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Введение

В «Руководстве по выражению неопределенности измерения» (GUM) [JCGM 100:2008] рассма­
триваются в основном одномерные модели измерений, включающие в себя единственную скалярную 
выходную величину. Однако на практике часто встречаются измерительные задачи с двумя и более 
выходными величинами. Примеры таких задач имеются в GUM для случаев электрических измере­
ний с тремя выходными величинами [JCGM 100:2008 (раздел Н.2 приложения Н)] и температурных 
измерений с двумя выходными величинами [JCGM 100:2008 (раздел Н.З приложения Н)]. В настоящем 
стандарте рассматриваются многомерные модели измерения, включающие в себя произвольное число 
выходных величин. В большинстве случаев выходные величины коррелированны, поскольку зависят 
от общих входных величин. В настоящем стандарте рассматривается обобщение способа оценивания 
неопределенности по GUM [JCGM 100:2008 (раздел 5)], позволяющее получить оценки выходных вели­
чин, а также стандартные неопределенности и ковариации, соответствующие этим оценкам. Входные и 
выходные величины модели измерения могут быть действительными или комплексными.

Дополнение 1 к GUM [JCGM 101:2008] рассматривает трансформирование распределений [JCGM 
100:2008 (раздел 5)] при заданной модели измерения как основу для выражения неопределенности из­
мерения и реализацию данной процедуры посредством метода Монте-Карло [JCGM 100:2008 (раздел 7)]. 
Как и в GUM, в нем рассмотрены только модели с единственной скалярной выходной величиной 
[JCGM 101:2008 (раздел 1)]. Настоящий стандарт рассматривает обобщение метода Монте-Карло с 
целью получения дискретного представления совместного распределения вероятностей для выходных 
величин многомерной модели. Такое дискретное представление служит основой для получения оценок 
выходных величин, их стандартных неопределенностей и ковариаций. Использование метода Монте- 
Карло является альтернативой способу оценивания неопределенности по GUM, особенно в ситуациях, 
когда последний не способен обеспечить достоверные результаты измерений вследствие того, что (а) 
линеаризация модели приводит к существенному искажению результатов измерения или (б) распре­
деление вероятностей для выходной величины (или величин) не может быть описано многомерным 
нормальным распределением.

Настоящий стандарт устанавливает также метод определения области охвата для выходных ве­
личин многомерной модели, являющейся аналогом интервала охвата в случае одномерной модели, 
для заданной вероятности охвата. Рассматриваются области охвата в форме эллипсоидов или прямо­
угольных параллелепипедов. Применение численных процедур расчета неопределенности измерения 
с использованием метода Монте-Карло дает возможность приближенного построения областей охвата 
наименьшего объема.
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М Е Ж Г О С У Д А Р С Т В Е Н Н Ы Й  С Т А Н Д А Р Т

НЕОПРЕДЕЛЕННОСТЬ ИЗМЕРЕНИЯ 

Ч а с т ь  3

Руководство по выражению неопределенности измерения

Дополнение 2

Обобщение на случай произвольного числа выходных величин

Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement.
Supplement 2. Extension to any number of output quantities

Дата введения — 2018—09—01

1 Область применения

Настоящий стандарт является дополнением к «Руководству по выражению неопределенности из­
мерения» (GUM) (JCGM 100:2008) и распространяется на модели измерения с произвольным числом 
входных и выходных величин. Входящие в модель измерения величины могут быть действительными 
и/или комплексными. Рассмотрено два подхода к использованию таких моделей. Первый представляет 
собой обобщение способа оценивания неопределенности по GUM. Второй — использование метода 
Монте-Карло для трансформирования распределений. Использование метода Монте-Карло дает воз­
можность получить достоверные результаты в ситуациях, когда условия применимости первого под­
хода не выполняются.

Способ оценивания неопределенности по GUM применим, когда информацию о входных вели­
чинах можно представить в виде их оценок (например, полученных измерением), связанных с этими 
оценками стандартных неопределенностей и, при необходимости, ковариаций. Использование соот­
ветствующих формул и процедур позволяет на основе указанной информации получить оценки, а также 
соответствующие им стандартные неопределенности и ковариации для выходных величин. Эти фор­
мулы и процедуры применимы к моделям измерения, для которых выходные величины (а) выражены 
непосредственно как функции от выходных величин (функции измерения) или (Ь) могут быть получены 
решением уравнений, связывающих входные и выходные величины.

В целях упрощения формулы, применяемые в настоящем стандарте, даны в матричной форме 
записи. Дополнительным преимуществом такой формы записи является ее приспособленность к реа­
лизации на многих языках программирования и в системах, которые поддерживают матричную алгебру.

Способ оценивания неопределенности измерения с применением метода Монте-Карло основы­
вается на (i) присвоении входным величинам модели измерения соответствующих распределений ве­
роятностей [JCGM 101:2008 (раздел 6)], (и) определении дискретного представления совместного рас­
пределения вероятности для выходных величин и (iii) получения из этого дискретного представления 
оценок выходных величин, их стандартных неопределенностей и ковариаций. Данный подход является 
обобщением метода Монте-Карло, установленного в JCGM 101:2008 применительно к моделям с един­
ственной скалярной выходной величиной.

Применение вышеуказанных подходов позволяет получить при заданной вероятности охвата об­
ласть охвата для выходных величин многомерной модели — аналог интервала охвата для одномерной 
модели с единственной скалярной выходной величиной. Рассматриваемые в настоящем стандарте об­
ласти охвата имеют формы гиперэллипсоидов (далее — эллипсоиды) и прямоугольных гиперпаралле­
лепипедов (далее — параллелепипеды) в многомерном пространстве выходных величин. В случае при­
менения метода Монте-Карло приведена также процедура приближенного построения области охвата 
минимального объема.

Издание официальное
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Применение стандарта иллюстрировано подробными примерами.
Настоящий стандарт служит дополнением к GUM и должен быть использован вместе с ним и с 

Дополнением 1 к GUM (соответственно JCGM 100:2008 и JCGM 101:2008). Настоящий стандарт пред­
назначен для тех же пользователей, что и два вышеуказанных документа (см. также JCGM 104).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие документы:
JCGM 100:2008, Guide to the expression of uncertainty in measurement (GUM) (Руководство по вы­

ражению неопределенности измерения (GUM))
JCGM 101:2008, Evaluation of measurement data — Supplement 1 to the “Guide to the expression of 

uncertainty in measurement” — Propagation of distributions using a Monte Carlo method (Оценивание дан­
ных измерений. Дополнение 1 к «Руководству по выражению неопределенности измерения». Транс­
формирование распределений с использованием метода Монте-Карло)

JCGM 104:2009, Evaluation of measurement data — An introduction to the “Guide to the expression of 
uncertainty in measurement” and related documents (Оценивание данных измерений. Введение к «Руко­
водству по выражению неопределенности измерения» и сопутствующим документам)

JCGM 200:2008, International Vocabulary of Metrology — Basic and general concepts and associated 
terms (VIM) (Международный словарь по метрологии. Основные и общие понятия и связанные с ними 
термины (VIM))

3 Термины и определения

В настоящем стандарте применены термины по JCGM 100:2008 и JCGM 200:2008, некоторые из 
которых (при необходимости модифицированные) приведены в настоящем разделе, а также следую­
щие термины с соответствующими определениями (обозначения, использованные в настоящем стан­
дарте, приведены в приложении D).

3.1 действительная величина (real quantity): Величина, числовое значение которой является 
действительным числом.

3.2 комплексная величина (complex quantity): Величина, числовое значение которой является 
комплексным числом.

П р и м е ч а н и е  — Комплексная величина Z может быть представлена двумя действительными величина­
ми в форме алгебраической

Z = (Z R,Z ()T = ZR + iZ,

или тригонометрической

z= (Zr  Z0)T =  Zr(cosZ0 +  i sinZ0),

где символ «т» обозначает транспонирование;
i — мнимая единица, i2 = -1;
ZR и Z ,— соответственно действительная и мнимая части Z;
Zr и Ze — соответственно модуль и аргумент Z.

3.3 векторная величина (vector quantity): Совокупность величин, упорядоченных в виде элемен­
тов матрицы с одним столбцом.

3.4 действительная векторная величина (real vector quantity): Векторная величина, элементами 
которой являются действительные величины.

Пример — Действительная векторная величина X, состоящая из N элементов (действительных 
чисел) ХЛ, ..., может быть представлена в виде матрицы размерности N х 1 (матрицы-столбца):

Х =
X i

I х  N

= (x1,...,xw)T

3.5 комплексная векторная величина (complex vector quantity): Векторная величина, элемента­
ми которой являются комплексные величины.

2
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Пример — Комплексная векторная величина Z, состоящая из N элементов (комплексных чисел) 
Z1 t ZN, может быть представлена в виде матрицы размерности N х 1 (матрицы-столбца):

Z =

>л/_

= (Zi ,-,zNy

3.6 векторная измеряемая величина (vector measurand): Векторная величина, подлежащая из­
мерению.

П р и м е ч а н и е  — Данное определение модифицировано по отношению к JCGM 200:2008 (словарная 
статья 2.3).

3.7 модель (измерения) (measurement model): Математическое соотношение между всеми вели­
чинами, используемыми для получения результата измерения.

П р и м е ч а н и е  1 — Данное определение модифицировано по отношению к JCGM 200:2008 (словарная 
статья 2.48).

П р и м е ч а н и е  2 — В общем виде модель измерения имеет вид уравнения h(Y, Х1..... XN) = 0, где
Y— выходная величина модели измерения, являющаяся одновременно измеряемой величиной, значение которой 
должно быть получено на основе информации о входных величинах X,, ..., XN.

П р и м е ч а н и е  3 — Если модель измерения содержит две и более выходные величины, то она включает 
в себя более одного уравнения.

3.8 многомерная модель (измерения) (multivariate measurement model): Модель измерения с 
произвольным числом выходных величин.

П р и м е ч а н и е  1 — В общем случае многомерная модель измерения имеет вид уравнений

h,(Yv ...,Ym,X ,.....XN) = 0, .... hm(Yv ...,Ym,X ,...... XN) = 0,
где У,, ..., Ym — m выходных величин, в совокупности составляющих измеряемую величину, значения которых 
должны быть получены на основе информации о входных величинах многомерной модели X , , ..., XN.

П р и м е ч а н и е  2 — Общий вид многомерной модели измерения может быть представлен также в вектор­
ной форме

h(Y, Х) = 0,
где У=(У ,,..., Ym)J и h = (hv ..., hm)J — матрицы размерности т * 1.

П р и м е ч а н и е  3 — В случае одной выходной величины, т. е. т = 1 (см. примечание 1), модель измерения 
называют одномерной.

3.9 многомерная функция (измерения) (multivariate measurement function): Функция, определяю­
щая зависимость выходных величин от входных величин в многомерной модели измерения.

П р и м е ч а н и е  1 — Данное определение модифицировано по отношению к JCGM 200:2008 (словарная 
статья 2.49).

П р и м е ч а н и е  2 — Если уравнения, входящие в модель измерения h(Y, X) = 0, могут быть разрешены 
в явном виде Y = f(X), где X = (X,, ..., XN)J — входные величины, а У = (У,, ..., Ут )т — выходные величины мо­
дели измерения, то f = {fv ..., fmy — многомерная функция измерения. В более общем случае под f можно по­
нимать алгоритм, посредством которого устанавливается однозначное соответствие значений выходных величин 
у1 = ^(х), ..., ут = fm(x) значениям входных величин х=  (х.,, ..., xN)J .

П р и м е ч а н и е  3 — В случае одной выходной величины, т. е. т = 1 (см. примечание 2), функцию измерения 
называют одномерной.

3.10 модель (измерения) с действительными величинами (real measurement model): Модель 
измерения (в общем случае многомерная), в состав которой входят только действительные величины.

3.11 модель (измерения) с комплексными величинами (complex measurement model): Модель 
измерения (в общем случае многомерная), в состав которой входят комплексные величины.

3.12 модель многоступенчатого измерения (multistage measurement model): Модель измерения 
(в общем случае многомерная), состоящая из последовательности подмоделей, связанных между со­
бой таким образом, что выходные величины подмодели одной ступени являются входными величинами 
подмодели следующей ступени.

П р и м е ч а н и е  — Зачастую потребность в определении области охвата для выходных величин (на основе 
их совместного распределения) имеет место только на заключительном этапе измерения.
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Пример — Измерение, включающее в себя процедуру калибровки, может рассматриваться как 
двухступенчатое. Для первой подмодели значениями входных величин являются передаваемые от 
эталонов и соответствующие им показания средства измерений, а выходными величинами — пара­
метры калибровочной функции (градуировочной характеристики). Эта подмодель определяет способ 
определения выходных величин по входным величинам, например решением системы уравнений, по­
лучаемых при применении метода наименьших квадратов. Входными величинами второй подмодели 
являются параметры калибровочной функции и новое показание средства измерений, а выходной вели­
чиной — измеряемая величина, для получения значения которой было применено средство измерений.

3.13 функция (совместного) распределения (вероятностей) (joint distribution function): Функция,
дающая для каждого значения £ = (£.,, £,N)T значение вероятности того, что каждый элемент X- слу­
чайной векторной переменной X  будет меньше или равен

П р и м е ч а н и е  — Функцию распределения случайной переменной X обозначают G ^ ) ,  где
G *©  = Р г ^ ^ - , .....XN<^N).

3.14 плотность (совместного) распределения (вероятностей) (joint probability density function): 
Неотрицательная функция g^(£), удовлетворяющая условию

6 х ( У =  J 9х (z)dzA/...dz1.

3.15 маргинальная плотность распределения (вероятностей) (marginal probability density 
function): Плотность распределения gx (£>j) элемента X, случайной векторной переменной X  с плотно­
стью совместного распределения д^{£), которая имеет вид

9х( ( У =  J - J
—о о  — оо

П р и м е ч а н и е  — Если все элементы X,, / = 1, ..., Л/, составляющие случайную переменную X, независи- 
М Ы , то д *®  = gXi(5,) д ф г) ... gXff i N).

3.16 математическое ожидание (expectation): Характеристика случайной переменной X,, являю­
щейся элементом случайной векторной переменной X  с плотностью совместного распределения д^(§), 
которая имеет вид

£ ( * / ) =  J - J  1 - ^ N  = j

П р и м е ч а н и е  1 — Данное определение модифицировано по отношению к JCGM 101:2008 (словарная 
статья 3.6).

П р и м е ч а н и е  2 — Математическим ожиданием случайной векторной переменной X является 
Е(Х) = (Е(Х1), ..., E{Xn))j — матрица размерности Л/х 1.

3.17 дисперсия (variance): Характеристика случайной переменной Xjt являющейся элементом 
случайной векторной переменной X  с плотностью совместного распределения д*(£), которая имеет вид

' ' ( * / ) =  J - J  [ l i - E ( X i ) f g yi( ^ v ..d£,N = J f r - E ( X , . ) ] 2 g x . f e - K „

П р и м е ч а н и е  — Данное определение модифицировано по отношению к JCGM 101:2008 (словарная 
статья 3.7).

3.18 ковариация (covariance): Характеристика двух случайных переменных X, и Ху, являющихся 
элементами случайной векторной переменной X  с плотностью совместного распределения д*(£). кото­
рая имеет вид

C o v (x ,,X y) = C o v (X ,,X ,)  = J . . . | [ 5 / - E ( X () ] [5 ; - E ( x ;. ) ]g x ( | ) ^ 1. . . ^ N =

= J [ 5 / - e ( X / ) ] [ 5 v - E ( x y) ]e XiiX (5„5у) ^ у .
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где dXj.Xj (£/»£/) — плотность совместного распределения случайных переменных X, и Ху.

П р и м е ч а н и е  1 — Данное определение модифицировано по отношению к JCGM 101:2008 (словарная 
статья 3.10).

П р и м е ч а н и е  2 — Ковариационной матрицей случайной векторной переменной Хявляется симметрич­
ная положительно полуопределенная матрица V(X) размерности N * N, элементами которой являются ковариации
Соv(Xy, Ху), /= 1,.... N, у'= 1.....N. Некоторые операции с использованием V(X) налагают более строгое ограничение
в виде положительной определенности этой матрицы.

3.19 корреляция (correlation): Характеристика двух случайных переменных Х; и Ху, являющихся 
элементами случайной векторной переменной X  с плотностью совместного распределения д ^ ) ,  кото­
рая имеет вид

C°v Х,-,Х
Corr X /, X / = Corr X  / , X; = -p-----i -------L L  .

[ 11 [ 1 ’ f t w K )
П р и м е ч а н и е  — Величина Corr(X,-, Xj) имеет размерность единица.

3.20 ковариационная матрица (оценок) (measurement covariance matrix): Связанная с оценкой 
действительной векторной величины размерности N * 1 симметричная положительно полуопределен­
ная матрица размерности N * N, на главной диагонали которой расположены квадраты стандартных 
неопределенностей, соответствующих оценкам элементов векторной величины, а остальные члены ма­
трицы представляют собой ковариации между парами соответствующих оценок элементов векторной 
величины.

П р и м е ч а н и е  1 — Термин и определение модифицированы по отношению к JCGM 101:2008 (словарная 
статья 3.11).

П р и м е ч а н и е  2 — Ковариационная матрица Ux размерности N * N, соответствующая вектору оценок х 
векторной величины X, имеет вид:

и ( х  1,Х|) • ■ u ( x b X N )

1 с X <: 
• 

X

■ u(xN.X/v)
где u(xr xj) = u2(xj) — дисперсия (квадрат стандартной неопределенности) оценки х

u(Xj, ху) -  ковариация между х,- и Х у . Если элементы X, и Ху вектора X некоррелированны, то u(xh xj) = 0.
П р и м е ч а н и е  3 — В JCGM 101:2008 ковариационная матрица называется матрицей неопределенности.
П р и м е ч а н и е  4 — При работе с ковариационными матрицами могут возникать некоторые вычислитель­

ные трудности. Например, ковариационная матрица Ux, соответствующая оценке х, может не быть положительно 
определенной (это зависит от того, каким образом была рассчитана матрица Ux). Как следствие, для такой ма­
трицы не будет существовать разложение Холецкого, часто применяемое в численных методах вычислений (см. 
[7] и приложение В). Более того, дисперсия для линейной комбинации элементов х, которая предположительно 
должна иметь небольшое положительное значение, может оказаться отрицательной. Для таких ситуаций разрабо­
таны методы «коррекции» Ux, после применения которых полученная матрица будет положительно определена, и, 
соответственно, для нее будет существовать разложение Холецкого, а дисперсия линейной комбинации элементов 
х будет всегда положительна. Один из таких методов приведен в [27], а его принцип состоит в следующем. Выпол­
няют спектральное разложение матрицы Ux, представляя ее в виде

Ux = QDQ-\
где Q — матрица, столбцы которой являются ортонормированными собственными векторами матрицы Ux, a D — 
диагональная матрица, на главной диагонали которой расположены соответствующие собственные значения Ux. 
Строят новую диагональную матрицу D', заменяя в матрице D элементы, меньшие, чем dmin, на c/min, где cfmin равно 
произведению наибольшего элемента D на единичную ошибку округления компьютера, применяемого при вычис­
лениях. Тогда «корректированная» ковариационная матрица, применяемая для последующих вычислений, будет 
иметь вид

U'x = СЮ’СгУ

П р и м е ч а н и е  5 — Некоторые операции с использованием Ux требуют, чтобы данная матрица была по­
ложительно определенной.

3.21 корреляционная матрица (оценок) (correlation matrix): Связанная с оценкой действитель­
ной векторной величины размерности N * 1 симметричная положительно полуопределенная матрица 
размерности N * N, членами которой являются корреляции между парами соответствующих оценок 
элементов векторной величины.
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П р и м е ч а н и е  1 — Корреляционная матрица Rx размерности N х Л/, соответствующая вектору оценок х 
векторной величины X, имеет вид:

Rх
ф  i , * i )

Ф л /.Xl)

r (x b xN)

r ( x N ,XN)

где г(ху, Ху) = 1, а r(xy, xj) -  корреляция между ху и Ху. Если элементы X, и Ху вектора X некореллированны, то г(ху, ху) = 0. 
П р и м е ч а н и е  2 — т(ху, ху) называют также коэффициентом корреляции.
П р и м е ч а н и е  3 — Корреляционная матрица Rx и ковариационная матрица Ux (см. 3.20) связаны между 

собой соотношением
~ ^Х^Х^Х '

где Dx — диагональная матрица размерности А/х N с диагональными элементами и{х^),..., u(xN). Элементы матри­
цы Ux могут быть представлены в виде

Ф п  */) = Ф р */) U(Xl) u(xj)-
П р и м е ч а н и е  4 — Корреляционная матрица Rx будет положительно определенной/сингулярной в том 

и только в том случае, если соответствующая ей ковариационная матрица Ux будет положительно определен­
ной/сингулярной. Некоторые операции с использованием Rx требуют, чтобы данная матрица была положительно 
определенной.

П р и м е ч а н и е  5 — При представлении численных значений недиагональных элементов корреляционной 
матрицы часто достаточно округлять их с точностью до трех знаков после запятой. Однако если корреляционная 
матрица близка к сингулярной, то, чтобы избежать вычислительных сложностей при использовании корреляци­
онной матрицы среди прочих исходных данных в оценивании неопределенности измерения, число сохраняемых 
десятичных знаков необходимо увеличить. Это число зависит от характера последовательных вычислений, но в 
качестве ориентировочного значения рекомендуется брать его равным числу десятичных знаков, необходимых для 
представления наименьшего собственного значения корреляционной матрицы с двумя значимыми десятичными 
знаками. Так для корреляционной матрицы размерности 2 ^ 2  собственные значения А.тах и Xmin равны соответ­
ственно 1 + \г\ и 1 -  jr), где г— недиагональный элемент корреляционной матрицы, и, значит, таким наименьшим 
собственным значением будет 1 -  |ф Если заранее известно, что корреляционная матрица является сингулярной, 
то округление к меньшему по модулю снижает риск того, что после операции округления корреляционная матрица 
не окажется положительно полуопределенной.

3.22 матрица (коэффициентов) чувствительности (sensitivity matrix): Матрица частных произ­
водных первого порядка функций, описывающих модель измерения с действительными величинами, по 
входным или входным величинам в точке оценок этих величин.

П р и м е ч а н и е  — В случае модели с N входными и т выходными величинами матрицы чувствительности 
в отношении входных величин X  и выходных величин У имеют размерности соответственно т х А/ и т х т .

3.23 интервал охвата (coverage interval): Интервал, построенный на основе имеющейся инфор­
мации и содержащий значение скалярной случайной переменной с заданной вероятностью.

П р и м е ч а н и е  1 — Данное определение модифицировано по отношению к JCGM 101:2008 (словарная 
статья 3.12).

П р и м е ч а н и е  2 — Вероятностно симметричный интервал охвата для скалярной величины представляет 
собой интервал охвата, для которого вероятность того, что значение случайной переменной меньше наименьшего 
значения (нижней границы) интервала охвата, равна вероятности того, что значение случайной переменной боль­
ше наибольшего значения (верхней границы) интервала [см. JCGM 101:2008 (словарная статья 3.15)].

П р и м е ч а н и е  3 — Наименьший интервал охвата представляет собой интервал охвата, имеющий наи­
меньшую длину среди всех возможных интервалов охвата для данной случайной переменной с одинаковой веро­
ятностью охвата [см. JCGM 101:2008 (словарная статья 3.16)].

3.24 область охвата (coverage region): Область, определенная на основе имеющейся информа­
ции и содержащая значение векторной случайной переменной с заданной вероятностью.

3.25 вероятность охвата (coverage probability): Вероятность того, что значение случайной пере­
менной находится в границах интервала охвата или области охвата.

П р и м е ч а н и е  1 — Данное определение модифицировано по отношению к JCGM 101:2008 (словарная 
статья 3.13).

П р и м е ч а н и е  2 — Вероятность охвата иногда называют уровнем доверия [JCGM 100:2008 (6.2.2)].

3.26 наименьшая область охвата (shortest coverage region): Область охвата, имеющая наимень­
ший объем среди всех возможных областей охвата для данной случайной переменной с одинаковой 
вероятностью охвата.
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П р и м е ч а н и е  — В случае скалярной случайной переменной наименьшая область охвата совпадает с 
наименьшим интервалом охвата. Для случайной переменной, описываемой вектором в двумерном пространстве, 
наименьшая область охвата представляет собой поверхность с наименьшей площадью из всех, имеющих ту же 
вероятность охвата.

3.27 многомерное нормальное распределение (вероятностей)1) (multivariate Gaussian 
distribution): Распределение вероятностей векторной случайной переменной Xразмерности Л/х 1 такое, 
что соответствующая плотность совместного распределения имеет вид:

П р и м е ч а н и е  — ц — математическое ожидание X, V— ковариационная матрица X, которая должна быть 
положительно определена.

3.28 многомерное /-распределение (multivariate /-distribution): Распределение вероятностей век­
торной случайной переменной X  размерности N х 1 такое, что соответствующая плотность совместного 
распределения с параметрами ц,, V и v имеет вид:

П р и м е ч а н и е  1 — Многомерным /-распределением описывается векторная случайная переменная X 
размерности Л/х 1, удовлетворяющая соотношению Х - ц =  (v/H/)1/2Q, где Q— векторная случайная переменная 
размерности Л/х 1, имеющая нормальное распределение с нулевым математическим ожиданием и положительно 
определенной ковариационной матрицей У размерности Л/х Л/, a W— скалярная случайная переменная, имеющая 
^-распределение (распределение хи-квадрат) с v степенями свободы.

