

ПЕРЕДАЧИ ЗУБЧАТЫЕ

Исходный контур

Magynu

основные параметры

Qonycku

ГОСУДАРСТВЕННЫЕ СТАНДАРТЫ СОЮЗА ССР

ПЕРЕДАЧИ ЗУБЧАТЫЕ

ИСХОДНЫЙ КОНТУР МОДУЛИ ОСНОВНЫЕ ПАРАМЕТРЫ ДОПУСКИ

Издание официальное

ИЗДАТЕЛЬСТВО СТАНДАРТОВ
Москва— 1973

ОТ ИЗДАТЕЛЬСТВА

Сборник «Передачи зубчатые. Исходный контур. Модули. Основные параметры. Допуски» содержит стандарты, утвержденные до 1 марта 1973 г.

В стандарты внесены все изменения, принятые до указанного срока. Около номера стандарта, в который внесено изменение, стоит знак*

Текущая информация о вновь утвержденных и пересмотренных стандартах, а также о принятых к ним изменениях публикуется в выпускаемом ежемесячно «Информационном указателе стандартов».

передачи червячные глобоидные

Допуски

Globoid worm gears. Tolerances

FOCT 16502 - 70

Постановлением Государственного комитета стандартов Совета Министров СССР от 21/XII 1970 г. № 1783 срок введения установлен

с 1/1 1972 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на силовые червячные глобоидные передачи с углом скрещивания осей червяка и колеса, равным 90°, с металлическими механически обработанными червяком и колесом, с межосевым расстоянием от 80 до 1250 мм.

Стандарт не распространяется на передачи с окружной ростью вращения червяка более 10 м/с, а также на отсчетные механизмы и другие кинематические передачи.

1. СТЕПЕНИ ТОЧНОСТИ

1.1. Устанавливаются следующие степени точности изготовления червячных глобоидных передач, обозначаемых в порядке убывания точности: 6, 7 и 8.

Примечание. Для степени точности 6 допуски и отклонения настоящим стандартом не предусмотрены.

- 1.2. Для каждой степени точности устанавливаются нормы точности червяка, колеса и монтажа передачи.
- 1.3. Йезависимо от степени точности передач назначаются нормы бокового зазора.

Предпочтительными являются следующие виды сопряжений и соответствующие им нормы гарантированного бокового зазора:

Ш — с нормальным гарантированным зазором;

 \mathcal{I} — с уменьшенным гарантированным зазором.

Нормы нормального гарантированного зазора обеспечивают компенсацию уменьшения бокового зазора при нагреве передачи, а также удобство сборки и регулировки.

Нормы гарантированного бокового зазора допускается изменять в пределах величин, предусмотренных для сопряжений III и III.

1.4. Точность изготовления червячных глобоидных передач задается степенью точности передачи и видом сопряжения по устанавливаемым нормам бокового зазора.

Пример условного обозпачения передачи со степенью точности 7 и видом сопряжения Д:

Примечание. Для передач с величиной гарантированного бокового зазора, не соответствующей одному из рекомендуемых видов сопряжения, букву, обозначающую вид сопряжения, не указывают.

1.5. Нормы точности заготовок червяка и колеса приведены в

рекомендуемом приложении.

1.6. При использовании в качестве измерительной базы поверхностей, не совпадающих с монтажными базами, вносимые ими погрешности должны компенсироваться уменьшенным производственным допуском.

2. ОСНОВНЫЕ ОБОЗНАЧЕНИЯ И ОПРЕДЕЛЕНИЯ ОТКЛОНЕНИЙ

2.1. Основные обозначения и спределения отклонений должны соответствовать указанным в табл. 1.

Таблица 1

Отклонения и допуски	Обоз- наче- ние	Определение
 Отклонение винтовой линии червяка Допуск на отклонение винтовой линии червя- 	$\Delta t_{ extbf{B}\Sigma}$	Расстояние по нормали между двумя номинальными винтовыми линиями, лежащими на соосном оси червяка глобоиде, ограничивающими кривую пересечения боковой поверхности витков червяка с тем же глобоидом на длине червяка. Для многозаходных червяков определяется на каждом витке
ка	οι _{BΣ}	
t_g	Δt	Разность между действительным и номинальным расстояниями между соседними профилями червяка в осевом сечении по дуге окружности, совпадающей с расчетной окружностью колеса
Предельное отклонение окружного шага чер-		
вяка: верхнее нижнее 3. Накопленная погрешность окружного шага червяка	$egin{array}{c} \Delta_{\mathtt{B}} t \ \Delta_{\mathtt{H}} t \ \Delta t_{\Sigma} \end{array}$	Разность между действительным и номинальным расстояниями по дуге окружности, близкой к расчетной окружности колеса, между любыми (в том числе, между крайними) одноименными не соседними профилями витка червяка в осевом сечении
Предельная накопленная погрешность окружного шага: верхняя	Λ_ <i>f</i>	
вериния при	$\left[\begin{array}{c} \Delta_{\mathrm{B}}t_{\Sigma} \\ \Delta_{\mathrm{H}}t_{\Sigma} \end{array}\right]$	

