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Введение

В «Руководстве по выражению неопределенности измерений» (G U M ) [JC G M  100:2008] рассматрива­
ются, в основном, одномерные модели измерений, включающие в себя единственную скалярную выход­
ную величину. Однако на практике часто встречаются измерительные задачи с двумя и более выходными 
величинами. Примеры таких задач имеются в G U M  д ля  случаев электрических измерений с  тремя выход­
ными величинами [JC G M  100:2008 (раздел Н.2 приложения Н)] и температурных измерений с двумя выход­
ными величинами [JC G M  100:2008 (раздел Н.З приложения Н)]. В  настоящем стандарте рассматриваются 
многомерные модели измерения, включающие в себя произвольное число выходных величин. В большин­
стве случаев выходные величины коррелированны, поскольку зависят от общих входных величин. В на­
стоящем стандарте рассматривается обобщение способа оценивания неопределенности по G U M  [JC G M  
100:2008 (раздел 5)]. позволяющее получить оценки выходных величин, а также стандартные неопреде­
ленности и ковариации, соответствующие этим оценкам. Входные и выходные величины модели измере­
ния могут быть действительными или комплексными.

Дополнение 1 к G U M  [JC G M  101:2008] рассматривает трансформирование распределений [JC G M  
100:2008 5] при заданной модели измерения как основу д л я  выражения неопределенности измерения и 
реализацию данной процедуры посредством метода М онте-Карло [JC G M  100:2008 (раздел 7)]. Как и в 
G U M . в нем рассмотрены только модели с единственной скалярной выходной величиной [JC G M  101:2008 
(раздел 1)]. Настоящий стандарт рассматривает обобщение метода Монте-Карло с целью получения диск­
ретного представления совместного распределения вероятностей д л я  выходных величин многомерной 
модели. Такое дискретное представление служ ит основой д л я  получения оценок выходных величин, их 
стандартных неопределенностей и ковариаций. Использование метода Монте-Карло является альтернати­
вой способу оценивания неопределенности по G U M , особенно в ситуациях, когда последний не способен 
обеспечить достоверные результаты измерений вследствие того, что (а ) линеаризация модели приводит к 
существенному искажению результатов измерения или (б ) распределение вероятностей д л я  выходной ве­
личины (или величин) не может быть описано многомерным нормальным распределением.

Настоящий стандарт устанавливает также метод определения области охвата д л я  выходных величин 
многомерной модели, являющейся аналогом интервала охвата в случае одномерной модели, д л я  задан­
ной вероятности охвата. Рассматриваются области охвата в форме эллипсоидов или прямоугольных парал­
лелепипедов. Применение численных процедур расчета неопределенности измерения с  использованием 
метода М онте-Карло дает возможность приближенного построения областей охвата наименьшего объема.
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Н А Ц И О Н А Л Ь Н Ы Й  С Т А Н Д А Р Т  Р О С С И Й С К О Й  Ф Е Д Е Р А Ц И И

Н Е О П Р Е Д Е Л Е Н Н О С ТЬ  ИЗМ ЕРЕНИЯ 

Ч а с т ь  3

Р у к о в о дс тв о  по вы раж ению  н е о п р е де ле н н о сти  измерения 

Д о п о лн е н и е  2

О бобщ ение на слу ч а й  п р о и з в о ль н о го  ч и с ла  в ы х о дн ы х  вели чи н

Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement. Supplement 2. 
Extension to any number of output quantities

Дата введения —  2014 —  09 —  01

1 Область применения

Настоящий стандарт является дополнением к «Руководству по выражению неопределенности изме­
рений» (G U M ) (JC G M  100) и распространяется на модели измерения с произвольным числом входных и 
выходных величин. Входящие в модель измерения величины могут быть действительными и/или комплек­
сными. Рассмотрено два подхода к использованию таких моделей. Первый представляет собой обобще­
ние способа оценивания неопределенности no G U M . Второй —  использование метода Монте-Карло для  
трансформирования распределений. Использование метода Монте-Карло дает возможность получить д о ­
стоверные результаты в ситуациях, когда условия применимости первого подхода не выполняются.

Способ оценивания неопределенности по G U M  применим, когда информацию о входных величинах 
можно представить в виде их оценок (например, полученных измерением), связанных с  этими оценками 
стандартных неопределенностей и, при необходимости, ковариаций. Использование соответствующих ф ор­
мул и процедур позволяет на основе указанной информации получить оценки, а также соответствующие им 
стандартные неопределенности и ковариации д ля  выходных величин. Эти формулы и процедуры примени­
мы к моделям измерения, д ля  которых выходные величины (а) выражены непосредственно как функции от 
выходных величин (функции измерения) или (Ь) могут быть получены решением уравнений, связывающих 
входные и выходные величины.

В целях упрощения формулы, применяемые в настоящем стандарте, даны в матричной форме запи­
си. Дополнительным преимуществом такой формы записи является ее приспособленность к реализации на 
многих языках программирования и в системах, которые поддерживают матричную алгебру.

Способ оценивания неопределенности измерения с применением метода Монте-Карло основывается 
на (i) присвоении входным величинам модели измерения соответствующих распределений вероятностей 
[JC G M  101 (раздел 6)]. (ii) определении дискретного представления совместного распределения вероятно­
сти д ля  выходных величин и (iii) получения из этого дискретного представления оценок выходных величин, 
их стандартных неопределенностей и ковариаций. Данный подход является обобщением метода Монте- 
Карло. установленного в JC G M  101 применительно к моделям с единственной скалярной выходной вели­
чиной.

Применение вышеуказанных подходов позволяет получить при заданной вероятности охвата область 
охвата д л я  выходных величин многомерной модели —  аналог интервала охвата д ля  одномерной модели с 
единственной скалярной выходной величиной. Рассматриваемые в настоящем стандарте области охвата 
имеют формы гиперэллипсоидов (д а л е е — эллипсоидов) и прямоугольных гиперпараллелепипедов (да ­
лее —  параллелепипедов) в многомерном пространстве выходных величин. В случае применения метода 
Монте-Карло приведена также процедура приближенного построения области охвата наименьшего объема.

Применение стандарта иллюстрировано подробными примерами.
Настоящий стандарт служит дополнением к G U M  и должен быть использован вместе с  ним и с Д опол­

нением 1 к G U M  (соответственно, JC G M  100 и J C G M  101). Настоящий стандарт предназначен д л я  тех же 
пользователей, что и два вышеуказанных документа (см. также JC G M  104).

Издание официальное
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2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие документы:
JC G M  100:2008 Оценивание данных измерений. Руководство по выражению неопределенности изме­

рения (G U M ) (JC G M  100:2008. Evaluation of measurement data —  Guide to the expression of uncertainty in 
measurement (G U M )]

JC G M  101:2008 Оценивание данных измерений. Дополнение 1 к «Руководству по выражению неопре­
деленности измерения». Трансформирование распределений с использованием метода Монте-Карло (JC G M  
101:2008. Evaluation of measurement data —  Supplement 1 to the "Guide to the expression of uncertainty in 
measurement" —  Propagation of distributions using a Monte Carlo method)

JC G M  104:2009 Оценивание данных измерений. Введение к «Руководству по выражению неопре­
деленности измерения» и сопутствующим документам (JC G M  104:2009. Evaluation of measurement data —  
An introduction to the 'Guide to the expression of uncertainty in measurement” and related documents)

JC G M  200:2008 Международный словарь по метрологии. Основные и общие понятия и связанные 
с ними термины (V IM ) (JC G M  200:2008, International Vocabulary of Metrology —  Basic and general concepts 
and associated terms (VIM )]

3 Термины и определения

В настоящем стандарте применены термины по JC G M  100 и J C G M  200. некоторые из которых (при 
необходимости, модифицированные) приведены в настоящем разделе, а также следую щ ие термины с 
соответствующими определениями (обозначения, использованные в настоящем стандарте, приведены в 
приложении D).

3.1 д е й с тв и те л ь н а я  в е ли чи н а  (real quantity): Величина, числовое значение которой является д е й ­
ствительным числом.

3.2 ком плексная в е ли чи н а  (complex quantity): Величина, числовое значение которой является ком­
плексным числом.

П р и м е ч а н и е  —  Комплексная величина Z может быть представлена двумя действительными 
величинами в форме алгебраической

Z  = (Zr . Z,)t = Zr + iZf

или тригонометрической
Z = (Z,. Ze)T = Z, (cos/^ + ®nZ*).

где символ « г »  обозначает транспонирование: 
i —  мнимая единица. Р = -1 ;
7-д, и Z, —  соответственно действительная и мнимая части Z:
Zr и 7^ —  соответственно модуль и аргумент Z

3.3 векторная в е ли чи н а  (vector quantity): Совокупность величин, упорядоченных в виде элементов 
матрицы с  одним столбцом.

3.4 д е й с тв и те л ь н а я  векторная в е ли чи н а  (real vector quantity): Векторная величина, элементами 
которой являются действительные величины.

Пример —  Д е й с тв и те ль н а я  векторная величина X. со сто ящ ая из N  элем ентов (д е й с тв и те ль н ы х  
чисел) X,,..., X N м ож ет б ы т ь  представлена в виде м атрицы  разм ерности N x  1 (м а тр и ц ы -сто лб ц а ):

X = = Г*1...хм)\

3.5 ком плексная векторная в е ли чи н а  (complex vector quantity): Векторная величина, элементами 
которой являются комплексные величины.

Пример —  Комплексная векторная величина Z, со сто ящ ая из N  элем ентов (комплексных чисел) 
Z ,.... Zf, м ож ет б ы т ь  представлена в виде м атр ицы  разм ерности N x  1 (м а тр и ц ы -сто лб ц а ):

Z  =
z „

= ( Ъ .....Ъ ) У-
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3.6 векторная измеряемая величина (vector measurand): Векторная величина, подлежащая изме­
рению.

П р и м е ч а н и е  —  Данное определение модифицировано по отношению к JCG M  200 (словарная 
статья 2.3).

3.7 м о де ль  (изм ерения) (measurement model): Математическое соотношение между всеми величи­
нами. используемыми д л я  получения результата измерения.

П р и м е ч а н и е  1 —  Данное определение модифицировано по отношению к J C G M 200 (словарная 
статья 2.48).

П р и м е ч а н и е  2 —  В общем виде модель измерения имеет вид уравнения h (У. Х\......Х „ ) = 0, где У  —
выходная величина модели измерения, являющаяся одновременно измеряемой величиной, значение которой 
должно быть получено на основе информации о входных величинах X ,..... Х 1{.

П р и м е ч а н и е  3 —  Если модель измерения содержит две и более выходные величины, то она включает 
8 себя более одного уравнения.

3.8 м ногом ерная м о д е ль  (изм ерения) (multivariate measurement model): М одель измерения с  про­
извольным числом выходных величин.

П р и м е ч а н и е  1 —  В общем случае многомерная модель измерения имеет вид уравнений

h ,(Y ,  Ym. X , XlV) = 0  hm(Y , ......Ym. X „ .... X,v ) = 0.

где У ,, ..., Ym —  m выходных величин, в совокупности составляющих измеряемую величину, значения которых 
должны быть получены на основе информации о входных величинах многомерной модели X ,, .... XN.

П р и м е ч а н и е  2 —  Общий вид многомерной модели измерения гложет быть представлен также в 
векторной форме

h(Y,X) = 0,

где Y = (У ,..... Ym)T и h = (h ,.......hm)T —  матрицы размерности mx1.
П р и м е ч а н и е  3 —  В случае одной выходной величины, т. е. т  = 1 (см. примечание 1). модель измерения 

называют одномерной.

3.9 м ногом ерная ф ун к ц и я  (изм ерения) (multivariate measurement function): Функция, определяю ­
щая зависимость выходных величин от входных величин в многомерной модели измерения.

П р и м е ч а н и е  1 —  Даннов определение модифицировано по отношению к JCGM  200 (словарная 
статья 2.49).

П р и м е ч а н и е  2 —  Если уравнения, входящие в модель измерения h(Y,X) = 0. могут быть разрешены
в явном виде Y = f(X). где X = (Xt......X,v)r —  входные величины, a Y  = (У , .......  Y „)T —  выходные величины модели
измерения, то f = (f,......fm)T —  многомерная функция измерения. В более общем случае под f можно понимать
алгоритм, посредством которого устанавливается однозначное соответствие значений выходных величин 
Ут = Л (х ) ут -  7/л(х) значениям входных величин х = (х , х «)т .

П р и м е ч а н и е  3 —  В случае одной выходной величины, т. е. т  =1 (см. примечание 2), функцию измерения 
называют одномерной.

3.10 м о де ль  (изм ерения) с  д е й с тв и те л ь н ы м и  величинам и (real measurement model): М одель 
измерения (в общем случае многомерная), в состав которой входят только действительные величины.

3.11 м о де ль  (изм ерения) с  ком плексны м и величинам и (complex measurement model): М одель 
измерения (в общем случае многомерная), в состав которой входят комплексные величины.

3.12 м о де ль  м но гоступенчатого  измерения (multistage measurement model). М одель измерения 
(в общем случае многомерная), состоящая из последовательности подмоделей, связанных между собой 
таким образом, что выходные величины подмодели одной ступени являются входными величинами подмо­
д е ли  следую щ ей ступени.

П р и м е ч а н и е  —  Зачастую потребность в определении области охвата для выходных величин (на основе 
их совместного распределения) имеет место только на заключительном этапе измерения.

Пример—  Измерение, включающее в себя процедуру калибровки, м ож ет р а ссм атри ваться как двух­
ступе н ч а тое . Д л я  первой подмодели значениями входных величин я в ля ю тс я  передаваемые о т  эталонов  
и с о о тв е тс т в у ю щ и е  им показания ср едства  измерений, а выходными величинами —  парам етры  калиб­
ровочной функции (градуировочной характеристики). Э т а  подм одель оп р е деляе т способ определения 
выходных величин по входным величинам, например решением систем ы  уравнений, получаемых при при­
менении м е тода наименьших квадратов. Входными величинами в то р о й  подм одели я в л я ю тс я  парам ет­
ры калибровочной функции и новое показание ср едств а  измерений, а выходной величиной  —  измеряемая 
величина, д ля  получения значения к о то р о й  было применено с р едств о  измерений.
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3.13 ф ун к ц и я  (со в м е стн о го ) р а сп р е де ле н и я  (в е р о я тн о с те й ) (joint distribution function): Функция,
дающая д л я  каждого значения £ = (<;, ^ ) т значение вероятности того, что каждый элемент X, случайной
векторной переменной X  будет меньше или равен

П р и м е ч а н и е  —  Функцию распределения случайной переменной X обозначают Gx(£), где

Gx©  = Рг(Х, Х № ) .
3.14 п л о тн о с т ь  (со в м е стн о го ) р а сп р е де ле н и я  (в е р о я тн о с те й ) (joint probability density function): 

Неотрицательная функция д Д ) .  удовлетворяющая условию

G x ( 0 “  j  •••/gx (z)d2..;...d21.

3.15 м аргинальная п ло тн о с ть  распределения (вер оятностей) (marginal probability density function): 

Плотность распределения Qx , (s ,) элемента X, случайной векторной переменной X с  плотностью совмест­

ного распределения дх(£). которая имеет вид

9 x , ( U -  / /Sfx ( t ) d ^ . d ^ v - . d ^ - A V

П р и м е ч а н и е  —  Если все элементы Х„ i = 1 N, составляющие случайную переменную X. независимы.

то g x ( t )  = 0 х Д ) д х 2( 4 ) - 9 х „ ( & Л

3.16 математическое ож идание (expectation): Характеристика случайной величины X,, являющейся 
элементом случайной векторной переменной X  с плотностью  совместного распределения дх($). которая 
имеет вид

Щ Х ,) ‘  .

П р и м е ч а н и е  1 — Данное определение модифицировано по отношению к JC G M  101 (словарная 
статья 3.6).

П р и м е ч а н и е  2 —  Математическим ожиданием случайной векторной величины X является Е(Х) = 
= (Е (Х ))......Е(Х „))Т —  матрица размерности N*. 1.

3.17 д и сп е р с и я  (variance): Характеристика случайной величины X,. являющейся элементом случай­
ной векторной переменной X  с  плотностью совместного распределения дх(£). которая имеет вид

V(X,)« J.. ] k - £ ( X /)]2gx(4)d$,...d^« n 4 -£ (X , ) f g X((^)d^.

П р и м е ч а н и е  —  Даннов определение модифицировано по отношению к JCG M  101 (словарная 
статья 3.7).

3.18 ковариация (covariance): Характеристика двух случайных величин X, и Х„ являющ ихся э ле ­
ментами случайной векторной переменной X  с плотностью совместного распределения дх(£), которая име­
ет вид

C o v (X , ,X , )  = C o v [X f , X ( )  ш [£  -  Е { Х ,  )][$ , -  £ ( Х ,  ) ]g x . . . d ^  =.

= J [£ - E ( X 1) ] [^ -£ (X ,o ]g x ,.x ,($>£/)

где 9 x ,.x , (■»/' 4/) —  плотность совместного распределения случайных величин X  и X  ■

П р и м е ч а н и е  1 —  Даннов определение модифицировано по отношению к JCGM  101 (словарная 
статья 3.10).
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П р и м е ч а н и е  2 —  Ковариационной матрицей случайной векторной величины X является симметрич­
ная положительно полуолределенная матрица V(X) размерности N x N . элементами которой являются ковариа­
ции Cov(X„ Xj), i  = 1, .... N. j  = 1...... N. Некоторые операции с использованием V(X) налагают более строгое
ограничение в виде положительной определенности этой матрицы.

3.19 ко р р е ляц и я  (correlation): Характеристика двух случайных величин X, и Х у являющихся эле ­
ментами случайной векторной переменной X  с плотностью совместного распределения дх(£). которая име­
ет вид

С о г г ^ Х ,,Х /)м С о п г [Х г Х , )
C o v (X ,.X ))  

^ V (X , )V (X . )  '

П р и м е ч а н и е  —  Величина Солг (X,, X ,) имеет размерность единица.

3.20 ковариационная м атрица (оценок) (measurement covariance matrix): Связанная с оценкой де й ­
ствительной векторной величины размерности А/х 1 симметричная положительно полуопроделенная матри­
ца размерности N х  N , на главной диагонали которой расположены квадраты стандартных неопределеннос­
тей. соответствующих оценкам элементов векторной величины, а остальные члены матрицы представляют 
собой ковариации между ларами соответствующих оценок элементов векторной величины.

П р и м е ч а н и е  1 —  Термин и определение модифицированы по отношению к JCGM  101 (словарная 
статья 3.11).

П р и м е ч а н и е  2 —  Ковариационная матрица U„ размерности/VxW. соответствующая вектору оценок х 
векторной величины X. имеет вид

иX

U { * 1 .* l )  -  W (X ,.X W)

u(xw. x , ) -  u(xw.xw)J

где (/{х,, х,) = t/(x,) —  дисперсия (квадрат стандартной неопределенности) оценки х,;
и(Х;. х; ) —  ковариация между х, и х^ Если элементы X, и X, вектора X некоррелированны. то u(x;. х,) = 0.

П р и м е ч а н и е  3 —  В JCG M  101 ковариационная матрица называется матрицей неопределенности.
П р и м е ч а н и е  4 —  При работе с ковариационными матрицами могут возникать некоторые вычислитель­

ные трудности. Например, ковариационная матрица иж. соответствующая оценке х. может не быть положительно 
определенной (это зависит от того, каким образом была рассчитана матрица U J .  Как следствие, для такой матри­
цы не будет существовать разложение Холецкого. часто применяемое в численных методах вычислений (см. [7] и 
приложение В). Более того, дисперсия для  линейной комбинации элементов х. которая предположительно 
должна иметь небольшое положительное значение, может оказаться отрицательной. Для таких ситуаций разра­
ботаны методы «коррекции» U ,. после применения которых полученная матрица будет положительно определе­
на. и. соответственно, для нее будет существовать разложение Холецкого. а дисперсия линейной комбинации 
элементов х будет всегда положительна. Один из таких методов приведен в [27]. а его принцип состоит в следую­
щем. Выполняют спектральное разложение матрицы U*. представляя ее в виде

U„ = QDQ 1.

где Q —  матрица, столбцы которой являются ортонормированными собственными векторами матрицы иж, 
а О —  диагональная матрица, на главной диагонали которой расположены соответствующие собственные значе­
ния U„. Строят новую диагональную матрицу D'. заменяя в матрице D элементы, меньшие чем dm,n. на dmln. где dmln 
равно произведению наибольшего элемента D на единичную ошибку округления компьютера, применяемого при 
вычислениях. Тогда «корректированная» ковариационная матрица, применяемая для  последующих вычислений, 
будет иметь вид

U i = Q D Q  ’ .

П р и м е ч а н и е  5 —  Некоторые операции с использованием и ж требуют, чтобы данная матрица была 
положительно определенной.

3.21 к о рреляц и о нная м атрица (оценок) (correlation matrix): Связанная с  оценкой действительной 
векторной величины размерности Л/х 1 симметричная положительно пол у определенная матрица размерно­
сти N x N .  членами которой являю тся корреляции между парами соответствующих оценок элементов век­
торной величины.
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П р и м е ч а н и е  1 — Корреляционная матрица R , размерности N x N , соответствующая вектору оце­
нок х векторной величины X. имеет вид:

Rv =
'(*,.*,)••• г(хь хы) 

r(xN.x  ,)•••

где г(х„ х,) = 1. а г(х„ х,) —  корреляция между х, и Ху. Если элементы X, и X, вектора X некореллированы. то 
г{х,, Ху) = 0.

П р и м е ч а н и е  2 —  r{xh x j  называют также коэффициентом корреляции.
П р и м е ч а н и е  3 —  Корреляционная матрица R* и ковариационная матрица Ux (см. 3.20) связаны 

между собой соотношением

UX = DXRXDX.

где Dx —  диагональная матрица размерности N x N  с диагональными элементами ufx,)...... o(xw). Элементы
матрицы Ux мотут быть представлены в виде

и(х„ Ху) = г(х„ х,) д(х,)о(х;).

П р и м е ч а н и е  4 —  Корреляционная матрица Rx будет положительно определенной/сингулярной в том 
и только в том случав, если соответствующая ей ковариационная матрица Ux будет положительно определенной' 
сингулярной. Некоторые операции с использованием R, требуют, чтобы данная матрица была положительно 
определенной.

П р и м е ч а н и е  5 —  При представлении численных значений недиагональных элементов корреляционной 
матрицы часто достаточно округлять их с точностью до трех знаков после запятой. Однако если корреляционная 
матрица близка к сингулярной, то. чтобы избежать вычислительных сложностей при использовании корреляци­
онной матрицы среди прочих исходных данных в оценивании неопределенности измерения, число сохраняемых 
десятичных знаков необходимо увеличить. Это число зависит от характера последовательных вычислений, но в 
качестве ориентировочного значения рекомендуется брать его равным числу десятичных знаков, необходимых 
для  представления наименьшего собственного значения корреляционной матрицы с двумя значимыми десятич­
ными знаками. Так для корреляционной матрицы размерности 2x2  собственные значения и равны 
соответственно 1 + И  и 1 -  |г|, где г —  нвдиагональный элемент корреляционной матрицы, и. значит, таким 
наименьшим собственным значением будет 1 -  |г|. Если заранее известно, что корреляционная матрица являет­
ся сингулярной, то округление к меньшему ло модулю снижает риск того, что после операции округления корреля­
ционная матрица не окажется положительно полуопределенной.

3.22 м атрица (к о эф ф и ц и е н то в ) ч у в с тв и те ль н о с ти  (sensitivity matrix); Матрица частных производ­
ных первого порядка функций, описывающих м одель измерения с  действительными величинами, по вход­
ным или входным величинам в точке оценок этих величии.

П р и м е ч а н и е  —  В случае модели с N  входными и т  выходными величинами матрицы чувствительности 
в отношении входных величин X и выходных величин Y имеют размерности соответственно m x N  и т х т .

3.23 и нтерва л охвата (coverage interval); Интервал, построенный на основе имеющейся информации 
и содержащий значение скалярной случайной величины с заданной вероятностью.

П р и м е ч а н и е  1 — Данное определение модифицировано по отношению к JCG M  101 (словарная 
статья 3.12).

П р и м е ч а н и е  2 —  Вероятностно симметричный интервал охвата для скалярной величины представ­
ляет собой интервал охвата, для которого вероятность того, что значение случайной величины меньше наимень­
шего значения (нижней границы) интервала охвата, равна вероятности того, что значение случайной величины 
больше наибольшего значения (верхней границы) интервала (см. JCG M  101 (словарная статья 3.15)).

П р и м е ч а н и е  3 —  Наименьший интервал охвата представляет собой интервал охвата, имеющий 
наименьшую длину среди всех возможных интервалов охвата для данной случайной величины с одинаковой 
вероятностью охвата [см. JCG M  101 (словарная статья 3.16)).

3.24 о б ла с ть  охвата (coverage region); Область, определенная на основе имеющейся информации и 
содержащая значение векторной случайной величины с заданной вероятностью.

3.25 вер о ятн о сть  охвата (coverage probability): Вероятность того, что значение случайной величины 
находится в границах интервала охвата и ли области охвата.

П р и м е ч а н и е )  — Данное определение модифицировано по отношению к JCGM  101 (словарная 
статья 3.13).
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П р и м е ч а н и е 2  —  Вероятность охвата иногда называют уровнем доверия [JCGM 100 (6-2.2)].