П р и м е ч а н и е  2 — Плотность /-распределения g^J*) нельзя представить в виде произведения N плот­
ностей распределения элементов вектора Xдаже в том случае, когда V— диагональная матрица. В общем случае 
между элементами вектора Xсуществует статистическая зависимость. Например, при Л/= 2, v = 5 и V— единичной 
матрице размерности 2 x 2  вероятность того, что X, > 1 составляет 18 %, в то время как условная вероятность того, 
что при Х2 > 2 значение Х1 будет превышать единицу, составляет 26 %.

4 Соглашения и условные обозначения

В настоящем стандарте использованы следующие соглашения и условные обозначения.
4.1 В GUM [JCGM 100:2008 (пункт 4.1.1, примечание 1)] для экономии условных обозначений один 

и тот же символ (прописная буква) используется для:
(i) физической величины, которая предполагает наличие единственного истинного значения;
(ii) случайной переменной, ассоциированной с этой физической величиной.

П р и м е ч а н и е  — Случайная переменная выполняет разные роли при оценивании неопределенности по 
типу А и В. При оценивании неопределенности по типу А случайная переменная представляет собой «...возмож­
ный результат наблюдения величины». При оценивании неопределенности по типу В вероятность распределения 
случайной переменной характеризует имеющиеся знания о возможных значениях этой величины.

Эта двойственность обозначений в большинстве случаев не вызывает неудобств.
В настоящем стандарте (также, как и в JCGM 101:2008) в случае входных величин, неопределен­

ность которых оценивают по типу А, один и тот же символ (прописная буква) использован для трех по­
нятий, а именно:

a) физическая величина;
b ) случайная переменная, для которой получают результаты наблюдений;
c) случайная переменная, распределение вероятности которой ассоциируют с имеющимися зна­

ниями о возможных значениях физической величины.
Два последних понятия, относящиеся к случайной переменной, в GUM (JCGM 100:2008) не раз­

деляются, что может явиться источником недоразумений. Так рассматриваемая в настоящем стандарте

1) Многомерное нормальное распределение называют также многомерным распределением Гаусса.

-|-(у+Л/)/2

оо

где Г (z) = j t z 1е * d/ -  гамма-функция, z > 0.
о
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и в JCGM 101:2008 процедура оценивания неопределенности с использованием метода Монте-Кар­
ло может быть неправильно истолкована как реализация процедуры, изложенной в JCGM 100:2008 
(пункт 4.1.4, примечание 1). В действительности же, хотя указанные процедуры схожи в том, что в обеих 
получают выборку значений выходной величины для данной модели измерения из соответствующего 
распределения, сами распределения в общем случае будут разными. В JCGM 100:2008 (пункт 4.1.4, 
примечание 1) это частотное распределение, т. е. случайная переменная интерпретируется в смысле 
перечисления Ь), тогда как в методе Монте-Карло это распределение случайной переменной, интерпре­
тируемой в смысле перечисления с). Для большинства измерительных задач подход, предложенный в 
JCGM 100:2008 (пункт 4.1.4, примечание 1), не рекомендуется (см. [2]).

4.2 Для входных величин модели измерения в настоящем стандарте принято обозначение
X ,......XN или в виде матрицы X = (X.,, ..., XN)T размерности N * 1 (символ «т » обозначает транспони­
рование).

4.3 Для выходных величин модели измерения в настоящем стандарте принято обозначение 
..., Ym или в виде матрицы / =  ( Y1, ..., Ym)T размерности т * 1.

4.4 Если Yj могут быть выражены через X  в явном виде, то модель измерения имеет вид

Y=f(X) ,  (1)

где 1— многомерная функция измерения. Другая форма записи для той же модели (см. 3.9) имеет вид

У̂  = f^W ...... ^ = у х ) ,

где f-\{X), ..., fm(X) являются составляющими f(X).
4.5 Если Yj не выражены в явном виде через X, то модель измерения имеет вид

h{Y,X) = 0 (2)

или, в другой форме записи (см. 3.8),

h^(Y,X) = 0, ..., hm(Y,X)  = 0.
4.6 Оценку X  обозначают в виде х =  (х.,, ..., xN)T — матрицы размерности N х 1. Ковариационную 

матрицу, соответствующую х, обозначают в виде 0Х— матрицы размерности Л/* Л/(см. 3.20).
4.7 Оценку У обозначают в виде у -  (у.,, ..., ут)Т — матрицы размерности т * 1. Ковариационную 

матрицу, соответствующую у, обозначают в виде Uy — матрица размерности т * т.
П р и м е ч а н и е  — иу в случае многомерной модели с т выходными величинами является аналогом дис­

персии и2(у) для у в случае одномерной модели измерения, рассматриваемой в JCGM 100:2008 и JCGM 101:2008. 
В JCGM 100:2008 и(у) обозначается как ис(у), где подстрочный индекс “с” применительно к стандартной неопреде­
ленности обозначает «суммарная». Как и в JCGM 101:2008, в настоящем стандарте использование подстрочного 
индекса “с” в данном контексте рассматривается как излишнее [см. JCGM 101:2008 (пункт 4.10)].

4.8 Если оценки выходных величин предполагается использовать по отдельности, то каждая из 
этих величин может рассматриваться как выходная в соответствующей одномерной модели измерения. 
Если же, например, для последующих расчетов эти оценки должны быть использованы совместно, то 
должны быть приняты во внимание корреляции между ними.

4.9 Стандартную неопределенность, соответствующую х, обозначают и(х). Если контекст исклю­
чает возможность ошибочного истолкования, то может применяться сокращенная форма записи их. 
Данная форма записи не рекомендуется, если при х имеется индекс или иной знак, например х;- или х.

4.10 Под х  можно понимать как «оценки входных величин», так и «оценку входной величины (век­
торной)». В настоящем стандарте преимущественно используется последнее определение (то же са­
мое справедливо для выходных величин).

4.11 Как указано в 4.2 — 4.10, величина в общем случае обозначается с помощью прописной бук­
вы, а ее оценка или некоторое фиксированное значение величины (такое, как математическое ожида­
ние) — соответствующей строчной буквой. Данное правило удобно для общего анализа, но зачастую не 
подходит для обозначения величин в конкретных приложениях из-за устоявшейся практики использо­
вания для конкретных физических величин специальных обозначений, например Т для температуры и 
t для времени. Поэтому в некоторых примерах настоящего стандарта используются иные обозначения: 
физическая величина обозначается ее общепринятым символом, а ее математическое ожидание или 
оценка — этим же символом с циркумфлексом («крышкой»). Например, амплитуда переменного тока 
(пример 1 из 6.2.2) обозначается /, а оценка / — / [см. JCGM 101:2008 (пункт 4.8)].

4.12 Настоящий стандарт отступает от обозначений, часто используемых для обозначения плот­
ностей распределения вероятностей и функций распределения. В JCGM 100:2008 одно и то же обозна-
8
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чение / использовано как для функции измерения, так и для плотности распределения вероятностей, 
чем создается некоторая путаница. Поскольку в настоящем стандарте моделям уделено особое вни­
мание, для плотности распределения вероятностей и функции распределения вместо обозначений / и 
F использованы соответственно д и G. Применяемые подстрочные индексы соответствуют случайной 
переменной, о которой идет речь. Обозначение / оставлено для описания функции измерения (в ска­
лярной или векторной форме).

4.13 Плотность распределения может быть поставлена в соответствие как скалярной (X), так и 
векторной (X) величине. В случае скалярной величины плотность распределения для X  обозначается 
как д ^ ) ,  где £, — переменная, принимающая возможные значения величины X. Здесь X  рассматрива­
ется как случайная переменная с математическим ожиданием £(Х) и дисперсией ЦХ).

4.14 В случае векторных величин плотность распределения для X  обозначается как где
^  = ( ^ ,  ..., ^ ) т — переменная, принимающая возможные значения величины X. Здесь X  рассматрива­
ется как случайная переменная с ожиданием Е(Х) и ковариационной матрицей V(X).

4.15 Аналогично в случае скалярных величин (У) плотность распределения обозначается как 
ду{г|), а в случае векторных величин (У) —

4.16 Для обозначения десятичной дроби используется запятая1).

5 Основные принципы

5.1 Общие положения

5.1.1 В GUM [JCGM 100:2008 (пункт 4.1)] измерение моделируется функцией, связывающей дей­
ствительные входные величины Хи, ..., XN и действительную выходную величину Y в виде формулы 
(1), т. е. Y = f(X), где X = (Х1( ..., XNy  — действительная векторная входная величина. Это одномерная 
функция измерения для действительных величин (см. 3.9, примечание 3).

5.1.2 На практике не все измерения могут быть смоделированы с помощью функции измерения с 
одной скалярной выходной величиной. В реальных измерительных задачах могут иметь место:

a) несколько выходных величин Y1, ..., Ym (которые совместно обозначаются действительной век­
торной выходной величиной У= (У,, ..., Ут )т ), для которых формула (1) принимает вид Y = /(X);

b ) более общий вид модели измерения в виде формулы (2), т. е. h(Y, X) = 0.
5.1.3 Кроме того, некоторые или все элементы X  и, соответственно, элементы Y могут представ­

лять собой комплексные величины. Если каждую такую комплексную величину представить в виде 
двух составляющих (действительная и мнимая часть или модуль и аргумент комплексного числа), то в 
принципе без нарушения общности модель измерения может рассматриваться как модель с действи­
тельными величинами. Однако в большинстве случаев вид алгоритмов, работающих с комплексными 
величинами, проще, чем если бы модель включала только действительные величины [14]. Применение 
моделей измерения с комплексными величинами позволяет записать закон трансформирования не­
определенностей в компактном матричном виде (см. 6.4 и приложение А).

5.1.4 В настоящем стандарте модели, указанные в 5.1.2 и 5.1.3, рассматриваются в более общем
виде.

5.2 Основные этапы оценивания неопределенности

5.2.1 Основные этапы оценивания неопределенности включают в себя формулировку измери­
тельной задачи, трансформирование распределений и получение окончательного результата:

a) формулировка измерительной задачи включает в себя:
1) задание выходной величины У (измеряемой векторной величины);
2) выявление входных величин, составляющих векторную входную величину X, от которых зависит У;
3) составление модели измерения, определяющей взаимосвязь У с Х в  виде функции измерения 

[см. формулу (1)] или в более общем виде [см. формулу (2)];
4) приписывание распределений вероятностей (нормального, прямоугольного и т. д.) входным ве­

личинам Х; (элементам вектораХ) или совместного распределения вероятностей входным величинам, 
не являющимся независимыми, на основе имеющейся о них информации,

b) трансформирование распределений предусматривает определение плотности совместного 
распределения выходной величины У на основе плотностей распределения входных величин X, и ис­
пользуемой модели измерения,

1) В оригинале на английском языке в данном подразделе указывается на использование в качестве деся­
тичного знака точки вместо запятой.
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с) получение окончательного результата предполагает использование плотности распределения 
Y для определения:

1) оценки математического ожидания Y в виде у;
2) ковариационной матрицы Uy, соответствующей у;
3) области охвата, содержащей Y с заданной вероятностью р (вероятность охвата).
5.2.2 Формулировку измерительной задачи осуществляет метролог. Рекомендации по выбору 

плотности распределения [стадия 4) этапа а) в 5.2.1] для некоторых общих случаев приведены в JCGM 
101:2008 и в 5.3. Этапы трансформирования распределений и получения окончательных результатов 
[б) и в) в 5.2.1], для которых приведены подробные указания, не требуют дополнительной метрологи­
ческой информации и могут быть выполнены с любой требуемой вычислительной точностью для по­
ставленной задачи.

П р и м е ч а н и е  — Как только этап постановки задачи а) в соответствии с 5.2.1 выполнен, тем самым 
плотность распределения вероятностей для выходной величины /формально полностью определена. Однако вы­
числение математического ожидания, стандартного отклонения и области охвата может потребовать применения 
численных методов, обладающих некоторой степенью приближения.

5.3 Функции плотности вероятности для входных величин

5.3.1 Общие положения
Руководство по выбору плотностей распределения для входных величин X, на этапе формули­

ровки измерительной задачи приведено в JCGM 101:2008 (раздел 6) для некоторых общих случаев. 
Однако единственным многомерным распределением, рассмотренным в JCGM 101:2008, является 
многомерное нормальное распределение JCGM 101:2008 (пункт 6.4.8). Это распределение приписы­
вают входной величине X, если доступная информация об X  включает в себя только оценку х  и соот­
ветствующую ковариационную матрицу Ux. В 5.3.2 рассматривается еще одно многомерное распреде­
ление — f-распределение. Его применяют, если единственной доступной информацией о величине X  
является выборка наблюдений (предполагаемых независимыми) векторной величины из многомерного 
нормального распределения с неизвестным математическим ожиданием и ковариационной матрицей 
(см. также 6.5.4).

5.3.2 Многомерное f-распределение
5.3.2.1 Предположим, что для векторной величины X  размерностью N * 1, имеющей многомерное 

нормальное распределение Л/(ц, I )  с неизвестным математическим ожиданием у, и ковариационной 
матрицей X  размерностью N * N, доступны п независимых наблюдений, п > N. Пусть у  — искомое зна­
чение X. Тогда, выбирая в качестве априорных распределений для у  и X  соответствующие неинфор­
мативные распределения и используя теорему Байеса, получим, что совместным распределением для 
у  (или распределением, приписываемым X) будет многомерное f-распределение fv(x, S/n) с v = п -  N 
степенями свободы [11], где

П р и м е ч а н и е  — При наличии соответствующих оснований в качестве априорных распределений могут 
быть взяты другие распределения, что может привести к другому значению числа степеней свободы для fv(x, S/n) 
или даже к другому типу распределения для X.

5.3.2.2 Плотность распределения, полученного для X, имеет вид

где f(z ) — гамма-функция аргумента г.
5.3.2.3 Математическим ожиданием и ковариацией X  будут соответственно

Е(Х)=х, V (X ) =
' ' v ’ V- 2  п

где Е(Х) определено только для v > 1 (что соответствует п > N + 1).

10



ГОСТ 34100.3.2—2017

5.3.2.4 Чтобы сформировать случайное выборочное значение £, из tv(x, S/n), возьмем N случайных
выборочных значений zjt /=  1, Л/, из стандартного распределения Гаусса N(0, 1) и одно выборочное
значение w из ^-распределения с v степенями свободы. Тогда

i = * + L z U ’ z= ( Z i ....7w)T'
где L — нижняя треугольная матрица размерности N * N в разложении Холецкого Sin = LLT [13].

П р и м е ч а н и е  — Матрица L может быть определена, например, как в [13].

5.3.3 Построение многомерных функций плотности распределения
Когда входные величины X.,, ..., XN коррелированны, то обычно доступной о них информацией яв­

ляется вид плотности распределения для каждой из этих величин (например, для одной — нормальное, 
для другой — прямоугольное и т.п.), оценки х1......xN, используемые в качестве математических ожи­
даний, стандартные неопределенности и(х^), ..., и(хN), используемые в качестве стандартных отклоне­
ний, и ковариации, соответствующие парам хг Построить по маргинальным распределениям X,, ..., XN 
совместную плотность распределения для X  можно, зная их копулу. Однако вышеуказанной исходной 
информации может соответствовать множество копул, поэтому вид построенной совместной плотности 
распределения будет не единственным.

5.4 Трансформирование распределений

5.4.1 На рисунке 1 слева показан пример модели измерения с А/= 3 взаимно независимыми вход­
ными величинами Х =  (Х^ Х2, Х3)т и т = 2 выходными величинами У = ( Y^  У?)т. Функция измерения — 
f -  (fj, f2)J. Величинам Xj3 /=  1,2, 3, приписаны плотности распределения дх [ ^ ,  а /характеризуется сов­
местной плотностью распределения ду(т\) = Эу у (fy, Ь2). На рисунке 1 справа показан пример, в кото­
ром X, и Х2 взаимно зависимы и характеризуются совместной плотностью распределения дх  х  ( ^ ,  £2).

5.4.2 Выходная величина Y может сама служить основой для получения следующей величины, 
например Q. Тогда У будет рассматриваться как входная величина в модели измерения, описываемой, 
например, функцией измерения t и имеющей вид

Q =t(Y ).

Так, У может представлять собой набор эталонов массы, a Q — суммами некоторых из них.

9*1 (^ )

д*2 ($2>

9*з «э>

v w . * * * k >
y2=f2(Xr X2>X3) 9>V У2(Лу п2)

9*1' 2̂̂

9хз(4э)

—  Y ^ ( X v X2,X3)

—  V’2=^(X1, х2, Х3)
9УГ У?(Пг Пг)

Рисунок 1 — Трансформирование распределений для модели с N= 3 входными величинами и т = 2 выходными вели­
чинами, когда входные величины X,, Х2 и Х3 взаимно независимы (слева) и когда Х1 и Х2 взаимно зависимы (справа)

5.4.3 Объединение функций измерения /  и f для двух подмоделей позволяет получить зависи­
мость Q непосредственно от входных величин X. Однако в ряде измерительных задач желательно со­
хранить разбиение на подмодели, если они относятся к функционально разным этапам. Совокупность 
двух подмоделей представляют собой пример модели многоступенчатого измерения (см. 3.12).

5.4.4 Случай, когда на финальном этапе многоступенчатого измерения с применением многомер­
ных подмоделей имеется единственная выходная скалярная величина, может быть рассмотрен с при­
менением JCGM 101:2008.

5.5 Получение итоговой информации

5.5.1 Оценка у выходной величины У рассматривается как математическое ожидание £(У). Кова­
риационная матрица Uy, соответствующая у, — как ковариационная матрица У(У).

5.5.2 Для вероятности охвата р область охвата Я у для У получают решением уравнения

\ 9r(T\)dT\=P- 
RY
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П р и м е ч а н и е  1 — Некоторым величинам могут быть поставлены в соответствие случайные переменные 
с распределениями, для которых математического ожидания и ковариационной матрицы не существует (см., на­
пример, 5.3.2). Однако область охвата для /существует всегда.

П р и м е ч а н и е  2 — В общем случае существует более одной области охвата для заданной вероятности 
охвата р.

5.5.3 Прямого многомерного аналога вероятностно симметричного 100р %-ного интервала охвата, 
рассмотренного в JCGM 101:2008, не существует. Однако существует аналог наименьшего 100р %-ного 
интервала охвата — это 100р %-ная наименьшая область охвата.

5.6 Способы трансформирования распределений

5.6.1 Трансформирование распределений осуществляют несколькими способами:
a) аналитическими методами, обеспечивающими получение математического представления 

плотности распределения для У;
b ) применением закона трансформирования неопределенностей, основанного на замене функции 

измерения ее аппроксимацией рядом Тейлора с членами разложения первого порядка [обобщение 
подхода, изложенного в JCGM 100:2008 (пункт 5.1.2)];

c) численными методами [см. JCGM 100:2008 (пункт G.1.5)], в том числе с использованием метода 
Монте-Карло (ММК).

П р и м е ч а н и е  1 — Аналитические методы превосходят все прочие с той точки зрения, что они не ис­
пользуют приближений. Однако они применимы только в простых случаях. Такие методы в настоящем стандарте 
не рассматриваются, за исключением примеров, где они используются для сравнения.

П р и м е ч а н и е  2 — Метод Монте-Карло в настоящем стандарте используется для получения распре­
деления векторной выходной величины, а не в качестве метода имитационного моделирования. При оценивании 
неопределенности на этапе трансформирования распределений решаемая задача является детерминированной, 
поэтому в имитационном моделировании физического случайного процесса нет необходимости.

5.6.2 В законе трансформирования неопределенностей оценка х  = Е(Х) для X  и соответствую­
щая ковариационная матрица Ux = V(X) подвергаются преобразованию посредством линеаризованной 
модели измерения. В настоящем стандарте данная процедура рассматривается для моделей разных 
типов.

5.6.3 На рисунке 2 слева показан обобщенный закон трансформирования неопределенностей для 
модели измерения с N = 3 взаимно независимыми входными величинами Х =  (X,, Х2, Х3)т и т = 2 вы­
ходными величинами У = (У^, У2)т. Оценкой X  является х  = (х^, х2, х3)т с соответствующими стандарт­
ными неопределенностями и(х^), и(х2) и и(х3). Оценкой /является у  = (у.,, y2)J с соответствующей кова­
риационной матрицей Uy. На рисунке 2 справа тот же закон показан для случая, когда Х1 и Х2 взаимно 
зависимы и имеют ковариацию и(х^, х2) оценок х1 и х2.

х,, и(х,)

Xj, U(Xj)

х 3, и (Х3)

У, = ̂ (Х„Х2,Х 3) 

Х 2, Х 3)
У.Ц,

u(xj, u(x.j) 
U(x1. x2) 
x3. u(x3)

Y,=f,QCv Xv X$

V2=f2{Xv X2,X 3) У,

Рисунок 2 — Обобщенный закон трансформирования неопределенностей для Л/= 3 взаимно независимых вели­
чин Xv Х2 и Х3 и т = 2 взаимно зависимых выходных величин (слева) и тот же закон, но для взаимно зависимых

Х1 и Х2 (справа)

5.6.4 В методе Монте-Карло совместное распределение вероятностей для X, представленное в 
цифровом виде, трансформируется с помощью модели измерения для того, чтобы получить дискрет­
ное представление совместного распределения вероятности для / ,  на основе которого затем получают 
окончательные результаты измерения.

6 Способ оценивания неопределенности по GUM

6.1 Общие положения

6.1.1 В настоящем стандарте способ оценивания неопределенности через трансформирование 
неопределенностей, рассмотренный в JCGM 100:2008 (пункты 6.2 и 6.3) для моделей измерения вида
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У = f(X), обобщен на более широкий класс моделей с многими выходными переменными. Хотя непо­
средственно в JCGM 100:2008 такие модели не рассматриваются, для их изучения могут быть приме­
нены те же самые основные принципы трансформирования оценок входных величин и соответствую­
щих им неопределенностей в оценки выходных величин и соответствующих им неопределенностей. 
Для математического представления указанных процедур вместо сумм величин с подстрочными ин­
дексами, как это сделано в JCGM 100:2008, удобнее использовать компактную матрично-векторную 
форму записи, хорошо приспособленную для современных пакетов программ и языков программи­
рования.

6.1.2 Для применения закона трансформирования неопределенностей используется та же ин­
формация о входных величинах, что и для одномерной модели измерения, рассмотренной в JCGM 
100:2008:

a) оценка х  = (х.,, ..., xN)J входной величины X;
b ) ковариационная матрица Ux, соответствующая х, содержащая ковариации u(xr xj), /' = 1, ..., Л/, 

у = 1, ..., Л/, соответствующие х,и  х.-.
6.1.3 Описание трансформирования неопределенностей, приведенное в 6.2 и 6.3, распростра­

няется на модели с действительными величинами, включая случаи комплексных величин, представ­
ленных парами действительных составляющих. Трансформирование неопределенностей в случае 
моделей с комплексными величинами рассматривается в 6.4 (см. также 5.1.3).

6.1.4 Способ получения области охвата для векторной выходной величины описан в 6.5.

6.2 Трансформирование неопределенностей для многомерных моделей измерения с
явным видом функциональной зависимости

6.2.1 Общие положения
6.2.1.1 Многомерная модель измерения с явным видом функциональной зависимости между 

выходной величиной У = (V.,, ..., Ym)J и входной величиной Х = (X,, ..., XN)J имеет вид

Y=f(X), f = ( f v .. ., fm) \

где /  обозначает многомерную функцию измерения.

П р и м е ч а н и е  — Аргументами отдельных функций ffX) могут быть разные подмножества X. При этом 
каждый элемент X должен являться аргументом как минимум одной функции ffX).

6.2.1.2 При заданной оценке х  для X  оценка у  для Y имеет вид

у -  Ях).

6.2.1.3 Ковариационная матрица размерности т * т, соответствующая у, имеет вид

“ (У1.У1) -  и ( / 1.У т )

“ (Ут.У1) -  )

где Cov(y/, у) = ц2(уу), и определяется по формуле

Uy=CxUxCx\  (3)

где Сх — матрица чувствительности размерности т * N, определяемая по формуле

э/, э *,
эх , ОJ

•• 
X

Э/ш dfm
ЭХ1 dXN

где все производные берутся в точке Х =  х  [19, страница 29].
6.2.2 Примеры
Пример 1 — Активное и реактивное сопротивления элемента цепи [JCGM 100:2008 (раздел Н.2)] 
Активное Я и реактивное X сопротивления элемента цепи определяют путем измерения амплиту­

ды V изменяющегося по гармоническому закону напряжения на его клеммах, амплитуды / проходящего
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через элемент переменного тока и фазового сдвига ср между напряжением и силой тока. Двумерная 
модель измерения для Я и X, выраженных через V, I и ср, имеет вид

Я = /v, (V/, /, ср) = y c o s q ) , X  = f2 (V,l, ср) = у- sin ср (4)

В обозначениях, ̂ принятых в настоящем стандарте, N = 3, т = 2, Х =  (V, /, ф)т и Y = (Я, Х)т. 
лОденку у  = (Я, Х)т активного и реактивного сопротивлений получают по формуле (4) в точке 

х = (V, /, ф)т — оценке входной величины X.
Ковариационную матрицу Uy размерности 2 * 2, соответствующую у, рассчитывают по формуле 

(3), где Сх — матрица чувствительности размерности 2 * 3, получаемая вычислением

"э ц щ СОЭф V со эф V ЭЮф
dV э/ Эф / /2 /

df2 df2 df2 ЭЮф V э т ф V со эф

dV Э/ Эф / /2 /

в точке X  = х, a Ux — ковариационная матрица размерности 3><3, соответствующая х.

П р и м е ч а н и е  — В JCGM 100:2008 реактивное сопротивление обозначено X. Это обозначение использо­
вано и в настоящем стандарте. Реактивное сопротивление X является элементом векторной выходной величины 
Y, и его не следует путать с векторной входной величиной X.

