
ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Н А Ц И О Н А Л Ь Н Ы М
С Т А Н Д А Р Т

Р О С С И Й С К О Й
Ф Е Д Е Р А Ц И И

ГОСТР
53556.7—
2013

Звуковое вещание цифровое

КОДИРОВАНИЕ СИГНАЛОВ ЗВУКОВОГО
ВЕЩАНИЯ С СОКРАЩЕНИЕМ ИЗБЫТОЧНОСТИ

ДЛЯ ПЕРЕДАЧИ ПО ЦИФРОВЫМ КАНАЛАМ
СВЯЗИ. ЧАСТЬ III
(MPEG-4 AUDIO)

Параметрическое кодирование звуковых сигналов
(HILN)

ISO/IEC 14496-3:2009
(NEQ)

Издание официальное

Стандартинформ
2014

длинные кружевные платья

https://meganorm.ru/Index2/1/4293840/4293840483.htm

ГОСТ Р 53556.7—2013

Предисловие

1 РАЗРАБОТАН Санкт-Петербургским филиалом Центрального научно-исследовательского ин­
ститута связи «Ленинградское отделение» (ФГУП ЛО ЦНИИС)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 480 «Связь»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому ре­
гулированию и метрологии от 22 ноября 2013 г. ТК 1704-ст

4 Настоящий стандарт разработан с учетом основных нормативных положений международного
стандарта ИСО/МЭК 14496-3:2009 «Информационные технологии. Кодирование аудиовизуальных объ­
ектов. Часть 3. Аудио» (ISO/IEC 14496-3:2009 «Information technology — Coding of audio-visual objects —
Part 3: Audio», NEQ)

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8).
Информация об изменениях к настоящему стандарту публикуется в годовом (по состоянию на
1 января текущего года) информационном указателе «Национальные стандарты», а официальный
текст изменений и поправок — в ежемесячно издаваемом информационном указателе «Националь­
ные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответ­
ствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного
указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты
размещаются также в информационной системе общего пользования — на официальном сайте
Федерального агентства по техническому регулированию и метрологии в сети Интернет (gost.ru)

© Стандартинформ, 2014

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и рас­
пространен в качестве официального издания без разрешения Федерального агентства по техническо­
му регулированию и метрологии

II

ГОСТ Р 53556.7—2013

Содержание

1 Область действия...1
1.1 Технический обзор..1

2 Термины и определения.. 2
3 Синтаксис потока битов.. 2

3.1 Конфигурация декодера (ParametricSpecificConfig).. 2
3.2 Фрейм потока битов (sIPacketPayload).. 5

4 Семантика потока битов... 26
4.1 Конфигурация декодера (ParametricSpecificConfig)..26
4.2 Фрейм потока битов (sIPacketPayload).. 27

5 Инструменты параметрического декодера...29
5.1 Инструменты декодера HILN ... 29
5.2 Интегрированный параметрический кодер...47

6 Устойчивые к ошибкам полезные нагрузки потока битов...47
6.1 Обзор инструментов.. 47
6.2 ERHILN ...48

Приложение А (справочное) Параметрический аудиокодер...49
Библиография..54

III

ГОСТ Р 53556.7— 2013

Н А Ц И О Н А Л Ь Н Ы Й С Т А Н Д А Р Т Р О С С И Й С К О Й Ф Е Д Е Р А Ц И И

Звуковое вещание цифровое

КОДИРОВАНИЕ СИГНАЛОВ ЗВУКОВОГО ВЕЩАНИЯ С СОКРАЩЕНИЕМ ИЗБЫТОЧНОСТИ
ДЛЯ ПЕРЕДАЧИ ПО ЦИФРОВЫМ КАНАЛАМ СВЯЗИ.

ЧАСТЬ III (MPEG-4 AUDIO)

Параметрическое кодирование звуковых сигналов (HILN)

Sound broadcasting digital.
Coding of signals of sound broadcasting with reduction of redundancy for transfer on digital communication channels.

A part III (MPEG-4 audio). Parametric audio coding (HILN)

Дата введения — 2014—09—01

1 Область действия

Параметрическое аудиокодирование обеспечивает инструменты HILN, которые дополняют дру­
гие инструменты кодирования естественного аудио в области уровней очень низких битовых скоро­
стей. Их внимание сосредоточено на представлении монофонических музыкальных сигналов с низкой
и промежуточной сложностью контента в диапазоне 4 — 16 Кбит/с. HILN задействует высокую степень
интерактивности путем неявной поддержки изменения скорости и шага во время воспроизведения с
возможностью масштабируемости скорости передачи. Кроме того возможная комбинация с инструмен­
тами параметрического кодирования речи HVXC допускает очень эффективные схемы кодирования
речи и музыкальных сигналов.

1.1 Технический обзор

Параметрическое аудиокодирование MPEG-Л использует метод HILN (Гармонические и отдельные
линии плюс шум), чтобы кодировать такие аудиосигналы, как музыка на скоростях передачи 4 Кбит/с и
выше, используя масштабируемое параметрическое представление аудиосигнала. HILN позволяет не­
зависимо изменять скорости и шаг во время декодирования. Кроме того HILN может быть объединено с
параметрическим кодированием речи MPEG-4 (HVXC), чтобы сформировать интегрированный параме­
трический кодер, охватывающий более широкий диапазон сигналов и скоростей передачи.

Интегрированный параметрический кодер может работать в следующих режимах:

Т а б л и ц а 1 — Режимы работы параметрического кодера

PARAmode Описание

0 только HVXC
1 только HILN
2 переключение HVXC/HILN
3 смешанный HVXC/HILN

PARAmodes 0 и 1 представляют режимы фиксированных HVXC и HILN. PARAmode 2 разрешает
автоматическое переключение между HVXC и HILN в зависимости от типа текущего входного сигнала.
В PARAmode 3 декодеры HVXC и HILN могут использоваться одновременно, и их выходные сигналы
добавляются (смешиваются) в параметрическом декодере.

В режимах “коммутируемые HVXC/HILN" и “смешанные HVXC/HILN" инструменты декодера HVXC
и HILN работают альтернативно или одновременно согласно PARAswitchMode или PARAmixMode те-

Издание официальное

1

ГОСТ Р 53556.7—2013

кущего фрейма. Чтобы получить надлежащее временное выравнивание выходных сигналов декодера
HVXC и HILN прежде, чем они будут добавлены, буфер FIFO компенсирует разницу во времени между
задержкой декодера HVXC и HILN.

Чтобы избежать трудных переходов на границах фрейма, когда декодеры HVXC или HILN вклю­
чаются или выключаются, соответствующие выходные сигналы декодера появляются и спадают посте­
пенно. Для декодера HVXC применяется линейное изменение 20 мс, когда он включается или выключа­
ется. Декодер HILN не требует дополнительного замирания из-за гладких окон синтеза, используемых
в синтезаторе HILN. Необходимо только сбросить декодер HILN (numLine = 0), если текущий фрейм
потока битов не содержит HILNframe ().

2 Термины и определения

В настоящем стандарте применены термины и сокращения с соответствующими определениями,
используемые в ГОСТ Р 53556.0—2009.

3 Синтаксис потока битов

Естественный объект аудио MPEG-4, использующий параметрическое кодирование, передается
в одном или нескольких элементарных потоках: поток базового уровня, поток дополнительного уровня
улучшения и один или более дополнительных потоков уровня расширения.

Синтаксис потока битов описывается в коде pseudo-C.
Мнемоники LARH1, LARH2, LARHZ, LARN1, LARN2, DIA, DIF, DHF, DFS указывают, что использу­

ется кодовая комбинация “vlclbf’.
Мнемонический SDC указывает, что используется кодовая комбинация “vlclbf, которая декодируется

HILN SubDivisionCode, используя параметры для SDCdecode (), как дано в описании синтаксиса потока битов.

3.1 Конфигурация декодера (ParametricSpecificConfig)

Информация о конфигурации декодера для параметрического кодирования передается в
ParametricSpecificConfig § базового уровня и элементарном потоке уровня улучшения или расширения.

Параметрический базовый уровень — конфигурация
Параметрический кодер в немасштабируемом режиме или базовом уровне в масштабируемом

режиме HILN используют ParametricSpecificConfig 0 с isBaseLayer == 1.
Параметрический уровень улучшения/расширения HILN— конфигурация
Чтобы использовать HILN в качестве ядра в режиме «масштабируемый T/F с ядром», в допол­

нение к базовому уровню HILN требуется уровень улучшения HILN. При работе с масштабируемой
скоростью передачи HILN в дополнение к базовому уровню HILN разрешаются один или более уровней
расширения HILN. Уровень улучшения и уровень расширения используют ParametricSpecificConfig О с
isBaseLayer == 0.

