

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ

ЛЕНТЫ МАГНИТНЫЕ ШИРИНОЙ 12,7 мм С 9-ДОРОЖЕЧНОЙ ЗАПИСЬЮ С ПЛОТНОСТЬЮ ЗАПИСИ 246 бит/мм

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

ΓΟCT 28123-89 (CT C3B 6183-88)

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРГ СОЮЗА ССР

Системы обработки информации ЛЕНТЫ МАГНИТНЫЕ ШИРИНОЙ 12,7 мм С 9-ДОРОЖЕЧНОЙ ЗАПИСЬЮ С ПЛОТНОСТЬЮ ЗАПИСИ 246 бит/мм

ГОСТ 28123—89

Технические требования

Information processing systems. 12,7 mm 9-track magnetic tapes with the density of recording 246 bit/mm. Technical requirements OKIT 40 8470

(CT C3B 6183-88)

Дата введения 01.01.90

Несоблюдение стандарта преследуется по закону

Настоящий стандарт эквивалентен стандарту ИСО 5652—84 и по своему техническому содержанию полностью ему соответствует.

Стандарт ИСО 5652—84 вводится в настоящий стандарт в соответствии с п. 3.2 стандарта ИСО 122—86 методом редакционных и незначительных технических изменений.

Настоящий стандарт имеет следующие изменения по сравнению со стандартом ИСО 5652—84:

1) содержание разделов ИСО 5652—84 приведено в настоящем стандарте соответственно:

Номер раздела ИСО 5652—84	Номер раздела или приложения настоящего стандарта
1	1
2	Преамбула
3	2 и приложение 2
4—12	3—11

2) содержание приложения А ИСО 5652—84 приведено в разд. 3.2 настоящего стандарта с сохранением нумерации пунктов А.1, А.2 и т. д. В связи с введением требований по транспортированию как обязательных, в разд. 3.2 настоящего стандарта внесены, по сравнению с ИСО 5652—84, структурные и редакционные изменения, однако полностью сохранено техническое содержание разд. 3.2 и приложения А ИСО 5652—84;

Издание официальное ★ Перепечатка воспрещена

С Издательство стандартов, 1989

- 3) содержание приложения В ИСО 5652—84 приведено в приложении 1 настоящего стандарта с сохранением нумерации пп. В.1, В.2, В.3 и т. д.;
- 4) изменена нумерация чертежей: рисунок разд. 8 ИСО 5052-84 приведен как черт. 1, рисунки разд. 8— как черт. 2—5, рисунок разд. 12— черт. 6, рис. 2 приложения В— черт. 7, рис. 1 приложения В— черт. 8
- 5) все дополнения и изменения настоящего стандарта по сравнению с ИСО 5652—84, не перечисленные в преамбуле, выделены чертой с левой стороны текста;
- 6) ссылки на международные стандарты в настоящем стандарте заменены ссылками на эквивалентные государственные стандарты:

ИСО 646-83 на ГОСТ 27463:

ИСО 1001-86 на ГОСТ 25752;

ИСО 1864-85 на ГОСТ 20958;

ИСО 2022—86 на ГОСТ 27466;

ИСО 4873—86 на ГОСТ 19768;

7) единицы измерения и их обозначения в настоящем стандарте приводятся в соответствии со СТ СЭВ 1052—78, поэтому из разд. 1 стандарта исключено примечание, приведенное в разд. 1 ИСО 5652—84.

Определения терминов по пп. 1, 3, 4, 5, 6, 7, 8, 10, 13 соответствуют ГОСТ 20958, по пп. 14 и 15 — ГОСТ 25764.

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт определяет формат и способ записи для 9-дорожечной магнитной ленты шириной 12,7 мм, предназначенной для обмена информацией в системах обработки данных и системах связи, использующих набор символов и коды по ГОСТ 27463 (коды 7-битные), ГОСТ 19768 (коды 8-битные) и, при необходимости, ГОСТ 27436 (методы расширания). Маркировка магнитных лент — по ГССТ 25752.

Магнитная лента и катушка — по ГОСТ 20958.

Методика и оборудование для измерения расстояний между переходами потока приведены в приложении 1.

2. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Термины и определения, используемые в настоящем стандарте, приведены в приложении 2.

3. УСЛОВИЯ ЭКСПЛУАТАЦИИ И ТРАНСПОРТИРОВАНИЯ

3.1. Условия эксплуатации

Ленты, используемые для обмена информацией, следует эксплуатировать в следующих условиях:

температура воздуха от 16 до 32°C (от 60 до 90°F);

относительная влажность от 20 до 80% при температуре не выше 26°C (78°F).

Если лента во время хранения и (или) транспортирования подвергалась воздействиям, не соответствующим условиям эксплуатации, то следует выдержать ее в условиях эксплуатации в течение 2—12 ч в зависимости от степени неблагоприятности воздействий, которым она подвергалась.

3.2. Транспортирование

Ответственность за обеспечение необходимых мер предосторожности от возможных повреждений во время транспортирования возлагается на отправителя.

Лента, предназначенная для обмена информацией, должна быть намотана на катушку с натяжением от 2,0 до 3,6 H.

А.1. Окружающие условия

Условия транспортирования ленты должны быть:

1) температура окружающего воздуха от 4 до 32°C (от 40 до 90°F);

2) относительная влажность воздуха от 20 до 80%.

А.2. Случаи риска

Транспортирование магнитной ленты, несущей информацию, включает три потенциальных случая риска.

