5.5.1, содержа­
щее:

1) расширение key_share со значениями открытых эфемерных ключей Q '1c, ... , Ф с, сформи­
рованное в соответствии с 5.6.4.1;

2) расширение supported_groups со списком поддерживаемых кривых Еь ... , ER, сформиро­
ванное в соответствии с 5.6.3

и переходит в состояние ожидания ответа от сервера;
г) в случае получения сообщения HelloRetryRequest переходит на первый шаг [перечисление а) 

8.5.1], корректируя параметры в соответствии с 5.5.1; в случае получения сообщения ServerHello пере­
ходит к пятому шагу [перечисление д) 8.5.1]; в противном случае завершает соединение с оповещением 
об ошибке unexpected_message(CM. 7.2);

д) извлекает из полученного сообщения ServerHello эллиптическую кривую Eres и открытый эфе­
мерный ключ Q re| ,  res 6 {1, ... , /?}. Проверяет, что значение Q re|  принадлежит кривой Eres. В слу-

53



Р 1323565.1.030—2020

чае если это условие не выполнено, клиент должен завершить работу протокола TLS с оповещением 
handshake_failure;

е) формирует значение QECDHE в соответствии со следующей формулой:

q E C D H E  =  ( X E C D H E '  y E C D H E )  =  . d res) . gres- (1 9 )

ж) проверяет, что QECDHE Ф Ores. В случае если это условие не выполнено, клиент должен за­
вершить работу протокола TLS с оповещением уровня handshake_failure;

и) значение ECDHE является байтовым представлением координаты x ECDHE точки q e c d h e  в 
формате little-endian, т. е. формируется в соответствии со следующей формулой:

ECDHE = (Х е ^ Е ). (20)

где значение параметра coordinatejength определяется в соответствии с таблицей 17.

8.5.2 Выработка значения ECDHE на стороне сервера
Сервер, получив сообщение ClientHello, вырабатывает значение ECDHE следующим образом:
а) из списка ... , ER, указанного клиентом в расширении supported_groups, выбирает кривую 

Eres, res 6 {1, ... , R}, и соответствующее ей значение открытого эфемерного ключа Qre|  из списка зна­
чений Q'1C, ...Q irc, 1 ^ /-I < ir < R, указанных в расширении key_share. В случае если такой эфемерный 
ключ не найден (т. е. res е {1, ... , R}/{i^, ... , /Л}), сервер может инициировать процедуру пересогласова- 
ния открытых эфемерных ключей (см. 5.4), в рамках которой он отправит сообщение HelloRetryRequest, 
сформированное в соответствии с 5.5.3, содержащее расширение key_share, сформированное в соот­
ветствии с 5.6.4.2, содержащее информацию о кривой Eres, и перейдет в состояние ожидания сообще­
ния ClientHello от клиента;

б) проверяет, что значение Qrel  принадлежит кривой Eres. В случае если это условие не выполне­
но, сервер должен завершить работу протокола TLS с оповещением уровня handshake_failure;

в) генерирует эфемерную ключевую пару (cfre|, Qre|) соответствующую кривой Eres.
1) dress выбирается случайно из множества {1, ... , qres -  1};
2) Qre|  = d ress ■ Pres,

г) отправляет клиенту сообщение ServerHello, сформированное в соответствии с 5.5.2, содержа­
щее расширение key_share со значением открытого эфемерного ключа Qre|, соответствующего кривой 
Eres, сформированное в соответствии с 5.6.4.3;

д) формирует значение qEcdhe в соответствии со следующей формулой:

q e c d h e  -  (XECDHE, yECDHE) = (hres ■ dref ) ■ Qresc, (21)

е) проверяет, что q e c d h e  ф ores. В случае если это условие не выполнено, сервер должен за­
вершить работу протокола TLS с оповещением handshake_failure;

ж) значение ECDHE является байтовым представлением координаты x ECDHE точки QECDHE в 
формате little-endian, т. е. формируется в соответствии со следующей формулой:

ECDHE = strcoordjngteJengti1(XE(-'E>HE) i (22)

где значение параметра coordinate_length определяется в соответствии с таблицей 17.

8.6 Выработка предварительно распределенного секрета PSK

Значение PSK, соответствующее тикету, указываемому в поле Pskldentity.identity расширения 
pre_shared_key сообщения ClientHello, или значению поля selectedjdentity расширения pre_shared_key 
сообщения ServerHello, формируется в соответствии с одним из следующих способов в зависимости от 
типа предварительно распределенного секрета:

а) значение внутреннего предварительно распределенного секрета iPSK, который ассоциируется 
стикетом, пересылаемым в сообщении NewSessionTicket (см. 5.9.1), вычисляется следующим образом:

iPSK = HKDF -  Expand -  Label (RMS, «resumption», ticket_nonce, HLen), (23)

54



Р 1323565.1.030—2020

где значение RMS  задается в соответствии с 8.2;
значение ticketjnonce  соответствует полю ticket_nonce соответствующего сообщения NewSession- 
Ticket (см. 5.9.1).

