ТИПОВЫЕ ПРОЕКТНЫЕ РЕШЕНИЯ 901-3-0279.89

ЗДАНИЕ СТАНЦИИ ОБЕЗЖЕЛЕЗИВАНИЯ ВОДЫ ПОДЗЕМНЫХ ИСТОЧНИКОВ С СОДЕРЖАНИЕМ ЖЕЛЕЗА ДО 10 МГ/Л ПРОИЗВОДИТЕЛЬНОСТЬЮ 32,0 ТЫС.М³/СУТНИ
/ИНЖЕНЕРНЫЕ И ТЕХНОЛОГИЧЕСКИЕ РЕШЕНИЯ/

AJILEOM I

ПЗ. ПОНСНИТЕЛЬНАЯ ЗАПИСКА

23983-01

СФ ЦИТП 620062, г.Свердловск, ук. Чебынева, 4 Зак. 32/6мнв. 23983-01 тириж 100 Сдано в нечать 14.05, 1990 Цена 1-26

TWIOBLE IPOEKTHEE PEWEHNS 901-3-0279 89

AJILBOM I

HOHCHITETEHAR BAINCKA

Разработан ЦНИИЭП инженерного оборудования городов, жилых и общественных эдалий

Утвержден Госгражданстроем Приказ № 346 от 18 ноября 1985 r.

Главный инженер института Главный инженер проекта Пи А.Г.Кетаов Р.К.Чичерина

23983-01

	23YF3
90I-3-0279.89 (I) ₂	
СОДЕРЖАНИЕ	
	CTp.
І. ОБЩАЯ ЧАСТЬ	4
І.І. Введение	4
I.2. Технико-экономические показатели	6
2. АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ ЧАСТЬ	8
2.1. Природные условия строительства и исходные данные	8
2.2. Объемно-планировочные решения	8
2.3. Конструктивные решения	11
2.4. Технологическая ёмкость - фильтры	11
3. ОРГАНИЗАЦИЯ СТРОИТЕЛЬСТВА	/3
3.1. Общая часть	13
3.2. Земляные работы	13
3.3. Бетонные работы и монтаж сборных железобетонных элементов	3 <i>14</i>
3.4. Монтаж технологического оборудования и трубопроводов	15
3.5. Указания по производству работ в зимних условиях	16
3.6. Техника безопасности	17
4. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ	19
4.І. Назначение и область применения	19
4.2. Технологическая схема очистки воды	19
4.3. Компоновка здания станции обезжелезивания	21

901-3-0279.89	(I)	3	23983-01
			Стр.
4.4. Характ	еристика и расчетн	ые параметры сооружений	21
4.4.I.	Входная камера		21
4.4.2.	Фильтры		21
4.4.3.	Насосная станция	П-го подъема	23
4,4.4.	Обеззараживание в	оды	23
5. ВНУТРЕННИЙ	водопровод и канал	RNJAEN	24
6. ОТОПЛЕНИЕ И	ВЕНТИЛЯЦИЯ		25
7. ЭЛЕКТРОТЕХН	ИТОАР КАНОЗРИ		26
7.I. Общая	часть		26
7.2. Электр	оснабжение		26
7.3. Заземл	ение и зануление		27
7.4. Силово	е электрооборудова	ние	27
7.5. Автома	тизация и технолог	ический контроль	28
7.6. Щиты			29
7.7. Электр	ическое освещение		29
7.8. Связь	и сигнализация		30
оп кинасажу. в	привязке типовых	проектных решений	32

I. OBIIAR YACTE

т. І. Введение

Настоящие типовые проектные решения выполнены в соответствии с планом типового проектирования ЦНИИЭП инженерного оборудования на 1989 год, а также письма Госкомархитектуры при Госстрое СССР и эс-5-691 от 27.04.89 г.

Проект, на основании которого разработаны данные типовые решения, утвержден Комитетом по гражданскому строительству и архитектуры при Госстрое СССР приказом № 346 от 18 ноября 1985 г.

Типовые проектные решения разработаны в соответствии с "Инструкцией по типовому проектированию" СН 227-82, СНиП 2.04.02-84 "Водоснабжение. Наружные сети и сооружения" и прочих соответствующих норм и правил.

Для представления возможности привязывающим организациям эффективно применять архитектурностроительные решения, материалы и конструкции в конкретных регионах и условиях поставок, архитектурно-строительная часть разработана в сокращенном объеме в виде материалов для проектирования. Однако, наиболее сложные строительные конструкции выполнены на уровне рабочих чертежей.

Все остальные разделы представлены рабочей документацией с соответствующими заданиями для доработки архитектурно-строительной части на рабочей стадии.

901-3-0279 89 (I)

23983-07

Типовыми проектными решениями принят метод обезжелезивания воды фильтрованием с упрощенной аэрацией по безнапорной схеме.

Обеззараживание предусматривается с использованием хлора.

В настоящих типовых решениях применены архитектурные решения, технология, оборудование, строительные конструкции и организация труда, соответствующие новейшим достижениям отрасли.

Типовые проектные решения разработаны в соответствии с действующими нормами и правилами, а также предусматривает мероприятия, обеспечивающие взрывобезопасность и пожаробезопасность при эксплуатации сооружений.

