Утверждаю Заместитель Министра энергетики Российской Фелерапии

П.Ю.Сорокин «<u>24</u>» <u>января</u> 2019 г.

Методические рекомендации

по определению технологических потерь природного газа при транспортировке магистральным трубопроводным транспортом

Методические рекомендации по определению технологических потерь транспортировке трубопроводным природного газа при магистральным транспортом (далее – Методические рекомендации) предназначены использования при подготовке обосновывающих документов технологических потерь природного газа при транспортировке магистральным трубопроводом организациями, оказывающими услуги по транспортировке, и организациями, передающими для транспортировки природный газ.

Методические рекомендации разработаны взамен Методических рекомендаций по определению и обоснованию технологических потерь природного газа при транспортировке магистральным трубопроводным транспортом, утвержденных Минэнерго России 9 июля 2012 года.

В целях настоящих Методических рекомендаций применены следующие термины и определения:

Баланс газа: количественное итоговое равное соотношение с одной стороны: остатки на начало отчетного периода и поступления газа; с другой стороны: отбор газа на различные цели, в том числе производственные и бытовые нужды, потери, в том числе технологические, отпуск газа потребителям и (или) покупателям, остатки газа на конец отчетного периода.

Газоперекачивающий агрегат (ГПА): установка, включающая в себя газовый компрессор (нагнетатель), привод (газотурбинный, электрический, поршневой или другого типа) и оборудование, необходимое для их функционирования.

Газопровод магистральный: технологически неделимый, централизованно управляемый имущественный производственный комплекс, состоящий из взаимосвязанных объектов, являющихся его неотъемлемой технологической частью, предназначенных для транспортировки подготовленного в соответствии с техническим регламентом и национальными стандартами природного газа от объектов добычи и (или) пунктов приема до пунктов сдачи потребителям или передачи в распределительные газопроводы, или на хранение.

Газопровод-отвод: газопровод, обеспечивающий некомпримируемую подачу газа от магистрального газопровода до ГРС, ГИС.

Давление газа рабочее: максимально возможное давление газа, установленное проектом, при котором обеспечивается режим эксплуатации газопровода.

Источник технологических потерь природного газа: производственный объект (сооружение, технологическое оборудование, устройство), вследствие технологического функционирования которого в процессе транспортировки природного газа магистральным трубопроводом возникают потери природного газа.

Методика: способ расчета, установления, определения искомых величин, алгоритма осуществления операций и процедур выполнения работы.

Технологические потери природного газа при транспортировке трубопроводом (Технологические потери) - неизбежные и магистральным безвозвратные потери природного газа, обусловленные технологическими особенностями процесса транспортировки, определенного проектной документацией, требованиями нормативных документов и положениями стандартов, а также физико-химическими характеристиками транспортируемого природного газа.

Норматив технологических потерь природного газа при транспортировке магистральным трубопроводом: относительная величина потерь природного газа, обусловленная технологическим процессом транспортировки природного газа по

участку магистрального трубопровода в расчетном периоде, к величине объема природного газа, подлежащего транспортировке по данному участку в соответствии с технологической схемой транспортировки, утвержденной в установленном порядке.

Транспортировка природного газа: совокупность технологических операций, включающая в себя закачку (прием) природного газа для транспортировки магистральным трубопроводом, перемещение (перекачку) природного газа от пунктов приема до пунктов сдачи и сдачу природного газа по итогам транспортировки трубопроводным транспортом.

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

ГИС – газоизмерительная станция;

ГОСТ – государственный стандарт;

ГПА – газоперекачивающий агрегат;

ГРС – газораспределительная станция;

3РА – запорно-регулирующая арматура;

КИПиА – контрольно-измерительные приборы и автоматика;

КС – компрессорная станция;

КЦ - компрессорный цех;

ЛЧ – линейная часть;

ЛПУ МГ – линейно-производственное управление магистрального

газопровода

МГ – магистральный газопровод;

ПК – предохранительный клапан;

уптниг - установка подготовки топливного, пускового и

импульсного газа;

УСБ – устройство сужающее быстросъемное;

ЦБК – центробежный компрессор;

1. Общие положения

- 1.1. Расчет количества технологических потерь природного газа при транспортировке трубопроводным транспортом на планируемый период осуществляется в тыс. ${\rm M}^3$ при стандартных условиях температуре газа ${\rm T_{cr}=}293,15$ K, абсолютном давлении газа ${\rm P_{ar}=}0,1013$ МПа.
- 1.2. Подготовка материалов по обоснованию технологических потерь природного газа для утверждения нормативов технологических потерь в плановом периоде субъектами хозяйственной деятельности осуществляется на основе утвержденных проектных документов И нормативных документов, регламентирующих технологический процесс транспортировки, а также положений стандартов, являющихся обосновывающими документами неизбежности технологических потерь:
 - технологическая часть утвержденной проектной документации;
 - технологические схемы утвержденной проектной документации;
 - технологические карты, в том числе технологических режимов;
 - технологические регламенты работы КС, КЦ, ЛЧ, ГРС, ГИС и др.;
 - материальный баланс из проектной документации;
- документация заводов-изготовителей, в том числе паспорта,
 регламентирующие эксплуатацию технологического оборудования;
 - результаты лабораторных испытаний природного газа;
- документы, подтверждающие параметры природного газа при определении количества технологических потерь природного газа.
- 1.3. Расчеты технологических потерь природного газа осуществляются по каждому конкретному источнику (группе источников) технологических потерь с использованием результатов измерений и данных лабораторных испытаний, на основании инвентаризации источников технологических потерь.

По объектам капитального строительства и реконструкции могут использоваться расчеты технологических потерь в составе проектной документации.

1.4. Инвентаризация источников технологических потерь осуществляется в соответствии с проектной документацией на магистральный трубопровод и

фактическим наличием эксплуатируемого технологического оборудования (сооружений). Законсервированное, резервное или аварийное оборудование (сооружения) не учитывается при определении технологических потерь.

- 1.5. На основании расчетов количества технологических потерь природного газа по каждому источнику (группе источников) технологических потерь составляется ведомость технологических потерь по объекту образования технологических потерь и сводная ведомость по газотранспортному обществу.
- 1.6. Пробы газа отбираются по ГОСТ 31370-2008 «Газ природный. Руководство по отбору проб».
- 1.7. Коэффициент сверхсжимаемости природного газа определяется по ГОСТ 30319.2–2015 или ГОСТ 30319.3–2015.
- 1.8. Показатель адиабаты природного газа определяется по ГОСТ 30319.3—2015.
- 1.9. Показатели, применяемые в формулах для расчета технологических потерь природного газа (кроме общепринятых) подтверждаются документами (например, актами проведенных испытаний и т.п.).

2. Технологические потери природного газа при транспортировке магистральным трубопроводом

- 2.1. Технологические потери природного газа подразделяют на следующие виды:
- потери природного газа в результате стравливания в атмосферу при технологических операциях, обусловленные технологическим режимом транспортировки;
- остатки природного газа в магистральном трубопроводе после выполнения мероприятий по его подготовке к проведению капитальных ремонтных работ;
- потери природного газа, вследствие допустимых утечек из оборудования и аппаратов согласно паспортов заводов-изготовителей при выполнении технологических режимов транспортировки газа;

- потери природного газа в результате стравливания в атмосферу при проверках оборудования или приборов, обусловленные требованиями нормативных документов либо положениями документов в области стандартизации, ссылка на которые приведены в проектной документации;
- потери природного газа при отборе проб для химического анализа и аналитического контроля в соответствии с утвержденной технологической схемой объекта транспортировки природного газа.
- 2.2. Технологические потери природного газа при транспортировке магистральными трубопроводами разделяются по месту их образования на:
- технологические потери природного газа на компрессорных станциях (далее – КС);
- технологические потери газа на участке линейной части магистрального трубопровода (далее – ЛЧ);
- технологические потери природного газа на газораспределительных станциях (далее ГРС);
- $-\,$ технологические потери природного газа на газоизмерительных станциях (далее ГИС).