П р и м е ч а н и е  — Поскольку значение поля ticket_nonce должно быть уникальным для каждого сообщения 
NewSessionTicket, отправленного в рамках одного соединения, для каждого тикета будет формироваться новое 
секретное значение iPSK\

б) значение внешнего предварительно распределенного секрета ePSK  вычисляется в соответ­
ствии с механизмом, который не фиксируется в настоящем документе и который, в случае исполь­
зования данного типа предварительно распределенного секрета, должен быть описан и исследован 
отдельно.

8.7 Экспорт ключевого материала

Значение exporter_value используется для экспорта ключевого материала из протокола TLS в про­
токол, находящийся на верхнем уровне. Формирование значения exporter_value описано в [1] в разделе 
7.5; формат меток, используемых для формирования exporter_value, описан в [2] в разделе 4.

П р и м е ч а н и е  — Настоящие рекомендации не фиксируют механизм использования данного значения в 
рамках вышестоящих протоколов; описание данного механизма, исследование функционала, предоставляемого в 
результате использования данного значения, а также анализ стойкости протокола, использующего данное значе­
ние, должны проводиться отдельно.

8.8 Функция Transcript-Hash

Функция Transcript-Hash задается следующим образом:

Transcript-Hash Щ , М 2, . . . , М п) = HASH  (М *,\М2\ ... \Мп), (24)

где:
а) М,- е BSj, где:

1) s1 > 0, если п = 1;
2) Sj > 0, / е {1, ... , п}, если п > 1.

П р и м е ч а н и е  — При использовании функции Transcript-Hash в протоколе TLS 1.3 множество строк 
М2, ... , Мп либо содержит пустую строку (состоит из единственного элемента е В0), либо состоит из множества 
строк, соответствующих байтовым представлениям посланных или части формируемых (см. 5.6.5.3) сообщений 
протокола Handshake.

б) М*1 задается следующим образом:
1) если п > 2, М2 = HelloRetryRequest (т. е. если в рамках текущего соединения было послано 

сообщение HelloRetryRequest), то

М*! = message_hash\OxOO\OxOO\HLen\HASH(MJ, (25)

где message_hash —  значение кода типа сообщения протокола Handshake, определенное в 5.1;
2) М*1 = М 1, в противном случае.

П р и м е ч а н и е  — В целях эффективности реализации значение функции Transcript-Hash может вычислять­
ся постепенно по мере поступления сообщений в рамках работы протокола Handshake.

8.9 Значения Handshake Context и Finished Secret

Значение Handshake Context представляет собой упорядоченное множество строк, являющихся 
байтовым представлением сообщений протокола Handshake, которое зависит от текущего режима ау­
тентификации и задается в соответствии с таблицей 10.

Значение Finished Secret задается в соответствии с режимами аутентификации (см. таблицу 10) и 
используется для формирования ключа вычисления кода аутентификации (см. 5.8.3).

55



Р 1323565.1.030—2020

Т а б л и ц а  10 — Задание значений Handshake Context и Finished Secret

Режим аутентификации Значение Handshake Context Значение Finished Secret

аутентификация сервера {ClientHello, ..., EncryptedExtensions/CentificateRequest} SHTS

main-handshake 
аутентификация клиента {ClientHello, ..., Finished со стороны сервера} CHTS

post-handshake 
аутентификация клиента

{ClientHello, ..., первый Finished со стороны клиента, 
CertificateRequest} catsn

П р и м е ч а н и я
1 Под обозначением «EncryptedExtensionsICertificateRequest» в данной таблице подразумевается стро­

ка, соответствующая байтовому представлению последнего из полученных сообщений EncryptedExtensions или 
CertificateRequest соответственно.

2 Значения Finished Secret приводятся в кратком обозначении (см. подробнее 8.2).

9 Прикладные данные

Прикладные данные всегда пересылаются в защищенном виде, передаются протоколу Record без 
дополнительного форматирования и имеют тип application_data(0x17)(CM. 5.1).

Не рекомендуется передавать прикладные данные сразу после передачи сообщения Finished со 
стороны сервера в случае двусторонней аутентификации клиента и сервера. На момент передачи при­
кладных данных непосредственно после сообщения Finished со стороны сервера клиент не является 
аутентифицированным, поэтому при неправильной работе приложения прикладного уровня могут быть 
скомпрометированы конфиденциальные данные.

10 Использование российских криптографических алгоритмов

10.1 Идентификаторы криптонаборов из реестра «TLSCipherSuites»

Настоящие рекомендации вводят следующие идентификаторы IANA из приватной области рее­
стра «TLSCipherSuites», указываемые в сообщениях ClientHello и ServerHello:

Т а б л и ц а  11 — Идентификаторы криптонаборов реестра «TLSCipherSuites»

Наименование криптонабора Номер криптонабора

TLS_GOSTR341112_256_WITH_KUZNYECHIK_MGM_L {0xC1, 0x03}

TLS_GOSTR341112_256_WITH_MAGMA_MGM_L {0xC1, 0x04}

TLS_GOSTR341112_256_WITH_KUZNYECHIK_MGM_S {0xC1, 0x05}

TLS_GOSTR341112_256_WITH_MAGMA_MGM_S {0xC1, 0x06}

Каждый из вышеперечисленных идентификаторов определяет криптонабор, предназначенный 
для использования в протоколе TLS 1.3 и задающий криптографические параметры (блочный шифр, 
параметры ключевого дерева и ограничения числа передаваемых записей) в соответствии с 10.1.1— 
10.1.4.