Пример 2 — Коэффициент отражения, измеряемый микроволновым рефлектометром (подход 1) 
Комплексный коэффициент отражения Г, измеряемый микроволновым рефлектометром, напри­

мер таким, что используют для определения повреждения кабельных линий, описывается моделью с 
комплексными величинами в виде

aW + b
cW + V

(5)

где W — комплексный неисправленный коэффициент отражения, а а, b и с — комплексные коэффици­
енты, полученные при градуировке (калибровке) рефлектометра [10, 16, 26].

В обозначениях настоящего стандарта, описывая комплексные величины через их действитель­
ные и мнимые части, получаем N = 8, т = 2, X = (aR, а/, bR, Ь,, cR, с/5 WR, И/,,) и Y = (Гя, Г/)т.

Оценку у  = (VR, Г,)т комплексного коэффициента отражения в виде его действительной и мнимой 
частей вычисляют по формуле (5), подставляя в нее оценку х  входной величины X.

Ковариационную матрицу Uy размерности 2 x 2 ,  соответствующую у, рассчитывают по формуле 
(3), где Сх — матрица чувствительности размерности 2 x 8 ,  получаемая при вычислении производных

э г  R ЭГ R ЭГ R э г * ЭГ R d r R ЭГ R э г „

Э aR Э а1 d b R ЭЬ/ Э CR Э С/ d W R ЭИ//

ЭГ/ ЭГ/ ЭГ/ ЭГ/ ЭГ/ ЭГ/ ЭГ/ ЭГ/

d a R Э 3/ d b R ЭЬ/ d c R Э С/ d W R ЭИ//

в точке X  = х, a Ux — ковариационная матрица размерности 8 x 8 ,  соответствующая х.
Пример 3 — Калибровка эталонов массы
Этот пример описывает модель многоступенчатого измерения (см. 3.12, 5.4.2 и 5.4.3).
Набор из q эталонов массы со значениями т = (т ..., mq)T калибруют сличением с эталоном ки­

лограмма с использованием компаратора массы, калибровочной гири для определения калибровочной 
функции компаратора и ряда вспомогательных приборов, таких как термометр, барометр и гигрометр, 
для определения поправок на выталкивающую силу воздуха. Эталон килограмма и гиря имеют массы 
mR и т5, соответственно. Калибровку проводят в соответствии с подходящей методикой измерений 
посредством достаточного числа к сличений между наборами эталонов с получением видимых, т. е. 
заметных при измерениях в воздухе, разностей 5 =  (8^ ..., £>k)J. Вычисляют соответствующие поправки 
на выталкивающую силу воздуха b = (bj, ..., bk)J. Разности масс в вакууме X  получают из подмодели 
Х =  f(W), в которой W = (mR, ms, ST , bJy.

Оценку у = (т^, ..., mq)J масс т обычно получают решением по методу наименьших квадратов 
переопределенной системы уравнений Ат = X, где А — матрица размерности к х q с элементами, рав­
ными плюс единица, минус единица или ноль, в соответствии с тем, какие эталоны массы включены в 
14
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сличение, с учетом неопределенностей, соответствующих оценке х  величины X. В этом случае форму­
ла для определения у  имеет вид

y = U yAJU ~ 'x , (6)

где ковариационную матрицу £/ размерности q * q, соответствующую у, получают по формуле 
Uy = (Ати ~ 'А Г '  , a Ux -  ковариационная матрица размерности к * к, соответствующая х. Более под­
робное описание подмодели, а также процедура получения Ux через Uw — ковариационной матрицы, 
соответствующей оценке w величины W, — приведены в [3].

Многомерная модель измерения для этого примера имеет вид

Y= UyAJUx-^X ,

где UyAJUx~^X — функция измерения. В принятых обозначениях настоящего стандарта N = к, m = q и 
Y = m

П р и м е ч а н и е  — С вычислительной точки зрения для получения оценки у предпочтительнее использо­
вать не формулу (6), а алгоритм, основанный на ортогональном разложении матриц (см. [13]).

6.3 Трансформирование неопределенностей для многомерных моделей измерения с
неявным видом функциональной зависимости

6.3.1 Общие положения
6.3.1.1 Многомерная модель измерения с неявным видом функциональной зависимости между 

выходной величиной Y= ( Y^, ..., Ym)T и входной величиной Х =  (X,, ..., XN)J имеет вид

Ц Г ,Х ) = О, /)(/),......hm) \

6.3.1.2 При заданной оценке х  величины X  оценку у  величины Y получают решением системы 
уравнений

/7(У, х) = 0. (7)

П р и м е ч а н и е  — Систему уравнений (7) относительно у обычно решают численными методами, напри­
мер методом Ньютона [12] или одной из его модификаций, задавая начальное значение корня у<°) и последова­
тельно приближаясь к решению.

6.3.1.3 Ковариационную матрицу Uy размерности m * m, соответствующую у, получают решением 
системы уравнений

C yU yC j = Схи хС/ , (8)

где Су — матрица чувствительности размерности m * m, содержащая частные производные 
Э/7//Э Yp I = 1, ..., /д, у = 1, ..., т, а Сх — матрица чувствительности размерности m * Л/, содержащая 
частные производные dh/ldXj, I = 1, ..., m, i = 1, ..., N. Производные вычисляются в точках X = х  и У = у.

П р и м е ч а н и е  1 — Ковариационная матрица Uy в формуле (8) не определена, если матрица Су является 
вырожденной (сингулярной).

П р и м е ч а н и е  2 — Формулу (8) получают аналогично формуле (3) с использованием правила диффе­
ренцирования неявной функции.

6.3.1.4 Из формулы (8) следует, что решение относительно ковариационной матрицы Uy может 
быть записано в виде

Ч у = с и хс \ (9)

с = С у - 'с х - (10)

матрица размерности m * N, сформированная из коэффициентов чувствительности.
6.3.1.5 Процедура расчета матрицы Uy приведена в приложении В. Применение для этих целей 

непосредственно формул (9) и (10) не рекомендуется вследствие неустойчивости соответствующих им 
алгоритмов вычислений.

6.3.2 Примеры
Пример 1 — Давления, задаваемые грузопоршневым манометром
Давление р, задаваемое грузопоршневым манометром, определяется его уравнением преобра­

зования, имеющим вид
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mw (1 — Pa/Pw)dl
H A0 (1 + А.р)(1 + a80) ’ { 4

где mw — полная приложенная масса (груза и поршня), ра и — плотности воздуха и приложенного 
груза соответственно, д, — локальное значение ускорения свободного падения, А0 — эффективная 
площадь манометра при нулевом давлении, X — коэффициент деформации поршневой пары маноме­
тра, a — коэффициент теплового расширения, 50 — отклонение от нормальных условий по температу­
ре (20 °С) [17].

Пусть р-\, ..., pq обозначают давления уравновешивания для приложенных масс, соответственно, 
mw 1, ..., mwq и температурных отклонений 50.,, 80

В обозначениях, принятых в настоящем стандарте, N = 6 + 2q, т = q, X  = (/А0, X, ос, 50.,, /r?w1,
..., 50 mwg, ра, pw, д,)Т, Y= (pv  ..., pq)J.

Модель измерения, определяющая вид зависимости междуХ и Y, имеет вид

hj(Y, X) = AqPj (1 +Xpj)( 1 +abQ j)-rriwJ0  - p J p J g ^ O ,  j=  1, ..., q. (12)

Оценку Pj величины pj получают решением уравнения вида (12) при заданных оценках А0, X, ос, 50у, 
mwj, ра, pw и д,. Однако полученные оценки р-, у = 1, ..., q, имеют соответствующие ковариации, так как 
все они зависят от одних и тех же случайных переменных А0, X, ос, ра, pw и д;.

Ковариационную матрицу Uy размерности д х д, соответствующую у  = (pv ..., pq)T, вычисляют по 
формуле (8), где Су — матрица чувствительности размерности g х д, содержащая частные производ­
ные dh/dY:, /=  1, .... g, у = 1......g; Сх — матрица чувствительности размерности g * (6 + 2g), содержа­
щая частные производные Э/7/ЭХ,, /=  1, ..., д, / = 1, ..., 6 + 2д (все производные берут в точках X  = х  и 
Y = y ) , a U x -  ковариационная матрица размерности (6 + 2д) х (6 + 2д), соответствующая х.

П р и м е ч а н и е  1 — В данном примере выражение зависимости Y, (или, что то же самое, р) через X мо­
жет быть задано в явном виде как решение квадратного уравнения. Однако числовой алгоритм нахождения корня 
квадратного уравнения не всегда будет устойчив. Более того, иногда в уравнение преобразования включают до­
полнительные члены, представляющие собой степени р более высоких порядков. В таких случаях получение явной 
функции измерения не всегда возможно.

П р и м е ч а н и е  2 — Рассматриваемая в данном примере модель измерения может быть представлена 
разными способами. Например, вместо зависимости, описываемой формулой (12), может быть использована мо­
дель в виде сравнения с нулем разности между левой и правой частями уравнения (11). От выбора модели зависят 
эффективность и устойчивость численного решения.

П р и м е ч а н и е  3 — Могут быть рассмотрены более полные модели давления, задаваемые грузопорш­
невым манометром, которые включают, например, поправки, учитывающие эффекты поверхностного натяжения.

П р и м е ч а н и е  4 — Функции измерения имеют в качестве своих аргументов не все входные величины. 
Так, в выражение для у-й функции входят только А0, X, ос, 50у, mwp ра, pw и дг

Пример 2 — Коэффициент отражения, измеренный микроволновым рефлектометром (подход 2)
Другой подход к задаче, описанной в примере 2 из 6.2.2, заключается в выражении зависимости 

между входной величиной X = (aR, at, bR, Ь/, cR, ct, WR, Wj)J и выходной величиной У(ГR, Г/)т через дву­
мерную модель измерения, имеющую вид

h^{Y,X) = 0, /?2( Y, X) — 0, (13)

где h^(Y, X) и h2(Y, X) соответственно действительная и мнимая части выражения

(cW + 1 )Г - (cW+ b).

Преимущество этого подхода состоит в том, что вычисление производных и, следовательно, ко­
эффициентов чувствительности производится более прямым способом.

Оценку у -  (ГR, Г/)т комплексного коэффициента отражения находят в результате подстановки 
Х = х в  формулы (13) и численного решения полученных уравнений.

Ковариационную матрицу Uy размерности 2 х 2, соответствующую у, вычисляют по формуле (8), 
где Су — матрица чувствительности размерности 2 x 2 ,  содержащая частные производные Э/?7/Э Vy, 
/=  1,2, у = 1,2; Сх — матрица чувствительности размерности 2 x 8 ,  содержащая частные производные 
dhi/дХр I = 1, 2, / = 1,..., 8 (все производные вычисляют в точках X  = х  и Y = у), а Ux — ковариационная 
матрица размерности 8 x 8 ,  соответствующая х.

Пример 3 — Калибровка рефлектометра
Калибровку рефлектометра (см. пример 2 из 6.2.2) обычно проводят, измеряя неисправленный ко­

эффициент отражения Wnpv\ применении эталонов с заданными значениями коэффициента отражения Г. 
Часто в этих целях используют три эталона, что позволяет получить систему из трех совместный уравнений:
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(cWj + 1 )Гу -  {aWj + Ь) = 0, у = 1 ,2 ,3 . (14)

Разделение выражений в левой части уравнения (14) на действительную и мнимую части при­
ведет к получению шести совместных линейных уравнений, решение которых позволяет найти дей­
ствительную и мнимую части коэффициентов а, Ь и с калибровочной функции при заданных значениях 
действительной и мнимой частей неисправленных коэффициентов отражения Wj и коэффициентов 
отражения Гу для эталонов.

В обозначениях, принятых в настоящем стандарте, N = 12, т = 6, X  = (И/., R, /t Г 1 R, Г 1 ,, W2 R,
W2,/> Г 2,Я> Г 2,/’ ^ 3 ,Я ’ ^ 3 ,/ .  Г 3,Я’ Г 3,/)Т и ^  = (а Я’ а /- b R’ b l> CR’ С/)Т-

Входные и выходные величины связаны между собой посредством многомерной модели измере­
ния, в которой /?2у_1 ( Y, X) и /?2,(У, X), у = 1,2, 3, — соответственно действительная и мнимая части левой 
части уравнения (14).

Оценку у  = (aR, а,, Ья , b,, cf l, С/)т калибровочных коэффициентов получают, подставляя оценки для 
Wj и Гу в уравнения (14) и решая эти уравнения численно.

Ковариационную матрицу Uy размерности 6><6, соответствующую у, вычисляют по формуле (8), 
где Су — матрица чувствительности размерности 6 x 6 ,  содержащая частные производные dh/ldYj, 
1= 1, ..., 6, у = 1, ..., 6; Сх — матрица чувствительности размерности 6 х 12, содержащая частные произ­
водные dh,lЭХ/, I = 1, ..., 6, / = 1, ..., 12 (все производные вычисляют в точках Х = х и  Y = у), a Ux — ко­
вариационная матрица размерности 1 2 x1 2 , соответствующая х.

П р и м е ч а н и е  1 — При наличии программы обработки данных, работающей с комплексными величина­
ми, разделение уравнений модели измерения на действительную и мнимую части необязательно. Эти уравнения 
могут быть решены непосредственно для а, b и с.

П р и м е ч а н и е  2 — Каждое у-е уравнение модели измерения включает только четыре входные величины:
Wj R, Wj ,, Tj R и Гу / .

6.4 Трансформирование неопределенности для моделей с комплексными величинами

В приложении А приведен компактный алгоритм вычисления частных производных многомерных 
комплексных функций измерения первого порядка, которые необходимо знать при распространении за­
кона трансформирования неопределенностей на модели с комплексными величинами. Данный алгоритм 
может быть применен для многомерных моделей измерения с комплексными величинами общего вида.

Пример — Коэффициент отражения, измеряемый микроволновым рефлектометром (подход 3)
Рассмотрим вновь пример 2 из 6.2.2.
Комплексная выходная величина Y = Г  и комплексная входная величина X = (Х^, Х2, Х3, Х4)т = 

= (а, Ь, с, W)T связаны между собой моделью измерения, описываемой формулой (5). С учетом резуль­
татов, приведенных в приложении А, Сх — матрицу чувствительности размерности 2 x 8  — получают, 
вычисляя

где
С = [С Си С С,Jх Ь с И4’

Ct = M
^Э ГЛ 
\ д  t )

, t = а, Ь, с, W

в точке оценки хдля величины X. Например, для

ЭГ 1 
дЬ~ cW + ^

использование результатов приложения А дает

с  = Qr “ О/
Ь _ Q/ Qr _ ’

где Qr и Q,— соответственно действительная и мнимая части выражения в правой части формулы (15). 
Ковариационную матрицу Uy размерности 2 x 2 ,  соответствующую у  = Г, где

ы (гя ,Г я ) u [ f Rtr i ) ' и2( r R) u ( r R,Vi)

u ( r i , r R) u ( f / , f / ) u (t i ,Tr ) u2 ( r , )  _

вычисляют по формуле (А.1) приложения А, где Ux — ковариационная матрица размерности 8 x 8 ,  со­
ответствующая х.
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6.5 Область охвата векторной выходной величины

6.5.1 Общие положения
6.5.1.1 В некоторых областях метрологии, например, связанных с электричеством, для дальней­

шего использования результатов измерения выходную величину удобно оставить в векторной форме 
вместе с поставленным ей в соответствие совместным распределением вероятностей. Такое представ­
ление результата измерения позволяет в максимальной степени сохранить всю полученную информа­
цию о выходной величине.

6.5.1.2 Если же результат измерения представляют в виде полученной оценки у  выходной величи­
ны У = (Y^, ..., Ym)J, соответствующей ей ковариационной матрицы 1/у и вероятности охвата р, то это тре­
бует определения области охвата RYв m-мерном пространстве, которая содержит Ус вероятностью р.

6.5.1.3 Если доступная информация о выходной величине У содержит только значения оценок у  
и Uy, то в соответствии с принципом максимума энтропии случайной переменной, ассоциированной с 
измеряемой величиной и характеризующей имеющиеся на данный момент представления о ее воз­
можных значениях, приписывают многомерное нормальное распределение N(y,Uy) [см. JCGM 101:2008 
(пункт 6.4.8)].

П р и м е ч а н и е  — Такой выбор функции распределения согласуется с используемым в способе оценива­
ния неопределенности по GUM представлением о нормальном распределении скалярной выходной величины Y в 
случаях, когда число степеней свободы, связанное с оценкой У, бесконечно.

6.5.1.4 В общем случае, как только получено совместное распределение для выходной величины 
У, появляется возможность определить вероятность охвата для некоторой заданной области охвата 
или, наоборот, построить область охвата для заданной вероятности охвата. Эта задача не вызывает 
затруднений, если совместное распределение является многомерным нормальным распределением 
(см. 6.5.2, 6.5.3 и 6.5.4). Для других распределений возможно получение приближенных решений с точ­
ностью, приемлемой для практических задач, благодаря использованию численных методов, таких как 
метод Монте-Карло (см. раздел 7).

6.5.1.5 В 6.5.2 рассматривается метод определения области охвата для двумерной величины, что 
потом позволит распространить его на общий многомерный случай (см. 6.5.3). Также рассматривается 
определение области охвата для случая, когда оценка выходной величины получена усреднением ре­
зультатов наблюдений этой величины, представляемых как случайная независимая выборка из много­
мерного нормального распределения (см. 6.5.4).

6.5.2 Двумерный случай
6.5.2.1 На примере двумерной модели измерения можно продемонстрировать все отличия в опре­

делении многомерной области охвата от получения одномерного интервала охвата. Рассмотрим точку 
У= (У|, У2)т в прямоугольной системе координат, где У1 является абсциссой точки, а У2 — ее ординатой. 
Пусть измерение обеих координат проведено с использованием одного средства измерений. Получен­
ная информация об У будет включать в себя оценки у1 и у2 ее координат, стандартные неопределен­
ности и(у^) и и(у2), соответствующие этим оценкам, и ковариацию u(yv у2), наличие которой в данном 
случае обусловлено использованием одного и того же средства измерений для каждой координаты.

6.5.2.2 Согласно способу оценивания неопределенности по GUM при наличии информации о вы­
ходной величине У, указанной в 6.5.2.1, ей приписывают плотность распределения g Y у (Л-ц Лг) в виДе 
двумерного нормального распределения N(y,Uy) (см. 6.5.1.3), где

~Ул
. =

° 2 (y i)  Ф 1.У2 )

У 2. ’ У
“ (У2 .У1) " Л У г ) .

6.5.2.3 Из возможных форм областей охвата рассматриваются две:
а) эллипс с центром в точке у [19, страница 38], описываемый формулой

(П -У )Гиу- \ 1 \ - у )  = к2р, (16)

где кр — постоянная, которую находят из условия, что интеграл от g Y Y (д.,, д2) по площади, огра­
ниченной эллипсом, равен р. При данной форме области охвата в учет принимается взаимная зависи­
мость между У1 и У2. Если Ухарактеризируется нормальным распределением, то величина

( Y - y ) JU - \ Y - y ) (17)
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имеет распределение хи-квадрат с двумя степенями свободы. Отсюда следует, что к2р представляет 
собой квантиль уровня р указанного распределения, т. е.

Р = Рг(х22 < к2р),

где х \  имеет распределение хи-квадрат с двумя степенями свободы. Для вероятности охвата р = 0,95 
кр = 2,45 (см. 6.5.3);

Ь) прямоугольник с центром в точке у со сторонами, параллельными осям и равными длинам по 
отдельности определенных интервалов охвата для У, и У?. Интервал охвата для У, находят из марги­
нального распределения Уv  определяемого формулой

9 у , Ы =  {  9у„уг (1l i .T\ 2 ) * l 2 . (18)

и он не зависит от имеющейся информации о величине У2. То же самое справедливо для интер­
вала охвата для У2. Интервалы охвата у-± kqy(yj), j  = 1,2, определяют для вероятности охвата

q=  1 - ( 1  — р)/2 = (1 +р)/2. (19)

Данный прямоугольник представляет собой область охвата для У, соответствующий вероятности 
охвата не меньшей р [5]. Если У характеризуется нормальным распределением, то маргинальное рас­
пределение (18) для У,, равно как и распределение для У,, также будет нормальным. Отсюда следует, 
что кр представляет собой квантиль уровня q стандартного нормального распределения, т. е.

q=Pr ( \ Z \ <kq),

где Z  имеет нормальное распределение N(0,1). Для вероятности охвата р = 0,95, q = 0,975 и kq = 2,24 
(см. 6.5.3).

П р и м е ч а н и е  1 — При выполнении условий применимости способа оценивания неопределенностей по 
GUM область охвата в виде эллипса, указанная в перечислении а), является наименьшей 100р %-ной областью 
охвата.

П р и м е ч а н и е  2 — Если У  и У> взаимно независимы, то q в формуле (19) может быть заменено на
q = Р1/2-

Пример 1 — Рассмотрим двумерную величину Y, характеризуемую нормальным распределением 
N(y, Uу), где

На рисунке 3 слева показаны 95%-ные эллиптическая и прямоугольная области охвата для Y, полу­
ченные методами а) и Ь). Также на рисунке показано 1000 точек, представляющих случайную выборку 
из указанного распределения вероятности. Интервал охвата в форме эллипса будет иметь наимень­
шую площадь при заданной вероятности охвата. Для данной случайной выборки 950 из 1000 точек со­
держатся внутри эллиптической области охвата площадью 26.6 квадратных единиц и 953 — внутри 
прямоугольной области охвата площадью 28.4 квадратных единиц.

Пример 2 — Рассмотрим двумерную величину Y, характеризуемую нормальным распределением 
N(y, Uv), где

2,0 1,9
1,9 2,0 '

На рисунке 3 справа показаны 95%-ные эллиптическая и прямоугольная области охвата для Y, 
полученные методами а) и Ь). В отличие от примера 1 элементы Y1 и X, величины Y являются корре­
лированными. Для случайной выборки из указанного распределения 957 из 1000 точек содержатся вну­
три эллиптической области охвата площадью 11.8 квадратных единиц и 972 — внутри прямоугольной 
области охвата площадью 40.1 квадратных единиц, что показывает, что вероятность охвата для 
прямоугольной области превышает 0.95. Область в форме прямоугольника, построенная согласно ме­
тоду Ь) без учета коррелированности элементов выходной величины и распределения точек выборки 
на плоскости, может рассматриваться как представление области охвата для Y, не соответствую­
щее данной измерительной задаче. Прямоугольник со сторонами, параллельными осям эллипса, будет 
иметь меньшую площадь и мог бы рассматриваться как более подходящая область охвата, но неудоб­
ство его применения состоит в том, что для него теряется ясный физический смысл соответствия 
формы построенной области охвата элементам выходной величины.
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Рисунок 3 — Эллиптические и прямоугольные области охвата для двумерной величины Y, описываемой нормаль­
ным распределением, элементы которой У, и У2 взаимно независимы (слева) и коррелированны (справа)

6.5.2.4 Другие примеры областей охвата для выходных величин двумерной модели измерения 
приведены в разделе 9.

6.5.3 Многомерный случай
Если размерность пространства вектора выходной величины более двух, то способы построения 

областей охвата становятся менее наглядными, но по существу ничем не отличаются от описанных 
в перечислениях а) и Ь) в 6.5.2.3 для двумерного случая. Необходимо построить такую область Ry в 
/77-мерном пространстве, которая содержала бы У = (У,, ..., Ym) с вероятностью р. Как и в 6.5.2.3 [пере­
числения а) и Ь)], рассматриваются формы Ry двух видов:

a) эллипсоид в m-мерном пространстве, описываемый формулой (16). Если Ухарактеризируется 
многомерным нормальным распределением, то величина, задаваемая формулой (17), имеет распре­
деление хи-квадрат с т степенями свободы. Таким образом, к2р представляет собой квантиль уровня р 
указанного распределения, т. е.

Р = Pr(X2m -  *р).

где х2т имеет распределение хи-квадрат с т степенями свободы. Значения коэффициента охвата кр 
для вероятности охвата р = 0,95 и разных значений т приведены в таблице 1;

b ) параллелепипед в m-мерном пространстве с центром в точке у  с ребрами, параллельными 
осям элементов Y.-, j  = 1, ..., т, выходного вектора Y в прямоугольной системе координат и равными 
длинам по отдельности определенных интервалов охвата для Уу. Интервалы охвата определяют для 
вероятности охвата q = 1 -  (1 -  p)/m. Данный параллелепипед представляет собой область охвата для 
Y, соответствующий вероятности охвата не меньшей р [5]. Для каждого элемента Уу, у = 1, ..., т, интер­
вал охвата вычисляют через его маргинальное распределение. Если У характеризуется нормальным 
распределением, то маргинальное распределение для каждого У также будет нормальным. Отсюда 
следует, что, как и в 6.5.2.3 [перечисление b)], kq представляет собой квантиль уровня q стандартного 
нормального распределения. Значения коэффициента охвата kq для вероятности охвата р = 0,95 и раз­
ных значений т приведены в таблице 2.

Т а б л и ц а  1 — Коэффициенты охвата для областей охвата в форме m-мерного эллипсоида, соответствующие 
вероятности охвата р = 0,95

т
кР

т
кР

т
кР

т
кР

1 1,96 6 3,55 11 4,44 20 5,60
2 2,45 7 3,75 12 4,59 25 6,14
3 2,80 8 3,94 13 4,73 30 6,62
4 3,08 9 4,11 14 4,87 40 7,47
5 3,33 10 4,28 15 5,00 50 8,22
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Т а б л и ц а  2 — То же, что в таблице 1, но для областей охвата в форме m-мерного параллелепипеда

т
кР

т кР т
кР

т
кР

1 1,96 6 2,64 11 2,84 20 3,02
2 2,24 7 2,69 12 2,87 25 3,09
3 2,39 8 2,73 13 2,89 30 3,14
4 2,50 9 2,77 14 2,91 40 3,23
5 2,58 10 2,81 15 2,94 50 3,29

П р и м е ч а н и е  1 — Для одномерного случая (т = 1) выражение (16) упрощается до

(Л -  У)2 = к2ри2у,
что дает

Л = У ± криу —
граничные точки интервала охвата для Y. Для вероятности охвата р = 0,95, кр = 1,96 (см. таблицу 1).