К технологическим потерям природного газа на КС при проведении технологических операций по транспортировке магистральным трубопроводом относятся:

- а) потери газа при плановых пусках ГПА;
- б) потери газа при плановых остановках ГПА;
- в) потери газа при управлении силовым пневмоприводом запорной арматуры и кранов-регуляторов в КЦ в случае использования природного газа в качестве «импульсного» без дополнительной системы его подготовки;
- г) потери газа при продувке аппаратов КЦ (пылеуловители, фильтрысепараторы, адсорберы, сепараторы, ресиверы и др.);
 - д) потери газа из системы уплотнения ЦБК;
 - е) потери газа из КИПиА и предохранительной аппаратуры;

- ж) потери газа при отборе проб для химического анализа и аналитического контроля в соответствии с утвержденной технологической схемой КЦ в составе проектной документации;
 - з) потери газа из ЗРА, если это предусмотренно паспортом на ЗРА.

К технологическим потерям природного газа на ЛЧ магистрального газопровода при проведении технологических операций по транспортировке магистральным трубопроводом относятся:

- а) потери газа при управлении силовым пневмоприводом кранов на ЛЧ в случае использования природного газа в качестве «импульсного» без дополнительной системы его подготовки;
- б) потери газа при продувке аппаратов (пылеуловителей, сепараторов, абсорберов и др.);
- в) потери газа при отборе проб для химического анализа и аналитического контроля в соответствии с утвержденной технологической схемой ЛЧ МГ в составе проектной документации;
 - г) потери газа из ЗРА, если это предусмотренно паспортом на ЗРА;
- д) потери остаточного количества газа после выполнения мероприятий по освобождению магистрального газопровода перед проведением капитального ремонта.

К технологическим потерям природного газа на ГРС при проведении технологических операций по транспортировке магистральным трубопроводом относятся:

- а) потери газа при управлении силовым пневмоприводом кранов в случае использования природного газа в качестве «импульсного» без дополнительной системы его подготовки;
 - б) потери газа из КИПиА и предохранительной аппаратуры;
- в) потери газа при работе пневморегуляторов, пневмоустройств на технологическом газе;
 - г) потери газа при продувке аппаратов (пылеуловителей, сепараторов и др.);

- д) потери газа при продувке дренажей УСБ и продувке импульсных линий отбора газа на датчики давления и перепада давления;
- е) потери газа при отборе проб для химического анализа и аналитического контроля в соответствии с утвержденной технологической схемой ГРС в составе проектной документации;
 - ж) потери газа из ЗРА, если это предусмотренно паспортом оборудования.

К технологическим потерям природного газа на ГИС при проведении технологических операций по транспортировке магистральным трубопроводом относятся:

- а) потери газа при управлении силовым пневмоприводом кранов в случае использования природного газа в качестве «импульсного» без дополнительной системы его подготовки;
- б) потери газа при работе пневморегуляторов, пневмоустройств на технологическом газе;
 - в) потери газа при проверке работоспособности предохранительных клапанов;
- г) потери газа при продувке дренажей УСБ и продувку импульсных линий отбора газа на датчики давления и перепада давления;
- д) потери газа при отборе проб для химического анализа и аналитического контроля в соответствии с утвержденной технологической схемой ГИС в составе проектной документации;
 - е) потери газа из ЗРА, если это предусмотренно паспортом оборудования.

К технологическим потерям при транспортировке магистральным газопроводом не относятся:

- потери природного газа, вызванные действиями, не относящимися к технологическим операциям по транспортировке магистральным трубопроводом;
- потери природного газа, вызванные нарушением нормативных правовых документов, регламентирующих функционирование объектов магистрального трубопровода при транспортировке, либо положений документов по стандартизации, ссылка на которые осуществляется в проектной документации;

- потери природного газа, произошедшие при производстве аварийновосстановительных работ;
- количество природного газа, использованное на собственные, в том числе технологические, производственно-технологические и (или) коммунальные нужды;
- потери природного газа, возникшие вследствие аварий, хищений транспортируемого газа;
- количество газа, прошедшее дополнительную переработку в УПТПИГ с изменением его качества и обеспечивающее работу оборудования;
- количество природного газа, используемого при проведении регламентных и ремонтных работ, а также используемое при производстве испытаний и диагностики на объектах магистральных газопроводов,

К технологическим потерям природного газа при его транспортировке магистральным газоопроводом не могут быть отнесены потери газа при производстве восстановительных работ, при зачистке и опорожнении оборудования или трубопровода для проведения ремонтных работ, в том числе:

- очистка внутренней полости и внутритрубной технической диагностики действующих газопроводов;
 - ликвидация аварий и гидратных пробок;
 - ремонт и реконструкция труб на линейной части МГ;
- врезка отводов и перемычек в магистральный газопровод со стравливанием природного газа;
 - заправка одоризационных и метанольных установок;
- ревизия и замена сужающих устройств (диафрагм) на ГИС и пунктах замера расхода природного газа.
- 2.3. Источники образования технологических потерь природного газа при его транспортировке магистральными газопроводами приведены в **таблице 1**.

Таблица 1. Типовые источники образования технологических потерь природного

газа при транспортировке по магистральным газопроводам

газа при транспортировке по м Источник образования	Источник	родам
потерь	технологических	Вид технологических потерь
(технологический процесс)	потерь	прид технологических потерь
Компрессорные станции:	потерь	
Газоперекачивающий агрегат (1	TD 4).	
Продувка контура	Свеча обвязки	Потери газа при плановых
-	ЦБК	пусках ГПА
центробежного компрессора (ЦБК)	цых	Hyckax I IIA
· · · · · · · · · · · · · · · · · · ·	Свеча обвязки	Потору торо тоу торого
) 1	1	Потери газа при плановых остановках ГПА
нагнетателя и технологических	ЦБК	остановках і ПА
коммуникаций		TI
Система уплотнения ЦБК	Свеча	Потери газа из системы
	газоотделителя	уплотнения ЦБК (если
	системы	предусмотрено паспортом на
	уплотнения ЦБК	ЦБК)
Технологические аппараты и ко.		
Продувка пылеуловителей,	Свеча	Потери газа при продувке
конденсатосборников,	оборудования	аппаратов КЦ
сепараторов и др.		
Проверка срабатывания	Свеча ПСК и	Потери газа из КИПиА и
предохранительных сбросных	устройств КИПиА	предохранительной
клапанов (ПСК) и устройств		аппаратуры
КИПиА		
Управление силовым	Сбросные клапаны	Потери газа при управлении
пневмоприводом запорной	приводов запорной	силовым пневмоприводом
арматуры и кранов-	арматуры	запорной арматуры и кранов-
регуляторов		регуляторов
Работа запорно-регулирующей	Свечи	Потери газа из ЗРА (если
арматуры на КС		предусмотрено паспортом на
		3PA)
Отбор проб	Пробоотборники	Потери газа при отборе проб в
		соответствии с утвержденной
		технологической схемой в
		составе проектной
		документации

продолжение таблицы 1.