Указанный порядок следования криптонаборов является рекомендуемым порядком предпочтения 
для клиентов, поддерживающих работу со всеми криптонаборами.

П р и м е ч а н и е  — Рекомендации по использованию описанных криптонаборов в СКЗИ в зависимости от 
области их применения приводятся в приложении А.

10.1.1 Блочный шифр
Определенные в настоящих рекомендациях криптонаборы в качестве блочного шифра исполь­

зуют шифр «Магма» или «Кузнечик», определенный в ГОСТ Р 34.12. Длина блока составляет 16 байт 
(п = 16) для шифра «Кузнечик» и 8 байт (п = 8) для шифра «Магма», длина ключей в обоих случаях 
составляет 32 байта (KLen = 32).

56



Р 1323565.1.030—2020

Таблица 12 — Используемые блочные шифры

Криптонабор Блочный шифр

TLS_GOSTR341112_256_WITH_KUZNYECHIK_MGM_L «Кузнечик» (ГОСТ Р 34.12)

TLS_GOSTR341112_256_WITH_MAGMA_MGM_L «Магма» (ГОСТ Р 34.12)

TLS_GOSTR341112_256_WITH_KUZNYECHIK_MGM_S «Кузнечик» (ГОСТ Р 34.12)

TLS_GOSTR341112_256_WITH_MAGMA_MGM_S «Магма» (ГОСТ Р 34.12)

10.1.2 AEAD алгоритм
Определенные в настоящих рекомендациях криптонаборы в качестве AEAD алгоритма исполь­

зуют режим MGM работы блочного шифра, описанный в Р 1323565.1.026, с длиной имитовставки S, 
введенной в Р 1323565.1.026, равной п. Параметр IVLen принимает значение п.

При этом для каждой формируемой записи с номером seqnum функция зашифрования AEAD- 
Encrypt задается следующим образом.

Входные аргументы:
- К  е BKLen, ключ шифрования;
- попсе 6 B!VLen, уникальный вектор;
- А е Bs, s > 0, дополнительные имитозащищаемые данные;
- Р 6 Bs, s > 0, открытый текст.
Результат работы:
- С|Т, где С 6 В |Р| — шифртекст, Те Bs — имитовставка.
Функция зашифрования AEAD-Encrypt задается в соответствии со следующей формулой:

AEAD-Encrypt (К, попсе, А, Р) = С\Т, (26)

где

(MGMnonce, А, С, Т) = MGMEncrypt (Ksecinum, MGMnonce, А, Р),

Kseqnum = JLSTREE (К, seqnum), (27)

MGMnonce = nonce [1 ,A\&.0x7f\ nonce [2..IVLen],

Для каждой полученной записи с номером seqnum функция расшифрования AEAD-Decrypt зада­
ется следующим образом.

Входные аргументы:
- К  е BKLen, ключ шифрования;
- попсе 6 B!VLen, уникальный вектор;
- А 6 Bs, s > 0, дополнительные имитозащищаемые данные;
- ENCrecord = С\Т, где С 6 В|Р| — шифртекст, Т е Bs — имитовставка.
Результат работы:
- res, содержащий либо ошибку, либо байтовую строку длины |С|.
Функция расшифрования AEAD-Decrypt задается в соответствии со следующей формулой:

AEAD-Decrypt (К, попсе, A, ENCrecord) = res, (28)

где

res' = MGMDecrypt(Ksecinum, MGMnonce, A, C, 7), 

C\T = ENCrecord,

Kseqnum = JLSTREE (К , seqnum), 

MGMnonce-nonce[ 1 ..1] & 0x7f\nonce[2..IVLen],

res
Р е  B|C|, в случае если res' = (A, P)\ 
ошибка, в случае если res' содержит ошибку.

(29)

57



Р 1323565.1.030—2020

Алгоритм TLSTREE выработки ключей защиты записей определяется в соответствии с 10.1.2.1.
10.1.2.1 Алгоритм TLSTREE выработки ключей защиты записей
В настоящем разделе описывается алгоритм TLSTREE, используемый для порождения ключей 

защиты записей из корневого ключа Кгоо(е В32.
Функция TLSTREE задается следующим образом.
Входные аргументы:
- Kroot е В32, корневой ключ;
- / е {0, 1, ... , 264 -  1}, число.
Результат работы:
- ключевой материал длины 32 байта.
Функция TLSTREE задается в соответствии со следующей формулой:

TLSTREE (Kmot, i) = Divers3(Divers2(DiverS] (Kroot, STR8(i & q ) ) ,  STR8(i & C2)), STR8(i & C3)), (30)

где
- Cv  C2, C3 e {0,1, ... ,2 64 -  1} —  константы, определяемые конкретным криптонабором (cm . 10.1);
- Divers, (К, D), j  e {1,2,3} —  алгоритм диверсификации ключа К  е В32 по данным диверсифи­

кации D е В8, который задается с помощью функции KDF258, определяемой алгоритмом KDF_ 
GOSTR3411_2012_256, описанным в Р 50.1.113:

Divers! (К, D) = KDF256 (К, "levelV, D);

Divers2 (К, D) = KDF256 (К, "Ievel2", D); (31)

Divers3 (К, D) = KDF256 (К, "/eve/3", D).