А.2.1. Воздействие ударных нагрузок и вибрации

Для исключения влияния ударных нагрузок и вибраций, которые могут вызвать поломку катушки или перемещение слоев ленты с последующей потерей натяжения намотки, следует выполнить следующие рекомендации:

а) свободный конец ленты должен быть закреплен, чтобы

предотвратить разматывание ленты;

б) должен использоваться прочный пластиковый контейнер без пыли и других посторонних веществ;

в) пластиковый контейнер должен вставляться в прочную коробку, содержащую соответствующий ударопоглощающий материал;

г) упаковочный контейнер должен быть чистым внутри и иметь такую конструкцию крышки, которая обладает достаточной герметичностью для предотвращения попадания пыли и воды;

 д) размещение катушек внутри упаковочного контейнера должно быть таким, чтобы их оси были горизонтальными;

е) упаковочный контейнер должен иметь четкую маркировку с обозначением его правильного расположения.

А.2.2. Воздействие повышенной температуры и влажности

Для того, чтобы повышенная температура и влажность не привели к повреждению ленты, следует выполнить следующие рекомендации:

 а) необходимо по возможности избегать резких изменений температуры и влажности; б) при получении ленты ее следует подвергнуть выдержке в рабочих условиях (см. п. 4.1) в течение 2—12 ч в зависимости от используемого вида транспортирования, а также степени выдержки вне рабочих условий.

А.2.3. Воздействие паразитных магнитных полей

Для того, чтобы воздействие магнитных полей на ленту не привело к разрушению записанной информации, расстояние между катушкой с магнитной лентой и наружной поверхностью упаковочного контейнера должно быть не менее 80 мм, в этом случае риск разрушения информации незначительный.

4. ЗАПИСЬ ИНФОРМАЦИИ

4.1. Способ записи информации

При записи информации (далее — записи) используют способ «без возвращения к нулю» (БВН1), при этом «единица» представляется изменением направления продольной намагниченности.

4.2. Плотность записи

Номинальная плотность записи должна быть 356 п.п./мм. Другие номинальные плотности, используемые для проверки определенных параметров, должны быть:

178 п.п./мм:

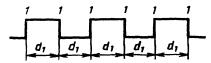
119 п.п./мм.

4.3. Средний промежуток между переходами потока

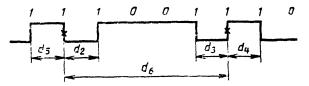
Измерение среднего промежутка между переходами потока производится после обмена с использованием записанной ленты с плотностью 178 п.п./мм. Номинальный промежуток между переходами потока при этой плотности должен быть 5,618 мкм со следующими отклонениями.

- 4.3.1. Длина среднего (статистического) промежутка между переходами потока на длинном отрезке должна иметь отклонение не более ±4% номинальной длины промежутка. Это среднее значение должно быть измерено на отрезке не менее 5 105 последовательных переходов потока.
- 4.3.2. Длина среднего (динамического) промежутка между переходами потока на коротком отрезке, рассматриваемая относительно длины отдельного промежутка. определяется как среднее значение длин данного и предшествующего промежутков.

Длина среднего промежутка между переходами на коротком отрезке должна иметь отклонение не более $\pm 6\%$ длины среднего промежутка на длинном отрезке. Кроме того, скорость изменения длины среднего промежутка между переходами потока на коротком отрезке не должна превышать 0,2% длины промежутка.


4.4. Мгновенная длина промежутка между переходами потока

Мгновенная длина промежутка между переходами потока может зависеть от процессов записи и воспроизведения записываемой последовательности бит (эффект уплотнения импульсов) и другик факторов.


Мгновенная длина промежутка между переходами потока при испытании на эталонной цепи воспроизведения (см. приложение 1)

должна соответствовать следующим условиям.

4.4.1. При номинальной плотности 356 п.п./мм промежуток d₁ между следующими один за другим переходами потока должен быть в пределах от 48 до 52% соответствующего среднего промежутка между переходами потока на коротком отрезке, определенном на плотности 178 п.п./мм.

4.4.2. Для среднего значения плотности 356 п.п./мм в последовательности переходов потока, определяемой набором комбинации бит 1.110011100..., среднее отклонение промежутка между переходами потока на любой стороне эталонного перехода от этого эталонного перехода должно быть не более ±28% среднего промежутка между переходами потока.

Знаком «×» помечены эталонные переходы.

1,28 $d_1 \geqslant$ среднее $d_5 \geqslant 0,72 d_1$;

1,28 $d_1 \geqslant$ среднее $d_2 \geqslant 0,72 d_1$;

1,28 $d_1 \geqslant \text{среднее} \quad d_3 \geqslant 0,72 \ d_1;$

1,28 $d_1 \geqslant$ среднее $d_4 \geqslant 0,72 d_1$.

Допуски среднего промежутка на длинном отрезке и среднего промежутка на коротком отрезке (см. пп. 4.3.1 и 4.3.2) включены в это отклонение.

Среднее расстояние d₆ между действительными последовательными эталонными переходами потока в последовательности, определяемой набором кодовых символов 1110011100..., и вычислен-3—652 ное на интервале 5 d₁ шести переходов потока при номинальной плотности 356 п.п./мм не должно отличаться более чем на 6% d₁.

5,06 $d_1 \geqslant$ среднее $d_6 \geqslant 4,94$ d_1 .

4.5. Перекос

Максимальное смещение переходов потока в одной строке не должно быть более чем 16,86 мкм. Это смещение измеряется между перпендикулярами к базовой кромке ленты через указанные переходы потоков.

- 4.6. Амплитуда сигнала
- 4.6.1. Стандартная эталонная амплитуда

Стандартная эталонная амплитуда — средняя амплитуда сигнала от пика до пика, воспроизведенного є эталонной ленты амплитуды сигнала на соответствующем измерительном оборудовании при плотности 356 п.п./мм и токе записи $I_3 = \kappa \cdot I_8$ (см. ГОСТ 20958).