продолжение таблицы 1.		
Источник образования потерь	Источник	.
(технологический процесс)	технологических	Вид технологических потерь
Линейная часть магистрально	потерь	
Продувка аппаратов ЛЧ	Свеча оборудования	Homeny vone very vere syrves
		Потери газа при продувке аппаратов
Управление силовым	Сбросные клапаны	Потери газа при управлении
приводом запорной арматуры	приводов запорной	силовым пневмоприводом
	арматуры	кранов (в соответствии с
Работа запорно-		паспортом оборудования)
1	Свечи	Потери газа из ЗРА (в
лч		соответствии с паспортом на ЗРА)
Подготовка газопровода к	Свечи	Потери остаточного количества
капитальному ремонту		газа после выполнения
		мероприятий по освобождению
		магистрального газопровода
		перед проведением
		капитального ремонта
Газораспределительные станци Управление силовым		17.
Управление силовым приводом запорной арматуры	Сбросные клапаны	Потери газа при управлении
приводом запорной арматуры	приводов запорной	силовым пневмоприводом
	арматуры	кранов (в соответствии с
Продувка соединительных	Сбросные клапаны	паспортом оборудования) Потери газа из КИПиА и
линий КИПиА, систем	на соединительных	предохранительной аппаратуры
автоматики и телемеханики на	линиях. Свеча ПСК.	предохранительной аппаратуры
ГРС. Проверка срабатывания	Jiminoix. Cho la l'ICix.	
предохранительных сбросных		
клапанов (ПСК)		
Работа пневморегуляторов,	Свечи оборудования	Потери газа при работе
пневмоустройств	oze m ecepy gesundi	пневморегуляторов,
, , - F		пневмоустройств (в
		соответствии с паспортом
		оборудования)
Продувка аппаратов на ГРС,	Свеча оборудования	Потери газа при продувке
дренажей УСБ и импульсных		аппаратов, дренажей УСБ и
линий отбора газа на датчики		импульсных линий
давления и перепада давления		
Работа запорно-регулирующей	Свечи	Потери газа из ЗРА (если
арматуры на ГРС		предусмотрено паспортом на ЗРА)
Отбор проб	Пробоотборники	Потери газа при отборе проб в
		соответствии с утвержденной
		технологической схемой в
		составе проектной
	1	документации

продолжение таблицы 1.

Источник образования	Источник	
потерь	технологических	Вид технологических потерь
(технологический процесс)	потерь	
Газоизмерительные станции:		
Управление силовым	Сбросные клапаны	Потери газа при управлении
приводом запорной арматуры	приводов запорной	силовым пневмоприводом
	арматуры	кранов (в соответствии с
		паспортом на запорную
		арматуру)
Работа пневморегуляторов,	Свечи	Потери газа при работе
пневмоустройств	оборудования	пневморегуляторов,
		пневмоустройств (в
		соответствии с паспортом на
		оборудование)
Продувка дренажей УСБ и	Свеча	Потери газа при продувке
импульсных линий отбора газа	оборудования	дренажей УСБ и импульсных
на датчики давления и		линий
перепада давления		
Работа запорно-регулирующей	Свечи	Потери газа из ЗРА (если
арматуры на ГИС		предусмотрено паспортом на
		3PA)
Отбор проб	Пробоотборники	Потери газа при отборе проб в
	·	соответствии с утвержденной
		технологической схемой в
		составе проектной
		документации

2.4. Количество технологических потерь природного газа на КС (Π_{KC}) определяется как сумма технологических потерь природного газа на источниках потерь каждого КЦ.

Количество технологических потерь природного газа на линейной части магистрального газопровода ($\Pi_{\Pi \Psi}$) определяется как сумма технологических потерь природного газа на источниках потерь этого участка.

Количество технологических потерь природного газа на ГРС ($\Pi_{\Gamma PC}$) определяется как сумма технологических потерь природного газа на источниках потерь ГРС.

Количество технологических потерь природного газа на ГИС ($\Pi_{\Gamma UC}$) определяется как сумма технологических потерь природного газа на источниках потерь ГИС.

Количество технологических потерь природного газа в линейнопроизводственном управлении магистрального газопровода (ЛПУ МГ) в планируемый период ($Q_{\Pi \Pi Y M \Gamma}$), рассчитывается по формуле:

$$\Pi_{J\Pi IYM\Gamma} = \Pi_{KC} + \Pi_{JIY} + \Pi_{\Gamma PC} + \Pi_{\Gamma UC} \tag{2.1}$$

2.5. Количество технологических потерь природного газа по газотранспортному обществу в планируемый период ($\Pi_{\Gamma O}$), рассчитывается по формуле:

$$\Pi_{\Gamma O} = \sum_{i=1}^{N_{MTV}} \Pi_{J \Pi I V M \Gamma_i}$$
 (2.2)

где, $N_{\Pi\Pi Y}$ – количество линейно-производственных управлений магистрального газопровода в газотранспортном обществе.

3. Определение количества технологических потерь природного газа при транспортировке магистральным трубопроводом

Для расчета технологических потерь природного газа при транспортировке магистральным трубопроводом, необходимо определить потери по каждому конкретному месту их образования и виду, а также документально подтвердить все показатели, применяемые в расчетах. В данном разделе приведены рекомендуемые методики расчета технологических потерь природного газа при его транспортировке магистральными трубопроводами по каждому их виду и месту образования, даны рекомендации по предоставлению необходимых документов для подтверждения показателей, применяемых в расчетах.

3.1. Потери природного газа на компрессорной станции (КС)

Технологические потери природного газа на КС Π_{KC} , тыс.м³ определяют по формуле:

$$\Pi_{KC} = \sum_{i=1}^{N_{max}} \left(\Pi_{\Gamma\Pi A.KU_i}^{nyck} + \Pi_{\Gamma\Pi A.KU_i}^{oct} + \Pi_{KU_i} \right)$$
(3.1)

 $\Pi^{\text{ост}}_{\Gamma\Pi A \ KII_i}$ — потери природного газа при плановых остановках $\Gamma\Pi A$, тыс.м³;

N_{КЦ} - количество КЦ на КС, шт.;

 $\Pi_{\text{кц}_i}$ — потери природного газа по і-му компрессорному цеху, тыс.м³ рассчитывают по следующей формуле:

$$\Pi_{KII_{i}} = \Pi_{KP}^{KII} + \Pi_{A\Pi}^{KII} + \Pi_{IIK}^{YIII} + \Pi_{IK}^{KII} + \Pi_{KM\Pi}^{KII} + \Pi_{3PA}^{KII} + \Pi_{O\Pi}^{KII}$$
(3.2)

гле.

 Π_{KP}^{KII} — потери природного газа при управлении силовыми пневмоприводами запорной арматуры и кранов-регуляторов в КЦ, тыс.м³;

 $\Pi_{\rm AII}^{\rm KII}$ – потери природного газа при продувках аппаратов КЦ, тыс.м³;

 $\Pi_{\text{ЦБК}}^{\text{упл}}$ — потери природного газа из системы уплотнения ЦБК, согласно паспортным данным оборудования, тыс.м³;

 $\Pi^{\rm KII}_{\rm ПK}$ — потери природного газа при проверке работоспособности предохранительных клапанов в КЦ, тыс.м 3 ;

 $\Pi_{\text{КИП}}^{\text{КЦ}}$ – потери природного газа при обслуживании КИПиА, тыс.м³;

 Π_{3PA}^{KII} — потери природного газа из 3PA, если это предусмотрено паспортом завода-изготовителя, тыс.м³;

 $\Pi_{\text{оп}}^{\text{кц}}$ —потери природного газа при отборе проб для аналитического контроля, если это предусмотрено утвержденной технологической схемой КЦ в соответствии с проектной документацией, тыс.м³.