Т а б л и ц а 2 — Синтаксис ParametricSpecificConfig ()

Синтаксис Количество битов Мнемоника

ParametricSpecificConfig ()

{
isBaseLayer;

if (isBaseLayer) {

PAR Aeon fig ();

}
else {

HILNenexConfig ();

}

}

1 uimsbf

2

ГОСТ Р 53556.7— 2013

3.1.1 Конфигурация параметрического декодера аудио

Т а б л и ц а 3 — Синтаксис PARAconfig ()

Синтаксис Количество битов Мнемоника

PARAconfig ()

{
PARAmode;

i f (PARAmode! = 1){

ErHVXCconfig ();

}
if (PARAmode! = 0) {

HILNconfig ();

}

2 uimsbf

PARAextensionFlag;

i f (PARAextensionFlag) {

/* to be defined in MPEG 4 Phase 3 V

}

}

1 uimsbf

Т а б л и ц а 4 — PARAmode

PARAmode Длина фрейма Описание

0 20 мс (Л/ = 160 выборок) только HVXC

1 см. 3.1.2 и 5.1.4.3.3 только HILN

2 40 мс (Л/ = 320 выборок) переключение HVXC/HILN

3 40 мс (Л/ = 320 выборок) смешивание HVXC/HILN

3.1.2 Конфигурация декодера HILN

Т а б л и ц а 5 — Синтаксис HILNconfig

Синтаксис Количество битов Мнемоника

HILNconfig ()

{
HILNquantMode; 1 uimsbf

HILNmaxNumLine; 8 uimsbf

HILNsampleRateCode; 4 uimsbf

HILNframeLength; 12 uimsbf

HILNcontMode; 2 uimsbf

}

Т а б л и ц а 6 — Синтаксис HILNenexConfig ()

Синтаксис Количество битов Мнемоника

HILNconfig ()

{
HILNenhaLayer 1 uimsbf

3

ГОСТ Р 53556.7—2013

Окончание таблицы 6

Синтаксис Количество битов Мнемоника

if (HILNenhaLayer) {

HILNenhaQuantMode

}

}

2 uimsbf

Т а б л и ц а 7 — HILNsampleRateCode

HILNsampleRateCode sampleRate maxFIndex

0 96000 890

1 88200 876

2 64000 825

3 48000 779

4 44100 765

5 32000 714

6 24000 668

7 22050 654

8 16000 603

9 12000 557

10 11025 544

11 8000 492

12 7350 479

13 зарезервировано зарезервировано

14 зарезервировано зарезервировано

15 зарезервировано зарезервировано

Т а б л и ц а 8 — linebits

HILNmaxNumLine 0 1 2.. 3 4.. 7 8.. 15 16.. 31 32.. 63 64.. 127 128.. 255

linebits 0 1 2 3 4 5 6 7 8

Т а б л и ц а 9 — HILNcontMode

HILNcontMode Дополнительное продолжение линии декодером (см. подпункт 5.1.4.3.1)

0 гармонические линии <-> отдельные линии и линии гармоник <-> линии гармоник

1 режим 0 плюс отдельные линии <-> отдельные линии

2 дополнительное продолжение линий декодером отсутствует

3 (зарезервировано)

Число битов улучшения частоты (fEnhbits [i]) в HILNenhaFrame () вычисляется следующим образом:
• отдельная линия:
fEnhbits [i] = max (0, fEnhbitsBase [ILFreqlndex [i]] + fEnhbitsMode [HILNenhaQuantMode])
• линия гармоники:
fEnhbits [i] = max (0, fEnhbitsBase [harmFreqlndex] + fEnhbitsMode [HILNenhaQuantMode] +

fEnhbitsHarm [])

4

ГОСТ Р 53556.7—2013

Т а б л и ц а 10 — fEnhbitsBase

ILFreqlndex harmFreqlndex fEnhbitsBase

0.. 159 0.. 1243 0

160.. 269 1244.. 1511 1

270.. 380 1512.. 1779 2

381.. 491 1780.. 2047 3

492.. 602 4

603.. 713 5

714.. 890 6

Т а б л и ц а 11 — fEnhbitsMode

HILNenhaQuantMode 0 1 2 3

fEnhbitsMode -3 -2 -1 0

Т а б л и ц а 12 — fEnhbitsHarm

/ 0 1 2.. 3 4.. 7 8.. 9

fEnhbitsHarm [i] 0 1 2 3 4

Т а б л и ц а 13 — Константы HILN

tmbits 4

atkbits 4

decbits 4

tmEnhbits 3

atkEnhbits 2

decEnhbits 2

phasebits 5

3.2 Фрейм потока битов (sIPacketPayload)

Динамические данные для параметрического кодирования передаются как пакетная полезная на­
грузка SL в элементарном потоке базового уровня и дополнительного уровня улучшения или расширения.

Параметрический базовый уровень — полезная нагрузка устройства доступа.
Для параметрического кодера в немасштабируемом режиме или для базового уровня в масштаби­

руемом режиме HILN определяется следующая полезная нагрузка фрейма потока битов:
sIPacketPayload {

PARAframe ();
}
Параметрический уровень улучшения/расширения HILN— полезная нагрузка устройства доступа.
Чтобы проанализировать и декодировать уровень улучшения HILN, запрашивается декодируемая

информация из базового уровня HILN.
Чтобы проанализировать и декодировать уровень расширения HILN, запрашивается декодируе­

мая информация из базового уровня HILN и возможного нижнего уровня расширения HILN. Синтаксис
потока битов уровней расширения HILN описывается способом, который требует, чтобы фреймы базо­
вого потока битов HILN и расширения анализировались в надлежащем порядке:

5

ГОСТ Р 53556.7— 2013

1 HILNbasicFrame () фрейм базового потока битов

2 HILNextFrame (1) фрейм 1-го потока битов расширения (если доступен фрейм базового потока битов)

3 HILNextFrame (2) фрейм 2-го потока битов расширения (если доступны фреймы базового потока и
1-го потока битов расширения)

4 ит. д.

Для уровня улучшения и уровня расширения в масштабируемом режиме HILN определяется сле­
дующая полезная нагрузка фрейма потока битов:

slPacketPayload {
HILNenexFrame ();

}

3.2.1 Фрейм параметрического потока битов аудио

Т а б л и ц а 14 — Синтаксис PARAframe ()

Синтаксис Количество битов Мнемоника

PARAframe ()

{
if (PARAmode == 0) {

ErHVXCframe (HVXCrate);

}
else i f (PARAmode == 1) {

HILNframe ();

}
else i f (PARAmode == 2) {

switchFrame ();

}
else i f (PARAmode == 3) {

mixFrame ();

}

}

Т а б л и ц а 15 — Синтаксис switchFrame ()

Синтаксис Количество битов Мнемоника

switchFrame ()

{

РА RAswitch Mo de;

i f (PARAswitchMode == 0) {

ErHVXCdoubleframe (HVXCrate);

}

else {

HILNframe ();

}

}

1

uimsbf

6

ГОСТ Р 53556.7— 2013

В каждом фрейме выбирается один из следующих PARAswitchModes:

Т а б л и ц а 16 — PARAswitchMode

PARAswitchMode Описание

0 только HVXC

1 только HILN

Т а б л и ц а 17 — Синтаксис mixFrame ()

Синтаксис Количество битов Мнемоника

mixFrame ()

{
PARAmixMode;

i f (PARAmixMode == 0) {

ErHVXCdoubleframe (HVXCrate);

}
else i f (PARAmixMode == 1) {

ILNframe ();

ErHVXCdoubleframe (2000);

}
else i f (PARAmixMode == 2) {

HILNframe ();

ErHVXCdoubleframe (4000);

}
else i f (PARAmixMode == 3) {

HILNframe ();

}

}

2 uimsbf

В каждом фрейме выбирается один из следующих PARAmixModes:

Т а б л и ц а 18 — PARAmixMode

PARAmixMode Описание

0 только HVXC

1 HVXC 2 Кбит/с и HILN

2 HVXC 4 Кбит/с и HILN

3 только HILN

Т а б л и ц а 19 — Синтаксис HVXCdoubleframe ()

Синтаксис Количество битов Мнемоника

ErHVXCdoubleframe (rate)

{

if (rate> = 3000) {

ErHVXCfixframe (4000);

7

ГОСТ Р 53556.7— 2013

Окончание таблицы 19

Синтаксис Количество битов Мнемоника

ErHVXCfixframe (rate);

}
else {

ErHVXCfixframe (2000);

ErHVXCfixframe (rate);

}

}

3.2.2 Фрейм потока битов HILN

Т а б л и ц а 20 — Синтаксис HILNframe ()

Синтаксис Количество битов Мнемоника

HILNirame ()

{
numLayer = 0;

HILNbasicFrameESCO ();

HILNbasicFrameES C1 ();

HILNbasicFrameESCO ();

HILNbasicFrameESCO ();

HiLNbasicFrameESCA ();

layNumLine [0] = numLine;

layPrevNumLine [0] = prevNumLine;

for (k = 0; k <prevNumLine; k ++) {

layPrevLineContFlag [0] [k] = prevLineContFlag [k];

}

}

Т а б л и ц а 21 — Синтаксис HILNbasicFrameESCO ()

Синтаксис Количество битов Мнемоника

HILNbasicFrameESCO ()

{

prevNumLine = numLine;

/* prevNumLine is set to the number of lines */

/* in the previous frame */

/* prevNumLine = 0 for the first bitstream frame У

numLine; linebits uimsbf

harmFlag; 1 uimsbf

noiseFlag; 1 uimsbf

envFlag; 1 uimsbf

phaseFlag; 1 uimsbf

8

ГОСТ Р 53556.7— 2013

Окончание таблицы 21

Синтаксис Количество битов Мнемоника

maxAmplIndexCoded;

maxAmplIndex = 4*maxAmpllndexCoded;

if (harmFlag) {

HARMbasicParaESCO ();

}
if (noiseFlag) {

NOISEbasicParaESCO ();

}

}

4 uimsbf

Т а б л и ц а 22 — Синтаксис HILNbasicFrameESC 1 ()

Синтаксис Количество битов Мнемоника

HILNbasicFrameESCI ()

{
if (harmFlag) {

HARMbasicParaESCI ();

}
if (noiseFlag) {

NOISEbasi cParaE S C1 ()',

}
INDIbasicParaESCI ();

}

Т а б л и ц а 23 — Синтаксис HILNbasicFrameESC2 ()

Синтаксис Количество битов Мнемоника

HILNbasicFrameESC2 ()