3.26 наим еньш ая о б л а с ть  охвата (shortest coverage region): О бласть охвата, имеющая наимень­
ший объем среди всех возможных областей охвата д ля  данной случайной величины с одинаковой вероят­
ностью охвата.

П р и м е ч а н и е  —  В случае скалярной случайной величины наименьшая область охвата совпадает 
с наименьшим интервалом охвата. Для случайной величины, описываемой вектором в двумерном простран­
стве, наименьшая область охвата представляет собой поверхность с наименьшей площадью из всех, имеющих 
ту же вероятность охвата.

3.27 многомерное норм альное распределение (вер оятностей)11 (multivariate Gaussian distribution): 
Распределение вероятностей векторной случайной величины X размерности N  + 1. плотность совместного 
распределения которого имеет вид:

П р и м е ч а н и е  — 11 —  математическое ожидание X. V  —  ковариационная матрица X, которая 
должна быть положительно определена.

3.28 многом ерное f-р а сп р е до ло ни о  (multivariate /-distribution): Распределение вероятностей век­
торной случайной величины X размерности N x  1. плотность совместного распределения которого с пара­
метрами ц. V  и v  имеет вид:

П р и м е ч а н и е  1 —  Многомерным (-распределением описывается векторная случайная величина X 
размерности Д1х1, удовлетворяющая соотношению X -  ц  = (v/VV),<2 Q. где Q —  векторная случайная величина 
размерности А1х1, имеющая нормальное распределение с нулевым математическим ожиданием и положитель­
но определенной ковариационной матрицей V размерности /Ух Л/, a W —  скалярная случайная величина, имею­
щая ^-распределение (распределение хи-квадрат) с v  степенями свободы.

П р и м е ч а н и е  2 —  Плотность /-распределения дх(4) нельзя представить в виде произведения N  
плотностей распределения элементов вектора X даже в том случае, когда V —  диагональная матрица. В общем 
случав между элементами вектора X существует статистическая зависимость. Например, при N = 2, v = 5 n V  —  
единичной матрице размерности 2x2  вероятность того, что X, > 1 составляет 18 % . в то время как условная 
вероятность того, что при Х 2 > 2 значение X , будет превышать единицу, составляет 26 %.

4 Соглашения и условные обозначения

В настоящем стандарте использованы следую щ ие соглашения и условные обозначения.
4.1 В G U M  [JC G M  100 (пункт 4.1.1, примечание 1)] д л я  экономии условных обозначений один и тот же 

символ (прописная буква) используется для :
(i) физической величины, которая предполагает наличие единственного истинного значения:
(ii) случайной переменной, ассоциированной с этой физической величиной.

П р и м е ч а н и е  —  Случайная переменная выполняет разные роли при оценивании неопределенности 
по типу А и В. При оценивании неопределенности по типу А, случайная переменная представляет собой 
« ... возможный результат наблюдения величины». При оценивании неопределенности по типу В вероят­
ность распределения случайной переменной характеризует имеющиеся знания о возможных значениях этой 
величины.

Эта двойственность обозначений в большинстве случаев не вызывает неудобств.

11 Многомерное нормальное распределение называют также многомерным распределением Гаусса.

i- (v

где Г(^) J /7'V 'd /  — гамма-функция, z > 0.
о
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В настоящем стандарте (так же. как и в JC G M  101)  в случае входных величин, неопределенность 
которых оценивают по типу А. один и то т же символ (прописная буква) использован д ля  трех понятий, а 
именно:

a ) физическая величина;
b ) случайная переменная, д л я  которой получают результаты наблюдений:
c ) случайная переменная, распределение вероятности которой ассоциируют с имеющимися знания­

ми о возможных значениях физической величины.
Два последних понятия, относящиеся к случайной величине, в G U M  (JC G M  100) не разделяются, что 

может явиться источником недоразумений. Так рассматриваемая в настоящем стандарте и в JC G M  101 
процедура оценивания неопределенности с  использованием метода Монте-Карло может быть неправиль­
но истолкована как реализация процедуры, изложенной в JC G M  100 (пункт 4.1.4. примечание 1). В действи­
тельности же. хотя указанные процедуры схожи в том. что в обеих получают выборку значений выходной 
величины д л я  данной модели измерения из соответствующего распределения, сами распределения в об­
щем случае будут разными. В JC G M  100 (пункт 4.1.4. примечание 1) это частотное распределение, т. е. 
случайная величина интерпретируется в смысле перечисления Ь). тогда как в методе М онте-Карло это 
распределение случайной величины, интерпретируемой в смысле перечисления с). Д л я  большинства 
измерительных задач подход, предложенный в JC G M  100 (пункт 4.1.4, примечание 1), не рекомендуется 
(см. [2]).

4.2 Д л я  входных величин модели измерения в настоящем стандарте принято обозначение X , , .... X N
или в виде матрицы X  = (X ,......X W)T размерности Л/х 1 (символ « т »  обозначает транспонирование).

4.3 Д ля  выходных величин модели измерения в настоящем стандарте принято обозначение У , ......Ym
или в виде матрицы Y  = ( У , , .... У т )т размерности т х 1 .

4.4 Если  У  могут быть выражены через X в явном виде, то м одель измерения имеет вид

Y  = f(X ), (1 )

где f —  многомерная функция измерения. Другая форма записи д л я  той же модели (см. 3.9) имеет вид

У , Я ' , (Х ) ...... Ym = f J X ) ,

где /,(Х )......fm{X )  являю тся составляющими f (X).
4.5 Е сли  У, не выражены в явном виде через X. то м одель измерения имеет вид

h(Y, X ) = 0 (2 )

или в другой форме записи (см. 3.8)

Л ,(Y ,X ) = 0, .... h j Y ,X ) = 0.

4.6 Оценку X  обозначают в виде х = (х ,...... хЛ.)т —  матрицы размерности Л/х 1. Ковариационную
матрицу, соответствующую х, обозначают в виде U* —  матрицы размерности Л/х Л/(см. 3.20).

4.7 Оценку Y  обозначают в виде у  = (у , ...... ym)T —  матрицы размерности т х 1 .  Ковариационную
матрицу, соответствующую у. обозначают в виде U y —  матрицы размерности т х т .

П р и м е ч а н и е  —  Uy в случае многомерной модели с т  выходными величинами является аналогом 
дисперсии iPiy) для у  в случае одномерной модели измерения, рассматриваемой в JCG M  100 и JCGM  101. 
В JCGM  100 и(у) обозначается как ис(у), где подстрочный индекс “с" применительно к стандартной неопределен­
ности обозначает «суммарная». Как и в JCGM  101. в настоящем стандарте использование подстрочного 
индекса *с‘ в данном контексте рассматривается как излишнее [см. JCGM  101 (пункт 4.10)).

4.8 Если оценки выходных величин предполагается использовать по отдельности, то каждая из этих 
величин может рассматриваться как выходная в соответствующей одномерной модели измерения. Если 
же. например д л я  последующих расчетов, эти оценки должны быть использованы совместно, то  должны 
быть приняты во внимание корреляции между ними.

4.9 Стандартную  неопределенность, соответствующую х. обозначают и(х). Если контекст исключает 
возможность ошибочного истолкования, то может применяться сокращенная форма записи и,. Данная 
форма записи не рекомендуется, если при х имеется индекс или иной знак, например х, или х .

4.10 П од х можно понимать как «оценки входных величин», так и «оценку входной величины (вектор­
ной)». В настоящем стандарте преимущественно используется последнее определение (то же самое спра­
ведливо д л я  выходных величин).

8
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4.11 Как указано в 4.2— 4.10. величина в общем случае обозначается с  помощью прописной буквы, а 
ее оценка или некоторое фиксированное значение величины (такое, как математическое ожидание) соответ­
ствующей строчной буквой. Данное правило удобно д л я  общего анализа, но зачастую не подходит д ля  
обозначения величин в конкретных приложениях из-за устоявшейся практики использования д л я  конкрет­
ных физических величин специальных обозначений, например Т д л я  температуры и t д ля  времени. Поэто­
му в некоторых примерах настоящего стандарта используются иные обозначения: физическая величина 
обозначается ее общепринятым символом, а ее математическое ожидание или оценка этим же символом с 
циркумфлексом («крышкой»). Например, амплитуда переменного тока (пример 1 из 6.2.2) обозначается/, 
а оценка I —  / [см. JC G M  101 (пункт 4.8)].

4. 12 Настоящий стандарт отступает от обозначений, часто используемых д л я  обозначения плотнос­
тей распределения вероятностей и функций распределения. В JC G M  100 одно и то же обозначение f  ис­
пользовано как д л я  функции измерения, так и д л я  плотности распределения вероятностей, что создает 
неоднозначность понимания. Поскольку в настоящем стандарте моделям уделено особое вниманио. для  
плотности распределения вероятностей и функции распределения вместо обозначений f u F  использова­
ны соответственно д  и G . Применяемые подстрочные индексы соответствуют случайной величине, о кото­
рой идет речь. Обозначение /оставлено д л я  описания функции измерения (в скалярной или векторной 
форме).

4.13 Плотность распределения может быть поставлена в соответствие как скалярной (X ). так и вектор­
ной (X ) величине. В случае скалярной величины плотность распределения д л я  Xобозначается как & ({)•  
где q —  переменная, принимающая возможные значения величины X. Здесь Xрассматривается, как с л у ­
чайная переменная с  математическим ожиданием Е (Х )  и дисперсией Ц Х ) .

4. 14 В случае векторных величин плотность распределения д л я  X обозначается как д х($). где
$ = (<!;,......£ « )т —  переменная, принимающая возможные значения величины X. Здесь X  рассматривается
как случайная переменная с ожиданием Е (Х ) и ковариационной матрицей V (X ).

4.15 Аналогично, в случае скалярных величин ( У )  плотность распределения обозначается как g v(rj), 
а в случае векторных величин (Y ) -  gY(n ).

4.16 Д л я  обозначения десятичной дроби используется запятая4.

5 Основные принципы

5.1 О бщ ие полож ения

5.1.1 В G U M  [JC G M  100 (пункт 4 .1)] измерение м оделируется функцией, связывающей действи­
тельные входные величины X ,......X v и действительную  выходную величину У  в виде формулы (1), т. е.
У  = /(X), где X = (X , ......Х „ )т —  действительная векторная входная величина. Это одномерная функция
измерения д л я  действительны х величин (см. 3.9 примечание 3).

5.1.2 На практике не все измерения могут быть смоделированы с помощью функции измерения с 
одной скалярной выходной величиной. В реальных измерительных задачах могут иметь место:

a) несколько выходных величин У ,......Ут  (которые совместно обозначаются действительной вектор­
ной выходной величиной Y  = ( У , ......У,*)1), д л я  которых форм ула (1) принимает вид Y  = f(X );

b ) более общий вид м одели измерения в виде формулы (2). т. е. h (Y ,X ) = 0.
5.1.3 Кроме того, некоторые или все элементы X и, соответственно, элементы Y  могут представлять 

собой комплексные величины. Е сли  каждую такую комплексную величину представить в виде двух со­
ставляющих (действительная и мнимая часть или модуль и аргумент комплексного числа), то. в принципе, 
без нарушения общности модель измерения может рассматриваться как модель с действительными вели­
чинами. Однако в большинстве случаев вид алгоритмов, работающих с  комплексными величинами, про­
ще. чем если бы модель включала только действительные величины [14]. Применение моделей измерения 
с комплексными величинами позволяет записать закон трансформирования неопределенностей в компакт­
ном матричном виде (см. 6.4 и приложение А ).

5.1.4 В настоящем стандарте модели, указанные в 5.1.2 и 5.1.3. рассматриваются в более общем
виде.

' 1 В оригинале на английском языке в данном подразделе указывается на использование в качестве деся­
тичного знака точки вместо запятой.
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5.2 О сн о вн ы е  этапы  оценива ния н е о п р е де ле н н о сти

5.2.1 Основные этапы оценивания неопределенности включают в себя формулировку измерительной 
задачи, трансформирование распределений и получение окончательного результата:

a) формулировка измерительной задачи включает в себя:
1) задание выходной величины Y  (измеряемой векторной величины):
2) выявление входных величин, составляющих векторную входную величину X. от которых зависит Y ;
3) составление модели измерения, определяю щей взаимосвязь Y  с X в виде функции измерения 

[см. ф орм улу (1)) или в более общем виде [см. ф орм улу (2)];
4 ) приписывание распределений вероятностей (нормального, прямоугольного и т. д . )  входным вели­

чинам X, (элементам вектора X ) или совместного распределения вероятностей входным величинам, не 
являющимся независимыми, на основе имеющейся о них информации.

b ) трансформирование распределений предусматривает определение плотности совместного распре­
деления выходной величины Y  на основе плотностей распределения входных величин X, и используемой 
модели измерения.

c ) получение окончательного результата предполагает использование плотности распределения Y 
д л я  определения.

1) оценки математического ожидания Y  в виде у;
2 ) ковариационной матрицы U y, соответствующей у;
3) области охвата, содержащей Y  с  заданной вероятностью р (вероятность охвата).
5.2.2 Формулировку измерительной задачи осуществляет метролог. Рекомендации по выбору плотно­

сти распределения [стадия 4 ) этапа а ) в 5.2.1] д л я  некоторых общих случаев приведены в J C G M  101 и в 
5.3. Этапы трансформирования распределений и получения окончательных результатов [б) и в) в 5.2.1]. д ля  
которых приведены подробные указания, не требуют дополнительной метрологической информации и мо­
гут быть выполнены с любой требуемой вычислительной точностью д ля  поставленной задачи.

П р и м е ч а н и е  —  Как только этап постановки задачи а) в соответствии с 5.2.1 выполнен, тем самым 
плотность распределения вероятностей для  выходной величины Y формально полностью определена. Однако 
вычисление математического ожидания, стандартного отклонения и области охвата может потребовать приме­
нения численных методов, обладающих некоторой степенью приближения.

5.3 Ф ун кц ии  п ло тн о с ти  в е р о ятн о сти  д л я  в х о дн ы х  ве ли чи н

5.3.1 О б щ и е  полож ения
Руководство по выбору плотностей распределения д ля  входных величин X, на этапе формулировки 

измерительной задачи приведено в JC G M  101 (раздел 6) д л я  некоторых общих случаев. Однако един­
ственным многомерным распределением, рассмотренным в JC G M  101. является многомерное нормальное 
распределение J C G M  101 (пункт 6.4.8). Э то  распределение приписывают входной величине X. если дос­
тупная информация об X  включает в себя только оценку х и соответствующую ковариационную матрицу U x. 
В 5.3.2 рассматривается еще одно многомерное распределение —  f-распределение. Его применяют, если 
единственной доступной информацией о величине X является выборка наблюдений (предполагаемых неза­
висимыми) векторной величины из многомерного нормального распределения с  неизвестными математи­
ческим ожиданием и ковариационной матрицей (см. также 6.5.4).

5.3.2 М ногом ерное f-р а сп р сдсле н и о
5.3.2.1 Предположим, что д ля  векторной величины X размерностью N *  1. имеющей многомерное нор­

мальное распределение N (ji£ ) с неизвестными математическим ожиданием ц и ковариационной матрицей 
I  размерностью N x N .  доступны п  независимых наблюдений, п  > N. П у с ть д  -  искомое значение X. Тогда, 
выбирая в качестве априорных распределений д ля  д  и Iсоответствую щ ие неинформативные распределе­
ния и используя теорему Байеса, получим, что совместным распределением д л я  д  (или распределением, 

приписываемым X ) будет многомерное Г-раслределение f,.(x,S/n) с  v' = n - N степенями свободы [11], где

х  = ^ ( х ,  + ... + х „ ). S  4 ! ( х ,  - х) ( х,  - х ) г +... + (х „  - х ) ( х „  - х ) т }

П р и м е ч а н и е  —  При наличии соответствующих оснований в качестве априорных распределений 
могут быть взяты другие распределения, что может привести к другому значению числа степеней свободы для

ty (х ,S in ) или даже к другому типу распределения для X.
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5.3.2.2 Плотность распределения, полученного д ля  X. имеет вид

< «  = г , . , 2 Х » Г -  tdet(S'° ) r '” И * - 1 » ' ( » )  *  "  «> ] ""•

где r ( Z )  —  гамма функция аргумента г.
5.3.2.3 Математическим ожиданием и ковариацией X  будут соответственно

Е(Х ) «• V ( X ) . ^ f .

где Е (Х ) определено только д л я  v  > 1 (что соответствует п  > N  + 1).

5.3.2.4 Чтобы сформировать случайное выборочное значение 4 из tv(x ,S /n ) , возьмем N  случайных 

выборочных значений Z,. /=  1. . . .  N, из стандартного распределения Гаусса N (0,1) и одно выборочное 
значение w  из x l  -распределения с  v  степенями свободы. Тогда

S - x  + L 2 ^ .  Z = ( Z „ . . . , Z w) \

где L  — нижняя треугольная матрица размерности A/xW в разложении Холецкого S In = L L 7 [13]. 

П р и м е ч а н и е  —  Матрица L может быть определена, например, как в [13].

5.3.3 П о стро ение м ногом ерны х ф ун к ц и й  п ло тн о с ти  р а сп р е де ле н и я
Когда входные величины X , ......Х м коррелированны, то обычно доступной о них информацией я вля ­

ется вид плотности распределения д л я  каждой из этих величин (например, д л я  одной —  нормальное, для
другой —  прямоугольное и т.п.), оценки х ,...... х,; . используемые в качестве математических ожиданий,
стандартные неопределенности t/(x,),.... и(хн), используемые в качестве стандартных отклонений, и кова­
риации, соответствующие парам х,. Построить по маргинальным распределениям X ,  Х ы совместную
плотность распределения д л я  X  можно, зная их копулу. Однако вышеуказанной исходной информации 
может соответствовать множество копул. поэтому вид построенной совместной плотности распределения 
будет не единственным.

5.4 Тр а н сф о р м и р о в а н и е  р а сп р е де ле н и й
5.4.1 В левой части рисунка 1 показан пример модели измерения с N  = 3 взаимно независимыми 

входными величинами X  = (X ,, Х 2, Х 3)г и т  = 2 выходными величинами Y  = (У ,.  У2)т . Функция измерения —

f = (/,. /2)т . Величинам X,, / * 1 , 2 , 3 ,  приписаны плотности распределения Q x ^ i ) .  a Y  характеризуется 

совместной плотностью распределения g Y (fl) -  9V,.y2 (n i.fo ) • В правой части рисунка 1 показан пример, в 

котором X , и Х г взаимно зависимы и характеризуются совместной плотностью распределения 9 х „ х г ( & ,& )

9 x ^ 2 ) -* •
У ,= / ,(Х 1.Х 2.Х Э) , ч 0 x ,x 2̂ i -  ^ г ) - *• 

" ► 0 у „ у г<П,.П2)
У , = ^ (Х ,. х 2. х 3)

9х3&з>— »

V2 “ ^ X , . X 2.X 3) 0 х ^ з > — * У2 * ^ tX j, Х 2, Х3)
■3y,.y2(4i-

Рисунок 1 —  Трансформирование распределений для модели с N  = 3 входными величинами и т  = 2 выходными 
величинами, когда входные величины X ,. Х2 и Х3 взаимно независимы (слева) и когда X, и Х2 взаимно зависимы

(справа)

5.4.2 Выходная величина Y  может сама служ ить основой д л я  получения следую щ ей величины, на­
пример, Q . Тогда Y  будет рассматриваться как входная величина в модели измерения, описываемой, на­
пример, функцией измерения t и имеющей вид

Q  = t(Y ).

Так. Y  может представлять собой набор эталонов массы, a Q  —  суммы некоторых из них.
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5.4.3 Объединение функций измерения f и t д ля  двух подмоделей позволяет получить зависимость Q 
непосредственно от входных величин X. Однако в ряде измерительных задач ж елательно сохранить раз­
биение на подмодели, если они относятся к функционально разным этапам. Совокупность двух подмоде­
лей представляет собой пример модели многоступенчатого измерения (см. 3.12).

5.4.4 Случай, когда на финальном этапе многоступенчатого измерения с применением многомерных 
подмоделей имеется единственная выходная скалярная величина, может быть рассмотрен с применением 
JC G M  101.

5.5 П о луч е н и е  и то го в о й  инф орм ации

5.5.1 Оценка у  выходной величины Y  рассматривается как математическое ожидание E (Y ). Ковариа­
ционная матрица U y. соответствующая у. —  как ковариационная матрица V (Y ).

5.5.2 Д л я  вероятности охвата р  область охвата R y д л я  Y  получают решением уравнения

1 д Л п )< М * Р -
яу

П р и м е ч а н и е  1 —  Некоторым величинам могут быть поставлены в соответствие случайные 
переменные с распределениями, у которых математического ожидания и ковариационной матрицы не существу­
ет (см. например, 5.3.2). Однако область охвата для Y существует всегда.

П р и м е ч а н и е  2 —  В общем случае существует более одной области охвата для заданной вероятности 
охвата р.

5.5.3 Прямого многомерного аналога вероятностно симметричного 100 р  % -ного интервала охвата, 
рассмотренного в JC G M  101,  не существует. Однако существует аналог наименьшего 100 р %-ного интер­
вала охвата —  это 100 р  % -н а я  наименьшая область охвата.

5.6 С п о с о б ы  тр а н сф о р м и р о в а н и я  распр е де ле н ий

5.6.1 Трансформирование распределений осуществляют несколькими способами:
a) аналитическими методами, обеспечивающими получение математического представления плотно­

сти распределения д л я  Y :
b ) применением закона трансформирования неопределенностей, основанного на замене функции из­

мерения ее аппроксимацией рядом Тейлора с членами разложения первого порядка (обобщение подхода, 
изложенного в JC G M  100 (пункт 5.1.2));

c ) численными методами (см. JC G M  100 (пункт G . 1.5)], в том числе с использованием метода Монте- 
Карло (ММК).

П р и м е ч а н и е  1 —  Аналитические методы превосходят все прочие с той точки зрения, что они не 
используют приближений. Однако они применимы только в простых случаях. Такие методы в настоящем стандар­
те не рассматриваются за исключением примеров, где они используются для сравнения.

П р и м е ч а н и е  2 —  Метод Монте-Карло в настоящем стандарте используется для  получения распреде­
ления векторной выходной величины, а не в качестве метода имитационного моделирования. При оценивании 
неопределенности на этапе трансформирования распределений решаемая задача является детерминирован­
ной. поэтому в имитационном моделировании физического случайного процесса нет необходимости.

5.6.2 В законе трансформирования неопределенностей оценка х = Е (Х ) д л я  X  и соответствующая 
ковариационная матрица и ж = V (X ) подвергаются преобразованию посредством линеаризованной модели 
измерения. В настоящем стандарте данная процедура рассматривается д л я  моделей разных типов.

5.6.3 В  левой части рисунка 2 показан обобщенный закон трансформирования неопределенностей 
д л я  модели измерения с N  = 3 взаимно независимыми входными величинами X = (X ,. Х 2. Х 3)т и т  = 2 
выходными величинами Y  =  (У ,. У 2)т . Оценкой X  является х = (хь х2.х 3) '  с соответствующими стандартны­
ми неопределенностями и(х,). о(х2) и и(х3). Оценкой Y  является у  = (у ,. у2)т с  соответствующей ковариаци­
онной матрицей U y. В правой части рисунка 2 тот же закон показан д л я  случая, когда X , и Х 2 взаимно 
зависимы и имеют ковариацию и(х,.х2) оценок х, и х2.
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*v <4*1) 

х2. iAx2) 

*з- w(x3)

tЛ
»

=>*X

___
1Y\ = /ДХ,. Х2. Х3) У1= / ,(Х ,.Х 2.Х 3)

t 2 * W . x 2. x 3)
*3- и(*з) -*►

у2 * т , х 2, х 3)
-y .t/.

Рисунок 2 —  Обобщенный закон трансформирования неопределенностей для N  = 3 взаимно независимых 
величин X ,. Х 2 и Х3 и т  = 2 взаимно зависимых выходных величин (слева) и тот же закон, но для взаимно

зависимых и X , и Х2 (справа)

5.6.4 В методе Монте-Карло совместное распределение вероятностей д ля  X. представленное в ц иф ­
ровом виде, трансформируется с помощью модели измерения д ля  того, чтобы получить дискретное пред­
ставление совместного распределения вероятности д ля  Y . на основе которого затем получают окончатель­
ные результаты измерения.

6 Способ оценивания неопределенности по GUM

6.1 О бщ ие полож ения

6.1.1 В настоящем стандарте способ оценивания неопределенности через трансформирование нео­
пределенностей, рассмотренный в JC G M  100 (пункты 6.2 и 6.3) д л я  моделей измерения вида У  = f(X), 
обобщен на более широкий класс моделей с  многими выходными переменными. Хотя непосредственно в 
J C G M 100 такие модели не рассматриваются, д л я  их изучения могут быть применены те  же самые основ­
ные принципы трансформирования оценок входных величин и соответствующих им неопределенностей в 
оценки выходных величин и соответствующих им неопределенностей. Д л я  математического представле­
ния указанных процедур вместо сумм величин с  подстрочными индексами, как это сделано в JC G M  100. 
удобнее использовать компактную матрично-векторную форму записи, хорошо приспособленную д л я  со­
временных пакетов программ и языков программирования.

