Изменение № 4 ГОСТ 24409—80 Материалы керамические электротехнические. Методы испытаний

Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 20.06.89 № 1740

Дата введения 01.01.90

Обозначение стандарта дополнить обозначениями: СТ СЭВ 1129—78, СТ СЭВ 1130—78 (на обложке и первой странице стандарта).

Вводная часть. Последний абзац изложить в новой редакции: «Стандарт полностью соответствует СТ СЭВ 1129—78, СТ СЭВ 1130—78, СТ СЭВ 1648—79, СТ СЭВ 1649—79, СТ СЭВ 3568—82, СТ СЭВ 4106—83, СТ СЭВ 4107—83, СТ СЭВ 4110-83— СТ СЭВ 4114-83, СТ СЭВ 5269—85.

Стандарт полностью соответствует стандарту МЭК 672.2 (1980 г.)».

Пункт 1.9. Заменить слово: «до» на «не более».

Пункт 1.10. Исключить знак: ±.

Пункт 2.1 изложить в новой редакции; раздел 2 дополнить пунктами — 2.1.1 — 2.1.4:

- «2.1. Испытание на отсутствие открытой пористости
- 2.1.1. Подготовка к испытанию
- $2\cdot 1.1.1$. Для определения открытой пористости применяют свежерасколотые куски образцов керамических материалов, отобранных в соответствии с табл. 1.
 - 2.1.2. Аппаратура и материалы
 - 2.1.2.1. Для испытания применяют:

установку, состоящую из сосуда высокого давления, соединенного с устройством, с помощью которого можно создавать и поддерживать нужное давление во время испытания;

манометр по ГОСТ 2405-88;

раствор фуксина с массовой долей 1 % в этиловом спирте по ГОСТ 17299—78.

2.1.3. Проведение испытаний

2.1.3.1. Образцы помещают в сосуд высокого давления, полностью погружают в раствор фуксина и выдерживают под давлением не менее 15 МПа в течение такого периода времени, чтобы произведение давления, в мегапаскалях,

(Продолжение см. с. 126)

(Продолжение изменения κ ГОСТ 24409—80)

при котором проводится испытание, на время проведения испытания, было менее 180 МПа-ч.

После окончания испытания куски вынимают из раствора, промывают водой, высушивают и разбивают. Открытая пористость отсутствует, если на новых поверхностях излома не обнаружены следы проникновения красителя.

Проникновение раствора красителя в небольшие трещины, образовавшиеся

во время подготовки образца, не принимают во внимание.

2.1.4. Обработка результатов

Результаты испытаний оформляют протоколом по форме, приведенной 3.2 настоящего стандарта».

Пункт 2.2.2.1. Заменить ссылку: ГОСТ 24104—80 на ГОСТ 24104—88.

Пункт 2.3 изложить в новой редакции; раздел 2 дополнить пунктами 2.3.1 - 2.3.5

«2.3. Измерение плотности

Определение плотности проводят жидкостным пикнометром.

2.3.1. Подготовка к испытанию

- 2.3.1.1. Для проведения испытаний отбирают среднюю пробу материала массой около 200 г. измельчают в фрикционной установке и просеивают через сито 0063 по ГОСТ 6613-86.
 - 2.3.2. Аппаратура и материалы

2.3.2.1. Для проведения испытаний применяют:

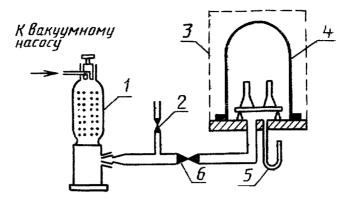
лабораторные весы 2-го класса точности ГОСТ 24104—88;

фрикционную установку с рабочими поверхностями из агата;

термостат (сушильный шкаф) с рабочей температурой (120±5) °C;

эксикатор по ГОСТ 25336-82;

сито 0063 по ГОСТ 6613-86;


пикнометры емкостью от 25 до 50 см³ с пробками, имеющие капилляры и верхние торцы сошлифованные в плоскость;

воду дистиллированную по ГОСТ 6709-72, свежекипяченую и охлажден-

ную до комнатной температуры; ксилол по ГОСТ 9949—76;

вакуумирующую установку (черт. 1а).