Продолжени**е**

		11 p000 31310 enae
Отклонения и допуски	Обоз- наче- ние	Определение
4. Кинематическая погрешность обработки червяка	$\Delta arphi_{\Sigma}$	Составляющая отклонения винтовой линии червяка, порождаемая ошибками кинематического процесса обработки, определяемая при исключении радиального биения и смещений червяка относительно его номинального положения в передаче
Допуск на кинематическую погрешность об-	$\delta \phi_{\Sigma}$	
работки червяка 5. Отклонение межосевого расстояния:	_	
в обработке червяка в обработке колеса в передаче	ΔΑ _{вο} ΔΑ _ο ΔΑ	Разность между действительным и номинальным расстояниями между осью вращения инструмента (резцовой головкой) при окончательной обработке червяка или между осью вращения инструмента (фрезы) и осью вращения колеса при окончательной обработке колеса или между осью червяка и осью колеса в собранной передаче
Предельное отклонение межосевого расстоя-		
ния в обработке червяка: верхнее		
нижнее	$\left \begin{array}{c} \Delta_{\mathtt{B}} A_{\mathtt{Bo}} \\ \Delta_{\mathtt{H}} A_{\mathtt{Bo}} \end{array} \right $	
в обработке колеса:	AHABO	
верхнее	$\left \begin{array}{c} \Delta_{\mathtt{B}}A_{\mathtt{o}} \end{array}\right $	
нижнее	$\Delta_{\mathtt{B}}A_{\mathtt{O}}$	
в передаче:	TARATO	
верхнее	$\Delta_{\mathtt{B}}A$	
нижнее	$\Delta_{\rm H}A$	

Отклонения и допуски	Обоз- наче- нне	Определени
6. Смещение средней плоскости червяка: в обработке в передаче Смещение средней плоскости инструмента (фрезы) для обработки колеса	ΔM _{BO} ΔM ΔM _O	Разность между действительным и номинальным положением средней плоскости червяка соответственно в обработке и в передаче, а также средней плоскости инструмента (фрезы) при обработке колеса
ДМ ₈₀ ;ДМ ₀ ,ДМ Предельное смещение средней плоскости чер-		
вяка		
в обработке:		
верхнее	$\Delta_{\rm B} M_{\rm Bo}$	
нижнее	$\Delta_{\rm H}M_{\rm BO}$	
в передаче:		
верхнее	$\Delta_{\rm B}M$	
нижнее	$\Delta_{\rm H}M$	
Предельное смещенис инструмента (фрезы) при обработке колеса:		
верхнее	$\Delta_{\rm B} M_{\rm O}$	
нижнее	$\Delta_{\rm H} M_{\rm O}$!
7. Погрешность профиля червяка	Δf	Расстояние по нормали между двумя теоретическими профилями витка, ограничивающими действительный профиль в пределах его рабочей высоты h_{pa6} . Определяется в сечении с заданным номинальным профилем
Допуск на профиль червяка	δf	

Продолжение

		прооолжение
Отк ния и допуски	Обоз- наче- ние	Определение
8. Перекос осей: в передаче в обработке червяка	Δу	Величина отклонения угла скрещивания осей червяка и колеса в собранной передаче или оси червяка и оси вращения инструмента (резцовой головки) при обработке червяка, выраженная в линейных единицах на длине, равной половине рабочей длины червяка $\frac{l}{2}$
Допуск на перекос осей:		
в передаче	δy	
в обработке червяка	δуво	
9. Радиальное биение червяка	е	Наибольшая разность между расстояниями от осей вращения червяка до поверхности, на которой ширина витка) остается неизменной, в пределах оборота червяка (см. на чертеже слева).
жейки Допуск на радиальное биение червяка	E	Для однозаходных червяков при любом производстве и червяков любой заходности при массовом производстве — радиальное биение поверхностей контрольных шеек при нарезании и контроле (см. на чертеже справа)

