МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROL OGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT EN 15850-2013

ПРОДУКТЫ ПИЩЕВЫЕ

Определение зеараленона в продуктах для детского питания на кукурузной основе, ячменной, кукурузной и пшеничной муке, поленте и продуктах на зерновой основе для питания грудных детей и детей раннего возраста

Метод ВЭЖХ с применением иммуноаффинной колоночной очистки экстракта и флуориметрическим детектированием

(EN 15850:2010, IDT)

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 — 92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВ ЛЕН Открытым акционерным обществом «Всероссийский научно-исследовательский институт сертификации» (ОАО «ВНИИС») при участии специалистов Государственного научного учреждения Всероссийского научно-исследовательского института консервной и овощесущильной промышленности Российской академии сельскохозяйственных наук (ГНУ ВНИИКОП Россельхозакадемии) на основе собственного аутентичного перевода на русский язык европейского регионального стандарта, указанного в пункте 4

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (ТК 335)

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 58-П от 28 августа 2013 г.)

За принятие проголосовали:

Краткое наименование	Код страны по	Сокращенное наименование			
страны по МК	л по МК МК (ИСО национальн	национального органа			
(MCO 3166) 004-97	3166) 004–97	по стандартизации			
Армения	AM	Минэкономики Республики Армения			
Беларусь	BY	Госстандарт Республики Беларусь			
Кыргыз стан	KG	Кыргызстандарт			
Молдова	MD	Молдова-Стандарт			
Российская Федерация	RU	Росстандарт			
Узбекистан	UZ	Уз стандарт			

4 Настоящий стандарт идентичен европейскому региональному стандарту EN 15850:2010 «Foodstuffs. Determination of zearalenone in maize based baby food, barley flour, maize flour, polenta, wheat flour and cereal based foods for infants and young children. HPLC method with immunoaffinity column cleanup and fluorescence detection» (Продукты пищевые. Определение зеараленона в продуктах для детского питания на кукурузной основе, ячменной, кукурузной и пишеничной муке, поленте и продуктах на зерновой основе для питания грудных детей и детей раннего возраста. Метод ВЭЖХ с применением им-

муноаффинной колоночной очистки экстракта и флуориметрическим детектированием).

Перевод с английского языка (en)

Официальный экземпляр европейского регионального стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, имеется в Федеральном агентстве по техническому регулированию и метрологии Российской Федерации.

Степень соответствия – идентичная (IDT)

5 Приказом Федерального агентства по техническому регулированию и метрологии от 22.11.13г № 1710-ст межгосударственный стандарт ГОСТ EN 15850-2013 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2015 г.

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Нащональные стандарты», а текст изменений и поправок — в ежемесячно издаваемом информационном указателе «Нащональные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2013

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ΓΟCT EN 15850-2013

Содержание

1 Область применения
2 Нормативные ссылки
3 Сущность метода.
4 Реактивы
5 Приборы и оборудование
6 Процедура проведения испытания
7 Анализ с помощью ВЭЖХ
8 Обработка результатов
9 Прецизионность
10 Протокол испытаний
Приложение А (справочное) Типичные хроматограммы
Приложение В (справочное) Данные по прецизионности метода
Библиография

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

продукты пищевые

Определение зеараленона в продуктах для детского питания на кукурузной основе, ячменной, кукурузной и пш еничной муке, поленте и продуктах на зерновой основе для питания грудных детей и детей раннего возраста

Метод ВЭЖХ с применением иммуноаффинной колоночной очистки экстракта и флуориметрическим детектированием

Foodstuffs.

Determination of zearalenone in maize based baby food, barley flour, maize flour, polenta, wheat flour and cereal based foods for infants and young children.

HPLC method with immunoaffinity column cleanup and fluorescence detection

Дата введения – 2015-07-01

1 Область применения

Настоящий стандарт устанавливает метод определения зеараленона в продуктах для детского питания на основе кукурузы, ячменной, кукурузной и шшеничной муке, поленте и продуктах на зерновой основе для питания грудных детей и детей раннего возраста с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ) с применением очистки экстракта на колонке с иммуноаффинным сорбентом и флуориметрическим детектированием. Метод прошел валидацию путем двух межлабораторных испытаний. В одном случае объектом испытаний были пробы продуктов для детского питания на основе кукурузы, ячменная, кукурузная, пшеничная мука и полента с содержания зеараленона от 10 до 335 мкг/кг. Во втором случае объектом испытаний были пробы продуктов на зерновой основе для питания грудных детей и детей раннего возраста с содержанием зеараленона от 9 до 44 мкг/кг.

Подробная информация о результатах валидации метода содержится в разделе 9 и приложении В.

2 Нормативные ссылки

Приведенные ниже ссылочные нормативные документы являются обязательными для применения настоящего стандарта. Датированные ссылки предполагают возможность использования только указанного издания документа. В случае недатированных ссылок используют последнее издание документа, включая все дополнения.

EN ISO 3696:1995 Water for analytical laboratory use — Specification and test methods (ISO 3696:1987) (Вода для лабораторного анализа. Технические требования и методы испытаний).

3 Сущность метода

Зеараленон экстрагируют из пробы водно-ацетонитрильной смесью или метанолом, в зависимости от вида пробы. Экстракт разбавляют фосфатно-хлоридным буферным раствором и пропускают через иммуноаффинную колонку, заполненную сорбентом, содержащим антитела, специфичные к зеараленону, при этом происходит очистка экстракта и концентрирование зеараленона. Зеараленон элю ируют с колонки ацетонитрилом или метанолом, после чего количественно определяют с помощью ВЭЖХ с применением обращенно-фазовой аналитической колонки и флуориметрическим детектированием.