{

INDIbasicParaESC2 ();

}

Т а б л и ц а 24 — Синтаксис HiLNbasicFrameESC3 ()

Синтаксис Количество битов Мнемоника

HILNbasicFrameESC3 ()

{
if (envFlag) {

envTmax; tmbits uimsbf

envRatk; atkbits uimsbf

envRdec decbits uimsbf

}
if (harmFlag) {

HARMbasicParaESC3 ();

9

ГОСТ Р 53556.7— 2013

Окончание таблицы 24

Синтаксис Количество битов Мнемоника

}
i f (noiseFlag) {

NOISEbasicParaESСЗ ();

}
INDIbasicParaESC3 ();

if (harmFlag) {

harmFreqStretch; 1..7 HFS

}

}

Т а б л и ц а 25 — Синтаксис HILNbasicFrameESCA ()

Синтаксис Количество битов Мнемоника

HILNbasicFrameESCA ()

{
if (harmFlag) {

HARMbasicParaESC4 ();

}
i f (noiseFlag) {

NOISEbasicParaESC4 ();

}
INDIbasicParaESC4 ();

}

Т а б л и ц а 26 — Синтаксис HARMbasicParaESCOQ

Синтаксис Количество битов Мнемоника

HARMbasicParaESCO ()

{
prevHarmAmplindex = harmAmplindex;

prevHarmFreqlndex = harmFreqlndex;

harmContFlag; 1 uimsbf

harmEnvFlag; 1 uimsbf

if (! harmContFlag) {

harmAmpIRel;

harmAmplindex = maxAmplindex + harmAmpIRel;

6 uimsbf

harmFreqlndex;

}

}

11 uimsbf

Т а б л и ц а 27 — Синтаксис HARMbasicParaESC 1 ()

Синтаксис Количество битов Мнемоника

HARMbasicParaESCI ()

{

10

ГОСТ Р 53556.7— 2013

Окончание таблицы 27

Синтаксис Количество битов Мнемоника

numHarmParalndex; 4 uimsbf

numHarmPara = питНагтРагаТаЫе [numHarmParalndex];

numHarmLinelndex;

numHarmLine = numHarmLineTable [numHarmLinelndex];

i f (harmContFlag) {

5 uimsbf

contHarmAmpI

harmAmplIndex = prevHarmAmplIndex + contHarmAmpI;

3..8 DIA

contHarmFreq

harmFreqlndex = prevHarmFreqlndex + contHarmFreq;

}
for (i = 0; i <2; i ++) {

2..9 DHF

harmLAR [i];

}

}

4..19 LARH1

Т а б л и ц а 28 — Синтаксис HARMbasicParaESC3 ()

Синтаксис Количество битов Мнемоника

HARMbasicParaESC3 ()

{
for (i = 2; / <min (7, numHarmPara); i ++) {

harmLAR [i];

}
for (i = 7; / <numHarmPara; i ++) {

3..18 LARH2

harmLAR [i];

}

}

2..17 LARH3

Т а б л и ц а 29 — Синтаксис HARMbasicParaESCA ()

Синтаксис Количество битов Мнемоника

HARMbasicParaESCA ()

{
i f (phaseFlag &&! harmContFlag) {

numHarmPhase;

}
else {

numHarmPhase = 0;

}
for (i = 0; i <numHarmPhase; i ++) {

6 uimsbf

harmPhase [i];

harmPhaseAvail [i] = 1;

}

phasebits uimsbf

11

ГОСТ Р 53556.7— 2013

Окончание таблицы 29

Синтаксис Количество битов Мнемоника

for (i = numHarmPhase; i <numHarmLine; i ++) {

harmPhaseAvail [i] = 0;

}

}

Т а б л и ц а 30 — numHarmParaTable

/ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

numHarmParaTable [i] 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25

Т а б л и ц а 31 — numHarmLineTable

/ 0 1 2 3 4 5 6 7

numHarmLineTable [i] 3 4 5 6 7 8 9 10

i 8 9 10 11 12 13 14 15

numHarmLineTable [i] 12 14 16 19 22 25 29 33

i 16 17 18 19 20 21 22 23

numHarmLineTable [i] 38 43 49 56 64 73 83 94

i 24 25 26 27 28 29 30 31

numHarmLineTable [i] 107 121 137 155 175 197 222 250

Т а б л и ц а 32 — Синтаксис NOISEbasicParaESCO ()

Синтаксис Количество битов Мнемоника

NOISEbasicParaESCO ()

{
prevNoiseAmplIndex = noiseAmplIndex;

noiseContFlag; 1 uimsbf

noiseEnvFlag;

i f (I noiseContFlag) {

1 uimsbf

noiseAmpIRel;

noiseAmplIndex = maxAmplIndex + noiseAmpIRel;

}

}

6 uimsbf

Т а б л и ц а 33 — Синтаксис NOISEbasicParaESC/\ ()

Синтаксис Количество битов Мнемоника

NOISEbasi cParaE S C1 ()

{
i f (noiseContFlag) {

contNoiseAmpi;

noiseAmplIndex = prevNoiseAmplIndex +

contNoiseAmpi;

}

3.. 8 DIA

12

ГОСТ Р 53556.7— 2013

Окончание таблицы 33

Синтаксис Количество битов Мнемоника

numNoiseParalndex;

numNoisePara = numNoiseParaTable [numNoiseParalndex];

for (i = 0; / <min (2, numNoisePara); i ++) {

4 uimsbf

noiseLAR [i];

}

}

2.. 17 LARm

Т а б л и ц а 34 — Синтаксис NOISEbasicParaESC3 ()

Синтаксис Количество битов Мнемоника

NOISEbasicParaESC3 ()

{
for (i = 2; / <numNoisePara; i ++) {

noiseLAR [i];

}

}

1.. 18 LARN2

Т а б л и ц а 35 — Синтаксис NOISEbasicParaESC4 ()

Синтаксис Количество битов Мнемоника

NOISEbasicParaESC4 ()

{
i f (noiseEnvFlag) {

noiseEnvTmax; tmbits uimsbf

noiseEnvRatk; atkbits uimsbf

noiseEnvRdec;

}

}

decbits uimsbf

Т а б л и ц а 36 — numNoiseParaTable

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

numNoiseParaTable [i] 1 2 3 4 5 6 7 9 11 13 15 17 19 21 23 25

Т а б л и ц а 37 — Синтаксис INDIbasicParaESC 1 ()

Синтаксис Количество битов Мнемоника

INDIbasicParaESC'] ()

{
for (k = 0; k <prevNumLine; k ++) {

prevLineContFlag [k];

}
/ = 0;

for (k = 0; k <prevNumLine; k ++) {

i f (prevLineContFlag [k]) {

1 uimsbf

13

ГОСТ Р 53556.7—2013

Окончание таблицы 37

Синтаксис Количество битов Мнемоника

linePred [i] = k;

lineContFlag [i ++] = 1;

}

}
while (i <numLine) {

lineContFlag [i ++] = 0;

}

}

Т а б л и ц а 38 — Синтаксис INDIbasicParaESC2 ()

Синтаксис Количество битов Мнемоника

INDIbasicParaESC2()

{
lastNLFreq = 0;

for (i = 0; / <prevNumLine; i ++) {

prevILFreqlndex [i] = ILFreqlndex [i];

prevILAm pi Index [i] = ILAmplIndex [i];

}
for (i = 0; / <numLine; i ++) {

if(envFlag) {

UneEnvFlag [i];

}

1 uimsbf

}
for (i = 0; i <numLine; i ++) {

i f (I lineContFlag [i]) {

i f (numLine-1-i <7) {

ILFreqlnc [i];

/* SDCdecode (maxFindexIastNLFreq, У

/* sdcILFTable [numLine-1-i]) У

}
else {

0.. 14 SDC

ILFreqlnc [i];

/* SDCdecode (maxFindexIastNLFreq, У

/* sdcILFTable [7]) У

}
ILFreqlndex [i] = lastNLFreq + ILFreqlnc [i];

lastNLFreq = ILFreqlndex [i];

если (HILNquantMode) {

0.. 14 SDC

ILAmpIRel [i];

Г SDCdecode (50, sdcILATable) У

ILAmplIndex [i] = maxAmplIndex + ILAmpIRel [i];

4.. 10 SDC

14

ГОСТ Р 53556.7— 2013

Окончание таблицы 38

Синтаксис Количество битов Мнемоника

}
else {

ILAmpIRel [i];

/* SDCdecode (25, sdcILATable) 7

ILAmplIndex [i] = maxAmplIndex +

2*ILAmplRel [i];

}

}

}

}

3.. 9 SDC

Т а б л и ц а 39 — Синтаксис INDIbasicParaESC3 ()

Синтаксис Количество битов Мнемоника

INDIbasicParaESC3 ()

{
for (i = 0; i <numLine; i ++) {

if (UneContFlag [i]) {

DILFreq [i];

ILFreqlndex [i] = prevILFreqlndex [linePred [i]] +

DILFreq [i];

2.. 10 DIF

DILAmpI />7;

ILAmplIndex [i] = prevILAmplIndex [linePred [i]] +

3.. 8 DIA

DILAmpI Щ;

}

}

}

Т а б л и ц а 40 — Синтаксис INDIbasicParaESC4 ()

Синтаксис Количество битов Мнемоника

INDIbasicParaESCA ()

{

if (phaseFlag) {

numLinePhase;

}
else {

numLinePhase = 0;

}

j = 0;

for (i = 0; i <numLine; i ++) {

if (! linePred [i] && j <numLinePhase) {

linebits uimsbf

15

ГОСТ Р 53556.7— 2013

Окончание таблицы 40

Синтаксис Количество битов Мнемоника

linePhase [i];