Отклонения и допуски	Обоз- наче- ние	Определение
10. Накопленная погрешность окружного шага колеса $\Delta t_{K\Sigma nM} = \Delta t_{K\Sigma n\delta} + \Delta t_{K\Sigma n\delta} $ Сплошные линии — действительное расположение профилей зубьев. Пунктирные линии — точное расположение профилей зубьев. $\Delta t_{K_{\Sigma}} = \Delta t_{K\Sigma n\delta} + \Delta t_{K\Sigma n\delta} $ Сплошные линии — действительное расположение профилей зубьев. $\Delta t_{K_{\Sigma}} = \Delta t_{K\Sigma n\delta} + \Delta t_{K\Sigma n\delta} = \Delta t_{K\Sigma n\delta} = \Delta t_{K\Sigma n\delta} + \Delta t_{K\Sigma n\delta} = \Delta t_{K\Sigma n\delta} = \Delta t_{K\Sigma n\delta} + \Delta t_{K\Sigma n\delta} = \Delta t_{K\Sigma n\delta} = \Delta t_{K\Sigma n\delta} = \Delta t_{K\Sigma n\delta} + \Delta t_{K\Sigma n\delta} = \Delta t_{$	$\Delta t_{\kappa\Sigma}$	Наибольшая погрешность во взаимном расположении любых двух одноименных профилей зубьев по дуге окружности, проходящей примерно посередине высоты зуба, с центром на оси вращения колеса
Допуск на накопленную погрешность ок-	$\delta t_{\kappa\Sigma}$	
ружного шага колеса 11. Кинематическая погрешность обработки колеса	$\Delta \phi_{_{\mathbf{K}\Sigma}}$	Составляющая кинематической погрешности колеса, порождаемая ошибками кинематического процесса зубообработки колеса при исключении радиального биения его зубчатого венца. Определяется в угловых секундах. Примечание. За кинематическую погрешность колеса принимают наибольшую погрешность угла поворота колеса в пределах одного оборота при однопрофильном зацеплении с точным червяком.
Допуск на кинематическую погрешность обработки колеса	$\delta\phi_{\kappa\Sigma}$	

Продолжение

Отклонения и допуски	Обоз- наче- ние	Определение
12. Смещение средней плоскости колеса: в передаче в обработке	Δg Δg δg	Кратчайшее расстояние между средней плоскостью колеса и общей нормалью к осям червяка и колеса в собранной передаче или между средней плоскостью колеса и общей нормалью к осям инструмента и колеса при окончательной обработке профилей зубьев колеса на станке
Предельное смещение средней плоскости колеса в передаче:		
верхнее	$\Delta_{\rm B}g$	
нижнее	$\Delta_{\rm H}g$	
в обработке:		
верхнее	$\Delta_{\rm B}g_{\rm O}$	
нижнее	$\Delta_{\rm H} g_{\rm o}$	
13. Погрешность профиля зуба колеса	$\Delta f_{\rm K}$	Расстояние по нормали
Пеоретический Ал Выступов Пеоретический Ал Выствительный профиль		между двумя теоретическими профилями зуба колеса, ограничивающими действительный профиль, в пределах его рабочей высоты. Определяется относительно оси вращения, перпендикулярно к ней, в средней плоскости колеса
Допуск на профиль зуба колеса 14. Радиальное биение зубчатого венца ко- леса	δf κ c κ	Наибольшее колебание расстояний контура, со- ответствующего нормаль- ному сечению витка чер- вяка в середине глобои- да, относительно оси вра- щения колеса. Опреде- ляется в средней пло- скости колеса.
Допуск на радиальное биение зубчатого венца колеса	$E_{\scriptscriptstyle m K}$	chocia Rosicca.