Главный инженер проекта

Turef

Р.К. Чичерина

1.2. Технико-экономические показатели

Технико-экономические показатели определены по данным соответствующих разделов настоящих типовых проектных решений.

nn	Наименование указателей	ī	Зна застоящих чиповых проектных решений	чение показателей проекта-аналога	(+) экономя перерас- ход
I	2	3	4	5	6
I	Номер типовых проектных решений		901-3-02	279.89 901-3-124	
2	Производительность (полезная) сооружений	м ³ /сут.	32000	32000	
3	Общая сметная стоимость	тыс.руб.	405, 87	446,46	+ 40,59
4	Стоимость строительно-монтажных работ	тыс.руб.	289.4	318,3	+28,9
5	Сметная стоимость на расчётную единицу	руб.	12,68	13,95	+ 1,27
6	Строительный объем	м ^З	10674,2	11839,3	+1165,1
7	Общая площадь	w ²	2079,3	2287	+207,7
8	Потребляемая мощность электро- энергии	кВт	711,7	701	-10,7
9	Расход электроэнергии в год	MBr•u	4987,59	4912,61	- 74,98

I	22	3	4	5 5	6
10	Расход тепла в год	Гкал	411,23	647	+ 235,77
II	Эксплуатационные расходы	тыс.руб.	172,7	184,5	+ 11,8
12	Себестоимость очистки I м ³ воды	pyd.	0,011	0.013	\$00.0 ÷
13	Приведённые затраты	руб.	237,66	255,93	+ 18,27
I4	Численность работающих	чел.	33	33	
15	Коэффициент сменности		1,35	1,35	
16	Удельный вес прогрессивных видов строительно-монтажных работ	%			
17	Коэффициент загрузки оборудования		0,94	0,94	
18	Годовой объем продукции	THC.M ³	116 80	116 80	
19	Уровень механизации основных производственных процессов	Z	98	92	+ 6
20	Уровень автоматизации основных технологических процессов	%	98	92	+ 6
21	Удельный вес рабочих занятых ручным трудом	%	2	8	+ 6

Показатели приведены к сопоставивым человиям с ччетом изменения стоимости технологического оборудования и дополнительных требований снип 2.04.02-вч "Водоснабнение. Нарунные сети и соорушения.

901-3-027989 (1)

2. АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ ЧАСТЬ (РЕКОМЕНДАЦИИ)

В настоящей главе приведены рекомендательные условия проектирования строительной части компаска. Природные условия строительства и исходные данные.

Природные условия и исходные данные для проектирования приняты в соответствии с "Инструкцией по типовому проектированию" СН 227-82, а также серией 3.900-3 "Сборные железобетонные конструкции емкостных сооружений для водоснабжения и канализации".

Здание относится к Π классу капитальности; по пожарной опасности – к категории "Д". Степень огнестойкости – Π .

Проект разработан для строительства в районах со следующими природно-климатическими условиями: - сейсмичность района строительства не выше 6 баллов:

- расчетная зимняя температура наружного воздуха минус 30°C;
- скоростной напор ветра для I географического района 0.23 кПа (23 кгс/м²):
- поверхностная снеговая нагрузка для Ш географического района I,0 кПа (IOO кгс/м²);
- рельеф территории спокойный:
- территория без подработки горными выработками;
- грунты в основании непучинистые, непросадочные, со следующими нормативными характеристиками: $\mathcal{Y} = 0.49$ рад (28°); $C^H = 2$ кЛа (0.02 кгс/см²); $E^H = 14.7$ мЛа (150 кгс/см²); y = 1.8 т/м³; коэффициент безопасности по грунту Кг= 1.0.

Проектом не предусмотрены особенности строительства в районах вечной мерэлоты, на макропористых и водонасыщенных грунтах, в условиях оползней, осыпей, карстовых явлений и т.п.

2.2. Объемно-планировочные решения.

Объемно-планировочные решения эдания станции обезжелезивания воды подземных источников выполнено с учетом действующих основных положений по унификации габаритных схем и параметров зданий промышленных предприятий ГОСТ 23837-79, ГОСТ 23838-79 от СЭВ 1404-78.

За относительную отметку 0.000 принят уровень чистого пола соответствующий абсолютной отметке

Ограждающие конструкции здания керамзитобетонные панели $y = 900 \text{ кг/м}^3$, кирпичные стены, вставки и перегородки выполняются из кирпича КР 100/1800/15 $\Gamma OCT 530-80$ на растворе M25.

Станция обезжелезивания воды подземных источников производительностью 32,0 тыс. ${\tt м}^3/{\tt сут}$. представляет собой сблокированное из $3^{\frac{X}{2}}$ блоков здание.

В первом объеме с размерами в плане (I2x24) в осях выполнено в конструкциях одноэтажного промышленного здания с размерами до балки покрытия 3.600.

В первом блоке располагаются насосное отделение и КПП. Помещение насосной оборудовано кран- $^{\circ}$ балкой грузоподъемностью $^{\circ}$ т.

Во втором объеме с размерами в плане 24х24 в осях выполненное по конструктивной схеме одноэтажного железобетонного кархаса промышленных зданий, располагается фильтровальное отделение, которое заглублено до отм. - 0,8 м, а на перекрытии 3.600 располагаются площадки обслуживания. Высота фильтров 5.600. Высота до низа фермы покрытия 7.200. Помещение фильтров оборудовано кранбалкой грузоподъемностью I т.

В третьем объеме с размерами в плане (12х18) в осях выполненное в многоэтажных конструкциях общественных зданий, с высотой этажа 3.600, располагаются административно-бытовые помещения, мастерская, операторская, лаборатория, комната приема пищи.

Архитектурные решения приняты в соответствии со СНиПом 2.09.04-87.

Для внутренней отделки здания станции применяются известковая побелка, поливинилацетатная окраска, облицовка глазурованной плиткой. Отделка стен выполняется по предварительно оштукатуренной поверхности кирпичных стен и затертой поверхности швов панельных стен.

Покрытие пола выполнено из цементно-песчаного раствора, керамической плитки, линолеума. Конструкция пола административно-бытового блока выполняется толщиной 100 мм по серии 1.020. В помещениях с влажным режимом предусматривается в зависимости от интенсивности воздействия воды на пол от 2 до 4 слоев гидроизоляции. В помещении КПП предусматривается пол цементно-песчаный с железнением. Полы должны быть выполнены в соответствии со СНиПом 2.03.13-88.