UnePhaseAvail [i] = 1;

i ++;

}
else {

UnePhaseAvail [i] = 0;

}

}

}

phasebits uimsbf

Т а б л и ц а 41 — Синтаксис HILNenexFrame ()

Синтаксис Количество битов Мнемоника

HILNenexFrame ()

{

HILNenhaLayer value in в ParametricSpecificConfig () V

/* thisElementary Stream must be used here! */

i f (HILNenhaLayer) {

HILNenhaFrame ();

}

else {

numLayer ++;

HILNextFrame (numLayer);

}

}

Т а б л и ц а 42 — Синтаксис HILNenhaFrame ()

Синтаксис Количество битов Мнемоника

HILNenhaFrame ()

{

if(envFlag) {

envTmaxEnha; tmEnhbits uimsbf

envRatkEnha; atkEnhbits uimsbf

envRdecEnha; decEnhbits uimsbf

}

if (harmFlag) {

HARMenhaPara ();

}

INDIenhaPara ();

}

16

ГОСТ Р 53556.7— 2013

Т а б л и ц а 43 — Синтаксис HARMenhaPara ()

Синтаксис Количество битов Мнемоника

HARMenhaPara ()

{
for (i = 0; i <min (numHarmLine, 10); i ++) {

harmFreqEnha [i];

harmPhase [i];

}

}

fEnhbits [i]

phasebits

uimsbf

uimsbf

Т а б л и ц а 44 — Синтаксис INDIenhaPara ()

Синтаксис Количество битов Мнемоника

INDIenhaPara ()

{
for (i = 0; i <numLine; i ++) {

lineFreqEnha [i];

linePhase [i];

}

}

fEnhbits [i]

phasebits

uimsbf

uimsbf

Т а б л и ц а 45 — Синтаксис HILNextFrame ()

Синтаксис Количество битов Мнемоника

HILNextFrame (numLayer)

{

layPrevNumLine [numLayer] = layNumLine [numLayer];

/* layPrevNumLine [numLayer] = 0 for the У

/* first bitstream frame У

addNumLine [numLayer]; linebits uimsbf

if (phaseFlag) {

layNumLinePhase [numLayer];

}

layNumLine [numLayer] = layNumLine [numLayer-1] +

addNumLine [numLayer];

for (к = 0; к LayPrevNumLine [numLayer-1]; к ++) {

i f (layPrevLineContFlag [numLayer-1] [k]) {

layPrevLineContFlag [numLayer] [k] = 1;

}

else {

linebits uimsbf

layPrevLineContFlag [numLayer] [k];

}

}

1 uimsbf

17

ГОСТ Р 53556.7—2013

Окончание таблицы 45

Синтаксис Количество битов Мнемоника

for (k = layPrevNumLine [numLayer-1];

к <layPrevNumLine [numLayer]; к ++) {

layPrevLineContFlag [numLayer] [к];

}
/ = layNumLine [numLayer-1];

for (к = 0; к <layPrevNumLine [numLayer-1]; к ++) {

i f (! layPrevLineContFlag [numLayer-1] [k] &&

layPrevLineContFlag [numLayer] [k]) {

linePred [i] = k;

lineContFlag [i ++] = 1

}

}
for (k = layPrevNumLine [numLayer-1];

к LayPrevNumLine [numLayer]; к ++) {

i f (layPrevLineContFlag [numLayer] [k]) {

linePred [i] = k;

lineContFlag [i ++] = 1;

}

}
while (i LayNumLine [numLayer]) {

lineContFlag [i ++] = 0;

}
INDlextPara (numLayer);

i f (phaseFlag) {

INDlextPhasePara (numLayer);

}

}

1 uimsbf

Т а б л и ц а 46 — Синтаксис INDlextPara ()

Синтаксис Количество битов Мнемоника

INDlextPara (numLayer)

{
lastNLFreq = 0;

for (i = layPrevNumLine [numLayer-1];

i LayPrevNumLine [numLayer]; i ++) {

prevILFreqlndex [i] = ILFreqlndex [i];

prevILAm pi Index [i] = ILAmplIndex [i];

}
for (i = layNumLine [numLayer-1];

i LayNumLine [numLayer]; i ++) {

if(envFlag) {

18

ГОСТ Р 53556.7—2013

Окончание таблицы 46

Синтаксис Количество битов Мнемоника

lineEnvFlag [i];

}
i f (lineContFlag [i]) {

1 uimsbf

DILFreq [i];

ILFreqlndex [i] = prevILFreqlndex [linePred [i]] + DILFreq [i];

2.. 10 DIF

DILAmpI [i];

ILAmplIndex [i] = prevILAmpllridex [linePred [i]] +

DILAmpI [i];

}
else {

3.. 8 DIA

if (layNumLine [numLayer] - 1-i <7) {

ILFreqlnc [i];

/* SDCdecode (maxFindexIastNLFreq, */

/* sdcILFTable [layNumLine [numLayer] -14]) */

}
else {

0.. 14 SDC

ILFreqlnc [i];

/* SDCdecode (maxFindexIastNLFreq, У

/* sdcILFTable [7]) У

}
ILFreqlndex [i]= lastNLFreq + ILFreqlnc i];

0.. 14 SDC

lastNLFreq = ILFreqlndex [i];

i f (HILNquantMode) {

ILAmpIRel [i];

Г SDCdecode (50, sdcILATable) У

ILAmplIndex [i] = maxAmplIndex + ILAmpIRel [i];

}
else {

4.. 10 SDC

ILAmpIRel [i];

Г SDCdecode (25, sdcILATable) У

ILAmplIndex [i] = maxAmplIndex + 2*ILAmplRel [i];

3.. 9 SDC

}

}

}

}

Т а б л и ц а 47 — Синтаксис INDlextPhasePara ()

Синтаксис Количество битов Мнемоника

INDIextPhasePara(numLayer)

{

j = 0;

19

ГОСТ Р 53556.7— 2013

Окончание таблицы 47

Синтаксис Количество битов Мнемоника

for (i = layNumLine[numLayer-1]; i < layNumLine[numLayer];

i++) {

if (! linePred[i] && j < layNumLinePhase[numLayer]) {

linePhase[i];

HnePhaseAvail[i] = 1;

j++;

}
else {

HnePhaseAvail[i] = 0;

}

}

}

phasebits uimsbf

3.2.3 Сборники кодов HILN

Т а б л и ц а 48 — Код LARH1 (harmLAR [0.. 1])

Кодовая комбинация harmLAR Щ Кодовая комбинация harmLAR [i]

1000000000000000100 -6,350 0100 0,050

1000000000000000101 -6,250 0101 0,150

1000000000000000110 -6,150 0110 0,250

1000000000000000111 -6,050 0111 0,350

100000000000000100 -5,950 00100 0,450

100000000000000101 -5,850 00101 0,550

100000000000000110 -5,750 00110 0,650

100000000000000111 -5,650 00111 0,750

10000000000000100 -5,550 000100 0,850

10000000000000101 -5,450 000101 0,950

10000000000000110 -5,350 000110 1,050

10000000000000111 -5,250 000111 1,150

1000000000000100 -5,150 0000100 1,250

1000000000000101 -5,050 0000101 1,350

1000000000000110 -4,950 0000110 1,450

1000000000000111 -4,850 0000111 1,550

100000000000100 -4,750 00000100 1,650

100000000000101 -4,650 00000101 1,750

100000000000110 -4,550 00000110 1,850

100000000000111 -4,450 00000111 1,950

10000000000100 -4,350 000000100 2,050

10000000000101 -4,250 000000101 2,150

10000000000110 -4,150 000000110 2,250

10000000000111 -4,050 000000111 2,350

20

ГОСТ Р 53556.7— 2013

Окончание таблицы 48

Кодовая комбинация harmLAR [i] Кодовая комбинация harmLAR [i]

1000000000100 -3,950 0000000100 2,450

1000000000101 -3,850 0000000101 2,550

1000000000110 -3,750 0000000110 2,650

1000000000111 -3,650 0000000111 2,750

100000000100 -3,550 00000000100 2,850

100000000101 -3,450 00000000101 2,950

100000000110 -3,350 00000000110 3,050

100000000111 -3,250 00000000111 3,150

10000000100 -3,150 000000000100 3,250

10000000101 -3,050 000000000101 3,350

10000000110 -2,950 000000000110 3,450

10000000111 -2,850 000000000111 3,550

1000000100 -2,750 0000000000100 3,650

1000000101 -2,650 0000000000101 3,750

1000000110 -2,550 0000000000110 3,850

1000000111 -2,450 0000000000111 3,950

100000100 -2,350 00000000000100 4,050

100000101 -2,250 00000000000101 4,150

100000110 -2,150 00000000000110 4,250

100000111 -2,050 00000000000111 4,350

10000100 -1,950 000000000000100 4,450

10000101 -1,850 000000000000101 4,550

10000110 -1,750 000000000000110 4,650

10000111 -1,650 000000000000111 4,750

1000100 -1,550 0000000000000100 4,850

1000101 -1,450 0000000000000101 4,950

1000110 -1,350 0000000000000110 5,050

1000111 -1,250 0000000000000111 5,150

100100 -1,150 00000000000000100 5,250

100101 -1,050 00000000000000101 5,350

100110 -0,950 00000000000000110 5,450

100111 -0,850 00000000000000111 5,550

10100 -0,750 000000000000000100 5,650

10101 -0,650 000000000000000101 5,750

10110 -0,550 000000000000000110 5,850

10111 -0,450 000000000000000111 5,950

1100 -0,350 0000000000000000100 6,050

1101 -0,250 0000000000000000101 6,150

1110 -0,150 0000000000000000110 6,250

1111 -0,050 0000000000000000111 6,350

21

ГОСТ Р 53556.7— 2013

Т а б л и ц а 49 — Код LARH2 (harmLAR [2.. 6])