П р и м е ч а н и е  2 — Если Yp j  -  1,.... т, взаимно независимы, то q может быть заменено на q = p1/m.

6.5.4 Область охвата для оценки в виде выборочного среднего из многомерного 
нормального распределения

Рассмотрим п векторов yv  ..., уп размерностью т * 1 каждый, п > т, соответствующих повторя­
ющимся наблюдениям многомерной величины Y = ( Y1, ..., Ym)T. Предположим, что y v  ..., уп могут быть 
интерпретированы как реализации независимых случайных векторов Y ,̂ ..., Yn, каждый из которых ха­
рактеризуется многомерным нормальным распределением с математическим ожиданием ц,и ковариа­
ционной матрицей а. Определим среднее и ковариационную матрицу

а Л ( у1 + . - + у „), у Л (У1-Д )(У 1-А ) Т +... + (Уп -А ) (У п - Л ) Т

размерности т * 1 и т * т соответственно. Тогда случайная переменная

^ И - ц ) т у - 1( Д - ц )
т

будет иметь распределение Фишера f mn_m (называемое также F-распределением) с т и п -  т степе­
нями свободы [19, пункт 3.5.2.1].

П р и м е ч а н и е  — Аналогом этого результата для одномерной величины будет следующее утвержде­
ние: для независимых случайных переменных .....  Yn, каждая из которых характеризуется одномерным нор­
мальным распределением с математическим ожиданием д и дисперсией а2, величина (л -  1)1/2(А -  p)/S имеет 
^-распределение с л -  1 степенями свободы, где

А = S2 = ^ [ ( v', -A )2 +... + ( y „ -A )2] .

Пример — Рассмотрим п = 12 повторных парных наблюдений объемных долей микроклина (AJ 
и биотита (А2) в одном тонком разрезе гранита G-2 [4, 25]. На рисунке 4 значения парных наблюдений 
изображены в виде точек. На нем также построена 95 %-ная эллиптическая область охвата для мате­
матического ожидания величины А размерности 2x1.  Оценка математического ожидания и соответ­
ствующая ей ковариационная матрица имеют вид

27,0 ' 1,202 -0,396
а = , v =

6,2 -0,396 0,381

а 95-я перцентиль распределения F210 равна 4,10. 95 %-ная область охвата для А — это эллипс, описы­
ваемый формулой

(А -а )Т v ~ \ A - a )  = 4 , 1 0 х ^ .

Небольшое число наблюдений в данном примере не позволяет сделать содержательные выводы 
о том, насколько справедливы исходные допущения, чтобы считать построенную область охвата 
достоверной.
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Рисунок 4 — Двенадцать пар выборочных значений и 95 %-ная эллиптическая область охвата вокруг
их выборочного среднего

7 Метод Монте-Карло

7.1 Общие положения

7.1.1 В настоящем разделе рассматривается применение метода Монте-Карло для трансформи­
рования распределений (соответствующая процедура описана в 7.1.7 и представлена в виде диаграм­
мы на рисунке 5).

7.1.2 Метод Монте-Карло позволяет реализовать общий подход к получению дискретного прибли­
женного представления G функции распределения Gy(T\) для 7[18, страница 75]. Суть подхода состоит 
в получении повторных выборок из плотности распределения для X, (или совместной плотности рас­
пределения для X) и вычислении для каждого выборочного значения векторной выходной величины.

7.1.3 Поскольку Gy(T[) содержит максимально полную информацию о 7, любые характеристики 
Y, такие как математическое ожидание, дисперсия и ковариация, а также области охвата могут быть 
рассчитаны из полученного приближения G. В общем случае достоверность получаемых характеристик 
возрастает с увеличением числа выборок.

7.1.4 Полученные в соответствии с 7.1.2 значения выходной величины рассматриваются как неза­
висимая выборка из совместного распределения вероятности для Y. Математические ожидания, дис­
персии (и высшие моменты), а также ковариации могут быть рассчитаны непосредственно по этим 
выборочным значениям. Определение областей охвата требует предварительного анализа полученных 
значений (см. 7.7).

7.1.5 Пусть уп г -  1, М, обозначает выборочные значения выходной величины (см. 7.1.4). 
Выборка уг позволяет получить приближенные значения математического ожидания Е(7) и дисперсии 
1/(7) величины Y. Как правило, в качестве моментов величины /  [включая E(Y) и 1/(7)] берут соответ­
ствующие выборочные моменты. Обозначим Му число векторов в выборке уг для которых каждый их 
элемент не превосходит соответствующий элемент некоторого вектора у0 размерности т * 1. Тогда 
вероятность Р г ( /<  у0) может быть приближенно представлена отношением MyJM. Таким образом, вы­
борка векторов yv ...,ум позволяет получить дискретное представление функции распределения ву(ц).

7.1.6 Приближение G является первым результатом применения метода Монте-Карло и представ­
ляет собой матрицу размерности т * М\

в  = (У1.....Ум)-
7.1.7 Процедура применения метода Монте-Карло для трансформирования распределений в слу­

чае явной зависимости 7 через X и заранее заданного числа испытаний М (в противном случае см. 7.8) 
показана в виде диаграммы на рисунке 5 и включает в себя следующие этапы:

а) выбирают число испытаний М (см. 7.2);
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b) формируют в каждом из М испытаний Л/-мерный вектор входных величин Хг элементами кото­
рого являются случайные выборочные значения из распределений для X, или совместного распреде­
ления для X  (см. 7.3);

c) рассчитывают для каждого выборочного значения вектора входной величины вектор выходной 
величины У, получая таким образом выборку векторов выходной величины объемом М (см. 7.4);

d) формируют представление G функции распределения У в виде ряда М значений векторной вы­
ходной величины (см. 7.5);

e) на основе G вычисляют оценку у величины У и ковариационную матрицу Uy, соответствующую 
у (см. 7.6);

f) на основе G строят соответствующую область охвата для У для заданной вероятности охвата 
р (см. 7.7).

П р и м е ч а н и е  — Выборочное среднее для М векторных выходных величин имеет математическое 
ожидание Е(У) и дисперсию V(Y)/M. Таким образом, расхождение между Е(У) и его оценкой в среднем будет про­
порционально Л4~1/2.

7.1.8 Эффективность метода Монте-Карло при определении у, Uy и области охвата для У зави­
сит от адекватного выбора числа испытаний М [этап а) в 7.1.7]. Рекомендации по выбору достаточного 
числа испытаний М и по другим вопросам реализации метода Монте-Карло приведены в [8] (см. также
7.2 и 7.8).

7.2 Число испытаний методом Монте-Карло

7.2.1 Для применения метода Монте-Карло необходимо выбрать число испытаний М, т. е. объем 
выборки векторной выходной величины. Это число может быть выбрано заблаговременно (до прове­
дения испытаний), но тогда будет исключена возможность управления точностью результатов, полу­
ченных с помощью данного метода. Причиной этому служит то, что число испытаний, необходимое для 
получения результата вычисления с заданной точностью, зависит от формы плотности распределения 
выходной величины и от заданного значения вероятности охвата. Кроме того, метод вычисления явля­
ется стохастическим по своей природе, поскольку зависит от случайной выборки.

7.2.2 Поскольку нельзя заранее гарантировать, что выбранное значение М обеспечит достаточ­
ную точность приближения, можно использовать процедуру адаптивного выбора, уточняя значение М 
в процессе испытаний. Адаптивная процедура, установленная в 7.8, позволяет оптимальным образом 
получить значение М, соответствующее заданной точности вычислений.

П р и м е ч а н и е  — Для сложной модели, например, требующей получения решения методом конечных 
элементов, применение большого числа испытаний может оказаться невозможным. В этом случае рекомендуется 
приближенно представить плотность распределения выходной величины д^ц) нормальным распределением (как 
в GUM). Это позволяет использовать относительно небольшое число испытаний М, например 50 или 100, а полу­
ченные по результатам испытаний выборочное среднее и выборочные ковариации принять, соответственно, за 
оценки у  и Uy. Для описания У и построения области охвата используют плотность нормального распределения 
N(y, Uy). Хотя уменьшение числа испытаний неизбежно ухудшает свойства метода в части аппроксимации распре­
деления выходной величины, оно все же позволяет учесть нелинейность модели измерения.
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Рисунок 5 — Этапы трансформирования распределений и получения результатов оценивания неопределенности 
методом Монте-Карло для случая явной зависимости выходных величин от входных величин

7.3 Получение выборок из распределений вероятности

7.3.1 Для применения метода Монте-Карло формируют М векторов хг г -  1, ..., М, в соответствии 
с плотностями распределения вероятностей gx (ki) Для N входных величин Х/Или, если это необходимо, 
из совместной плотности распределения ФПВ д*(£).

7.3.2 Рекомендации по формированию выборки для наиболее распространенных распределе­
ний (равномерного, нормального, многомерного нормального и f-распределения) приведены в JCGM 
101:2008 (пункт 6.4 и приложение С). Однако возможно получение выборок, соответствующих и другим 
распределениям [см. JCGM 101:2008 (раздел С.2)]. Некоторые распределения могут быть аппроксими­
рованы распределениями, полученными в результате применения метода Монте-Карло при предыду­
щих вычислениях неопределенности [см. JCGM 101:2008 (пункт 6.5 и приложение D)].
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7.3.3 Процедура формирования выборки для многомерного f-распределения описана в 5.3.2.4.

П р и м е ч а н и е  — Для достоверности результатов применения метода Монте-Карло необходимо, чтобы 
генераторы псевдослучайных чисел, используемые для формирования выборок из заданных распределений, об­
ладали соответствующими свойствами. В JCGM 101:2008 (пункт С.3.2) приведены некоторые тесты сформирован­
ных выборок на случайность.

7.4 Вычисление векторной выходной величины

7.4.1 Векторную выходную величину вычисляют для каждого из М выборочных значений А/-мерного 
вектора входной величины, полученных из соответствующих распределений. Если обозначить М выбо­
рочных значений вектора входной величины размерности N * 1 через x 1 t хм, где г-й вектор хг содер­
жит х1 г ..., xrN, и xj r — выборочное значение из распределения для Хг то соответствующие значения 
векторов выходной величины для модели измерения с явным видом функциональной зависимости вы­
числяют по формуле

yr =f {x r), г= 1 , . . . ,  М.

П р и м е ч а н и е  — При использовании закона трансформирования неопределенностей, когда аналити­
ческие выражения производных функции измерения по входным величинам известны точно, значения этих про­
изводных и значения функции измерения берут в точке оценок входных величин. Если аналитические выражения 
для производных неизвестны и для их оценок используют приближение в виде конечных разностей, то получают 
оценки только для функции измерения. Согласно рекомендации GUM [JCGM 100:2008 (примечание 2 к пункту 
5.1.3)] значения функции измерения берут в точках оценок входных величин, а также в точках, отстоящих по обе 
стороны от этих оценок на расстоянии одной стандартной неопределенности (варьируя по очереди для каждой 
входной величины). В методе же Монте-Карло значения функций измерения получают при варьировании входных 
величин в окрестности их оценок, т. е. в точках, которые могут отстоять от этих оценок на несколько стандартных 
отклонений. Тот факт, что в методе Монте-Карло значения функции измерения получают в разных точках, может 
породить вопрос о свойствах вычислительной процедуры, в частности о ее устойчивости и (в случае применения 
адаптивной процедуры) сходимости. При возникновении сомнений пользователю следует убедиться в том, что ме­
тод дает достоверные оценки выходной величины для достаточно больших окрестностей оценок входных величин. 
Однако следует ожидать, что вопросы устойчивости и сходимости численного метода могут стать критическими 
только в исключительных случаях.

7.4.2 Если X, являются зависимыми величинами, то в 7.4.1 распределения для Ху следует заме­
нить на совместное распределение для X.

7.4.3 В случае модели с неявным видом функциональной зависимости в процедуре, описанной в 
7.4.1, значения векторной выходной величины уг получают в результате решения уравнений

h(yr  хг) = 0, г= 1, ..., М.

7.5 Дискретное представление функции распределения для выходной величины

Дискретное представление функции распределения для векторной выходной величины форми­
руется из М значений векторной выходной величины, полученных согласно 7.4. В общем случае это 
представление является матрицей G размерности т * М, г-й столбец которой является г-м значением 
векторной выходной величины. Для одномерной модели G — вектор-строка.

П р и м е ч а н и е  1 — у-я строка матрицы G является приближенным дискретным представлением функции 
маргинального распределения для Уу.

П р и м е ч а н и е  2 — Для т = 1, 2, 3 возможна графическая интерпретация приближения G. Пусть т = 2.
Для г= 1.....М построим в плоскости (У,, У2) точку с координатами, соответствующими двум элементам в столбце
г матрицы G. При достаточно большом М плотность нанесенных точек в любой локальной области плоскости будет 
приблизительно пропорциональна плотности распределения в этой области.

П р и м е ч а н и е  3 — Построенное приближение G позволяет извлечь разнообразную информацию, в 
частности, относительно моментов высших порядков. Однако в способе оценивания неопределенности по GUM 
для трансформирования неопределенностей и последующего оценивания неопределенности измерения [JCGM 
100:2008 (пункт 0.4)] для получения оценки У и соответствующей ей ковариационной матрицы необходимо знать 
моменты только первых двух порядков.

П р и м е ч а н и е  4 — Если величина У будет использоваться в качестве входной величины на следующем 
этапе многоступенчатого измерения, то на этом этапе выборку входных величин можно получить из уже имеющих­
ся значений уг г= 1,..., Л4(или, что то же самое, из столбцов матрицы G), последовательно осуществляя случайный 
выбор (с равной вероятностью) из этих значений [JCGM 101:2008, 6.5].
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7.6 Оценка выходной величины и соответствующей ей ковариационной матрицы

Среднее арифметическое и ковариационную матрицу

У = 77'(У! + -  + Ум), иУ = м ~ \ [^ у ' -

берут, соответственно, в качестве оценки у величины Y и ковариационной матрицы Uy, соответ­
ствующей у.

П р и м е ч а н и е  — Независимо от того, является ли модель измерения линейной или нелинейной, в преде­
ле при М, стремящемся к бесконечности, у стремится по вероятности к E(f{X)), когда последнее существует.

7.7 Область охвата для векторной выходной величины

7.7.1 Общие положения
Вообще говоря, существует сколь угодно много 100р %-ных областей охвата для Y. В настоящем 

стандарте рассматриваются области охвата трех видов, которые, как ожидается, могут найти наиболь­
шее практическое применение. Однако в отдельных обстоятельствах может оказаться предпочтитель­
ным использование области охвата специальной формы. Независимо от вида области охвата построе­
ние последней основано на полученном приближении G, т. е. на наборе М точек уп случайным образом 
выбранных из распределения вероятностей для Y при реализации метода Монте-Карло (см. 7.5). 
Рассматриваемые здесь области охвата имеют вид:

a) эллипсоида. Данная область охвата будет близка к наименьшей области охвата в случае, если 
распределение вероятностей для Y близко к нормальному;

b ) параллелепипеда. Область охвата данного вида допускает простую интерпретацию, но зача­
стую ее объем существенно превосходит объем наименьшей области охвата;

c) наименьшей области охвата, которая в общем случае не имеет какой-либо заданной геометри­
ческой формы и определяется в некотором приближении, зависящем от М.

7.7.2 Область охвата в форме эллипсоида
Уравнение 100р %-ной области охвата для Y в форме эллипсоида имеет вид:

(П -У )тиу- \ ц - у )  = к2р, (20)

где у  определяет положение центра эллипсоида в пространстве выходных величин, Uy — форму эл­
липсоида (степень вытянутости и ориентацию в пространстве), а кр — его размер (объем). Процедура 
построения области охвата в форме эллипсоида по формуле (20) при известных оценках у  и иу {см. 7.6) 
требует нахождения кр и состоит в следующем:

a) трансформируют точки уг в у°г (г = 1, ..., М) по формуле

y°r = L ~ \y r - y ) ,  г=  1..... М, (21)

где L — нижняя треугольная матрица размерности m * m разложения Холецкого Uy = LLT;
b) сортируют трансформированные точки у°г в порядке возрастания значения dr  где

м 2
d? = y°rTy°r = 'Z (y ° j,r )■ г= 1..М;

М
c) используют упорядоченные у°г для определения коэффициента охвата кр, значение которого 

определяют из условия: dr < кр для всех у°гс номером г, не превышающим рМ;
d) строят 100р %-ную область охвата для Y, границы которой определены уравнением (20).

П р и м е ч а н и е  1 — Основы описанной процедуры изложены в [1], где массив векторных данных сортируют 
по метрике

(уг - а ) тХ~1(уг -а ),

где а — статистика параметра положения, а X — статистика параметра масштаба (дисперсии). Формулы, приве­
денные в процедуре, получены заменами а = у и X = Uy. Использование в процедуре трансформированных точек 
необходимо для того, чтобы сделать ковариационную матрицу, соответствующую трансформированным точкам, 
единичной, т. е. элементы векторов выборки становятся некоррелированными. Это позволяет сопоставлять (сор­
тировать) трансформированные точки по их расстоянию от оценки у. Из способа получения точек уг следует, что 
они характеризуют разброс значений случайной переменной Y вокруг центральной точки у. Область охвата в виде 
эллипсоида с центром в у по своему смыслу должна содержать 100р % общего числа точек уг
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П р и м е ч а н и е  2 — Приемлемость полученной области охвата для представления неопределенности 
измерения зависит от конкретной измерительной задачи. Полученное представление может стать неприемлемым, 
если распределение точек уг в пространстве выходной величины У плохо согласуется с описанием этой величины 
многомерным нормальным распределением.

П р и м е ч а н и е  3 — Матрица L, полученная на этапе а), может быть определена, например, способом, 
описанным в [13] (см. пример ниже).

П р и м е ч а н и е  4 — Процедура построения области охвата учитывает существование зависимости между 
элементами вектора Y.

П р и м е ч а н и е  5 — Для сложной модели, например, требующей получения решения методом конечных 
элементов, применение большого числа испытаний М может оказаться невозможным. В этом случае рекоменду­
ется приближенно представить плотность распределения выходной величины У нормальным распределением. 
Это позволяет использовать относительно небольшое число испытаний М ,  например 50 или 100, а полученные 
по результатам испытаний выборочное среднее и выборочные ковариации принять, соответственно, за оценки у 
и Uy. Для описания У и построения области охвата используют плотность нормального распределения с матема­
тическим ожиданием у и ковариационной матрицей Uy Хотя уменьшение числа испытаний неизбежно ухудшает 
свойства метода в части аппроксимации распределения выходной величины, оно все же позволяет учесть нели­
нейность модели измерения. В таблице 1 приведены значения кр для вероятности охвата р = 0,95 в зависимости 
от размерности т вектора выходных величин при допущении нормальности распределения У.

Пример — Рассмотрим модель измерения

Y i = X i + X 3 , Y 2 =  Х 2  +  Х 3 , (22)

в которой входным величинам ХЛ и Х2 приписано нормальное распределение N(0;0,1) каждой, Х3 приписа­
но прямоугольное распределение R(-(3 х 1,9)1/2,(3 х 1,9)1/2), и все входные величины являются независи­
мыми. Математическими ожиданиями входных величин X, являются х, = 0, / = 1, 2, 3, а их дисперсиями — 
u2(xj) = 0,1, / = 1, 2 и и2(х3) = 1,9, тогда как в примере 2 и 6.5.2.3 У = (Y ,̂Y2)T имеет оценку математического 
ожидания и соответствующую ей ковариационную матрицу

2,0 1,9 
1,9 2,0 ‘

Трансформированные точки у°г на этапе а) формируют с использованием L~1, имеющей следую­
щий вид (с точностью до третьего знака после запятой):

0,707 -2,151'
0,000 2,265 '

На рисунке 6 слева показаны 1000 выборочных точек для распределения вероятности Y, опреде­
ляемого моделью измерения [формула (22)] и приведенными выше распределениями вероятности для 
входных величин Хр / = 1, 2, 3. 95%-ная эллиптическая область охвата для Y, полученная в предположе­
нии, что Yхарактеризуется двумерным распределением Гаусса N(y;Uу) [как и на этапе а) в 6.5.2.3], пока­
зана пунктирной линией. Эта область имеет площадь 11.8 квадратных единиц, кр = 2,45 и содержит 968 
из 1000 точек. Эллиптическая область охвата, определенная на основе 1000 выборочных точек в соот­
ветствии с процедурой 7.7.2, показана сплошной линией. Эта область имеет площадь 10,6 квадратных 
единиц, кр = 2,33, что немногим меньше, чем область, полученная в предположении нормальности рас­
пределения выходной величины. Как и должно следовать из способа построения области охвата, эта 
область содержит ровно 950 точек.

Модель измерения [формула (22)] рассматривается более подробно в разделе 9, где приведены 
также другие примеры построения областей охвата для двумерных выходных величин.

1,414 1,344
0,000 0,442 ’
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Рисунок 6 — Эллиптические области охвата, построенные в соответствии с процедурами 6.5.2.3 а) и 7.7.2 для 
примера из 7.7.2 (слева), и прямоугольные области охвата, построенные в соответствии с процедурами 6.5.2.3 Ь)

и 7.7.3 для примера из 7.7.3 (справа)

7.7.3 Область охвата в форме параллелепипеда
100р %-ная область охвата для У в форме параллелепипеда имеет вид

Уу± kqUiyj), j  = 1, ..., т, (23)

где у  = (y1f ут)Т определяет положение центра параллелепипеда в пространстве выходных величин, 
а и{у) = (и(у^), ..., и(ут))т и /<д определяют его размер (объем). Процедура построения области охвата 
в форме параллелепипеда по формуле (23) при известных оценках у  и и(у) требует нахождения kq и 
состоит в следующем:

a) трансформируют точки уг в у°г (г= 1,..., М) по формуле (21), но где L теперь является диагональ­
ной матрицей размерности m *  m с диагональными элементами и(у^), и(ут)\

b ) сортируют трансформированные точки у°г в порядке возрастания значения dr  где dr  теперь 
определяют по формуле

dr = max |у ° /г |, г -  1..... М\
j=\...,m ' J’ 1

c) используют упорядоченные у°г для определения коэффициента охвата kq, значение которого 
определяют из условия: dr < /с^для всех у°гс номером г, не превышающим рМ\

d) строят 100р %-ную область охвата для Y, границы которой определены формулой (23).

П р и м е ч а н и е  — Процедура построения области охвата учитывает существование зависимости между 
элементами вектора У.

Пример — На рисунке 6 (справа) показаны те же 1000 точек, что и на рисунке 6 (слева). 95 %-ная 
прямоугольная область охвата для Y, полученная в предположении, что Yf  j=  1, 2 характеризуется нор­
мальным распределением N(yj и2(у-)), а корреляция оценок у1 и у2 [как и на этапе Ь) в 6.5.2.3] не учиты­
вается, показана пунктирной линией. Эта область имеет площадь 40,1 квадратных единиц, kq = 2,24, 
и содержит все 1000 точек. Прямоугольная область охвата, определенная на основе 1000 выбранных 
точек в соответствии с процедурой 7.7.3, показана сплошной линией. Эта область имеет площадь
25,5 квадратных единиц, kq = 1,78, что немногим меньше, чем область, в предположении нормальности 
распределения выходной величины. Как и должно следовать из способа построения области охвата, 
эта область содержит ровно 950 точек.

7 . 7 А  Наименьшая область охвата
Процедура построения наименьшей 100р%-ной области охвата включает в себя следующие этапы:
a) в т-мерном пространстве выходных величин строят исходный параллелепипед, предположи­

тельно охватывающий большую долю значений, которые могут быть приписаны векторной выходной 
величине Y;

b ) равномерной /л-мерной сеткой делят исходный параллелепипед на ячейки в виде подобных 
равных, плотно уложенных, малых параллелепипедов;
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c) для каждого малого параллелепипеда подсчитывают число попавших в него выборочных точек уг;
d) долю точек уг попавших в малый параллелепипед, рассматривают как приближенное значение 

вероятности попадания в данный параллелепипед значения случайной векторной переменной Y,
e) все малые параллелепипеды располагают в порядке уменьшения приписанной им вероятности;
f) суммируют вероятности, приписанные малым параллелепипедам, начиная с первого и после­

довательно прибавляя вероятность каждого последующего вплоть до того, пока полученная сумма не 
превысит или не станет равной р;

д) совокупность малых параллелепипедов, внесших вклад в получение указанной суммы, рассма­
тривают в качестве приближения наименьшей области охвата;

П р и м е ч а н и е  1 — Данная процедура, заимствованная из [20], заключается в разбиении пространства 
выходных величин на ряд малых ячеек (параллелепипедов), аппроксимации вероятности попадания значения вы­
ходной величины Y в каждую из таких ячеек долей попавших в нее точек выборки и объединении минимального 
числа ячеек, в совокупности содержащих не менее 100р % из М выборочных значений векторной выходной вели­
чины, в конфигурацию, рассматриваемую как наименьшая область охвата.

П р и м е ч а н и е  2 — Параллелепипед, построенный на этапе а), должен включать в себя все точки уг
П р и м е ч а н и е  3 — Число малых параллелепипедов, используемых для разбиения на этапе Ь) простран­

ства выходных величин, ограниченного большим параллелепипедом, построенным на этапе а), влияет на качество 
полученного приближения.