		П р одолжени
Отклонения и допуски	Обоз- наче- ние	Определение
15. Пятно контакта		Часть боковой поверх ности витка червяка ил зуба колеса, на которо имеются следы натира сконтакта с парным эле ментом передачи посл приработки под нагружой. Определяется относи тельными размерами кой тактного пятна (в прецентах): на витке червяка — отношением расстояния между крайним точками следов прилегания (за вычетом разры вов, превосходящих вличину, равную двум обружным шагам червяк в мм) к рабочей длине витка l: ———————————————————————————————————

Продолжение

Отк ния и допуски	Обоз- нач е- ние	Определение
16. Номинальная толщина витка <i>S</i> , <i>SS</i> ,	Si	Расчетная толщина витка, создающая плотное зацепление (без игры) с зубьями колеса, имеющими номинальную толщину, при номинальном взаимном расположении колеса и червяка. Определяется по расчетной окружности колеса, по хорде, в пормальном сечении в середине соосного оси червяка глобоида
Утонение витка	ΔS_1	Утонение витка червя- ка от номинальной тол- щины.
Напменьшее утонение витка Допуск на толщину витка	$\Delta_{\mathtt{B}}S_{\mathtt{I}}$ $\delta S_{\mathtt{I}}$	Наименьшее предписанное утонение витка, осуществляемое для обеспечения гарантированного бокового зазора Разность наименьшего и наибольшего утонений
17 Номинальная толщина зуба колеса S_2 SS_2	\mathcal{S}_2	витка Расчетная толщина зуба колеса, обеспечивающая плотное зацепление с сопряженным червяком, имеющим номинальную толщину витков, при номинальном расположении червяка и колеса. Определяют по расчетной окружности колеса, по хорде в пормальном сечении
Допуск на толщину зуба колеса	δS_2	

Отклонения и допуски	Обоз- наче- ние	Определение
18. Боковой зазор		Величина свободного поворота (игры) колеса при неподвижном сопряженном червяке.
		Определяется в линсй- ных величинах по дуге расчетной окружности колеса
Гарантированный боковой зазор	$\begin{vmatrix} c_n \end{vmatrix}$	Наименьший предпи- санный боковой зазор

Примечания:

^{1.} Разрешается контролировать номинальную толщину витка и зуба колеса в сечении и по дуге окружности, где номинальный шаг постоянный.

2. Нормальным называется сечение, перпендикулярное к направлению винтовой линии витка на расчетном глобоиде.

3. НОРМЫ ТОЧНОСТИ

3.1. Допуски и отклонения червяков, колес и передач для различных степеней точности должны соответствовать указанным в табл. 2—4.

Комплексы показателей точности устанавливаются из числа предусмотренных настоящим стандартом — в зависимости от назначения и условий производства передач. Каждый комплекс является равноправным.

3.2. Показателем точности червяков является один из следующих комплексов:

$$\Delta t_{ t B\Sigma}$$
 и Δf ; или Δt и Δt_{Σ} и Δf ; или $\Delta \phi_{\Sigma}$ и e и Δf и $\Delta A_{ t BO}$ и $\Delta M_{ t BO}$ и $\Delta y_{ t BO}$.

3.3. Показателем точности колес является один из следующих комплексов:

$$\Delta t_{\kappa^{\Sigma}}$$
 и Δf_{κ} и $\Delta A_{\rm o}$ и $\Delta g_{\rm o}$ и $\Delta M_{\rm o}$; или $\Delta \phi_{\kappa_{\Sigma}}$ и e_{κ} и Δf_{κ} и ΔA и $\Delta g_{\rm o}$ и $\Delta M_{\rm o}$.

- 3.4. Показателем точности монтажа передач является комплекс: ΔA и ΔM и Δg и Δy и пятно контакта.
- 3.5. Когда в передаче рабочей является только одна сторона профиля, нормы отклонений и допусков на нерабочую сторону устанавливают независимо от табл. 2-6, кроме $e_{\rm K}$, а контроль радиального биения червяка производят по нормам допусков для e путем измерения радиального биения контрольных шеек при нарезании и контроле.
- 3.6. Для классических передач величины допусков и отклонений:

$$\delta f$$
; δf_{R} ; $\Delta_{B} t$; $\Delta_{H} t$; $\Delta_{B} t_{\Sigma}$; $\delta t_{B\Sigma}$; $\delta \phi_{\Sigma}$; $\Delta_{H} t_{\Sigma}$

и ширину пятна контакта на колесе уменьшают в два раза.