6.1.2 Д л я  применения закона трансформирования неопределенностей используется та же информа­
ция о входных величинах, что и д л я  одномерной модели измерения, рассмотренной в JC G M  100:

a ) оценка х = ( х „ .... хн)Т входной величины X;
b ) ковариационная матрица и„, соответствующая х , содержащая ковариации и(х,,х,). / = 1, N. 

J  = 1 ,.... N. соответствующие х, и ху
6.1.3 Описание трансформирования неопределенностей, приведенное в 6.2 и 6.3. распространяется 

на модели с действительными величинами, включая случаи комплексных величин, представленных пара­
ми действительных составляющих. Трансформирование неопределенностей в случае моделей с  комплек­
сными величинами рассматривается в 6.4 (см. также 5.1.3).

6.1.4 Способ получения области охвата д л я  векторной выходной величины описан в 6.5.

6.2 Тр а н сф о р м и р о в а н и е  н е о п р е де ле нн о сте й  д л я  м ногом ерны х м о де ле й  измерения с 
явны м  видом  ф ун к ц и о н а ль н о й  зависим ости

6.2.1 О бщ ие полож ения
6.2.1.1 Многомерная модель измерения с  явным видом функциональной зависимости между выход­

ной величиной Y  = ( У , ......У„,)т и входной величиной X  = (X ,........ Х „ у  имеет вид

Y  = f(X ). f  = (f„  .... fm)T .

где f обозначает многомерную функцию измерения.

П р и м е ч а н и е  —  Аргументами отдельных функций /ДХ) могут быть разные подмножества X. При этом 
каждый элемент X должен являться аргументом как минимум одной функции /ДХ).

6.2.1.2При заданной оценке х д л я  X  оценка у  д л я  Y  имеет вид

У  “  f(x).
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6.2.1.3 Ковариационная матрица размерности т х т .  соответствующая у. имеет вод

U у

‘' ( У „ У 1) - и ( У „ У Л1)

“ ( У я . У | ) - « ( У * , У * ) .

где Cov(y„ у() = о2(у,). и определяется по формуле

Uy = сх их С „ т, (3)
где С х —  матрица чувствительности размерности m x N .  определяемая по формуле

д/,
ах, - "  a*.v

dfm
ох. ""  ^ 7 .

где все производные берутся в точке X = х  ([19], страница 29).
6.2.2 Прим еры
Пример 1 —  А к ти в н о е  и реактивное сопротивления эле м е н та  цепи [JC G M  (раздел Н.2)]
Активное R  и реактивное Xсопротивления элемента цепи определяют путем измерения амплитуды V  

изменяющегося по гармоническому закону напряжения на его клеммах, амплитуды  / проходящего через 
элемент переменного тока и фазового сдвига р  между напряжением и силой тока. Двумерная модель 
измерения д л я  R  и X, выраженных через V . I  и <6, имеет вид

R*fi(V,L<p)*¥-cos<!>, X  =f2(V ,l,p ) = ¥ -sinp. (4 )

В обозначениях, принятых в настоящем стандарте. N  = 3. т  = 2, X  = {V .I.p ?  и Y  = (R .X )7.

Оценку у  = ( я х ) Т активного и реактивного сопротивлений получаю т по ф орм уле (4 ) в точке 

х л  (\Л/,4>’ )Т — оценке входной величины X.

Ковариационную матрицу U y размерности 2 x 2 , соответствующую у. рассчитывают по ф орм уле (3), 
где С„ —  матрица чувствительности размерности 2 x 3 , получаемая вычислением

«х, « i cos а Vcosp Vein#
dV а/ до i Г2 1

д!2 а/2 df2 sino Ysinp Vcos p
dV dl до ~ r I2 1

в точке X  = х. a U x —  ковариационная матрица размерности 3 x 3 , соответствующая х.

П р и м е ч а н и е  —  В JCG M  100 реактивное сопротивление обозначено X. Это обозначение использовано 
и в настоящем стандарте. Реактивное сопротивление X  является элементом векторной выходной величины Y, 
и его не следует путать с векторной входной величиной X.

Пример 2 —  К о э ф ф и ц и е н т отраж ения, измеряемый микроволновым р е ф ле к то м е тр о м  (подход 1)
Комплексный коэффициент отражения Г . измеряемый микроволновым рефлектометром, например, 

таким который используют д л я  определения повреждения кабельных линий, описывается моделью с  ком­
плексными величинами в виде

_  aW -  Ь
r  = 7 w - T T - (5 )

где W  —  комплексный неисправленный коэффициент отражения, а а, Ь и с  —  комплексные коэффициенты, 
полученные при градуировке (калибровке) рефлектометра [10.16.26].
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В обозначениях настоящего стандарта, описывая комплексные величины через их действитель­
ные и мнимые части, получаем N  = 8. т  = 2, X = (з я.э,,ЬяД ,с я.сЛИ/р. W;.) и Y  = )т .

Оценку у  ^  ( г я . Г , ) Т комплексного коэффициента отражения в виде его действительной и мнимой

частей вычисляют по ф ормуле (5). подставляя в нее оценку х входной величины X.
Ковариационную матрицу U y размерности 2 x 2 . соответствующую у. рассчитывают по форм уле (3). 

где С х —  матрица чувствительности размерности 2 x 8 . получаемая при вычислении производных

д Г „  д Гя дГн  д Г„  д Г „  д Гя д г к дГя
дaR да. db^ дЬ, дср дс, dWR dW,

дГ, дГ, д Г , д Г ; дГ, д Г , дГ, дГ,
daR da, db* дЬ, dcR дс, д WR dW,

в точке X  = х, a U x —  ковариационная матрица размерности 8 х 8. соответствующая х.
Пример 3 —  Калибровка э та ло н о в  массы
Э то т пример описывает м одель многоступенчатого измерения (см. 3.12.5.4.2 и 5.4.3).
Набор из q эталонов массы со значениями m  = (m , mq)7 калибруют сличением с  эталоном кило­

грамма с  использованием компаратора массы, калибровочной гири д л я  определения калибровочной функ­
ции компаратора и ряда вспомогательных приборов, таких как термометр, барометр и гигрометр д л я  опре­
деле ния поправок на выталкивающую силу воздуха. Э талон  килограмма и гиря имеют массы m R и ms, 
соответственно. Калибровку проводят в соответствии с подходящей методикой измерений посредством 
достаточного числа к  сличений между наборами эталонов с  получением видимых, т. е. заметных при изме­
рениях в воздухе разностей 5 = (5 ,, .... & )7. Вычисляют соответствующие поправки на выталкивающую
силу воздуха Ь = (Ь .......Ь*)т-  Разности м ассе вакууме X получают из подмодели X  = f(W ). в которой
W  = (m R. m s,$ T . b T)T .

Оценку у = (m ,.....гп^ ) Т масс m  обычно получают решением по методу наименьших квадратов пере­

определенной системы уравнений A m  = X. где А  —  матрица размерности k x q  с элементами равными 
единице, минус единице и ли  нулю  в соответствии с  тем. какие эталоны массы включены в сличение, с 
учетом неопределенностей, соответствующих оценке х величины X. В этом случае формула д ля  определе­
ния у  имеет вид

y  = U yA TU lt- ,x. (6 )

где ковариационную матрицу U y размерности q x q ,  соответствующую у. получают по формуле 
U y = (A TU X 'А )~\ a U x —  ковариационная матрица размерности к х к . соответствующая х. Более подробное 
описание подмодели, а также процедура получения U x через U .  —  ковариационной матрицы, соответству­
ющей оценке w  величины W . —  приведено в (3).

Многомерная м одель измерения д ля  этого примера имеет вид

Y  = UyA TU x ’X,

где U yA ' U / ’X  —  функция измерения. В принятых обозначениях настоящего стандарта N -k .m = -q v \  Y  = m.

П р и м е ч а н и е  —  С  вычислительной точки зрения для получения оценки у предпочтительнее использо­
вать не формулу (6). а алгоритм, основанный на ортогональном разложении матриц (см. [13]).

6.3 Тр а н сф о р м и р о в а н и е  н е о п р е де ле нн о сте й  д л я  м ногом ерны х м о де ле й  измерения с 
неявны м  видом  ф ун к ц и о н а ль н о й  зависим ости

6.3.1 О бщ ие полож ения
6.3.1.1 Многомерная м одель измерения с неявным видом функциональной зависимости между вы­

ходной величиной Y  = ( У , .......У„,)т и входной величиной X = (X , .. .. .  X ,,)1 имеет вид

h (Y ,X ) =  0. h = (Л , ...... hm)J .

6.3.1.2При заданной оценке х величины X  оценку у  величины Y  получают решением системы 
уравнений

h(y,x) = 0. (7)
15



Г О С Т  Р 54500.3.2— 2013

П р и м е ч а н и е  —  Сисгему уравнений (7) относительно у  обычно решают численными методами, напри­
мер методом Ньютона [12] или одной из его модификаций, задавая начальное значение корня у10* и последо­
вательно приближаясь к решению.

6.3.1.3 Ковариационную матрицу U y размерности т х т ,  соответствующую у. получают решением 
системы уравнений

С уи уС /  = С жи жС вт, (8 )

где С у —  матрица чувствительности размерности т х т ,  содержащая частные производные dhJdY^  
I =  1, т ,  j  = 1, m , a C ,  —  матрица чувствительности размерности m x N .  содержащая частные 
производные dh./dX,. / = 1...... m . i -  1........N. Производные вычисляются в точках X  = х и Y  = у.

П р и м е ч а н и е  1 —  Ковариационная матрица Uy в формуле (8) не определена, если матрица Су является 
вырожденной (сингулярной).

П р и м е ч а н и е  2 —  Формулу (8) получают аналогично формуле (3) с использованием правила дифферен­
цирования неявной функции.

6.3.1.4 Из формулы (8) следует, что решение относительно ковариационной матрицы Uy может быть 
записано в виде

U y = C U KC r . (9 )

где
С  = С у- ’ С х -  (10)

матрица размерности т х  N, сформированная из коэффициентов чувствительности.
6.3.1.5 Процедура расчета матрицы U y приведена в приложении В. Применение д л я  этих целей не­

посредственно формул (9 ) и (10) не рекомендуется вследствие неустойчивости соответствующих им алго­
ритмов вычислений.

6.3.2 Прим еры
Пример 1 —  Давления, задаваемые грузопоршневым манометром
Давление р. задаваемое грузопоршневым манометром, определяю т в соответствии с  уравнением 

преобразования, имеющим вид

_ Я1*(1 ~Pefpw)9t
Р ~ 4 с(1 + /ф)(1+ «<*?) • О 1)

где т „  —  полная приложенная масса (груза и поршня). ра и р„ —  плотности воздуха и приложенного груза 
соответственно, д, —  локальное значение ускорения свободного падения. Дд —  эффективная площ адь 
манометра при нуловом давлении. Л —  коэффициент деформации поршневой пары манометра, и  —  
коэффициент теплового расширения. 5в— отклонение от нормальных условий по температуре (20 °С) (17].

Пусть р , ......р„ обозначают давления уравновешивания д л я  приложенных масс, соответственно.
mw U .... m „ q и температурных отклонений 5 6 ,,.... 5б„.

В обозначениях, принятых в настоящем стандарте, N  = 6 ♦ 2q, т  = q, X  = ( A j.A ,« ,5 0 ,.« V i , .... 
* V " * * A .  Рш-9, )т . Y  = (р ,...... р„ )т .

М одель измерения, определяющая вид зависимости между X  и Y . имеет вид

h, (Y .X ) = Л 0р.(1 ♦ Лр; )(1 + «56»,) -  mWJ(  1 -  p j p j g ,  = O . j  = 1...... q. (12)

Оценку p , величины p, получаю т решением уравнения (12) при заданных оценках Аз, Л .« .  Щ  mwy

pa. р„ и д,. Однако полученные оценки Р , , { -  1...... q, имеют соответствующие ковариации, т. к. все они

зависят от одних и тех же случайных величин Л 0. Л ,« ,  ра. рЛ. и дг

Ковариационную матрицу U y размерности q x q . соответствующую у = (р ,.....р ,  ) Т , вычисляют по фор­

муле (8), где С у —  матрица чувствительности размерности q x q , содержащая частные производные dhJdY.,
I = 1 ,.. ..  q . j  =  1.......g; С* —  матрица чувствительности размерности д х (6  + 2д). содержащая частные
производные dbJdX,, /= 1 ... .,  g, /'= 1...... 6 + 2g. (все производные берут в точках X  = х и Y  = у ), a  U , -
ковариационная матрица размерности (6 ♦ 2 д) х  (6 ♦ 2д). соответствующая х.

П р и м в ч а н и е 1 —  В данном примере выражение зависимосги Ŷ  (или, что то же самое. pt)  через X может 
быть задано в явном виде как решение квадратного уравнения. Однако числовой алгоритм нахождения корня
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квадратного уравнения не всегда будет устойчив. Более того, иногда в уравнение преобразования включают 
дополнительные члены, представляющие собой степени р более высоких порядков. В таких случаях получение 
явной функции измерения не всегда возможно.

П р и м е ч а н и е  2 —  Рассматриваемая в данном примере модель измерения может быть представлена 
разными способами. Например, вместо зависимости, описываемой формулой (12). может быть использована 
модель в виде сравнения с нулем разности между левой и правой частями уравнения (11). О т выбора модели 
зависит эффективность и устойчивость численного решения.

П р и м е ч а н и е  3 —  Могут быть рассмотрены бопее полные модели давления для грузопоршневого 
манометра, которые включают, например, поправки, учитывающие эффекты поверхностного натяжения.

П р и м е ч а н и е  4 —  Функции измерения имеют в качестве своих аргументов не все входные величины. 
Так. в выражение для /-и функции входят только А 0- А- «• Зв{- гпЖ|. ра. рш и д,.

Пример 2 —  К о эф ф и ц и е н т отраж ения, измеренный микроволновым р е ф ле к то м е тр о м  (подход 2)
Другой подход к задаче, описанной в примере 2 из 6.2.2. заключается в выражении зависимости 

между входной величиной X = (эя , a,, bR. Ь,, ся , с,, IV,)7 и выходной величиной Y  = (/'«. Г,)7 через
двумерную м одель измерения, имеющую вид

ft,(Y,X) = 0. Л2(У ,Х ) = 0. (13)

где M Y .X )  и /?2(Y ,X ) соответственно действительная и мнимая части выражения

(cW  + 1 ) r - ( a W  ♦ b).

Преимущество этого подхода состоит в том. что вычисление производных и. следовательно, коэффи­
циентов чувствительности производится более прямым способом.

Оценку у j . ( г „ ,/ ’, ) Т комплексного коэффициента отражения находят в результате подстановки

X = х  в формулы (13) и численного решения полученных уравнений.
Ковариационную матрицу U y размерности 2 x 2 , соответствующую у. вычисляют по формуле (8), 

где С у — матрица чувствительности размерности 2 x 2 . содержащая частные производные db,ldYr  1= 1.2, 
У = 1.2:  С к— матрица чувствительности размерности 2 x 8 . содержащая частные производныеdhfldX,,
I = 1. 2.  / = 1......8  {все производные вычисляют в точках X = х  и Y  = у ), a U* —  ковариационная матрица
размерности 8 x 8 . соответствующая х.

Пример 3 —  Калибровка р е ф ле к то м е тр а
Калибровку рефлектометра (см. пример 2 из 6.2.2) обычно проводят, измеряя неисправленный коэф­

фициент отражения W  при применении эталонов с заданными значениями коэффициента отражения Г . 
Часто в этих целях использую т три эталона, что позволяет получить систему из трех совместных 
уравнений:

(cW , + 1 )Г, -  (aW . + Ь) =  0. j  = 1. 2. 3. (14)

Разделение выражений в левой части уравнения ( 14)  на действительную  и мнимую части приведет 
к получению шести совместных линейных уравнений, решение которых позволяет найти действительную 
и мнимую части коэффициентов а. b и с  калибровочной функции при заданных значениях действительной 
и мнимой частей неисправленных коэффициентов отражения W, и коэффициентов отражения Г , д ля  
эталонов.

В обозначениях, принятых в настоящем стандарте. N  = 12. т  = 6.
X  -  (ИЛ. r .IV, R ,l\ j,W 2iR,W 2^ r 2_R,r 2j ,W 3Я.\Л/31,Г з я ,Г з t )т и Y  = (а я.а,.бя Д .с я.с,)7.

Входные и выходные величины связаны между собой посредством многомерной модели измерения, 
в которой /»2) . ,(Y ,X ) и h2l(Y ,X ) , j  = 1, 2. 3. —  соответственно действительная и мнимая части левой части 
уравнения (14).

Оценку у  » (ая ,а „Ь я ,ЬЛ ся .с ,)Т калибровочных коэффициентов получают, подставляя оценки д ля  W, 

и Г, в уравнения (14) и решая эти уравнения численно.
Ковариационную матрицу U y размерности 6 x 6 . соответствующую у. вычисляют по формуле (8). 

где С у —  матрица чувствительности размерности 6 x 6 . содержащая частные производные dh,ldYl4 
/= 1 6. у =  1 6: С ж —  матрица чувствительности размерности 6 x 1 2 . содержащая частные производ­
ные dh,/dXt. I = 1 ,..., 6. i = 1...... 12 (все производные вычисляют в точках X = х и Y  = у), a U„ —  ковариа­
ционная матрица размерности 12x12.  соответствующая х.
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П р и м е ч а н и е  1 —  При наличии программы обработки данных, работающей с комплексными величи­
нами. разделение уравнений модели измерения на действительную и мнимую части необязательно. Эти урав­
нения могут быть решены непосредственно для а. Ь и с.

П р и м е ч а н и е  2 —  Каждое j-e  уравнение модели измерения включает только четыре входные вели­
чины: WjR, WtJ, rfR и Гр .

6.4 Тр а н сф о р м и р о в а н и е  н е о п р е де ле н н о сти  д л я  м о де ле й  с  ком плексны м и величинам и

В приложении А  приведен компактный алгоритм вычисления частных производных многомерных ком­
плексных функций измерения первого порядка, которые необходимо знать при распространении закона 
трансформирования неопределенностей на модели с комплексными величинами. Данный алгоритм может 
быть применен д л я  многомерных моделей измерения с  комплексными величинами общего вида.

Пример —  К оэф ф и ц и е н т отраж ения, измеряемый микроволновым р е ф ле к то м е тр о м  (подход 3)
Рассмотрим вновь пример 2 из 6.2.2.
Комплексная выходная величина Y  = Г  и комплексная входная величина X = (X , ,Х2.Х3.Х4)Т = (a ,b .c .W )T 

связаны между собой моделью измерения, описываемой формулой (5). С  учетом результатов, приведен­
ных в приложении А. матрицу чувствительности С„ размерности 2 x 8  получают в виде

С* = [С 4 С ь С с Cw], 

где

с«аМ( ж )  t = ab*cW

в точке оценки х д л я  величины X. Например, д ля

7 F a c w T T  ( 15)

использование результатов приложения А  дает

Сь
Or
Q,

-Q,
Q «J’

где Q R и Q ,—  соответственно действительная и мнимая части выражения в правой части формулы (15). 

Ковариационную матрицу U y размерности 2 x 2 . соответствующую у *  г . где

и (Г я . 1 \ )  и { г н ,Г , }  

u ( r „ r R ) u { f , . f , ) " ’ (Л)

вычисляют no формуле (А. 1) приложения А . где U„ —  ковариационная матрица размерности 8 x 8 . соответ­
ствующая х.

6.5 О б л а с ть  охвата векторной в ы хо дн о й  в е ли чи н ы

6.5.1 О бщ ие полож ения
6.5.1.1 В некоторых областях метрологии, например, связанных с измерениями электрических вели­

чин. д л я  дальнейшего использования результатов измерения выходную величину удобно оставить в век­
торной форме вместе с  поставленным ей в соответствие совместным распределением вероятностей. Такое 
представление результата измерения позволяет в максимальной степени сохранить всю полученную ин­
формацию о выходной величине.

6.5.1.2 Е сли  же результат измерения представляют в виде полученной оценки у  выходной величи­
ны Y  = ( У , , .... Ym)T. соответствующей ей ковариационной матрицы U y и вероятности охвата р, то это требует 
определения области охвата R Y в m-мерном пространстве, которая содержит Y  с вероятностью р.

6.5.1.3 Если доступная информация о выходной величине Y  содержит только значения оценок у и U y. 
то в соответствии с принципом максимума энтропии случайной величине, ассоциированной с  измеряемой 
величиной и характеризующей имеющиеся на данный момент представления о ее возможных значениях, 
приписывают многомерное нормальное распределение N (y ,U y) [см. JC G M  101 (пункт 6.4.8)].
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П р и м е ч а н и е  —  Такой выбор функции распределения согласуется с используемым в способе 
оценивания неопределенности no GUM  представлением о нормальном распределении скалярной выходной 
величины У  в случаях, когда число степеней свободы, связанное с оценкой У. бесконечно.

6.5.1.4 В общем случае, как только получено совместное распределение д л я  выходной величины Y. 
появляется возможность определить вероятность охвата д л я  некоторой заданной области охвата или, на­
оборот. построить область охвата д л я  заданной вероятности охвата. Эта задача не вызывает затруднений, 
если совместное распределение является многомерным нормальным распределением (см. 6.5.2.6.5.3 
и 6.5.4). Д ля  других распределений возможно получение приближенных решений с точностью, приемлемой 
д л я  практических задач, благодаря использованию численных методов, таких как метод Монте-Карло 
(см. раздел 7).

6.5.1.5 В 6.5.2 рассматривается метод определения области охвата д л я  двумерной величины, что 
потом позволит распространить его на общий многомерный случай (см. 6.5.3). Также рассматривается 
определение области охвата д л я  случая, когда оценка выходной величины получена усреднением резуль­
татов наблюдений этой величины, представляемых как случайная независимая выборка из многомерного 
нормального распределения (см. 6.5.4).

6.5.2 Д вум ерны й  случа й
6.5.2.1 На примере двумерной модели измерения можно продемонстрировать все отличия в 

определении многомерной области охвата от получения одномерного интервала охвата. Рассмотрим точку 
Y  = (V i. У2)т в прямоугольной системе координат, где У, является абсциссой точки, а У2 ее ординатой. 
Пусть измерение обеих координат проведено с использованием одного средства измерений. Полученная 
информация об Y  будет включать в себя оценки у , и у2 ее координат, стандартные неопределенности и (у ,) 
и и (у2). соответствующие этим оценкам, и ковариацию о (у ,.у 2). наличие которой в данном случае обуслов­
лено использованием одного и того же средства измерений д л я  каждой координаты.

6.5.2.2 Согласно способу оценивания неопределенности по G U M  при наличии информации о выход­

ной величине Y . указанной в 6.5.2.1. ей приписывают плотность распределения 9 yvy2 (ЧмЧг) в виде дву­

мерного нормального распределения N (y ,U y) (см. 6.5.1.3). где

[ ?  ]. и ,  .
и 2(У у ) и (у , .у 2)

[ у  2 ]  У и (У 2.у О  и 2(у 2)

6.5.2.3 Из возможных форм областей охвата рассматриваются две:
a ) эллипс с  центром в точке у  (19. страница 38J. описываемый формулой

(Л  “  У)Т и у- ' ( П - У )  = *£. (16)

где кр —  постоянная, которую находят из условия, что интеграл от д Уьуг (Ч»,Л2) по площ ади, ограниченной

эллипсом, равен р. При данной форме области охвата в учет принимается взаимная зависимость между 
У , и У2. Если Y  характеризируется нормальным распределением, то величина

(Y  -  y )TU / 1( Y -  у )  (17)

имеет распределение хи-квадрат с двумя степенями свободы. Отсю да следует, что представляет собой 
квантиль уровня р указанного распределения, т. е.

Р = Рг(Хг **р).

где х \  имеет распределение хи-квадрат с  двумя степенями свободы. Д ля  вероятности охвата р = 0.95 

кр = 2.45 (см. 6.5.3):
b ) прямоугольник с центром в точке у со сторонами, параллельны ми осям и равными длинам  по 

отдельности определенных интервалов охвата д ля  У , и У2. Интервал охвата д ля  У , находят из маргиналь­
ного распределения У ,, определяемого формулой

/ Sfr„v4(4i»/fe)d»b, (18)

и он не зависит от имеющейся информации о величине У2. То  же самое справедливо д ля  интервала охвата 
д л я  У2. Интервалы охвата у, ± k„y(yj).J =1 . 2 ,  определяю т д л я  вероятности охвата
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9 = 1 — (1 — Р У2  = (1 + РУ2. (19)

Данный прямоугольник представляет собой область охвата д ля  Y. соответствующий вероятности охвата не 
меньшейр [5]. Если Y  характеризуется нормальным распределением, то маргинальное распределение (18) 
д л я  У ,, равно как и распределение д ля  У2, также будет нормальным. Отсю да следует, что представляет 
собой квантиль уровня q  стандартного нормального распределения, т. е.

Я ~ Р г( |2| 5 к^),

где Z  имеет нормальное распределение N (0 ,1 ). Д л я  вероятности охвата р  = 0.95 q = 0,975 и/са = 2,24 
(см. 6.5.3).

П р и м е ч а н и е  1 —  При выполнении условий применимости способа оценивания неопределенностей 
по GUM область охвата в виде эллипса, указанная в перечислении а), является наименьшей 100 р %-ной облас­
тью охвата.

П р и м е ч а н и е  2 —  Если У< и У2 взаимно независимы, го д  в формуле (19) может быть заменено 
на q = р1’2.