П р и м е ч а н и е  4 — В большинстве случаев качество приближения улучшается с ростом М. Чтобы полу­
чить достаточно хорошее приближение, особенно в случае, когда размерность пространства выходных величин т 
более двух или трех, может потребоваться очень большое число испытаний М.

П р и м е ч а н и е  5 — Построенная в соответствии с вышеописанной процедурой наименьшая область ох­
вата может оказаться несвязной, особенно, если М недостаточно велико.

П р и м е ч а н и е  6 — На этапе d) вероятность, приписанная каждому малому параллелепипеду, определя­
ется относительной частотой попадания в него выборочного значения выходной величины. Использование более 
сложной аппроксимации (см. [23]) может позволить улучшить связность области охвата и сгладить ее границы.

П р и м е ч а н и е  7 — Приписанные на этапе d) вероятности могут оказаться одинаковыми для двух или 
нескольких малых параллелепипедов. В этом случае упорядочивание малых параллелепипедов, выполняемое на 
этапе е), будет не единственным. Разным возможным вариантам упорядочивания могут соответствовать разные 
приближения области наименьшего охвата.

П р и м е ч а н и е  8 — В двумерном случае (т = 2) этапы от а) до d) входят в начальные шаги типичного 
алгоритма визуализации распределения для У (см. 9.1.6).

Пример — Рассмотрим ту же самую задачу, что и в примере 7.7.2 . На рисунке 7 показано прибли­
жение для наименьшей 95 %-ной области охвата, полученное с использованием вышеуказанной проце­
дуры при разбиении исходного большого прямоугольника на 10 х 10 малых прямоугольников (слева) и 
100 х 100 малых прямоугольников (справа). Область охвата на рисунке 7 слева построена по 1000 точ­
кам, случайно выбранным из распределения для Y. Она имеет площадь 11,3 квадратных единиц и содер­
жит 955 точек. Область охвата на рисунке 7 справа построена по 1000000 точек, полученных случай­
ной выборкой из распределения для Y. Она имеет площадь 9,4 квадратных единиц и содержит 950074 
точки. Для сравнения на каждом рисунке сплошной линией показана 95 %-ная эллиптическая область 
охвата для Y, построенная в соответствии с процедурой из 7.7.2.

5 ,0 ------------------------ --------------------------------------------------------»-------------------------- :• 5.0

Рисунок 7 — Эллиптические области охвата, построенные по процедуре из 7.7.2, и приближения наименьших 
областей охвата, построенные по процедуре из 7.7.4 для разбиения 10 * 10 и 1000 точек выборки (слева) и для

разбиения 100 * 100 и 1000000 точек выборки (справа)
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7.8 Адаптивная процедура метода Монте-Карло

7.8.1 Общие положения
7.8.1.1 Эффективность метода Монте-Карло при определении оценки у выходной величины Y, 

соответствующей ковариационной матрицы и области охвата для У зависит от числа испытаний М. Зна­
чение М может быть выбрано заранее, как в 7.2. Другой подход состоит в использовании адаптивной 
процедуры метода Монте-Карло, согласно которой число испытаний последовательно увеличивают до 
тех пор, пока полученные числовые оценки искомых величин не станут установившимися. Численный 
результат считается установившимся, если соответствующее ему удвоенное стандартное отклонение 
станет меньше заданной точности вычисления (см. 7.8.2).

7.8.1.2 Целью адаптивной процедуры, описанной в 7.8.3, является получение в среднем с задан­
ной вычислительной точностью значений следующих величин:

a) оценки у = (у1......ут)т величины У;
b ) вектора и(у) = (и(у^), ..., и(ут))Т стандартных неопределенностей, связанных с оценками,
c) положительно определенной матрицы Ry размерности m * m коэффициентов корреляции 

г;у = г(у, уу), связанных с парами оценок,
d) коэффициента охвата кр, определяющего 100р %-ную область охвата для У в форме /77-мерного 

эллипсоида.

П и м е ч а н и е  1 — То, что выполнение требования к точности вычислений может быть гарантировано не 
безусловно, а только в среднем, обусловлено природой случайности, используемой в методе Монте-Карло.

П р и м е ч а н и е  2 — Как правило, чем больше вероятность охвата р, тем большее число испытаний метода 
Монте-Карло необходимо для определения кр с заданной точностью вычислений.

П р и м е ч а н и е  3 — Стандартные неопределенности и{у) и корреляционная матрица Ry вместе определя­
ют ковариационную матрицу Uy, соответствующую оценкам у (см. примечание 3 к 3.2.1 и 7.8.2.4).

П р и м е ч а н и е  4 — Если требуется построить область охвата иной формы, нежели эллипсоид в т-мерном 
пространстве, то проверку устойчивости метода выполняют для параметров, характеризующих область охвата 
данной формы. Например, для области охвата в форме m-мерного параллелепипеда оценка точности вычисления 
может быть выполнена для коэффициента охвата kq. В этом случае процедура, описанная в 7.8.3, должна быть 
модифицирована соответствующим образом.

П р и м е ч а н и е  5 — Если в представлении результата измерения не требуется указывать область охвата, 
то процедуру увеличения числа испытаний останавливают после получения установившихся численных значений 
оценки у, соответствующих стандартных неопределенностей и корреляционной матрицы Ry

П р и м е ч а н и е  6 — Матрица Ry может не быть положительно определенной в случае существования за­
висимостей между выходными величинами (для примера см. 9.4, в частности, примечание 2 к 9.4.2.3).

7.8.2 Точность вычисления числовых значений
7.8.2.1 Если обозначить через ndjg число существенных значащих цифр в числовом представле­

нии величины z, то предел погрешности вычисления б значения z определяют следующим образом:
a) представляют значение z b  виде с *  10^ где с — целое число, состоящее из ndig значащих цифр, 

/ — целое число;
b )  определяют 8 по формуле

7.8.2.2 При проверке получения установившейся оценки yj величины Уу и стандартной неопреде­
ленности u(yj), соответствующей уг при реализации адаптивной процедуры метода Монте-Карло, опи­
санной в 7.8.3, предел погрешности вычисления бу, j  = 1, ..., /л, определяют по числу существенных 
значащих цифр в числовом представлении u(yj).

7.8.2.3 При проверке получения установившейся оценки матрицы Ry корреляционных коэффи­
циентов г;-у, соответствующей оценке у, предел погрешности вычисления р определяют по числу су­
щественных значащих цифр в числовом представлении А.тах — наибольшем собственном значении 
матрицы Ry (см. примечание 3 к 3.21).

7.8.2.4 Матрица Ry занимает ключевое место в процедурах последовательного оценивания не­
определенности. Обычно эта процедура связана с получением значения скалярной величины О, пред­
ставляющей собой некоторую комбинацию выходных величин У), т. е.

Q=c1Y'1 + ... + cmym=cTK
Используя формулу

и  У = DyRyDy
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(см. примечание 3 к 3.21), стандартную неопределенность u(q), соответствующую оценке

9 = с1 у

величины О, можно представить в виде

u2(q) = cJUyc = dTRyd, 

где

d  = Dyc.

7.8.2.5 Точность вычисления u(q) зависит от точности вычисления Ry и d, а последняя зависит от 
Dy и, следовательно, от i/(y) = (и(у1), ..., u(ym))T.

7.8.2.6 При оценивании неопределенности в целях последующих расчетов, которые включают в 
себя более сложные преобразования, например, вычисления по методу наименьших квадратов, свя­
занные с явным или неявным обращением матрицы Uy, необходимо использовать другие критерии 
останова адаптивной процедуры вычислений. Так в случае применения метода наименьших квадра­
тов критерий может быть основан на расчете р (см. 7.8.2.3) по числу существенных значащих цифр в 
числовом представлении наименьшего собственного значения матрицы Ry (см. примечание 5 к 3.21). 
При этом устойчивость численного алгоритма решения задачи с использованием метода наименьших 
квадратов зависит от числа обусловленности A,max/A,min матрицы Ry. Поэтому для уменьшения числа 
испытаний в методе Монте-Карло при постановке измерительной задачи ее следует определять через 
параметры, позволяющие сделать число обусловленности настолько малым, насколько это возможно.

7.8.2.7 Точность вычисления кр, используемая для проверки получения установившегося значе­
ния коэффициента охвата кр, определяют по числу существенных значащих цифр в числовом пред­
ставлении кр.

7.8.2.8 При последующих расчетах неопределенности, основанных на использовании G (см. 7.5) 
в качестве приближения функции распределения Y, необходимо убедиться, что такое дискретное пред­
ставление пригодно для этих расчетов, особенно если их целью является получение области охвата 
для некоторой величины. Более подробное рассмотрение данного вопроса выходит за рамки настоя­
щего стандарта.

7.8.3 Описание адаптивной процедуры
Практическая реализация адаптивной процедуры метода Монте-Карло с последовательным уве­

личением числа испытаний состоит в следующем:
a) задают в качестве r?dig небольшое положительное целое число (см. 7.8.2);
b ) задают М = max(J,1Cr), где J — наименьшее целое, большее или равное 100/(1 -  р);
c) задают h = 1 (счетчик итераций метода Монте-Карло);
d) выполняют М испытаний методом Монте-Карло (см. 7.3 и 7.4);
e) используют М полученных на выходе модели значений векторной выходной величины yv ..., ум 

для вычислений очередных, /7-х значений y^h\  и(У^), Ry^  и kp(h\  являющихся соответственно оценкой 
величины Y, соответствующей стандартной неопределенностью, соответствующей корреляционной 
матрицей и коэффициентом охвата для 100р %-ной области охвата;

f) если h < 10, то увеличивают h на единицу и возвращаются к этапу d);
g) для у = 1, ..., т вычисляют выборочные стандартные отклонения sy. средних значений получен­

ных в результате итераций оценок у ^ \  ..., y jh) величины Уу, по формуле

=
У, /? (/? -1)£I  у Г - У ,  .

У)
г=1

h) аналогичным образом вычисляют выборочные стандартные отклонения средних значений эле­
ментов вектора и(зА^), а также для ^ тах и к ^ \

i) используют все hM значений векторной выходной величины для вычисления и(у), Ry и кр,
j) для j  = 1, ..., т определяют пределы погрешности вычисления 8. для и(у), как описано в 7.8.2.1 

и 7.8.2.2;
k) определяют предел погрешности р для матрицы Я коэффициентов корреляции, как описано в

7.8.2.1 и 7.8.2.3;
l) вычисляют численную точность кр, соответствующую кр, как описано в пунктах 7.8.2.1 и 7.8.2.7; 
т )  если для любого / = 1, ..., т или 2s.. [или 2 s , превосходит 8;, или 2s, превосходит р, или

У\ и\Уу J Лтах
2sk превосходит к п, то увеличивают h на единицу и возвращаются к этапу d);
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п) если возврата к этапу d) не произошло, то считают все вычисленные оценки установившимися 
и используют все hM значений векторной выходной величины для вычисления у, Uy и коэффициент 
охвата кр для 100р %-ной области охвата, как описано в 7.6 и 7.7.

П р и м е ч а н и е  1 — Чтобы алгоритм адаптивной процедуры был сходящимся, должны существовать ма­
тематическое ожидание и ковариационная матрица Y.

П р и м е ч а н и е  2 — Выбор М на этапе Ь) является произвольным, но практика показала его пригодность.
П р и м е ч а н и е  3 — Использование в процедуре минимального числа итераций, равного 10, позволяет 

предотвратить преждевременный останов алгоритма и, кроме того, делает более обоснованным предположение, 
сделанное в примечании 6. Аналогичное изменение, будучи внесенным в адаптивную процедуру метода Монте- 
Карло для моделей с единственной скалярной выходной величиной [JCGM 101:2008 (пункт 7.9.4)], также позволит 
улучшить результаты применения этой процедуры для ряда задач.

П р и м е ч а н и е  4 — На этапе д) /у рассматривается как реализация случайной переменной со стандарт­
ным отклонением sy.

П р и м е ч а н;и е 5 — Стандартные отклонения, полученные на этапах д) и h), уменьшаются по закону Л~1/2 
(см. примечание к 7.1.7).

П р и м е ч а н и е  6 — Коэффициент 2, используемый на этапе т), основан на представлении выборочных 
средних случайными, нормально распределенными переменными и соответствует вероятности охвата приблизи­
тельно равной 95 %.

П р и м е ч а н и е  7 — В [28] рассматриваются некоторые улучшения адаптивной процедуры, изложенной в 
JCGM 101:2008 (подраздел 7.9).

8 Проверка результатов оценивания неопределенности по GUM 
сравнением с методом Монте-Карло

8.1 Способ оценивания неопределенности по GUM (далее обозначаемый GUF) во многих случаях 
работает хорошо. Однако не всегда можно сразу определить, соблюдены ли все условия для его при­
менения [см. JCGM 101:2008, пункты 5.7 и 5.8]. Обычно гораздо проще оценить неопределенность с 
использованием метода Монте-Карло (при наличии соответствующего программного обеспечения), чем 
выяснить, выполнены ли все условия оценивания по GUM [8]. При наличии сомнений в обоснованности 
применения способа оценивания по GUM полученные с его помощью результаты нуждаются в провер­
ке, а поскольку диапазон условий, при которых может быть применен метод Монте-Карло, значительно 
шире, чем для метода по GUM, то для такой проверки рекомендуется сопоставить результаты оценива­
ния по GUM с результатами оценивания методом Монте-Карло. Если сравнение подтвердит обоснован­
ность применения GUM, то способ оценивания неопределенности по GUM можно будет применять в 
будущем для схожих задач. В противном случае следует рассмотреть возможность замены на другой 
способ оценивания неопределенности, включая тот же метод Монте-Карло.

8.2 Для сравнения двух методов необходимо вначале:
a) применить способ оценивания неопределенности по GUM для получения (i) оценки у01̂  ве­

личины Y, (ii) стандартной неопределенности 4/(з/зир), соответствующей yG'JF, (iii) корреляционной ма­
трицы Яуеир, соответствующей у ° ир:, и (iv) коэффициент охвата /cpGUF, определяющего 100р %-ную 
область охвата для Y в виде m-мерного эллипсоида;

b ) применить адаптивную процедуру метода Монте-Карло (см. 7.8.3), чтобы получить аналогич­
ные оценки у(уМ с м)_ и /^мсм_

8.3 Задача процедуры сравнения состоит в том, чтобы определить, согласуются ли между собой 
результаты, полученные способом оценивания неопределенности по GUM и методом Монте-Карло, в 
рамках заданной точности вычислений. Для этого:

a) задают в качестве ndig небольшое положительное целое число (см. 7.8.2);
b ) для / = 1 , т  рассчитывают пределы погрешности вычисления 8у для u(yj), как указано в 7.8.2.1 

и 7.8.2.2;
c) рассчитывают предел погрешности вычисления р для матрицы Ry коэффициентов корреляции, 

как указано в 7.8.2.1 и 7.8.2.3;
d) рассчитывают предел погрешности вычисления кр для кр, как указано в 7.8.2.1 и 7.8.2.7;
e) сравнивают оценки, соответствующие стандартные неопределенности, коэффициенты корре­

ляции, а также коэффициенты охвата, полученные с использованием способа оценивания неопреде­
ленности по GUM и метода Монте-Карло, чтобы определить, обеспечивает ли первый из указанных 
способов требуемое число правильных цифр в числовой записи полученных результатов. Для этого 
определяют
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т. e. абсолютные разности соответствующих численных результатов. Тогда если для всех 7=1 ,..., т 
ду и сУи(у) не больше чем 6.-, не больше чем р, а не больше, чем кр, то результат сравнения считают 
положительным, а способ оценивания неопределенности по GUM — успешно прошедшим проверку.

П р и м е ч а н и е  1 — Выбор вероятности охвата и формы области охвата влияет на результат сравнения. 
Поэтому сравнение двух способов оценивания выполняют только для заданных вероятности охвата р и формы 
области охвата.

П р и м е ч а н и е  2 — В тех ситуациях, когда построение области охвата не требуется, проверку проводят 
только на основании полученных значений cL, d..,^ и . Если форма области охвата должна быть отлична от 
эллипсоида, то проверку проводят для соответствующей величины, определяющей объем области охвата задан­
ной формы. Например, если область охвата должна иметь вид m-мерного параллелепипеда, то сравнивают полу­
ченные двумя способами значения коэффициента охвата kq с учетом требуемой точности вычисления k~

П р и м е ч а н и е  3 — При проверке применимости способа оценивания неопределенности по GUM срав­
нением его результатов с результатами метода Монте-Карло, последние должны быть получены при достаточном 
числе испытаний М. Если для сравнения применяют адаптивную процедуру метода Монте-Карло, то достаточно 
задать пределы погрешности вычислений в адаптивной процедуре в пять раз меньшими соответствующих преде­
лов погрешности в процедуре проверки [см. JCGM 101:2008 (пункт 8.2)] или, другой вариант, задать число зна­
чащих цифр при числовом преставлении величин, вычисляемых с помощью адаптивной процедуры, на единицу 
большим, чем используется в процедуре проверки.

9 Примеры

9.1 Иллюстрации положений настоящего стандарта

9.1.1 В первом примере (см. 9.2) рассматривается линейная модель измерения, в которой вход­
ные величины могут быть общими для всех выходных величин или влиять только на некоторые из них. 
Для частных случаев данного примера существуют аналитические решения.

9.1.2 Во втором примере (см. 9.3) рассматривается нелинейная модель преобразования декарто­
вых координат (действительной и мнимой части комплексной величины) в полярные координаты (мо­
дуль и аргумент комплексной величины). Для этого примера также в ряде случаев имеются аналитиче­
ские решения [6].

9.1.3 В третьем примере (см. 9.3) рассматривается более сложная нелинейной модель. Он ана­
логичен примеру из GUM, связанному с одновременным измерением активного и реактивного сопро­
тивлений [JCGM 100:2008 (раздел Н.2)]. Пример иллюстрирует обработку ряда одновременных неза­
висимых наблюдений векторной величины.

9.1.4 Четвертый пример (см. 9.5) посвящен измерению температуры с использованием термо­
метра сопротивления. Этот пример демонстрирует обработку данных для одномерной и многомерной 
моделей измерения.

9.1.5 Многие из рисунков, используемых в примерах, для их лучшего восприятия даны в цвет­
ном исполнении. На контурных графиках каждому уровню контурной линии соответствует свой цвет. 
Если рисунок состоит из двух и более графиков, то для каждого из таких графиков один и тот же цвет 
использован для одних и тех же значений уровня за исключением особо оговоренных случаев. Если 
для сравнения результатов используется два и более рисунка, как это имеет место при сопоставлении 
результатов, полученных способом оценивания по GUM и методом Монте-Карло, то соответствующие 
графики на этих рисунках изображены в одних и тех же границах осей за исключением случаев, когда 
между этими результатами имеется существенное различие.

9.1.6 Поскольку первичными выходными данными для метода Монте-Карло являются М выбо­
рочных векторов для выходной величины Y, собранные в матрицу G размерности т * М (см. 7.1.6), за­
частую желательно представить эти данные в виде приближения соответствующей функции плотности
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распределения и изобразить эту функцию в виде контурного графика. Рисунки настоящего раздела 
показывают контурные графики для случая двумерной выходной величины, т = 2-С ростом числа ис­
пытаний М контурные линии выборочного распределения должны все больше приближаться к линиям 
распределения для Y, что требует соответствующего сглаживания [22, 24]. Некоторые контурные гра­
фики, приведенные в настоящем разделе, построены, исходя непосредственно из приближения соот­
ветствующей плотности распределения. Для других применен соответствующий алгоритм сглаживания 
контуров. На одном из рисунков (рисунок 10) для демонстрации эффекта сглаживания показаны сгла­
женные и несглаженные контурные линии.

9.2 Аддитивная модель

9.2.1 Постановка задачи
В этом примере рассматривается аддитивная (линейная) двумерная модель измерения (см. при­

мер в 7.7.2)

Y ,= X i+  Х3, Y2 = X2 + Х3 (24)

для трех разных примеров сочетаний плотностей распределения дх (£,[) Для ВХ°ДНЬ|Х величин X,, 
рассматриваемых как независимые. Из трех входных величин Xv Х2 и Х3 величина Х3 описывает фак­
тор, влияющий на обе выходные величины У, и У2> Т0ГДа как каждая из величин X, и Х2 описывает 
факторы, влияющие только на одну из выходных величин — У, и У2 соответственно. В первом примере 
(см. 9.2.2) все дх (^) являются плотностями нормального распределения с нулевым математическим 
ожиданием и единичным стандартным отклонением. Второй пример (см. 9.2.3) идентичен первому за 
исключением того, что дх  (^3) является плотностью равномерного распределения Х3 также с нулевым 
математическим ожиданием и единичным стандартным отклонением. Третий пример (см. 9.2.4) иден­
тичен второму за исключением того, что стандартное отклонение Х3 равно трем, что демонстрирует до­
минирующее влияние фактора, соответствующего данной входной величине, на результат измерения.

9.2.2 Вычисления и результаты (пример 1)
9.2.2.1 В данном примере каждая входная величина X, описывается стандартным нормальным 

распределением, т. е. оценки Х ам ею т вид Х/ = 0, /=  1 ,2 , 3, с соответствующими стандартными неопре­
деленностями u(xj) = 1. Результаты, полученные с применением способа оценивания неопределенно­
сти по GUM (см. раздел 6) и методом Монте-Карло (см. раздел 7), показаны в таблице 3 и на рисунках 
8— 10. Некоторые данные в таблице с целью облегчения их сравнения представлены в виде чисел с 
четырьмя значащими цифрами.

Т а б л и ц а  3 — Результаты измерения способом оценивания неопределенности по GUM (GUF) и методом Мон­
те-Карло (ММК) для аддитивной модели [формула (24)] с входными величинами Х;, описываемыми стандартным 
нормальным распределением (9.2.2)

Метод М У\ Х2 Ч(УА) “ (У2) Г(У 1 , у 2) кР кя
GUF — 0,000 0,000 1,414 1,414 0,500 2,45 2,24

ММК 1 х ю 5 0,003 0,005 1,412 1,408 0,498 2,45 2,22

ММК 1 X Ю 6 0,000 0,000 1,416 1,415 0,500 2,45 2,21

ММК 1 X Ю 7 0,000 0,000 1,414 1,414 0,500 2,45 2,21

Адаптивный
ММК

0,35 х Ю6 0,001 -0,001 1,417 1,417 0,502 2,45 2,22

Адаптивный
ММК

0,45 х Ю6 0,001 -0,001 1,416 1,414 0,501 2,45 2,21

9.2.2.2 Способ оценивания неопределенности по GUM, обобщенный на случай нескольких выход­
ных величин, дает оценку у  = (0,0)т величины Y. Ковариационная матрица для данной оценки, имеющая 
вид

получена по формуле (3), Uy = CXUXCх , где в соответствии с условиями настоящего примера
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Коэффициент корреляции, соответствующий оценкам у 1 и у2 (см. 3.21), будет г(у.,, у2) = 0,5. 
95 %-ные области охвата для Y в форме эллипса и прямоугольника определяются соответственно ко­
эффициентами охвата кр = 2,45 (таблица 1) и kq = 2,24 (таблица 2). Эти результаты приведены в строке 
для GUF таблицы 3. В соответствии со способом оценивания неопределенности по GUM выходная 
величина У описывается двумерным нормальным распределением N(y, Uy).

9.2.2.3 Применение метода Монте-Карло с числом испытаний М равным 105, 106 и 107 дает резуль­
таты, приведенные в следующих строках таблицы для ММК. В строках для адаптивного ММК указаны 
значения М, равные 0,35*106 и 0,45*106 и представляющие собой число испытаний при двух примене­
ниях адаптивной процедуры метода Монте-Карло (см. 7.8.3) для ndjg, равного трем (см. примечание 3 в 
8.3). Все числовые значения, полученные с применением адаптивной процедуры, в частности, для у.,, 
у2, и(у.,), и(у2) и r(yv  у2), кр и kq, являются установившимися.

9.2.2.4 Полученная аналитически плотность распределения для Y представляет собой двумерное 
нормальное распределение N(y, Uy) с у  и Uy, приведенными в 9.2.2.2.

9.2.2.5 На рисунке 8 слева показана плотность двумерного нормального распределения для Y, 
полученная способом оценивания неопределенности по GUM (совпадающая с аналитическим решени­
ем). Контурные линии равной вероятности имеют форму эллипсов и определяются уравнениями

для различных значений к. На рисунке 8 справа показаны контурные линии приближения плот­
ности распределения для Y, полученные с применением метода Монте-Карло с М = 107 испытаниями. 
Это приближение представляет собой отношение числа точек выборки из распределения Y, попавших 
в ячейку сетки разбиения плоскости Y, к общему числу испытаний М, приписанное области плоскости 
Y, занимаемой этой ячейкой (внутри данной ячейки плотность распределения считают постоянной). 
Контурные линии приближенного распределения Y построены для тех же значений к, что были исполь­
зованы для построения эллиптических контурных линий на рисунке 8 слева. Алгоритм сглаживания 
контурных линий при этом не применялся (см. 9.1.6).

П р и м е ч а н и е  — На рисунке 8 и других контурных графиках приведена цветовая шкала, показывающая 
соответствие цвета контурной линии определенному уровню (вероятности).

9.2.2.6 На рисунке 9 показаны маргинальная плотность распределения N(y.,, UyJ  для У,, полу­
ченная способом оценивания неопределенности по GUM, а также приближение плотности распреде­
ления той же величины, полученное методом Монте-Карло с числом испытаний М = 107. Приближение 
представлено в виде распределения частот (гистограммы). Эти две плотности распределения на глаз 
практически не различимы. Аналогичный результат будет получен и для У2.

9.2.2.7 На рисунке 10 слева показаны контурные линии приближения плотности распределения 
для Y, полученное методом Монте-Карло с 0,45*106 испытаниями. Эти линии значительно менее «глад­
кие», чем те, что изображены на рисунке 8 (справа) и получены для гораздо большего числа испытаний. 
На рисунке 10 справа приведен пример сглаженных контурных линий (см. 9.1.6).