10.1.2.2 Параметры ключевого дерева
Константы С2, С3, используемые для порождения ключей защиты записей, определяются в 

соответствии с таблицей 13.

Та б л и ц а  13 — Параметры ключевого дерева

Криптонабор Константы C1 C2, C3

TLS_GOSTR341112_256_WITH_KUZNYECHIK_MGM_L
0xf800000000000000,

OxfffffffOOOOOOOOO,
OxffffffffffffeOOO

TLS_GOSTR341112_256_WITH_MAGMA_MGM_L
OxffeOOOOOOOOOOOOO,

OxffffffffcOOOOOOO,

TLS_GOSTR341112_256_WITH_KUZNYECHIK_MGM_S
OxffffffffeOOOOOOO,

OxfffffffffffTOOOO,

TLS_GOSTR341112_256_WITH_MAGMA_MGM_S
OxfffffffffcOOOOOO,
OxffffffffffffeOOO,

Oxffffffffffffffff

10.1.3 Максимальное количество записей
Параметр SNMAX задает максимальное количество записей, которые могут передаваться в 

рамках одного значения [sendet]_write_key (номер записи seqnum  может принимать значения от 0 до 
SNMAX-1 включительно), и определяется в соответствии с таблицей 14.

58



Р 1323565.1.030—2020

Таблица 14 — Максимальное количество записей

Криптонабор SNMAX

TLS_GOSTR341112_256_WITH_KUZNYECH I K_MGM_L 264

TLS_GOSTR341112_256_WITH_MAGMA_MGM_L 264

TLS_GOSTR341112_256_WITH_KUZNYECHI K_MGM_S 2 42

TLS_GOSTR341112_256_WITH_MAGMA_MGM_S 2 39

В случае если номер получаемой/отправляемой записи близок к значению SNMAX, стороны могут 
либо обновить значение ключевого материала трафика с помощью механизма сообщений KeyUpdate 
(см. 5.9.3), либо завершить соединение.

10.1.4 Хэш-функция
Определенные в настоящих рекомендациях криптонаборы в качестве хэш-функции HASH исполь­

зуют хэш-функцию, описанную в ГОСТ Р 34.11, с длиной выхода HLen = 32 (256 бит).

10.2 Идентификаторы схем подписи из реестра «TLSSignatureScheme»

Настоящие рекомендации вводят следующие идентификаторы IANA из приватной области рее­
стра «TLSSignatureScheme», указываемые в расширениях signature_algorithms и signature_algorithms_ 
cert:

enum {
gostr34102012_256a(0x0709), 
gostr34102012_256b(0x070A), 
gostr34102012_256c(0x070B), 
gostr34102012_256d (0x070C), 
gostr34102012_512a(0x070D), 
gostr34102012_512b(0x070E), 
gostr34102012_512c(0x070F),
(OxFFFF)

} SignatureScheme;

Каждый из вышеперечисленных идентификаторов из реестра «TLSSignatureScheme» соответ­
ствует схеме подписи, определяемой алгоритмом подписи, описанным в ГОСТ Р 34.10, с длиной ключа 
256 или 512 бит и одной из эллиптических кривых, описанных в Р 1323565.1.024. Соответствие между 
вводимыми идентификаторами и схемами подписи приведено в таблице 15.

Таблица 15 — Схемы подписи для идентификаторов из реестра «TLSSignatureScheme»

Наименование схемы 
подписи Алгоритм подписи Идентификатор кривой Е

gostr34102012_256a по ГОСТ Р 34.10 с длиной ключа 256 бит id-tc26-gost-3410-2012-256-paramSetA

gostr34102012_256b по ГОСТ Р 34.10 с длиной ключа 256 бит id-tc26-gost-3410-2012-256-paramSetB

gostr34102012_256c по ГОСТ Р 34.10 с длиной ключа 256 бит id-tc26-gost-3410-2012-256-paramSetC

gostr34102012_256d по ГОСТ Р 34.10 с длиной ключа 256 бит id-tc26-gost-3410-2012-256-paramSetD

gostr34102012_512a по ГОСТ Р 34.10 с длиной ключа 512 бит id-tc26-gost-3410-12-512-paramSetA

gostr34102012_512b по ГОСТ Р 34.10 с длиной ключа 512 бит id-tc26-gost-3410-12-512-paramSetB

gostr34102012_512c по ГОСТ Р 34.10 с длиной ключа 512 бит id-tc26-gost-3410-2012-512-paramSetC

59



Р 1323565.1.030—2020

В силу исторических причин помимо идентификаторов кривых, перечисленных в таблице 15, су­
ществуют старые значения идентификаторов, которые соответствуют тем же параметрам эллиптиче­
ских кривых. В целях обеспечения совместимости реализации должны быть готовы поддерживать как 
новые, так и устаревшие значения идентификаторов (см. таблицу 16).