3.1.1. Потери природного газа при плановых пусках ГПА

Технологические потери природного газа при пуске КЦ после его плановой остановки в соответствии с утвержденной технологической схемой в составе проектной документации и плановых пусках ГПА в соответствии с требованиями

завода-изготовителя при необходимости продувки контура ЦБК, если контур нагнетателя не заполнен газом, определяют по формуле:

$$\Pi_{\Gamma\Pi A.KII_{i}}^{\text{nyck}} = \left[3 \cdot V_{\text{KOM}}^{\text{KII}} \cdot 10^{-3} + \sum_{j=1}^{n_{\text{pa6}}} \left(3 \cdot V_{\text{LIEK}_{i}} \cdot 10^{-3} \right) \right] + \sum_{i=1}^{n} \left(3 \cdot \left[V_{\text{LIEK}_{i}} + V_{\text{KOM}_{i}}^{\Gamma\Pi A} \right] \cdot 10^{-3} \cdot N_{\text{\GammaTIA}.\text{KII}_{i}}^{\text{nyck}} \right)$$
(3.3)

где,

 $V_{\text{ком}}^{\text{кц}}$ – геометрический объем технологических коммуникаций КЦ согласно утвержденной технологической схеме в составе проектной документации, продуваемый после плановой остановки КЦ, м 3 ;

 $n_{\text{раб}}$ – количество работающих ГПА, требуемое для обеспечения транспорта газа согласно утвержденной технологической схеме КЦ в составе проектной документации;

 $V_{\text{ЦБК}_i}$, $V_{\text{КОМ}_i}^{\Gamma\Pi A}$ — соответственно геометрический объем контура і-го ЦБК согласно паспортным данным и технологических коммуникаций одного ГПА согласно утвержденной технологической схеме КЦ в составе проектной документации, \mathbf{M}^3 ;

3 — коэффициент, учитывающий необходимые условия для безопасного выполнения работ;

n – количество ГПА, шт.;

 $N_{\Pi\Pi A, KII_i}^{\Pi y c k}$ — количество пусков і-го ГПА после планового технического обслуживания и ремонта, определяемое согласно план-графика ТОиР ГПА на планируемый год в соответствии с требованиями завода-изготовителя по наработке часов двигателя и нагнетателя.

3.1.2. Потери природного газа при плановых остановках ГПА

Технологические потери природного газа при плановой остановке КЦ в соответствии с его утвержденной технологической схемой в составе проектной документации и плановых остановках ГПА в соответствии с требованиями завода-изготовителя при необходимости опорожнения контура ЦБК, определяют по формуле:

$$\Pi_{\Gamma\Pi A.KII_{i}}^{\text{oct}} = \left[V_{KOM}^{KII_{i}} + \sum_{i=1}^{n_{006}} V_{II_{0}K_{i}} \right] \cdot \frac{P_{KII_{cp}} \cdot T_{cr}}{T_{KII_{cp}} \cdot Z_{cp.KII_{i}} \cdot P_{ar}} \cdot 10^{-3} + \\
+ \sum_{i=1}^{n} \left[\left(V_{II_{0}K_{i}} + V_{KOM_{i}}^{\Gamma\Pi A} \right) \cdot \frac{P_{II_{0}K_{cp}} \cdot T_{cr}}{T_{II_{0}K_{cp}} \cdot Z_{cp} \cdot P_{ar}} \cdot N_{\Gamma\Pi A_{i}}^{\text{oct}} \cdot 10^{-3} \right]$$
(3.4)

 P_{ar} – атмосферное давление, равное P_{ar} = 0,1013 МПа;

 T_{cr} – стандартная температура, равная T_{cr} =293,15 K;

 $Z_{\text{cp.KU}}$ — коэффициент сверхсжимаемости газа при давлении $P_{\text{KU}_{\text{cp}}}$ и температуре $T_{\text{KU}_{\text{cp}}}$;

 $Z_{cp} - коэффициент сверхсжимаемости газа при давлении <math>P_{\text{ЦБК}_{cp}}$ и температуре $T_{\text{ЦБK}_{cp}}$;

 $P_{KI\!L_{\!op}}$; $P_{L\!I\!E\!K_{\!op}}$ — среднее давление в системе соответственно «вход КЦ-выход КЦ» и «вход ЦБК-технологические коммуникации» до их опорожнения, МПа определяемые по формулам:

$$P_{KIL_{cp}} = \frac{\left(P_{KIL}^{BX} + P_{KIL}^{BISIX}\right)}{2} \times P_{ILJEK_{cp}} = \frac{\left(P_{ILJEK}^{BX} + P_{KOM}^{BISIX}\right)}{2}$$
(3.5)

где,

 $P_{\text{KII}}^{\text{вх}}$; $P_{\text{ЦБК}}^{\text{вх}}$ — давление газа соответственно на входе в КЦ и ЦБК, МПа;

 $P_{KU}^{\text{вых}}$; $P_{KOM}^{\text{вых}}$ — давление газа на выходе соответственно из КЦ и технологических коммуникаций ЦБК, МПа.

 $T_{KU_{\phi}}$; $T_{UEK_{\phi}}$ — средняя температура газа в системе соответственно «вход КЦ—выход КЦ» и «вход ЦБК—технологические коммуникации» до их опорожнения, К определяемые по формулам:

$$T_{KII_{cp}} = \frac{\left(t_{KII}^{BX} + t_{KII}^{BAIX}\right)}{2} + 273,15$$
 и $T_{IIJEK_{cp}} = \frac{\left(t_{IJEK}^{BX} + t_{KOM}^{BAIX}\right)}{2} + 273,15$ (3.6)

где,

 $\mathsf{t}_{\mathsf{K}\mathsf{L}}^{\mathtt{BX}}$; $\mathsf{t}_{\mathsf{L}\mathsf{D}\mathsf{K}}^{\mathtt{BX}}$ – температура газа на входе соответственно в КЦ и ЦБК, ${}^{0}\mathsf{C}$;

 $t_{K II}^{\text{вых}}; t_{KOM}^{\text{вых}}$ — температура газа на выходе соответственно из КЦ и технологических коммуникаций ЦБК, 0 С.

 $N_{\Pi\Pi A_i}^{\text{ост}}$ — количество остановок і-го ГПА, которые требуют опорожнения контура ЦБК и технологических коммуникаций, определяемое согласно технологического регламента по эксплуатации КЦ и план-графика ТОиР ГПА на планируемый год, в соответствии с требованиями завода-изготовителя;

n – количество ГПА, требующих остановки с необходимостью опорожнения контура нагнетателя, шт.

3.1.3. Потери природного газа при управлении силовыми пневмоприводами запорной арматуры и кранов-регуляторов

Технологические потери природного газа при управлении силовыми пневмоприводами запорной арматуры и кранов-регуляторов в случае использования природного газа без дополнительной системы его подготовки в качестве «импульсного»; определяют по формуле:

$$\Pi_{\text{KP}}^{\text{KII}} = \sum_{i=1}^{n_{\text{mp}}} \left(q_{\Pi P_i} \cdot N_{\Pi P_i} \cdot 10^{-3} \right) + \sum_{i=1}^{n_{\text{sp}}} \left(q_{\text{KP}_i} \cdot \tau_{\text{KP}_i} \cdot 10^{-3} \right) \tag{3.7}$$

где,

 ${
m q}_{\Pi P_i}$ — объем газа, стравливаемого в атмосферу из силового пневмопривода при одном срабатывании крана в соответствии с паспортом завода-изготовителя, ${
m M}^3$;

 $N_{{
m IP}_i}$ — количество срабатываний привода крана за планируемый период;

 n_{np} — количество силовых пневмоприводов в КЦ в соответствии с проектной документацией, шт.;

 ${
m q}_{{
m KP}_i}$ — расход газа при работе і-го крана регулятора в соответствии с паспортными данными изделия, м³/ч;

 $\tau_{\kappa P.}$ – время работы крана-регулятора за планируемый период, ч;

 ${\rm n_{kp}}$ — количество кранов регуляторов в КЦ в соответствии с проектной документацией, шт.