Амплитуда сигнала должна определяться как среднее значение амплитуды не менее чем 4000 переходов потока и измеряется на прогоне запись-воспроизведение.

Эталонным током I_{θ} является ток, который создает эталонное поле (см. п. 6 приложения 2).

4.6.2. Средняя амплитуда сигнала

4.6.2.1. Средняя амплитуда сигнала от пика до пика ленты, предназначенной для обмена информацией и записанной с плотностью 356 п.п./мм, должна отличаться от стандартной амплитуды эталонной ленты не более чем на $\pm 50\%$.

4.6.2.2. Средняя амплитуда сигнала от пика до пика ленты, записанной с плотностью 119 п.п./мм, должна быть меньше пяти-

кратной стандартной амплитуды эталонной ленты.

4.6.2.3. Усреднение следует проводить не менее чем на 4000 переходов потока, которые на ленте, предназначенной для обмена информацией, могут быть разбиты на зоны. Среднее значение измеряют при первом проходе воспроизведения после обмена.

4.6.3. Минимальная амплитуда сигнала

Лента, предназначенная для обмена информацией, не должна содержать переходов потока, амплитуда которых от базы до пика меньше 115% половины стандартной амплитуды эталонной ленты более чем на одной дорожке от последней контрольной группы MARK1.

- 4.7. Стирание магнитной ленты
- 4.7.П. При стирании магнитной ленты наружный конец стертого участка ленты должен быть ориентирован к северному полюсу.
- 4.7.2. Лента по всей ширине должна быть стерта постоянным током в направлении, определенном в п. 4.7.1.

- 4.7.3. Лента должна быть стерта так, чтобы остаточный сигнал не превышал 4% стандартной амплитуды эталонной ленты.
- 4.7.4. Все межблочные промежутки должны быть намагничены в соответствии с требованиями данного подраздела.

5. ДОРОЖКИ

- 5.1. Число дорожек на ленте 9.
- 5.2. Нумерация дорожек

Дорожки должны быть пронумерованы последовательно, начиная с базовой кромки, с дорожки 1.

5.3. Местоположение дорожек

Расстояние от центральных линий дорожек до базовой кром-ки должно быть:

- дорожка 1 (0,74±0,03) мм;
 - \Rightarrow 2 (2.13±0.08) mm;
 - \Rightarrow 3 (3.53±0.08) MM;
 - \star 4 (4.93±0.08) MM:
 - \Rightarrow 5 (6.32 ± 0.08) MM:
 - \sim 6 (7.72 ± 0.08) MM;
 - \rightarrow 7 (9,12±0,08) MM;
 - > 8 (10.52 ± 0.08) MM:
 - \Rightarrow 9 (11.91 ± 0.08) mm.
- 5.4. Ширина дорожки

Минимальная ширина записанной дорожки должна быть 1,09 мм.

6. СПОСОБ ПРЕДСТАВЛЕНИЯ ИНФОРМАЦИИ

Символы должны быть представлены с помощью 7-битного набора кодированных символов (ГОСТ 27463) или 8-битного набора кодированных символов (ГОСТ 19768) или, при необходимости, методами расширения (ГОСТ 27466).

Расположение бит на дорожке для 7-битного кода — в соответствии с табл. 1, для 8-битного кода — в соответствии с табл. 2.

							Тa	блиц	al
Двоичный вес	20	21	22	28	24	25	26		_
Обозначение бит	B ₁	B ₂	B ₃	В4	B ₅	B ₆	В,		P
Дорожка	2	8	1	9	3	5	6	7	4

C. 8 FOCT 28123-89

Дорожка 7 должна быть всегда записана битом «0».

	·		 				Ta	блин	122
Двоичный вес	20	21	22	23	24	26	26	27	
Обозначение бит	B ₁	B ₂	B ₃	В4	B ₅	В6	В7	B∎	P
Дорожка	2	8	1	9	3	5	6	7	4

Бит Р на дорожке 4 должен быть битом четности. Четность должна быть нечетной.

7. ФОРМАТИРОВАНИЕ ИНФОРМАЦИИ

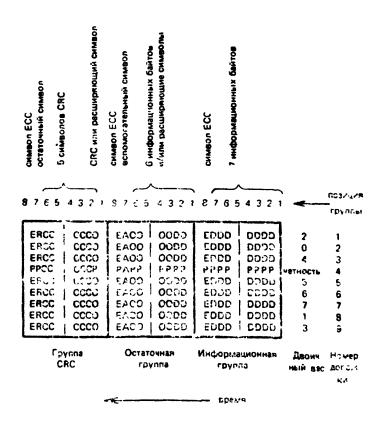
До записи информация должна быть размещена в группы, завершенные вычисленными символами проверки (см. п. 7.4). Эти информационные группы должны быть, в свою очередь, определены в заданную последовательность вместе с группами управляющих символов. Последовательность информационных групп и управляющих символов затем записывается на ленте в соответствии с определенной схемой кодирования (см. разд. 9).

7.1. Информационные группы

Информационная группа должна включать 8 байтов следующим образом:

- в позициях с 1 по 7 семь информационных байтов;
- в позиции 8 символ ЕСС.
- 7.2. Остаточная группа

Остаточная группа должна включать:


- в позициях с 1 по 6 остающиеся информационные байты, если они есть;
- в позициях с 1 по 6, не занятых информационным байтом, расширяющийся символ (байт (00) с нечетной четностью);
 - в позиции 7 вспомогательный символ СРС;
 - в позиции 8 символ ЕСС.
 - 7.3. Группа CRC (см. черт. 1)

После остаточной группы группа CRC должна быть образована включением:

в позицию 1 — байта (00) с нечетной четностью, если число предшествующих информационных групп является четным или

символа CRC, если число предшествующих информационных групп является нечетным;

- в позиции от 2 до 6 символа CRC;
- в позиции 7 остаточного символа;
- в позицию 8 символа ЕСС.