Таблица 16 — Дополнительные идентификаторы кривых перечисления SignatureScheme

Наименование схемы 
подписи Алгоритм подписи Идентификатор кривой Е

gostr34102012_256b по ГОСТ Р 34.10 с длиной ключа 256 бит
id-GostR3410-2001-С ryptoPro-A-ParamSet

id-GostR3410-2001-С ryptoPro-XchA-ParamSet

gostr34102012_256c по ГОСТ Р 34.10 с длиной ключа 256 бит id-GostR3410-2001-С ryptoPro-B-ParamSet

gostr34102012_256d по ГОСТ Р 34.10 с длиной ключа 256 бит
id-GostR3410-2001-С ryptoPro-C-ParamSet

id-GostR3410-2001-CryptoPro-XchB-ParamSet

При этом функция SIGN, используемая для формирования значения подписи в 5.8.2, задается 
следующим образом.

Входные аргументы:
- М е В*, произвольная байтовая строка;
- 0 < ds/g/7 < q, ключ подписи, где q — порядок циклической подгруппы группы точек эллиптиче­

ской кривой Е.
Результат работы:
- sgn е В21, где / е {32,64}.
Функция SIGH задается в соответствии со следующей формулой:

(г, s) = SIGNGOST (М, ddgn),

SIGN (М, dsjgn) = sgn = s tr^ s tq Q ,  (32)

где SIGNGOST (M, dsjgn) — алгоритм подписи, выдающий в качестве результата своей работы пару 
чисел (г, s), выработанных в результате вычисления значения подписи сообщения М на ключе под­
писи cfg,- в соответствии с алгоритмом подписи по ГОСТ Р 34.10 с параметрами, соответствующими 
кривой £;

/ = 32 для алгоритма подписи SIGNGOST, соответствующего алгоритму подписи по ГОСТ Р 34.10 
с длиной ключа 256 бит, и / = 64 для алгоритма подписи SIGNGOST, соответствующего алгоритму под­
писи по ГОСТ Р 34.10 с длиной ключа 512 бит.

Примечание — В формуле (32) значение подписи sgn представляется в виде конкатенации двух строк, 
являющихся байтовыми представлениями чисел г и s в формате little-endian.

10.3 Идентификаторы кривых из реестра «TLSSupportedGroups»

Настоящие рекомендации определяют следующие новые идентификаторы IANA из реестра 
«TLSSupportedGroups», указываемые в расширении supported_groups:

enum {
GC256A(0x0022), GC256B(0x0023), GC256C(0x0024),
GC256D(0x0025), GC512A(0x0026), GC512B(0x0027),
GC512C(0x0028),
(OxFFFF)

} NamedGroup;

60



Р 1323565.1.030—2020

Каждый из вышеперечисленных идентификаторов определяет одну из эллиптических кри­
вых, описанных в Р 132356.1.024. Соответствие между вводимыми идентификаторами из реестра 
«TLSSupportedGroups», идентификаторами кривых и длиной координат точек кривой (значение 
coordinatejength, см. 5.6.4.4) приведено в таблице 17.

Таблица 17 — Задание эллиптических кривых перечисления NamedGroup

Наименование кривой Идентификатор кривой Значение coordinatejength

GC256A id-tc26-gost-3410-2012-256-paramSetA 32

GC256B id-tc26-gost-3410-2012-256-paramSetB 32

GC256C id-tc26-gost-3410-2012-256-paramSetC 32

GC256D id-tc26-gost-3410-2012-256-paramSetD 32

GC512A id-tc26-gost-3410-12-512-paramSetA 64

GC512B id-tc26-gost-3410-12-512-paramSetB 64

GC512C id-tc26-gost-3410-2012-512-para mSetC 64

11 Вопросы реализации и безопасности
11.1 Механизмы защиты от атак по побочным каналам

В целях создания эффективной реализации, а также противодействия атакам по побочным кана­
лам сторонам взаимодействия необходимо придерживаться следующих правил работы:

- при использовании алгоритма TLSTREE обращение к функции DiverSj, j  е {1,2,3}, долж­
но проводиться только в тех случаях, когда номер записи seqnum достигает такого значения, что 
seqnum & Cj Ф (seqnum -  1) & Су, в противном случае необходимо использовать значение, выработан­
ное ранее;

- для каждого предварительно распределенного секрета PSK значение HMAC_binder_keyдолжно 
вычисляться только один раз в рамках всех соединений, в которых тикет, соответствующий данному 
значению PSK, указывался клиентом в расширении pre_shared_key сообщенийСНепШеНо.

11.2 Механизмы защиты от downgrade-атак

11.2.1 Формирование значения поля random в рамках режима совместимости
Данный механизм защищает TLS 1.3 клиента и TLS 1.3 сервер от downgrade-атак и применяется в 

случае если TLS 1.3 клиент и сервер допускают работу в рамках режима совместимости.
При работе TLS 1.3 сервера в режиме совместимости в случае если максимально поддержива­

емая версия протокола TLS, указанная клиентом в сообщении ClientHello, соответствует версии 1.2 
и ниже, сервер должен установить последние 8 байт значения поля random в сообщении ServerHello 
равными следующим специальным значениям:

- при выборе протокола TLS 1.2: 44 4F 57 4Е 47 52 44 01;
- при выборе протокола TLS 1.1 или ниже: 44 4F 57 4Е 47 52 44 00.
При работе TLS 1.3 клиента в режиме совместимости при получении сообщения ServerHello, соот­

ветствующего версии протокола TLS 1.2 и ниже, клиент должен проверить, что последние 8 байт поля 
ServerHello.random не равны ни одному из перечисленных выше значений. В противном случае клиент 
должен прекратить работу протокола Handshake с оповещением illegal_parameter (см. 7.2).