Горизонтальная изоляция стен от капиллярной влаги осуществляется слоем цементно-песчаного раствора состава I:2.

Столярные изделия окрашиваются масляной краской за 2 раза.

Вокруг здания устраивается отмостка с асфальтовым покрытием шириной 0,75.

В административно-бытовой части проекта подоконные железобетонные плиты выполнить по ГОСТу 6785-80.

В кирпичных стенах предусмотреть железобетонные перемычки по серии I.038I-I вып.I. В здании предусматривается внутренний водосток. Узлы покрытий с рулонными кровлями и железобетонными плитами выполнить по серии I.136.5-I9 и 2.260-I вып.5 для одноэтажных и многоэтажных зданий.

Марка кровельной мастики в скобках (см. разрезы) дана для районов строительства, расположенных южнее географической широты 50° для Европейской и 53° для Азиатской частей СССР.

Мастика в местах примыкания принята МБК-Г-85 (МБК-Г-100).

Наружные поверхности панелей окрашиваются цементно-перхлорвиниловыми красками. Наружные поверхности кирпичных стен-вставок штукатурятся цементно-песчаным раствором М50 с разделкой швами и окраской под панель, стыки панелей заделываются цементно-песчаным раствором. Предел огнестойкости стыка не менее 0,75 часа. При производстве работ в зимнее время в проект должны быть внесены коррективы в соответствии со СНиП 22-81 и СНиП 3.03.01-87.

2.3. Конструктивные решения.

Конструктивной схемой первого и второго объемов является одноэтажный, железобетонный, однопролетный каркас. Для первого объема – пролет 12 м, высота до низа стропильной балки 3.6 м; для второго объема – пролет 24 м, высота до низа фермы 7.2 м.

Конструкции принимать по Всесоюзному каталогу.

Фундаменты под колонны выполнять монолитными по серии I.4I2.I-6.

Фундаментные балки - сборные ж.-б. по серии I.4I5.I-2.

Колонны - сборные ж.-б. по серии І.423.І-3/88.

Фахверковые колонны - сборные ж.-б. по серии I.427.I-3.

Балки покрытия - сборные ж.-б. по серии І.462.І-І/8І.

Фермы стропильные - сборные ж.-б. по серии ПК-01-129/78.

Плиты покрытия принимаются комплексными на базе плит по ГОСТ 22701.1-77 и ГОСТ 22701.2-77. Конструктивной схемой третьего объема является двухэтажный железобетонный каркас пролетом 2x6 м и высотой этажа 3.6 м.

Фундаменты - сборные ж.-б. по серии I.020-I/83.

Колонны - сборные ж.-б. сечением 300х300 по серии 1.020-1/83.

Ригели - сборные ж.-б. по серии I.020-I/83.

Диафрагмы жесткости - сборные ж.-б. по серии I.020-I/83.

Плиты покрытия и перекрытия - сборные ж.-б. по серии І.04І.І-2.

2.4. Технологическая емкость - фильтры.

Фильтры – прямоугольное в плане сооружение с размерами бхІ9,4 м с плоским дницем, выполнены в сборно-монолитном железобетоне, на основании серии 3.900-3.

Стены выполняются из сборных ж.-б. панелей по серии 3.900-3, вып.4/82. За базовую принята панель ПСІ-48-62. Остальные панели этличаются от типовой наличием дополнительных закладных деталей, сальников либо размерами. Указания по установке панелей, креплению их между собой и заделке в паз днища даны в серии 3.900-3.

Монолитные участки выполняются в соответствии с серией 3.900-3, вып.2/82. Монолитные участки отличаются друг от друга наличием закладных деталей.

Днище выполняется из монолитного железобетона. В зуб днища закладываются анкера для крепления стоек, на которые опираются бачки перекрытия.

Поверхности монолитных участков стен и днища со стороны воды торкретируются цементно-песчаным раствором состава I:2 толщиной 25 мм с последующим железнением. Кроме того сверху фильтра до низа его желобов наклеивается глазурованная плитка.

Наружные поверхности монолитных участков стен затираются цементно-песчаным раствором с последующей окраской стен силикатной краской.

Типовые архитектурные решения разработаны в соответствии с действующими нормами и правилами и предусматривает в части архитектурно-строительных решений мероприятия, обеспечивающие вэрывную, вэрывно-пожарную и пожарную безопасность при правильной эксплуатации здания.

3. ОРГАНИЗАЦИЯ СТРОИТЕЛЬСТВА

3.1. Общая часть.

Основные положения по производству строительно-монтажных работ здания станции обезжелезивания подземных источников с содержанием железа до IO мг/л производительностью 32,0 тыс.м³/сутки разработаны в соответствии с инструкциями CH 227-82 и CHuII 3.01.01-85.

Строительство здания станции обезжелезивания предусматривается в следующих условиях:

- стройплощадка имеет горизонтальную поверхность;
- сборные железобетонные конструкции, изделия и полуфабрикаты поставляются с существующих производственных баз стройиндустрии;
- при строительстве сооружений в условиях высокого уровня грунтовых вод должен быть обеспечен непрерывный водоотлив: открытый с помощью самовсасывающих центробежных насосов или путём водопонижения иглофильтровыми установками. Мощность водоотливных средств и продолжительность их работы определяются при привязке проекта на основании данных о величине подпора и принятых темпах работ.

До начала основных работ по строительству здания станции обезжелезивания должны быть выполнены работы подготовительного периода: устройство водоотводных канав, временных подъездов к площадке; геодезические работы по разбивке осей, возведение временных зданий и сооружений, прокладка временных коммуникаций.

3.2. Земляные работы.