Черт. 1

7.4. Символы проверки записанной информации

7.4.1. Символ ЕСС

Символ ЕСС должен быть определен отдельно для каждой группы (информационная группа, остаточная группа и группа

CRC). В каждом случае должно быть образовано 7 полиномов от D_1 до D_7 , коэффициентами которых должны быть 8 битов каждого байта в позициях от 1 до 7. Коэффициентами полинома D_1 должны быть биты в позиции 1, коэффициентами полинома D_2 должны быть биты в позиции 2 и т. д. Четный бит на дорожке 4 не должен быть частью формирования символов ECC.

Эти биты должны быть распределены в полиномах следующим образом:

Бит	дорожки	7	является	коэффициентом	<i>Χ</i> °;
*	*	1	»	* *	X^{1} ;
*	*	8	>>	>	X^2 ;
>>	*	5		>	X3:
*	*	2	>	>	X4;
>>	*	9	>	>	X ⁵ :
*	*	6	*	>	X6:
>>	*	3	>	>	X7.

Биты, соответствующие указанному номеру дорожки, затем будут подвергнуты групповому кодированию (см. разд. 8) и образующаяся в результате последовательность битов будет затем записана на ленте на соответствующей дорожке.

Символ ЕСС должен быть получен из коэффициентов полинома Е, вычисленного следующим образом:

$$E=\Sigma$$
 (X^iD_j) (mod G),
где $i=$ от 7 до 1;
 $j=$ от 1 до 7;
 $G=X^0+X^3+X^4+X^5+X^8$.

Все арифметические операции должны быть (mod 2). Биты символов ЕСС должны быть коэффициентами образующегося полинома:

Ha	дорожке	1	коэффициент	X^1
*	»	2	· · · »	X4
»	>	3	>	X 7
*	*	4	>	P
*	»	5	>	X^3
*	*	6	>	X 6
*	>	7	>	X^0
*	*	8	>	X^2
 >	>	9	>	χs

На дорожке 4 должен быть вставлен бит нечетной четности P. 7.4.2. Вспомогательный символ CRC

Если вспомогательный символ СRС должен быть подсчитан от всех информационных байтов в пределах зоны хранения, рассматриваемой как 9-битные байты путем включения их бита четности P, должен быть образован полином M_3 . Коэффициенты должны быть битами в каждом информационном байте. Коэффициенты полинома M_1 должны быть битами байта в позиции 1 первой информационной группы, коэффициенты полинома M_2 должны быть битами байта в позиции 2 и т. д. до M_n , где n — число информационных байтов внутри зоны.

Эти биты должны быть распределены в полиномах следующим образом:

Бит	С	дорожки	1	является	коэффициентом	X^0
*	*	*	5	*	*	X^1
*	*	*	8	*	>	X^2
*	*	*	4	*	>	X^3
»	*	*	2	»	>	X4
*	*	*	6	*	*	X^5
»	»	*	3	»	»	<i>X</i> 6
	 >	 >>	7	3	 >	X7
*	*	»	9	*	»	X8

Вспомогательный символ CRC должен быть получен следующим образом:

ассиметричный полином N должен быть вычислен так:

$$N=(X^{i}M_{j}) \pmod{H},$$
 где $i=$ от n до 1; $j=$ от 1 до n ; $H=X^{0}+X^{2}+X^{6}+X^{9}.$

Все арифметические операции должны быть (mod 2).

Полином $(X^0+X^1+X^6+X^7+X^8)$ должен быть объединен с помощью операции исключительного «или» с N в соответствующих позициях битов.

Коэффициенты образующегося полинома должны быть битами вспомогательного символа CRC в соответствии со следующим распределением:

Ha	дорожке	1	коэффициент	X^0
*	*	2	*	X4
*	*	3	>	Xe
*	>	4	*	X^3
*	*	5	>	χı

Ha	дорожке	6	коэффициент	X^5
*	*	7	>	<i>X</i> 7
>	*	8	»	X^2
>	»	9	>	X8

Вспомогательный символ CRC должен иметь нечетную четность. Если полученный вспомогательный символ CRC имеет четную четность, то бит на дорожке 4 должен быть инвертирован для получения нечетной четности.

7.4.3. Символ CRC

Символ СRС должен быть подсчитан из всех предшествующих символов в пределах зоны (информация, расширяющие символы, вспомогательный символ СRС и расширяющий символ, если он имеется, в позиции 1 группы СRС), принимая во внимание 9-битные байты при включении их бита четности, но исключая все символы ЕСС в позиции 8 информационных групп и остаточную группу. Должны быть образованы полиномы M_j , коэффициенты которых являются битами в каждом байте. Коэффициенты полинома M_1 должны быть битами байта в позиции 1 первой информационной группы, коэффициенты полинома M_2 должны быть битами байта в позиции 2, и т. д. до M_n для символов n, которые следует учесть.