П р и м е ч а н и е  — TLS 1.2 клиенту, получившему сообщение ServerHello, соответствующее версии протоко­
ла TLS 1.1 и ниже, рекомендуется также проверить, что последние 8 байт поля ServerHello.random не равны второ­
му из перечисленных выше значений. В противном случае клиент должен прекратить работу протокола Handshake 
с оповещением illegal_parameter (см. 7.2).

11.2.2 Использование значения TLS_FALLBACK_SCSV в рамках режима совместимости
Данный механизм защищает от downgrade-атак TLS 1.3 клиента, устанавливающего соединение 

в рамках режима совместимости с сервером версии 1.2 и ниже, а также TLS 1.3 сервер, устанавливаю­
щий соединение в рамках режима совместимости с клиентом версии 1.2 и ниже.

61



Р 1323565.1.030—2020

Значение TLS_FALLBACK_SCSV является сигнальным криптонабором, указываемым клиентом в 
поле cipher_suites сообщения ClientHello после всех значений поддерживаемых криптонаборов и опре­
деляется в соответствии с [3] следующим образом:

CipherSuite TLS_FALLBACK_SCSV = {0x56, 0x00};

Данное значение не используется для согласования криптографических алгоритмов, не может 
быть выбрано сервером в рамках работы протокола Handshake и используется для информирования 
сервера о том, что клиент пытается повторно установить соединение с понижением версии протокола.

Клиенту рекомендуется указывать значение TLS_FALLBACK_SCSV в поле cipher_suites сообще­
ния ClientHello, если клиент указывает версию в поле legacy_version меньше максимальной версии, 
поддерживаемой им. В случае если клиент указывает максимальную поддерживаемую версию в поле 
legacy_version, значение TLS_FALLBACK_SCSV указываться не должно.

При возобновлении соединения клиент не должен указывать значение TLS_FALLBACK_SCSV в 
поле cipher_suites сообщения ClientHello, поскольку предполагается, что к этому моменту клиент уже 
знает максимальную версию протокола TLS, поддерживаемую сервером.

При получении сообщения ClientHello, содержащего в поле cipher_suitesзначениеTLS_FALLBACK_ 
SCSV, сервер действует следующим образом:

- в случае если максимальная версия протокола, поддерживаемая сервером, выше версии, ука­
занной клиентом в сообщении ClientHello в поле legacy_version, сервер должен завершить работу про­
токола Handshake с оповещением inappropriate_fallback. При этом значение поля legacy_record_version 
в незащищенной записи, содержащей указанное оповещение, должно быть равным либо значению 
поля ClientHello.legacy_version, либо значению поля legacy_record_version в незащищенной записи, со­
держащей сообщение ClientHello;

- в случае если значение TLS_FALLBACK_SCSV не было указано или при указании данного зна­
чения максимальная версия протокола, поддерживаемая сервером, не превосходит версию протокола, 
указанную клиентом в поле ClientHello.legacy_version) сервер продолжает работу протокола Handshake 
в штатном режиме.

62



Р 1323565.1.030— 2020

Приложение А 
(справочное)

Рекомендации по использованию TLS 1.3 криптонаборов в СКЗИ

В настоящем приложении приводятся рекомендации по использованию описанных криптонаборов в СКЗИ в 
зависимости от области их применения.

Регулируемые государством области применения СКЗИ определяются в соответствии с [4]. Для СКЗИ, при­
меняемых в данных областях, вводится классификация, определенная в Р 1323565.1.012. Далее приводятся реко­
мендации по использованию описанных в настоящем документе криптонаборов в СКЗИ в соответствии с данной 
классификацией.

В СКЗИ, относящихся к классам КС1, КС2, КСЗ, допустимо использовать все криптонаборы, определяемые 
в настоящем документе.

В СКЗИ, относящихся к классу КВ, рекомендуется использовать следующие криптонаборы, определяемые в 
настоящем документе:

- TLS_GOSTR341112_256_WITH_KUZNYECHIK_MGM_S;
- TLS_GOSTR341112_256_WITH_MAGMA_MGM_S.

При использовании криптонабора TLS_GOSTR341112_256_WITH_MAGMA_MGM_S рекомендуется ограни­
чивать размер данных, используемых при формировании записей в протоколе Record, так, чтобы размер поля 
TLSPIaintext.fragment не превышал 1 КБ (значение поля TLSPIaintext.length, соответственно, не будет превышать 
1024).

63



Р 1323565.1.030— 2020

Приложение Б 
(справочное)

Язык представления данных в протоколе TLS

В настоящем приложении содержится описание общепринятого языка представления данных в протоколе 
TLS 1.3.

Б.1 Размер базового блока данных
Представление всех элементов данных указывается в явном виде. Размер базового блока данных, переда­

ваемых в рамках работы протокола TLS 1.3, составляет 1 байт (8 бит). Многобайтовые элементы данных являются 
конкатенацией (объединением) байт слева направо, сверху вниз и представляются в виде байтовых строк в фор­
мате big-endian.