При производстве земляных работ следует руководствоваться положениями СНиП 3.02.01-87 "Земляные сооружения. Основания и фундаменты".

Работы осуществляются экскаватором, оборудованным обратной лопатой ковшом емкостью $0,65 \text{ м}^3$ (типа 9-6526).

Добор до проектных отметог осуществляется специальным зачистным устройством на экскаваторе 30-3322 и вручную.

По окончании земляных работ основание котлована или траншеи подлежит приемке по акту.

Обратная засыпка производится бульдозером слоями толщиной 15-20 см. Уплотнение грунта в пристенной части осуществляется электротрамбовками ИЭ-4501 равномерно по периметру. Уплотнение остальной части засыпки производится гусеницами бульдозера.

3.3. Бетонные работы и монтаж сборных железобетонных элементов.

Производство бетонных работ и монтаж сборных железобетонных конструкций следует производить в соответствии со СНиП 3.03.01-87 "Несущие и ограждающие конструкции". Строительство станции осуществляется поэтапно:

I этап - зал фильтров в осях"6+I0";

П этап - насосная станция П подъёма в осях "І+5";

Ш этап - блок служебных и лабораторных помещений в осях "II+I4".

В зале фильтров первоначально проводятся работы по устройству фильтров. Перед началом бетонирования конструкций выполняют комплекс работ по подготовке опалубки, арматуры, поверхностей основания. Подача бетонной смеси к месту укладки осуществляется в бадьях ёмкостью 0,5 м³, I м³ монтажным краном, бетононасосом типа СБ-95А или ленточным бетоноукладчиком.

Бетон при укладке уплотняется вибрированием наружными и глубинными вибраторами, прикреплёнными к опалубке.

Монтаж стеновых панелей и замоноличивания стыков вести в соответствии с указаниями серии 3.900-3 вып.2/82. На монтаже конструкций каркаса и емкостей сооружения применяются следующие монтажные краны:

I. Зал фильтров "в осях 6-IO" - башенный кран марки БК-406А длина стрелы 40 м, грузоподъемность - 25 тн с ходом вдоль осей "6".

- 2. Насосная станция П подъёма в осях "I-5" гусеничный кран РДК-25, длина стрелы 17,5 м, с гуськом 5 м, грузоподъёмность 25 т с ходом крана вдоль осей "А и В".
- 3. Блок служебных и лабораторных помещений в осях "II-I4" гусеничный кран РДК-25, грузо-подъёмностью 25 тн, со стрелой длиной I7,5 метров и жестким гуськом 5 м. Ход крана вдоль осей "А и В".

Конструкции каркаса монтируются в следующей последовательности:

- колонны;
- балки покрытия;
- плиты покрытия.

Строповку и подъём сборных конструкций следует производить с помощью грузозахватных приспособлений, предусмотренных проектом производства работ.

В процессе монтажа должна быть обеспечена устойчивость смонтированных элементов до сварки закладных частей и замоноличивания стыков.

Гидравлическое испытание фильтров вести в соответствии со СНиП 3.05.04-85. Сооружение признается выдержавшим испытание, если убыль воды за сутки не превышает 3 литров на I м² смоченной поверхности стен и днище; через стыки не наблюдается выход струек воды, а также не установлено увлажнение грунта в основании.

3.4. Монтаж технологического оборудования и трубопроводов.

Монтаж технологического оборудования и трубопроводов следует производить в соответствии со СНиП 3.05.05-84 "Технологическое оборудование и технологические трубопроводы".

В зданиях и сооружениях, сдаваемых под монтаж оборудования и трубопроводов, должны быть выполнены строительные работы, предусмотренные ППР; проложены подземные коммуникации, произведена обратная засыпка и уплотнение грунта до проектных отметок; устроены оттяжки под покрытие полов и каналы, подготовлены и приняты подкрановые пути и монорельсы; выполнены отверстия для прокладки

трубопроводов и установлены закладные детали для установки опор под них; фундаменты и другие конструкции должны быть освобождены от опалубки и очищены от строительного мусора; проемы ограждения, лотки и люки перекрыты.

Установка оборудования должна производиться на фундаменте, очищенном от загрязнений и масляных пятен. Подливка оборудования должна быть выполнена строительной организацией не позднее 48 часов после монтажа оборудования. Трубопроводы долускается присоединять только к закреплённому на опорах оборудованию. Перед установкой сборочных единиц трубопроводов в проектное положение гайки на болтах фланцевых соединений должны быть затянуты и сварные стыки заварены.

Монтаж должен производиться специализированной организацией по утверждённому IIIP.

3.5. Указания по производству работ в зимних условиях.

Работы в зимнее время надлежит производить в соответствии с требованиями положений СНиП часть 3 "Организация, производство и приёмка работ", глав "Работы в зимних условиях".

Мерзлый грунт должен быть предварительно подготовлен одним из следующих способов:

- предохранение грунта от промерзания;
- оттаивание мерзлого грунта;
- рыхление мерзлого грунта.

Устройство бетонных и железобетонных конструкций целесообразно проводить способом термоса с применением добавок-ускорителей твердения и цементов с повышенным тепловыделением (быстротвердею— щие и высокомарочные).

Устройство бетонных и железобетонных конструкций целесообразно проводить способом термоса с применением добавок-ускорителей твердения и цементов с повышенным тепловыделением (быстротвердеющие и высокомарочные). Замоноличивание стыков при монтаже сборных железобетонных конструкций осуществляется с помощью электропрогрева пластинчатыми и стержневыми электропами. Обмазочную гидромаюли запрещается наносить при температуре окружающей среды ниже 5° С. В исключительных случаях

такую гипроизоляцию делают в инвентарных переносных тепляках с покрытием из полимерных пленок.

3.6. Техника безопасности.