Эти биты должны быть расположены в полиномах следующим образом:

Бит	c	дорожки	4	является	коэффициентом	X^0
*	*	>	7	*	>	X^1
>>	>>	>>	6	»	»	X^2
>>	»	*	5	»	»	X^3
*	>	*	3	»	*	X^4
>>	>>	>>	9	»	»	X^5
>>	>	»	1	*	»	X^6
*	>	»	8	»	»	X^7
>>	»	»	2	»	>	<i>X</i> 8

Символ CRC должен быть получен следующим образом. Полином ${\it C}$ должен быть вычислен так:

$$C=\Sigma \ (X^{i}M_{j}) \ (MOD \ K),$$
rge $i=$ or n go 1;
 $j=$ or 1 go n ;
 $K=X^{0}+X^{3}+X^{4}+X^{5}+X^{6}+X^{9}.$

Все арифметические операции должны быть (mod 2).

Полином $(X^0+X^1+X^2+X^4+X^6+X^7+X^8)$ должен быть объединен с помощью операции «исключающее или» с C в соответствующих позициях битов.

Коэффициенты образующего полинома должны быть битами символа CRC в соответствии со следующим распределением:

Ha	дорожке	1	коэффициент	X 6
>	*	2	»	<i>X</i> 8
*	»	3	»	X4
>	»	4	*	X^0
»	»	5	»	X^3
»	*	6	»	X^2
*	>	7	>	X^1
*	>	8	>	X ⁷
>>	»	9	»	X^5

Примечание. Символ СRC будет всегда иметь нечетную четность,

7.4.4. Остаточный символ

Остаточный символ должен быть получен от числа n информационных байтов внутри зоны.

$$R_1 = n \pmod{7}$$
; $R_2 = n - 1 \pmod{32}$.

При R_1 и R_2 , выраженных в двоичном обозначении, биты остаточного символа должны быть:

$$R_1$$
= биты 0 1 2; R_2 = биты 3 4 5 6 7.

Эти биты должны быть расположены на дорожках в соответствии с табл. 3.

Таблица 3

		Бит	На дорожне
Ri	0 1 2	0 1 2	5 6 7
R ₂	0 1 2 3 4	3 4 5 6 7	2 8 1 9

На дорожке 4 должен быть вставлен бит Р нечетной четности.

8. ГРУППОВОЕ КОДИРОВАНИЕ

Группы, подготовленные, как указано в разд. 7, должны быть записаны на ленте следующим образом:

Каждые четыре последовательные позиции на каждой дорожке должны быть переведены в соответствии со следующей таблицей в записаны на ленте как пять последовательных битов:

 $0000 - - - \rightarrow 11001$: $0001 - - - \rightarrow 11011$: $0010 - - - \rightarrow 10010$: $0011 - - - \rightarrow 10011$ $0101 - - - \rightarrow 10101$; 0100 --- - 11101: $0110 - - - \rightarrow 10110$: $1000 - - - \rightarrow 11010$; $0111 - - - \rightarrow 10111$; $1001 - - - \rightarrow 01001$: $1010 - - - \rightarrow 01010$; $1011 - - - \rightarrow 01011;$ 1100 — — → 11110: $1101 - - - \rightarrow 01101$: $1110 --- \rightarrow 01110$; $1111 - - - \rightarrow 01111.$

После записи поля на ленте имеют наименование:

группа хранения информации;

остаточная группа хранения;

группа хранения CRC;

строка из девяти битов называется запоминаемой строкой (далее по тексту — строка), блок данных называется запоминаемым блоком.

9. ПОДГРУППЫ УПРАВЛЕНИЯ

Управляющая подгруппа должна включать пять последовательных строк, имеющих тот же вид комбинаций бита на каждой дорожке, за исключением TERM 2.

9.1. Подгруппы управления терминатора TERM TERM 1 должна быть управляющей подгруппой (10101).

Она должна быть помещена в начале каждого блока данных

7см. п. 10.2.1).

TERM 2 должна быть управляющей подгруппой (1010X), где X представляет бит, который устанавливает для каждой дорожки остаточную намагниченность, как и в режиме стирания (см. п. 4.7). Он должен быть помещен в конце каждого блока данных (см. п. 10.2.7).

Примечание. Здесь и далее по тексту началом блока данных считается край блока, обращенный к маркеру НЛ — маркеру начала ленты и, соответственно, концом блока данных — край блока, обращенный к маркеру КЛ — марсеру конца ленты.

9.2. Подгруппы управления SEC

SEC 1 должна быть управляющей подгруппой (01111).

Она должна следовать за TERM 1 (см. п. 10.2.1) в начале каждого блока.

SEC 2 должна быть управляющей подгруппой (11110).

Она должна предшествовать TERM 2 (см. п. 10.2.7) в конце жаждого блока.

9.3. Синхронизирующая подгруппа управления (SYNC)

SYNC должна быть управляющей подгруппой (111111).

9.4. Подгруппа управления MARK 1

MARK 1 должна быть управляющей подгруппой (00111).

9.5. Подгруппа управления MARK 2

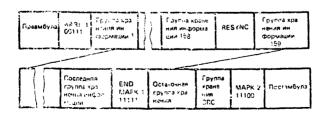
MARK 2 должна быть управляющей подгруппой (11100).

9.6. Подгруппа управления END MARK

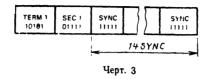
END MARK должна быть управляющей подгруппой (11:11:11). Она имеет тот же вид, что и подгруппа SYNC, но выполняет другую функцию.

10. ЗАПОМИНАЕМЫЙ БЛОК

10.1. Информационная часть


Информационная часть блока данных должна содержать в форме группового кодирования минимум 18 информационных байтов и максимум 8192 информационных байта.

Однако блоки больших размеров также могут быть использованы по согласованию между обменивающими сторонами.


10.2. Структура блока

Структура блока должна зависеть от числа групп хранения информации.

Общая структура блока приведена на черт. 2.

10.2.1. *Преамбула* Структура преамбулы приведена на черт. 3.