Кодовая комбинация harmLAR[.J Кодовая комбинация harmLAR[.J

100000000000000010 -4,725 010 0,075

100000000000000011 -4,575 011 0,225

10000000000000010 -4,425 0010 0,375

10000000000000011 -4,275 0011 0,525

1000000000000010 -4,125 00010 0,675

1000000000000011 -3,975 00011 0,825

100000000000010 -3,825 000010 0,975

100000000000011 -3,675 000011 1,125

10000000000010 -3,525 0000010 1,275

10000000000011 -3,375 0000011 1,425

1000000000010 -3,225 00000010 1,575

1000000000011 -3,075 00000011 1,725

100000000010 -2,925 000000010 1,875

100000000011 -2,775 000000011 2,025

10000000010 -2,625 0000000010 2,175

10000000011 -2,475 0000000011 2,325

1000000010 -2,325 00000000010 2,475

1000000011 -2,175 00000000011 2,625

100000010 -2,025 000000000010 2,775

100000011 -1,875 000000000011 2,925

10000010 -1,725 0000000000010 3,075

10000011 -1,575 0000000000011 3,225

1000010 -1,425 00000000000010 3,375

1000011 -1,275 00000000000011 3,525

100010 -1,125 000000000000010 3,675

100011 -0,975 000000000000011 3,825

10010 -0,825 0000000000000010 3,975

10011 -0,675 0000000000000011 4,125

1010 -0,525 00000000000000010 4,275

1011 -0,375 00000000000000011 4,425

110 -0,225 000000000000000010 4,575

111 -0,075 000000000000000011 4,725

Т а б л и ц а 50 — Код LARH3 (harmLAR [7.. 24])

Кодовая комбинация harmLAR[.J Кодовая комбинация harmLAR[.J

10000000000000001 -2,325 01 0,075

1000000000000001 -2,175 001 0,225

100000000000001 -2,025 0001 0,375

10000000000001 -1,875 00001 0,525

1000000000001 -1,725 000001 0,675

100000000001 -1,575 0000001 0,825

22

ГОСТ Р 53556.7— 2013

Окончание таблицы 50

Кодовая комбинация harmLAR[.J Кодовая комбинация harmLAR[.J

10000000001 -1,425 00000001 0,975

1000000001 -1,275 000000001 1,125

100000001 -1,125 0000000001 1,275

10000001 -0,975 00000000001 1,425

1000001 -0,825 000000000001 1,575

100001 -0,675 0000000000001 1,725

10001 -0,525 00000000000001 1,875

1001 -0,375 000000000000001 2,025

101 -0,225 0000000000000001 2,175

11 -0,075 00000000000000001 2,325

Т а б л и ц а 51 — Код LARN1 (noiseLAR [0,1])

Кодовая комбинация noiseLAR[.] Кодовая комбинация noiseLAR[.]

10000000000000001 -4,65 01 0,15

1000000000000001 -4,35 001 0,45

100000000000001 -4,05 0001 0,75

10000000000001 -3,75 00001 1,05

1000000000001 -3,45 000001 1,35

100000000001 -3,15 0000001 1,65

10000000001 -2,85 00000001 1,95

1000000001 -2,55 000000001 2,25

100000001 -2,25 0000000001 2,55

10000001 -1,95 00000000001 2,85

1000001 -1,65 000000000001 3,15

100001 -1,35 0000000000001 3,45

10001 -1,05 00000000000001 3,75

1001 -0,75 000000000000001 4,05

101 -0,45 0000000000000001 4,35

11 -0,15 00000000000000001 4,65

Т а б л и ц а 52 — Код LARN2 (noiseLAR [2.. 24])

Кодовая комбинация noiseLAR[.] Кодовая комбинация noiseLAR[.]

110000000000000001 -6,35 101 0,35

11000000000000001 -5,95 1001 0,75

1100000000000001 -5,55 10001 1,15

110000000000001 -5,15 100001 1,55

11000000000001 -4,75 1000001 1,95

1100000000001 -4,35 10000001 2,35

110000000001 -3,95 100000001 2,75

11000000001 -3,55 1000000001 3,15

1100000001 -3,15 10000000001 3,55

23

ГОСТ Р 53556.7— 2013

Окончание таблицы 52

Кодовая комбинация noise LAR[.] Кодовая комбинация noiseLAR[.]

110000001 -2,75 100000000001 3,95

11000001 -2,35 1000000000001 4,35

1100001 -1,95 10000000000001 4,75

110001 -1,55 100000000000001 5,15

11001 -1,15 1000000000000001 5,55

1101 -0,75 10000000000000001 5,95

111 -0,35 100000000000000001 6,35

0 0,00

Т а б л и ц а 53 — Код DIA

Кодовая комбинация Значение Кодовая комбинация Значение

111 1 1111 -25 001 1

111 1 1110 -24 011 0 2

111 1 1101 -23 100 0 3

1111 хххх -у 101 0 0 4

111 1 0001 -11 101 0 1 5

111 1 0000 -10 110 0 00 6

110 1 11 -9 110 0 01 7

110 1 10 -8 110 0 10 8

110 1 01 -7 110 0 11 9

110 1 00 -6 111 0 0000 10

101 1 1 -5 111 0 0001 11

101 1 0 -4 1110 хххх У
100 1 -3 111 0 1101 23

011 1 -2 111 0 1110 24

010 -1 111 0 1111 25

000 0

Т а б л и ц а 54 — Код DIF

Кодовая комбинация Значение Кодовая комбинация Значение

11 11 1 11111 -42 01 0 1

11 11 1 11110 -41 10 0 0 2

11 11 1 11101 -40 10 0 1 3

11111 ххххх -у 11 00 0 4

11 11 1 00001 -12 11 01 0 0 5

11 11 1 00000 -11 11 01 0 1 6

11 10 1 11 -10 11 10 0 00 7

11 10 1 10 -9 11 10 0 01 8

11 10 1 01 -8 11 10 010 9

11 10 1 00 -7 11 10 0 11 10

11 01 1 1 -6 11 11 0 00000 11

24

ГОСТ Р 53556.7—2013

Окончание таблицы 54

Кодовая комбинация Значение Кодовая комбинация Значение

11 01 1 0 -5 11 11 0 00001 12

11 00 1 -4 11110 ххххх У
10 1 1 -3 11 11 0 11101 40

10 1 0 -2 11 11 0 11110 41

01 1 -1 11 11 0 11111 42

00 0

Т а б л и ц а 55 — Код DHF

Кодовая комбинация Значение Кодовая комбинация Значение

11 1 111111 -69 01 0 1

11 1 111110 -68 10 0 00 2

11 1 111101 -67 10 0 01 3

11 1 хххххх -у 10 0 10 4

11 1 000001 -7 10 0 11 5

11 1 000000 -6 11 0 000000 6

10 1 11 -5 11 0 000001 7

10 1 10 -4 11 0 хххххх У
10 1 01 -3 11 0 111101 67

10 1 00 -2 11 0 111110 68

01 1 -1 11 0 111111 69

00 0

Т а б л и ц а 56 — Код HFS

Кодовая комбинация Значение Кодовая комбинация Значение

1 1 1 1111 -17 1 0 0 1

1 1 1 1110 -16 1 0 1 0000 2

1 1 1 1101 -15 1 0 1 0001 3

1 1 1 хххх -у 1 0 1 хххх У
1 1 1 0001 -3 1 0 1 1101 15

1 1 1 0000 -2 1 0 1 1110 16

1 1 0 -1 1 0 1 1111 17

0 0

П р и м е ч а н и я к таблицам 53— 56 — Группировка битов в пределах кодовой комбинации (на­
пример, “1 1 1 1111”) обеспечивается только для лучшей удобочитаемости. Кодовые комбинации, не
перечисленные явно в сборниках кодов (например, “1 1 1 хххх”), определяются постепенным увели­
чением неявной части кодовой комбинации “хххх” (uimsbf) и величины “у” соответствующего значения.
Во всех случаях кодовые комбинации и значения для двух самых маленьких и трех самых больших
величин перечисляются явно.

3.2.4 HILN SubDivisionCode (SDC)
Код SubDivisionCode (SDC) является алгоритмически сгенерированным кодом изменяемой дли­

ны, основанным на данной таблице и данном числе различных кодовых комбинаций.
25

ГОСТ Р 53556.7—2013

Идея этой схемы кодирования заключается в разделении функции плотности вероятности на две
части, которые представляют равную вероятность. Один бит передается, чтобы определять располо­
жение части, значение которой будет кодировано. Это разделение повторяется, пока ширина части не
единица, и затем ее позиция равна позиции кодируемого значения. Позиции границ извлекаются из
таблицы 32 квантованных значений с фиксированной точкой. Помимо этой таблицы (параметр «tab»)
также необходимо число различных кодовых комбинаций (параметр “к’).