3.1.4. Потери природного газа при продувках аппаратов КЦ

Технологические потери природного газа при продувке аппаратов КЦ (пылеуловителей, фильтров-сепараторов, адсорберов, сепараторов, ресиверов и др.) определяются по формуле:

$$\Pi_{A\Pi}^{KII} = \sum_{i=1}^{n_{A\Pi}} q_{A\Pi_i} \cdot N_{A\Pi_i} + \sum_{i=1}^{n_{A\Pi}} q_{A\Pi_i}^{ABT}$$
(3.8)

где,

 $N_{A\Pi_i}$ — количество продувок і-го аппарата за планируемый период в соответствии с требованиями технической документации по режиму работы и безопасному обслуживанию аппаратов КЦ (при отсутствии на аппаратах автоматического сброса жидкости количество продувок принимается таким же, как и с автоматическим сбросом жидкости);

 n_{an} — количество аппаратов в КЦ в соответствии с проектной документацией, пит.;

 $q_{A\Pi_i}$ — объем природного газа, необходимый для продувки і-го аппарата, при отсутствии автоматического сброса жидкости, тыс.м³, рассчитывают по формуле:

$$\mathbf{q}_{\mathsf{A}\Pi_{i}} = \left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} \cdot \frac{\pi d_{\mathsf{cs}}^{2}}{4} \cdot \mathbf{P}_{\mathsf{cp}} \cdot \tau_{\mathsf{np}} \cdot \sqrt{\frac{2k}{(k+1)\rho_{\mathsf{cr}}T_{\mathsf{A}\Pi}Z_{\mathsf{A}\Pi}} \cdot \frac{T_{\mathsf{cr}}}{\mathbf{P}_{\mathsf{ar}}}}$$
(3.9)

где,

k – показатель адиабаты природного газа;

 d_{c_B} – внутренний диаметр свечи или продувочного трубопровода, м;

 $P_{\sf cp}$ – среднее давление природного газа в аппарате, МПа;

 au_{np} — время одной продувки аппарата, согласно технологического регламента (но не более 5 сек.), с;

 ho_{cr} – плотность природного газа при стандартных условиях, кг/м³;

 $T_{A\Pi}$ – температура газа в аппарате при проведении продувки, K;

 T_{cr} – стандартная температура, равная T_{cr} =293,15 K;

 $Z_{\text{A}\Pi}$ – коэффициент сверхсжимаемости газа при давлении и температуре в аппарате;

 P_{ar} – атмосферное давление, равное P_{ar} =0,1013 МПа.

В случае наличия автоматического сброса жидкости из аппаратов, для определения технологических потерь природного газа при дегазации жидкости после их сброса, следует использовать формулу:

$$q_{A\Pi_{i}}^{ABT} = Q_{B} \cdot (r_{2} - r_{1}) \cdot 10^{-\kappa \cdot c}$$
(3.10)

где,

- Q_в количество воды, сбрасываемой из аппаратов и подвергаемой дегазации, $M^3/\Gamma O \pi$:
- r₁, r₂ растворимость углеводородных газов в дистиллированной воде соответственно при атмосферном давлении (см. таблицу 3.1) и давлении перед емкостью для сброса жидкости (см. таблицу 3.2), м³/м³ жидкости;
- к коэффициент Сеченова, учитывающий изменение растворимости газа при наличии солей (коэффициент высаливания) определяемый по таблице 3.3;
- с концентрация солей в сбрасываемой воде, определяемая по анализам аккредитованной химической лаборатории, г-экв/л.

Растворимость природного газа в жидкости принимают по проектным или справочным данным, вычисляют с помощью термодинамических расчетов или экспериментально, а в отдельных случаях используют эмпирические зависимости.

Таблица 3.1- Растворимость газов в дистиллированной воде при атмосферном

лявлении и различных температурах.

Газ	Растворимо	Растворимость газов в дистиллированной воде r ₁ , м ³ /м ³ , при температуре		
	0^{0} C	20°C	40°C	60°C
Метан	0,05563	0,03376	0,02369	0,01954
Этан	0,09874	0,04724	0,02915	0,02177

Таблица 3.2 – Растворимость газов при 40°C в дистиллированной воде.

Наименование	Растворимость газов в дистиллированной воде r ₂ , м ³ /м ³ , при давлении			
газа	2,5 МПа	5,0 MIIa	7,5 МПа	10,0 МПа
Метан	0,60	1,10	1,52	1,95
Этан	0,57	0,87	0,97	1,00

Таблица 3.3- Коэффициенты Сеченова для метана, растворенного в водных

растворах хлористого натрия.

Температура, °С	Коэффициент Сеченова
0	0,165
20	0,141
40	0,127
60	0,119
80	0,116
100	0,116

3.1.5. Потери природного газа из системы уплотнения ЦБК

Технологические потери природного газа из системы уплотнения ЦБК $\Pi^{\text{упл}}_{\text{ЦБК}_i}$, тыс.м³ согласно руководству по эксплуатации уплотнений и с учетом паспортных данных оборудования определяют по формуле:

$$\Pi_{\text{LIFK}}^{ynn} = \sum_{i=1}^{n_{u-1}} \left(q_{ynn}^{M-r} \cdot \tau_{\text{ITIA}}^{M-r} \right)_{i} \cdot 10^{-3}$$
(3.11)

где,

 $au_{\Gamma\Pi A}^{\mbox{\tiny M-}\Gamma}$ — время работы ГПА с гидравлической системой уплотнения в планируемом периоде, ч;

 $n_{\mbox{\tiny M-\Gamma}}$ – количество ГПА с гидравлической системой уплотнения в соответствии с проектной документацией, $\mbox{\tiny III.}$;

 $q_{ynn}^{\text{\tiny M-r}}$ — расход природного газа в ГПА с гидравлической системой уплотнения «масло—газ», м³/ч принимают согласно паспортным данным завода-изготовителя.

3.1.6. Потери природного газа при проверке работоспособности предохранительных клапанов в КЦ

Технологические потери природного газа при проверке работоспособности предохранительных клапанов в КЦ определяют по формуле:

$$\Pi_{\Pi K}^{KLI} = \sum_{i=1}^{n_{\Pi K}} (q_{\Pi K} \cdot N_{\Pi K})_{i}$$
(3.12)

где,

 $N_{\Pi K}$ — количество проверок одного предохранительного клапана, согласно паспортным данным завода-изготовителя ΠK , шт.;

 $q_{\Pi K}$ — объем природного газа при проверке одного предохранительного клапана, тыс.м³ определяют по формуле:

$$q_{\Pi K} = \left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} \cdot \frac{\pi d_{\kappa\pi}^2}{4} \cdot K_{\kappa\pi} \cdot P_{\kappa\pi} \cdot \tau_{\kappa\pi} \cdot \sqrt{\frac{2k}{(k+1)\rho_{cr}T_{\kappa\pi}Z_{\kappa\pi}} \cdot \frac{T_{cr}}{P_{ar}}}$$
(3.13)

гле.

 $d_{\kappa_{\!\scriptscriptstyle N}}$ – диаметр проходного сечения клапана в соответствии с паспортными данными завода-изготовителя, м;

k – показатель адиабаты природного газа;

 $K_{\kappa\pi}$ – коэффициент расхода газа клапаном, определяемый по паспортным данным завода-изготовителя;

 $au_{\kappa\pi}$ — время срабатывания предохранительного клапана согласно паспортным данным завода-изготовителя, с;

 $P_{\kappa\pi}$ – давление газа при проверке предохранительного клапана, МПа;

Ткл -температура газа при проверке клапана, К;

 $Z_{\kappa\pi}$ – коэффициент сверх сжимаемости природного газа при $P_{\kappa\pi}$ и $T_{\kappa\pi}$;

 ho_{cr} – плотность газа при стандартных условиях, кг/м³.

3.1.7. Потери природного газа при эксплуатации КИПиА и ЗРА

Технологические потери природного газа при эксплуатации КИП, автоматики и телемеханики КЦ, а также ЗРА определяются по паспортным данным КИПиА и ЗРА.