(Продолжение см. с. 127)

1 — осушительная колонка;
2 — вентиль, соединяющий установку с атмосферой;
3 — предохранительная проволочная сетка;
4 — вакуумная камера;
5 — манометр;
6 — затвор насосного трубопровода

Черт. 1а

2.3.3. Проведение испытаний

2.3.3.1. Для определения массы пикнометра, наполненного жидкостью, сухие пикнометры взвешивают, наполняют жидкостью таким образом, чтобы после закрытия пробками часть жидкости из каждого пикнометра вытеснялась черезкапилляр и образовывала выпуклый мениск. Под пробкой не должно быть воздушных пузырей.

Наполненные жидкостью пикнометры выдерживают при постоянной температуре (20 ± 1) °C в термостате не менее 1 ч. В случае испарения жидкости в капилляр пробки пикнометра добавляют жидкость с помощью пипетки до образования мениска.

Вынимают пикнометры из термостата, закрывают пробкой, вытирают насухос наружной стороны и взвешивают на аналитических весах с погрешностью не более 0,1 мг.

2.3.3.2. Для определения плотности пробу материала, подготовленную поп. 2.3.1.1, высущивают в термостате при температуре (120 ± 5) °C не менее 3 ч и охлаждают в эксикаторе.

Затем взвешивают три чистых высушенных пикнометра, помещают в них навески высушенной пробы материала с таким расчетом, чтобы они занимали около 1/5 части объема каждого пикнометра, и взвешивают.

Пробу материала заливают жидкостью таким образом, чтобы она была полностью погружена в наименьшем объеме жидкости.

Содержимое пикнометров перемешивают круговыми движениями.

Пикнометры помещают в вакуумную камеру и вакуумируют при давлении не более 500 Па. Вакуумирование проводят до полного удаления всех воздушных пузырьков из жидкости с последующей выдержкой при этом же давлении не менее 30 мин. После окончания вакуумирования пикнометры дополняют жидкостью до образования мениска, выдерживают при постоянной температуре окружающей среды и взвешивают.

Примечания:

- 1. Давление, время и скорость вакуумирования допускается изменять в соответствии с характером используемой жидкости и свойствами исследуемого материала таким образом, чтобы во время вакуумирования не происходило разбрызгивания материала из пикнометра.
- 2. Допускается удаление воздуха из пикнометров кипячением в течение 2 ч в водяной бане. При этом пикнометры должны быть погружены в воду на ³/₄ высоты.

(Продолжение см. с. 128)

2.3.4, Обработка результатов

2.3.4.1. Плотность материала (у) в г-см-3 вычисляют по формуле

$$\gamma = \frac{(m_2 - m_1) \cdot \gamma_F^T}{m_2 - m_1 + m_3 - m_4} ,$$

где γ_F^T — плотность применяемой жидкости при температуре измерения, г-см $^{-3}$;

 m_1 — масса пустого сухого пикнометра, г:

m₂ — масса пикнометра с образцом, г;

та — масса пикнометра, наполненного жидкостью, г;

 m_4 — масса пикнометра с навеской и жидкостью, г.

Значения плотности вычисляют с точностью до третьего десятичного знака. За результат испытаний принимают среднее арифметическое трех определений. Результат округляют с точностью до второго десятичного знака.

Результаты испытаний оформляют протоколом по форме, приведенной и

п. 3.2 настоящего стандарта.
2.3.5. Допускается плотность определять газовым сравнительным пикномет-

2.5.5. допускается плотность определять газовым сравнительным пикнометром (приложение 4)».

Пункт 2.8.2.1. Последний абзац. Заменить слова: «черт. 1а и 1б» на «черт.1б и 1в», «Черт. 1а» на «Черт. 1б», «Черт. 1б» на «Черт. 1в».

Пункт 2.11.2.1. Заменить ссылку: ГОСТ 6616—74 на ГОСТ 6616—86.

Стандарт дополнить приложением — 4:

«ПРИЛОЖЕНИЕ 4 Рекомендуемое

Определение плотности газовым сравнительным пикнометром.

Метод сравнительного анализа

1. Подготовка образца к испытаниям

1.1. Для проведения испытаний отбирают среднюю пробу материала массой около 200 г, измельчают в фрикционной установке и просеивают через сито 0063 по ГОСТ 6613—86.