Следующая функция С SDCDecode (к, tab) вместе с этими 9 таблицами sdcILATable [32] и
sdcILFTable [8] [32] описывает декодирование. Функция GetBit () возвращает следующий бит в потоке.

int sdcILATable [32] = {
0, 13, 27,41,54, 68, 82,96, 110, 124, 138, 152, 166, 180, 195,210,225,240, 255, 271,288, 305, 323,
342,361,383, 406, 431,460, 494, 538, 602

};
int sdcILFTable [8] [32] = {

{ 0, 53, 87, 118, 150, 181,212, 243, 275, 306, 337, 368, 399, 431,462, 493, 524, 555, 587, 618, 649,
680, 711, 743, 774, 805, 836, 867, 899, 930, 961,992},

{ 0, 34, 53, 71, 89, 106, 123, 141, 159, 177, 195, 214, 234, 254, 274, 296, 317, 340, 363, 387, 412,
438, 465, 494, 524, 556, 591,629, 670, 718, 774, 847},

{ 0, 26, 41,54, 66, 78, 91,103, 116, 128, 142, 155, 169, 184, 199, 214, 231,247, 265, 284, 303, 324,
346, 369, 394, 422, 452, 485, 524, 570, 627, 709},

{ 0, 23, 35, 45, 55, 65, 75, 85, 96, 106, 117, 128, 139, 151, 164, 177, 190, 204, 219, 235, 252, 270,
290, 311,334, 360, 389, 422, 461,508, 571,665},

{ 0, 20, 30, 39, 48, 56, 64, 73, 81,90, 99, 108, 118, 127, 138, 149, 160, 172, 185, 198, 213, 228, 245,
263, 284, 306, 332, 362, 398, 444, 507, 608},

{ 0, 18, 27, 35, 43, 50, 57, 65, 72, 79, 87, 95, 104, 112, 121,131, 141, 151, 162, 174, 187, 201,216,
233, 251,272, 296, 324, 357, 401,460, 558},

{ 0, 16, 24, 31,38, 45, 51,57, 64, 70, 77, 84, 91,99,107,115,123,132, 142, 152, 163, 175, 188, 203,
219, 237, 257, 282, 311, 349, 403, 493},

{ 0, 12, 19, 25, 30, 35, 41, 46, 51, 56, 62, 67, 73, 79, 85, 92, 99, 106, 114, 122, 132, 142, 153, 165,
179, 195, 213, 236, 264, 301,355, 452}

};
int SDCDecode (int к, int * tab)
{

{int *pp;
int g, dp, min, max;
min = 0;
max = k-1;
pp = tab+16;
dp = 16;
while (min ! = max);
{

If (dp) g = (k * (* pp)) > > 10 ; else g = (max +min) » 1 ;
dp » = 1;
if (GetBitQ = = 0) { pp - = dp; max = g;} else {pp+ = dp;min = g + '\;}

}
return max;

4 С ем антика потока битов

4.1 Конфигурация декодера (ParametricSpecificConfig)

Элементы потока битов:
isBaseLayer Одноразрядный идентификатор, представляющий, является ли соответствующий уро­

вень базовым уровнем (1) или уровнем улучшения или расширения (0).

26

ГОСТ Р 53556.7—2013

4.1.1 Конфигурация параметрического декодера аудио
Элементы потока битов:

PARAmode 2-битовое поле, указывающее режим работы параметрического кодера

PARAextensionFlag Флаг, указывающий на присутствие данных MPEG 4 версии 3 (для будущего использо­
вания).

4.1.2 Конфигурация декодера HILN
Элементы потока битов:

HILNquantMode 1-битовое поле, указывающее на режим квантователя с отдельной линией

HILNmaxNumLine 8-битовое поле, указывающее максимальное количество отдельных линий в фрейме
потока битов. Это также определяет размер поля linebits.

HILNsampleRateCode 4-битовое поле, указывающее частоту дискретизации, используемую для декодирова­
ния параметра HILN.

HILNframeLength 12-битовое поле, указывающее длину фрейма HILN, в выборках при частоте дискрети­
зации, указанной HILNsampleRateCode.

HILNcontMode 2-битовое поле, указывающее режим продолжения дополнительной линии декодера.

HILNenhaLayer Флаг, указывающий, содержит ли этот поток Elementaru Stream уровень улучшения или
уровень расширения.

HILNenhaQuantMode 2-битовое поле, указывающее режим квантователя с улучшением частоты.

4.2 Фрейм потока битов (slPacketPayload)

4.2.1 Фрейм параметрического потока битов аудио
Элементы потока битов:

PARAswitchMode Флаг, указывающий, какой инструмент кодирования используется в текущем фрейме

PARAmixMode

потока битов с переключением HVXC/HILN.

2-битовое поле, указывающее, какие инструменты кодирования используются в теку­
щем фрейме потока битов со смешиванием HVXC/HILN.

4.2.2 Фрейм потока битов HILN
Элементы потока битов:

numLine Поле, указывающее число отдельных линий в текущем фрейме.

harmFlag

noiseFlag

Флаг, указывающий на присутствие данных гармонических линий в текущем фрейме.

Флаг, указывающий на присутствие данных шумовых компонентов в текущем фрей­
ме.

phaseFlag

numLinePhase

Флаг, указывающий на присутствие данных фазы начала линии в текущем фрейме.

Поле, указывающее число отдельных линий с фазой запуска в текущем фрейме.

maxAmpHndexCoded Поле, указывающее максимальную амплитуду нового компонента сигнала в текущем
фрейме.

envFlag

envTmax

Флаг, указывающий на присутствие данных огибающей в текущем фрейме.

Кодированный параметр огибающей: время максимума.

envRatk Кодированный параметр огибающей: скорость атаки.

envRdec Кодированный параметр огибающей: скорость затухания.

prevLineContFlag [k] Флаг, указывающий, что k-я отдельная линия предыдущего фрейма продолжается в
текущем фрейме.

numHarmParalndex Поле, указывающее на число параметров LPC гармонических линий в текущем
фрейме.

numHarmLirielndex Поле, указывающее на число гармонических линий в текущем фрейме.

harmContFlag Флаг, указывающий, что гармонические линии продолжаются из предыдущего фрей­
ма.

27

ГОСТ Р 53556.7—2013

numHarmPhase

harmEnvFlag

contHarmAmpI

contHarmFreq

harmAmpIRel

harmFreqlndex

harmFreqStretch

harmLAR [i]

harmPhase [i]

numNoiseParalndex

noiseContFlag

noiseEnvFlag

contNoiseArnpl

noiseAmpIRel

noiseEnvTmax

noiseEnvRatk

noiseEnvRdec

noiseLAR [i]

UneEnvFlag [i]

DILFreq [i]

DILAmpI [i]

ILFreqlnc [i]

ILAmpIRel [i]

linePhase [i]

envTmaxEnha

envRatkEnha

envRdecEnha

harmFreqEnha [i]

lineFreqEnha [i]

addNumLine [i]

layNumLinePhase [i]

layPrevLineContFlag [i] [k]

Поле, указывающее число гармонических линий с фазой старта в текущем фрейме.

Флаг, указывающий, что к гармоническим линиям применяется огибающая амплиту­
ды.

Кодированное изменение амплитуды гармонических линий.

Кодированное изменение основной частоты гармонических линий.

Кодированная относительная амплитуда гармонических линий.

Кодированная основная частота гармонических линий.

Кодированный параметр растяжения частоты гармонических линий.

Кодированные параметры LAR LPC гармонических линий.

Кодированная фаза /-й гармонической линии.

Поле, указывающее на число шумовых параметров LPC в текущем фрейме.

Флаг, указывающий, что шум продолжается из предыдущего фрейма.

Флаг, указывающий, что данные огибающей шума присутствуют в текущем фрейме.

Кодированное изменение амплитуды шума.

Кодированная относительная амплитуда шума.

Кодированный параметр огибающей шума: время максимума

Кодированный параметр огибающей шума: темп нарастания.

Кодированный параметр огибающей шума: темп спада.

Кодированные параметры LAR LPC шума.

Флаг, указывающий, что огибающая амплитуды применяется к/'-й отдельной линии.

Кодированное изменение частоты /-й отдельной линии.

Кодированное изменение амплитуды /'-й отдельной линии.

Кодированный инкремент частоты /-й отдельной линии.

Кодированная относительная амплитуда /-й отдельной линии.

Кодированная фаза /-й отдельной линии.

Кодированный параметр улучшения огибающей: время максимума.

Кодированный параметр улучшения огибающей: темп нарастания.

Кодированный параметр улучшения огибающей: темп затухания.

Кодированное улучшение частоты линии /'-й гармоники.

Кодированное улучшение частоты /'-й отдельной линии.

Поле, указывающее число отдельных линий в уровне расширения / текущего фрейма.

Поле, указывающее число отдельных линий с фазой старта в уровне расширения /'
текущего фрейма.

Флаг, указывающий, что к-я отдельная линия предыдущего фрейма продолжается в
уровне расширения / текущего фрейма.

Элементы справки:
numLayer

layNumLine [i]

prevNumLine

layPrevNumLine [i]

maxAmplIndex

linePred [i]

Число доступных уровней расширения (0, если доступен только базовый уровень).

Общее количество отдельных линий в текущем фрейме, которые переданы в базовом
уровне и первых / уровнях расширения.

Число отдельных линий в предыдущем фрейме.

Общее количество отдельных линий в предыдущем фрейме, переданных в базовом
уровне и первых / уровнях расширения.

Максимальная амплитуда нового компонента сигнала в текущем фрейме.

Индекс предшествующего элемента в предыдущем фрейме для /-й отдельной линии
в текущем фрейме.

28

ГОСТ Р 53556.7—2013

UneContFlag [i]

numHarmPara

numHarmLine

harmAmpHndex

harmFreqlndex

prevHarmAmplIndex

prevHarmFreqlndex

harm Phase Avail [i]

numNoisePara

noiseAmpllridex

prevNoiseAmpUndex

lastNLFreq

ILFreqlndex [i]

ILAmplIndex [i]

prevILFreqlndex [i]

prevILAmpllridex [i]

linePhaseAvail [i]

linebits

tmbits

atkbits

decbits

tmEnhbits

atkEnhbits

decEnhbits

fEnhbits [i]

phasebits

Флаг, указывающий, что линия i в текущем фрейме продолжается из предыдущего
фрейма.