3.1.8. Потери природного газа при отборе проб в КЦ

Технологические потери природного газа при отборе проб в соответствии с утвержденной технологической схемой КЦ в составе проектной документации для аналитического контроля $\Pi_{\text{оп}}^{\text{KII}}$, тыс.м³, рассчитывают по формуле:

$$\Pi_{\text{O}\Pi}^{\text{KII}} = \sum_{i=1}^{n_{\text{O}\Pi}} (q_{\text{O}\Pi})_i + \sum_{i=1}^{n_{\text{DO}T}} (q_{\text{\Pi}\text{O}T} \cdot \tau)_i \cdot 10^{-3}$$
(3.14)

где,

 $n_{O\Pi}$ – количество анализов і-ого вида в расчетном периоде;

 $q_{\rm OH}$ – потери природного газа при периодическом отборе проб для разовых (лабораторных) анализов газового потока, тыс.м³ рассчитывают по формуле:

$$q_{O\Pi} = 2,893 \cdot \frac{V_{np} \cdot P_{np}}{T_{np} \cdot Z_{np}} \cdot (b+1)$$
 (3.15)

где,

 V_{np} – геометрический объем пробоотборника, м³;

Рпр – давление в пробоотборнике, МПа;

 T_{np} – температура в пробоотборнике, К;

 Z_{np} – коэффициент сжимаемости при P_{np} и T_{np} соответственно;

b – кратность продувки, т.е. отношение объема (при условии отбора) газа, выпущенного в атмосферу при продувке линии и пробоотборника, к объему пробоотборника (кратность продувки при отборе проб газа принимают равной b=30);

 $q_{\Pi O T}$ — потери природного газа при непрерывной работе i-ого прибора на потоке, м³/час, определяемые по паспортным данным завода-изготовителя;

т – планируемое время работы і-го прибора в отчетном году, час;

 $n_{\Pi O T}$ — количество приборов в соответствии с утвержденной проектной документацией.

3.2. Потери природного газа на ЛЧ магистрального газопровода

Технологические потери природного газа на линейной части магистрального газопровода Π_{Π^q} , тыс.м³ определяют по формуле:

$$\Pi_{\Pi^{q}} = \Pi_{KP}^{\Pi^{q}} + \Pi_{A\Pi}^{\Pi^{q}} + \Pi_{\Pi K}^{\Pi^{q}} + \Pi_{3PA}^{\Pi^{q}} + \Pi_{KPEM}^{\Pi^{q}}$$
(3.16)

где,

 $\Pi_{\rm KP}^{\rm JY}$ — потери природного газа при управлении силовыми пневмоприводами запорной арматуры и кранов-регуляторов на ЛЧ магистрального газопровода, тыс.м 3 :

 $\Pi_{\rm AII}^{\rm JH}$ — потери природного газа при продувке аппаратов на ЛЧ магистрального газопровода, тыс. ${
m M}^3$;

 $\Pi_{\Pi K}^{\Pi q}$ — потери природного газа при проверке работоспособности предохранительных клапанов на ЛЧ магистрального газопровода, тыс.м³;

 $\Pi_{3PA}^{\Pi_4}$ — потери природного газа из 3PA, если это предусмотрено паспортом на 3PA. тыс.м³:

 $\Pi_{\text{KPEM}}^{\Pi^{H}}$ — потери природного газа перед проведением капитального ремонта, тыс.м³.

3.2.1. Потери природного газа при управлении силовыми пневмоприводами запорной арматуры и кранов-регуляторов ЛЧ магистрального газопровода

Технологические потери природного газа при управлении силовыми пневмоприводами запорной арматуры и кранов-регуляторов на ЛЧ магистрального газопровода в случае использавния природного газа без дополнительной системы его подготовки в качестве «импульсного»; определяют по формуле:

$$\Pi_{\text{KP}}^{\text{TP}} = \sum_{i=1}^{n_{\text{mp}}} \left(q_{\Pi P_i} \cdot N_{\Pi P_i} \cdot 10^{-3} \right) + \sum_{i=1}^{n_{\text{mp}}} \left(q_{\text{KP}_i} \cdot \tau_{\text{KP}_i} \cdot 10^{-3} \right) \tag{3.17}$$

где.

 $q_{\Pi P_i}$ — объем газа, стравливаемого в атмосферу из силового пневмопривода при одном срабатывании крана в соответствии с техническим паспортом изделия, м 3 ;

 $N_{\text{пр}_i}$ – количество срабатываний привода крана за планируемый период;

 n_{np} – количество силовых пневмоприводов в ЛЧ магистрального газопровода в соответствии с утвержденной проектной документацией, шт.;

 q_{KP_i} — расход газа при работе і-го крана регулятора в соответствии с паспортными данными изделия, м³/ч:

 $\tau_{\text{KP}_{i}}$ — время работы крана-регулятора за планируемый период, ч;

 ${\rm n}_{\rm kp}$ — количество кранов регуляторов на ЛЧ магистрального газопровода в соответствии с утвержденной проектной документацией, шт.

3.2.2. Потери природного газа при продувках аппаратов ЛЧ магистрального газопровода

Технологические потери природного газа при продувке аппаратов ЛЧ магистрального газопровода (дриппов, конденсатосборников и др.) определяют по формуле:

$$\Pi_{A\Pi}^{\Pi q} = \sum_{i=1}^{n_{A\Pi}} q_{A\Pi_i} \cdot N_{A\Pi_i}$$
 (3.18)

где.

 $N_{A\Pi_i}$ — количество продувок і-го аппарата за планируемый период в соответствии с требованиями нормативного документа по режиму работы и безопасному обслуживанию аппаратов ЛЧ магистрального газопровода;

 ${
m n}_{an}$ — количество аппаратов ЛЧ магистрального газопровода в соответствии с утвержденной проектной документацией, шт.;

 ${
m q}_{{\sf A}\Pi_i}$ — объем природного газа, необходимый для продувки і-го аппарата, тыс. м³ определяют аналогично пункту 3.1.4.

3.2.3. Потери природного газа при проверке работоспособности предохранительных клапанов на ЛЧ магистрального газопровода

Технологические потери природного газа при проверке работоспособности предохранительных клапанов ЛЧ магистрального газопровода определяют по формуле:

$$\Pi_{\Pi K}^{\Pi q} = \sum_{i=1}^{n_{mK}} (q_{\Pi K} \cdot N_{\Pi K})_{i}$$
(3.19)

где,

 $N_{\Pi K}$ — количество проверок одного предохранительного клапана, согласно паспорту завода-изготовителя ПК, шт.;

 $q_{\Pi K}$ — объем природного газа при проверке одного предохранительного клапана, тыс.м³ определяют аналогично пункту 3.1.6.

3.2.4. Потери природного газа при эксплуатации КИПиА и ЗРА на ЛЧ магистрального газопровода

Технологические потери природного газа при эксплуатации КИП, автоматики и телемеханики на ЛЧ магистрального газопровода, а также ЗРА определяются по паспортным данным на КИПиА и ЗРА.