Б.2 Разное
Текст комментария начинается с символов «/*» и заканчивается символами «*/».
Необязательные (опциональные) компоненты выделяются с помощью двойных квадратных скобок «[[ ]]».
Тип элементов размером в 1 байт, содержащих не интерпретируемые в рамках работы протокола TLS дан­

ные, обозначается типом opaque.
Переобозначение Т' (type alias) для существующего типа Т задается следующим образом:

Б.З Числа
Базовым типом числовых данных является беззнаковый байт (uint8). В настоящих рекомендациях использу­

ются следующие предопределенные типы числовых данных:

uint8 uint16[2];
uint8 uint24[3];
uint8 uint32[4];
uint8 uint64[8];

Все числовые значения указанных типов представляются в виде байтовых строк в формате big-endian.

Б.4 Векторы
Вектор (одномерный массив) представляет собой поток элементов данных одного и того же типа. Длина 

вектора задается в байтах и может быть указана во время объявления или оставаться неопределенной вплоть до 
начала работы протокола TLS.

Вектор Т' фиксированной длины, содержащий данные типа Т, задается следующим образом:

тт'[п];
где значение п является длиной вектора Т' в байтах и кратно размеру Т. При этом длина вектора не включается в 
кодированный поток данных.

Байтовое представление значения, являющегося вектором, задается конкатенацией байтовых представле­
ний элементов данного вектора в порядке их нумерации (слева направо).

В приведенном ниже примере вектор Datum определяется как три последовательных байта, не интерпрети­
руемых протоколом, в то же время вектор Data определяется как три последовательных вектора Datum, состоящие 
в общей сложности из 9 байт.

opaque Datum[3]; /* три неинтерпретируемых байта */
Datum Data[9]; /*3 последовательных 3-байтовых вектора */

Векторы переменной длины определяются с указанием допустимого поддиапазона размеров (включая край­
ние значения) в формате <floor..ceiling>. При кодировании в поток данных перед содержимым вектора помещается 
его фактическая длина. Значение длины данного вектора представляется в виде байтовой строки с длиной, равной 
длине строки, требуемой для хранения максимального значения длины вектора (ceiling). Вектор переменной дли­
ны, имеющий фактическую нулевую длину, представляется в виде байтовой строки, соответствующей нулевому 
значению.

Вектор Т' переменной длины, содержащий данные типа Т, задается следующим образом:

TT'<floor..ceiling>;

64



Р 1323565.1.030—2020

При этом длина кодированного вектора должна быть в точности кратна размеру одиночного элемента (на­
пример, 17-байтовый вектор типа uint16, будет недопустимым).

В следующем примере первый вектор mandatory имеет тип opaque и размер от 300 до 400 байт (такой вектор 
никогда не может быть пустым). Поле фактической длины вектора занимает 2 байта (uint16), которых достаточно 
для записи максимальной длины вектора, равной 400. Второй вектор longer может содержать до 800 байт данных 
или до 400 элементов uint16 и может быть вектором нулевой длины. Его кодирование будет включать поле разме­
ром 2 байта, соответствующее длине вектора и предшествующее его элементам.

opaque mandatory<300..400>;
/* поле длины занимает 2 байта, не может быть пустым */ 

uint16 longer<0..800>;
/* от 0 до 400 16-битовых целых чисел без знака */

Б.5 Перечисления enum
В рамках работы протокола TLS 1.3 используется дополнительный тип разреженных данных — перечисле­

ние enum. Каждое определение перечисления задает новый тип. Операции присваивания и сравнения могут ис­
пользовать только элементы перечисления одного и того же типа.

Перечисление задается следующим образом:

enum { e1(v1), e2(v2), ... , en(vn) [[, (n)]] }Te;

где
- v1,v2,...,vn — значения элементов е1,е2,...,еп соответственно;
- (n) — опциональный элемент, содержащий максимальное возможное значение, которое может принимать 

элемент данного перечисления, и предназначенный для определения байтового размера каждого элемента пере­
числения.

Поскольку элементы перечисления не упорядочены, им может быть присвоено любое уникальное значение 
в любом порядке.

Будущие расширения или дополнения к протоколу TLS 1.3 могут определять новые значения элементов пе­
речислений. Реализации должны иметь возможность анализировать и игнорировать неизвестные значения, если в 
определении поля перечисления не указано иное.

Значение каждого элемента перечисления может быть представлено в виде байтовой строки, равной по 
длине байтовой строке, соответствующей наибольшему значению среди всех значений элементов данного пере­
числения. В следующем примере элементы перечисления Color будут занимать в потоке по 1 байту.

enum { red(3), blue(5), white(7)} Color;

Для того, чтобы задать байтовый размер элементов перечисления без определения лишнего элемента, мож­
но дополнительно задать значение без сопоставления с ним соответствующего наименования. В следующем при­
мере элемент перечисления Taste будет занимать 2 байта в потоке данных, но в текущей версии протокола может 
принимать значения только 1, 2 или 4.

enum { sweet(1), sour(2), bitter(4), (32000)} Taste;

Наименования элементов перечисления допустимы в пределах заданного типа. В первом примере полно­
стью корректное обращение ко второму элементу перечисления будет иметь вид Color.blue. Подобное уточнение 
не требуется, если цель присвоения точно задана.