Пример 1 —  Рассмотрим двумерную величину  У . характеризуемую нормальным распределением 
N (y,U y), где

0
• и »  =

2,0 0.0

0 0.0 1.0

На рисунке 3 слева показаны 95%-ные эллипти ческая и прямоугольная о б л а с ти  охвата  д ля  У. 
полученные методам и а) и Ь). Также на рисунке показано 1000 точек, пр едставляю щ их случайную выбор­
ку из указанного распределения в е р о я тн о с ти . И н те р в а л охвата  в форме эллипса б у д е т  и м е ть  наимень­
шую площ адь при заданной в е р о я тн о с ти  охвата. Д л я  данной случайной выборки 950 из 1000 то ч е к  содер­
ж а тс я  в н у тр и  эллиптической о б ла с ти  охвата  площ адью  26.6 квадратны х единиц и 953 —  в н у тр и  прямо­
угольной о б ла с ти  ох в а та  площ адью  28.4 квадратны х единиц.

Рисунох 3 —  Эллиптические и прямоугольные области охвата для двумерной величины Y. описываемой нормаль­
ным распределением, элементы которой У, и У, взаимно независимы (слева) и коррелированны (справа)

Пример 2 —  Рассм отрим  двумерную величину У, характеризуемую нормальным распределением  
N (y,U y), где

У  =
1.9

2 . 0 , *

На рисунке 3 справа показаны 95%-ные эллипти ческая и прямоугольная о б ла с ти  охвата  д ля  У. 
полученные методам и а) и Ь). В  о тли ч и е  о т  примера 1. элем енты  У, и У2 величины Y я в л я ю тс я  коррели­
рованными. Д л я  случайной выборки из указанного распределения 957 из 1000 то ч е к  содерж атся в н у тр и

20



Г О С Т  Р 54500.3.2— 2013

эллиптической о б ла с ти  охвата  площадью 11.8 квадратны х единиц и 972—  в н у тр и  прямоугольной обла­
с т и  ох в ата  площадью 40.1 квадратны х единиц, ч т о  показывает, ч т о  в е р о я тн о с ть  ох в ата  д ля  прямо­
угольной о б л а с ти  превы ш ает 0.95. О б л а с ть  в форме прямоугольника, построенная согласно м е то д у  Ь) 
без у ч е та  коррелированности элем ентов выходной величины и распределения то ч е к  выборки на плоско­
с т и , м ож ет р а ссм атри ваться как представление о б л а с ти  охвата  д ля  Y, не с о о тв е тс тв у ю щ е е  данной 
изм ерительной задаче. Прямоугольник со сторонами, параллельными осям эллипса, б у д е т  и м е ть  мень­
шую площ адь и мог бы рассм атри ваться, как более подходящая о б л а с ть  охвата, но н еудобство его 
применения с о с т о и т  в т о м , ч т о  д ля  него т е р я е т с я  ясный физический смысл с о о т в е т с т в и я  формы  
построенной о б л а с ти  ох в ата  элементам выходной величины.

6.5.2.4 Другие примеры областей охвата д л я  выходных величин двумерной модели измерения приве­
дены в разделе 9.

6.5.3 М ногом ерны й случа й
Если  размерность вектора выходной величины более двух, то способы построения областей охвата 

становятся менее наглядным, но по существу ничем не отличаются от описанных в перечислениях а ) и Ь) 
в 6.5.2.3 д ля  двумерного случая. Необходимо построить такую область R y в m-морном пространстве, кото­
рая содержала бы Y  = ( У , . .... У т ) с вероятностью р. Как и в 6.5.2.3. [перечисления а ) и Ь)]. рассматривают­
ся формы R y двух видов:

a ) эллипсоид в m-мерном пространстве, описываемый формулой (16). Если Y  характеризируется мно­
гомерным нормальным распределением, то величина, задаваемая формулой (17). имеет распределение

хи-квадратс тс те п е н я м и  свободы. Таким образом, кр представляет собой квантиль уровня р  указанного 

распределения, т .е .

Р = Рг(хт **,)•

где х 2т  имеет распределение хи-квадрат с  тс те п е н я м и  свободы. Значения коэффициента охвата кв д ля  

вероятности охвата р  = 0.95 и разных значений т  приведены в таблице 1;
b ) параллелепипед в m-мерном пространстве с центром в точке у  с ребрами, параллельны ми осям

элементов У„ j  = 1......т .  выходного вектора Y  в прямоугольной системе координат и равными длинам  по
отдельности определенных интервалов охвата д л я  У,. Интервалы охвата определяю т д ля  вероятности ох­
вата q  = 1 -  (1 -  р)1т. Данный параллелепипед представляет собой область охвата д ля  Y. соответствующий
вероятности охвата не меньшей р [5]. Д л я  каждого элемента У„у = 1......т ,  интервал охвата вычисляют
через его маргинальное распределение. Если Y  характеризуется нормальным распределением, то марги­
нальное распределение д л я  каждого У  также будет нормальным. Отсю да следует, что, как и в 6.5.2.3. 
[перечисление b)), kq представляет собой квантиль уровня q стандартного нормального распределения. 
Значения коэффициента охвата ка д л я  вероятности охвата р  = 0,95 и разных значений т  приведены 
в таблице 2.

Т а б л и ц а  1 —  Коэффициенты охвата для  областей охвата в форме m-мерного эллипсоида, соответствующие 
вероятности охвата р = 0,95

т * р
т

* р
т

* р
т *р

1 1.96 6 3.55 11 4.44 20 5.60
2 2.45 7 3.75 12 4.59 25 6.14
3 2.80 8 3.94 13 4,73 30 6.62
4 3.08 9 4.11 14 4.87 40 7.47
5 3.33 10 4.28 15 5.00 50 8,22

Т  а б л и ц а 2 —  То же, что в таблице 1, но для областей охвата в форме m-мерного параллелепипеда

171 *р
т

*р
т т К

1 1.96 в 2.64 и 2.84 20 3,02
2 2.24 7 2.69 12 2.87 25 3.09
3 2.39 8 2.73 13 2.89 30 3,14
4 2.50 9 2.77 14 2.91 40 3.23
5 2.58 10 2.81 15 2.94 50 3.29
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П р и м е ч а н и е  1 —  Для одномерного случая ( т  = 1) выражение (16) упрощается до

<П~ У )2 =  f a r

что дает граничные точки интервала охвата для  У

П = У ± kpUy.

Для вероятности охвата р = 0,95 кр = 1.96 (см. таблицу 1).
П р и м е ч а н и е  2 —  Если Y/.j=  1......m. взаимно независимы, то q может быть заменено на q = р '>т.

6.5.4 О б л а с ть  охвата д л я  оценки в  в и де  вы б о р о ч н о го  ср е дн е го  из м ногом ерного 
н о р м а ль н о го  р а сп р е де ле н и я
Рассмотрим п  векторов у , ...... у„ размерностью т  х  1 каждый, п > т .  соответствующих повторяю­

щимся наблюдениям многомерной величины Y  = ( У , ......  Уга)т . Предположим, что у , , .... у„ могут быть
интерпретированы как реализации независимых случайных векторов Y ,  Y„, каждый из которых характе­
ризуется многомерным нормальным распределением с математическим ожиданием ц  и ковариационной 
матрицей £  Определим среднее и ковариационную матрицу

А  = -1 (Y , + . . .  f Y „ ) ,  V  = ^ [ ( Y ,  -  A ) (Y ,  -  A ) T + ... + (Y„ -  A )(Y „  -  A ) 7] 

размерности m  x  1 и m  x  m  соответственно. Тогда случайная переменная

~7гГ~  (А  -  ц )7 V  ’ ( А  -  ц.)

будет иметь распределение Фишера F„, „_т  (называемое также F -раслределением ) с  т  и п - т  степеней 
свободы (19, пункт 3.5.2.1].

П р и м е ч а н и е  —  Аналогом этого результата для  одномерной величины будет следующее утвержде­
ние: для независимых случайных переменных Y,. ..., Ул. каждая из которых характеризуется одномерным нор­
мальным распределением с математическим ожиданием д  и дисперсией гг2, величина (л  -  1)ш  (А -  p)!S  имеет 
/-распределение с л-1  степенями свободы, где

*  = ......УЛ  S2 = 1 [(У , -  А)2 + ...  + (У„ - А ? ] .

Пример —  Рассмотрим п -  12 повтор ны х парных наблюдений объемных долей микроклина (А ,) и 
б и о т и т а  (А 2)  в одном то н ком  разрезе гр а н и та  G-2 [4, 25J. На рисунке 4 значения парных наблюдений 
изображены в виде точек. На нем такж е построена 95%-ная эллипти ческая о б л а с ть  ох в ата  д л я  м а те ­
м атического ожидания величины А разм ерности  2 x 1 .  Оценка м атем атического ожидания и с о о т в е т ­
ствую щ а я ей ковариационная м атрица им ею т вид

27,0 1,202 -0,396
а = 6.2 , V = -0 ,396 0,381

а 95-я п е р ц ен ти ль  распределения F 2 I0 равна 4,10. 95%-ная о б л а с ть  ох в а та  д ля  А  —  э т о  эллипс, описыва­
емый форм улой

(A -a )Tv~1(A -a )  = 4,10 у - ^ .

Небольшое число наблюдений в данном примере не п о зв о ля е т с д е ла ть  содерж ательны е выводы  
о то м , насколько справедливы исходные допущения, ч то б ы  с ч и т а т ь  построенную  о б л а с ть  охвата  
достоверной.
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25 26 27 28 29
Объемная доля микроклина. %

Рисунок 4 —  Двенадцать пар выборочных значений и 95%-ная эллиптическая 
область охвата вокруг их выборочного среднего

7 Метод Монте-Карло

7.1 О бщ ие полож ения

7.1.1 В настоящем разделе рассматривается применение метода Монте-Карло д л я  трансформирова­
ния распределений (соответствующая процедура описана в 7.1.7 и представлена в виде диаграммы на 
рисунке 5).

7.1.2 М етод Монте-Карло позволяет реализовать общий подход к получению дискретного приближен­
ного представления G  функции распределения G v (tj) д л я  Y  [18. страница 75]. С уть  подхода состоит в 
получении повторных выборок из плотности распределения д ля  X, (или совместной плотности распределе­
ния д л я  X ) и вычислении д л я  каждого выборочного значения векторной выходной величины.

7.1.3 Поскольку <3У (г|) содержит максимально полную информацию о Y . любые характеристики Y. 
такие как математическое ожидание, дисперсия и ковариация, а также области охвата могут быть рассчита­
ны из полученного приближения G. В общем случае достоверность получаемых характеристик возрастает 
с увеличением числа выборок.

7.1.4 Полученные в соответствии с 7.1.2 значения выходной величины рассматриваются как незави­
симая выборка из совместного распределения вероятности д л я  Y. Математические ожидания, дисперсии 
(и высшие моменты), а также ковариаиии могут быть рассчитаны непосредственно по этим выборочным 
значениям. Определение областей охвата требует предварительного анализа полученных значений 
(см. 7.7).

7.1.5 П усть у г, г  *  1, .... м , обозначает выборочные значения выходной величины (см. 7.1.4). 
Выборка у, позволяет получить приближенные значения математического ожидания E (Y ) и дисперсии V (Y ) 
величины Y . Как правило, в качестве моментов величины Y  [включая E (Y ) и V (Y )] принимают соответствую­

щие выборочные моменты. Обозначим М Уи число векторов в выборке у,, д л я  которых каждый их элемент 

не превосходит соответствующий элемент некоторого вектора у 0 размерности т  х  1. Тогда вероятность 

P r(Y  < у 0) может быть приближенно представлена отношением М у j M . Таким образом, выборка векторов

у , ......у и  позволяет получить дискретное представление функции распределения G v (tj).
7.1.6 Приближение G  является первым результатом применения метода Монте-Карло и представляет 

собой матрицу размерности т  х  М

G  = ( у . ...... Уи )-

7.1.7 Процедура применения метода Монте-Карло д л я  трансформирования распределений в случае

23



Г О С Т  Р 54500.3.2— 2013

явной зависимости Y  через X  и заранее заданного числа испытаний М  (в противном случае см. 7.8) показа­
на в виде диаграммы на рисунке 5 и включает в себя следую щ ие этапы:

a ) выбирают число испытаний М  (см. 7.2);
b ) формируют в каждом из М  испытаний W-мерный вектор входных величин X., элементами которого 

являю тся случайные выборочные значения из распределений д л я  X , или совместного распределения 
д л я  X (см. 7.3);

c ) рассчитывают д л я  каждого выборочного значения вектора входной величины вектор выходной 
величины Y, получая таким образом выборку векторов выходной величины объемом М  (см. 7.4):

d ) формируют представление G  функции распределения Y  в виде ряда М  значений векторной выход­
ной величины (см. 7.5);

e ) на основе G  вычисляют оценку у  величины Y  и ковариационную матрицу U y. соответствующую у 
(см. 7.6);

О н а  основе G  строят соответствующую область охвата д л я  Y  д л я  заданной вероятности 
охвата р (см. 7.7).

П р и м е ч а н и е  —  Выборочное среднее для  М  векторных выходных величин имеет математическое 
ожидание E (Y ) и дисперсию V(Y)/Af. Таким образом, расхождение между E (Y ) и его оценкой в среднем будет 
пропорционально М~'12.

7.1.8 Эффективность метода Монте-Карло при определении у. U y и области охвата д л я  Y  зависит от 
адекватного выбора числа испытаний М  (этап а ) в 7.1.7]. Рекомендации по выбору достаточного числа 
испытаний М  и по другим вопросам реализации метода Монте-Карло приведены в [8] (см. также 7.2 и 7.8).

7.2 Ч и с л о  и сп ы та н ий  м етода М онте-К арло

7.2.1 Д л я  применения метода Монте-Карло необходимо выбрать число испытаний М, т. е. объем вы­
борки векторной выходной величины. Э то  число может быть выбрано заблаговременно (д о  проведения 
испытаний), но тогда будет исключена возможность управления точностью результатов, полученных с по­
мощью данного метода. Причиной этому служит то, что число испытаний, необходимое д л я  получения 
результата вычисления с заданной точностью, зависит от формы плотности распределения выходной вели­
чины и от заданного значения вероятности охвата. Кроме того, метод вычисления является стохастическим 
по своей природе, поскольку зависит от случайной выборки.

7.2.2 Поскольку нельзя заранее гарантировать, что выбранное значение М  обеспечит достаточную  
точность приближения, можно использовать процедуру адаптивного выбора, уточняя значение М  в процес­
се испытаний. Адаптивная процедура, установленная в 7.8. позволяет оптимальным образом получить 
значение М , соответствующее заданной точности вычислений.

П р и м е ч а н и е  —  Для сложной модели, например, требующей получения решения методом конечных 
элементов, применение большого числа испытаний может оказаться невозможным. В этом случав рекомендует­
ся приближенно представить плотность распределения выходной величины £у (Л) нормальным распределени­
ем (как е GUM). Это позволяет использовать относительно небольшое число испытаний М, например 50 или 100, 
а полученные по результатам испытаний выборочное среднее и выборочные ковариации принять, соответствен­
но. в качестве оценок у и Uy. Для описания Y и построения области охвата используют плотность нормального 
распределения N(y, Uy). Хотя уменьшение числа испытаний неизбежно ухудшает свойства метода в части аппрок­
симации распределения выходной величины, оно все же позволяет учесть нелинейность модели измерения.

7.3 П о луч е н и е  вы борок из р а сп р е де ле н и й  в е р о ятн о сти

7.3.1 Д л я  применения метода Монте-Карло формируют М  векторов х,. г=  1......М. в соответствии

с плотностями распределения вероятностей 9* (£ )д л я  N  входных величин X, или. если это необходимо, 

из совместной плотности распределения Ф П В  дх(£).
7.3.2 Рекомендации по формированию выборки д л я  наиболее распространенных распределений (рав­

номерного. нормального, многомерного нормального и /-распределения) приведены в JC G M  101 (пункт 6.4 
и приложение С ). Однако возможно получение выборок, соответствующих и другим распределениям [см. 
J C G M 101 (раздел С.2)]. Некоторые распределения могут быть аппроксимированы распределениями, полу­
ченными в результате применения метода Монте-Карло при предыдущих вычислениях неопределенности 
(см. J C G M  101 (пункт 6.5 и приложение D)].

7.3.3 Процедура формирования выборки д ля  многомерного /-распределения описана в 5.3.2.4.

П р и м е ч а н и е  — Для достоверности результатов применения метода Монте-Карло необходимо, чтобы 
генераторы псевдослучайных чисел, используемые для формирования выборок из заданных раслредепе-
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Рисунок 5 —  Этапы трансформирования распределений и получения результатов оценивания неопределен­
ности методом Монте-Карло для случая явной зависимости выходных величин от входных величин

ний, обладали соответствующими свойствами. BJCG M 101 (пункт С.3.2) приведены некоторые тесты сформи­
рованных выборок на случайность.

7.4 В ы чи сле н и е  векторной в ы х о дн о й  в е ли ч и н ы

7.4.1 Векторную выходную величину вычисляют д ля  каждого из М  выборочных значений ЛЛмерного 
вектора входной величины, полученных из соответствующих распределений. Если  обозначить М  выбо­
рочных значений вектора входной величины размерности N  х 1 через х , .......хи , где r-й  вектор х .
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содержит х , ,___ хг Н, и х1г—  выборочное значение из распределения д ля  X,. то соответствующие значения
векторов выходной величины д ля  модели измерения с явным видом функциональной зависимости вычис­
ляю т по формуле

y ,=  f(x,), г  = 1.......М.

П р и м е ч а н и е  —  При использовании закона трансформирования неопределенностей, когда аналитичес­
кие выражения производных функции измерения по входным величинам известны точно, значения этих произ­
водных и значения функции измерения берут в точке оценок входных величин. Если аналитические выражения 
для производных неизвестны и для их оценок используют приближение в виде конечных разностей, то получают 
оценки только для функции измерения. Согласно рекомендации GUM [JCGM 100 (примечание 2 к пункту 5.1.3)] 
значения функции измерения берут в точках оценок входных величин, а также в точках, отстоящих по обе стороны 
от этих оценок на расстоянии одной стандартной неопределенности (варьируя по очереди для каждой входной 
величины). В методе же Монте-Карло значения функций измерения получают при варьировании входных величин 
в окрестности их оценок, т.е. в точках, которые могут отстоять от этих оценок на несколько стандартных отклоне­
ний. Поскольку в методе Монте-Карло значения функции измерения получают в разных точках, может возникнуть 
вопрос о свойствах вычислительной процедуры, в частности, о ев устойчивости и (в случае применения адаптив­
ной процедуры) сходимости. При возникновении сомнений пользователю следует убедиться в том. что метод 
дает достоверные оценки выходной величины для достаточно больших окрестностей оценок входных величин. 
Однако следует ожидать, что вопросы устойчивости и сходимости численного метода могут стать критическими 
только в исключительных случаях.

7.4.2 Е сли  X, являю тся зависимыми величинами, то в 7.4.1 распределения д л я  X, сле дуе т заменить 
на совместное распределение д л я  X.

7.4.3 В случае модели с неявным видом функциональной зависимости 8 процедуре, описанной в 
7.4.1. значения векторной выходной величины у, получают, в результате решения уравнений

h (y ,.xr) = 0, г =  1 ...... М.

7.5 Д и ск р е тн о е  п р е д с та в ле н и е  ф ун к ц и и  р а сп р е де ле н и я  д л я  в ы х о дн о й  в е ли ч и н ы

Дискретное представление функции распределения д ля  векторной выходной величины формируется 
из М  значений векторной выходной величины, полученных согласно 7.4. В общем случае это представле­
ние является матрицей G  размерности т х  М, r-й столбец которой является г-м значением векторной вы­
ходной величины. Д л я  одномерной модели G  —  вектор-строка.

П р и м е ч а н и е  1 —  /-я строка матрицы G является приближенным дискретным представлением 
функции маргинального распределения для Yf.

П р и м е ч а н и е  2 —  Дл я  т  = 1.2.  3 возможна графическая интерпретация приближения G. Пусть 
т  = 2. Для г = 1,.... М построим в плоскости ( У, ,У2) точку с координатами, соответствующими двум элементам в 
столбце г матрицы G. При достаточно большом М плотность нанесенных точек в любой локальной области 
плоскости будет приблизительно пропорциональна плотности распределения в этой области.

П р и м е ч а н и е  3 —  Построенное приближение G  позволяет извлечь разнообразную информацию, 
в частности, относительно моментов высших порядков. Однако в способе оценивания неопределенности по 
GUM для трансформирования неопределенностей и последующего оценивания неопределенности измерения 
[JCGM 100 (пункт 0.4)] для получения оценки Y и соответствующей ей ковариационной матрицы необходимо 
знать моменты только первых двух порядков.

П р и м е ч а н и е  4 —  Если величина Y будет использоваться в качестве входной величины на следую­
щем этапе многоступенчатого измерения, то на этом этапе выборку входных величин можно получить из уже
имеющихся значений у,. г = 1..... М, (или. что то же самое, из столбцов матрицы G). последовательно осуществляя
случайный выбор (с равной вероятностью) из этих значений [JCGM 101:2008 6.5].

7.6 О ценка в ы х о дн о й  в е ли чи н ы  и со о тв е тств ую щ е й  ей ко вариационной м атрицы

Среднее арифметическое и ковариационную матрицу

у  = /g (y i + -  ♦ y « ) - u f = д? Ы < У ' - у К у < - у >т  + -  + ( у « - у ) ( у « - у )т ]

принимают, соответственно, в качестве оценки у  величины Y  и ковариационной матрицы U y. соответствую­
щей у.

П р и м е ч а н и е  —  Независимо от того, является ли модель измерения линейной или нелинейной, при М 

стремящемся к бесконечности у  стремится по вероятности к E(f(X)). если последнее существует.
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7.7 О б л а с ть  охвата д л я  векторной в ы х о дн о й  в е ли чи н ы

7.7.1 О бщ ие полож ения
Теоретически существует сколь угодно много 100 р  %-мых областей охвата д л я  Y. В настоящем стан­

дарте рассматриваются области охвата трех видов, которые, как ожидается, могут найти наибольшее прак­
тическое применение. Однако в отдельных обстоятельствах может оказаться предпочтительным использо­
вание области охвата специальной формы. Независимо от вида области охвата построение последней ос­
новано на полученном приближении G. т. е. на наборе М  точек у„ случайным образом выбранных из распре­
деления вероятностей д ля  Y  при реализации метода Монте-Карло (см. 7.5). Рассматриваемые здесь обла­
сти охвата имеют вид:

a ) эллипсоида. Данная область охвата будет близка к наименьшей области охвата в случае, если 
распределение вероятностей д л я  Y  близко к нормальному;

b ) параллелепипеда. О бласть охвата данного вида допускает простую интерпретацию, но зачастую 
ее объем существенно превосходит объем наименьшей области охвата;

c ) наименьшей области охвата, которая в общем случае не имеет какой-либо заданной геометричес­
кой формы и определяется в некотором приближении, зависящем от М.

7.7.2 О б л а с ть  охвата в ф о р м е  э лл и п с о и д а
Уравнение 100 р  % -н о й  области охвата д ля  Y  в форме эллипсоида имеет вид:

( Л - У ) 7 и у- , ( л - у )  = ^ р. (20)

где у  определяет положение центра эллипсоида в пространстве выходных величин. U y —  форму эллипсо­
ида (степень вытянутости и ориентацию в пространстве), акр —  его размер (объем). Процедура построения 
области охвата в форме эллипсоида по формуле (20) при известных оценках у  и U y (см. 7.6) требует нахож­
дения кр и состоит в следующем:

a ) трансформируют точки у , в у°г ( г = 1 ......М ) по форм уле

у \  =L-«(yf -  у ), г = 1.......М. (21)

где L  —  нижняя треугольная матрица размерности т х  т  разложения Холецкого Uy = LL";
b ) сортируют трансформированные точки у 5, в порядке возрастания значения of,, где

и  2

dc = y % V r  = Z (y * | / )  . r =  1...... M\

c ) используют упорядоченные у'', д ля  определения коэффициент охвата кв, значение которого опре­
деляю т из условия: кв д л я  всех у%  с номером г, не превышающим рМ:

d) строят 100 р  % -ную  область охвата д л я  Y . границы которой определены уравнением (20).

П р и м е ч а н и е  1 —  Основы описанной процедуры изложены в [1]. где массив векторных данных сортиру­
ют по метрике

( У , - а ) т 2  ’ (у , -а ) .

где а —  статистика параметра положения, а !  —  статистика параметра масштаба (дисперсии). Формулы, приве­
денные в процедуре, получены заменами а = у  и I  = Uy. Использование в процедуре трансформирование точек 
необходимо для того, чтобы сделать ковариационную матрицу, соответствующую трансформированным точкам, 
единичной, т.е. элементы векторов выборки становятся некоррелированными. Это позволяет сопоставлять (сор­
тировать) трансформированные точки по их расстоянию от оценки у. Из способа получения точек уг следует, что 
они характеризуют разброс значений случайной величины Y  вокруг центральной точки у. Область охвата в виде 
эллипсоида с центром в у по своему смыслу должна содержать 100 р %  общего числа точек у

П р и м е ч а н и е  2 —  Приемлемость полученной области охвата для представления неопределенности 
измерения зависит от конкретной измерительной задачи. Полученное представление может стать неприемле­
мым. если распределение точек у, в пространстве выходной величины Y  плохо согласуется с описанием этой 
величины многомерным нормальным распределением.