Производство строительно-монтежных работ осуществляется в строгом соответствии с положениями СНиП Ш-4-80 "Техника безопасности в строительстве", правилами техники безопасности Госгортехнадзора СССР и Госэнергонадзора Минэнерго СССР, требованиями санитарно-технических норм и правил Минзарава СССР.

Разработка котлованов под сооружение здания станции обезжелезивания должно производиться при крутизне откосов согласно табл. 4 СНиП \square -4-80.

Перемещение, установка и работа машин вблизи выемок с неукрепленными откосами разрешается только за пределами призмы обрушения грунта на расстоянии согласно табл. 3 СНиП Ш-4-80.

Пои эксплуатации машин должны быть приняты меры, предупреждающие их опрокидывание или самопроизвольное перемещение при действии ветра.

При укладке бетона из бадей или бункера расстояние между нижней кромкой бадей или бункера и ранее уложенным бетоном или поверхностью, на которую укладывается бетон, должно быть не более I м.

При уплотнении бетонной смеси электровибраторами перемещать вибратор за токоведущие шланги не допускается, а при перерывах в работе или при переходе с одного места на другое электровибраторы необходимо выключать.

Растворонасос и смеситель следует подключать к сети в соответствии с "Правилами устройства электроустановок" и "Правила безопасности при эксплуатации электроустановок промышленных предприятий".

Рабочее место и проходы вокруг механизмов должны быть свободны от посторонних предметов. При работе с механизмами запрещается:

- а) производить очистку, смазку и ремонт при включенном электродвигателе;
- б) начинать и продолжать работу в случае обнаружения неисправности.

Все механизмы должны быть надежно заземлены.

Подъем и установку конструкций монтажным краном осуществлять в соответствии с его паспортной грузоподъемностью не допуская волочения и подтягивания конструкций.

Крюки грузозахватных приспособлений должны быть снабжены предохранительными замыкающими устройствами, предотвращающими самопроизвольное выпадение груза.

4. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

4.1. Назначение и область применения.

Станция обезжелезивания производительностью 32,0 тыс.м³/сут. предназначена для обработки поцземной воды, содержащей железо и подачи воды питьевого качества.

Основание для применения разработанного в проекте метода обработки воды является пробное обезжелезивание, проводимое непосредственно на водоисточнике по методике, приведенной в "Технических указаниях на проектирование и эксплуатацию сооружений обезжелезивания воды фильтрованием с упрощенной системой аэрации", ОНТИ, АКХ, Москва 1980 г.

Для предварительного определения возможности применения данного проекта следует руководствоваться следующими показателями качества исходной воды в соответствии с СНиП 2.04.02-84:

- содержание железа (общего) до 10 мг/л, в том числе двухвалентного (Fe^{2+}) не менее 70%;
- щелочности более ($I+Fe^{Z+}/28$) мг-экв/л;
- окисляемость до 7 мг/л 0₂;
- рН не менее 6,8;
- содержание сероводорода не более 2 мг/л;
- углекислоты до 50 мг/л.

Качество обработанной воды должно соответствовать требованиям ГОСТа 2874-82 "Вода питьевая". Проект может быть применен для хозяйственно-питьевых водопроводов городов, поселков, промпредприятий и для других потребителей.

4.2. Технологическая схема очистки воды.

Технологический процесс осуществляется по самотечной схеме.

Вода из скважин поступает во входную камеру перед фильтрами с изливом с высоты 0,5 м над уровнем воды.

За счет высоты излива вода обогащается кислородом, необходимым для успешного осуществления процесса обезжелезивания.

Обезжелезивание воды происходит в толще загрузки фильтров, при этом полный и стабильный эффект достигается после "зарядки" загрузки (образования на поверхности зерен пленки из соединений железа), которая происходит один раз, в самом начале, при пуске станции в эксплуатацию. Продолжительность "зарядки" зависит от качества исходной воды, параметров примененной загрузки и заданного режима и может составлять от 30-40 часов до нескольких суток.

Наличие каталитической пленки на поверхности фильтрующей загрузки обеспечивает высокую стабильность процесса обезжелезивания, меньшую его зависимость от колебаний отдельных показателей качества исходной воды и позволяет применять сравнительно небольшие количества растворенного кислорода.

Пройдя фильтрующую загрузку, вода освобождается от железа и направляется в резервуары чистой воды.

Перед резервуарами для обеззараживания в воду вводится хлорная вода от отдельностоящей хлораторной на 2 кг товарного хлора в час.

Из резервуара вода забирается насосами второго подъема и подается потребителю.

Режим работы станции равномерный, круглосуточный, насосной станции П подъема - в соответствии с графиком водопотребления.

Расход воды на собственные нужды станции при повторном использовании промывной воды принят в размере 3% от полезной производительности станции. Полная производительность станции составляет $32960 \text{ м}^3/\text{сут.}$ или $1373.3 \text{ м}^3/\text{ч.}$

4.3. Компоновка здания станции обезжелезивания.

В здании станции обезжелезивания расположены: фильтровальный зал, насосная станция П подъема, помещение для электротехнического и сантехнического оборудования, лаборатория, мастерская, служебные и бытовые помещения.

Здание состоит из 2-х этажной части, где располагаются зал фильтров и служебно-бытовые помещения и одноэтажной части, где находится насосная станция П подъема.

Площадь помещения лаборатории и номенклатура лабораторного оборудования принята в минимальном объеме в увязке с возможностью централизованного контроля качества воды базовой лабораторией.

Система обводных коммуникаций на площадке предусматривает подачу воды при аварии, минуя отдельные сосружения, а также отключение отдельных сооружений.

4.4. Характеристика и расчетные параметры сооружений.

4.4.І. Входная камера

На станции предусмотрены 2 входные камеры, каждая из которых рассчитана на половину производительности всей станции.