10.2.2. MARK 1

Подгруппа управления МАРК 1 должна следовать за преамбулой.

10.2.3. Серия ресинхронизации (PESYNC)

Структура серии PESYNC приведена на черт. 4.

MARK 2	SYNC	SYNC	MARK 1
111001	11111	11111	00111

Черт. 4

10.2.4. Число N групп хранения информации

N < 158.

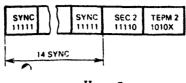
В этом случае за последней группой хранения информации следует подгруппа управления END MARK, предшествующая остаточной группе хранения, и отсутствует серия RESYNC.

N > 158.

В этом случае серия RESYNC вставляется после каждых 158 групп хранения информации, а подгруппа управления END MARK вставляется после последней группы хранения информации. Однако, если N является кратным 158, то после последней группы хранения информации нет серии RESYNC, а только подгруппа управления END MARK.

Примечание. Если имеется серия RESYNC, то подгруппы управления MARK 1 и MARK 2 берут в скобки все последовательности 158 групп хравения информации.

10.2.5. Остаточная группа хранения и группа хранения СКС


Остаточная группа хранения и группа хранения CRC должны следовать за END MARK, вставленной после последней группы хранения информации.

10.2.6. MARK 2

Подгруппа управления MARK 2 должна следовать за группой хранения CRC и предшествовать конечной серии.

10.2.7. Постамбула

Структура постамбулы приведена на черт. 5.

Черт. 5

10.3. Межблочный промежуток

Между блоками должен быть межблочный промежуток:

номинальная длина — 7,6 мм;

минимальная длина — 7,1 мм;

максимальная длина — 4,6 м.

Лента должна быть стерта в этих промежутках, в соответствии с п. 4.7.

10.4. Максимальная плотность информации

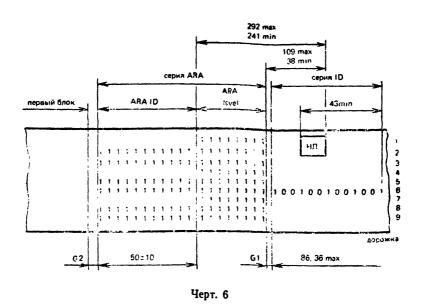
В связи с включением символа ЕСС после каждого седьмого байта информации преобразованием 4-битного кода в 5-битный и введением серии RESYNC после каждой 158-й группы хранения информации, максимальная информационная плотность записи будет меньше максимальной физической плотности записи 356 п.п./мм и составит:

$$\frac{7}{8} \times \frac{4}{5} \times \frac{158}{160} \times 356 \approx 246$$

информационных байтов на 1 мм.

11. ФОРМАТ ЛЕНТЫ

Начало ленты до первой преамбулы серии должно представлять типовые области, определяемые в пп. 11.1—11.5 (черт. 6).


11.1. Область идентификатора плотности (серия 1 D)

Серия 1 D должна быть областью, характеризуемой комбинацией битов (100100100...) на дорожке 6, т. е. плотностью (119 \pm 12) п.п./мм. Все другие дорожки стерты. Серия должна начинаться на расстоянии не менее 43 мм перед задним краем маркера НЛ и заканчиваться после этого края.

11.2. Промежуток G1

За серией 1D должен следовать промежуток G1 не более 86.36 мм.

11.3. Область для настройки автоматического усиления воспроизведения (серия ARA)

Серия ARA включает серию ARA level в серию ARA 1D, которая следует за серией ARA level.

11.3.1. Cepus ARA level

Серия ARA level следует за промежутком G1 и характеризуется набором кодовых символов (1111...), записанных на всех дорожках, т. е. при плотности 356 пп/мм. Серия должна начинаться не менее чем за 38 мм и не более чем за 109 мм от ведущего

края маркера НЛ. Серия должна заканчиваться не менее чем за 241 мм и не более чем за 292 мм от этого края. Соответственно, ее минимальная длина 132 мм и максимальная длина 254 мм.

11.3.2. Идентификатор автоматического усиления воспроизведения (серия ARA 1D)

Последняя часть серии ARA должна быть серией ARA 1D на участке (50 ± 10) мм. Серия должна представлять собой:

- 1) стертые дорожки 1, 4 и 7;
- 2) запись набора кодовых символов (1111...) на всех других дорожках.

Участок длиной не менее 6,35 мм должен быть свободным от ошибок на всех дорожках.

11.4. Промежуток G2

Между концом серии ARA 1D и первым блоком должен быть промежуток G2 такой же длины, как межблоковый промежуток.

11.5. Маркер ленты

Маркер ленты (см. ГОСТ 25752) должен быть блоком управления, характеризуемым:

- 1) стиранием на дорожках 3, 6 и 9;
- 2) записью набора кодовых символов (1111...) от 250 до 400 п.п./мм на всех других дорожках.

Маркер ленты должен быть отделен от блоков данных межблоковыми промежутками.

12. КРИТЕРИИ ВЗАИМООБМЕНА МАГНИТНОЙ ЛЕНТОЙ

12.1. Исправимые ошибки

В ленте, предназначенной для обмена информацией, не должно быть более двух дорожек, на которых встречаются ошибки между подгруппой MARK 1 и подгруппой MARK 2.

12.2. Допустимые критерии

Ленты с ошибками, не удовлетворяющие требованиям п. 12Л, не соответствуют требованиям данного стандарта. Однако они могут быть допущены для обмена между сторонами после согласования между ними.