4 Реактивы

4.1 Общие положения

Для проведения испытания при отсутствии особо оговоренных условий используют только реактивы гарантированной аналитической чистоты и воду не ниже первой степени чистоты по EN ISO 3696: 1995. Используемые растворители по степени чистоты должны быть пригодны для применения в анализе с помощью ВЭЖХ, если не оговорены другие условия. Допускается использование доступных для приобретения готовых растворов при условии,

что их характеристики не отличаются от приведенных ниже.

- 4.2 Натрий фосфорнокислый двухзамещенный безводный (Na₂HPO₄) или гидратированный (Na₇HPO₄ · 12H₇O).
 - 4.3 Калий хлористый.
 - 4.4 Калий фосфорнокислый однозамещенный.
 - 4.5 Натрий хлористый.
 - 4.6 Натрия гидроксид.
 - 4.7 Кислота соляная, водный раствор массовой долей w (HCl) = 37 %.
- 4.8 Кислота соляная, раствор молярной концентрации $c(\mathrm{HCl}) = 0.1\ \mathrm{моль/дм}^3$

Раствор готовят разбавлением 8,28 см³ раствора соляной кислоты по 4.7 водой до 1 дм³.

4.9 Натрия гидроксид, раствор молярной концентрации c (NaOH) = $0.1 \, \mathrm{моль/дм}^3$

Растворяют 4 г гидроксида натрия по 4.6 в 1 дм³ воды.

4.10 Раствор фосфатно-хлоридный буферный молярной концентрации хлористого натрия c (NaCl) = 120 ммоль/дм³, хлористого калия c (KCl) = 2,7 ммоль/дм³, суммы фосфатов натрия и калия c (Na₂HPO₄ + KH₂PO₄) = 10 ммоль/дм³, pH = 7,4

Растворяют 8,0 г клористого натрия по 4.5, 1,2 г безводного двукзамещенного фосфорнокислого натрия [или 2,9 г гидратированного двукзамещенного фосфорнокислого натрия (Na₂HPO₄·12H₂O)] по 4.2, 0,2 г однозамещенного фосфорнокислого калия по 4.4 и 0,2 г клористого калия по 4.3 в 900 см³ воды.

Значение рН приготовленного раствора доводят до 7,4 путем добавления раствора соляной кислоты по 4.8 либо раствора гидроксида натрия по 4.9, после чего объем раствора доводят водой до 1 дм³.

В качестве альтернативы для приготовления раствора допускается использовать доступный для приобретения препарат с аналогичными характеристиками.

4.11 Ацетонитрил.

ПРЕДУПРЕЖДЕНИЕ — Ацетонитрил является токсичным веществом, поэтому все операции по приготовлению растворов, содержащих ацетонитрил, следует проводить в вытяжном шкафу с использованием взрывобезопасного перемешивающего устройства. Филь трование растворов, содержащих ацетонитрил, следует проводить также в вытяжном шкафу.

- 4.12 Метанол для ВЭЖХ.
- 4.13 Метанол технический.

4.14 Экстрагент А

Смешивают 75 объемных частей ацетонитрила по 4.11 с 25 объемными частями воды.

4.15 Дилюент А для приготовления раствора пробы для анализа с помощью ВЭЖХ

Смешивают четыре объемных части ацетонитрила по 4.11 с шестью объемными частями воды.

4.16 Подвижная фаза А для ВЭЖХ

Подвижную фазу готовят смешиванием 53 объемных частей ацетонитрила по 4.11 с 47 объемными частями воды. Перед использованием подвижную фазу фильтруют и дегазируют.

4.17 Экстрагент В

Смещивают 75 объемных частей метанола по 4.13 с 25 объемными частями воды.

4.18 Растворитель для промывания иммуноаффинной колонки

Смешивают 15 объемных частей метанола по 4.12 с 85 объемными частями ф осфатно-хлоридного буферного раствора по 4.10.

4.19 Дилюент В для приготовления раствора пробы для анализа с помощью ВЭЖХ

Смешивают пять объемных частей метанола по 4.12 с пятью объемными частями воды.

4.20 Подвижная фаза В для ВЭЖХ

Смешивают 75 объемных частей метанола по 4.12 с 25 объемными частями воды. Перед использованием подвижную фазу фильтруют и дегазируют.

4.21 Колонка с иммуноаффинным сорбентом

Для проведения испытания пригодна колонка с иммуноаффинным сорбентом с иммобилизованными антителами, специфичными в отношении зеараленона, имеющая сорбционную емкость по зеараленону не менее 1500 нг и обеспечивающая полноту обнаружения не менее 80 % при внесении в нее 75 нг зеараленона в 10 см³ раствора, состоящего из 15 объемных частей метанола и 85 объемных частей фосфатно-хлоридного буферного раствора.

4.22 Зеараленон кристаллический или в виде ампульного препарата в пленочной форме массовой долей основного вещества не менее 98 %, или в виде готового раствора.

ПРЕДУПРЕЖДЕНИЕ — Зеараленон является эстрогенным веществом, поэтому с ним надлежит обращаться с особой осторожностью. Все работы, связанные с подготовкой пробы и приготовлением стандартных растворов должны проводиться в вытяжном шкафу с использованием защитной одежды, перчаток и защитных очков.

4.23 Зеараленон, основной раствор массовой концентрации 200 мкг/см³

Готовят раствор зеараленона массовой концентрации около 1,25 мг/см³ путем растворения 5 мг зеараленона по 4.22 в 4,0 см³ ацетонитрила по 4.11. Порцию полученного раствора объемом 800 мм³ разбавляют ацетонитрилом по 4.11 до объема 5 см³, получают основной раствор зеараленона массовой концентрации около 200 мкг/см³.