- 3.7. Когда в передаче предусматривается первоначальная локализация пятна контакта и зазоры у концов витков в пределах от $2\Delta_{\rm B}t_{_\Sigma}$ до $4\Delta_{\rm B}t_{_\Sigma}$, предельные отклонения $\Delta_{\rm H}A_{\rm BO}$ и $\Delta_{\rm H}A_{\rm O}$ принимают равными соответственно $\Delta_{\rm B}A_{\rm BO}$ и $\Delta_{\rm B}A_{\rm O}$ с противоположным знаком; предельные отклонения $\Delta_{\rm B}M_{\rm BO}$; $\Delta_{\rm H}M_{\rm BO}$; $\Delta_{\rm B}M_{\rm O}$; $\Delta_{\rm H}M_{\rm O}$; $\Delta_{\rm B}g_{\rm O}$; $\Delta_{\rm H}g_{\rm O}$ и допуск $\delta y_{\rm BO}$ увеличивают в два раза, нормы пятна контакта устанавливают независимо от табл. 4.
- 3.8. Если изготовленная передача подвергается приемочным испытаниям с контролем всех эксплуатационных показателей (передаваемая мощность, к.п.д., нагрев масляной ванны и др.), то такие испытания могут считаться заменяющими контроль по нормам табл. 4.

Нормы точности червяков

Таблица 2

		Me	Межосевое расстояние, мм			
Степень точности	Обозначения отклонений от 80 до 160	От 80 до 160	Св. 160 до 315	Св. 315 до 630	Св. 630 до 1250	
	$\delta t_{_{ m B}\Sigma}$ (в мкм)	50	70	100	150	
:	$\Delta_{\mathtt{B}}t \ \Delta_{\mathtt{H}}t$ (в мкм)	<u>-</u> f-15	<u>-</u> 20	±3 0	±40	
	$\Delta_{{\scriptscriptstyle \mathrm{B}}} t_{\Sigma} \ \Delta_{{\scriptscriptstyle \mathrm{H}}} t_{\Sigma} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	±30	<u>+</u> 40	<u>+</u> 60	90	
	$oldsymbol{\delta}$ ф $_{\Sigma}$ (вс)	55	45	35	28	
7	Е (в мкм)	20	20	25	35	
	δf (в мкм)	20	25	35	40	
	$\Delta_{\scriptscriptstyle \mathrm{B}} A_{\scriptscriptstyle \mathrm{BO}} \ \Delta_{\scriptscriptstyle \mathrm{H}} A_{\scriptscriptstyle \mathrm{BO}}$ (в мкм)	40	70 0	100	130	
	$\Delta_{\scriptscriptstyle m B} M_{\scriptscriptstyle m BO} \ \Delta_{\scriptscriptstyle m H} M_{\scriptscriptstyle m BO} \ ({\scriptscriptstyle m B} \ {\scriptscriptstyle m MKM})$	<u>+</u> 20	<u>-</u> :-35	<u></u> 50	<u>-¦-</u> 65	
	$\delta y_{вo}$ (в мкм)	20	30	45	60	
	$oldsymbol{\delta t}_{ extbf{B}\Sigma}$ (в мкм)	70	90	120	170	
	$\Delta_{\mathtt{B}}t$ $\Delta_{\mathtt{H}}t$ (B MKM)	<u>+</u> 20	±25	±35	<u>+</u> 45	
8	$\Delta_{ extsf{B}} t_{\Sigma} \ \Delta_{ extsf{H}} t_{\Sigma} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	<u>±</u> 40	±50	<u>+</u> 70	±100	
	δφ _Σ (в с)	85	52	40	32	
	Е (в мкм)	30	35	40	55	

Продолжение

Степень точности		Межосевое расстояние, мм			
	Обозначения отклонений и допусков	От 80 до 160	Св. 160 до 315	Св. 315 до 6 30	Св. 630 до 1250
_	δf (в мкм)	35	45	60	70
	$\Delta_{\mathtt{B}}A_{\mathtt{B}\mathrm{o}} \ \Delta_{\mathtt{H}}A_{\mathtt{B}\mathrm{o}}$ (в мкм)	80	120	180	250 0
8	$\Delta_{\scriptscriptstyle m B} M_{\scriptscriptstyle m BO} \ \Delta_{\scriptscriptstyle m H} M_{\scriptscriptstyle m BO}$ (B MKM)	±35	±60	±90	±130
į	$\delta y_{\scriptscriptstyle { m BO}}$ (в мкм)	3 0	45	65	80

Примечания:

1. Принятые обозначения:

 $\delta t_{_{
m R\Sigma}}$ — допуск на отклонение винтовой линии червяка;

 $\Delta_{\rm B} t$; $\Delta_{\rm H} t$ — предельные отклонения окружного шага;

 $\Delta_{\mathtt{B}} \; t_{\Sigma}$; $\Delta_{\mathtt{H}} \; t_{\Sigma}$ — предельные накопленные погрешности окружного шага червяка;

 $\delta \mathfrak{q}_{\Sigma}$ — допуск на кинематическую погрешность обработки червяка;

 δf — допуск на профиль червяка; E — допуск на радиальное биение червяка;

 $\Delta_{\rm B}\,A_{\rm Bo};\,\,\Delta_{\rm H}\,A_{\rm Bo}$ — предельные отклонения межосевого расстояния в обработке червяка;

 $\Delta_{\rm B} \, M_{\rm B\, O}$; $\Delta_{\rm H} \, M_{\rm B\, O}$ — предельные смещения средней плоскости червяка в обработке; $\delta y_{\text{во}}$ — допуск на перекос осей в обработке червяка.