П р и м е ч а н и е  3 —  Матрица L. полученная на этапе а), может быть определена, например, способом, 
описанным в [13} (см. пример ниже).

П р и м е ч а н и е  4 —  Процедура построения области охвата учитывает существование зависимости меж­
ду элементами вектора Y.

П р и м е ч а н и е  5 —  Для сложной модели, например, требующей получения решения методом конечных 
элементов, применение большого числа испытаний М  может оказаться невозможным. В этом случав рекоменду-
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ется приближенно представить плотность распределения выходной величины Y нормальным распределением. 
Это позволяет использовать относительно небольшое число испытаний М. например 50 или 100. а полученные 
по результатам испытаний выборотное среднее и выборочные ковариации принять, соответственно, за оценки 
у и Uy. Для описания Y и построения области охвата используют плотность нормального распределения с мате­
матическим ожиданием у и ковариационной матрицей Uy. Хотя уменьшение числа испытаний неизбежно ухудша­
ет свойства метода в части аппроксимации распределения выходной величины, оно все же позволяет учесть 
нелинейность модели измерения. В таблице 1 приведены значения к0 для вероятности охвата р = 0.95 в зависи­
мости от размерности т  вектора выходных величин при допущении нормальности распределения Y

Пример —  Рассм отрим  модель измерения

У , = Х , + Х 3. У2 = Х 2* Х 3, (22)

в к о то р о й  входным величинам Х 1 и Х 2 приписано нормальное распределение N(0:0,1) каждой. Х 3 припи­
сано прямоугольное распределение R (-(3 x 1 .9 )1,2t (Зх1,9)1'2), и все входные величины я в ля ю тс я  
независимыми. М атематическими ожиданиями входны х величин X  я в л я ю тс я  ж, = 0. / =  1, 2, 3, а их 
дисперсиями —  и2(х ) -0 ,1 ,  1 = 1 ,2 и u2(Xj) = 1,9. Тогда, как в примере 2 из 6.5.2.3, У  = (У 1.У 2) Т им еет  
оценку м атем атического ожидания и с о о тв е тс т в у ю щ у ю  ей ковариационную м а тр ицу

Трансформированные то ч к и  у", на э та п е  а) ф орм ирую т с использованием L~\ имеющей следую­
щий вид (с то ч н о с ть ю  до т р е т ь е г о  знака после за пя той ):

L =
1.414 1,3441 L-1 = [0.707 -2 ,151
0,000 0.442 \ ' I 0,000 2.265

На рисунке б слева показаны 1000 выборочных то ч е к  д л я  распределения в е р о я тн о с ти  У, опреде­
ляем ого моделью измерения [формула (22)] и приведенными выше распределениями в е р о я тн о с ти  д ля  
входных величин Х ь / = 1, 2. 3. 95%-ная эллиптическая о б ла с ть  охвата  д ля  У, полученная в предположении, 
ч т о  У  характер изуется двумерным распределением Гаусса N (y:U y)  [как и на э та п е  а) в 6.5.2.3], показана 
пункти рной линией. Э т а  о б л а с ть  им еет площ адь 11.8 квадратны х единиц, кр = 2,45 и содерж ит 968 из 
1000 точек. Эллиптическая о б л а с ть  охвата, определенная на основе 1000 выборочных то че к  в с о о т ­
в е т с т в и и  с процедурой 7.7.2, показана сплош ной линией. Э т а  о б л а с ть  им еет площ адь 10,6 квадратны х  
единиц, кр = 2,33, ч т о  немногим меньше, чем о б ла с ть , полученная в предположении норм альности рас­
пределения выходной величины. Как и должно сле до в а ть  из способа постр оения о б л а с ти  охвата, э т а  
о б л а с ть  содерж ит ровно 950 точек.

Модель измерения [форм ула (22)] рассм атри вается более подробно в разделе 9, где  приведены  
такж е другие примеры постр оения об ла с те й  ох в а та  д ля  двумерных выходных величин.

Рисунок 6 —  Эллиптические области охвата, построенные в соответствии с процедурами 6.5.2.3 а) и 7.72  для 
примера из 7.7.2 (слева) и прямоугольные области охвата, построенные в соответствии с процедурами 6.5.2.3 Ь)

и 7.7.3 для примера из 7.7.3 (справа)
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7.7.3 О б л а с ть  охвата в ф о рм е п а р а лле ле п и п е да
100 р % -н а я  область охвата д л я  Y  в форме параллелепипеда имеет вид

у, ±  f y H y , ) , =  1...... т ,  (23)

где у  = (у ,......уст)'о п р е де ля е т положение центра параллелепипеда в пространстве выходных величин,
а и (у) = (д (у ,) и{ут ))т и Л , определят его размер (объем). Процедура построения области охвата в форме
параллелепипеда по ф орм уле (23) при известных оценках у  и и (у ) требует нахождения К, и состоит в 
следующем:

a ) трансформируют точки у , в у ’ ,  ( г - 1......М ) по формуле (21), но где L  теперь является диагональ­
ной матрицей размерности т х  т  с диагональными элементами д (у ,)  Щут ):

b ) сортируют трансформированные точки у с, в порядке возрастания значения d „  где d, теперь опре­
деляю т по формуле

d, a  max \y°,f L
/ - 1....ОТ * I

c ) используют упорядоченные у ", д л я  определения коэффициента охвата кя, значение которого 
определяю т из условия: d, < к„ д л я  всех у 0, с  номером г, не превышающим рМ:

d) строят 100 р % -ную  область охвата д л я  Y . границы которой определены формулой (23).

П р и м е ч а н и е  —  Процедура построения области охвата учитывает существование зависимости 
между элементами вектора Y.

Пример —  На рисунке 6 (справа) показаны т е  же 1000 точек, ч т о  и на рисунке 6 (слева). 95 %-ная 
прямоугольная о б л а с ть  охвата  д ля  Y, полученная в предположении, ч т о  Yf, j  = 1,2 характеризу­
е т с я  нормальным распределением N(y.; и2(у^), а корреляция оценок у , и у 2 [как и на эта п е  Ь) в 6.5.2.3] 
не уч и ты в а е тс я , показана пункти рной линией. Э т а  о б л а с ть  им еет площ адь 40,1 квадратны х еди­
ниц, = 2,24 и содерж ит все 1000 точек. Прямоугольная о б л а с ть  охвата, определенная на основе 
1000 выбранных то ч е к  в с о о т в е т с т в и и  с процедурой 7.7.3, показана сплошной линией. Э т а  о б ла с ть  
им еет площ адь 25,5 квадратны х единиц, kq = 1,78, ч т о  немногим меньше, чем об ла сть , в предположении 
норм альности распределения выходной величины. Как и должно сле до в а ть  из способа построения обла­
с т и  охвата, э т а  о б л а с ть  содерж ит ровно 950 точек.

7.7.4 Наим еньш ая о б л а с ть  охвата
Процедура построения наименьшей 100 р % -н о й  области охвата включает в себя следую щ ие этапы:
a )  в т-м е р н о м  пространстве выходных величин строят исходный параллелепипед, предположи­

тельно охватывающих большую долю  значений, которые могут быть приписаны векторной выходной 
величине Y;

b ) равномерной m-мерной сеткой д е ля т  исходный параллелепипед на ячейки в виде подобных рав­
ных плотно уложенных малых параллелепипедов;

c ) д ля  каждого малого параллелепипеда подсчитывают число попавших в него выборочных точек у (;
d ) долю  точек у„ попавших в малый параллелепипед, рассматривают как приближенное значение 

вероятности попадания в данный параллелепипед значения случайной векторной величины Y;
e) все малые параллелепипеды располагают в порядке уменьшения приписанной им вероятности:
f) суммируют вероятности, приписанные малым параллелепипедам, начиная с  первого и последова­

тельно прибавляя вероятность каждого последующего вплоть до того, пока полученная сумма не превысит 
или не станет равной р:

д ) совокупность малых параллелепипедов, внесших вклад в получение указанной суммы, рассмат­
ривают в качестве приближения наименьшей области охвата.

П р и м е ч а н и е  1 —  Данная процедура, заимствованная из [20]. заключается в разбиении пространства 
выходных величин на ряд малых ячеек (параллелепипедов), аппроксимации вероятности попадания значения 
случайной выходной величины Y в каждую из таких ячеек допей попавших в нее точек выборки и объединении 
минимального числа ячеек, в совокупности содержащих не менее 100р %  из М выборочных значений векторной 
выходной величины, в конфигурацию, рассматриваемую как наименьшая область охвата.

П р и м е ч а н и е  2 —  Параллелепипед, построенный на этапе а), должен включать в себя все точки уг.
П р и м е ч а н и е  3 —  Число малых параллелепипедов, используемых для  разбиения на этапе Ь) про­

странства выходных величин, ограниченного большим параллелепипедом, построенным на этапе а), влияет на 
качество полученного приближения.
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П р и м е ч а н и е  4 —  В большинстве случаев качество приближения улучшается с ростом М. Чтобы 
получить достаточно хорошев приближение, особенно в случае, когда размерность пространства выходных вели­
чин т  более двух или трех, может потребоваться очень большое число испытаний М.

П р и м е ч а н и е  5 —  Построенная в соответствии с вышеописанной процедурой наименьшая область 
охвата может оказаться несвязной, особенно, если М  недостаточно велико.

П р и м е ч а н и е  6 —  На этапе d) вероятность, приписанная каждому малому параллелепипеду, опреде­
ляется относительной частотой попадания в него выборочного значения выходной величины. Использование 
более сложной аппроксимации (см. [23]) может позволить улучшить связность области охвата и сгладить ее 
границы.

П р и м е ч а н и е  7 —  Приписанные на этапе d) вероятности могут оказаться одинаковыми для двух или 
нескольких малых параллелепипедов. В этом случае упорядочение малых параллелепипедов, выполняемое на 
этапе в), будет не единственным. Разным возможным вариантам упорядочения могут соответствовать разные 
приближения области наименьшего охвата.

П р и м е ч а н и е  8 —  В двумерном случае {т  = 2) этапы от а) до d) входят в начальные шаги типичного 
алгоритма визуализации распределения для Y (см. 9.1.6).

Пример —  Рассм отрим  т у  же самую задачу, ч т о  и в примере 7.7.2. На рисунке 7 показано прибли­
жение д ля  наименьшей 95 % -ной о б л а с ти  охвата, полученное с использованием вышеуказанной 
процедуры при разбиении исходного больш ого прямоугольника на 10х 10 малых прямоугольников  
(слева) и 100x100 малых прямоугольников (справа). О б л а с ть  ох в а та  на рисунке 7 слева построена по 
1000 точкам, случайно выбранным из распределения д ля  Y. Она им еет площ адь 11,3 квадратны х единиц 
и содерж ит 955 точек. О б ла с ть  охвата  на рисунке 7 справа построена по 1000000 точек, полученных 
случайной выборкой из распределения д ля  Y. Она им еет площ адь 9,4 квадратны х единиц и содерж ит  
950 074 точки. Д л я  сравнения на каждом рисунке сплошной линией показана 95 %-ная эллиптическая  
о б л а с ть  охвата  д л я  Y, построенная в с о о т в е т с т в и и  с процедурой из 7.7.2.

Рисунок 7 —  Эллиптические области охвата, построенные по процедуре из 7.7.2. и приближения наименьших 
областей охвата, построенные по процедуре из 7.7.4 для разбиения 10x10 и 1000 точек выборки (слева) и для

разбиения 100x100 и 1000000 точек выборки (справа)

7.8 А д а п ти в н а я  п р о ц е дур а  м етода М о н те -К а р ло

7.8.1 О бщ ие полож ения
7.8.1.1 Эффективность метода Монте-Карло при определении оценки у выходной величины Y . соот­

ветствующей ковариационной матрицы и области охвата д л я  Y  зависит от числа испытаний М. Значение М  
может быть выбрано заранее, как в 7.2. Другой подход состоит в использовании адаптивной процедуры 
метода Монте-Карло, согласно которой число испытаний последовательно увеличивают д о  тех пор. пока 
полученные числовые оценки искомых величин не станут установившимися. Численный результат считает­
ся установившимся, если соответствующее ему удвоенное стандартное отклонение станет меньше задан­
ной точности вычисления (см. 7.8.2).
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7.8.1.2 Целью  адаптивной процедуры, описанной в 7.8.3, является получение в среднем с  заданной 
вычислительной точностью значений следующих величии:

a ) оценки у  = ( у , , .... ут У  величины Y;
b ) вектора и ( у )  = (и (у , ) . ..., i/(ym))T стандартных неопределенностей, связанных с оценками:
c) положительно определенной матрицы Ry размерности т х т  коэффициентов корреляции = г(у„у ), 

связанных с парами оценок;
d ) коэффициента охвата кр. определяющего 100 р  %*ную область охвата д ля  Y  в форме т-м е р н о го  

эллипсоида.

П р и м е ч а н и е  1 —  То. что выполнение требования к точности вычислений может быть гарантировано 
не безусловно, а только в среднем, обусловлено природой случайности, используемой в методе Монте-Карло.

П р и м е ч а н и е  2 —  Как правило, чем больше вероятность охвата р. тем большее число испытаний мето­
да Монте-Карло необходимо для определения кр с заданной точностью вычислений.

П р и м е ч а н и е  3 —  Стандартные неопределенности и(у) и корреляционная матрица Ry вместе 
определяют ковариационную матрицу U соответствующую оценкам у (см. примечание 3 к 3.2.1 и 7.8.2.4).

П р и м е ч а н и е  4 —  Если требуется построить область охвата иной формы, нежели эллипсоид в 
m-мерном пространстве, то проверку устойчивости метода выполняют для параметров, характеризующих об­
ласть охвата данной формы. Например, для области охвата в форме m-мерного параллелепипеда оценка точно ­
сти  вычисления может быть выполнена для коэффициента охвата ка. В этом случае процедура, описанная в 7.8.3, 
должна быть модифицирована соответствующим образом.

П р и м е ч а н и е  5 —  Если в представлении результата измерения не требуется указывать область охва­
та. то процедуру увеличения числа испытаний останавливают после получения установившихся численных значе­
ний оценки у. соответствующих стандартных неопределенностей и корреляционной матрицы Ry.

П р и м е ч а н и е  6 —  Матрица Ry может не быть положительно определенной в случае существования 
зависимостей между выходными величинами (для примера см. 9.4. в частности, примечание 2 к 9.4.2.3).

7.8.2 То ч н о с ть  в ы ч и сле н и я  ч и с ло в ы х  значений
7.8.2.1 Е сли  обозначить через л в9 число существенных значащих цифр в числовом представлении 

величины Z, то предел погрешности вычисления S значения определяю т следующим образом.
a ) представляю т значение Z  в виде c x 1 0 f,  где с  —  целое число, состоящее из пщ  значащих цифр, 

I — целое число;
b ) определяю т S  по формуле

8 * £ ю ' .

7.8.2.2 При проверке получения установившейся оценки у, величины Y. и стандартной неопределен­
ности u{yf). соответствующей у ,  при реализации адаптивной процедуры метода Монте-Карло, описанной
в 7.8.3, предел погрешности вычисления 8 f , j -  1...... т ,  определяю т по числу существенных значащих
цифр в числовом представлении u(y;).

7.8.2.3 При проверке получения установившейся оценки матрицы R y корреляционных коэффициентов 
гц, соответствующей оценке у .  предел погрешности вычисления р  определяю т по числу существенных 
значащих циф р в числовом представлении Лта11 —  наибольшем собственном значении матрицы R y 

(см. примечание 3 к 3.21).
7.8.2.4 Матрица R y занимает ключевое место в процедурах последовательного оценивания неопреде­

ленности. Обычно эта процедура связана с  получением значения скалярной величины О. представляющей 
собой некоторую комбинацию выходных величин т. е.

0  = с , У , * . . .  +  СлЛ ,  = с тУ .

Используя формулу

U y = D yRyD y

(см. примечание 3 к 3.21), стандартную неопределенность u{q), соответствующую оценке

q = с 7у

величины О. можно представить в виде

i/ {q )  =  c rU yc  = d ’ R yd. 

где

d  = D yc .
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7.8.2.5 Точность вычисления u{q) зависит от точности вычисления R y и d. а последняя зависит от D y,
и. следовательно, от и ( у )  = (и (у ,)......и(ут ))т -

7.8.2.6 При оценивании неопределенности в целях последующих расчетов, которые включают в себя 
более сложные преобразования, например, вычисления по методу наименьших квадратов, связанные с 
явным или неявным обращением матрицы U y. необходимо использовать другие критерии останова адап­
тивной процедуры вычислений. Так в случае применения метода наименьших квадратов критерий может 
быть основан на расчете р  (см. 7.8.2.3) по числу существенных значащих цифр в числовом представлении 
наименьшего собственного значения матрицы (см. примечание 5 к 3.21). При этом устойчивость числен­
ного алгоритма решения задачи с использованием метода наименьших квадратов зависит от числа обус­
ловленности Am**/Агаш матрицы R y. Поэтому д л я  уменьшения числа испытаний в методе Монте-Карло при 
постановке измерительной задачи ее следует определять через параметры, позволяющие сделать число 
обусловленности настолько малым, насколько это возможно.

7.8.2.7 Точность вычисления кр. используемая д л я  проверки получения установившегося значе­
ния коэффициента охвата /св, определяю т по числу существенных значащих цифр в числовом представ­
лении кр.

7 .8 .2 8  При последующих расчетах неопределенности, основанных на использовании G  (см. 7.5) в 
качестве приближения функции распределения Y, необходимо убедиться, что такое дискретное пред­
ставление пригодно д л я  этих расчетов, особенно если их целью является получение области охвата д ля  
некоторой величины. Более подробное рассмотрение данного вопроса выходит за рамки настоящего 
стандарта.

7.8.3 О пи са н и е  а да п ти в н о й  п р о ц е дур ы
Практическая реализация адаптивной процедуры метода Монте-Карло с  последовательным увеличе­

нием числа испытаний состоит в следующем:
a ) задают в качестве па(0 небольшое положительное целое число (см. 7.8.2);
b ) задают М  = m ax(J. 104), где J —  наименьшее целое, большее или равное 100/(1 - р ) ;
c ) задают h = 1 (счетчик итераций метода Монте-Карло);
d ) выполняют М испытаний методом Монте-Карло (см. 7.3 и 7.4);
e ) используют М  полученных на выходе модели значений векторной выходной величины у ь  ....  у м 

д л я  вычислений очередных. Л-х значений ytnJ. u (y ,A>), R W  и kpih). являющихся соответственно оценкой 
величины Y, соответствующей стандартной неопределенностью, соответствующей корреляционной матри­
цей и коэффициентом охвата д л я  100 р% -м ой области охвата;

f) если /? £ 10 .т о  увеличиваю т h на единицу и возвращаются к этапу d);

д )д л я  j - Л ...... т  вычисляют выборочные стандартные отклонения sy> средних значений получен­

ных в результате итераций оценок у / ’\ .... у / й) величины Yr  по формуле

h) аналогичным образом вычисляют выборочные стандартные отклонения средних значений элемен­
тов вектора u ( / n)). а также д л я  и kpw \

i) используют все Ш  значений векторной выходной величины д л я  вычисления u ( y ) .  R , и кр:
j) д л я  j  = 1...... т  определяю т пределы  погрешности вычисления £  д л я  и (у ). как описано в 7.8.2.1 и

7.8.2.2;
k) определяю т предел погрешности р  д л я  матрицы R y коэффициентов корреляции, как описано в

7.8.2.1 и 7.8.2.3;
l) вычисляют численную точность \-р. соответствующую к0. как описано в пунктах 7.8.2.1 и 7.8.2.7;

т )  если д л я  лю бого) = 1......m u m 2 sy [или 2 su ( y ) ] превосходит или 2 s, превосходит р . или

2 skp превосходит кр, то увеличиваю т h на единицу и возвращаются к этапу d):

п) если возврата к этапу d ) не произошло, то  считают все вычисленные оценки установившимися и 
используют все Ш  значений векторной выходной величины д л я  вычисления у.  U y и коэффициент охвата кр 
д л я  100 р  % -н о й  области охвата, как описано в 7.6 и 7.7.

П р и м е ч а н и е  1 —  Чтобы алгоритм адаптивной процедуры был сходящимся, должны существовать 
математическое ожидание и ковариационная матрица Y.
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П р и м е ч а н и е 2  —  Выбор М на этапе Ь) является произвольным, но практиха показала его пригодность.
П р и м в ч а н и е З  —  Использование в процедуре минимального числа итераций, равного 10. позволяет 

предотвратить преждевременный останов алгоритма и. кроме того, делает более обоснованным предположе­
ние. сделанное в примечании 6. Аналогичное изменение, будучи внесенным в адаптивную процедуру метода 
Монте-Карло для моделей с единственной скалярной выходной величиной [JCGM  101 (пункт 7.9.4)]. также позво­
лит улучшить результаты применения этой процедуры для  ряда задач.

П р и м е ч а н и е 4  —  На этапе д) у, рассматривается как реализация случайной переменной со стандар­

тным отклонением s/( .

П р и м е ч а н и е б  —  Стандартные отклонения, полученные на этапахд) и h). уменьшаются по закону 
f r 1'2 (см. примечание к 7.1.7).

П р и м е ч а н и е б  —  Коэффициент 2. используемый на этапе т ) .  основан на представлении выборочных 
средних случайными, нормально распределенными величинами и соответствует вероятности охвата приблизи­
тельно равной 95 % .

П р и м е ч а н и е ?  —  В [28] рассматриваются некоторые улучшения адаптивной процедуры, изложенной 
в JCGM  101 (подраздел 7.9).

8 Проверка результатов оценивания неопределенности по GUM 
сравнением с методом Монте-Карло

8.1 Способ оценивания неопределенности no G U M  (далее обозначаемый G U F ) во многих случаях 
позволяет получить удовлетворительные результаты. Однако не всегда можно сразу определить, соблю де­
ны ли  все условия д л я  ого применения [см. JC G M  101. пункты 5.7 и 5.8]. Обычно гораздо проще оценить 
неопределенность с использованием метода Монте-Карло (при наличии соответствующего программного 
обеспечения), чем выяснить, выполнены ли  все условия оценивания по G U M  [8]. При наличии сомнений в 
обоснованности применения способа оценивания no G U M  полученные с его помощью результаты нужда­
ются в проверке, а поскольку диапазон условий, при которых может быть применен метод М онте-Карло, 
значительно шире, чем д л я  метода по G U M . то д ля  такой проверки рекомендуется сопоставить результаты 
оценивания по G U M  с  результатами оценивания методом Монте-Карло. Если сравнение подтвердит обо­
снованность применения G U M . то способ оценивания неопределенности no G U M  можно будет применять в 
будущем д ля  схожих задач. В противном случае сле дуе т рассмотреть возможность замены на другой 
способ оценивания неопределенности, включая тот же метод Монте-Карло.

8.2 Д л я  сравнения двух методов необходимо вначале:
a) применить способ оценивания неопределенности по G U M  д ля  получения (i) оценки y GUF величи­

ны Y . (й) стандартной неопределенности u (yGUF). соответствующей yG'JF, (iii) корреляционной матрицы Ry001". 
соответствующей y GUP, и (iv) коэффициент охвата /c„GUF. определяющего 100 р  % -ную  область охвата д ля  Y 
в виде m -мерного эллипсоида.

b ) применить адаптивную процедуру метода М онте-Карло (см. 7.8.3). чтобы получить аналогичные 
оценки у мсм. u (yu cu ). R y* 5*  и к » сы.

8.3 Задача процедуры сравнения состоит в том. чтобы определить, согласуются л и  между собой 
результаты, полученные способом оценивания неопределенности по G U M  и методом М онте-Карло, в рам­
ках заданной точности вычислений. Д л я  этого:

a ) задают в качестве п^  небольшое положительное целое число (см. 7.8.2);
b ) д л я /'= 1......т  рассчитывают пределы погрешности вычисления S/ д л я  и(у ;•) как указано в 7.8.2.1 и

7.82.2;
c ) рассчитывают предел погрешности вычисления р д л я  матрицы R y коэффициентов корреляции как 

указано в 7.8.2.1 и 7.8.2.3;
d ) рассчитывают предел погрешности вычисления кр д л я  как указано в 7.8.2.1 и 7.8 2.7;
в) сравнивают оценки, соответствующие стандартные неопределенности, коэффициенты корреляции, 

а также коэффициенты охвата, полученные с использованием способа оценивания неопределенности по 
G U M  и метода Монте-Карло, чтобы определить, обеспечивает ли  первый из указанных способов требуемое 
число правильных цифр в числовой записи полученных результатов. Д л я  этого определяют

d y =  I y/GUF -  У ,мсм I. У -  1......т -

зз
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«ВД,1 = | " ( y / eUF) - “ (>'/UCUH  / » * ■ . . . m .

. I .  GUF ,  MCUl
“  Am*x

d ,' * \ k ™ F -  kpucu | ,

t . e. абсолютные разности соответствующих численных результатов. Тогда если д л я  всех у = 1 ,.... т  d f  и 

du[/)) не больше чем 5, ,  d, ^  не больше чем р, а d ^  не больше, чем кр, то  результат сравнения считают 

положительным, а способ оценивания неопределенности по G U M  —  успешно прошедшим проверку.