Раствор хранят при температуре от минус 18 °C до минус 20 °C. Перед использованием раствор выдерживают до достижения комнатной температуры. При указанных условиях хранения срок годности раствора составляет 12 мес. При хранении основного раствора более 6 мес перед его использованием проверяют соответствие фактической массовой концентрации зеарале-

нона ранее установленному значению.

4.24 Зеараленон, основной раствор промежуточной концентрации (стандартный раствор для внесения в пробу при контроле полноты обнаружения) массовой концентрации 10 мкг/см³

Раствор зеараленона массовой концентрации около 10 мкг/см³ готовят путем смещивания 250 мм³ основного раствора зеараленона по 4.23 с 4,75 см³ ацетонитрила по 4.11.

Для определения точной массовой концентрации зеараленона в полученном растворе регистрируют его оптическую плотность в диапазоне длин волн от 200 до 300 нм в кварцевой кювете длиной оптического пути 1 см с использованием спектрофотометра по 5.25. В качестве раствора сравнения используют ацетонитрил по 4.11. По полученному спектру определяют длину волны, соответствующую максимальной оптической плотности, приблизительно равную 274 нм. Массовую концентрацию зеараленона в растворе, р_{гоп}, мкг/см³, рассчитывают по формуле

$$\rho_{\text{aon}} = \frac{A_{\text{max}} \quad M \quad 100}{\epsilon \quad b}, \tag{1}$$

где A_{\max} — максимальное значение оптической плотности в данном диапазоне длин волн (в данном случае при 274 нм);

M — молярная масса зеараленона, г/моль (M = 318,4 г/моль);

 ε – молярный коэффициент поглощения зеараленона в ацетонитриле, м²/моль, (ε = 1262 м²/моль по [1]);

длина оптического пути кюветы, см.

Раствор жранят в морозильной камере при температуре от минус 18 °C до минус 20 °C. Перед использованием раствор выдерживают до достижения комнатной температуры. При указанных условиях хранения срок годности раствора составляет 12 мес. При хранении основного раствора более 6 мес перед его использованием проверяют соответствие фактической массовой концентрации зеараленона ранее установленному значению.

4.25 Зеараленон, стандартный раствор А массовой концентрации

2,0 мкг/см³ (используется при испытании продуктов для детского питания на кукурузной основе, ячменной, кукурузной, пшеничной муки и поленты)

Аликвоту основного раствора зеараленона промежуточной концентрации по 4.24, эквивалентную 10 мкг зеараленона, переносят во флакон по 5.9 или в мерную колбу по 5.10 вместимостью 5 см³ и разбавляют ацетонитрилом до объема 5 см³.

Раствор хранят в морозильной камере при температуре от минус 18 °C до минус 20 °C. Перед использованием раствор выдерживают до достижения комнатной температуры. При указанных условиях хранения срок годности раствора составляет 12 мес. При хранении основного раствора более 6 мес перед его использованием проверяют соответствие фактической массовой концентрации зеараленона ранее установленному значению.

4.26 Зеараленон, стандартный раствор В массовой концентрации 0,4 мкг/см³ (используется при испытании продуктов на зерновой основе для питания грудных детей и детей раннего возраста)

Аликвоту основного раствора зеараленона промежуточной концентрации по 4.24, эквивалентную 2 мкг зеараленона, переносят во флакон по 5.9 или в мерную колбу по 5.10 вместимостью 5 см³ и разбавляют ацетонитрилом до объема 5 см³.

Раствор хранят в морозильной камере при температуре от минус 18 °C до минус 20 °C. Перед использованием раствор выдерживают до достижения комнатной температуры. При указанных условиях хранения срок годности раствора составляет 12 мес. При хранении основного раствора более 6 мес перед его использованием проверяют соответствие фактической массовой концентрации зеараленона ранее установленному значению.

5 Приборы и оборудование

5.1 Общие положения

При проведении испытания используют общеупотребительные лабора-

торную посуду и оборудование, в частности, перечисленные ниже.

- 5.2 Блендер высокоскоростной или гомогенизатор.
- 5.3 Весы аналитические, пригодные для взвешивания с точностью до 0,0001 г.
 - 5.4 Весы лабораторные, пригодные для взвешивания с точностью до 0,1 г.
- 5.5 Встряхиватель лабораторный вертикального или горизонтального типа с возможностью регулировки скорости встряхивания.
- 5.6 Устройство перемешивающее лабораторное (миксер) типа Вортекс или аналогичный.
 - 5.7 Мельница лабораторная с комплектом решеток.
 - 5.8 Миксер барабанного типа лабораторный.
 - 5.9 Флаконы стеклянные различного объема.
 - 5.10 Колбы мерные вместимостью 3, 5 и 10 см³.
 - 5.11 Стакан вместимостью 250 см³.
- 5.12 Колбы конические с винтовой крышкой или стеклянной пробкой вместимостью 100, 250 и 500 см³.
- 5.13 Фильтры бумажные, например, для качественного анализа, быстрофильтрующие, прочные, диаметром 24 см, размером пор 30 мкм, или аналогичные
- 5.14 Фильтры из стеклянного микроволокна, задерживающие частицы размером от 1,6 мкм, или аналогичные.
 - 5.15 Пипетки вместимостью от 25 до 250 мм³, 1, 5 и 10 см³.
- 5.16 Микропипетки выдувные или микрошприцы газонепроницаемые вместимостью 100, 500 и 1000 мм³.
- 5.17 Устройство для вакуумной фильтрации многопозиционное, приспособленное для установки иммуноаффинных колонок (манифолд) или автоматизированная система для вакуумной фильтрации.
- 5.18 Резервуары для элюента вместимостью от 50 до 75 см³ в комплекте с приспособлениями для подсоединения иммуноаффинных колонок.
 - 5.19 Шприцы пластиковые вместимостью 5 см³.