Число параметров LPC гармонической линии в текущем фрейме.

Число гармонических линий в текущем фрейме.

Индекс амплитуды гармонических линий в текущем фрейме.

Индекс основной частоты гармонических линий в текущем фрейме.

Индекс амплитуды гармонических линий в предыдущем фрейме.

Индекс основной частоты гармонических линий в предыдущем фрейме.

Флаг, указывающий, что доступна информация о стартовой фазе для /-й гармониче­
ской линии.

Число параметров LPC шума в текущем фрейме.

Индекс амплитуды шума в текущем фрейме.

Индекс амплитуды шума в предыдущем фрейме.

Аккумулятор инкремента частоты отдельной линии.

Индекс частоты /-й отдельной линии в текущем фрейме.

Индекс амплитуды /-й отдельной линии в текущем фрейме.

Индекс частоты /-й отдельной линии в предыдущем фрейме.

Индекс амплитуды /-й отдельной линии в предыдущем фрейме.

Флаг, указывающий, что доступна информация о стартовой фазе для /-й отдельной линии.

Число битов для numLine.

Число битов для envTmax.

Число битов для encRatk.

Число битов для envRdec.

Число битов для envTmaxEnha.

Число битов для encRatkEnha.

Число битов для envRdecEnha.

Число битов для lineFreqEnha [i] и harmFreqEnha [i]

Число битов для tinePhase и harmPhase.

5 Инструменты параметрического декодера

5.1 Инструменты декодера HILN

Декодер гармонических и отдельных линий и шум (HILN) используют ряд параметров, которые
кодируются в потоке битов, чтобы описать аудиосигнал.

Поддерживаются три различных модели сигнала (таблица 57).

Т а б л и ц а 57 — Модели сигнала HILN

Модель сигнала Описание Существенные параметры

Гармонические линии Группа синусоидальных сигналов с общей
основной частотой

Основная частота и амплитуды линий
спектра

Отдельные линии Синусоидальные сигналы Частота и амплитуда отдельных линий
спектра

Шум Шумовой сигнал спектральной формы Форма спектра и энергия шума

Декодер HILN сначала восстанавливает эти параметры из потока битов с помощью ряда инстру­
ментов декодирования, а затем синтезирует аудиосигнал на базе этих параметров, используя ряд ин­
струментов синтезатора:

29

ГОСТ Р 53556.7—2013

декодер гармонической линии;
декодер отдельной линии;
декодер шума;
синтезатор гармонических и отдельных линий;
синтезатор шума.
Инструменты декодера HILN восстанавливают из потока битов параметры гармонических и отдель­

ных линий (частота, амплитуда) и шум (форма спектра), а также возможные параметры огибающей.
Инструменты синтезатора HILN воссоздают один фрейм аудиосигнала, основываясь на параме­

трах, декодированных инструментами декодера HILN для текущего фрейма потока битов.
Выборки декодируемого аудиосигнала имеют полномасштабный диапазон [-32768, 32767], и воз­

можные выбросы должны быть ограничены до этих значений.
Декодер HILN поддерживает широкий диапазон длин фрейма и частот дискретизации. Масштаби­

руя длину фрейма синтезатора с произвольным коэффициентом, в декодере достигается доступность
функциональности с изменением скорости. Масштабируя частоты линий и передискретизируя шумовой
сигнал с произвольным коэффициентом, в декодере обеспечивается доступность функциональности
изменения шага.

Декодер HILN может работать в двух различных режимах, как основной декодер и как улучшен­
ный декодер. Основной декодер, который используется для нормальной работы, только оценивает ин­
формацию, доступную в элементах потока битов HILNbasicFrame (), чтобы восстановить аудиосигнал.
Чтобы позволить большую масштабируемость шага в комбинации с другими инструментами кодера,
должны быть переданы дополнительные элементы потока битов HILNenhaFrame (), и декодер HILN
должен работать в расширенном режиме, который использует информацию как HILNbasicFrame (), так
и HILNenhaFrame (). Этот режим восстанавливает аудиосигнал с четко определенными фазовыми соот­
ношениями, который может быть объединен с остаточным сигналом, кодированным при более высоких
скоростях передачи, используя кодер улучшения. Если декодер HILN используется таким образом в
качестве ядра для масштабируемого кодера, никакой шумовой сигнал не должен быть синтезирован
для сигнала, который подается декодеру улучшения.

В силу представления параметрического сигнала, используемого параметрическим кодером HILN,
это хорошо подходит для приложений, требующих кодирование с масштабируемой скоростью переда­
чи. Кодирование HILN с масштабируемой скоростью передачи выполняется путем добавления к дан­
ным, закодированным в HILNbasicFrame () основного потока битов, данных, закодированных в одном
или более HILNextFrame () одного или нескольких потоков битов расширения, переданных, как допол­
нительные элементарные потоки.

5.1.1 Декодер гармонический линии
5.1.1.1 Описание инструмента
Этот инструмент декодирует параметры гармонических линий, переданных в потоке битов.
5.1.1.2 Определения

prevNumHarmPara

harmLPCPara [i]

prevHarmLPCPara [i]

hFreq

hStretch

harmAmpI

harmPwr

hLineAmpI [i]

hLineFreq [I]

hLineAmplEnh [i]

hLineFreqEnh [i]

hLinePhaseEnh [i]

Число параметров LPC гармонической линии в предыдущем фрейме.
Параметр LPC гармонической линии i в текущем фрейме (LARs для спектра гар­
монического тона).
Параметр LPC гармонической линии i в предыдущем фрейме (LARs для спектра
гармонического тона).
Основная частота гармонических линий.
Растяжение частоты гармонических линий.
Амплитуда гармонического тона.
Мощность гармонического тона.
Амплитуда /-й гармонической линии.
Частота /-й гармонической линии, Гц.
Улучшенная амплитуда i-й гармонической линии.
Улучшенная частота /'-й гармонической линии, Гц.
Фаза /-й гармонической линии (в радианах).

30

ГОСТ Р 53556.7—2013

ha [i] Немасштабированная амплитуда /-й гармонической линии,
г [i] Коэффициенты отражения LPC.
h [i] Импульсная характеристика LPC.
Н (i) Системная функция LPC.

5.1.1.3. Процесс декодирования
Если harmFlag устанавливается и, таким образом данные HARMbasicPara (), а в режиме улучше­

ния и данные HARMenhaPara (), доступны в текущем фрейме, параметры гармонических линий деко­
дируются и деквантуются следующим образом.

5.1.1.3.1 Основной декодер
Гармонический тон представляется его основной частотой, его энергией и рядом LPC-параметров.
Сначала восстанавливаются параметры harmNumPara LAR. Когда устанавливается harmContFlag,

используется прогноз из предыдущего фрейма.

Float harmLPCMean [25] = {5,0 ,-1 ,5 ,0 ,0 ,0 ,0 ,0 ,0 ..., 0,0/;
Float harmPredCoeff [25] = /0 ,75 ,0 ,7 5 ,0 ,5 ,0 ,5 ,0 ,5 ..., 0,5};
for (i = 0; / <numHarmPara; i ++) {

i f (i <prevNumHarmPara && harmContFlag)
pred = harmLPCMean [i] +
(prevHarmLPCPara [i]-harmLPCMean p]) *harmPredCoeff p];
else
pred = harmLPCMean p];
harmLPCPara p] = pred + harmLAR [i];

}

Параметры, необходимые в следующем фрейме, сохраняются в межфреймовой памяти:

prevNumHarmPara = numHarmPara;
for (7 = 0; / <numHarmPara; / ++)
prevHarmLPCPara р] = harmLPCPara р];

Основная частота и протяжение гармонических линий являются деквантованными:

hFreq = 20 * exp (log /4000./20) * (harmFreqlndex+0,5) / 2048,0);
hStretch = harmFreqStretch / 16000,0;

Амплитуда и мощность гармонического тона деквантуются следующим образом:

harmArnpl = 32768 * pow /10,-1,5 * (harmAmpllndex+0,5)/20);
harmPwr = harmAmpl*harmAmpl;

Флаги harmEnvFlag и harmContFlag не требуют дальнейшей деквантизации; они непосредственно
передаются на инструмент синтезатора.

Параметры LPC передаются в форме “Логарифмических коэффициентов области” (LAR). После
декодирования параметров частоты и амплитуды частей harmNumLine гармонического тона вычисля­
ются следующим образом.

Частоты гармонических линий вычисляются так:

for // = 0; / <numHarmLine; i ++)
hLineFreq р] = hFreq * //+1) * /1 + hStretch * (i+1)).

Параметры LPC представляют //R-фильтр. Амплитуды синусоид получаются вычислением абсо­
лютного значения системной функции этого фильтра H(z) на соответствующих частотах.

31

ГОСТ Р 53556.7—2013

for (i = 0; / <numHarmLine; i ++)
ha [i] = abs (H (exp (j *pi * (i+1) / (numHarmLine+1)));
c j = sqrt (-1) и
H (z) = 1 / (1 - h(U] *pow (z,A) - h Л7 *pow (z,-2)-... - h [numHarmPara-1] *pow (z, - numHarmPara))

Импульсная характеристика h [i\ вычисляется из LARs по следующему алгоритму.
В первом шаге LARs преобразовываются в коэффициенты отражения:

for (7 = 0; / <numHarmPara; / ++)
г [1] = (exp (harmLPCPara [i]) - 1) /(exp (harmLPCPara [i]) + 1).