12.3. Удлиненный межблочный промежуток

Удлиненный межблочный промежуток должен быть промежутком, который был удлинен по инструкции стирания,

€. 20 FOCT 28123-89

Обменивающиеся стороны должны договориться по вопросам:

- 1) критерии ошибок в соответствии с инструкцией стирания;
- 2) приемлемое число удлиненных межблочных промежутков.
- 12.4. Катушки, используемые для намотки магнитной ленты

Для хранения записанной магнитной ленты должны использоваться катушки в соответствии с ГОСТ 20958.

ПРИЛОЖЕНИЕ 1 Обязательное

МЕТОДИКА И ОБОРУДОВАНИЕ ДЛЯ ИЗМЕРЕНИЯ РАССТОЯНИЙ МЕЖДУ ПЕРЕХОДАМИ ПОТОКА

В.І. Общая часть

При испытании запись информации производится при плотности 246 бит/мм на стандартном оборудовании, предназначенном для записи лент для обмена.

Лента должна быть записана в любом старт-стопном режиме работы, совместимом с работой системы.

Полная длина ленты 732 м должна быть записана следующими наборами кодовых символов:

Ha	дорожке	9	набор	кодовых	символов	1001110011;
>	*	8	*	>	>	1100111001;
*	>	7	>	>	>	1001110011;
>	>	6	>	>	>	1100111001;
>	*	5	>	»	>	1010101010;
>	>	4	>	*	>	1100111001;
>	>	3	>	>	>	1001110011;
>	>	2	>	>	>	1100111001;
>	>	1	>	>	>	0100110110.

Испытуемая лента должна быть воспроизведена через цепь контрольно-измерительных приборов.

Измеряемые «вырезки» сигналов должны быть сделаны один раз в каж-

дой зоне минимум для 100 зон.

Усредненные измерения в соответствии с п. 4.4.1 данного стандарта должны быть выполнены в устойчивой части начальной серии, которая находится ближе всего к информации. В этой точке плотность составляет 356 п.п./мм.

В.2. Оборудование для воспроизведения

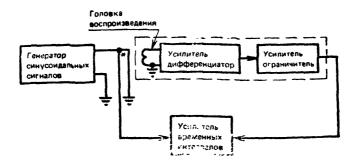
В.2.1. Лентопротяжный механизм

Скорость ленты должна быть 1.52 м/с $\pm 1\%$.

В.2.2. Магнитная головка

Особые требования к выходному напряжению головки не предъявляются, Однако выходное напряжение должно быть достаточным, чтобы обеспечить достаточный уровень отношения сигнал/шум. Ширина зазора должна быть не более 1.143 мкм. Передаточная функция головки должна быть такой, чтобы:

1) амплитудная и фазовая характеристики наведенного магнитного поля могли быть проверены с помощью проводника, помещенного параллельно зазору и примыкающего к нему. Положение проводника должно быть таким, чтобы можно было получить максимальный выходной сигнал головки (черт. 7);


2) в диапазоне частот от 27 до 540 кГц характеристика должна быть в

пределах 1 дБ от линии +6 дБ/окт.

Эффект нагрузки входного импеданса усилителя-дифференциатора не должен вызывать уменьшения выходного сигнала головки более 0,1 дБ в диапазоне частот от постоянного тока до 540 кГц.

В.2.3. Усилитель-дифференциатор

Частотная характеристика усилителя без ограничивающих частоту сосредоточенных компонентов должна быть плоской в пределах от 0 до минус 1 дБ в частотном диапазоне от 13.5 кГц до 1.06 МГц. Сосредоточенные компоненты,

* Провод расположенный вдоль зазора.

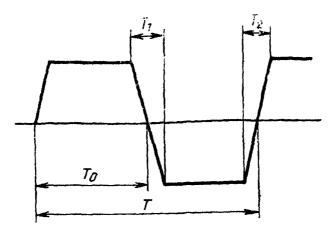
Черт. 7

ограничивающие частоту, в пределах усилителя-дифференциатора должны быть выбраны для получения следующей передаточной функции:

$$H(S) = \frac{A \times S}{\left(\frac{S}{\omega_0}\right)^3 + 6\left(\frac{S}{\omega_0}\right)^2 + 15\frac{S}{\omega_0} + 15},$$

- где A усиление, которое устанавливается для получения на выходе усилителя определенного времени нарастания и спада;
 - S в числителе операция дифференцирования, в знаменателе указаны полюса, определенные для 3-полюсного фильтра Бесселя. При скорости 1,52 м/с ∞ = 2π 540 ⋅ 10³ рад/с

В.2.4. Усилитель-ограничитель


Усиление усилителя-ограничителя вместе с головкой и усилителем-дифференциатором должно быть таким, чтобы можно было получить форму сигнала, показанного на черт. 8.

В.2.5. Генератор синусоидальных сигналов

Генератор синусоидальных сигналов должен работать в диапазоне частот от 27 до 540 кГц. Генератор должен обеспечивать на выходе усилителя-дифференциатора коэффициент гармонии не более 1%.

В.2.6. Измеритель временных интервалов

Измеритель временных интервалов должен быть способен измерить 10 мкс при разрешающей способности не менее 5 нс.

T — период, эквивалентный 3,6865 мкс (356 п.п./мм при 1,52 м/с); T_0 — время перехода в предслах 0,4975 до 0,5025 T; T_1 , T_2 — время нарыстания и спада, имеет максимальное значение 18 нс.

Черт. 8

В.З. Методика измерений и калибровка аппаратуры Установить амплитуду сигнала генератора таким образом, чтобы сигнал на головке был эквивалентен сигналу, наблюдаемому при воспроизведении ленты, записанной с плотностью 356 п.п./мм. С такой установкой амплитуды частота изменяется от 27 до 540 кГц. При каждой испытательной частоте измеряется смещение времени между положительным нулевым пересечением синусоидального тока, проходящего через проводник, и положительным переходом на выходе усилителя-ограничителя (см. черт. 8).