- 5.20 Насос вакуумный, пригодный для создания разрежения 1 кПа производительностью не менее 18 дм³/мин.
- 5.21 Устройство для вакуумной фильтрации растворителей в комплекте с фильтрами из стеклянного микроволокна диаметром 47 мм.

5.22 Фильтры мембранные нейлоновые шприцевые диаметром пор 0,45 мкм

Перед использованием следует убедиться в отсутствии потерь зеараленона при фильтрации экспериментально проверив полноту его обнаружения.

Примечание – Некоторые фильтрующие материалы могут задерживать зеараленон.

5.23 Баня ультразвуковая лабораторная.

5.24 Система для ВЭЖХ в указанной ниже комплектации:

- 5.24.1 Инжектор, обеспечивающий объем ввода от 100 до 300 мм³.
- 5.24.2 Насос для подачи подвижной фазы, обеспечивающий скорость подачи подвижной фазы от 0,5 до 1,5 см³/мин при отсутствии пульсаций.

5.24.3 Колонка для ВЭЖХ аналитическая, заполненная обращеннофазовым сорбентом

Для проведения испытания пригодна колонка, обеспечивающая отделение пика зеараленона от сопутствующих пиков других компонентов матрицы пробы. Перекрывание пика зеараленона другими пиками не должно превышать 10 % его высоты.

В отношении указанных ниже колонок установлена пригодность для проведения испытания при использовании подвижной фазы А по 4.16.

Колонка длиной 150 мм, внутренним диаметром 4,6 мм, заполненная сорбентом Phenomenex Prodigy[®]* ODS-3 размером частиц 5 мкм и размером пор 25 нм и колонка длиной 250 мм, внутренним диаметром 4,6 мм, заполненная сорбентом Spherisorb[®]* ODS-2 Excel размером частиц 5 мкм и размером пор 25 нм.

^{*} Phenomenex Prodigy®, Spherisorb® и Supelkosil®— примеры подходящих изделий, доступных для приобретения. Эта информация дана для удобства применения настоящего стандарта и не является рекламной поддержкой указанных изделий. Допускается использование других сорбентов с аналогичными свойствами, удовлетворяющими указанным требованиям

Указанная ниже колонка найдена пригодной при использовании подвижной фазы В по 4.20.

Колонка длиной 250 мм, внутренним диаметром 4,6 мм, заполненная сорбентом Supelkosil^{®*} (C₁₈) с блокированными остаточными силанольными группами размером частиц 5 мкм и размером пор 18 нм

- 5.24.4 Колонка защитная внутренним диаметром 4 мм, заполненная тем же сорбентом, что и аналитическая колонка, или аналогичным, диаметром частиц 5 мкм.
- 5.24.5 Детектор флуоориметрический с проточной кюветой, пригодный для проведения измерений при длинах волн возбуждения и эмиссии соответственно 274 или 275 нм и 446 или 450 нм.
- 5.24.6 Самописец, интегратор или компьютерная система обработки данных.
- 5.24.7 Дегазатор (применяется по выбору пользователя) для дегазации подвижной фазы.
- 5.25 Спектрофотометр, пригодный для измерений оптической плотности в ультрафиолетовой области спектра, в комплекте с кварцевыми кюветами.

б Процедура проведения испытания

- 6.1 Экстракция
- 6.1.1 Экстракция при испытании ячменной, кукурузной и пшеничной муки, поленты и продуктов для детского питания на кукурузной основе

Измельченную пробу для анализа массой 25 г, измеренной с точностью до 0,1 г, помещают в стакан по 5.11. В стакан добавляют 100 см³ экстрагента А по 4.14. Содержимое стакана гомогенизируют с использованием гомогенизатора по 5.2 в течение 3 мин при высокой скорости перемешивания, после чего экстракт фильтруют через складчатый фильтр по 5.13.

Отбирают пипеткой по 5.15 аликвоту фильтрата объемом 12 см³ и помещают ее в коническую колбу по 5.12. В колбу добавляют 88 см³ фосфатноклоридного буферного раствора по 4.10, содержимое колбы тщательно перемешивают. Если при этом раствор в колбе становится мутным, его количественно фильтруют через фильтр из стеклянного микроволокна по 5.14.

6.1.2 Экстракция при испытании продуктов на зерновой основе для питания грудных детей и детей раннего возраста

20 г пробы для анализа, взвешенной с точностью до 0,1 г, помещают в коническую колбу с винтовой крышкой по 5.12. В колбу добавляют 150 см³ экстрагента В по 4.17, содержимое колбы перемешивают вручную в течение нескольких секунд до получения гомогенной суспензии, после чего встрях ивают в течение 1 ч с помощью встрях ивателя по 5.5, либо помещают на 15 мин в ультразвуковую баню по 5.23, а затем встрях ивают в течение

15 мин с помощью встрях ивателя по 5.5.

Экстракт фильтруют через складчатый фильтр по 5.13 в коническую колбу по 5.12 вместимостью 100 см³. Аликвоту фильтрата объемом 30 см³ переносят в мерный цилиндр вместимостью 150 см³ с пробкой. Объем содержимого в цилиндре доводят до 150 см³ фосфатно-хлоридным буферным раствором по 4.10. Содержимое цилиндра перемешивают и фильтруют через фильтр из стеклянного микроволокна по 5.14 с помощью вакуумного насоса по 5.21 при неглубоком разрежении. Первые 20 см³ фильтрата отбрасывают, для дальнейшего анализа отбирают порцию последующего фильтрата объемом около 70 см³.

Примечание — При фильтрации экстракта не следует применять глубокое разрежение, поскольку при этом в симожно получение мутного фильтрата.

После фильтрации экстракт немедленно подвергают очистке на иммуноаффинной колонке по 6.2.