П р и м е ч а н и е  1 —  Выбор вероятности охвата и формы области охвата влияет на результат сравнения. 
Поэтому сравнение двух способов оценивания выполняют только для заданных вероятности охвата р и формы 
области охвата.

П р и м е ч а н и е  2 —  В тех ситуациях, когда построение области охвата не требуется, проверку проводят

только на основании полученных значений dv . d . . и d, ■ Если форма области охвата должна быть отлична

от эллипсоида, го проверку проводят для соответствующей величины, определяющей объем области охвата за­
данной формы. Например, если область охвата должна иметь вид m-мерного параллелепипеда, то сравнивают 
полученные двумя способами значения коэффициента охвата kq с учетом требуемой точности вычисления vp.

П р и м е ч а н и е  3 —  При проверке применимости способа оценивания неопределенности no GUM срав­
нением его результатов с результатами метода Монте-Карло, последние должны быть получены при достаточном 
числе испытаний М. Если для сравнения применяют адаптивную процедуру метода Монте-Карло, го достаточно 
задать пределы погрешности вычислений в адаптивной процедуре в пять раз меньшими соответствующих преде­
лов погрешности в процедуре проверки [см. JCG M  101 (пункт 8.2)] или. другой вариант, задать число значащих 
цифр при числовом преставлении величин, вычисляемых с помощью адаптивной процедуры, на единицу боль­
шим. чем используется в процедуре проверки.

9 Примеры

9.1 И л л ю с тр а ц и и  полож ений настоящ его с та н да р та

9.1.1 В первом примере (см. 9.2) рассматривается линейная м одель измерения, в которой входные 
величины могут быть общими д л я  всех выходных величин или влиять только на некоторые из них. Д ля  
частных случаев данного примера существуют аналитические решения.

9.1.2 Во втором примере (см. 9.3) рассматривается нелинейная модель преобразования декарто­
вых координат (действительной и мнимой части комплексной величины) в полярные координаты (м одуль и 
аргумент комплексной величины). Д ля  этого примера также в ряде случаев имеются аналитические реше­
ния [6].

9.1.3 В третьем примере (см. 9.3) рассматривается более сложная нелинейная модель. О н  аналоги­
чен примеру из G U M , связанному с  одновременным измерением активного и реактивного сопротивлений 
[JC G M  100 (раздол Н.2)]. Пример иллюстрирует обработку ряда одновременных независимых наблюдений 
векторной величины.

9.1.4 Четвертый пример (см. 9.5) посвящен измерению температуры с  использованием термометра 
сопротивления. Э то т пример демонстрирует обработку данных д л я  одномерной и многомерной моделей 
измерения.

9.1.5 Многие из рисунков, используемых в примерах, д л я  их лучш его восприятия даны в цветном 
исполнении. На контурных графиках каждому уровню контурной линии соответствует свой цвет. Если  рису­
нок состоит из двух и более графиков, то д ля  каждого из таких графиков один и тот же цвет использован для  
одних и тех же значений уровня за исключением особо оговоренных случаев. Если д л я  сравнения резуль­
татов используется два и более рисунка, как это имеет место при сопоставлении результатов, полученных 
способом оценивания no G U M  и методом М онте-Карло, то соответствующие графики на этих рисунках 
изображены в одних и тех же границах осей за исключением случаев, когда между этими результатами 
имеется существенное различие.

9.1.6 Поскольку первичными выходными данными д ля  метода Монте-Карло являются М  выборочных 
векторов д л я  выходной величины Y . собранные в матрицу G  размерности т  х  М  (см. 7.1.6). зачастую
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желательно представить эти данные в виде приближения соответствующей функции плотности распреде­
ления и изобразить эту функцию в виде контурного графика. Рисунки настоящего раздела показывают 
контурные графики д ля  случая двумерной выходной величины, т  = 2. С  ростом числа испытаний М  контур­
ные линии выборочного распределения должны все больше приближаться к линиям распределения д л я  Y, 
что требует соответствующего сглаживания [22.24). Некоторые контурные графики, приведенные в насто­
ящем разделе, построены, исходя непосредственно из приближения соответствующей плотности распре­
деления. Д л я  других применен соответствующий алгоритм сглаживания контуров. На одном из рисунков 
(рисунок 10) д л я  демонстрации эффекта сглаживания показаны сглаженные и месглаженные контурные 
линии.

9.2 А д д и ти в н а я  м о де ль

9.2.1 П о становка задачи
В этом примере рассматривается аддитивная (линейная) двумерная модель измерения (см. при­

мере 7.7.2)

Y, = X , + Х 3. У2 - Х 2 + Х 3 (24)

д л я  трех разных примеров сочетаний плотностей распределения ( & )  д л я  входных величин Х ;, рас­

сматриваемых как независимые. Из трех входных величин X ,. Х 2 и Х 3 величина Х 3 описывает фактор, 
влияющий на обе выходные величины У, и У2. тогда как каждая из величии X , и Х 2 описывают факторы, 
влияющие только на одну из выходных величин —  У, и У2 соответственно. В первом примере (см. 9.2.2),

все 9х, ($<) являются плотностями нормального распределения с  нулевым математическим ожиданием и 

единичным стандартным отклонением. Второй пример (см. 9.2.3) идентичен первому за исключением того, 

что дгХа(€ з) является плотностью  равномерного распределения Х 3 также с нулевым математическим 

ожиданием и единичным стандартным отклонением. Третий пример (см. 9.2.4) идентичен второму за исклю­
чением того, что стандартное отклонение Х 3 равно трем, что демонстрирует доминирующее влияние факто­
ра. соответствующего данной входной величине, на результат измерения.

9.2.2 В ы ч и сле н и я  и результа ты  (прим ер 1)
9.2.2.1В данном примере каждая входная величина X, описывается стандартным нормальным рас­

пределением, т. е. оценки X, имеют вид х1 = 0, / = 1, 2, 3,  с соответствующими стандартными неопределен­
ностями и{х,) = 1. Результаты, полученные с применением способа оценивания неопределенности по G UM  
(см. раздел 6) и методом Монте-Карло (см. раздел 7) показаны в таблице 3 и на рисунках 8— 10. Некоторые 
данные в таблице с целью облегчения их сравнения представлены в виде чисел с четырьмя значащими 
цифрами.

Т а б л и ц а  3 —  Результаты измерения способом оценивания неопределенности no GUM (G U F) и методом Монте- 
Карло (ММК) для аддитивной модели [формула (24)), с входными величинами X,. описываемыми стандартным 
нормальным распределением (9.2.2)

Метод м У\ у3 «(/*) Г<У,У2) *р *,

GUF — 0.000 0.000 1.414 1.414 0.500 2.45 2,24

ММК 1х105 0,003 0.005 1.412 1,408 0,498 2.45 2.22

ММК 1x 10° 0.000 0,000 1.416 1.415 0,500 2.45 2,21

ММК 1х107 0,000 0.000 1.414 1.414 0,500 2.45 2.21

Адаптивный
ММК

0.35x10s 0,001 -0.001 1.417 1.417 0.502 2.45 2.22

Адаптивный
ММК

0.45 x10s 0,001 -0.001 1.416 1.414 0,501 2.45 2,21
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9.2.2.2Способ оценивания неопределенности по G U M . обобщенный на случай нескольких выходных 
величин, дает оценку у  = (0.0) величины Y. Ковариационная матрица д л я  данной оценки, имеющая вид

получена по форм уле (3). U y = С .и ^ С / , где в соответствии с условиями настоящего примера

и ж =

12
о

о

о о 

12 о 

0 12
с - Г 0 1 х 1° 1 1.

Коэффициент корреляции, соответствующий оценкам у, и у2 (см. 3.21). будет г(у ,,у 2) = 0 .5 .95% -ны е 
области охвата для  Y  в форме эллипса и прямоугольника определяются, соответственно, коэффициентами 
охвата кр = 2.45 (таблица 1) и кр = 2.24 (таблица 2). Эти результаты приведены в строке д л я  G U F  таблицы 3. 
В соответствии со способом оценивания неопределенности по G U M  выходная величина Y  описывается 
двумерным нормальным распределением M y.U,.).

9.2.2.3 Применение метода Монте-Карло с числом испытаний М  равным 10s, 106 и Ю 7 дает результа­
ты. приведенные в следующих строках таблицы д л я  ММК. В строках д л я  адаптивного ММК указаны значе­
ния М. равные 0 ,3 5 х1 0 6 и 0 ,4 5 х1 0 б и представляю щие собой число испытаний при двух применениях 
адаптивной процедуры метода Монте-Карло (см. 7.8.3) д л я  п равного трем (см. примечание 3 в 8.3). Все 
числовые значения, полученные с применением адаптивной процедуры, в частности, д ля  у ,. у2. о (у,). и{у2), 
г(у, .у2). кр и ка, являю тся установившимися.

9.2.2.4 Полученная аналитически плотность распределения д л я  Y  представляет собой двумерное 
нормальное распределение Л/(у,иу) с у  и U y. приведенными в 9.2.2 2.

9.2.2.5 На рисунке 8 слева показана плотность двумерного нормального распределения д ля  Y . полу­
ченная способом оценивания неопределенности no G U M  (совпадающая с аналитическим решением). Кон­
турные линии равной вероятности имеют форму эллипсов и определяются уравнениями

(л -  у)т V < n -y  ) = **
д ля  различных значений к. На рисунке 8 справа показаны контурные линии приближения плотности распре­
деления д л я  Y . полученные с  применением метода Монте-Карло с  М  = 107 испытаниями. Это приближение 
представляет собой отношение числа точек выборки из распределения Y. попавших в ячейку сетки разби­
ения плоскости Y . к общему числу испытаний М. приписанное области плоскости Y. занимаемой этой ячей­
кой (внутри данной ячейки плотность распределения считают постоянной). Контурные линии приближен­
ного распределения Y  построены д л я  тех же значений к. что были использованы д ля  построения эллипти­
ческих контурных линий на рисунке 8 слева. Алгоритм  сглаживания контурных линий при этом не приме­
нялся (см. 9.1.6).

П р и м е ч а н и е  —  На рисунке 8 и других контурных графиках приведена цветовая шкала, показывающая 
соответствие цвета контурной линии определенному уровню (вероятности).

9 .2 .2 6  На рисунке 9 показаны маргинальная плотность распределения А/(у,.1/У] | д ля  / ^ п о л у ч е н ­

ная способом оценивания неопределенности no G U M . а также приближение плотности распределения той 
же величины, полученное методом Монте-Карло с  числом испытаний М  = 107. Приближение представлено 
в виде распределения частот (гистограммы). Эти две плотности распределения визуально практически не 
различимы. Аналогичный результат будет получен и д л я  У2.
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Рисунок 8 —  Контурные линии совместных плотностей распределения выходных величин в аддитивной модели 
измерения [формула (24)]. полученных способом оценивания неопределенности по GUM  (слева) и методом 
Монте-Карло (справа) без сглаживания контуров при стандартном нормальном распределении входных

величин (9.2.2)

Плотность распределения вероятностей

Рисунок 9 —  Маргинальная плотность распределения У, для тех же условий, что и на рисунке 8 (9.2.2)

9.2 .27  На рисунке 10 слеоа показаны контурные линии приближения плотности распределения д ля  Y. 
полученные методом М онте-Карло с0 ,4 5 х  106 испытаниями. Эти линии значительно менее «гладкие», чем 
те. что изображены на рисунке 8 (справа) и получены д л я  гораздо большего числа испытаний. На рисунке 
10 справа приведен пример сглаженных контурных линий (см. 9.1.6).

П р и м е ч а н и е  —  В большинстве случаев гладкость контурных линий для приближения плотности Y 
гложет быть обеспечена выбором большего числа испытаний в методе Монте-Карло и более частой сеткой 
разбиения плоскости Y. Аналогичный эффект имеет место в случае единственной скалярной выходной величины, 
когда для обеспечения гладкости огибающей кривой построенного приближения плотности распределения 
(гистограммы) необходимо большое значение М  и большое число классов гистограммы.
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Рисунок 10 —  Контурные линии совместных плотностей распределения выходных величин в аддитивной модели 
измерения [формула (24)}, полученных с использованием адаптивной процедуры Монте-Карло без сглаживания 

(слева) и со сглаживанием (справа) для  тех же условий, что и на рисунке 8 (9.2.2)

9.22.8  Д ля  сопоставления результатов, полученных способом оценивания неопределенности по G UM  
и с помощью адаптивной процедуры метода М онте-Карло, применена процедура проверки, описанная в 
разделе 8, при значении равном двум. В этом случае точности вычисления будут определяться значе­
ниями

5, = &2 = 0-05. /> = 0,005, кр = KTq = 0,05.

Адаптивная процедура метода Монте-Карло была применена дважды. В обоих случаях продемонст­
рирована хорошая согласованность результатов, чего и следовало ожидать, поскольку в данном примере 
полностью соблюдены все условия применимости способа оценивания неопределенности no G U M . Исклю­
чением мог стать только результат вычисления Л3, поскольку расчет значения этой величины способом 
оценивания неопределенности no G U M  но учитывает взаимную зависимость между У , и У2 (см. 6.5.2.3). 
Однако и д ля  к0 результаты, полученные двумя методами, показали хорошую согласованность в пределах 
заданной точности вычисления.

9.2.3 В ы ч и сле н и я  и р е зульта ты  (прим ер 2)
9.2.3.1 Э тот пример измерительной задачи идентичен описанному в 9.2.2 за тем исключением, что Х 3 

характеризуется равномерным распределением с нулевым математическим ожиданием и единичным 
стандартным отклонением. Оценки X, и соответствующие стандартные неопределенности остались неиз­
менными: х, = 0. и(х,) = 1, / '= 1 .2 ,3 . Результаты, полученные с применением способа оценивания неопре­
деленности no G U M  (см. раздел 6 ) и методом М онте-Карло (см. раздел 7). показаны в таблице 4 и на 
рисунках 11 и 12.

Т а б л и ц а  4 —  Результаты измерения для тех же условий, что в таблице 3, за исключение*» того, что Х3 
описывается равномерным распределением (9.2.3)

Метод U У\ Уз «<У7> НУгУз)

GUF — 0.000 0,000 1.414 1.414 0,500 2.45 2.24

ММК 1Х105 0,008 0,010 1.414 1.410 0,500 2.38 2.15

ММК 1x10° 0,001 0,001 1.414 1.411 0.499 2.38 2.15

ММ< 1Х107 0,000 0,000 1.414 1.414 0,500 2.38 2.15

Адаптивный
м кк

0.36x10В 0,000 -0,002 1.413 1.414 0,500 2.38 2.15

Адаптивный
ММК

0.35x10® 0,002 -0,001 1.418 1.415 0,502 2.38 2.15

38



Г О С Т  Р 54500.3.2— 2013

9.2.3.2 Способ оценивания неопределенности no G U M  дает абсолютно одинаковую двумерную плот­
ность распределения д л я  Y  (см. рисунок 11. слева) независимо от того, распределена ли входная величина 
Х 3 по нормальному (как в 9.2.2) или равномерному (как в настоящем примере) закону, поскольку в данной 
измерительной задаче вид этой плотности распределения полностью определен оценками входных вели­
чин и их стандартными отклонениями, а они в обоих примерах одинаковы. Поскольку м одель измерения 
изначально линейна, ее дополнительной линеаризации д ля  применимости закона трансформирования нео­
пределенностей не требуется, и в этом смысле способ оценивания неопределенности по G U M  никаких 
приближений не использует. Тем не менее, результаты, полученные способом оценивания неопределенно­
сти по G U M  д л я  оценки у величины Y  и соответствующей ковариационной матрицы U y. не будут совпадать 
с аналитическим решением, поскольку последнее зависит не только от оценок входных величин и их стан­
дартных отклонений, но и от вида их распределений, в данном примере от распределения Х 3.

9.2.3.3 На рисунках 11 (справа) и 12 показано, каким образом негауссовость распределения Х 3 влия­
ет на приближения плотности распределения Y  и маргинальной плотности распределения д ля  У ,, получен­
ные методом Монте-Карло.

Рисунок 11 —  То же. что на рисунке 8 для  примера с входной величиной Х3. 
описываемой равномерным распределением (9-2.3)

Плотность распределения вероятностей

Рисунок 12 —  То же. что на рисунке 9 для  примера с входной величиной Х3. 
описываемой равномерным распределением (9.2.3)
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9.2.3.4 Проверка применимости способа оценивания неопределенности по G U M . описанная в разде­
ле  8 (см. также 9.2.2). была проведена сравнением результатов, полученных с  его помощью и с  помощью 
адаптивной процедуры Монте-Карло. Из таблицы 4 видно хорошее совпадение результатов д ля  у , . у2, о (у ,), 
и{у2) и г (у „ у 2). но недостаточно хорошее д л я  кр и kQ.

9.2.4 В ы ч и сле н и я  и р е зульта ты  (прим ер 3)
9.2.4.1 Э то т пример измерительной задачи идентичен описанному в 9.2.3 за исключением того, что 

стандарлю е отклонение д л я  Х 3 теперь равно не единице, а трем. Результаты, полученные с применением 
способа оценивания неопределенности по G U M  (см. раздел 6 ) и методом М онте-Карло (см. раздел 7), 
показаны в таблице 5 и на рисунках 13 и 14.

Т а б л и ц а  5 —  Результаты измерения для  тех же условий, что в таблице 4. за исключением того, что стандартное 
отклонение для Х3 равно трем (9.2.3)

Метод м Уу Уз «<У,> о<У3) ИУуУ2)

GUF — 0,000 0.000 3.162 3.162 0.900 2.45 2.24

ММК 1х105 0.023 0.025 3,159 3.157 0.900 2.28 1.87

MVK 1Х106 0.003 0.002 3.161 3.161 0.900 2.28 1.87

ММК 1 х Ю 7 0.000 0.000 3.162 3.161 0.900 2.28 1.87

Адаптивный
ММК

1.49 x10е 0.002 0.002 3.163 3.162 0.900 2.28 1.87

Адаптивный
ММ<

1.85 x10е 0,001 0.001 3.163 3.162 0.900 2.28 1.87

Э.2.4.2 Способ оценивания неопределенности по G U M  дает оценку у = (0,0)т величины Y. Ковариаци­
онная матрица д ля  данной оценки, имеющая вид

получена по формуле (3). где в соответствии с  условиями настоящего примера

U X

12 о о

Коэффициент корреляции д л я  оценок у , и у2 будет г (у ,.у 2) = 0.9. 95% -ны е области охвата д л я  Y  в 
форме эллипса и прямоугольника определяются, соответственно, коэффициентами охвата кр = 2.45 (табли­
ца 1) и кд = 2.24 (таблица 2). Э ти  результаты приведены в строке д л я  G U F  таблицы 5. В соответствии со 
способом оценивания неопределенности по G U M  выходная величина Y  описывается двумерным нормаль­
ным распределением N (y,U y), показанным в виде контурного графика на рисунке 13 (слева). В этом приме­
ре наблюдается более сильная корреляция между У. и У2 по сравнению с примерами, рассмотренными 
ранее, поскольку увеличен относительный вклад общего фактора, описываемого через Х 3, в неопределен­
ности. связанные с  оценками У, и У 2.

9.2.4.3 Из рисунков 13 (справа) и 14 видно большее влияние (в сравнении с  результатами 8 9.2.3) 
распределения, описывающего Х 3. на приближения плотности распределения д л я  Y  и маргинальной плот­
ности распределения д л я  У , , полученные методом Монте-Карло.

3.2.4.4 Проверка применимости способа оценивания неопределенности по G U M . описанная в разде­
ле  8 (см. также 9.2.2 и 9.2.3), была проведена сравнением результатов, полученных с его помощью и с 
помощью адаптивной процедуры Монте-Карло. Из таблицы 5 видно хорошее совпадение результатов д ля  
у ь у2, и (у ,). и(у2)  и л(у, ,у2), но плохое д л я  кр и к^. Полученное способом оценивания неопределенности по 
G U M  значение кр приблизительно на 7 % . а значение kq приблизительно на 20 %  больше тех. что получены 
методом Монте-Карло.
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Рисунок 13 —  То же, что на рисунке 11 для  примера с входной величиной Х 3. 
имеющей стандартное отклонение, равное трем (9.2.4)
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Плотность распределения вероятностей

Рисунок 14 —  То же. что на рисунке 12 для примера с входной величиной Х3, 
имеющей стандартное отклонение, равное трем (9.2.4)

9.3 П реобразование систем ы  ко ординат

9.3.1 П о становка задачи
9.3.1.1 Комплексная величина Z  может быть представлена в алгебраической форме

X , + iX2.

где X . = Z r  и Х 2 = ^  —  соответственно действительная и мнимая части Z  или в тригонометрической форме

R {c o s e  ♦ i s i n e ) = Re'w.

где R  и  0  —  соответственно м одуль и аргумент Z  Эти две  формы записи соответствуют представлениям 
точки Z b комплексной плоскости соответственно с декартовой и полярной системой координат. Преобразо­
ванию первой системы во вторую можно поставить в соответствие модель измерения вида

У 2 = X,2 f  X f . tanV2 = Х 2/Х, (25)

с входной величиной X = (Х ,,Х 2)Т = (Z4,Ziy  и выходной величиной Y  = (У , .У 2)Т = (R .0 )T .
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П р и м е ч а н и е  —  Формула (25) описывает двумерную модель измерения для  выходных величин R  и О. 
Поскольку модуль R  всегда неотрицателен, то он однозначно может быть определен как положительный квад­
ратный корень из Rг. Если аргумент О  определять через так называемый арктангенс двух переменных {в языках 
программирования обозначаемый «atan2»), то при заданном отношении ZfIZf. значение аргумента также будет 
однозначно определено на интервале —  яг < О  £ л. Таким образок», формула (25) допускает использование ее в 
качестве двумерной модели измерения.

9.3.1.2 Исходными данными д л я  расчета неопределенности являю тся оценки х, и х 2 величин X, и Х 2, 
полученные из измерительной системы, и соответствующие им стандартные неопределенности t/(x,) и и(х2) 
и ковариации и(х,,х2) = ги{х^)и(х2), где г - г(х ,,х2) —  коэффициент корреляции [см. JC G M  100 (пункт 5.2.2)]. 
При наличии таких данных [см. J C G M 101 (пункт 6.4.8.1)] X  приписывают двумерное нормальное распреде­
ление с  математическим ожиданием и ковариационной матрицей соответственно

Гх , 1 [ и 2(Х ,)  ш (х ,)ы (х 2)

1*1 J* l ' u ( * i M * 2 ) t»2(x 2)

Предполагается, что размерность X , и Х 2 равна единице.
9.3.1.3 Оценки у  величины Y  и соответствующей ковариационной матрицы U y определены д л я  разных 

сочетаний величин хь  х2, и (х }), и{х2)  и г(х их2).
9.3.1.4 Рассмотрено ш есть примеров, в каждом из которых х2 взято равным нулю, а ^ (х ,) = и(х2) = 

= иА = 0.010. В первых трех примерах рассматривается случай некоррелированных входных величин. 
f(x i,x2)  *  0 д л я  оценок соответственно х, = 0.001. х, = 0.010 и * , = 0.100 (см. 9.3.2). В остальных трех 
примерах использованы те же оценки д л я  X , .  но при сильной корреляции входных величии: г(х ,.х2) = 0.9 
(см. 9.3.3). На рисунке 15 [где не соблю ден принцип использования на каждом графике одного цвета д ля  
одинаковых уровней (см. 9.1.5)] показаны контурные линии совместной плотности распределения X  д ля  
примера 1 [х, =0.001 и г(х ,,х 2) = 0 ]и п р и м е р а 4 [х 1 =0.001 и г(х ,.х г)  = 0.9]. Д ля  остальных примеров графики 
плотности распределения X получают переносом контурных линий вдоль оси X , таким образом, чтобы их 
центрам соответствовала координата х, = 0.010 (примеры 2 и 5 )  или х, = 0.100 (примеры 3 и 6).

х2 х2

*1 *1

Рисунок 15 —  Контурные линии совместных плотностей распределения входных величин в модели 
преобразования системы координат для примеров 1 (слева) и 4 (справа) (9.3.1.4)

9.3.2 В ы ч и с ле н и я  и результа ты  (с лу ч а й  н уле в о й  ковариации)
9.3.2.1 Общие положения
9.3.2.1.1 Оценивание неопределенности выполняется применением трансформирования распределе­

ний (а) аналитически (д ля  целей сравнения). (Ь) с использованием обобщенного способа оценивания нео­
пределенности по G U M  и (с) с использованием метода Монте-Карло.
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9.3.2.1.2 Совместная плотность распределения д ля  Y  и маргинальные плотности распределения для  
У , и У2 могут быть получены аналитически в случае независимых X , и Х 2. описываемых нормальными 

распределениями N (x , ,u f ) и n ( x 2,u *) соответственно {см. раздел С.2).
9.3.2.1.3 Согласно способу оценивания неопределенности по G U M  величине Y  соответствует дв у ­

мерное нормальное распределение N (y ,U y), при этом оценку у  = (у „ у 2)т д л я  Y  получают решением 
уравнений

у? =  x f  + х2, ta n y2 = х 2/х,,

а ковариационную матрицу U y получают применением закона трансформирования неопределенностей 
(см. разделы 6 и С.З).