2. Контроль δf разрешается заменять проверкой профиля инструмента. При этом отклонения не должны превышать 0,75 δf.

3. Нормы точности для межосевых расстояний св. 630 до 1250 мм являются факультативными до 1/1 1975 г.

Нормы точности колес

Таблица 3

		Межосевое расстояние, мм					
Степень гочности	Обозначения отклонений и допусков	От 80 до 160	до 160 до 315 до 630				
	$\delta t_{_{ m K\Sigma}}$ (в мкм)	120	180	250	360		
	δφ _{κΣ} (в с)	200	150	110	90		
	$E_{\scriptscriptstyle m K}$ (в мкм)	30	50	80	100		
	δf_{κ} (в мкм)	30	40	50	60		

		Me	Межосевое расстояние, мм				
Степень точности	Обозначения отклонений и допусков	От 80 до 160	Св. 160 до 315	Св. 315 до 630	Св. 630 до 1250		
	$\Delta_{\mathtt{B}}A_{\mathtt{O}} \ \Delta_{\mathtt{H}}A_{\mathtt{O}}$ (в мкм)	60	100	150 0	200		
7	$\Delta_{\mathtt{B}} M_{\mathtt{O}} \ \Delta_{\mathtt{H}} M_{\mathtt{O}}$ (в мкм)	±25	±50	土75	±100		
	$\Delta_{ extbf{B}}g_{ ext{o}}$ $\Delta_{ ext{H}}g_{ ext{o}}$ (в мкм)	±40	±70	±100	<u>-</u> 130		
	$\delta t_{_{ m K}\Sigma}$ (в мкм)	180	270	350	500		
	δφ _{κΣ} (в с)	300	220	160	130		
	$E_{\scriptscriptstyle m K}$ (в мкм)	50	80	130	160		
8	$\delta f_{\scriptscriptstyle m K}$ (в мкм)	40	50	65	80		
- -	$\Delta_{\mathtt{B}}A_{\mathtt{o}}$ $\Delta_{\mathtt{H}}A_{\mathtt{o}}$ (B MKM)	90	170	2 60 0	350 0		
	$\Delta_{\mathtt{B}} M_{\mathtt{O}} \ \Delta_{\mathtt{H}} M_{\mathtt{O}}$ (в мкм)	±45	± 8 5	<u>+</u> 130	±170		
	$\Delta_{\mathtt{B}}g_{\mathtt{o}} \ \Delta_{\mathtt{H}}g_{\mathtt{o}}$ (в мкм)	<u>±100</u>	士170	± 220	<u>÷</u> 270		

Примечания:

1. Принятые обозначения:

 $\delta t_{\ \ \ \kappa\Sigma}$ — допуск на накопленную погрешность окружного шага колеса;

δφ_{κΣ} — допуск на кинематическую погрешность обработки колеса;

 δf_{κ} — допуск на профиль зуба колеса; E_{κ} — допуск на радиальное биение зубчатого венка колеса;

 $\Delta_{\rm B}A_{\rm o};\;\Delta_{\rm H}A_{\rm o}$ — предельные отклонения межосевого расстояния в обработке колеса; $\Delta_{\rm B}g_{\rm o};\;\Delta_{\rm H}g_{\rm o}$ — предельные смещения средней плоскости колеса в обработке; $\Delta_{\rm B}M_{\rm o};\;\Delta_{\rm H}M_{\rm o}$ — предельные смещения средней плоскости инструмента (фрезы) при обработке колеса.

2. Контроль δf_{κ} допускается заменять проверкой отклонений номинальной винтовой производящей поверхности инструмента (фрезы); при этом нормы на эти отклонения не должны превышать:

для 7-й степени точности $\delta t_{\scriptscriptstyle \mathrm{R}\Sigma}$ и δf (или их заменяющие проверки) для сопряженного червяка;

для 8-й степени точности $\delta t_{\rm R\Sigma}$ и 0,75 δf (или их заменяющие проверки) для сопряженного червяка.