 Π Наличие входной камеры позволяет обеспечить более равномерную подачу воды на Π фильтры, дополнительную ее аэрацию, а также осуществить местный отсос воздуха при наличии в воде сероводорода.

Объем одной камеры составляет 23,0 м³ с учетом времени пребывания воды в ней не более 2 минут.

4.4.2. Фильтры

Фильтры приняты открытые, скорые, с центральным каналом, из сборного железобетона с монолитными участками, прямоугольные в плане, размером 6,0x6,0 (в осях).

Полезная площадь фильтрации одного фильтра 26,19 м³, всего фильтров - 6 шт.

Скорость фильтрации:

при нормальном режиме - 8,84 м/ч,

при форсированном режиме - 10,60 м/ч.

Для загрузки фильтров принят кварцевый песок с диаметром зерен загрузки I,0-2,0 $_{LM}$, эквивалентным диаметром I,2-1,3 $_{LM}$, коэффициентом неоднородности I,5-2,0. Высота загрузки - I200 $_{LM}$.

В качестве поддерживающего слоя принят гравий с диаметром зерен 2,0-32,0 мм при высоте 600 мг.

Распределительная система фильтров - большого сопротивления из стальных или полиэтиленовых перфорированных труб диаметром 80 мм, с отверстиями диаметром 12 мм.

Отвод промывной воды осуществляется с помощью двух желобов высотой 0,65 м, шириной 0,6 м. Равномерное распределение воды между фильтрами достигается применением водосливных воронок, выведенных на одинаковую отметку (0,5 м над уровнем воды в фильтре).

Уровни воды на фильтрах поддерживаются в заданных пределах при помощи поплавкового устройства, механически связанного с регулирующей поворотной заслонкой на трубопроводе отвода фильтрата.

Промывка фильтров производится от башни промывной воды высотой ствола 12 м с баком емкостью 300 м^3 . Расчетная интенсивность промывки принимается равной 16 л/c на 1 м^2 площади фильтра. Время промывки одного фильтра 6 минут. Объем воды на одну промывку равен $150,8 \text{ м}^3$, секундный расход равен 419 л/c.

Подкачка воды в башню предусматривается насосами марки К290/30 (І рабочий, І резервный), установленными в насосной станции П-го подъема. Промывная вода забирается из резервуаров чистой воды.

Для производства монтажных работ в фильтровальном зале предусмотрен кран подвесной электрический однобалочный грузоподъемностью I т.

Для улучшения санитарно-гигиенических условий эксплуатации предусмотрено устройство местного отсоса для газов (главным образом, сероводорода), выделяющихся при изливе воды. При отсутствии в исходной воде сероводорода устройство отсоса аннулируется.

4.4.3. Насосная станция П подъема.

Насосная станция П подъема входит в состав здания станции обезжелезивания и предназначена для подачи воды в сеть объединенного хозяйственно-питьевого и противопожарного водопровода.

Для определения параметров работы насосной станции принята норма водопотребления на одного жителя — 250 л/сутки. Коэффициент часовой неравномерности — I,28, количество населения — до I28000 человек, средний часовой расход — I333,3 м³/ч, максимальный часовой расход — I712 м³/ч. Расчетный расход воды на наружное пожаротушение при количестве 3-х пожаров составит I20 л/сек, на внутреннее пожаротушение — I0 л/сек.

Максимальный хозяйственно-противопожарный расход - 2180 м3/ч.

К установке приняты 6 хозяйственно-питьевых и противопожарных насоса (4 рабочих, 2 резервных) марки 11500-65.

В насосной станции установлены вакуум-установка, подкачки воды в башню промывной воды.

4.4.4. Обеззараживание воды.

Необходимость и метод обеззараживания воды после обезжелезивания определяются в зависимости от конкретных условий по согласованию с местными органами санитарно-эпидемиологической службы.

В проекте предусмотрен метод обеззараживания воды жидким хлором, для чего на площадке станции обезжелезивания предусматривается строительство типовой отдельностоящей хлораторной на 2 кг товарного хлора в час.

Доза хлора принимается равной I мг/л согласно СНиП 2.04.02-84, п.6.I46. Потребное количество хлора составляет I,33 кг/час. Ввод хлора предусматривается в трубопровод фильтрованной воды перед резервуарами.

23983-01

5. ВНУТРЕННИЙ ВОДОПРОВОД И КАНАЛИЗАЦИЯ

В здании станции обезжелезивания предусматривается устройство холодного и горячего водоснабжения для хозяйственно-бытовых и лабораторных нужд, а также хозяйственно-фекальная канализация. Подача хоз-питьевой воды запроектирована от напорных трубопроводов насосной станции П подъема.

Горячее водоснабжение осуществляется от теплового узла, приготавливающего горячую воду с температурой $+60^{\circ}$ С для непосредственной подачи потребителю.

Хозяйственно-фекальные стоки этводятся самотёком в наружную канализационную сеть.

Для отвода атмосферных осадков с кровли здания запроектирована система водостоков с открытым выпуском на отмостку.

Основные показатели по водопроводу и канализации приведены в альбоме 2, раздел ВК.

6. OTOILIEHNE N BEHTUJIRLINA

Проект отопления и вентиляции здания станции обезжелезивания выполнен на основании:

- архитектурно-строительных и технологических чертежей, разработанных институтом ЦНИИЭЛ инженерного оборудования;
 - задания технологов;
 - действующих норм и правил.

Коэффициенты теплопередачи определены согласно СНиП П-3-79**.

Температура внутреннего воздуха и кратности по помещениям приняты согласно CHull 2.04.02-84 и заданию технологического отдела.

Проект выполнен для наружной температуры $T_{H} = -30^{\circ}C$ (в соответствии с CH 227-82).