9.3.2.1.4 М етод М онте-Карло применен с числом испытаний М - 107 (см. раздел 7).
9.3.2.2 Пример 1 (х, = 0 ,001)
9.3.2.2.1 Результаты, полученные аналитически, способом оценивания неопределенности no G U M  

иметодом Монте-Карло д ля  входной оценки х, =  0.001 и коэффициента корреляции г(х,.х2) = 0 приведены 
в таблице б, строки 1— 3.

П р и м е ч а н и е  —  Приведенные в первой строке таблицы 6 значения у , и t/(y,) получены в результате 
выполненных с высокой точностью численных расчетов определенных интегралов, представляющих собой задан­
ные в виде формул через маргинальную плотность распределения У, выражения для £ (У .) и V (Y .) [см. формулу 
(С.2) в приложении С). Аналогично значения у2 и и(у2) рассчитаны числено по формулам для £ (У 2) и У (У2). вклю­
чающим в себя маргинальное распределение У2 [см. формулу (С.З) в приложении С)). Нетрудно показать, что 
соу(У ,.У 2) = 0. и. следовательно, г{у,.у2) = 0.

Т а б л и ц а  6 —  Результаты измерений для модели преобразования системы координат для случая нулевой 
ковариации между оценками входных величин (9.3.2.2.1, 9.3.2.3.1 и 9.3.2.4.1)

*1 Метод Л Уз ч(у.) '  (У-У*>

0,001 Аналитический 0.013 0.000 0.007 1.744 0.000

GUF 0.001 0.000 0.010 10.000 0.000

ММК 0,013 -0.001 0.007 1.744 0.000

0.010 Аналитический 0,015 0.000 0.008 1.118 0.000

GUF 0,010 0.000 0.010 1.000 0.000

Ш К 0,015 0.000 0,008 1.117 0.000

0.100 Аналитический 0,101 0.000 0.010 0.101 0.000

GUF 0,100 0.000 0,010 0.100 0.000

ММК 0,101 0.000 0,010 0.101 0.000

9.3.2.2.2 На трех верхних графиках рисунка 16 показаны плотности распределения д л я  Y. полученные 
аналитически, способом оценивания неопределенности no G U M  и методом Монте-Карло. Последняя хоро­
шо согласуется с аналитическим решением, в то время как результат оценивания по G U M  отличается от 
них очень сильно, вплоть д о  того, что д л я  него использована другая шкала соответствия цвета и уровня 
(см. 9.1.5). Болое того, способ оценивания неопределенности по G U M  дает ненулевую вероятность появле­
ния физически невозможных значений выходных величин в областях rj, < 0. i)2 £  к  и ij2 > я.
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Рисунок 16 —  Совместные плотности вероятности для  Y. полученные аналитически (сверху), оцениванием по GUM 
(в центре слева) и методом Монте-Карло (в центре справа) и маргинальные плотности распределения для  У, 
(внизу слева) и У2 (внизу справа), полученные аналитически (пунктирная линия), оцениванием no GUM (сплошная 
линия) и методом Монте-Карло (гистограмма) для модели преобразования координат с х. =0,001 и т(х,дт2) = 0

(9.3.2.2.2 и 9.3.2.2.3)

4 4
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9.3.2.2.3 На двух нижних графиках рисунка 16 изображены маргинальные плотности распределения 
д ля  выходных величин У , и У2, полученные из совместных распределений д ля  Y. Маргинальные плотности 
распределения, полученные методом Монте-Карло (показаны каждая в форме гистограммы или распреде­
ления частот), согласуются с теми, что получены аналитически (показаны пунктирными линиями), в то вре­
мя как маргинальные распределения, полученные способом оценивания неопределенности no G U M  (пока­
заны сплошными линиями) очень сильно отличаются от аналитических решений. Д ля  удобства представле­
ния все графики маргинальной плотности распределения д ля  У2 ограничены областью физически возмож­
ных значений i}2, т. е. интервалом -  я  < rj2 £ я . хотя полученное способом оценивания no G U M  нормальное 
распределение N(0.102) д л я  У2 простирается далеко за границы этого интервала. На этих графиках также 
хорошо видно, что согласно способу оценивания неопределенности по G U M  физически невозможным зна­
чениям и /;2 присвоена ненулевая вероятность (см. 9.3.2.2.2).

9.3.2.3 Пример 2 (х, = 0 ,010)
9.3.2.3.1 Результаты, полученные аналитически, способом оценивания неопределенности по G U M  

и методом Монте-Карло д ля  входной оценки х, = 0.010 и коэффициента корреляции г(х,,х2) = 0. приведены 
в строках 4— 6 таблицы 6. На рисунке 17 показаны контурные графики совместных плотностей распределе­
ния д л я  Y. полученных с использованием трех вышеуказанных методов, а также маргинальные плотности 
вероятности д ля  У , и У2. полученные из соответствующих совместных распределений.

9.3.2.3.2 Видно, что результаты, полученные с использованием метода М онте-Карло, согласуются с 
аналитическим решением. В то время как результаты, полученные с использованием способа оценивания 
неопределенности по G U M , от аналитического решения отличаю тся, хотя и не так существенно, как в 
примере с х. = 0.001. Относительны е разности между стандартными неопределенностями и (у ,) и и(у2), 
определенные с использованием способа оценивания неопределенности по G U M  и аналитическим мето­
дом. составляю т приблизительно 25 %  и 10 %  (в сравнении с 40 %  и 470 %  д л я  примера с  х , = 0.001).

9.3.2.4 Пример 3 (х , = 0 ,100)
9.3.2.4.1 Результаты, полученные аналитически, оцениванием неопределенности по G U M  и методом 

М онте-Карло д л я  входной оценки х, = 0,100 и коэффициента корреляции г(х ,.х2) = 0. приведены в 
строках 7— 9 таблицы 6 и на рисунке 18.

9.3.2.4.2 Видно, что результаты, полученные с  использованием способа оценивания неопределенно­
сти по G U M  и методом М онте-Карло согласуются с аналитическим решением. Показанные на рисунке 18 
маргинальные распределения, полученные тремя методами, практически неразличимы. Оценки, соответ­
ствующие стандартные неопределенности и соответствующие коэффициенты корреляции совпадают с точ­
ностью до двух значащих цифр.
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Рисунок 17 —  То же. что на рисунке 16. но для х, =0.010 (9.3.2.3.1)
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Рисунок 18 —  То же, что на рисунке 16. но для х, =0.100 (9.3.2.4.1)
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9.3.3 В ы ч и с ле н и я  и р е зульта ты  (с лу ч а й  н е н уле в о й  ковариации)
9.3.3.10ценивание неопределенности выполняется применением трансформирования распределе­

ний с использованием (а ) обобщенного способа оценивания неопределенности по G U M  (см. разделы 6 и 
С .З ) и (Ь) метода Монте-Карло с числом испытаний М =  107 (см. раздел 7).

9.3.3.2 Результаты, полученные д л я  входных оценок х, = 0 .001.x, =0,010 и х , = 0.100 (примеры 4 ,5  
и 6 соответственно) и коэффициента корреляции /•(х. .х2) = 0,9 приведены в таблице 7. На рисунках 19— 21

Т а б л и ц а  7 —  Результаты измерений для модели преобразования системы координат для случая ненулевой 
ковариации между оценками входных величин (9.3.3.2)

*1 Метод * Уз "(У,) "<У2) '(У ,У г)

0,001 GUF 0,001 0.000 0.010 10.000 0.900

ммк 0.012 -0.556 0.008 1.599 -0.070

0,010 GUF 0.010 0.000 0.010 1.000 0.900
ММК 0.015 -0.343 0,008 0.903 0.352

0.100 GUF 0.100 0.000 0,010 0.100 0.900
ММК 0.101 -0.009 0,010 0.102 0.882

Плотность распределения вероятностей Плотность распределения вероятностей, рад'1

Рисунок 19 —  Совместные плотности вероятности для Y. полученные оцениванием по GUM (вверху слева) и 
методом Монте-Карло (вверху справа) и маргинальные плотности распределения для У, (внизу слева) и У2 (внизу 
справа), полученные оцениванием по GUM (сплошная линия) и методом Монте-Карло (гистограмма) для модели 

преобразования координат с х, = 0.001 и г(х,.х2) = 0.9 (9.3.3.2)
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показаны совместные плотности распределения д л я  Y  и маргинальные плотности распределения для  
У. и У2, полученные указанными двумя методами д ля  всех трех примеров.

Э.З.З.ЗДля случаев х, = 0,001 и х, = 0.010 результаты, полученные способом оценивания неопреде­
ленности no G U M  и методом М онте-Карло плохо согласуются друг с другом. В частности, метод Монте- 
Карло дает в этих двух примерах маргинальные плотности распределения д л я  У 2 с двумя пиками, что 
сильно отличается от одномодального нормального распределения, полученного оцениванием по G U M . 
Эти пики находятся вблизи точек >)2 = я/4 -» 0.785 и i)2 =  л/4 -  я  * -  2.356. что соответствует углам 
ориентации главной оси эллиптических контурных линий плотности распределения д ля  X  [см. рисунок 15 
(справа)].

9 .3 .3 .4Д ля случая х, = 0.100 результаты, полученные способом оценивания неопределенности по 
G U M  и методом М онте-Карло, согласуются намного лучше.

• 35 

30 

25 

20 

15 

Ю

-0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 

Плотность распределения вероятностей

Рисунок 20 —  То же. что на рисунке 19. но для х, = 0.010 (9.3.3.2)
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Рисунок 21 —  То же. что на рисунке 19. но для х, = 0.100 (9.3.3.2)

9.3.4 О бсуж дение р езультатов
9.3.4.1 Д л я  обоих случаев {с нулевой и ненулевой ковариацией) по мере удаления оценки х, от нуля 

результаты, полученные способом оценивания неопределенности по G U M  и методом Монте-Карло, начина­
ют приближаться друг к другу.

9.3.4.2 Д л я  оценок х. = 0.001. х, = 0.010 и, вообще говоря, д л я  всех значений х ,. близких к нулю, 
эф ф ект ненулевой ковариации значительно изменяет результаты, полученные с помощью метода 
Монте-Карло.

9.3.4.3 Численные данные, представленные в таблицах 6 и 7, соответствуют показанным на рисунках 
совместным и маргинальным плотностям распределения. В некоторых случаях такие данные могут быть 
неподходящими или недостаточными д ля  описания распределения, характеризующего выходную величи­
ну. Так. д л я  примера с  входной оценкой х, = 0.001 и ненулевой ковариацией г(х ,,х2) = 0.9 (рисунок 19) 
маргинальная плотность распределения д ля  У 2, полученная с помощью метода М онте-Карло, существен­
но бимодальна, между тем оценка у2 величины У2 находится между модами распределения в той области 
значений У2, где плотность вероятности мала.

П р и м е ч а н и е  —  Для выходной величины, имеющей многомерное нормальное распределение, вектор 
математического ожидания и соответствующая ковариационная матрица описывают это распределение исчер­
пывающим образом.

9.3.4.4 Д л я  входных оценок х , = 0,001, х, = 0.010 и, вообще говоря, д л я  всех значений х ,. близких к 
нулю, определение интервалов охвата в форме эллипсов и прямоугольников не является подходящим.
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9.4 О днов р е м е нн о е  измерение а ктивного  и реактивного со п р о ти в ле н и й

9.4.1 П о становка задачи
9.4.1.1 Активное R и реактивное X сопротивления элемента цепи определяю т путем измерения амп­

литуды  V  изменяющегося по гармоническому закону напряжения на его клеммах, амплитуды  I проходя­
щего через элемент переменного тока и фазового сдвига $ между напряжением и силой тока. Входными 
величинами модели являю тся V, I и 4. а выходными —  указанные сопротивления R и X . а также модуль 
полного импеданса элемента цепи Z, Z2 = R 2 + X 2.

9.4.1.2 Применение закона Ома дает трехмерную м одель измерения

R  я  -yCOS<>. X  * ySin4>. Z  * у ,  (26)

связывающую входную величину X  = (X ,. Х 2, Х 3)т = {V , I, 4)т с  выходной величиной Y  =  (У , .У 2,У 3)Т = 
= (R . X.  Z )T .

П р и м е ч а н и е  1 —  В настоящем примере в целях упрощения не учитываются систематические эффек­
ты. которые могут оказывать влияние на оценки V. I и 4.

П р и м е ч а н и е  2 —  Аналогичный пример рассмотрен в JCGM  100 (раздел Н.2). где реактивному сопро­
тивлению присвоено обозначение X. Такое же обозначение используется в настоящем примере. Реактивное 
сопротивление X  является элементом векторной выходной величины Y. и его не нужно путать с X —  векторной 
входной величиной.

9.4.1.3 В  одинаковых условиях проведено п  = 6 повторных независимых наблюдений х , .......х .  вход­
ной величины X. Результаты этих наблюдений приведены в таблице 8.

П р и м е ч а н и е  —  В примере из JCGM  100 (раздел Н.2) число наблюдений было равно пяти, и результаты 
тех наблюдений приведены в первых пяти строках таблицы 8. Однако для  определения ковариационной матрицы 
(см. Э.4.2.5) необходимо как минимум 6 наблюдений. Поэтому в таблицу 8 было добавлено шестое наблюдение, 
полученное как среднее арифметическое значение первых пяти наблюдений. Для настоящего примера несуще­
ственно. каким способом было получено шестое наблюдение, но выбор в качестве шестого наблюдения среднего 
значения выборки позволяет сохранить это среднее значение неизменным.

Т а б л и ц а  8 —  Данные л  = 6 одновременных независимых наблюдений входных величин для модели измерения 
активного и реактивного сопротивлений (9.4.1.3)

Наблюдение V. в /. мА 4. рад

1 5.007 19.663 1.0456

2 4.994 19.639 1.0438

3 5.005 19.640 1.0468

4 4.990 19.685 1.0428

5 4.999 19.678 1.0433

6 4.999 19.661 1,0445

9.4.2 В ы ч и с ле н и я  и результаты
9.4.2.1 Результат измерения в настоящем примере должен быть представлен в виде оценки у  величи­

ны У  и соответствующей ковариационной матрицы U y. Этот результат должен быть получен на основе моде­
ли  измерения, заданной формулами (26). и данных наблюдений х , .......х „ .  приведенных в таблице 8. Реше­
ние данной задачи на основе способа оценивания неопределенности по G U M  приведено в JC G M  100 (пункт 
Н.2.3). В настоящем примере помимо данного способа рассматриваются модификация способа оценива­
ния неопределенности no G U M  на основе применения многомерного (-распределения (см. 5.3.2) д л я  вход­
ных величин, а также применение метода Монте-Карло.

3.4.2.2 Д л я  того, чтобы применить способ оценивания неопределенности по G U M  необходимо знать 

оценку х = (v , /, <>)Т входной величины X  = (V, /. <ft)T, определяемую как выборочное среднее по наблюде­

ниям. данные которых приведены в таблице 8 (JC G M  100 (пункт 4.2)]:

х * 7 7 < х ,  + . . . + х „ ) .
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Ковариационная матрица U x, соответствующая х. содержит дисперсии, соответствующие средним 
значениям [JC G M  100 (пункт 4 .2)]. и ковариации, соответствующие каждой паре средних значений 
[JC G M  100 (пункт 5.2.3)], и вычисляется по формуле:

и * = 77(7Г^Т7М м = (х -. -  х )(х « “  х )т + ... + (х„ -  х )(х я -  х )т .

где М —  матрица сумм квадратов и произведений. Оценки входных величин и соответствующие стандар­
тные неопределенности приведены в таблице 9. а коэффициенты корреляции, соответствующие ларам та ­
ких оценок. —  в таблице 10.

Т а б л и ц а  9 —  Оценки входных величин X = { V. /. ф)т при одновременном измерении активного и реактивного 
сопротивлений и соответствующие стандартные неопределенности (Э.4.2.2)

Параметр V.B 1. мЛ Л рая

Оценка 4,9990 19.6610 1.04446

Стандартная неопределенность 0.0026 0.0077 0.00061

Т а б л и ц а  10 —  Коэффициенты корреляции, соответствующие парам оценок входных величин X = (V . I, р)т , при 
одновременном измерении активного и реактивного сопротивлений (Э.4.2.2)

V 1 0

V 1 -0.355 0.858

1 1 -0.645

«> 1

П р и м е ч а н и е  —  В JCGM  100 (раздел Н.2) для данной задачи рассмотрены два способа оценивания 
неопределенности измерения, причем принцип, положенный в основу второго способа, изложен в JCGM  100 
в примечании к пункту 4.1.4. В настоящем стандарте этот второй способ не рассматривается по причинам, указан­
ным в 4.1.

9.4.2.3 Согласно способу оценивания неопределенности по G U M . оценку у  ( я  X . z ) T выходной 

величины Y  = ( Я  X. Z )T рассчитывают на основе оценки х по формулам (26).

I v  • V  . • V  Г  
У -  | у  cosр y s in *  y j  .

Ковариационную матрицу U y. соответствующую у. вычисляют по формуле (3 ) из 6.2.1.3. U y = C XU ,C XT, 
где С х —  матрица чувствительностей, имеющая вид

COS 6 Vsinp l/sinp

i i 2 7
sin Ip Vsin0 Vcosp

7 I2 7

1т- _  V 0
1 I2

Результаты, полученные с применением способа оценивания неопределенности no G U M . приведены 
в первой строке (метод G U F ) таблицы 11.

П р и м е ч а н и е  1 —  В последнем столбце таблицы 11 приведены значения для 1w(X.Z). поскольку 
коэффициент корреляции r(X.Z) близок к единице (см. 3.21. примечание 5).
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П р и м е ч а н и е  2 —  При имеющейся в модели, описываемой формулами (26). зависимости между 
выходными величинами

Z2 = Я2 + X 2, (28)

ковариационная матрица Uy теоретически должна быть сингулярна. Вследствие ошибок округления корреляци­
онная матрица, элементы которой приведены в первой строке таблицы 11, не является ни сингулярной, ни поло­
жительно определенной. Но из-за малости стандартных неопределенностей для оценок входных величин эта 
сингулярность не оказывает практически значимого влияния на полученные результаты (20. раздел 4].

Т а б л и ц а  11— Результаты одновремеиного измерения активного и реактивного сопротивлений (9.4.2.3, 
9.4.2.4 и 9.4.2.5)

Метод R. Ow X. Ом 2. Ом u{R). Ом и(Х). Ом о(2>, Ом r(R.X\ r(R.Z) 1 r(X.Z)

GUF 127.732 219.847 254,260 0.058 0.241 0.193 -0.588 -0.485 0.749x10 '2

ММК 127.732 219.847 254.260 0.130 0.536 0.429 -0.587 -0.482 0.770Х10-2

Альтернативный
GUF

127.732 219.847 254,260 0.130 0.540 0.431 -0.588 -0.485 0.749x10-2

9.4.2.4 В предположении, что данные, приведенные в таблице 8, являются единственной доступ ­
ной информацией о входных величинах и что каждое наблюдение можно рассматривать как выборку из 
одного и того же многомерного нормального распределения, входную величину X  описывают многомер­
ным /-распределением Zv(x.M /(vn)), с  v  = п  -  N  = 3 степенями свободы, где х —  выборочное среднее, 
определенное в 9.4 2.2 (см. 5.3.2). Результаты, полученные с  применением М  = 106 испытаний метода 
Монте-Карло, показаны во второй строке (метод ММК) таблицы 11.

9.4.2.5 Величина X . описываемая многомерным /-распределением (см. Э.4.2.4) имеет ковариацион­
ную матрицу

V <X > = < TJ 2 ^ M

Учет этого обстоятельства позволяет несколько улучшить процедуру оценивания неопределенности 
по G U M , рассмотренную в 9.4.2.3, заменив в форм уле (3). U y = С „ и хС хт, матрицу U , на V (X ). Результаты, 
полученные с применением такого альтернативного подхода, приведены в третьей строке (метод Альтерна­
тивный G U F ) таблицы 11 (см. также [15)).

П р и м е ч а н и е  1 —  V(X) —  ковариационная матрица, полученная с учетом дополнительной информа­
ции. рассмотренной в Э.4.2.4.

П р и м е ч а н и е  2 —  Ковариационная матрица для X. полученная таким способом, может быть опре­
делена только при выполнении условия v  = п  -  N > 2. Именно по этой причине для настоящего примера 
потребовалось не менее п = 6 одновременных наблюдений для N = 3 входных величин (см. примечание к 
9.4.1.3).

9.4.2.6 Ковариационная матрица V (X ). полученная из распределения д ля  X. связана с ковариацион­
ной матрицей Ux. используемой в способе оценивания неопределенности по G U M . соотношением

У ( Х)  = ^ г т и х .

9.4 .27  Расхождение результатов, полученных при применении метода Монте-Карло и альтернативно­
го способа оценивания неопределенности по G U M . пренебрежимо мало. Это означает, что функции измере­
ния в форм уле (26) могут быть линеаризованы с  хорошей степенью приближения в окрестности оценок 
входных величин.

9.4.2.8 В J C G M 100 рассматривается возможность описания выходной величины /-распределением с 
использованием формулы Уэлча-Саттертуэйта [см. J C G M 100, формула (G .2b)] д л я  расчета числа эффек­
тивных степеней свободы. Однако применение этой формулы предполагает независимость входных вели­
чин, стандартным отклонениям которых соответствуют конечные числа степеней свободы. Данное условие 
в настоящем примере не выполняется.
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9.5 Изм ерение тем пе р а тур ы  с  и сп о льзо в а н ие м  терм ом етра с о п р о ти в ле н и я

9.5.1 О сн о в н о е
В настоящем примере рассматривается измерение температуры промышленным платиновым термо­

метром сопротивления путем сравнения сопротивления термометра с эталонным сопротивлением в схеме 
измерительного моста. Е сли  измерению подлеж ит конкретная температура, то д ля  этой цели исполь­
зуют одномерную модель измерения (см. 9.5.2). а если нескольких температур —  то многомерную модель 
(см. 9.5.3). В примере рассматривается обработка данных в рамках указанных моделей измерения спосо­
бом оценивания неопределенности по G U M .

9.5.2 Измерение о дн о й  тем пературы
9.5.2.1 Температуру в  измеряют сравнением сопротивления РЦв) термометра сопротивления с эталон­

ным сопротивлением R s измерительного моста. На интервале температур от 0 д о  30 °С. сопротивление 
термометра может быть приближенно описано квадратичной функцией его температуры в:

R (0 )  = (1 ♦ А в  + (29)

где Rq . А  и В  —  параметры, определяемые при градуировке (калибровке) термометра. Оценки R^. А  и В  и 
соответствующие стандартные неопределенности приведены в таблице 12. а коэффициенты корреляции 
д л я  пар таких оценок —  в таблице 13.

Т а б л и ц а  12 —  Оценки входных величин X = (R a, А. В. R s, г)т и соответствующие стандартные неопределен­
ности при измерении температуры (9.5.2.1. Э.5.2.2 и 9.5.2.3)

Параметр Я0.Ом А. ’С"1 в.*с-2 *s. Ом г

Оценка 99.99610 0.0039096 -6,0х10~7 99.99947 1.0780057

Стандартная неопределенность 0.00050 0.0000027 1,1х10"7 0.00010 0.0000050

Т а б л и ц а  13 —  Коэффициенты корреляции, соответствующие парам оценок входных величин при измерении 
температуры (9.5.2.1. Э.5.2.2 и 9.5.2.3)

*0 А В

«0 1 -0.155 0.092

А 1 -0.959

В 1

3.5.2.2 Оценка величины R s и соответствующая стандартная неопределенность, получаемые при 
калибровке, приведены в таблице 12. R s не зависит от параметров R c„ А  и В.

9.5.2.3 Посредством измерительного моста определяю т отношение сопротивлений

г
■ Rs

(30)

Полученное значение г и соответствующая стандартная неопределенность приведены в таблице 12. 
Отнош ение сопротивлений не зависит от параметров R0, A u B  термометра сопротивления и эталонного 
сопротивления R s. Таким образом, в таблице 13 содержатся все ненулевые коэффициенты корреляции 
входных величин.

Э.5.2.4 М одель измерения температуры в, полученная из форм ул (29) и (30). имеет вид

(1 + А в  + е ^ ) « о  -  rR s = 0. (31)

В обозначениях, принятых в настоящем стандарте, N  = 5, m  = 1. X  = (R^, А . В. R s. r )T, Y  = в  и

Л(У.Х) = (1 ♦ Ав + B02)Ro -  rRs.

П р и м е ч а н и е  —  Модель измерения, определяемая формулой (31). может быть преобразована к явному 
виду путем решения квадратного уравнения относительно в. Однако такое преобразование включает в себя 
процедуру вычитания близких чисел, что может привести к потере точности вычисления, и. кроме того, оно услож­
няет вычисление коэффициентов чувствительности.
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3.5.2.5 Оценку температуры у  = 9 получают на основе полученного отношения сопротивлений г, 
подставляя данные из таблицы 12 в уравнение (3 1 ) и находя решение этого уравнения. Искомая оценка 

равна 9 = 20.0232 °С.
3.5.2.6 Стандартную  неопределенность иу = и {9  ). соответствующую оценке у. вычисляют с исполь­

зованием формулы (8 ) изб.3.1.3. C yU yC /  = C XU*CKT. Вычисление матриц чувствительности С у и С* по 
формулам

С ,  = W ' l b ( / U 2

dh
OX - \ U M  ’ в в ‘ - -  '■

с подстановкой оценок входных величин, приведенных в таблице 12. и соответствующей оценки выходной 
величины дает

с , = 0,389 О м -“С

С я = 11.08: 2 ,0 0 x 1 03 Ом-°С: 4,01 Ом 8С 2; -1 .0 8 ; -1 .0 0 х 1 0 2 Ом).