3.2.5. Потери природного газа при подготовке газопровода к капитальному ремонту

Технологические потери природного газа при подготовке участка газопровода к капитальному ремонту после мероприятий по освобождению магистрального газопровода:

$$\Pi_{\text{KPEM}}^{\Pi^{\mathbf{q}}} = \sum_{i=1}^{n_{\text{KP}}} \left(q_{\text{KPEM}}^{\Pi^{\mathbf{q}}} \right)_{i}$$
(3.20)

где,

 n_{KP} — количество участков газопровода для капитального ремонта; $q_{KPEM}^{\Pi \Psi}$ — объем природного газа при опорожнении участка газопровода после мероприятий по освобождению магистрального газопровода, тыс.м³ рассчитывают по формуле:

$$q_{\text{KPEM}}^{\Pi \text{H}} = \sum_{i=1}^{n_{\text{KP}}} \left[2893 \cdot V_{\text{TP}} \cdot \left(\frac{P_{\text{TDA}}^{\text{BC}}}{T_{\text{H}} \cdot Z_{\text{H}}} - \frac{P_{\text{ar}}}{T_{\text{K}} \cdot Z_{\text{K}}} \right) \cdot 10^{-3} \right]$$
(3.21)

где,

2893 — коэффициент приведения объема природного газа к стандартным условиям T_{cr} и P_{ar} , равный $\left(\frac{293,15}{0,101325} = 2893\right)$;

 V_{TP} — геометрический объем участка газопровода, опорожняемого для проведения капитального ремонта, м 3 ;

 $P_{\Pi\Pi A}^{\rm sc}$ — давление всасывания ГПА при проведении работ по сохранению природного газа перед началом капитального ремонта, не выше 1 МПа;

 $T_{\rm H},\, T_{\kappa}$ – температура природного газа перед и после опорожнения газопровода, K;

 $Z_{\text{H}},\,Z_{\kappa}$ — коэффициенты сверхсжимаемости природного газа при $P_{\text{ITIA}}^{\text{вс}}$, T_{H} и P_{at} , T_{κ} соответственно.

3.3. Потери природного газа на ГРС

Технологические потери природного газа на газораспределительных станциях $\Pi_{\Gamma PC}$, тыс.м³ определяют по формуле:

$$\Pi_{\text{TPC}} = \sum_{i=1}^{N_{\text{TPC}}} \Pi_{\text{TPC}_i}$$
 (3.23)

где,

N_{ГРС} — количество ГРС на линейном участке магистрального газопровода в соответствии с утвержденной проектной документацией, шт.:

 $\Pi_{\text{грс.}}$ – потери природного газа і-ой ГРС, тыс.м³, рассчитывают по формуле:

$$\Pi_{\text{\GammaPC}_{i}} = \Pi_{\text{KP}}^{\text{\GammaPC}} + \Pi_{\text{KMII}}^{\text{\GammaPC}} + \Pi_{\text{IIK}}^{\text{\GammaPC}} + \Pi_{\text{A}\Pi}^{\text{\GammaPC}} + \Pi_{\text{YCB}}^{\text{\GammaPC}} + \Pi_{\text{3PA}}^{\text{\GammaPC}} + \Pi_{\text{O}\Pi}^{\text{\GammaPC}}$$
(3.24)

где,

 $\Pi_{\text{KP}}^{\text{гPC}}$ – потери природного газа при управлении силовыми пневмоприводами запорной арматуры, работе кранов-регуляторов, пневморегуляторов и пневмоустройств на ГРС, тыс.м³;

 $\Pi_{\text{кип}}^{\text{ГРС}}$ – потери природного газа при обслуживании КИПиА на ГРС, тыс.м³;

 $\Pi_{\Pi K}^{\Gamma PC}$ — потери природного газа при проверке работоспособности предохранительных клапанов на ΓPC , тыс.м³;

 $\Pi_{A\Pi}^{\mbox{\tiny FPC}}$ – потери природного газа при продувке аппаратов $\mbox{\Gamma PC},$ тыс.м³;

 $\Pi_{\text{усь}}^{\text{грс}}$ — потери природного газа при продувке дренажей УСБ и импульсных линий отбора газа на датчики давления и перепада давления, тыс.м³;

 Π_{3PA}^{TPC} – потери природного газа из 3PA, если это предусмотрено паспортом оборудования, тыс.м³:

 $\Pi_{\text{оп}}^{\text{грс}}$ – потери природного газа при отборе проб для аналитического контроля, если это предусмотрено утвержденной технологической схемой ГРС в составе проектной документации, тыс.м³.

3.3.1. Потери природного газа при управлении силовыми пневмоприводами запорной арматуры и кранов-регуляторов на ГРС

Технологические потери природного газа при управлении силовыми пневмоприводами запорной арматуры, работе кранов-регуляторов, пневморегуляторов и пневмоустройств в случае использавния природного газа без дополнительной системы его подготовки в качестве «импульсного»; определяют по формуле:

$$\Pi_{\text{KP}}^{\text{FPC}} = \sum_{i=1}^{n_{\text{np}}} \left(q_{\Pi P_i} \cdot N_{\Pi P_i} \cdot 10^{-3} \right) + \sum_{i=1}^{n_{\text{np}}} \left(q_{K P_i} \cdot \tau_{K P_i} \cdot m_i \cdot 10^{-3} \right) \tag{3.25}$$

где,

 $q_{\Pi P_i}$ — объем газа, стравливаемого в атмосферу из силового пневмопривода при одном срабатывании крана в соответствии с паспортом завода-изготовителя изделия, M^3 ;

N_{пр.} - количество срабатываний привода крана за планируемый период;

 $n_{\rm np}$ — количество силовых пневмоприводов на ГРС в соответствии с утвержденной проектной документацией, шт.;

 ${
m q}_{{
m KP}_i}$ — расход газа при работе і-го крана регулятора, пневмоустройства в соответствии с паспортом завода-изготовителя, м³/ч;

 au_{KP_i} — время работы крана-регулятора, пневморегулятора, пневмоустройства в планируемом периоде, ч;

 $n_{\kappa p}$ — количество работающих кранов регуляторов, пневморегуляторов или пневмоустройств данного типа на ГРС, шт;

 m_i — количество типов кранов-регуляторов, пневморегуляторов и пневмоустройств на ГРС в соответствии с утвержденной проектной документацией.

3.3.2. Потери природного газа при проверке работоспособности предохранительных клапанов на ГРС

Технологические потери природного газа при проверке работоспособности предохранительных клапанов на ГРС определяют по формуле:

$$\Pi_{\Pi K}^{\Gamma PC} = \sum_{i=1}^{n_{\Pi K}} (q_{\Pi K} \cdot N_{\Pi K})_{i}$$
(3.26)

 $N_{\Pi K}$ — количество проверок одного предохранительного клапана, согласно паспорту завода-изготовителя ПК, шт.;

 $q_{\Pi K}$ — объем природного газа при проверке одного предохранительного клапана, тыс. 3 определяют аналогично пункту 3.1.6.

3.3.3. Потери природного газа при продувках аппаратов на ГРС

Технологические потери природного газа при продувке аппаратов на ГРС (пылеуловителей, фильтров-сепараторов и др.) определяют по формуле:

$$\Pi_{A\Pi}^{\Gamma PC} = \sum_{i=1}^{n_{A\Pi}} q_{A\Pi_i} \cdot N_{A\Pi_i}$$
(3.27)

где,

 $N_{A\Pi_i}$ — количество продувок i-го аппарата за планируемый период в соответствии с требованиями технической документации по режиму работы и безопасному обслуживанию аппаратов ГРС (при отсутствии на аппаратах автоматического сброса жидкости количество продувок принимается таким же, как и с автоматическим сбросом жидкости);

 n_{an} — количество аппаратов на ГРС в соответствии с утвержденной проектной документацией, шт.;

 ${\rm q}_{{\rm A}\Pi_i}$ — объем природного газа, необходимый для продувки і-го аппарата, тыс.м³, определяют аналогично пункту 3.1.4.

3.3.4. Потери природного газа при продувках дренажей УСБ и продувке импульсных линий отбора газа на ГРС

Технологические потери природного газа при продувке дренажей УСБ и продувке импульсных линий отбора газа на датчики давления и перепада давления на ГРС рассчитывают по формуле:

$$\Pi_{\text{yCE}}^{\text{IPC}} = \sum_{i=1}^{n_{\text{yCE}}} \left(q_{\text{yCE}} \cdot N_{\text{yCE}} \right)_{i}$$
 (3.28)

 $N_{\text{УСБ}}$ — количество продувок і-ой дренажной линии УСБ или импульсной линии отбора газа, шт.;

 q_{VCb} — объем природного газа при продувке i-ой дренажной или импульсной линии, тыс.м³ определяют согласно пункту 3.1.4.