(г |~ У )Т Uy 1(т\ - У) = к2
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Рисунок 8 — Контурные линии совместных плотностей распределения выходных величин в аддитивной моде­
ли измерения [формула (24)], полученных способом оценивания неопределенности по GUM (слева) и методом 

Монте-Карло (справа) без сглаживания контуров при стандартном нормальном распределении входных величин
(9.2.2)

У̂

Рисунок 9 — Маргинальная плотность распределения для тех же условий, что и на рисунке 8 (9.2.2)
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Рисунок 10 — Контурные линии совместных плотностей распределения выходных величин в аддитивной модели 
измерения [формула (24)], полученных с использованием адаптивной процедуры Монте-Карло без сглаживания 

(слева) и со сглаживанием (справа) для тех же условий, что и на рисунке 8 (9.2.2)

П р и м е ч а н и е  — В большинстве случаев гладкость контурных линий для приближения плотности У мо­
жет быть обеспечена выбором большего числа испытаний в методе Монте-Карло и более частой сеткой разбиения 
плоскости У. Аналогичный эффект имеет место в случае единственной скалярной выходной величины, когда для 
обеспечения гладкости огибающей кривой построенного приближения плотности распределения (гистограммы) 
необходимо большое значение М и большое число классов гистограммы.

9.2.2.8 Для сопоставления результатов, полученных способом оценивания неопределенности по 
GUM и с помощью адаптивной процедуры метода Монте-Карло, применена процедура проверки, опи­
санная в разделе 8, при значении ndig, равном двум. В этом случае точности вычисления будут опреде­
ляться значениями

81 = 82 = 0 ,0 5 , р = 0,005, кр = кд = 0,05.

Адаптивная процедура метода Монте-Карло была применена два раза. В обоих случаях проде­
монстрирована хорошая согласованность результатов, чего и следовало ожидать, поскольку в данном 
примере полностью соблюдены все условия применимости способа оценивания неопределенности по 
GUM. Исключением мог стать только результат вычисления kq, поскольку расчет значения этой величи­
ны способом оценивания неопределенности по GUM не учитывает взаимную зависимость между У1 и 
У2 (см. 6.5.2.3). Однако и для kq результаты, полученные двумя методами, показали хорошую согласо­
ванность в пределах заданной точности вычисления.

9.2.3 Вычисления и результаты (пример 2)
9.2.3.1 Этот пример измерительной задачи идентичен описанному в 9.2.2 за тем исключением, 

что Х3 характеризуется равномерным распределением с нулевым математическим ожиданием и еди­
ничным стандартным отклонением. Оценки X, и соответствующие стандартные неопределенности 
остались неизменными: xt = 0, и(х,) = 1, / = 1, 2, 3. Результаты, полученные с применением способа 
оценивания неопределенности по GUM (см. раздел 6) и методом Монте-Карло (см. раздел 7), показаны 
в таблице 4 и на рисунках 11 и 12.

Т а б л и ц а  4 — Результаты измерения для тех же условий, что в таблице 3, за исключением того, что Х3 описы­
вается равномерным распределением (9.2.3)

Метод М У1 Уг “ (У д и(У2) г{У-\, У  г) кр kq

GUF — 0,000 0,000 1,414 1,414 0,500 2,45 2,24

ММК 1 х Ю5 0,008 0,010 1,414 1,410 0,500 2,38 2,15

ММК 1 X Ю6 0,001 0,001 1,414 1,411 0,499 2,38 2,15

ММК 1 х Ю7 0,000 0,000 1,414 1,414 0,500 2,38 2,15
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Окончание таблицы 4

Метод М У1 У2 u(Y i) "(У2) Ф'тУг) кр kq

Адаптивный
ММК

0,36 X 10е 0,000 -0,002 1,413 1,414 0,500 2,38 2,15

Адаптивный
ММК

0,35 х Ю6 0,002 -0,001 1,418 1,415 0,502 2,38 2,15

9.2.3.2 Способ оценивания неопределенности по GUM дает абсолютно одинаковую двумерную 
плотность распределения для У (см. рисунок 11, слева) независимо от того, распределена ли вход­
ная величина Х3 по нормальному (как в 9.2.2) или равномерному (как в настоящем примере) закону, 
поскольку в данной измерительной задаче вид этой плотности распределения полностью определен 
оценками входных величин и их стандартными отклонениями, а они в обоих примерах одинаковы. По­
скольку модель измерения изначально линейна, ее дополнительной линеаризации для применимости 
закона трансформирования неопределенностей не требуется, и в этом смысле способ оценивания не­
определенности по GUM никаких приближений не использует. Тем не менее, результаты, полученные 
способом оценивания неопределенности по GUM для оценки у величины У и соответствующей ковари­
ационной матрицы иу, не будут совпадать с аналитическим решением, поскольку последнее зависит 
не только от оценок входных величин и их стандартных отклонений, но и от вида их распределений, в 
данном примере, от распределения Х3.

9.2.3.3 На рисунках 11 (справа) и 12 показано, каким образом негауссовость распределения Х3 
влияет на приближения плотности распределения У и маргинальной плотности распределения для У1; 
полученные методом Монте-Карло.

9.2.3.4 Проверка применимости способа оценивания неопределенности по GUM, описанная в раз­
деле 8 (см. также 9.2.2), была проведена сравнением результатов, полученных с его помощью и с по­
мощью адаптивной процедуры Монте-Карло. Из таблицы 4 видно хорошее совпадение результатов для 
у  1, у2, и(у^), и(у2) и r(yv у2), но недостаточно хорошее для кр и kq.

9.2.4 Вычисления и результаты (пример 3)
9.2.4.1 Этот пример измерительной задачи идентичен описанному в 9.2.3 за исключением того, 

что стандартное отклонение для Х3 теперь равно не единице, а трем. Результаты, полученные с при­
менением способа оценивания неопределенности по GUM (см. раздел 6) и методом Монте-Карло 
(см. раздел 7) показаны в таблице 5 и на рисунках 13 и 14.

Рисунок 11 — То же, что на рисунке 8 для примера с входной величиной Х3, описываемой равномерным распре­
делением (9.2.3)
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Рисунок 12 — То же, что на рисунке 9 для примера с входной величиной Х3, описываемой равномерным распре­
делением (9.2.3)

9.2.4.2 Способ оценивания неопределенности по GUM дает оценку у  = (0,0)т величины Y. Ковари­
ационная матрица для данной оценки, имеющая вид

получена по формуле (3), где в соответствии с условиями настоящего примера

Uх

12 0 0

0 12 0

0 0 з 2

1 0 1

0 1 1

Т а б л и ц а  5 — Результаты измерения для тех же условий, что в таблице 4, за исключением того, что стандартное 
отклонение для Х3 равно трем (9.2.3)

Метод М У1 У2 Щ ) и(У2) ФАУг) кР kQ
GUF — 0,000 0,000 3,162 3,162 0,900 2,45 2,24

ММК 1 х ю 5 0,023 0,025 3,159 3,157 0,900 2,28 1,87
ММК 1 X Ю6 0,003 0,002 3,161 3,161 0,900 2,28 1,87

ММК 1 X Ю7 0,000 0,000 3,162 3,161 0,900 2,28 1,87

Адаптивный
ММК

1,49 х Ю6 0,002 0,002 3,163 3,162 0,900 2,28 1,87

Адаптивный
ММК

1,85 х Ю6 0,001 0,001 3,163 3,162 0,900 2,28 1,87

Коэффициент корреляции для оценок у1 и у2 будет г(у1, у2) = 0,9. 95 %-ные области охвата 
для Y в форме эллипса и прямоугольника определяются, соответственно, коэффициентами охвата 
кр = 2,45 (таблица 1) и к = 2,24 (таблица 2). Эти результаты приведены в строке для GUF таблицы 5. 
В соответствии со способом оценивания неопределенности по GUM выходная величина /описывается 
двумерным нормальным распределением N(y, Uy), показанным в виде контурного графика на рисунке 
13 (слева). В этом примере наблюдается более сильная корреляция между Y1 и У2 по сравнению с при­
мерами, рассмотренными ранее, поскольку увеличен относительный вклад общего фактора, описыва­
емого через Х3, в неопределенности, связанные с оценками Z, и У2.
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9.2.4.3 Из рисунков 13 (справа) и 14 видно большее влияние (в сравнении с результатами в 9.2.3) 
распределения, описывающего Х3, на приближения плотности распределения для У и маргинальной 
плотности распределения для У,, полученные методом Монте-Карло.

9.2.4.4 Проверка применимости способа оценивания неопределенности по GUM, описанная в раз­
деле 8 (см. также 9.2.2 и 9.2.3), была проведена сравнением результатов, полученных с его помощью и 
с помощью адаптивной процедуры Монте-Карло. Из таблицы 5 видно хорошее совпадение результатов 
для yv у2, и(у.,), и(у2) и r(yv  у2), но плохое для /с, и kq. Полученное способом оценивания неопределен­
ности по GUM значение кр приблизительно на 7%, а значение kq приблизительно на 20 % больше тех, 
что получены методом Монте-Карло.

9.3 Преобразование системы координат

9.3.1 Постановка задачи
9.3.1.1 Комплексная величина Z может быть представлена в алгебраической форме

Х1 + \Х2,

где Х1 = ZR v\ Х2 = Z j— соответственно действительная и мнимая части Z, или в тригонометриче­
ской форме

Я(cos 0  + i sin 0 ) = Re10,

где Я и 0  — соответственно модуль и аргумент Z. Эти две формы записи соответствуют представ­
лениям точки Z b комплексной плоскости соответственно с декартовой и полярной системой координат. 
Преобразованию первой системы во вторую можно поставить в соответствие модель измерения вида

У,2 = X? + х | , tany2 = X 2/ X 1 (25)

с входной величиной Х =  (X.,, Х2)т = (ZR, Z|)T и выходной величиной У = (У,, У2)т = (Я, 0 )т .

10,035 

0,03 

10,025 

0,02

10,015 

0,01 

' 0,005

0,035 

10,03 

0,025 

0,02 

0,015 

0,01 

' 0,005

Рисунок 13 — То же, что на рисунке 11 для примера с входной величиной Х3, имеющей стандартное отклонение,
равное трем (9.2.4)

40



ГОСТ 34100.3.2—2017

-10 -5 0 5 10
Vi

Рисунок 14 — То же, что на рисунке 12 для примера с входной величиной Х3, имеющей стандартное отклонение,
равное трем (9.2.4)

П р и м е ч а н и е  — Формула (25) описывает двумерную модель измерения для выходных величин Я и 
0. Поскольку модуль Я всегда неотрицателен, то он однозначно может быть определен как положительный ква­
дратный корень из Я2. Если аргумент 0  определять через так называемый арктангенс двух переменных (в языках 
программирования обозначаемый «atan2»), то при заданном отношении Z/ZR значение аргумента 0  также будет 
однозначно определено на интервале -л  < 0  < тс. Таким образом, формула (25) допускает использование ее в ка­
честве двумерной модели измерения.

9.3.1.2 Исходными данными для расчета неопределенности являются оценки х1 и х2 величин X, 
и Х2, полученные из измерительной системы, и соответствующие им стандартные неопределенности 
и(х-\) и и(х2) и ковариации и(х^  х2) = ги(х^)и(х2), где г -  фс,, х2) — коэффициент корреляции [см. JCGM 
100:2008 (пункт 5.2.2)]. При наличии таких данных [см. JCGM 101:2008 (пункт 6.4.8.1)] X  приписывают 
двумерное нормальное распределение с математическим ожиданием и ковариационной матрицей со­
ответственно

х Г u2 (x i)  ru (x i)u (x2)

_*2_ r u ( x 1) u ( x 2 ) u 2 ( x 2 )

Предполагается, что размерность Х1 и Х2 равна единице.
9.3.1.3 Оценки у  величины Y и соответствующей ковариационной матрицы Uy определены для 

разных сочетаний величин х.,, х2, и(х^), и(х2) и ф ф  * 2)-
9.3.1.4 Рассмотрено шесть примеров, в каждом из которых х2 взято равным нулю, а и(х^) = и(х2)= 

= их = 0,010. В первых трех примерах рассматривается случай некоррелированных входных величин, 
фс,, х2) = 0 для оценок соответственно х1 = 0,001, х1 = 0,010 и х1 = 0,100 (см. 9.3.2). В остальных трех 
примерах берутся те же оценки для X.,, но при сильной корреляции входных величин: г(х.|, х2) = 0,9 
(см. 9.3.3). На рисунке 15 [где не соблюден принцип использования на каждом графике одного цвета 
для одинаковых уровней (см. 9.1.5)] показаны контурные линии совместной плотности распределения 
X  для примера 1 [х1 = 0,001 и г ( х х2) = 0] и примера 4 [х1 = 0,001 и фс,, х2) = 0,9]. Для остальных при­
меров графики плотности распределения X  получают переносом контурных линий вдоль оси Х1 таким 
образом, чтобы их центрам соответствовала координата х1 = 0,010 (примеры 2 и 5) или х1 =0,100 (при­
меры 3 и 6).
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Рисунок 15 — Контурные линии совместных плотностей распределения входных величин в модели преобразова­
ния системы координат для примеров 1 (слева) и 4 (справа) (9.3.1.4)

9.3.2 Вычисления и результаты (случай нулевой ковариации)
9.3.2.1 Общие положения
9.3.2.1.1 Оценивание неопределенности выполняется применением трансформирования распре­

делений (а) аналитически (для целей сравнения), (Ь) с использованием обобщенного способа оценива­
ния неопределенности по GUM и (с) с использованием метода Монте-Карло.

9.3.2.1.2 Совместная плотность распределения для Y и маргинальные плотности распределения 
для и Y2 могут быть получены аналитически в случае независимых Х1 и Х2, описываемых нормаль­
ными распределениями N(x1, и2) и N(x2, и2) соответственно (см. раздел С.2).

9.3.2.1.3 Согласно способу оценивания неопределенности по GUM величине Y соответствует дву­
мерное нормальное распределение N(y, Uy), при этом оценку у  = (у.,, у2)т для У получают решением 
уравнений

y f  = x f + х2 , tany2 = х2/ х 1 ,

а ковариационную матрицу Uy получают применением закона трансформирования неопределен­
ностей (см. разделы 6 и С.З).

9.3.2.1.4 Метод Монте-Карло применен с числом испытаний М =  107 (см. раздел 7).
9.3.2.2 Пример 1 (х1 = 0,001)
9.3.2.2.1 Результаты, полученные аналитически, способом оценивания неопределенности по GUM 

и методом Монте-Карло для входной оценки х1 = 0,001 и коэффициента корреляции фс,, х2) = 0 при­
ведены в таблице 6, строки 1— 3.

П р и м е ч а н и е  — Приведенные в первой строке таблицы 6 значения у1 и и(у^) получены в результате 
выполненных с высокой точностью численных расчетов определенных интегралов, представляющих собой за­
данные в виде формул через маргинальную плотность распределения У, выражения для Е(У'1) и V(Y )̂ [см. фор­
мулу (С.2) в приложении С]. Аналогично значения у2 и и(у2) рассчитаны численно по формулам для E(Y2) и V(Y2), 
включающим в себя маргинальное распределение ?2 [см. формулу (С.З) в приложении С)]. Нетрудно показать, что 
Cov(V'1, Y2) = 0, и, следовательно, r{yv у2) = 0.

Т а б л и ц а  6 — Результаты измерений для модели преобразования системы координат для случая нулевой ко­
вариации между оценками входных величин (9.3.2.2.1,9.3.2.3.1 и 9.3.2.4.1)

*1 Метод Ул У2 и(у,) и(У2) r{yv y2)

0,001 Аналитический 0,013 0,000 0,007 1,744 0,000
GUF 0,001 0,000 0,010 10,000 0,000

ММК 0,013 -0,001 0,007 1,744 0,000
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Окончание таблицы 6

*1 Метод Ул У2 и(уд и(У2) Ау.Уг)

0,010 Аналитический 0,015 0,000 0,008 1,118 0,000
GUF 0,010 0,000 0,010 1,000 0,000
ММК 0,015 0,000 0,008 1,117 0,000

0,100 Аналитический 0,101 0,000 0,010 0,101 0,000
GUF 0,100 0,000 0,010 0,100 0,000
ММК 0,101 0,000 0,010 0,101 0,000

9.3.2.2.2 На трех верхних графиках рисунка 16 показаны плотности распределения для У, полу­
ченные аналитически, способом оценивания неопределенности по GUM и методом Монте-Карло. По­
следняя хорошо согласуется с аналитическим решением, в то время как результат оценивания по GUM 
отличается от них очень сильно, вплоть до того, что для него использована другая шкала соответствия 
цвета и уровня (см. 9.1.5). Более того, способ оценивания неопределенности по GUM дает ненулевую 
вероятность появления физически невозможных значений выходных величин в областях д 1 < 0, д2 ^ л 
и д2 > л.

9.3.2.2.3 На двух нижних графиках рисунка 16 изображены маргинальные плотности распределе­
ния для выходных величин У1 и Y2, полученные из совместных распределений для Y. Маргинальные 
плотности распределения, полученные методом Монте-Карло (показаны каждая в форме гистограммы 
или распределения частот), согласуются с теми, что получены аналитически (показаны пунктирными 
линиями), в то время как маргинальные распределения, полученные способом оценивания неопреде­
ленности по GUM (показаны сплошными линиями) очень сильно отличаются от аналитических решений. 
Для удобства представления все графики маргинальной плотности распределения для У2 ограничены 
областью физически возможных значений г|2, т. е. интервалом - к  < г\2 -  к > хотя полученное способом 
оценивания по GUM нормальное распределение N(0,102) для У2 простирается далеко за границы этого 
интервала. На этих графиках также хорошо видно, что согласно способу оценивания неопределенности 
по GUM физически невозможным значениям д 1 и ц2 присвоена ненулевая вероятность (см. 9.3.2.2.2).

9.3.2.3 Пример 2 (х1 = 0,010)
9.3.2.3.1 Результаты, полученные аналитически способом оценивания неопределенности по GUM 

и методом Монте-Карло для входной оценки х1 = 0,010 и коэффициента корреляции г(х ,̂ х2) = 0, при­
ведены в строках 4— 6 таблицы 6. На рисунке 17 показаны контурные графики совместных плотностей 
распределения для Y, полученных с использованием трех вышеуказанных методов, а также маргиналь­
ные плотности вероятности для У, и У2, полученные из соответствующих совместных распределений.

9.3.2.3.2 Видно, что результаты, полученные с использованием метода Монте-Карло, согласуются 
с аналитическим решением. В то время как результаты, полученные с использованием способа оцени­
вания неопределенности по GUM, от аналитического решения отличаются, хотя и не так сильно, как в 
примере с х1 = 0,001. Относительные разности между стандартными неопределенностями и(у^) и и(у2), 
определенные с использованием способа оценивания неопределенности по GUM и аналитическим ме­
тодом, составляют приблизительно 25 % и 10 % (в сравнении с 40 % и 470 % для примера с х1 = 0,001).
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Рисунок 16 — Совместные плотности вероятности для Y, полученные аналитически (сверху) оцениванием по 
GUM (в центре слева) и методом Монте-Карло (в центре справа), и маргинальные плотности распределения для 

Y., (внизу слева) и Y2 (внизу справа), полученные аналитически (пунктирная линия) оцениванием по GUM 
(сплошная линия) и методом Монте-Карло (гистограмма) для модели преобразования координат с х1 = 0,001 и

г(х̂ , х2) = 0 (9.3.2.2.2 и 9.3.2.2.3)
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Рисунок 17 — То же, что на рисунке 16, но для х, = 0,010 (9.3.2.3.1)

9.3.2.4 Пример 3 (х1 = 0,100)
9.3.2.4.1 Результаты, полученные аналитически, оцениванием неопределенности по GUM и мето­

дом Монте-Карло для входной оценки х1 = 0,100 и коэффициента корреляции r(xv х2) = 0, приведены в 
строках 7— 9 таблицы 6 и на рисунке 18.

9.3.2.4.2 Видно, что результаты, полученные с использованием способа оценивания неопреде­
ленности по GUM и методом Монте-Карло, согласуются с аналитическим решением. Показанные на 
рисунке 18 маргинальные распределения, полученные тремя методами, практически неразличимы.
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Оценки, соответствующие стандартные неопределенности и соответствующие коэффициенты корре­
ляции совпадают с точностью до двух значащих цифр.

9.3.3 Вычисления и результаты (случай ненулевой ковариации)
9.3.3.1 Оценивание неопределенности выполняется применением трансформирования распреде­

лений с использованием (а) обобщенного способа оценивания неопределенности по GUM (см. разделы 
6 и С.З) и (Ь) метода Монте-Карло с числом испытаний М = 107 (см. раздел 7).

9.3.3.2 Результаты, полученные для входных оценок х1 = 0,001 и х1 = 0,010 и х1 = 0,100 (примеры 
4, 5 и 6 соответственно) и коэффициента корреляции г(х1 ,х2) = 0,9, приведены в таблице 7. На рисунках
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19— 21 показаны совместные плотности распределения для Y и маргинальные плотности распределе­
ния для У, и Y2, полученные указанными двумя методами для всех трех примеров.

Т а б л и ц а  7 — Результаты измерений для модели преобразования системы координат для случая ненулевой 
ковариации между оценками входных величин (9.3.3.2)

*1 Метод Уг ч(Уч) u (У2) r(yv У2)

0,001 GUF 0,001 0,000 0,010 10,000 0,900

ММК 0,012 -0,556 0,008 1,599 -0,070

0,010 GUF 0,010 0,000 0,010 1,000 0,900

ММК 0,015 -0,343 0,008 0,903 0,352

0,100 GUF 0,100 0,000 0,010 0,100 0,900

ММК 0,101 -0,009 0,010 0,102 0,882

9.3.3.3 Для случаев х1 = 0,001 и х1 = 0,010 результаты, полученные способом оценивания неопре­
деленности по GUM и методом Монте-Карло плохо согласуются друг с другом. В частности, метод Мон­
те-Карло дает в этих двух примерах маргинальные плотности распределения для Y2 с двумя пиками, 
что сильно отличается от одномодального нормального распределения, полученного оцениванием по 
GUM. Эти пики находятся вблизи точек г\2 = я/4 ~ 0,785 и г\2 = тг/4 - п ~  -2,356, что соответствует углам 
ориентации главной оси эллиптических контурных линий плотности распределения для Х [см . рисунок 
15 (справа)].

9.3.3.4 Для случая х1 = 0,100 результаты, полученные способом оценивания неопределенности по 
GUM и методом Монте-Карло, согласуются намного лучше.

9.3.4 Обсуждение результатов
9.3.4.1 Для обоих случаев с нулевой и ненулевой ковариациями по мере удаления оценки х1 от 

нуля результаты, полученные способом оценивания неопределенности по GUM и методом Монте-Кар­
ло, начинают приближаться друг к другу.

9.3.4.2 Для оценок х1 = 0,001 и х1 = 0,010 и, вообще говоря, для всех значений х.,, близких к нулю, 
эффект ненулевой ковариации значительно изменяет результаты, полученные с помощью метода Мон­
те-Карло.

9.3.4.3 Численные данные, представленные в таблицах 6 и 7, соответствуют показанным на ри­
сунках совместным и маргинальным плотностям распределения. В некоторых случаях такие данные 
могут быть неподходящими или недостаточными для описания распределения, характеризующего вы­
ходную величину. Так, для примера с входной оценкой х1 = 0,001 и ненулевой ковариацией г(х ,̂ х2) = 
= 0,9 (рисунок 19) маргинальная плотность распределения для Y2, полученная с помощью метода Мон­
те-Карло, существенно бимодальна, между тем оценка у2 величины Y2 находится между модами рас­
пределения в той области значений У2, где плотность вероятности мала.

П р и м е ч а н и е  — Для выходной величины, имеющей многомерное нормальное распределение, вектор 
математического ожидания и соответствующая ковариационная матрица описывают это распределение исчерпы­
вающим образом.

9.3.4.4 Для входных оценок х1 = 0,001 и х1 = 0,010, и, вообще говоря, для всех значений х^  близких 
к нулю, определение интервалов охвата в форме эллипсов и прямоугольников не является подходя­
щим.
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Рисунок 19 — Совместные плотности вероятности для Y, полученные оцениванием по GUM (вверху слева) и ме­
тодом Монте-Карло (вверху справа), и маргинальные плотности распределения для Y1 (внизу слева) и У2 (внизу 
справа), полученные оцениванием по GUM (сплошная линия) и методом Монте-Карло (гистограмма) для модели 

преобразования координат с х1 = 0,001 и r(xv х2) = 0,9 (9.3.3.2)
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Рисунок 20 — То же, что на рисунке 19, но для х1 =0,010 (9.3.3.2)
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Рисунок 21 — То же, что на рисунке 19, но для х1 = 0 ,1 0 0  (9.3.3.2)

9.4 Одновременное измерение активного и реактивного сопротивлений

9.4.1 Постановка задачи
9.4.1.1 Активное Я и реактивное X  сопротивления элемента цепи определяют путем измерения 

амплитуды V изменяющегося по гармоническому закону напряжения на его клеммах, амплитуды / про­
ходящего через элемент переменного тока и фазового сдвига ср между напряжением и силой тока. Вход­
ными величинами модели являются V, I и ср, а выходными — указанные сопротивления Я и X, а также 
модуль полного импеданса элемента цепи Z, Z2 = R2 + X2.

9.4.1.2 Применение закона Ома дает трехмерную модель измерения

V V
R = — coscp, Х = — sin(p , 

/ /
(26)

связывающую входную величину Х  = (X.,, Х2, Х3)т = (\/, /, ср)т с выходной величиной Y=(Y^, У2> ^з)Т = 
= (Я, X, Z)T.