3. Нормы точности для межосевых расстояний св. 630 до 1250 мм являются факультативными до 1/1 1975 г.

Нормы точности монтажа передач

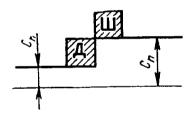
Таблица 4

		Межосевое расстояние, мм				
Степень точности	Обозначения отклонений и допусков	От 80 до 160	Св. 160 до 315	Св. 315 до 6 30	Св. 630 до 1250	
			MK	м		
	$egin{array}{c} \Delta_{\mathtt{B}}A \ \Delta_{\mathtt{H}}A \end{array}$	± 25	士50	±75	±100	
	$\Delta_{\mathtt{B}} M \ \Delta_{\mathtt{H}} M$	<u>+</u> 25	±50	上 75	±100	
7	$egin{array}{c} \Delta_{ extbf{ iny B}} g \ \Delta_{ extbf{ iny H}} g \end{array}$	±25	±50	十75	±100	
	δy	20	30	45	60	
	Пятно контакта на зубе колеса, %	По высоте— не менее 80 По ширине— не менее 45				
	Пятно контакта на вит- ке червяка, %	По длине — не менее 60				
	$egin{array}{c} \Delta_{ extbf{B}} A \ \Delta_{ extbf{H}} A \end{array}$	<u>+</u> 45	±85	±130	<u>+</u> 150	
	$egin{array}{c} \Delta_{\mathtt{B}} \mathcal{M} \ \Delta_{\mathtt{H}} \mathcal{M} \end{array}$	+30	+60	+90	+120	
8	$egin{array}{c} \Delta_{\mathtt{B}} g \ \Delta_{\mathtt{H}} g \end{array}$	<u>±</u> 50	±100	±150	±200	
	δy	30	45	65	80	
	Пятно контакта на зубе колеса, %	По высоте — не менее 70 По ширине — не менее 25				
	Пятно контакта на вит- ке червяка, %	По длинс — не менее 40			40	

Примечания:

1. Принятые обозначения: $\Delta_{\rm B}A$; $\Delta_{\rm H}A$ — предельные отклонения межосевого расстояния в передаче; $\Delta_{\rm B}M$; $\Delta_{\rm H}M$ — предельные смещения средней плоскости червяка в передаче; $\Delta_{\rm B} g$; $\Delta_{\rm H} g$ — предельные смещения средней плоскости колеса в передаче; δy — допуски на перекос осей в передаче.

2. Пятно контакта на витке червяка не должно доходить до начала каждого витка (т. е. в сторону входа в зацепление с колесом) ближе чем на 10% длины


витка; распространение пятна контакта на начало витка не допускается, если общая его длина для 7-й степени точности меньше 80%, а для 8-й степени меньше 70% длины витка. 3. Нормы точности для межосевых расстояний св. 630 до 1250 мм являются

факультативными до 1/1 1975 г.

4. НОРМЫ БОКОВОГО ЗАЗОРА

- 4.1. Нормы бокового зазора должны соответствовать указанным в табл. 5 и 6.
- 4.2. Показателем, обеспечивающим гарантированный зазор, является ΔS_1 .

Схема расположения полей допусков бокового зазора

Гарантированный боковой зазор

Таблина 5

		Межосевое расстояние, мм					
Степень сопряжения	Обозначения отклонений	От 80 до 160	Св. 160 до 315	Св. 315 до 6 30	Св. 630 до 1250		
		мкм					
Д	<i>c</i> _n *	55	95	130	190		
Ш	C n	220	380	530	750		

 $^{^*}$ c_n — гарантированный боковой зазор.

Примечание. Нормы точности для межосевых расстояний св. 630 до 1250 мм являются факультативными до 1/I 1975 г.