Теплоснабжение здания осуществляется от наружной тепловой сети.

Теплоноситель - вода с параметрами I50-70°C и 95-70°C (как вариант).

Присоединение системы отопления и теплоснабжения калориферов - непосредственное.

В здании запроектирована двухтрубная система отопления с нижней разводкой, тупиковая. В качестве нагревательных приборов приняты чугунные радиаторы МС-140 с прокладками, выдерживающими температуру теплоносителя.

Отопление в помещении насосной осуществляется отопительно-вентиляционными агрегатами.

Воздухоотделение из системы отопления осуществляется через краны "Маевского", установленные на приборах верхнего этажа и воздушные краны, установленные в высших точках системы.

В здании запроектирована приточно-вытяжная вентиляция с механическим побуждением и естественная. Воздухообмен в зале фильтров определен из расчета ассимиляции влаги. Воздухообмен в помещении

ньсосной определен из условия ассимиляции теплоизбытков от технологического оборудования.

Все воздуховоцы, трубопроводы и приборы окрашиваются масляной краской за 2 раза. Монтаж систем отопления и вентиляции вести в соответствии со СНиП 3.05.01-85.

7. ATEKTPOTEXHIVECKAR VACTA

7.1. Общая часть

В объем электротехнической части проекта входит:

электроснабжение, силовое электрооборудование, автоматизация и технологический контроль, электроосвещение, связь и сигнализация.

7.2. Электроснабжение

В отношении обеспечения надежности электроснабжения электроприемники станции обезжелезивания воды относятся к потребителям I и частично Ш категории.

Для электроснабжения потребителей станции на напряжении 0,4 кВ проектом предусматривается встроенная комплектная трансформаторная подстанция (КПП) с силовыми трансформаторами мощностью 2х630 кВА напряжением IO (6)/0,4 кВ.

Расчет электрических нагрузок на выбор мощности силовых трансформаторов приведен в таблице.

Таблица подсчета электрических нагрузок и выбора трансформаторной мощности.

Ж пп	Наименование	cos4/tg4	Расчет кВт	ная мощность квар	 кВА	Примечание
I	Расчетный максимум нагрузок	0,89/0,5	715	358	800	
2	Конценсаторная установка			2xI00		
3	Расчетный максимум нагрузок с учетом компенсации	0,98/0,22	715	I58	732	
	Приняты к установке силовые трансформаторы			2x630		
	Коэффициент загрузки силовых трансформаторов			0,6		

Учет активной и реактивной энергии предусмотрен на стороне 0,4 кВ силовых трансформаторов. Для компенсации реактивной мощности в помещении КПП устанавливаются две комплектные конденсаторные установки мощностью по ІОО квар каждая, подключаемые к низковольтному щиту трансформаторной подстанции.

7.3. Заземление и зануление

Согласно ПУЭ-85 проектом предусматривается сооружение заземляющего устройства. Заземляющее устройство КТП выполняется общим для напряжений 6-10 и 0,4 кВ.

Сопротивление заземляющего устройства не должно превышать 4-х Ом.

Требуемое сопротивление должно быть обеспечено в любое время года. Расчет заземления производится при привязке проекта к конкретным условиям с учетом характеристики грунта.

В качестве заземляющего устройства должны быть использованы естественные заземлители.

При недостаточности естественных заземлителей при привязке проекта необходимо выполнить дополнительное устройство в виде наружного контура КТП.

Проектом предусматривается зануление корпусов электрооборудования и металлических конструкций путем присоединения их к нулевой жиле кабеля, соединенной с нейтралью силового трансформатора.

7.4. Силовое электрооборудование

Все электродвигатели выбраны асинхронными с короткозамкнутым ротором с пуском от полного напряжения сети. Двигатели поставляются комплектно с технологическим оборудованием. Напряжение питания электродвигателей ~ 380 В.

Распределение электроэнергии между потребителями осуществляется от распределительных шкафов типа UPII-7000.

Пусковая и коммутационная аппаратура управления двигателями располагается в шкафах и ящиках типа ШОИ-5903, ЯОИ5901, ЯБІОО, выпускаемых Ангарским электромеханическим заводом.

Для управления электродвигателями затворов и задвижек фильтров, а также магистральной запорной ярматурой предусмотрены серийно изготовляемые шкафы со сборками PT30-81.

Шкафы и ящики с пусковой аппаратурой и аппаратурой управления устанавливаются в зоне видимости механизмов.

Распределение электроэнергии и присоединение электродвигателей к пусковым аппаратам выполняется кабелем марки ABBГ прокладываемым по строительным конструкциям открыто на скобках, на кабельных конструкциях в лотках, а также в полиэтиленовых трубах в полу и в металлорукаве по стенам сооружений.

7.5. Автоматизация и технологический контроль

В соответствии со структурной схемой управления, принятой в проекте, оперативное управление и контроль за технологическим процессом очистки воды осуществляется диспетчером из помещения операторской. Для этих целей предусмотрен щит с приборами, отражающими состояние технологического процесса и сигнализирующими отклонение от заданных основных технологических параметров.

На шите оператора препусмотрены показания:

- расхода сырой воды, поступающей на станцию;
- расхода чистой воды к потребителю;
- расхода промывной воды;
- остаточного хлора в питьевой воде:
- уровней в резервуарах чистой воды;
- светозвуковой сигнализации о достижении уровня пожарного запаса в РЧВ, предельного падения напора на фильтрах, аварийного уровня в дренажном приямке, в башне промывной воды.