3.3.5. Потери природного газа при эксплуатации КИПиА и ЗРА на ГРС

Технологические потери природного газа при эксплуатации КИП, автоматики и телемеханики на ГРС, а также ЗРА определяются в соответствии с паспортами заводов-изготовителей КИПиА и ЗРА.

3.3.6. Потери природного газа при отборе проб на ГРС

Технологические потери природного газа при отборе проб в соответствии с утвержденной технологической схемой ГРС в составе проектной документации для аналитического контроля $\Pi_{O\Pi}^{\text{гPC}}$, тыс.м³, рассчитывают по формуле:

$$\Pi_{\text{OII}}^{\text{IPC}} = \sum_{i=1}^{n_{\text{OII}}} \left(q_{\text{OII}} \right)_i \tag{3.29}$$

где,

поп - количество анализов і-ого вида в расчетном периоде;

 $q_{\rm OII}$ – потери природного газа при периодическом отборе проб для разовых (лабораторных) анализов газового потока, тыс. m^3 определяют аналогично пункту 3.1.8.

3.4. Потери природного газа на ГИС

Технологические потери природного газа на газоизмерительных станциях $\Pi_{\Gamma UC}$, тыс.м³ определяют по формуле:

$$\Pi_{\Gamma VC} = \sum_{i=1}^{N_{\Gamma VC}} \Pi_{\Gamma VC_i} \tag{3.30}$$

 $N_{\Gamma UC}$ – количество ГИС на линейном участке МГ в соответствии с проектной документацией, $m\tau$.;

 $\Pi_{\Gamma UC_i}$ – потери природного газа і-ой ГИС, тыс.м³, рассчитывают по формуле:

$$\Pi_{\Gamma UC_{i}} = \Pi_{KP}^{\Gamma UC} + \Pi_{YCS}^{\Gamma UC} + \Pi_{3PA}^{\Gamma UC} + \Pi_{O\Pi}^{\Gamma UC}$$

$$(3.31)$$

где,

 $\Pi_{KP}^{\Gamma MC}$ — потери природного газа при управлении силовыми пневмоприводами запорной арматуры, работе кранов-регуляторов, пневморегуляторов и пневмоустройств на ГИС, в соответствии с утвержденной технологической схемой ГИС в составе проектной документации, тыс.м³;

 $\Pi_{\text{УСБ}}^{\text{ГИС}}$ — потери природного газа при продувке дренажей УСБ и импульсных линий отбора газа на датчики давления и перепада давления, тыс.м³;

 Π_{3PA}^{ruc} – потери природного газа из 3PA, если это предусмотрено паспортом на 3PA, тыс.м³;

 $\Pi_{\text{оп}}^{\text{гис}}$ — потери природного газа при отборе проб для аналитического контроля, если это предусмотрено утвержденной технологической схемой ГИС в составе проектной документации, тыс.м³.

3.4.1. Потери природного газа при управлении силовыми пневмоприводами запорной арматуры и кранов-регуляторов на ГИС

Технологические потери природного газа при управлении силовыми пневмоприводами запорной арматуры, работе кранов-регуляторов, пневморегуляторов и пневмоустройств в случае использавния природного газа без дополнительной системы его подготовки в качестве «импульсного»; определяют по формуле:

$$\Pi_{\text{KP}}^{\text{FUC}} = \sum_{i=1}^{n_{\text{np}}} \left(q_{\Pi P_i} \cdot N_{\Pi P_i} \cdot 10^{-3} \right) + \sum_{i=1}^{n_{\text{np}}} \left(q_{\text{KP}_i} \cdot \tau_{\text{KP}_i} \cdot m_i \cdot 10^{-3} \right) \tag{3.32}$$

где,

 $q_{\Pi P_i}$ — объем газа, стравливаемого в атмосферу из силового пневмопривода при одном срабатывании крана в соответствии с паспортом завода-изготовителя, м³;

 $N_{\text{пр.}}$ – количество срабатываний привода крана за планируемый период;

n_{пр} – количество силовых пневмоприводов на ГИС, шт.;

- q_{KP_i} расход газа при работе і-го крана регулятора, пневморегулятора, пневмоустройства в соответствии с паспортом завода-изготовителя, м³/ч;
- $au_{{KP}_i}$ время работы крана-регулятора, пневморегулятора, пневмоустройства в планируемом периоде, ч;
- $n_{\kappa p}$ количество работающих кранов регуляторов, пневморегуляторов или пневмоустройств данного типа на ГИС, шт;
- $m_{\rm i}$ количество типов кранов-регуляторов, пневморегуляторов и пневмоустройств на ГИС в соответствии с проектной документацией.

3.4.2. Потери природного газа при продувках дренажей УСБ и продувке импульсных линий отбора газа на ГИС

Технологические потери природного газа при продувке дренажей УСБ и продувке импульсных линий отбора газа на датчики давления и перепада давления на ГИС рассчитывают по формуле:

$$\Pi_{\text{YCB}}^{\text{FUC}} = \sum_{i=1}^{n_{\text{YCB}}} \left(q_{\text{YCB}} \cdot N_{\text{YCB}} \right)_{i}$$
(3.33)

где,

N_{УСБ} — количество продувок і-ой дренажной линии УСБ или импульсной линии отбора газа, шт.;

 $q_{\text{УСБ}}$ — объем природного газа при продувке i-ой дренажной или импульсной линии, тыс.м³ определяют согласно пункту 3.1.4.

3.4.3. Потери природного газа при эксплуатации ЗРА на ГИС

Технологические потери природного газа при эксплуатации ЗРА, установленной на ГИС определяются в соответствии с паспортами заводовизготовителей.

3.4.4. Потери природного газа при отборе проб на ГИС

Технологические потери природного газа при отборе проб в соответствии с утвержденной технологической схемой ГИС в составе проектной документации для аналитического контроля $\Pi_{O\Pi}^{\Gamma IUC}$, тыс.м³, рассчитывают по формуле:

$$\Pi_{\text{OII}}^{\text{fuc}} = \sum_{i=1}^{n_{\text{OII}}} \left(q_{\text{OII}} \right)_{i} \tag{3.34}$$

где,

n_{OП} - количество анализов i-ого вида в расчетном периоде;

 $q_{\rm O\Pi}$ — потери природного газа при периодическом отборе проб для разовых (лабораторных) анализов газового потока, тыс.м³ определяют аналогично пункту 3.1.8.

Список используемой литературы

- [1] Временные рекомендации по определению и нормированию технологических затрат газа при эксплуатации промысловых и магистральных газопроводов (утверждены Заместителем министра газовой промышленности 19 июня 1973 г.)
- [2] Гриценко, А.И. «Руководство по исследованию скважин» / А.И. Гриценко, 3.С. Алиев, О.М. Ермилов и др. – М.: Наука, 1995. – 523 с.
- [3] Сарданашвили С.А. «Расчетные методы и алгоритмы (трубопроводный транспорт газа)» / С.А. Сарданашвили М.: Издательство "Нефть и газ" РГУ нефти и газа им. И.М. Губкина, 2005. 577 с.
- [4] Правила безопасности в нефтяной и газовой промышленности (утверждены приказом Федеральная служба по экологическому, технологическому и атомному надзору от 12.03.2013 г. №101).
- [5] Технический регламент Евразийского экономического союза «О безопасности газа горючего природного, подготовленного к транспортированию и (или) использованию» принят распоряжением Коллегии Евразийской экономической комиссии от 05.12.2017 № 176.
- [6] Технический регламент Таможенного союза «О безопасности оборудования, работающего под избыточным давлением» (ТР ТС 032/2013)