6.2 Очистка экстракта на иммуноаффинной колонке

Перед кондиционированием колонку выдерживают до достижения ею комнатной температуры. Иммуноаффинную колонку по 4.21 подсоединяют к вакуумному манифолду по 5.17, к верхнему концу колонки присоединяют резервуар для элюента по 5.18.

Колонку кондиционируют путем пропускания через нее 20 см³ фосфатно-хлоридного буферного раствора по 4.10 со скоростью от 3 до 5 см³/мин. Затем в резервуар для элюента вносят 50 см³ разбавленного и фильтрованного экстракта по 6.1.1 или 6.1.2. Экстракту дают полностью протечь через колонку под действием силы тяжести при постоянной скорости протока до тех пор, пока его уровень не достигнет верхнего фильтра колонки. При прохождении экстракта через колонку скорость протока не должна превышать одну-две капли в секунду.

После прохождения экстракта через колонку ее промывают 20 см³ воды, или, при испытании продуктов для детского питания, сначала 5 см³ растворителя для промывания по 4.18, затем 15 см³ воды со скоростью протока одна — две капли в секунду. По окончании промывания из колонки удаляют воду путем пропускания через нее около 3 см³ воздуха или азота. Элюат, полученный на стадии промывания колонки, отбрасывают.

Примечания

- Допускается использовать параметры предварительного кондиционирования и промывания колонки, оговоренные в инструкции по ее применению.
- 2 При проведении очистки экстракта следует обращать внимание, чтобы сорбционная емкость колонки не была превышена.
- 6.3 Приготовление раствора пробы для хроматографического анализа
- 6.3.1 Приготовление раствора пробы для хроматографического анализа при испытании ячменной, кукурузной и пшеничной муки, поленты и продуктов для детского питания на кукурузной основе

Под иммуноаффинную колонку помещают флакон по 5.9 для сбора элюата. В резервуар для элюента по 5.18 пипеткой вносят 1,5 см³ ацетонитрила по 4.11 и дают ему заполнить колонку. Колонку выдерживают в таком состоянии в течение 1 мин, после чего открывают выход растворителя и элюируют зеараленон со скоростью одна — две капли в секунду. По окончании элюирования для полного выведения из колонки растворителя и сбора всего элюата через колонку пропускают не менее 5 см³ воздуха.

Элюат выпаривают досуха в токе азота. Остаток после выпаривания растворяют в 1 см³ дилюента А по 4.15 и тщательно перемешивают с использованием миксера типа Вортекс. Полученный раствор пробы для хроматографического анализа переносят в стеклянный сосуд по 5.9.

В качестве аль тернативы раствор пробы для хроматографического анализа готовят разбавлением элю ата водой до определенного объема, например, 3 см³.

6.3.2 Приготовление раствора пробы для хроматографического анализа при испытании продуктов на зерновой основе для питания грудных детей и детей раннего возраста

Под колонку помещают мерную колбу по 5.10 вместимостью 3,0 см³ для сбора элюата. Через колонку пропускают 0,75 см³ метанола по 4.12, собирая элюат. Как только весь метанол войдет в колонку, перекрывают выход элюата и выдерживают колонку в контакте с метанолом в течение 1 мин. Затем через колонку пропускают новую порцию метанола объемом 0,75 см³, собирая элюат. Для полноты сбора элюата остаток растворителя в колонке аккуратно вытесняют воздухом.

Объем содержимого в мерной колбе с элюатом доводят до метки водой, содержимое колбы перемешивают. В случае образования при разбавлении элюата мутного раствора, его фильтруют через мембранный фильтр по 5.22 с помощью пластикового шприца по 5.19.

Примечания

1 При смешивании метанола с водой имеет место уменьшение объема смеси по отношению к сумме объемов каждого ее компонента. Поэтому при необходимости после разбавления элюата в одой и перемешивания объем содержимого в мерной колбе повторно доводят до метки водой.

2 Операции очистки экстракта на иммуноаффинной колонке и элюпрования зеараленона по 6.3.1 и 6.3.2 допускается проводить с использованием соответствующей автоматизированной системы при соблюдении тех же объемных параметров и скорости протока.

6.4 Приготовление пробы с добавкой зеараленона

Для контроля полноты обнаружения готовят пробу с добавлением стандартного раствора зеараленона по 4.24. Содержание зеараленона в пробе

должно находиться в пределах диапазона градуировки, желательно, на середине этого диапазона. После внесения в пробу раствора зеараленона ее выдерживают в покое в течение не менее 30 мин для удаления растворителя.

7 Анализ с помощью ВЭЖХ

7.1 Условия хроматографического анализа

Приведенные ниже параметры обеспечивают удовлетворительное качество хроматографического анализа при использовании колонки по 5.24.3 и подвижных фаз по 4.16 или 4.20 (см. хроматограммы на рисунке А.1 и рисунке А.2, приложение А).

- скорость подачи подвижной фазы от 0,7 до 1,0 см³/мин;
- длина волны возбуждения флуориметрического детектора от 274 до 275 нм;
- длина волны эмиссии флуориметрического детектора от 440 до 450 нм;
 - объем инжекции: от 100 до 300 мм³.

7.2 Приготовление градуировочных растворов

Готовят пять градуировочных растворов, для чего в мерные колбы вместимостью 10 см³ пипеткой по 5.15 или микрошприцем по 5.16 вносят стандартные растворы зеараленона в объемах, указанных в таблице 1 и 2, в зависимости от вида пробы. Объем содержимого в каждой колбе доводят до метки подходящим дилюентом (дилюент A по 4.15 для приготовления растворов по таблице 1 и дилюент B по 4.19 для приготовления растворов по таблице 2).