П р и м е ч а н и е  1 — В настоящем примере в целях упрощения не учитываются систематические эффекты, 
которые могут оказывать влияние на оценки V, I и (р.

П р и м е ч а н и е  2 — Аналогичный пример рассмотрен в JCGM 100:2008 (раздел Н.2), где реактивному 
сопротивлению присвоено обозначение X. Такое же обозначение используется в настоящем примере. Реактивное 
сопротивление X является элементом векторной выходной величины Y, и его не нужно путать с X  — векторной 
входной величиной.

9.4.1.3 В одинаковых условиях проведено п = 6 повторных независимых наблюдений х ^  хп
входной величины X. Результаты этих наблюдений приведены в таблице 8.

П р и м е ч а н и е  — В примере из JCGM 100:2008 (раздел Н.2) число наблюдений было равно пяти, и ре­
зультаты тех наблюдений приведены в первых пяти строках таблицы 8. Однако для определения ковариационной
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матрицы (см. 9.4.2.5) необходимо как минимум 6 наблюдений. Поэтому в таблицу 8 было добавлено шестое на­
блюдение, полученное как среднее арифметическое значение первых пяти наблюдений. С точки зрения настоя­
щего примера несущественно, каким способом было получено шестое наблюдение, но выбор в качестве шестого 
наблюдения среднего значения выборки позволяет сохранить это среднее значение неизменным.

Т а б л и ц а  8 — Данные п = 6 одновременных независимых наблюдений входных величин для модели измерения 
активного и реактивного сопротивлений (9.4.1.3)

Наблюдение V, В /, мА Ф, рад

1 5,007 19,663 1,0456

2 4,994 19,639 1,0438

3 5,005 19,640 1,0468

4 4,990 19,685 1,0428

5 4,999 19,678 1,0433

6 4,999 19,661 1,0445

9.4.2 Вычисления и результаты
9.4.2.1 Результат измерения в настоящем примере должен быть представлен в виде оценки у  

величины Y и соответствующей ковариационной матрицы Uy. Этот результат должен быть получен на 
основе модели измерения, заданной формулами (26), и данных наблюдений x v  ..., хп, приведенных в 
таблице 8. Решение данной задачи на основе способа оценивания неопределенности по GUM приве­
дено в JCGM 100:2008 (пункт Н.2.3). В настоящем примере помимо данного способа рассматриваются 
модификация способа оценивания неопределенности по GUM на основе применения многомерного 
t- распределения (см. 5.3.2) для входных величин, а также применение метода Монте-Карло.

9.4.2.2 Для того, чтобы применить способ оценивания неопределенности по GUM, необходимо 
знать оценку х  = (V, I, ф)т входной величины X = (V, /, ср)т, определяемую как выборочное среднее по 
наблюдениям, данные которых приведены в таблице 8 [JCGM 100:2008 (пункт 4.2)]:

x = ^ (x i+ ...+  xn).

Ковариационная матрица Ux, соответствующая х, содержит дисперсии, соответствующие сред­
ним значениям [JCGM 100:2008 (пункт 4.2)], и ковариации, соответствующие каждой паре средних зна­
чений [JCGM 100:2008 (пункт 5.2.3)], и вычисляется по формуле:

U x  = п ( п - 1)
М , М = (х1 -  х )(х 1 -  х)Т +... + (х п -  х )(х л -  х)Т ,

где М — матрица сумм квадратов и произведений. Оценки входных величин и соответствующие стан­
дартные неопределенности приведены в таблице 9, а коэффициенты корреляции, соответствующие 
парам таких оценок, — в таблице 10.

Т а б л и ц а  9 — Оценки входных величин X = (V, /, ф)т при одновременном измерении активного и реактивного 
сопротивлений и соответствующие стандартные неопределенности (9.4.2.2)

Параметр 1/, В /, мА Ф. рад

Оценка 4,9990 19,6610 1,04446

Стандартная неопределенность 0,0026 0,0077 0,00061

Т а б л и ц а  10 — Коэффициенты корреляции, соответствующие парам оценок входных величин Х= (V, /, ф)т, при 
одновременном измерении активного и реактивного сопротивлений (9.4.2.2)

1/ / Ф

1/ 1 -0,355 0,858
/ 1 -0,645

Ф 1
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П р и м е ч а н и е  — В JCGM 100:2008 (раздел Н.2) для данной задачи рассмотрены два способа оценивания 
неопределенности измерения, причем принцип, положенный в основу второго способа, изложен в JCGM 100:2008 
в примечании к пункту 4.1.4. В настоящем стандарте этот второй способ не рассматривается по причинам, указан­
ным в 4.1.

9.4.2.3 Согласно способу оценивания неопределенности по GUM, оценку у  = (Я, X, Z)T выходной 
величины Y = (Я, X, Z)1 рассчитывают на основе оценки х  по формулам (26)

У =
V
—  С О Э ф

\/ . - 
— sin ср

Ковариационную матрицу Uy, соответствующую у, вычисляют по формуле (3) из 6.2.1.3, 
Uy = CXUXCX , где Сх — матрица чувствительностей, имеющая вид

СX

coscp

/

V sin ср V sin ср 

/

sin ср 

/

1

/

V sin ср V coscp 

/

0

(27)

Результаты, полученные с применением способа оценивания неопределенности по GUM, приве­
дены в первой строке (метод GUF) таблицы 11.

П р и м е ч а н и е  1 — В последнем столбце таблицы 11 приведены значения для 1 -  r{X , Z), поскольку ко­
эффициент корреляции r{X , Z )  близок к единице (см. 3.21, примечание 5).

П р и м е ч а н и е  2 — При имеющейся в модели, описываемой формулами (26), зависимости между вы­
ходными величинами:

Z2 = Я2 + X2, (28)

ковариационная матрица Uy  теоретически должна быть сингулярна. Вследствие ошибок округления корре­
ляционная матрица, элементы которой приведены в первой строке таблицы 11, не является ни сингулярной, ни 
положительно определенной. Но из-за малости стандартных неопределенностей для оценок входных величин эта 
сингулярность не оказывает практически значимого влияния на полученные результаты [20, раздел 4].

Т а б л и ц а  11 — Результаты одновременного измерения активного и реактивного сопротивлений (9.4.2.3, 9.4.2.4 
и Э.4.2.5)

Метод Я, Ом X, Ом Z, Ом и(Я),
Ом

и(Х),
Ом

и ( Л
Ом r{R ,X ) r{R ,Z ) 1 -  r{X ,Z)

GUF 127,732 219,847 254,260 0,058 0,241 0,193 -0,588 -0,485 0,749х10-2

ММК 127,732 219,847 254,260 0,130 0,536 0,429 -0,587 -0,482 0,770хЮ -2

Альтернативный
GUF

127,732 219,847 254,260 0,130 0,540 0,431 -0,588 -0,485 0,749x10-2

9.4.2.4 В предположении, что данные, приведенные в таблице 8, являются единственной доступ­
ной информацией о входных величинах и что каждое наблюдение можно рассматривать как выборку 
из одного и того же многомерного нормального распределения, входную величину X описывают много­
мерным f-распределением tv(x,M/(vn)), c v  = л -  А/ =3 степенями свободы, где х — выборочное среднее, 
определенное в 9.4.2.2 (см. 5.3.2). Результаты, полученные с применением М = 106 испытаний метода 
Монте-Карло, показаны во второй строке (метод ММК) таблицы 11.

3.4.2.5 Величинах, описываемая многомерным f-распределением (см. 9.4.2.4), имеет ковариаци­
онную матрицу
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Учет этого обстоятельства позволяет несколько улучшить процедуру оценивания неопределен­
ности по GUM, рассмотренную в 9.4.2.3, заменив в формуле (3),UX = СХ1/ХСХТ, матрицу Ux на V(X). 
Результаты, полученные с применением такого альтернативного подхода, приведены в третьей строке 
(метод Альтернативный GUF) таблицы 11 (см. также [15]).

П р и м е ч а н и е  1 — V(X) — ковариационная матрица, полученная с учетом дополнительной информации, 
рассмотренной в 9.4.2.4.

П р и м е ч а н и е  2 — Ковариационная матрица для X, полученная таким способом, может быть определена 
только при выполнении условия v = п -  N> 2. Именно по этой причине для настоящего примера потребовалось не 
менее п = 6 одновременных наблюдений для Л/= 3 входных величин (см. примечание к 9.4.1.3).

9.4.2.6 Ковариационная матрица V(X), полученная из распределения для X, связана с ковариа­
ционной матрицей Ux, используемой в способе оценивания неопределенности по GUM, соотношением

л -1
n - N - 2

Uх •

9.4.2.7 Расхождение результатов, полученных при применении метода Монте-Карло и альтерна­
тивного способа оценивания неопределенности по GUM, пренебрежимо малы. Это означает, что функ­
ции измерения в формуле (26) могут быть линеаризованы с хорошей степенью приближения в окрест­
ности оценок входных величин.

9.4.2.8 В JCGM 100:2008 рассматривается возможность описания выходной величины р а с ­
пределением с использованием формулы Уэлча-Саттертуэйта [см. JCGM 100:2008, формула (G.2b)] 
для расчета числа эффективных степеней свободы. Однако применение этой формулы предполагает 
независимость входных величин, стандартным отклонениям которых соответствуют конечные числа 
степеней свободы. Данное условие в настоящем примере не выполняется.

9.5 Измерение температуры с использованием термометра сопротивления

9.5.1 Описание задачи
В настоящем примере рассматривается измерение температуры промышленным платиновым 

термометром сопротивления путем сравнения сопротивления термометра с эталонным сопротивле­
нием в схеме измерительного моста. Если измерению подлежит конкретная температура, то для этой 
цели используют одномерную модель измерения (см. 9.5.2), а если нескольких температур — то много­
мерную модель (см. 9.5.3). В примере рассматривается обработка данных в рамках указанных моделей 
измерения способом оценивания неопределенности по GUM.

9.5.2 Измерение одной температуры
9.5.2.1 Температуру 0 измеряют сравнением сопротивления Я(0) термометра сопротивления с эта­

лонным сопротивлением Rs измерительного моста. На интервале температур от 0 °С до 30 °С сопро­
тивление термометра может быть приближенно описано квадратичной функцией его температуры 0:

R(0) = (l + A0 + B02)Ro , (29)

где Я0, А и В — параметры, определяемые при градуировке (калибровке) термометра. Оценки Я0, А и В 
и соответствующие стандартные неопределенности приведены в таблице 12, а коэффициенты корре­
ляции для пар таких оценок — в таблице 13.

Т а б л и ц а  12 — Оценки входных величин X  = (Я0, А, В, Rs, г)т и соответствующие стандартные неопределенности 
при измерении температуры (9.5.2.1, 9.5.2.2 и 9.5.2.3)

Параметр 5Оof А, °С'1 В, °С-2 Яд, Ом г

Оценка 99,99610 0,0039096 -6,0x10-7 99,99947 1,0780057

Стандартная неопределенность 0,00050 0,0000027 1,1 хЮ-7 0,00010 0,0000050
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Т а б л и ц а  13 — Коэффициенты корреляции, соответствующие парам оценок входных величин при измерении 
температуры (9.5.2.1, 9.5.2.2 и 9.5.2.3)

*0 А В

яо 1 -0,155 0,092

А 1 -0,959

В 1

9.5.2.2 Оценка величины Rs и соответствующая стандартная неопределенность, получаемые при 
калибровке, приведены в таблице 12. Rs не зависит от параметров Я0, Л и в .

9.5.2.3 Посредством измерительного моста определяют отношение сопротивлений

г = *  (в) (30)

Полученное значение г и соответствующая стандартная неопределенность приведены в табли­
це 12. Отношение сопротивлений не зависит от параметров Я0, А и В термометра сопротивления и 
эталонного сопротивления Rs. Таким образом, в таблице 13 содержатся все ненулевые коэффициенты 
корреляции входных величин.

9.5.2.4 Модель измерения температуры 0, полученная из формул (29) и (30), имеет вид

(1 + ле + ее2)я0 -  rRs = о. (31)

В обозначениях, принятых в настоящем стандарте, N = 5, т = 1, Х=  (Я0, Л, В, Rs, r)T, Y = 0 и

h(Y, X) = (1 + Л0 + в02)Яо -  rRs.

П р и м е ч а н и е  — Модель измерения, определяемая формулой (31), может быть преобразована к явному 
виду путем решения квадратного уравнения относительно 0. Однако такое преобразование включает в себя про­
цедуру вычитания близких чисел, что может привести к потере точности вычисления, и, кроме того, оно усложняет 
вычисление коэффициентов чувствительности.

9.5.2.5 Оценку температуры у  = 0 получают на основе полученного отношения сопротивлений г, 
подставляя данные из таблицы 12 в уравнение (31) и находя решение этого уравнения. Искомая оценка 
равна 0 = 20,0232 °С.

9.5.2.6 Стандартную неопределенность иу = и(в), соответствующую оценке у, вычисляют с исполь­
зованием формулы (8) из 6.3.1.3, CyUyCy = CXUXCX . Вычисление матриц чувствительности Су и Сх по 
формулам

CY = —  = —  = (А + 2В0)Яо , 
у ЭУ Э0 1 ’ °

с х
Вh_
дХ

dh dh dh dh dh 
BRq ЭЛ Эв ЭR§ dr

[1 + Л0 + В02, Ro0, Ro02, - r ,  - f? s ]

с подстановкой оценок входных величин, приведенных в таблице 12, и соответствующей оценки 
выходной величины дает

Су = 0,389 Ом °С “ 1,

Сх = [1,08; 2,00 х 103 Ом-°С; 4,01 Ом °С2; -1,08; -1 ,00 х Ю 2 Ом].

Элементы ковариационной матрицы Ux, соответствующей оценкам входных величин, вычисляют 
из стандартных неопределенностей в таблице 12 и коэффициентов корреляции в таблице 13, что дает 
1/(0) = 0,0045 °С.

9.5.3 Измерение нескольких температур
9.5.3.1 Термометр сопротивления, эталонное сопротивление и измерительный мост, описанные в 

9.5.2, используют для измерения отношений сопротивлений rv  ..., г10, соответствующих десяти разным 
температурам 0 ^ ..., 01О.

9.5.3.2 Оценки входных величин, Я0, А, В и Rs и соответствующие стандартные неопределенности 
приведены в таблице 12, а оценки г,, ..., г10 — в таблице 14. Единственными ненулевыми коэффициен-
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тами корреляции, соответствующими парам оценок, по-прежнему остаются коэффициенты, приведен­
ные в таблице 13. Предполагается, что отношения сопротивлений независимы между собой. Данное 
предположение можно считать справедливым, если преобладающий вклад в неопределенность изме­
рения отношения сопротивлений вносят случайные эффекты.

Т а б л и ц а  14 — Оценки отношения сопротивлений и соответствующие им стандартные неопределенности при 
измерении нескольких температур (9.5.3.2)

Параметр Г1 Г2 гз и Г5
(г, -  1)хЮ 7 53 150054 300055 450056 600056

u(rj)*'\07 50 50 50 50 50

Параметр гв Г7 Г8 Г9 гю

0
> i о -ч| 780057 900058 1050059 1200060 780057

u(rj)* 107 50 50 50 50 50

9.5.3.3 Из формулы (31) следует, что связь отношения сопротивлений г- с соответствующей тем­
пературой задается уравнением

(1 + AQj + Шу2)Я0 - r jR s = 0, j  = 1......10. (32)

В обозначениях, принятых в настоящем стандарте, N = 14, т = 10, X  = (Я0, А, В, Rs, г,, ..., г10)т,
y= (9̂ ,..., е10)т и

' t h { Y , x y | l  +  Д0-| +  Я0^ j R q — r R§

Ы ( у -Х 1 | l  +  Л 01О +  B 0 f o ) ^ o  _ r 1 0 ^ S

П р и м е ч а н и е  — Модель измерения, описываемая формулой (32), может быть приведена к явному виду 
(см. Э.5.2.4).

9.5.3.4 Оценки у -  (0.,, ..., 01О)Т температуры Y (см. таблицу 15) получают подстановкой оценок, 
приведенных в столбцах с первого по четвертый таблицы 12, а также в таблице 14, в уравнения (32) и 
решением этих уравнений.

Т а б л и ц а  15 — Оценки выходных величин Y и соответствующие стандартные неопределенности при измерении 
нескольких температур (9.5.3.4 и 9.5.3.5)

Параметр 91f °С 02, °с е3, °с е4, °С 05, °с 0б> °с

ОN.
CD е8, °с е9, °с JD О О

Оценка 0,0100 3,8491 7,6928 11,5410 15,3938 20,0232 23,1131 26,9797 30,8509 20,0232

Стандартная не­
определенность

0,0018 0,0027 0,0040 0,0046 0,0047 0,0045 0,0046 0,0060 0,0089 0,0045

Т а б л и ц а  16 — Коэффициенты корреляции, соответствующие парам оценок выходных величин У, при измере­
нии нескольких температур (9.5.3.5)

©1 02 ез 04 05 еб 07 08 09 01О

01 1 0,252 0,127 0,079 0,059 0,054 0,056 0,054 0,050 0,054

02 1 0,815 0,800 0,755 0,580 0,312 -0,092 -0,358 0,580

ез 1 0,902 0,868 0,691 0,400 -0,057 -0,365 0,691

е4 1 0,909 0,766 0,495 0,040 -0,281 0,766

е5 1 0,847 0,629 0,208 -0,115 0,847

еб 1 0,841 0,549 0,264 0,918
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Окончание таблицы 16

0 1 0 2 е з 0 4 0 5 0 6 0 7 6 8 6 9 е ю

0 7
1 0,812 0,613 0,841

0 8
1 0,909 0,549

0 9
1 0,264

0 1 О
1

9.5.3.5 Ковариационную матрицу Uy соответствующую у, вычисляют с использованием формулы 
(8) из 6.3.1.3, CyUyCy _ CXUXCхт, где Су и Сх — матрицы чувствительности, получаемые из матриц CY 
и Сх  в точках оценок входных и выходных величин; CY— диагональная матрица размерности 10><10 
с диагональными элементами R0(A + 80.,), ..., R0(A + 801О); Сх — матрица размерности 10 х 14 вида

с х =  [СХ(1)СХ(2)],

где

Ro® 1 - / i

^ о0ю Ro®io ~гю _

матрица размерности 10 х 4, а С ^>  — диагональная матрица размерности 10 х Ю со всеми диагональ­
ными элементами, равными (-R s). Ковариационную матрицу Ux вычисляют из стандартных неопреде­
ленностей, приведенных в столбцах 1—4 таблицы 12 и в таблице 13. Стандартные неопределенности 
для оценок температур, и коэффициенты корреляции для пар этих оценок, полученные из матрицы Uy, 
приведены в таблицах 15 и 16, соответственно.

9.5.3.6 Результаты, приведенные в таблице 15 и на рисунке 22, показывают, как стандартная не­
определенность u(Qj) изменяется вместе с оценкой 0у температуры 0у. Неопределенность измерения 
температуры минимальна вблизи нуля и резко возрастает при температурах выше 25 °С. Этот эффект 
обусловлен тем, что градуировка термометра сопротивления была выполнена при опорных значениях 
температуры 0, 15, 20 и 25 °С, причем температура 0 °С создавалась при помощи ледяной ванны, в 
условиях которой стандартная неопределенность была в три раза меньшей, чем в условиях масляной 
ванны, используемой при градуировке на трех других опорных значениях.

П р и м е ч а н и е  — Отрезки прямых линий, соединяющих точки на рисунках 22 и 23, использованы в целях 
большей наглядности.

9.5.3.7 На рисунке 23 график, построенный по данным последнего столбца таблицы 16, показы­
вает, как изменяется коэффициент корреляции, соответствующий паре оценок 0- и 01О температур по 
Цельсию 0у и 01О = 20 °С в зависимости от 0у,/=  1, ..., 9. Коэффициент корреляции имеет максимум при 
0у= 06 и достигает нуля, когда абсолютная разность |0у — 01О| становится большой. Пример демонстри­
рует, что величины, измеряемые одним и тем же средством измерения, могут иметь высокую степень 
корреляции.

сх(1) =
1 + AQ-1 + 80-,

1 + >401 q + 80-1 о
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Рисунок 22 — Стандартная неопределенность и(0у), соответствующая оценке 0у температуры 0у (9.5.3.6)

Рисунок 23 — Коэффициент корреляции, соответствующий паре оценок 0 и 01О температур 0 и 01О = 20 °С
(9.5.3.7)
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Приложение А 
(справочное)

Производные многомерных функций измерения с комплексными величинами

А.1 В настоящем приложении рассматривается компактный алгоритм вычисления частных производных пер­
вого порядка функции измерения f  в многомерной модели измерения с комплексными величинами

Y = m
где

* = ( * 1 .....*л/)Т. Y=(Yv ...,Ym)T
и

f= V 1 У Т.
X,-обозначает комплексную величину X/R + \Хц, X; R и Хл — действительные величины, а Р =-1. Аналогичные 

представления справедливы для комплексных величин К  и I.
А.2 Пусть Ux обозначает ковариационную матрицу размерности 2N х 2N, соответствующую оценке х вели­

чины X. Ux имеет вид

U ( x i , x i)  •••

U ( x N , x  1) ••• U ( * n > * n )_

"(*/,R .*y,R ) u [ x i ,R’ Xj,\)

_u ( x U ’ XJ f i ) U ( Xi,\’ Xj , \)

ковариационная матрица размерности 2 x 2 ,  соответствующая оценкам х, и ху комплексных величин X, и Ху соот­
ветственно.

А.З Ковариационная матрица

размерности 2т * 2т, где

соответствующая оценке

и ( У ь У 1 ) - и ( У ь У т )

_и ( У т > У \ )  •" и { Ут>Ут)_

j и ( У 1 К ’ У ] я ) и ( У / Я ’ У],\

[ и (У1,\’ У ] я ) и (У1,1’ У],\)

y = f ( x )

величины Y, определяется обобщенным законом трансформирования неопределенностей

Uy =CxUxC (А.1)

А.4 Сх — матрица чувствительности размерности 2т х 2Л/, получаемая вычислением

в точке X = х, где Су;-— матрица размерности 2 x 2  частных производных первого порядка действительных и мни­
мых частей fp соответствующих действительной и мнимой частям X,-:
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dp.R dfj R
. = ax/iR ax,.,
,JJ Щ _

_ax/R ax,-.
A.5 Для произвольной комплексной скалярной величины Q= 0 R + iQ, рассмотрим матричное представление 

размерности 2 x 2  вида [14]:

Тогда Cjj можно представить как

M(Q) O r

Q Or .

C j j  =  M
ц _
дХ,

Данное представление является основой для расчетов частных производных первого порядка комплексных 
величин fj по Хг
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Приложение В 
(справочное)

Вычисление коэффициентов чувствительности и ковариационных матриц
для многомерных моделей

В.1 Если измерительная задача может быть выражена в терминах линейной алгебры [13], то вычислительно 
устойчивый алгоритм определения матрицы Uy, являющейся решением уравнения (8 ), состоит в следующем:

a) для матрицы Ux выполняют разложение Холецкого, RXJRX = Ux, в результате чего получают матрицу Rx,
b) матрицу Сх представляют в виде произведения Сх = Qx Wx, где Qx — ортогональная матрица, a Wx — 

верхняя треугольная матрица;
c) матрицу Су представляют в виде произведения Cv= L 

треугольная матрицы;
У Wy, где Ly — нижняя треугольная, a Wy — верхняя

d) решают матричное уравнение 1/И„тМ1 = / относительно М,;
e) решают матричное уравнение L^M 2 = М1 относительно М2;
f) вычисляют матрицу М3 = Q^M,
g) вычисляют матрицу К  = И^Л73;
h) вычисляют матрицу М= RXK,
i) матрицу М приводят к треугольному виду Я;
j) вычисляют Uy = ЯТЯ
В.2 Указанная процедура может быть проверена методами элементарной матричной алгебры (см. [7]).
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Приложение С 
(справочное)

Преобразование системы координат

С.1 Общие положения
В настоящем приложении рассматриваются некоторые аспекты задачи преобразования системы координат 

(см. 9.3). В разделе С.2 приведен аналитический вывод совместной плотности распределения для Y в случае, ког­
да Х1 описывается нормальным распределением N(x.,, и2х), а Х2 — нормальным распределением и при этом Х1 и 
Х2 взаимно независимы.

С.2 Аналитическое решение для особого случая
С.2.1 Предположим, что X  имеет плотность распределения д ^ )  и £= 1 (Т|) — взаимно-однозначное преоб­

разование значений Т| = (л 1. •••> Лд/)Т величины Y в значения £ = (^ ,  ..., 5,N)T величины X. Тогда [19, страница 35] У 
имеет плотность распределения

9 М ) = 9 х ( ^ т ^ Ш  (С.1)

где det(J) — детерминант матрицы Якоби J,

a j i _ э у
г7д1 ^ Д /v

Э ^л /
гф ц Э Д л /.

рассматриваемый как функция ц. Предполагается, что det(J) нигде не равен нулю или бесконечности.

П р и м е ч а н и е  1 — Формулу (С.1) иногда называют формулой замены переменных.
П р и м е ч а н и е  2 — В случае одномерной величины (Л/ = 1) преобразование переменных г\ = /(£,), где 

/(.) — дифференцируемая и монотонная функция, дает следующую плотность распределения для У [21 , страницы 
57—61]:

d I (л)
d г|Яу (л) = Ях (f 1 (л))

С.2.2 Для задачи преобразования системы координат, рассмотренной в 9.3, X  = (X,, Х2)л 
£ = (^ , ^2)т, У = (Я, 0 )т со значениями Tj = (д.,, д2)т и

^  = д1 cos д2, ^2 = д1 sin д2.