2. Аппаратура и материалы

2.1. Для проведения испытаний применяют:

газовый сравнительный пикнометр (черт. 5), который состоит из двух газонепроницаемых камер: измерительной и сравнительной, имеющих вид цилиндров с поршнями. Составной частью измерительной камеры является сосуд, в который помещают навеску порошка. Сравнительная камера имеет упор, который точно фиксирует начальный и конечный объемы камер.

После помещения навески порошка в камеру и закрытия измерительной камеры давление в обеих камерах выравнивается за счет открытия соединительного вентиля, который затем закрывается. В обеих камерах одновременно газ сжимается до тех пор, пока объем сравнительной камеры не достигнет конечното устойчивого значения (a) шкалы.

Объем измерительной камеры устанавливают таким образом, чтобы разность давлений в обеих камерах была нулевой. Разность конечных объемов сравнительной и измерительной камер равна искомому объему образца;

установку для работы в атмосфере инертного газа (соответствующий комплект вентилей и сосуд высокого давления с сухим газом, чаще всего гелием); аналитические весы;

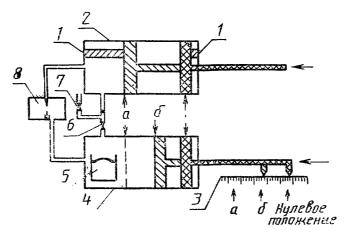
фрикционную установку с рабочими поверхностями из агата;

сушильный шкаф с рабочей температурой (120±5) °С;

эксикатор по ГОСТ 25336-82;

сито **00**63 по ГОСТ 6613—86;

влагомер-психометр.


(Продолжение см. с. 129)

3. Проведение испытания

3.1. Пробу материала, подготовленную по п. 1.3, высушивают в термостате при температуре (120±5) °С не менее 3 ч и охлаждают в эксикаторе.

3.2. Пустой чистый сухой сосуд взвешивают с погрешностью ± 0.1 мг, вводят в пикнометр и не менее двух раз контролируют нулевое положение поршней.

3.3. Сосуд вынимают из пикнометра, помещают в него навеску материала, подготовленную согласно п. 3.1, массой примерно 100 г и взвешивают сосуд с навеской с погрешностью ± 0.1 мг.

1 — упор; 2 — сравнительная камера; 3 — шкала; 4 — измерительная камера; 5 — сосуд с навеской; 6 — соединительный вентиль; 7 — вентиль для выпуска газа; 8 — дифференциальный манометр.

Черт. 5

(Продолжение см. с. 130)

3.4. Измерения проводят при комнатной температуре по ГОСТ 6433.1-71, при этом температура охлажденной навески не должна отличаться от температуры прибора более чем на $2\,^{\circ}$ C.

Если в качестве среды измерения используется воздух, его относительная влажность должна быть не более 50 %, в противном случае пикнометр промы-

вают сухим воздухом.

3.5. Сосуд с навеской помещают в измерительную камеру пикнометра и плотно ее закрывают. Если измерение проводят в инертной атмосфере, систему камер пикнометра промывают инертным газом.

3.6. Для выравнивания температуры сосуд с навеской выдерживают в ка-

мере не менее 1 мин, после чего замеряют объем.

- 3.7. Измерение объема для одной навески повторяют два раза, при этом установленные объемы навески материала не должны отличаться более чем на 0,05 см³.
- 3.8. Испытания по пп. 3.2—3.7 настоящего приложения проводят на двух навесках пробы материала, находящейся в эксикаторе.

4. Обработка результатов

4.1. Плотность материала (у) в г/см³ вычисляют по формуле

$$\gamma = \frac{m_2 - m_1}{V} , \qquad (1)$$

где m_1 — масса пустого сосуда, г;

m₂ — масса сосуда с навеской материала, г;

V — среднее арифметическое объемов, измеренных у одной навески материала, см 3 .

За результат испытаний принимают среднее арифметическое двух измерений. 4.2. Результаты испытаний оформляют протоколом по форме, приведенной в п. 3.2 настоящего стандарта.

(ИУС № 10 1989 г.)