Таблица 1 — Приготовление градуировочных растворов при испытании ячменной, кукурузной и пшеничной муки, поленты и продуктов для детского питания на кукурузной основе

Градуировоч- ный раствор	Объем стандартного раствора А по 4.25, взятый для приготовления градуировоч- ного раствора, мм ³	Массовая концентрация зе арапенона в градуировоч- ном растворе, нг/см ³		
1	25	5		
2	175	35		
3	37.5	75		
4	550	110		

5	750	150

Таблица 2 — Приготовление градуировочных растворов при испытании продуктов на зерновой основе для питания грудных детей и детей раннего возраста

Градуировоч ный раствор	Объем стандартного раствора В по 4.26, взятый для приготовления граду- ировочного раствора, мм ³	Массовая концентрация з е- араленона в градуиров очном растворе, нт/см ³
1	50	2
2	200	8
3	350	14
4	500	20
5	650	26

При приготовлении градуировочных растворов допускается использовать как пипетки, так и другие подходящие стеклянные градуированные средства измерения объема.

7.3 Построение градуировочного графика

Градуировку осуществляют ежедневно перед проведением испытаний, для чего проводят хроматографический анализ градуировочных растворов, приготовленных в соответствии с таблицей 1 или 2. При построении градуировочного графика в системе координат откладывают значения массовой концентрации зеараленона, нг/см^3 , против соответствующих величин аналитического сигнала в виде площади или высоты пика зеараленона. Полученный график проверяют на соответствие требованиям линейности с помощью регрессионного анализа ($r^2 \ge 0,998$).

7.4 Определение зеараленона в растворе пробы

Проводят хроматографический анализ растворов проб, приготовленных по 6.3.1 или 6.3.2, при тех же условиях, что были использованы при анализе градуировочных растворов.

7.5 Идентификация пиков

Пик зеараленона на хроматограмме раствора анализируемой пробы

идентифицируют по совпадению его времени удерживания с временем удерживания пика зеараленона на хроматограммах градуировочных растворов. Необходимо, чтобы массовая концентрация зеараленона в анализируемом растворе пробы находилась в границах диапазона градуировки. Если массовая концентрация зеараленона в растворе пробы превышает верхнюю границу диапазона градуировки, раствор пробы разбавляют подвижной фазой для ВЭЖХ и проводят его повторный хроматографический анализ. Разбавление раствора пробы учитывают во всех последующих расчетах.

8 Обработка результатов

По градуировочному графику определяют массовую концентрацию зеараленона в растворе пробы для анализа по 6.3.1 или 6.3.2, нг/см³.

Содержание зеараленона в пробе, w_{zon} , мкг/кг, рассчитывают по формуле

$$w_{son} = \frac{\rho_a V_1 V_2}{V_3 m_i} , \qquad (2)$$

- где ρ_{α} массовая концентрация зеараленона в растворе пробы для хроматографического анализа, определенная по градуировочному графику, нг/см³;
 - V_1 объем экстрагента, использованный для экстракции, см³ ($V_1 = 100$ см³ по 6.1.1 или $V_1 = 150$ см³ по 6.1.2);
 - V_2 объем приготовленного раствора пробы для хроматографического анализа, см³ ($V_2 = 1,0$ см³ или $V_2 = 3,0$ см³);
 - V_3 объем аликвоты экстракта, взятой для очистки на иммуноаффинной колонке, см³ ($V_3 = 6$ см³ по 6.1.1 или $V_3 = 10$ см³ по 6.1.2);
 - m_s масса пробы для анализа, г ($m_s = 25$ г по 6.1.1 или $m_s = 20$ г по 6.1.2).

При соблюдении всех параметров, указанных в методике, содержание зеараленона рассчитывают по следующим упрощенным формулам.

При экстракции по 6.1.1 и объеме приготовленного раствора пробы для хроматографического анализа 1 см³:

$$w_{son} = 0.667 \rho_{son}$$
.

При экстракции по 6.1.1 и объеме приготовленного раствора пробы для хроматографического анализа 3 см³:

$$w_{son} = 2.0 \rho_{son}$$
.

При экстракции по 6.1.2 и объеме приготовленного раствора пробы для хроматографического анализа 3 см³:

$$w_{som} = 2,25 \rho_{som}$$
.

9 Прецизионность

9.1 Общие положения

Подробности межлабораторных испытаний по определению прецизионности метода для продуктов для детского питания на кукурузной основе, ячменной, кукурузной, пшеничной муки и поленты приведены в таблице В. 1, приложение В. Подробности межлабораторных испытаний по определению прецизионности метода для продуктов на зерновой основе для питания грудных детей и детей раннего возраста приведены в таблице В.2, приложение В. Значения метрологических карактеристик, полученные в результате межлабораторных испытаний, могут быть не применимы к другим содержаниям аналита и другим типам матриц, чем те, что указаны в приложении В.

9.2 Повторяемость

Абсолютное расхождение между результатами двух независимых единичных испытаний, полученными одним методом на идентичном объекте испытаний в одной лаборатории одним оператором с использованием одного оборудования в течение короткого промежутка времени, не должно превышать предел повторяемости r более чем в 5 % случаев.

При проведении экстракции по 6.1.1 предел повторяемости равен следующим значениям:

- продукты для детского питания на кукурузной основе:

 $\overline{x} = 10,9$ мкг/кг r=11,0 мкг/кг (проба с искусственным внесением зеараленона);

- ячменная мука:

 $\overline{x} = 143$ мкг/кг, r=27,5 мкг/кг (проба с искусственным внесением зеараленона);

кукурузная мука:

 $\bar{x} = 87,2$ мкг/кг, r=34,8 мкг/кг (проба, загрязненная зеараленоном естественным путем);

- кукурузная мука:

 $\bar{x} = 335$ мкг/кг, r = 82,9 мкг/кг (проба, загрязненная зеараленоном естественным путем);

- полента:

 $\overline{x} = 66,5$ мкг/кг, r=16,6 мкг/кг (проба с искусственным внесением зеараленона);

- пшеничная мука:

 $\overline{x}=227$ мкг/кг, r=52,9 мкг/кг (проба с искусственным внесением зеараленона).