со значениями

Таким образом,
соэд2 —Л1 s'n Л2 
sinr|2 д1 cos д2

и
det (J) = r]v

Из этого следует, что при д1 > 0

Яуьу2 (Л1.Л2) = ^Я хьх2 (Л1 cos д2, Л! sinд2) .

С.2.3 Рассмотрим случай, когда Х1 описывается нормальным распределением N(x1, и2х), аХ2 — 
распределением N(x2, и2х) и X, и Х2 взаимно независимы. ТогдаТогда

Яхь х2 ( Ы 2 ) =  Ях, f e )Ях2 ( У  =  7 - 4 e x P
2 nut

нормальным

(̂ 1 ~ Х1) + (^2 ~ Х2 ) 
2 ul

,2

Яу,у2 (Л1.Л2) = ехР 
2 nut

(д1 cos г\2 -  х1 )2 + (д.| sin г|2 — х2\2 ^

2 ui
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С.2.4 Маргинальное распределение для У, = Я имеет вид

К
9 у , Ы =  j  9,у1,у2 (Л1.Л2) ^ 2 = ^ т е х р

( 2 2  ̂
Л1 + У1

2 ul

( \  
Л1У1 (С.2)

\  U X )

где
y? = x? + xj,

а /0 — модифицированная функция Бесселя первого рода нулевого порядка.

П р и м е ч а н и е  1 — Полученное распределение представляет собой распределение Райса с параметрами
ГX’
П р и м е ч а н и е  2 — Если у, = 0, то данное распределение является распределением Рэлея с параметром их. 
П р и м е ч а н и е  3 — Если их = 1, то данное распределение представляет собой нецентральное распреде­

ление хи-квадрат с двумя степенями свободы и параметром нецентральности у\.

С.2.5 Маргинальное распределение для У2 = 0  имеет вид

У\ и и>

°° /  2 \
9y2 (Лг) = J9yvy2 (Л1.Лг)с1Л1 = т р е х р  [1 + л/лгехр(т2)ег1с(-т)] , (C.3)

где
V

_ x1 COSTI2 + x2 sin rj2 
yf2ux 

a

erfc(z) = 1- - t= [exp (-f2)df — 
^  0

дополнительная функция ошибок.
С.2.6 Если, кроме того, выполнено условие х1 = х2 = 0, тогда

9y. ,у2 (Л1. Л2) -  ехР
2я ui

(  2 'УЛ1

V 2иху

и, следовательно, У, и У2 взаимно независимые величины с маргинальным распределением Рэлея с параметром 
их Для У,,

9 у Ы = 2 ехр
( 2 \  Л1

V 2 и х )

и маргинальным равномерным распределением на интервале от -я  до я для У2,

9у2 Ы = 2 Т '

С.З Применение способа оценивания неопределенности по GUM
С.3.1 Для задачи преобразования системы координат, рассмотренной в 9.3, модель измерения может быть 

записана как двумерная модель

У, = Ц (X-,, Х2) = ^/х? + Х \ , У2 = f2(X,, Х2) = arctan(X1/X2),

при этом подразумевается, что У, > 0 и -я  < У2 < я. Входные величины Х1 и Х2 имеют оценки х1 и х2, соответству­
ющие стандартные неопределенности и(х.|) и и(х2) и ковариацию и(х.,, х2).

С.3.2 Из 6 .2.1.2 следует, что оценки величин У1 и У2 имеют вид

y-i = ^/х2 + х2 , у2 = arctan(x2/x1).

С.3.3 Матрицу чувствительности С размерности 2><2 получают, вычисляя

Су =

Г dfi dfj 1

1__ 1

ЭХ1 эх2 V x f + х | V x f  + x 22

э/2 df2 -Х 2 X,
ЭХ, эх2 X? + х | X? + х |
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в точке Х1 = Хр Х2 = х2. Таким образом, при условии у 1 = у[х[+ х2 > 0 получаем

С„ =

С.3.4 Из 6 .2.1.3 следует, что

*1 *2

\ j x 2 +  х | y j x 2 + х 2

- х 2
2 2 

X f  +  х 2 х 2 +  х |

„ .И " )
У w (y 2 , / i )

cosy2 siny2

является ковариационной матрицей, соответствующей оценкам у = (у1, у2)т, с и(у2, у.,) = и(уь у2) и

и2 (у,) = и2 (x^cos2 у2 + и2 (x2)sin2 у2 + 2a(x1,x2)cosy2 siny2 ,

и{УьУ2) = (и2{х2) - и2Ы ) { ^ пУ2 cosy2y y 1 + u(x1,x2)(cos2 у2 -  sin2 у2)/ у -1.

и2 (у2 ) = и2 ( x j (sin2 у2) / У* + и2 (х2)(cos2 у2) /y 12 - 2t/(x1,x2)(cos у2 sin у2) / у? .

С.3.5 В рамках способа оценивания неопределенности по GUM У приписывают двумерное нормальное рас­
пределение N(y, Uy), по которому могут быть построены области охвата для У при заданной вероятности охвата 
р (см. 6.5).

С.3.6 Рассмотрим случай, когда и{х^) = и(х2) = их и и(х ,̂ х2) =0 (см. С.2.3). Тогда

и2{У:) = и2х, и(ур у2) = 0 , и2{у2) = и2х1 у\

с У, характеризуемым двумерным нормальным распределением, как в С.3.5. Т. е. в этом случае У, и У2 являются 
независимыми величинами, и двумерное нормальное распределение для У, и У2 распадается на два одномерных 
распределения, N(y1, u2(y,)) и N(y2, и2(у2)) соответственно.

П р и м е ч а н и е  — Напротив, при аналитическом решении (см. С.2) в случае, когда У не характеризуется 
двумерным распределением Гаусса, выполнения условий и(х^) = и(х2) и и(х ,̂ х2) = 0 недостаточно для независимо­
сти У, и У2. Чтобы выходные величины были независимы, необходимо также, чтобы х1 = х2 = 0 (см. С.2.6).
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Приложение D 
(справочное)

Основные обозначения

С* матрица чувствительности размерности m * N, связанная с x

Cv матрица чувствительности размерности т * т, связанная с у
с целое десятичное число с ndiq знаками

Согг(Х/, X,) корреляция случайных переменных X,- и Х;-
Cov(X,, X) ковариация случайных переменных Х( и Х;
det(J) определитель Якоби

Е(Х» математическое ожидание случайной переменной X,

Е(Х) математическое ожидание случайной переменной X

^т,п распределение Фишера с т и п -  т степенями свободы

f одномерная функция измерения, зависящая от входных величин X
f многомерная функция измерения, зависящая от входных величин X
G дискретное представление функции распределения Gy(T|) выходной величины Y, полученное ме­

тодом Монте-Карло

функция распределения переменной ^ для входной величины X
плотность распределения переменной ^  для входной величины Ху

а д плотность совместного распределения переменной £ для входной величины X

а д функция распределения переменной д для выходной величины Y

9у(Л) плотность распределения переменной д для выходной величины У
h одномерная модель измерения, выражающая соотношение между выходной величиной Y и 

входными величинами X, от которых зависит Y

h многомерная модель измерения, выражающая соотношение между выходной величиной У и 
входными величинами X, от которых зависит У

i мнимая единица, /2 = -1

J матрица Якоби

kp коэффициент охвата для области охвата в форме эллипсоида, соответствующий вероятности 
охвата р

кя коэффициент охвата для области охвата в форме параллелепипеда, соответствующий вероятности 
охвата q

L нижняя треугольная матрица

1 целое число в представлении с * КУ числового значения, где с — целое десятичное число с ndig 
знаками

m число выходных величин У,,..., Ym

M число испытаний метода Монте-Карло
M матрица сумм квадратов и произведений
N число входных величин X,,..., XN
N(0 , 1) стандартное нормальное распределение

N(p, a2) нормальное распределение с параметрами р и о2

N(p, VO многомерное нормальное распределение с параметрами р и V
n число наблюдений

nd\a количество значащих цифр числа, рассматриваемых как достоверные

Pr(z) вероятность события z
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р вероятность охвата

RY m-мерная область охвата для Y

Ry корреляционная матрица размерности т * т для оценки у
R(0, 1) стандартное равномерное распределение на интервале [0 , 1]

R(a, b) равномерное распределение на интервале [а ,Ь]

iixh xt) коэффициент корреляции оценок ху и ху входных величин Х; и Xj
s оценка стандартного отклонения по п наблюдениям хv ..., хп

Sz стандартное отклонение для среднего z значений z 1̂), ^  в адаптивной процедуре метода 
Монте-Карло, где z может означать оценку уу- выходной величины Yj, стандартную неопределен­
ность u(yj) оценки уу) максимальное собственное значение А.тах корреляционной матрицы Ry или 
коэффициент охвата кр области охвата для Y

T верхний индекс, обозначающий транспонирование матрицы

s ) многомерное ^-распределение с параметрами ц и S и v степенями свободы

% расширенная неопределенность, соответствующая вероятности охвата р

u , ковариационная матрица для оценок х входной величины X

Uy ковариационная матрица для оценок у входной величины Y
Ux, u(x) стандартная неопределенность оценки х входной величины X
u(x,) стандартная неопределенность оценки х, входной величины X,

u(xh x,) ковариация оценок х, и х; входных величин X, и Х;-

u(x) вектор (и(х.,), ..., и(хW))T стандартных неопределенностей для оценок х входной величины X
ЦХ,) дисперсия случайной переменной X,
1/ ковариационная матрица

V{X) ковариационная матрица случайной переменной X

* i /-я входная величина, рассматриваемая как случайная переменная
X вектор (X,,..., Хд,)т входных величин

X среднее арифметическое п наблюдений х^..., хп

xi оценка (математическое ожидание) величины Х;- или /-е наблюдение в серии наблюдений
X оценка (математическое ожидание) (х^..., хп)т величины X

*1 ,r г-й элемент выборки случайных значений, полученных при реализации метода Монте-Карло, из 
плотности распределения для X,

*r г-й вектор, содержащий элементы х1 XNr, полученные из N плотностей распределения для 
входных величин Х^..., Хд/или из совместной плотности распределения для величины X

Yi j-я выходная величина, рассматриваемая как случайная переменная
Y вектор (У.,.... Vm)T выходных величин, рассматриваемых как случайные переменные

У1 оценка (математическое ожидание) величины Yj

У оценка (математическое ожидание) (у,,..., ут )т величины Y

У оценка величины У, полученная как выборочное среднее М значений выходной величины уг в 
результате реализации метода Монте-Карло

Уг r-е значение функции измерения f(xr)

У °г трансформированное значение уг

z(h) h-e значение величины z в адаптивной процедуре метода Монте-Карло, где z может означать оценку 
уу выходной величины Yj, стандартную неопределенность u(yj) оценки у.-, максимальное собствен­
ное значение Хтах корреляционной матрицы Rv или коэффициент охвата кр области охвата для Y

а значение вероятности

Г И гамма-функция переменной z

5 точность вычисления числового значения
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n переменная, описывающая возможные значения выходной величины У

К Р
точность вычисления коэффициента охвата кр для области охвата в форме эллипсоида

KQ точность вычисления коэффициента охвата /гддля области охвата в форме параллелепипеда

^тпах наибольшее собственное значение корреляционной матрицы
Ti/vrnin наименьшее собственное значение корреляционной матрицы

M- математическое ожидание случайной переменной, характеризуемой плотностью распределения

математическое ожидание векторной случайной переменной, характеризуемой плотностью сов­
местного распределения

V число степеней свободы ^-распределения или распределения хи-квадрат;

veff число эффективных степеней свободы, соответствующих стандартной неопределенности и{у)

S i
переменная, описывающая возможные значения входной величины Ху

s переменная £N)T, описывающая возможные значения входной величины X

p точность вычисления наибольшего собственного значения А,тах корреляционной матрицы

о стандартное отклонение случайной переменной, характеризуемой распределением вероятностей

о2 дисперсия (квадрат стандартного отклонения) случайной переменной, характеризуемой распреде­
лением вероятностей

£ ковариационная матрица случайной векторной переменной, характеризуемая совместным распре­
делением вероятности

Xv распределение хи-квадрат с v  степенями свободы
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Приложение ДА 
(справочное)

Сведения о соответствии ссылочных международных документов 
межгосударственным стандартам

Т а б л и ц а  ДА.1

Обозначение ссылочного междуна­
родного документа

Степень соот­
ветствия

Обозначение и наименование соответствующего 
межгосударственного стандарта

JCGM 100:2008 ЮТ ГОСТ 34100.3—2017 «Неопределенность измерения. 
Часть 3. Руководство по выражению неопределенности 
измерения»

JCGM 101:2008 ЮТ ГОСТ Р 54500.3.1—2011 «Неопределенность измерения. 
Часть 3. Руководство по выражению неопределенности 
измерения. Дополнение 1. Трансформирование распре­
делений с использованием метода Монте-Карло»

JCGM 104:2009 ЮТ ГОСТ 34100.1—2017 «Неопределенность измерения. 
Часть 1. Введение в руководства по неопределенности 
измерения»

JCGM 200:2008 — *

* Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать 
перевод на русский язык данного международного документа.

П р и м е ч а н и е  — В настоящей таблице использовано следующее условное обозначение степени соот­
ветствия стандартов:

- ЮТ — идентичный стандарт.
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Приложение ДБ 
(справочное)

Дополнительные замечания к межгосударственным стандартам, вводящим 
международные руководства в области неопределенности измерения

ДБ.1 Общие замечания к серии межгосударственных стандартов ГОСТ ISO/IEC Guide 98
ДБ.1.1 Серия межгосударственных стандартов ГОСТ ISO/IEC Guide 98 вводит документы, разрабатываемые 

рабочей группой JCGM/WG 1 «Рабочая группа по выражению неопределенности измерения», входящей в состав 
объединенного комитета JCGM «Объединенный комитет по руководствам в метрологии» при Международном бюро 
мер и весов (см. «Предисловие к международному документу ISO/IEC Guide 98.1:2009» настоящего стандарта).

ДБ.1.2 Документы, разрабатываемые JCGM/WG 1, устанавливают общий единообразный подход к оценке 
точности измерений через концепцию неопределенности измерений и включают в себя как методы вычисления 
неопределенности измерения в разных измерительных задачах, так и учет неопределенности измерения при при­
менении результатов измерения.

ДБ.1.3 Концепция неопределенности измерения разработана для выражения качества результата измере­
ния взамен концепции погрешностей измерений с целью придания методической корректности используемым те­
оретико-вероятностным моделям.

В концепции погрешностей измерений результат измерения представляют в виде суммы истинного значе­
ния и погрешности, которая, в свою очередь, является суммой систематической и случайной составляющих. При 
этом для оценки точности измерения обычно используют один из двух способов: консервативный (оценка сверху) 
и теоретико-вероятностный. Выбор того или иного способа оценивания определяется конкретной измерительной 
задачей и дальнейшим использованием результата измерения. Каждый из этих подходов имеет ограничения в 
применении.

ДБ. 1.4 При консервативном способе оценивания границы суммарной погрешности определяются арифмети­
ческим суммированием границ ее составляющих. Главный недостаток консервативного способа — слишком широ­
кие границы суммарной погрешности, особенно в случае большого числа составляющих. Консервативный подход 
может найти применение в измерительных задачах, где необходимо обеспечить нахождение истинного значения 
измеряемой величины в установленных границах наверняка.

ДБ. 1.5 При теоретико-вероятностном подходе для описания результата измерения используется случайная 
переменная, математическое ожидание которой совпадает с истинным значением измеряемой величины или сме­
щено относительно него на величину систематической погрешности. Это дает возможность в условиях ограничен­
ного числа повторных наблюдений измеряемой величины строить для нее точечные и интервальные оценки.

В теории погрешностей использована частотная интерпретация вероятности, наблюдения рассматриваются 
как выборка из заданной генеральной совокупности, оценки измеряемой величины и характеристик погрешности 
являются статистиками. В качестве интервальной оценки используется построенный на основе статистик довери­
тельный интервал, соответствующий заданной доверительной вероятности.

Главным ограничением использования частотного подхода является невозможность его корректного рас­
пространения на задачу оценивания систематических погрешностей. Подход, основанный на «рандомизации» си­
стематических погрешностей, применим лишь в отдельных случаях. В результате в рамках частотного подхода 
невозможно указать в общем виде правило построения доверительного интервала погрешности, особенно при на­
личии нескольких влияющих факторов, каждый из которых может описываться своей генеральной совокупностью 
и для которых могут быть получены свои выборки наблюдений. При отсутствии строгих математических методов 
метрологам часто приходилось обращаться к инженерным (эмпирическим) процедурам определения доверитель­
ных интервалов без оценки качества получаемых результатов1).

ДБ.1.6 Введение в метрологическую практику концепции неопределенности измерения «Руководством по 
выражению неопределенности измерения (GUM)», опубликованным в 1993 г. (см. «Предисловие к международ­
ному документу ISO/IEC Guide 98.1:2009» настоящего стандарта), явилось попыткой дать математически строгий 
единый подход к оценке составляющих неопределенности, обусловленных как случайными, так и систематиче­
скими факторами, при заданных условиях измерительной задачи. Однако GUM не смог в полной мере решить 
эту задачу, он появился как внутренне противоречивый документ, использующий одновременно частотную и бай­
есовскую концепции вероятности. Единая процедура вывода, наиболее корректно и последовательно описанная 
в JCGM 101:2008, основана на отказе от частотной интерпретации вероятности при оценке точности измерения 
в пользу субъективного представления о вероятности. Если в частотном подходе понятие случайной переменной 
использовано для описания результата/погрешности измерения, то в субъективном подходе случайная перемен­
ная использована для описания возможных значений измеряемой величины. При этом получение распределения 
вероятностей, ассоциированного с измеряемой величиной, осуществляется на основе:

1) Примером такой инженерной процедуры является способ оценивания доверительных границ погрешности 
в РМГ 43—2001 «Применение «Руководства по выражению неопределенности измерений».
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- составления для данной измерительной задачи модели измерений, связывающей измеряемую величину 
(выходную величину) со всеми значимыми влияющими величинами (входными величинами модели);

- приписывания входным величинам распределений вероятностей (в общем случае совместных), исходя из 
имеющейся информации об этих величинах и их наблюдений (при наличии);

- преобразования совместного распределения входных величин в распределение выходной величины со­
гласно правилам преобразования случайных переменных.

В отличие от теории погрешностей (на основе частотного подхода) концепция неопределенности (на основе 
субъективной вероятности) не имеет принципиальных ограничений в получении окончательного результата из­
мерения в виде функции распределения, ассоциированной с измеряемой величиной, что позволяет вычислить 
интервал вероятности (охвата) для любой заданной вероятности. Однако во многих измерительных задачах ана­
литическое решение задачи преобразования плотностей вероятностей невозможно. В этом случае точное реше­
ние (в пределах точности вычислений) всегда может быть получено числовым методом Монте-Карло (см. JCGM 
101:2008).

ДБ. 1.7 При наличии выборки наблюдений одной или нескольких входных величин (например, показываемой 
величины — см. JCGM 104:2009, пункт 3.2) входное распределение для этой величины получают применением 
теоремы Байеса. Поэтому переход от концепции погрешностей к концепции неопределенности может рассматри­
ваться как переход от частотного (объективного) подхода в интерпретации вероятностей к байесовскому (субъек­
тивному).

П р и м е ч а н и е  — Существует широкий круг измерительных задач, в которых получают только одно на­
блюдение для входной величины. Однако и в этом случае возможно формальное применение теоремы Байеса, 
поэтому концепцию неопределенности измерения можно связывать с байесовским подходом без потери общности.

ДБ.1.8 Важными характеристиками результатов измерений в обоих подходах являются интервальные оцен­
ки, которые, однако, имеют разное содержание. В частотном подходе это доверительный интервал, не явно пред­
полагающий возможность проведения неограниченной серии измерений и гарантирующий накрытие истинного 
значения измеряемой величины в заданной доле р таких измерений. В байесовском подходе это интервал охвата, 
содержащий с вероятностью q значение измеряемой величины.

П р и м е ч а н и е  1 — Часто, задавая р= q, пытаются провести количественное сопоставление получаемого 
доверительного интервала с интервалом охвата. Однако необходимо иметь в виду, что подобные попытки некор­
ректны ввиду сопоставления разных величин.

П р и м е ч а н и е  2 — Встречающееся в литературе утверждение, что оба подхода дают одинаковые ин­
тервальные оценки, несмотря на их разную интерпретацию, в общем случае неверно. Равенство оценок имеет 
место только в отдельных измерительных задачах, хотя к ним, например, относится часто встречающийся случай, 
когда можно обоснованно предположить наличие одной доминирующей влияющей величины, распределенной по 
нормальному закону. Для данной задачи, действительно, доверительный интервал (наименьший) совпадет с ин­
тервалом охвата (наименьшим), поскольку центральная статистика, используемая для построения доверительного 
интервала, подчиняется тому же ^-распределению, которое после операций сдвига и масштабирования дает апо­
стериорное распределение для измеряемой величины (при условии задания неинформативных априорных рас­
пределений для математического ожидания и дисперсии нормального распределения) в байесовском подходе.

ДБ. 1.9 Разница между частотным и байесовским подходами наглядно проявляется в том, насколько в рам­
ках данного подхода легко получить ту или иную характеристику результата измерения. Частотный подход основан 
на получении оптимальных точечных оценок (статистик), по которым потом можно построить (не всегда) довери­
тельный интервал. Распределение случайной погрешности, характеризующей качество измерений, может быть 
получено только в отдельных, частных случаях. В байесовском подходе ситуация противоположная. В первую 
очередь получают распределение вероятностей случайной величины, ассоциированной с измеряемой величиной. 
На его основе всегда есть возможность построить интервал охвата. Точечную оценку получают из распределения 
вероятностей после принятия каких-либо дополнительных допущений.

П р и м е ч а н и е  — В зависимости от целей измерений точечной оценкой могут служить разные параметры 
полученного распределения для измеряемой величины, такие как математическое ожидание, медиана или мода.

ДБ. 1.10 Достоинством байесовского подхода, а значит, и концепции неопределенности измерений является 
наличие формализованной процедуры учета априорной информации разного рода (в том числе о возможных или 
наиболее вероятных значениях измеряемой величины) при получении результата измерений.

Сопоставление концепций погрешности и неопределенности измерения проиллюстрировано на рисунке
ДБ.1.

ДБ. 1.11 В рамках байесовского подхода решением измерительной задачи в общем случае является распре­
деление, ассоциированное с измеряемой величиной, которое, в общем случае, индивидуально для каждой изме­
рительной задачи и в наиболее полном виде описывает всю собранную при решении данной задачи информацию.

В целях сокращения объема передаваемых данных и удобства их хранения в документах, разрабатываемых 
JCGM/WG 1, основным способом представления результата измерения принят интервал охвата (или область охва­
та в случае многомерной измеряемой величины). При этом, однако, следует помнить, что за областью охвата всегда
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стоит распределение соответствующей случайной переменной и, главное, во многих практических приложениях 
результатов проведенного измерения необходимо знать не интервал охвата, а распределение, из которого оно 
получено. Поэтому, как правило, желательно сохранять результат измерения в виде распределения вероятностей 
случайной переменной, ассоциированной с измеряемой величиной.

Выборка+
дополнительная

информация

а) Частотный подход Ь) Байесовский подход

П р и м е ч а н и е  — Вопросительные знаки на схеме частотного подхода показывают, что получение оценки 
данной характеристики затруднено или невозможно. Если особенности измерительной задачи позволяют получить 
распределение погрешности, то доверительный интервал может быть рассчитан. Обратное утверждение, вообще 
говоря, неверно.

Рисунок ДБ. 1 — Обобщенная схема получения результата измерения в рамках частотного
и байесовского подходов

ДБ.2 Дополнительные замечания к настоящему стандарту
ДБ.2.1 Настоящий стандарт является введением международного документа JCGM 102:2011, который рас­

пространяет концепцию неопределенности измерений, изложенную в JCGM 100:2008 (GUM) и уточненную в JCGM 
101:2008, на случай многомерных измеряемых величин. Данная задача является типичной, например, при кали­
бровке средств измерений, относящейся к числу многоступенчатых (многоэтапных) измерений. Однако в примерах 
процедуры многоступенчатых измерений допущены отклонения от принципов, перечисленных в ДБ. 1.6 .

ДБ.2.2 В 3.12 модель многоступенчатого измерения определена через совокупность подмоделей. Это не­
сколько нарушает общность рассмотрения задачи, поскольку любое многоступенчатое измерение может быть 
определено через одну модель, которая объединяет все подмодели и в которой выходными величинами являются 
выходные величины каждой подмодели. Если ряд выходных величин являются вспомогательными (в задаче ка­
либровки, например, это параметры калибровочной кривой), то в качестве окончательного результата измерения 
может быть взято маргинальное распределение, полученное интегрированием совместной плотности вероятности 
всех выходных величин по вспомогательным выходным величинам.

ДБ.2.3 Применение подмоделей вместо одной общей модели обусловлено прежде всего практическими 
соображениями. Следует иметь в виду, что при этом качество измерения может несколько ухудшиться, однако 
обычно этим обстоятельством можно пренебречь. Важнее то, что разбивка общей модели на подмодели, когда вы­
ходные величины одного этапа становятся входными величинами следующего, не предполагает и не требует пре­
образования уравнений, составляющих исходную модель. С этой точки зрения применение метода наименьших 
квадратов (см. пример в 3.12 и пример 3 в 6 .6 .6) плохо согласуется с байесовским подходом.

П р и м е ч а н и е  — Метод наименьших квадратов часто используется на практике без какого-либо до­
полнительного обоснования как удобная эмпирическая процедура, Теоретическое обоснование и доказательство 
оптимальности оценок метода наименьших квадратов базируется на частотной интерпретации вероятности.
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