Элементы ковариационной матрицы и я. соответствующей оценкам входных величин, вычисляют 
из стандартных неопределенностей в таблице 12 и коэффициентов корреляции в таблице 13. что дает

и (0 ) = 0.0045 “С.

9.5.3 Изм ерение неск о льк их тем ператур
9.5.3.1 Термометр сопротивления, эталонное сопротивление и измерительный мост, описанные в 9.5.2.

используют д л я  измерения отношений сопротивлений г , ......г,0. соответствующих десяти разным темпера­
турам 0 ,...... 01О.

9.5.3.2 Оценки входных величин. R 0. А , В  и R s и соответствующие стандартные неопределенности
приведены в таблице 12. а оценки г ,...... г10—  в таблице 14. Единственными ненулевыми коэффициентами
корреляции, соответствующими парам оценок, по-прежнему остаются коэффициенты, приведенные в таб­
лице 13. Предполагается, что отношения сопротивлений независимы между собой. Данное предположе­
ние можно считать справедливым, если преобладающий вклад в неопределенность измерения отношения 
сопротивлений вносят случайные эффекты.

Т а б л и ц а  14 —  Оценки отношения сопротивлений и соответствующие им стандартные неопределенности при 
измерении нескольких температур (9.5.3.2)

Параметр гг Ц и 'ь

(г; - 1 ) х Ю 7 53 150054 300055 450056 600056

u (r j  X 107 50 50 50 50 50

Параметр 'в 'г 'в '■> rid

(г) -  1) х 107 780057 900058 1050059 1200060 780057

X 107 50 50 50 50 50

9.5.3.3 Из формулы (31) следует, что связь отношения сопротивлений г( с соответствующей темпера­
турой задается уравнением

(l  - А 9 ,  + S0f)/?o -r / R s  = 0. j =  *....10. (32)

В обозначениях, принятых в настоящем стандарте. N =  14, m = 1 0 .  X  = (R q . А , В. R s. г , ...... г .0)т ,
Y =  (<?,...... <?10)т и
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h (Y ,X )
Л ,( Y .X ) 

Л ,о ( Y .X )

(1 + Ав, + B « ,2)R 0 -r,/?s

(1 + +  B0^o)R a - r ^ R s

П р и м е ч а н и е  —  Модель измерения, описываемая формулой (32). гложет быть приведена к явному 
виду (см. Э.5.2.4).

9.5.3.4 Оценки у  *  (« ,....,У 10 ) т температуры Y  (см. таблицу 15) получают подстановкой оценок, приве­

денных в столбцах с первого по четвертый таблицы 12. а также в таблице 14. в уравнения (32) и решением 
этих уравнений.

Т а б л и ц а  15 —  Оценки выходных величин Y и соответствующие стандартные неопределенности при 
измерении нескольких температур (9.5.3.4 и 9.5.3.5)

Параметр е ,.х Й,."С V C V е 0 ,’ С V е вг*С V C V C

Оценка 0.0100 3.8491 7.6928 11.5410 15.3938 20.0232 23.1131 26.9797 30.8509 20.0232

Стандартная
неопределенность

0.0018 0.0027 0.0040 0.0046 0.0047 0.0045 0.0046 0.0060 0,0089 0.0045

Т а б л и ц а  16 —  Коэффициенты корреляции, соответствующие парам оценок выходных величин Y. при измере­
нии нескольких температур (9.5.3.5)

в, 3, *5 0б *7 *8 % в10

в. 1 0,252 0.127 0.079 0.059 0.054 0.056 0.054 0.050 0.054

<h 1 0.815 0.800 0.755 0.580 0.312 -0.092 -0.358 0.580

*3 1 0,902 0.868 0.691 0.400 -0.057 -0.365 0.691

в< 1 0.909 0,766 0.495 0.040 -0.281 0.766

в* 1 0.847 0.629 0.208 -0,115 0.847

«в 1 0.841 0.549 0.264 0.918

1 0.812 0.613 0.841

*8 1 0.909 0.549

1 0.264

0,0 1

9.5.3.5 Ковариационную матрицу U y, соответствующую у. вычисляют с использованием формулы (8) 
из 6.3.1.3. С уи уС /  = С . Ц . С Д  где С у и С к —  матрицы чувствительности, получаемые из матриц С у и С х в 
точках оценок входных и выходных величии; С у — диагональная матрица размерности 10x10 с диагональ­
ными элементами /?0(Д + В#,)......R 0{A  + B01Q); С х —  матрица размерности 10x 14 вида

с, 4 С«'”
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где

С х(,> 2

1 - I А  в, ♦ 80,2 R ce, R ae\

1 + А в ю + 80,20 /?о0,о RO0,2O

матрица размерности 10x4, а Сх<21— диагональная матрица размерности 1 0 x 1 0 со всеми диагональными 
элементами, равными (~RS). Ковариационную матрицу U x вычисляют из стандартных неопределенностей, 
приведенных в столбцах 1— 4 таблицы 12 и в таблице 13. Стандартные неопределенности д л я  оценок 
температур, и коэффициенты корреляции д л я  пар этих оценок, полученные из матрицы U y. приведены в 
таблицах 15 и 16, соответственно.

9.5.3.6 Результаты, приведенные в таблице 15 и на рисунке 22, показывают, как стандартная неопре­

деленность u{6f ) изменяется вместе с  оценкой 0( температуры 0. Неопределенность измерения темпера­

туры минимальна вблизи нуля и резко возрастает при температурах выше 25 °С. Этот эффект обусловлен 
тем, что градуировка термометра сопротивления была выполнена при опорных значениях температуры 0, 
15. 20 и 25 °С, причем температура 0 °С создавалась при помощи ледяной ванны, в условиях которой 
стандартная неопределенность была в три раза меньшей, чем в условиях масляной ванны, используемой 
при градуировке на трех других опорных значениях.

П р и м е ч а н и е  —  Отрезки прямых линий, соединяющих точки на рисунках 22 и 23, использованы в целях 
большей наглядности.

9.5.3.7На рисунке 23 график, построенный поданны м последнего столбца таблицы 16, показывает, 

как изменяется коэффициент корреляции, соответствующий паре оценок 0; и в,0 температур по Цельсию 

в/ и 01О = 20 °С в зависимости от 0 ,, j  = 1 ,.... 9. Коэффициент корреляции имеет максимум при 0, = Gfe и

стремится к нулю при увеличении абсолютной разности -  0 О| .Пример демонстрирует, что величины, 

измеряемые одним и тем же средством измерения, могут иметь высокую степень корреляции.

Стандартная неопределенность. ’ С

Рисунок 22 —  Стандартная неопределенность и(в) ), соответствующая оценке 0̂  
температуры 0) (9.5.3.6)
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Коэффициент корреляции

Рисунок 23 —  Коэффициент корреляции, соответствующий паре оценок 0f и 0)О 
температур в/ и б10 = 20 'С  (9.5.3.7)
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Приложение А 
(справочное)

П р о и зв о дн ы е  м ногом ерны х ф ун к ц и й  измерения с  ком плексны м и
величинам и

А.1 В настоящем приложении рассматривается компактный алгоритм вычисления частных производных 
первого порядка функции измерения f в многомерной модели измерения с комплексными величинами

Y  = f(X).

где

X = (X1t Xf,)T. Y  = (Y ,..... Y m)T

и

X  обозначает комплексную величину X ,R + i X , - X)R и Х ц  —  действительные величины, а Р =  —1. Аналогичные 
представления справедливы для комплексных величин Y и 1Г

А.2 Пусть Ux обозначает ковариационную матрицу размерности 2iVx2JV, соответствующую оценке х величи­
ны X. U , имеет вид

и .=

IKxt.x,) -  и(х,.хл,) 

U(xM.x ,) -  U(xw.xlV)

где

u(xlf,XjR ) и {х „ ,х р ) ~

ковариационная матрица размерности 2x2, соответствующая оценкам х и х, комплексных величин X, и X соот­
ветственно.

А.З Ковариационная матрица

U ( x . . x , )  =

иУ

и<у,.у,) -- U (y,.ym) 

U(ym.y1) - U ( y jn.y m).

размерности 2 т  X 2 т .  где

и(у,.У/) =
и(у,я.у,я)
и (У о -У ,я )

u(y>R.y,i)}

и(У/ьУ)л) J ’

соответствующая оценке

У = Пх)

величины Y, определяется обобщенным законом трансформирования неопределенностей

и,=сжихс„т.
А.4 С , —  матрица чувствительности размерности 2mx2W, получаемая вычислением

(А.1)
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в точке X = х. где С  , —  матрица размерности 2 x2  частных производных первого порядка действительных 
и мнимых частей f„ соответствующих действительной и мнимой частям X,:

д ',я Ы,Я
dX;j

ы » df„
дХ1Н дХц

А.5 Для произвольной комплексной скалярной величины Q = Or + iQ, рассмотрим матричное представле­
ние размерности 2x2  вида [14]:

M(Q) =
Or

О,

-о.
Qr

Тогда С ,. можно представить как

Данное представление является основой для расчетов частных производных первого порядка комплексных ве­
личин f, по X,.
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Приложение В 
(справочное)

В ы ч и с ле н и е  к о эф ф и ц и е н то в  ч у в с тв и те л ь н о с ти  и ковариационны х 
м атриц д л я  м ногом ерны х м оделей

В.1 Если измерительная задача может быть выражена в терминах линейной алгебры [13]. то вычислитель­
но устойчивый алгоритм определения матрицы Uy. являющейся решением уравнения (8). состоит в следующем:

a) для матрицы U* выполняют разложение Холецксго, RX R„ = Ux . в результате чего получают матрицу Rx:
b ) матрицу С х представляют в виде произведения Сх = Q XW X. где Qx —  ортогональная матрица. a W , —  

верхняя треугольная матрица:
c) матрицу Су представляют в виде произведения С у = LyWy. где Ly —  нижняя треугольная, a W y —  верхняя 

треугольная матрицы:
d) решают матричное уравнение WyTM, = I относительно М.;
e) решают матричное уравнение Ц ТМ2 = М. относительно М>;
f) вычисляют матрицу М3 = QXTM:
g) вычисляют матрицу К = УУЖТМ3;
h) вычисляют матрицу М = RXK:
i) матрицу М приводят к треугольному виду R:
j) вычисляют U y = RTR.
В.2 Указанная процедура гложет быть проверена методами элементарной матричной алгебры (см. [7]).
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Приложение С 
(справочное)

Преобразование систем ы  ко ординат

С.1 Основные положения

В настоящем приложении рассматриваются некоторые аспекты задачи преобразования системы коорди­
нат (см. 9.3). В разделе С.2 приведен аналитический вывод совместной плотности распределения для Y в случае.

когда X, описывается нормальным распределением N |x ,.u j| .а Х 2 —  нормальным распределением и при этом 
X, и Х2 взаимно независимы.

С.2 Аналитическое решение д л я  особого случая

С.2.1 Предположим, что X имеет плотность распределения gx(ij), и ч =..............~ '  (П1 —  взаимно-однознач­
ное преобразование значений т) = (ijt, .... п.ч)т величины Y в значения с, = (£,..... 4л>)т величины X. Тогда (19. страница
35]. Y имеет плотность распределения

9y <4 ) = 9x(f_1<4))|det(J)|. (С.1)

где det(J) —  детерминант матрицы Якоби J,

..
3 % "

Щ
...

рассматриваемый как функция т) Предполагается, что det(J) нигде не равен нулю или бесконечности.

П р и м е ч а н и е  1 —  Формулу (С .1) иногда называют формулой замены переменных.
П р и м е ч а н и е  2 —  В случав одномерной величины (N  = 1) преобразование переменных ц = / (!), 

гд е / (.)— дифференцируемая и монотонная функция, дает следующую плотность распределения для У 
[21. страницы 57— 61]:

gy(fj) = g * ( r ’ (rj)) Of *(»?)
drj

С.2.2 Для задачи преобразования системы координат, рассмотренной в 9.3. Х = (Х ,.Х 2)Т со значениями 
4= (4)..... £2)т . y  = (Я. в )т со значениями ц = (ij,....... t]2)T и

Таким образом.

€i = »?i cosrj2. с,2 = /?, sin i } 2 .

J = Jcos/?2 —ту,sin/fe I 
[sin^j tj, oostj2 J

и

Из этого следует, что при rj, > О

det(J) = /7,.

9 уу2( 1Ь-П2) = (1 i009 П,8,п )•

С.2.3 Рассмотрим случай, когда X, описывается нормальным распределением N | x,.t/J} .  а Х2 —  нормаль­

ным распределением n (x2.o* ) .  и X , и Х2 взаимно независимы. Тогда

, Е Е , , С1 ( l  v 1 (  ( f t -* )*  + < fe - X 2f )
9 хлЪ )В х2& )  = i ^ r exp[ ------------------^ 2 --------------- i .
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О ( п .  п  41 м п \  ( ^ c o s > h - X i ) 2 + < ^ | S i n f b - X 2 ) ? exp -

C.2.4 Маргинальное распределение для Y. = R  имеег вид

9y M i ) =  |9у, у20?b ifa P b  = ^ ~ ехр| ’’ 2 ‘J '  N  П'и / '  )■ (С.2)

где

У? = х,2 -  х|.

а /0 —  модифицированная функция Бесселя первого рода нулевого порядка.

П р и м е ч а н и е  1 —  Полученное распределение представляет собой распределение Райса с парамет­
рами у, и их.

П р и м е ч а н и е  2 —  Если у , = 0. то данное распределение является распределением Рэлея с 
параметром ия.

П р и м е ч а н и е  3 —  Если их = 1, то данное распределение представляет собой нецентральное распреде­

ление хи-квадрат с двумя степенями свободы и параметром нецентральности у,2 .

С.2.5 Маргинальное распределение для У2 = 0  имеет вид

9гг (Ъ )  = = 2F exp ( - - ^ r ) [ l + V irre xp (r2)e rfc (-r )j. (С.З)

где

Х1 cos П2 + Х2 sin ffe

r= { Ь ш
а

7.

erfc(Z) = 1 -  2 fexp(-/2)d < - 
V* о

дополнительная функция ошибок.
С.2.6 Если, кроме того, выполнено условие х, = х2 = О. тогда

9 у,.у2(»?1.Ч2)=  ^ 5 - 8 4 ) 1 -

и. следовательно. У , и У2 взаимно независимые величины с маргинальным распределением Рэлея с парамет­
ром и, для У(

и маргинальным равномерным распределением на интервале от - я  до х  для  У2

gy2(,fe) = 2 j .

С.З Применение способа оценивания неопределенности no GUM

С.3.1 Д ля задачи преобразования системы координат, рассмотренной в 9.3. модель измерения может 
быть записана как двумерная модель

У, = /,(Х,.Х2) = / x F T x f .  У2 = /2(Х,.Х2) = arctan(X2/Xn).

при этом подразумевается, что У , 2 0 и - х  < У2 £х. Входные величины X , и Х2 имеют оценки х, и х2, 
соответствующие стандартные неопределенности м(х,) и о{х2) и ковариацию о(х,.х2>.
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С.3.2 Из 6.2.1.2 следует, что оценки величин У, и У2 имеют вид

у, = f [ 7 4 .  у2 = arctan (х2/х ,).

С.3.3 Матрицу чувствительности С х размерности 2 x 2  получают, вычисляя

dft d(, x, x 2

ax, ax2 Vx?-x| X+<4..X

df2 df2
ax, ax.

-X, X,
[xf + Xf X2 + X2

в точке X, = x1t Х2 = х2. Таким образом, при условии у , =  ^  х,2 + х| >0 получаем

*Т Х2

с  = J  х? + х| J x f  + xf 

~ Х2 X,
v2 j . у2 у2 . у2Xj + Л2 Х̂  + Xj

< Л у ,)  и (УуУ2) 

и(У2.У ,) и2(у 2)

является ковариационной матрицей, соответствующей оценкам у  = (у,. у2)т . с и(у2, у ,)  = о(у,. у2> и 

^ ( у , )  = t/(x,)cos2 у2 + o2(x2)sin2y2 + 2o(x,.x2)cos у2 ап у2. 

u (y ,.y 2) = ( « 2(x2)  -  u2(x ,))(s in y2cosy2)/y, + u(x,.x2)(cos2y2 -s in 2y2)/y,.

и*(У2)  = (sin2у2)/у2 ♦ и*(хг)  (cos2y2)/y2 -  2u (x . ,x2) (co s  y2 sin y2)/y2 .

C.3.5 В рамках способа оценивания неопределенности no GUM  Y приписывают двумерное нормальное 
распределение N(y.Uy), по которому могут быть построены области охвата для Y при заданной вероятности 
охвата р (см. 6.5).

С.3.6 Рассмотрим случай, когда с/(х,) = и(х2) = и, и и(х,,х2) = 0 (см. С.2.3). Тогда

^ (У т ) = и2х . и (у,, у2) = 0. I/(у2) = of /yf

с Y. характеризуемым двумерным нормальным распределением, как в С.3.5. Т.е. в этом случае У, и У2 являются 
независимыми величинами, и двумерное нормальное распределение для  У, и У2 распадается на два одномер­
ных распределения N (y ,.^ ( у , ))  и N(y2.u2(y2)). соответственно.

П р и м е ч а н и е  —  Напротив, при аналитическом решении (см. С.2) в случае, когда Y не характеризуется 
двумерным распределением Гаусса, выполнения условий и(х,) = и(х2) и ц(х,.х2) = 0 недостаточно для независимо­
сти У, и У2. Чтобы выходные величины были независимы, необходимо также, чтобы х< = х2 = 0 (см. С.2.6).

С.3.4 Из 6.2.1.3 следует, что

cosy2 siny2 
-(s in y 2)/y, (cosy2)/y, '
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Приложение D 
(справочное)
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О сн о в н ы е  обозначения

матрица чувствительности размерности т  X N. связанная с х 
матрица чувствительности размерности т  х  т ,  связанная с у 
целое десятичное число с ndtg знаками 
корреляция случайных величин X, и X, 
ковариация случайных величин X, и X, 
определитель Якоби
математическое ожидание случайной величины X, 
математическое ожидание случайной величины X 
распределение Фишера с т и  п - т  степенями свободы 
одномерная функция измерения, зависящая от входных величин X 
многомерная функция измерения, зависящая от входных величин X
дискретное представление функции распределения С у(ц) выходной величины Y. полученное 
методом Монте-Карло
функция распределения переменной (  для входной величины X 
плотность распределения переменной §, для входной величины X, 
плотность совместного распределения переменной \  для  входной величины X 

функция распределения переменной ц для выходной величины Y 
плотность совместного распределения переменной ц для выходной величины Y 
одномерная модель измерения, выражающая соотношение между выходной величиной У  и входны­
ми величинами X. от которых зависит У
многомерная модель измерения, выражающая соотношение между выходной величиной Y и вход­
ными величинами X. от которых зависит Y 
мнимая единица. Р = -1  
матрица Якоби
коэффициент охвата для области охвата в форме эллипсоида, соответствующий вероятности охвата р 
коэффициент охвата для области охвата в форме параллелепипеда, соответствующий вероятности 
охвата q
нижняя треугольная матрица
целое число в представлении с х 10' числового значения, где с — целое десятичное число с па,9 
знаками
число выходных величин У ,..... Ym
число испытаний метода Монте-Карло 
матрица сумм квадратов и произведений
число входных величин X ,..... Х и
стандартное нормальное распределение 
нормальное распределение с параметрами д  и с 2 
многомерное нормальное распределение с параметрами ц  и V 
число наблюдений
количество значащих цифр числа, рассматриваемых как достоверные
вероятность события Z
вероятность охвата
m-мерная область охвата для Y
корреляционная матрица размерное™ т х  т  для  оценки у 
стандартное равномерное распределение на интервале [0. 1) 
равномерное распределение на интервале [а. 6]
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r(x„Xj) коэффициент корреляции оценок х, и х, входных величин X, и Xt
s оценка стандартного отклонения по л  наблюдениям х ,...... х„
S/ стандартное отклонение для  среднего Z значений Z*1)......Z*"' в адаптивной процедуре метода

Монте-Карло, где Z  может означать оценку у; выходной величины стандартную неопределенность 
Ыу/) оценки у . максимальное собственное значение А*„ах корреляционной матрицы Ry или коэффи­
циент охвата кр области охвата для Y 

Т  верхний индекс, обозначающий транспонирование матрицы
М Ц-S) многомерное /-распределение с  параметрами р  и S и v  степенями свободы 
и р расширенная неопределенность, соответствующая вероятности охвата р
UK ковариационная матрица для оценок х входной величины X
Uy ковариационная матрица для оценок у входной величины Y
и,. и(х) стандартная неопределенность оценки х входной величины X
о(х,) стандартная неопределенность оценки х, входной величины X,
£/{х„ х,) ковариация оценок х, и xt входных величин X, и Х1
и(х) вектор (ufx,.)......u(xN))T стандартных неопределенностей для оценок х входной величины X
V(X,) дисперсия случайной переменной X,
V ковариационная матрица
V(X) ковариационная матрица случайной величины X
X, т-я входная величина, рассматриваемая как случайная переменная
X вектор (X ,....... X W)T входных величин
х среднее арифметическое п наблюдений X)......х„
x, оценка (математическое ожидание) величины X, или т-е наблюдение в серии наблюдений
х оценка (математическое ожидание) (х ,...... х «)т величины X
х(г г-й элемент выборки случайных значений, полученных при реализации метода Монте-Карло, из плот­

ности распределения для X,
хг r-й вектор, содержащий элементы Xj г. .... хН г. полученные из N  плотностей распределения для вход­

ных величин X , . ..., Х „  или из совместной плотности распределения для величины X 
Yf j-я выходная величина, рассматриваемая как случайная переменная
Y вектор (У ,......Ут )г выходных величин, рассматриваемых как случайные переменные
y, оценка (математическое ожидание) величины Уу
у  оценка (математическое ожидание) (у ,.......у,„)т величины Y
у оценка величины Y. полученная как выборочное среднее М значений выходной величины у,

в результате реализации метода Монте-Карло 
у, г-в значение функции измерения f(xr)
у*г трансформированное значение у,
Z,ft| h-e значение величины Z в адаптивной процедуре метода Монте-Карло, где Z  может означать оцен­

ку yt выходной величины У(. стандартную неопределенность и (у ) оценки у .  максимальное соб­
ственное значение Хтах корреляционной матрицы Ry или коэффициент охвата кр области охвата 
Для Y

а  значение вероятности
T(Z ) гамма-функция переменной Z
S точность вычисления числового значения
rj переменная, описывающая возможные значения выходной величины У
кр точность вычисления коэффициента охвата кр для области охвата в форме эллипсоида
кд точность вычисления коэффициента охвата к0 для  области охвата в форме параллелепипеда
^тах наибольшее собственное значение корреляционной матрицы

наименьшее собственное значение корреляционной матрицы
р математическое ожидание случайной величины, характеризуемой плотностью распределения
р математическое ожидание векторной случайной величины, характеризуемой плотностью совмест­

ного распределения
v число степеней свободы /-распределения или распределения хи-хвадрат;
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v0„  число эффективных степеней свободы, соответствующих стандартной неопределенности /4у)
переменная, описывающая возможные значения входной величины X, 
переменная (4,, .... |W)T. описывающая возможные значения входной величины X 

р точность вычисления наибольшего собственного значения корреляционной матрицы
0 стандартное отклонение случайной величины, характеризуемой распределением вероятностей
о2 дисперсия (квадрат стандартного отклонения) случайной величины, характеризуемой распределе­

нием вероятностей
1 ковариационная матрица векторной величины, характеризуемая совместным распределением ве­

роятности
X ;  распределение хи-квадрат с v степенями свободы
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Приложение Д А  
(справочное)

С в е д е н и я  о с о о тв е тс тв и и  с с ы ло ч н ы х  м еж дунаро дны х до кум е нто в 
наци о н а льны м  стандар там  Р о ссийск ой Ф едерации

Т  а б л и ц а  ДА.1

Обозначение
ссылочного международного 

документа

Степень
соответствия

Обозначение и наименование национальною 
стандарта

JCG M  100:2008 ЮТ ГО С Т Р 54500.3— 2011/Руководство ИСО/МЭК 98-3:2008 
«Неопределенность измерения. Часть 3. Руководство по вы­
ражению неопределенности измерения»

JC G M  101:2008 ЮТ ГО С Т Р 54500.3.1— 2011/Руководство ИСО/МЭК 98-3:2008/ 
Дополнение 1:2008 «Неопределенность измерения. Часть 3. 
Руководство по выражению неопределенности измерения. 
Дополнение 1. Трансформирование распределений с  исполь­
зованием метода Монте-Карло»

JCG M  104:2009 ЮТ ГО С Т Р 54500.1— 2011/ Руководство ИСО/МЭК 98-1:2009 
«Неопределенность измерения. Часть 1. Введение в руковод­
ства по неопределенности измерения»

JCG M  200:2008 — •

' Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использо­
вать перевод на русский язык данного международного документа. Перевод данного международного доку­
мента находится в Федеральном информационном фонде технических регламентов и стандартов.

П р и м е ч а н и е  —  В настоящей таблице использовано следующее условное обозначение степени 
соответствия документов:

-  IDT —  идентичные стандарты.
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