В зал фильтров вынесены показания:

- потери напора на фильтрах.
- В проекте предусмотрено:
- автоматическое включение резервного хозяйственно-противопожарного насоса при выходе из строя рабочего агрегата, дистанционный пуск насосов со щита оператора;
- автоматическое включение и выключение насосов подкачки промывной воды в башню от уровня воды в башне;
 - автоматическое включение и выключение дренажных насосов от уровня воды в приямке;
- автоматическое поддержание температуры приточного воздуха и защита калорифера от замораживания;
- автоматическое включение и выключение отопительно-вентиляционного агрегата в зависимости от температуры воздуха в H/ст Π подъема.

7.6. Шиты

Для размещения аппаратуры контроля, управления и сигнализации предусмотрен щит оператора \mathbb{Q} , установленный в операторской; ящик управления приточной системой $\Pi-I-Я\Pi-I$ (ЯОИ5ІОІ) – в приточной венткамере.

Щит оператора изготовляется по ОСТ 36-13-76.

7.7. Электрическое освещение

Проектом предусмотрено общее рабочее и аварийное освещение и переносное освещение. Электрическое освещение выполнено в соответствии с ПУЭ-85 и СН 357-77. Освещенность помещений принята согласно СНиП П-4-79.

Выбор светильников произведен в зависимости от назначения помещений, условий среды и высоты подвеса. Светильники приняты с люминесцентными лампами и лампами накаливания. Напряжение сети общего освещения - 380/220В, переносного - 36В и I2В - в зале фильтров.

Питание сетей рабочего и аварийного освещения предусмотрено от H/H щита КПП, шкафов % 2 и % 4. В качестве групповых щитков приняты щитки типа ОЩВ и ЯОУ-8500.

Питающие и групповые сети выполнены:

- кабелем ABBГ, прокладываемым в кабельном канале, на кабельных конструкциях, на скобах по стенам и перекрытиям и с подвеской на тросе;
- проводом AПВ в винипластовых трубах по ограждению площадок с защитой монтажным профилем, в коробах КЛ при установке в них люминесцентных светильников;
- проводом АШВ скрыто в пустотах плит перекрытий и под слоем штукатурки, открыто по бетонным перегородкам.

Для зануления элементов электрооборудования используется нулевой рабочий провод сети.

Управление светильниками осуществляется выключателями, установленными у входов, и автоматическими выключателями со щитков.

7.8. Связь и сигнализация

Рабочая документация связи и сигнализации выполнена на основании заданий технологических отделов, "Ведомственных норм технологического проектирования" ВСН II6-87 Министерства связи СССР, "Инструкции по проектированию установок пожарной сигнализации" ВПСН 6I-78, СНиП 2.04.09-84.

Телефонизация и радиофикация станции предусматривается от внешних сетей площадки, пожарная сигнализация – от приборов "Сигнал-42".

Емкость кабельного ввода составляет IOx2. На кабельном вводе в здание на стене устанивливается распределительная коробка КРТП-IO "Кабельный ввод выполняется проводом ТППIOx2xO,4 прокладываемым по стенам.

Для оперативного руководства подразделениями станций предусмотрена диспетчерская связь с применением коммутатора "Псков-25".

Электропитание коммутатора осуществляется от сети переменного тока через собственное выпрямительное устройство.

Наружный ввод радиофикации выполняется кабелем ПРППМ2хI,2, на вводе устанавливается абонентский трансформатор ТАМУ-IO. Сеть радиофикации внутри здания выполняется проводом ПТПЖ2хO,6 и ПТПЖ2хI,2.

Для оповещения о пожаре предусмотрена автоматическая пожарная сигнализация с установкой приборов "Сигнал-42", устанавливаемых в помещении оператора. Техобслуживание устройств пожарной сигнализации предусматривается на договорных началах с местными органами пож.надзора при вводе в эксплуатацию.

В качестве датчиков пожарной сигнализации применяются тепловые типа ИП 104-1 и дымовые типа ДИП-3, включаемые в отдельные лучи. Пожарные лучи выполняются проводом ТРПІх2хО,5 открыто по стенам и потолкам. Подключение к внешним сетям связи, радиофикации и вывод сигнала общей тревоги на ПЦН выполняются при привязке проекта.

Электрочасофикация станции предусматривается от первичных электрочасов типа ПЧЗ-2Бр-p24-012. Электропитание первичных часов осуществляется от сети переменного тока через блок питания ВПМ-24/1. Подключение к внешним сетям выполняется при привязке проекта.

8. УКАЗАНИЯ ПО ПРИВЯЗКЕ ПРОЕКТА

Архитектурно-строительная часть является справочным материалом и привязке не подлежит. Привязывающей организации надлежит разработать данный раздел в полном объёме.

Остальные разделы представлены рабочей документацией.

Для строительства принимается участок со спокойным рельефом и максимальным использованием уклона под гидравлическую посадку сооружений по принципиальной схеме очистки воды.

До начела привязки проекта необходимо выполнить весь комплекс технологических изысканий, связанных с определением качества воды конкретного источника водоснабжения.

По результатам технологических изысканий уточняется временный цикл работы сооружений.

Исходя из реальных условий привязки проекта уточняются:

- выбор способа обеззараживания и обработки промывной воды и осадка;
- место расположения промывной башни (на возвышении рельефа) и хлораторного хозяйства (в пониженном месте площадки);
- марки оборудования, арматуры, грузоподъемных механизмов и т.п. в соответствии с действующей на период привязки и строительства номенклатурой, а также с конкретными условиями поставки.

Произвести соответствующую корректировку проектной документации:

- заказ дифманометров с диафрагмой для измерения расхода (заполнить опросные листы по форме УОЛ-I-85 и РТ 30-81);
 - объем автоматизации и технологического контроля;
- расчет заземления высоковольтных установок с учетом данных о токе замыкания на земле и характеристики грунта.

Просим организации, привязавшие настоящий проект, информировать нас (с указанием объекта привязки) по адресу: II7279, г. Москва, Профсоюзная ул., д.93а, ЦНИИЭП инженерного оборудования.