Задержка времени между положительным нулевым пересечением синусоидального тока, проходящего через проводник, и положительным переходом на выходе усилителя-ограничителя относительно частоты 27 кГц не должна изменяться более чем

$$\pm \left(\frac{100 \times 27000}{f}\right) \text{ HC} = \pm \frac{1}{f} \times 2,7 \text{ MC},$$

где f — испытательная частота в герцах в диапазоне от 27 до 540 кГц. Значение $\left(\frac{1}{f} \times 2,7\right)$ мс эквивалентно $\pm 1^\circ$.

ТЕРМИНЫ, ИСПОЛЬЗУЕМЫЕ В НАСТОЯЩЕМ СТАНДАРТЕ, И ПОЯСНЕНИЯ К НИМ

Таблица 4

Термия	Пояснение			
1. Магнитная лента Лента	Лента, которая принимает и сохраняет маг- нитные сигналы, предназначенные для ввода, вы- вода и хранения информации в вычислительных			
2. Эталонная лента	машинах и смежном оборудовании Лента, выбранная как стандартная для ис-			
3. Вторичная эталонная лента 4. Эталонная лента амплитуды сигнала	пользования при калибровке Лента, свойства которой известны и установлены по отношению к свойствам эталонной ленты и предназначенная для калибровки испытательной аппаратуры Эталонная лента, выбранная в качестве стандартной амплитуды сигнала.			
	Примечание, Главный стандарт (эталон амплитуды для вычислительных машин) был установлен в НБС США на основе эталонных лент и магнитных головок. Вторичные эталонные ленты амплитуды сигнала хранятся в НБС под номером SRM 6250			
5. Типовое поле	Минимальное магнитное поле записи, которое при приложении к магнитной ленте вызывает выходной сигнал, равный 95% максимальной амплитуды сигнала при определенной физической плотности записи			
6. Эталонное поле	Типовое поле эталонной ленты амплитуды сигнала при плотности 356 п.п./мм			
7. Стандартная эталон- ная амплитуда	Средняя амплитуда сигнала от пика до пика, полученная с эталонной ленты амплитуды сигнала на системе измерения НБС или эквивалентной системе в условиях записи, определенных в ГОСТ 20958			
8. Базовая кромка	Наиболее удаленная от наблюдений кромка			
9. В контакте	магнитной ленты, лежащей рабочим слоем вверх и движущейся при записи слева направо Условие работы, при котором рабочая поверхность ленты находится в контакте с магнитной			
10. Дорожка	головкой Продольная область на ленте, вдоль которой может быть записана серия магнитных сигна-			

лов

Термин Пояснение 11. Строка Поперечная область на магнитной ленте, состоящая из девяти участков (по одному на каждой дорожке), на которых записаны биты 12. Положение перехода потока

- 13. Физическая плотность записи
- 14. Информационная плотность записи
 - 15. Перекос
 - 16. Символ ЕСС
- 17. Вспомогательный символ CRC
 - 18. Символ CRC
 - 19. Преамбула
 - 20. Постамбула
- 21. Область ндентифиплотности (серия катора 1D)
- 22. Серия для настройки автоматического **усиле**ния воспроизведения (ARA)
 - 23. Ошибка

Точка, которая представляет максимум плотности пространственного потока, перпендикулярного к поверхности ленты

Число записанных переходов потока на единицу длины дорожки (п.п./мм)

Число символов информации, хранимых на единице длины ленты (симв/мм)

Максимальное продольное отклонение в расположении битов в строке

Символ. используемый для обнаружения ошибки в информационной части блока

Символ, используемый для обнаружения ошибки в информационной части блока

Символ, используемый для обнаружения ошибки в полном блоке

Серия сигналов, обозначающая начало каждого блока данных, первоначально используемая для электронной синхронизации

Серия сигналов, обозначающая конец каждого блока

Серия сигналов, записанная в начале определяющая способ записи групповым кодированием

Серия сигналов, записанная в начале ленты. которая используется пля установки **VDOBH**¶ усиления усилителей воспроизведения

Обнаружение выпавшего или HMпульса на дорожке. Выпавший и ложный пульс — по ГОСТ 20958.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- Постановлением Государственного комитета СССР по стандартам от 26.04.89 № 1110 стандарт Совета Экономической Взаимопомощи СТ СЭВ 6183—88 «Системы обработки информации. Ленты магнитные шириной 12,7 мм с 9-дорожечной записью с плотностью записи 246 бит/мм. Технические требования» введен в действие непосредственно в качестве государственного стандарта СССР с 01.01.90
- 2. Стандарт полностью соответствует международному стандарту ИСО 5652—84.
- 3. Срок проверки 1994 г. Периодичность проверки — 5 лет
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который	Номер пункта, раздела,		
дана ссылка	приложения		
FOCT 19768—74 FOCT 20958—80 FOCT 25752—83 FOCT 25764—83 FOCT 27463—87 FOCT 27466—87	Вводная часть; разд. 1; 6 Вводная часть; разд. 1; 4.6.1; 12.4; приложение 2 Вводная часть; разд. 1; 11.5 Вводная часть Вводная часть; разд. 1; 6 Вводная часть; разд. 1; 6		

Редактор О. К. Абашкова Технический редактор Л. А. Никитина Корректор Р. Н. Корчагина

Сдано в наб. 18.05.89 Подп. в печ. 31.08.89 1,75 усл. п. л. 1,75 усл. кр.-огт. 1,63 уч.-изд. л Тир. 9.000