Нормы утонения витка червяка и зуба колеса

Таблица 6

			Межосевое расстояние, мм				
Стечень точности	Вид соприжения	Обозначения отклонений и допусков	От 80 до 160	Св. 160 до 315	Св. 315 до 630	Св. 630 до 1250	
	}			MK	м		
	Д	$\Delta_{\mathtt{B}} \mathcal{S}_{\mathtt{1}} \ \delta \mathcal{S}_{\mathtt{1}}$	140 40	180 6 0	240 80	320 100	
7	Ш	$\delta_{\mathtt{B}}\mathcal{S}_{\mathtt{1}} \ \delta\mathcal{S}_{\mathtt{1}}$	340 100	480 120	670 140	900 1 6 0	
	ДиШ	$\delta \mathcal{S}_2$	100	150	300	350	
	Д	$\Delta_{\mathtt{B}}\mathcal{S}_{\mathtt{I}}^{*}$	180	220	280	380	
	μ	δЅι	100	120	140	160	
8	Ш	$\Delta_{\mathtt{B}}{\mathcal{S}}_{\mathtt{l}}$	400	580	710	950	
	ш	δS ₁ **	160	180	200	220	
	ДиШ	δS_2^{***}	150	200	3 50	400	

Примечание. Нормы точности для межосевых расстояний св. 630 до 1250 мм являются факультативными до 1/I 1975 г.

^{*} $\Delta_{\bf B} S_{\bf 1}$ — наименьшее утонение витка червяка. ** $\delta S_{\bf 1}$ — допуск на толщину витка червяка. *** $\delta S_{\bf 2}$ — допуск на толщину зуба колеса.

1. Нормы точности на заготовку червяка

Таблица 1

	Степень точности	Межосевое расстояние, мм				
Отклонения и допуски		От 80 до 160	От 160 до 315	От 315 до 630	От 630 до 1250	
		мкм				
Биение базового торца	7	10	15	20	35	
контрольной шейки	8	15	20	25	30	
Радиальное биение конт- рольной шейки *	7 и 8	17	20	25	30	

^{*} Допуск на диаметр шеек назначают по посадке C OCT 1012.

2. Нормы точности на заготовку колеса

Таблица 2

	Степень точности	Межосевое расстояние, мм			
Отклонения и допуски		От 80 до 160	От 160 до 315	От 315 до 630	От 630 до 1250
Биение базового торца на радиусе расчетной окружности	7	30	40	60	80
колеса	8	40	50	75	100
Радиальное биение наруж-	7	30	35	45	65
ной поверхности заготовки	8	40	55	80	100

СОДЕРЖАНИЕ

ГОСТ	1375568	Зацепления зубчатые. Исходный контур цилиндрических	_
		зубчатых колес	3
ГОСТ	13754— 68	Зацепления зубчатые. Исходный контур конических зуб-	_
		чатых колес с прямыми и тангенциальными зубьями	8
LOCL	16202—7 0	Зацепления зубчатые. Исходный контур конических зуб-	
		чатых колес с круговыми зубьями .	10
ГОСТ	15023—69	Передачи зубчатые цилиндрические Новикова с двумя	
		линиями зацепления. Исходный контур зубчатых колес	12
LOCL	9563—60	Колеса зубчатые. Модули	15
		Колеса зубчатые цилиндрические передач Новикова. Модули	17
		Передачи зубчатые цилиндрические. Основные параметры	18
		Передачи зубчатые конические. Основные параметры	22
ГОСТ	214466	Передачи червячные цилиндрические. Основные параметры	26
ГОСТ		Передачи червячные глобоидные. Основные параметры	41
	175856	Передачи зубчатые конические. Допуски	50
ΓΟCΤ		Передачи червячные. Допуски	84
		Передачи червячные глобоидные. Допуски	124
TOCT	9587—68	Зубчатые зацепления. Исходный контур зубчатых элко-	
	0007 00	модульных колес .	143
гост	12722 69	Передачи зубчатые цилиндрические мелкомодульные. Ко-	1 10
1001	10/00-00	леса прямозубые и косозубые. Типы. Основные парамет-	
			145
		ры и размеры	
		Передачи зубчатые реечные мелкомодульные. Допуски	149
	936860	Передачи зубчатые конические мелкомодульные. Допуски	168
LOCL	9774—61	Передачи червячные мелкомодульные. Допуски	193
LOCL		Передачи зубчатые цилиндрические. Допуски	219

ПЕРЕДАЧИ ЗУБЧАТЫЕ

Редактор Н. В. Запаленова

Переплет художника Г. Ф. Семиреченко

Технический редактор Н. С. Матвеева

Корректор Т. А. Камнева

Сдано в наб. 21.02.73 19,0 п. л. 18,2 уч.-изд. л. Бумага типографская № 2. Изд. № 3208/₀₂ Подп. в печ. 03.09.73 Формат над. 60×90¹/₁₆ Тираж 30 000 Цена в переплете 1 р. 02 к.

Издательство стандартов. Москва, Д-22, Новопресненский пер., 3