Для продуктов на зерновой основе для питания грудных детей и детей раннего возраста при проведении экстракции по 6.1.2 предел повторяемости равен следующим значениям

 $\bar{x} = 9,1$ мкг/кг, r = 1,5 мкг/кг (проба, загрязненная естественным путем);

 $\bar{x} = 17,1$ мкг/кг, r=2,5 мкг/кг (проба, загрязненная естественным путем);

 $\bar{x} = 44,0$ мкг/кг, r=3,4 мкг/кг (проба, загрязненная естественным путем);

 $\overline{x} = 18,4$ мкг/кг, r=4,5 мкг/кг (проба с искусственным внесением зеараленона);

 $\overline{x} = 26,6$ мкг/кг, r=4,2 мкг/кг проба с искусственным внесением зеараленона).

9.3 Востроизводимость

Абсолютное расхождение между результатами двух единичных испытаний, полученными одним методом на идентичном объекте испытаний в разных лабораториях разными операторами с использованием разного оборудования не должно превышать предел воспроизводимости R более чем в 5% случаев.

При проведении экстракции по 6.1.1 предел воспроизводимости равен следующим з начениям:

- продукты для детского питания на кукурузной основе:

 $\bar{x} = 10,9$ мкг/кг R=11,7 мкг/кг (проба с искусственным внесением зеараленона);

- ячменная мука:

 $\bar{x} = 143$ мкг/кг, R=71.8 мкг/кг (проба с искусственным внесением зеараленона);

кукурузная мука:

 $\bar{x} = 87,2$ мкг/кг, R=50,4 мкг/кг (проба, загрязненная зеараленоном естественным путем);

кукурузная мука:

 $\bar{x}=335$ мкг/кг, R=343,7 мкг/кг (проба, загрязненная зеараленоном естественным путем);

- полента:

 $\overline{x} = 66,5$ мкг/кг, R=30,6 мкг/кг (проба с искусственным внесением зеараленона);

- пшеничная мука:

 $\overline{x} = 227$ мкг/кг, R=107,9 мкг/кг (проба с искусственным внесением зеараленона).

Для продуктов на зерновой основе для питания грудных детей и детей раннего возраста при проведении экстракции по 6.1.2 предел воспроизводимости равен следующим значениям:

 $\overline{x} = 9.1 \text{ mkr/kr}, R = 3.3 \text{ mkr/kr} (проба, загрязненная естественным путем);}$

 $\bar{x} = 17,1$ мкг/кг, R=6,2 мкг/кг (проба, загрязненная естественным путем);

 $\bar{x} = 44,0$ мкг/кг, R=12,5 мкг/кг (проба, загрязненная естественным путем);

 $\vec{x} = 18,4$ мкг/кг, R=6,6 мкг/кг (проба с искусственным внесением зеараленона);

 $\bar{x}=26,6$ мкг/кг, R=6,1 мкг/кг (проба с искусственным внесением зеараленона).

10 Протокол испытаний

Протокол испытаний должен содержать как минимум следующие сведения:

- а) всю информацию, необходимую для идентификации пробы;
- b) ссылку на настоящий стандарт;
- с) дату и способ отбора пробы (если известны);
- d) дату поступления пробы в лабораторию;
- е) дату проведения испытания;
- f) результаты испытания с указанием единиц измерения;
- g) все особенности, наблюдавшиеся при проведении испытания;
- h) все операции, не оговоренные в методике или рассматриваемые как необязательные, которые могли повлиять на результат испытания.

Приложение А (справочное)

Типичные хроматограммы

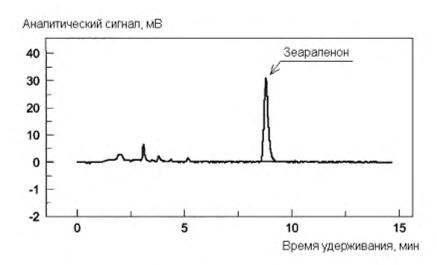


Рисунок А.1 — Хроматограмма пробы пиненицы, загрязненной зеараленоном естественным путем. Содержание зеараленона 190 мкг/кг. Условия хроматографического анализа — по 7.1



Рисунок А.2 — Хроматограмма пробы пиненицы, загрязненной зеараленоном естественным путем. Содержание зеараленона 36 мкг/кг. Условия хроматографического анализа — по 7.1

Приложение В (справочное)

Данные по прецизионности метода

Приведенные в таблице В.1 данные получены в результате межлабораторных испытаний [3], [3], проведенных в соответствии с руководством АОАС по проведению межлабораторных испытаний для определения характеристик эффективности методов анализа [4].