Color color = Color.blue; Г  переопределение, допустимо */
Color color = blue; Г  корректно, тип задан неявно */

Наименования, присвоенные элементам перечисления, не обязательно должны быть уникальными. Одному 
и тому же элементу перечисления может соответствовать значение, обозначающее числовой диапазон. Данное 
значение включает в себя минимальное и максимальное значения, содержащиеся в указанном диапазоне, кото­
рые разделяются двумя подряд идущими точками, как показано в следующем примере.

enum { sad(0), meh(1..254), happy(255)} Mood;

65



Р 1323565.1.030— 2020

Описанное представление элементов перечисления может быть использовано преимущественно для резер­
вирования областей в памяти.

Б.6 Структуры
Структуры представляют собой типы данных, которые могут быть сформированы из ранее определенных 

типов данных. Каждое определение структуры задает новый уникальный тип.
Структура задается следующим образом:

struct {
Т1 f 1;
T2f2;

Tnfn;
} Т ;

где f 1, f2, ..., fn являются полями структуры Т, значения которых имеют типы Т1, Т2, .... Тп соответственно.

Байтовое представление данных, соответствующих определенной структуре, задается конкатенацией байто­
вых представлений значений полей структуры в порядке их объявления (сверху вниз).

Векторы допустимы в качестве полей структуры, имеющих фиксированную или переменную длину, и форми­
руются в соответствии с разделом Б.4. Примерами структур, содержащих вектор в качестве своего поля, являются 
структуры V1 и V2, описанные в Б.8.

Обращение к полям внутри структуры может быть осуществлено с использованием наименований элемен­
тов с применением такого же синтаксиса, который описан для перечислений. Например, обращение T.f2 будет 
указывать на второе поле определенной выше структуры Т. Определения структур могут быть вложенными.

Б.7 Константы
Полям структур и переменным могут быть присвоены фиксированные значения с помощью оператора «=», 

как в следующем примере:

struct {
Т1 f1 = 8; /* T.f1 всегда должно быть равно 8 */
T2f2;

} Т ;

Б.8 Оператор выбора select
Определяемые структуры могут содержать варианты формирования, выбор между которыми производится 

при помощи оператора select и основывается на доступной в среде информации. Переключатель (селектор) вари­
антов должен быть перечислением (см. Б.5), которое определяет возможные варианты формирования структуры 
данных и задается следующим образом:

enum { e1(v1), e2(v2), ..., en(vn) [[, (n)]]} E;

struct {
select (E) {

caseel: Te1 [[fe1 ]]; 
case e2: Te2 [[fe2]];

case en: Ten [[fen]];

};
}Tv;

Каждая ветка оператора select определяет тип поля данного варианта и необязательное наименование поля. 
Механизм выбора варианта во время работы протокола TLS не описывается данным языком представления.

Ниже приведен следующий пример формирования структуры на основе использования оператора select.

66



Р 1323565.1.030— 2020

enum { apple(O), orange(1) }  VariantTag; 

struct {
uint16 number;
opaque string<0..10>; /* вектор переменной длины 7

} V1; 

struct {
uint32 number;
opaque string[10]; /* вектор фиксированной длины 7

} V2; 

struct {
VariantTag type; 
select (VariantRecord.type) { 

case apple: V1; 
case orange: V2;

};
} VariantRecord;

67



Р 1323565.1.030—2020

Библиография

[1] IETF RFC 8446

[2] IETF RFC 5705

[3] IETF RFC 7507

[4]

E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3, IETF RFC 8446

E. Rescorla, Keying Material Exporters for Transport Layer Security (TLS), IETF RFC 5705

B. Moeller, A. Langley, TLS Fallback Signaling Cipher Suite Value (SCSV) for Preventing Protocol 
Downgrade Attacks, IETF RFC 7507

Приказ ФСБ России от 9 февраля 2005 г. № 66 (в редакции приказа ФСБ России от 12 апреля 
2010 г. № 173). Об утверждении положения о разработке, производстве, реализации и экс­
плуатации шифровальных (криптографических) средств защиты информации (Положение 
ПКЗ—2005)

УДК 681.3.06:006.354 ОКС 35. 040 ОКСТУ 5002

Ключевые слова: криптографические протоколы, аутентификация, пароль, ключ

БЗ 4—2020/1

Редактор ЕЛ. Моисеева 
Технический редактор И.Е. Черепкова 

Корректор М.В. Бучная 
Компьютерная верстка ЕЛ. Кондрашовой

Сдано в набор 28.02.2020. Подписано в печать 01.06.2020. Формат 60*84%. Гарнитура Ариал.
Уел. печ. л. 8,37. Уч.-изд. л. 7,53.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» 
для комплектования Федерального информационного фонда стандартов,

117418 Москва, Нахимовский пр-т, д. 31, к. 2. 
www.gostinfo.ru info@gostinfo.ru

Р 1323565.1.030-2020

https://meganorm.ru/Index2/1/4293826/4293826780.htm
https://meganorm.ru/mega_doc/dop_fire/postanovlenie_pravitelstva_sankt-peterburga_ot_27_10_2022_N/0/postanovlenie_pravitelstva_sankt-peterburga_ot_19_01_2004_N.html
https://meganorm.ru/mega_doc/dop_fire/postanovlenie_sovmina_rsfsr_ot_03_10_1962_N_1327_red_ot_13/0/dekret_snk_rsfsr_ot_08_12_1926_ob_okazanii_grazhdanami.html