Таблица В. 1 — Данные по прецизионности методики при проведении экстракции по 6.1.1

Наименов ание показа теля	Продукт для детского пита- ния на куку- рузной основе (проба с ис- кусс твенным внесением теараленона)	Мука ячменняя (проба с ис- кусс твенным внесением зеаралено на)	Мука куку- ругная (проба, га- тряне ниая геараленоном естестве нишм путем)	Полента (проба с искус- стве низим в не- сение м зе ара- ле нома)	Мука пис носе- кая (проба с искус- стве новим в не- сение м зе ара- пе нова)	Мука кукуруз- ная (проба, загряз- ненняя зеара- леноном есте- ственным пу- тем)
Год проведения испытаний	2002	2002	2002	2002	2002	2002
Количество пабора- торий-участизков	29	29	29	29	29	28
Число исключен- ных результатов	28	28	29	29	29	27
Количество выбро- сов (лаборато рий)	1	1	0	0	0	1
Число принятых результатов	23	25	27	27	27	27
Среджее зикче- иже \widetilde{X} , мкг/кг	10,9	143	87,2	66,5	227	335
Стандартное от- клонение поэторяе- мости г., мкт/кт	3,9	9,8	12,4	5,9	18,9	29,6
Относитель ное стандартное откло- нение пов торяемости RSD_r , % Предел повторяе- мости r $(r = 2, S_{F_r})$, мат/уг	35,8	6,9	14,2	8,9	8,3 52,9	8,8 82,9
Стандартное от- клонение востроиз- водимости з ₂₀ мыт /кт	4,2	25,6	18,0	10,9	38,6	123
Относительное стандартное откло- нение воспрои води- мости <i>RSD</i> ₁ , %	38,2	17,9	20,6	16,4	17	36,6
Предел воспроиз- водимости <i>R</i> (<i>R</i> = 2,8 г ₂), жиг/ит	11,7	71,8	50,4	30,6	108	344

Продолжение таблицы В.1

Наюченования похазателя	Продукт для детского пита- ния на куку- руз вой основе (проба с вс- кусственным внесением теараленова)	Мука ячовнявая (проба с ис- кусственням виссентем теараленова)	Мука куку- рузная (проба, за- грю ненная зеарале новом ес тес тв енным путем)	Полента (проба с искус- ственным в не- сением зеара- ленона)	Мука писнич- ная (проба с искус- стенным в не- сением зеара- ленова)	Мука кукуруз- ная (проба, загряз- ненная зеара- леконом есте- ственным пу- тем)
Полнота обнаруже- ння, %*	100	92	91	91	95	98
Значение индекса Горина, рассинтак- ное из протиозируе- мого с тандартного отклонения по урав- нению /Томпсона [5], [6].	1,7	0,8	0,9	0,7	0,9	1,9

^{*} Значения полноты обнаружения получены независимо каждой пабораторией по результатам испытаний единичной пробы каждого вида матрицы с внесением зеарапенона на уровне 100 мыт /кт.

Таблица В. 2 — Данные по прецизионности методики при проведении экстракции по 6.1.2

Написнование показа теля	Продукты на герновой основе для питания грудных детей и детей раниего вограста						
	с искусственным внесением в е- араленова			загрязненные зеараленономесте ственным путем			
Год проведения испытаний	2005	2005	2005	2005	2005	2005	
Количество пабораторий-участизмов	17	17	19	19	19	19	
Число исключенных результатов	17	17	19	17	18	17	
Количество выбросов (лабораторый)	0	0	0	2	1	2	
Число принятых результатов	17	17	19	17	18	17	
Среднее значение \bar{X} , жиг/кг	18,4	26,6	жеже 2	9,1	17,1	44	
C тандартное отыпонение повторяемости ε_r , мат/кг	1,6	1,5	_	0,5	0,8	1,2	
Относительное стандартное отклонение повтор я- емости RSD_n %	8,7	5,7	_	5,9	5,3	2,8	
Предел повторжемости r ($r = 2,8 z_s$), миг/кг	4,5	4,2	_	1,5	2,5	3.4	
С тандартное отыпонение воспроизводимости s_{j_0} мах/ат	2,4	2,2	_	1,2	2,2	4,5	
Относительное стандартное отклонение воспроизводимости RSD_{r_0} %	12,9	8,2	_	13,0	13,0	10,1	
Предел воспроизводимости R (R= 2,8 sg), мыт/ыт	6,7	6, l	_	3,3	6,2	12,5	
Полнота обнаружения, %*	92	91	_				
Значение индехса Горвица, рассчитанию из про- гнозируемого стандартного отклонения по ураз- нению /Гомпсона [5], [6]	0,4	0,3		0,4	0,4	0,4	

^{*} Значения полноты обнаружения получены негависною каждой лабораторией по результатам испытаний двук идентичных слепких проб каждого вида матрицы с внесением зеараленова на уровне 20 мкг/кг и 30 мкг/кг.

Библиогр афия

- [1] Josephs R.D., Krska R., MacDonald S., Wilson P., Pettersson H., Preparation of a calibrant as certified reference material for determination of Fusarium mycotoxin zearalenone. Journal of AOAC International, 2003, 66(1), 50-60
- [2] MacDonald S., Anderson S., Breneton P., Wood R and Damant A., Determination of zearalenone in barley, maize and wheat flour, polenta and maoze based baby food by immunoaffinity column cleanup with liquid chromatography: Interlaboratory Study. Journal of AOAC International, 2005, 88, 1733-1740
- [3] Arranz I., Mischke C., Ambrosio K., Krueger K., Derbishire M., Stroka J., van Egmont H. and Sizoo E., Validation of an Analytical method to Determine Zearalenone in Baby Food and Animal Feed, Report of the final trial, 2006
- [4] AOAC International 1995, AOAC Official Methods Program, Associate Referee's Manual on development, Study, Review and Approval Process. Part IV AOAC Guidelines for Collaborative Studies, 23 – 51
- [5] Horwitz, W. and Albert, R., (2006), The Horwitz Ratio (HorRat): A Useful Index of Method Performance with Respect to Precision, Journal of AOAC International, 89, 1095-1109
- [6] Thompson, M., 2000, Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing, Analyst, 125, 385-386

MKC 67.060

ШT

Ключевые слова продукты пищевые, определение зеараленона, продукты для детского питания на кукурузной основе, мука ячменная, кукурузная, пшеничная, полента, продукты на зерновой основе для питания грудных детей и детей раннего возраста, метод высокоэффективной жидкостной хроматографии, очистка экстракта на иммуноаффинной колонке, флуориметрическое детектирование