После этого коэффициенты отражения преобразовываются в характеристику времени. Функция С
делает это преобразование по месту (вызов с х [i] =r [i] и N=питНагтРага\ возвраты с х [i] =h [i]):

void Convert_k_to_h (float *x, int N)
{

in t i j ;
float a, b, c;
for (i = 1; / <N; i ++)
{

c = x [i];
for (j = 0; j ++)
{

a = x Ш;
b = x [i-j-1];
x [j] = a-c*b;
x li-j-1] = b-c*a;

}
i f (j== 4-1)
x [j] - = c*x [j];

}
}

После вычисления амплитуд ha [i] они должны быть нормализованы и умножены на harmAmp\,
чтобы найти амплитуды гармонической линии, удовлетворяющие условию:

sum (hLineAmpI [i] *hLineAmpl [i]) = power of harmonic tone
Это реализуется следующим образом:

Р = 0,0
for (i = 0; / <numHarmLine; i ++)
p + = ha [i] *ha [i];
s = sqrt (harmPwr / p);
for (i = 0; / <numHarmLine; i ++)
hLineAmpI [i] = ha [i] * s;

Дополнительная информация о фазе декодируется следующим образом:

for (7 = 0; / <numHarmUne; i ++) {
i f (harmPhaseAvail [i]) {

hStartPhase [i] = 2*pi * (harmPhase [i] +0,5 /(1 «phasebits) - pi;
hStartPhaseAvail [i] = 1;

}
else
hStartPhaseAvail [i] = 0;

}

32

ГОСТ Р 53556.7—2013

5.1.1.3.2 Декодер улучшения
В этом режиме параметры гармонической линии, декодированные основным декодером, уточня­

ются, а также декодируются фазы линии, используя информацию, содержавшуюся в HARMenhaPara ()
следующим образом:

Для первых максимум 10 гармонических линий /
/ = 0min (numHarmLine, 10J-1
вычисляются улучшенные параметры гармонической линии, используя базовые параметры гар­

монической линии и данные в потоке битов улучшения:

hLineAmplEnh [i] = hLineAmpi [i];
hLineFreqEnh [i] = hLineFreq [i] *
(1 + ((harmFreqEnh [i] +0,5/(1 « fEnhb its [i])- 0,5) * (hFreqRelStep-1));

где hFreqRelStep является отношением двух соседних шагов квантователя основной частоты:
hFreqRelStep = exp (log (4000120)12048)).
Для обоих типов линии фаза декодируется из потока битов улучшения:
hLinePhaseEnh [i] = 2 *pi * (harmPhase [i] +0,5J /(1 «phasebits) - pi
5.1.2 Декодер отдельной линии
5.1.2.1 Описание инструмента
Основной декодер потока битов отдельной линии восстанавливает параметры линии, частоту, ам­

плитуду, и огибающую из потока битов. Декодер улучшения потока битов восстанавливает параметры
линии, частоту, амплитуду, и огибающую с более тонким квантованием и дополнительно восстанавли­
вает фазу параметров линии.

5.1.2.2 Определения
t_max

r ja tk

r_dec

ampl [i]

частота [i]

startPhase [i]

Параметр огибающей: время максимума.
Параметр огибающей: темп нарастания.
Параметр огибающей: темп спада.
Амплитуда /-й отдельной линии.
Частота /-й отдельной линии, Гц.
Стартовая фаза /-й отдельной линии.

startPhaseAvail [i]

t_maxEnh

r_atkEnh

r_decEnh

amplEnh [i]

freqEnh [i]

phaseEnh [i]

Флаг; указывающий, что доступна информация о стартовой фазе для /-Й отдельной линии.
Параметр улучшенной огибающей: время максимума.
Параметр улучшенной огибающей: темп нарастания.
Параметр улучшенной огибающей: темп спада.
Улучшенная амплитуда /-й отдельной линии.
Улучшенная частота /-й отдельной линии, Гц.
Фаза /-й отдельной линии (в радианах).

5.1.2.3 Процесс декодирования
5.1.2.3.1 Основной декодер
Основной декодер восстанавливает параметры линии из данных, содержавшихся в

HILNbasicFrame () и INDIbasicPara () следующим образом.
Для каждого фрейма сначала из HILNbasicFrame () читается число отдельных линий, закодиро­

ванных в этом фрейме:
numLine.

Затем из HILNbasicFrame () читается флаг огибающей фрейма:
envFlag.

Если envFlag = 1, тогда из HILNbasicFrame () декодируются 3 параметра огибающей, t_max, r_atk
и г dec\

t_max = (envTmax+0,5) / (*\ « tm b its);
r_atk = tan (pi/2*max (0, envRatk-0,5)/ ((\ « atkbits)A))/0,2

33

ГОСТ Р 53556.7—2013

r jdec = tan (pi/2*max (0, envRdec-0,5)/((1 « decbits)A))/0,2

Эти параметры огибающей действительны для гармонических линий, а также для отдельных ли­
ний. Таким образом, параметры огибающей envTmax, envRatk, envRdec должны быть деквантованы,
даже если numLine == 0.

Для каждой линии к предыдущего фрейма
к = 0 .. prevNumLine-1
флаг продолжения предыдущей линии читается из HILNbasicFrame ()\
prevLineContFlag [к]
Если prevLineContFlag [к] == 1, тогда линия к предыдущего фрейма продолжается в текущем

фрейме. Если prevLineContFlag [к] == 0, тогда линия к предыдущего фрейма не продолжается.
В текущем фрейме сначала параметры всех продолжающихся линий кодируются, сопровождае­

мые параметрами новых линий. Поэтому флаг продолжения линии и предшественник линии определя­
ются прежде, чем декодировать параметры линии:

I = 0;
for (к = 0; к <prevNumLine; к ++)
i f (prevLineContFlag [к]) {

linePred [i] = к;
lineContFlag р ++] = 1;

;
while (i <numLine)
lineContFlag [i ++] = 0;

Параметры новых линий кодируются с увеличивающимся индексом частоты, используя схему
дифференциального кодирования. Поэтому единожды для каждого фрейма требуется следующая ини­
циализация:

lastNLFreq = 0.
Для каждой линии i текущего фрейма
/ = 0. numLine-1
параметры линии теперь декодируются из INDIbasicPara ().
Если envFlag = = 1, тогда флаг огибающей линии читается из INDIbasicPara ()\
HneEnvFlag р]
Если lineContFlagр]== 1, тогда параметры продолжающейся линии декодируются из INDIbasicPara ()

на базе амплитуды и индекса частоты ее предшественника в предыдущем фрейме:
ILFreqlndex р] = prevILFreqlndex pinePred р]] + DILFreq р];
ILAmplIndex р] = prevILAmplIndex pinePred p]] + DILAmpI p];
Если lineContFlag p] == 0, тогда параметры новой линии декодируются из INDIbasicPara ()\

if(numLine-'\-i<7)
ILFreqlnc р] = SDCdecode (maxFindex-lastNLFreq, sdcILFTable [numLine-l -i]);
else
ILFreqlnc p] = SDCdecode (maxFindex-lastNLFreq, sdcILFTable [7]);
ILFreqlndex p] = lastNLFreq + ILFreqlnc p];
lastNLFreq = ILFreqlndex [я];
i f (HILNquantMode) {

ILAmpIRel p] = SDCdecode (50, sdcILATable);
ILAmplIndex p] = maxAmplIndex + ILAmpIRel p];

}
else {

ILAmpIRel p] = SDCdecode (25, sdcILATable);
ILAmplIndex p] = maxAmplIndex + 2*ILAmplRel p];

}

Индексы параметров линии сохраняются для декодирования параметров линии следующего
фрейма:
34

ГОСТ Р 53556.7—2013

prevNumLine = numLine;
for (i = 0; / <prevNumLine; i ++) {

prevILFreqlndex [i] = ILFreqlndex [i];
prevILAmpi Index [i] = ILAmplIndex [i];

}

Основной декодер также обрабатывает комбинации основного уровня и одного или более уров­
ней расширения. Если данные из всех уровней расширения numLayer доступны базовому декодеру,
значения layNumLine [numLayer] и lay PrevNumLine [numLayer] должны использоваться вместо numLine
и prevNumLine, соответственно. Значения ILAmplIndex [i], ILFreqlndex [i], lineContFlag [i] и linePred [i], как
определено описанием синтаксиса потока битов, должны использоваться.

Амплитуды и частоты отдельных линий теперь деквантованы из индексов:

for (/' = 0; / <numLine; i ++) {
amp![i] = 32768 *pow (10,-1,5 * (ILAmpllndex+0,5)120);
if (ILFreqlndex <160J
freq [i] = (ILFreqlndex+0,5) *3,125;
else
freq 0 = 500* exp (0,00625 * (ILFreqlndex+0,5-160JJ;

}

Дополнительная информация о фазе запуска декодируется следующим образом:

for (/ = 0; i <numLine; i ++) {
i f (UnePhaseAvail [i]) {

startPhase [i] = 2*pi * (linePhase [i] +0,5) /(1 «phasebits) - pi;
startPhaseAvail [i] = 1;

}
else
startPhase Avail [i] = 0;

}

Если процесс декодирования стартует с произвольного фрейма потока битов, все отдельные ли­
нии, которые отмечаются в потоке битов как продолжающиеся из предыдущих фреймов и не декодиро­
вались, должны быть обеззвучены.

5.1.2.3.2 Декодер улучшения
Декодер улучшения уточняет параметры линии, полученные из основного декодера, а также деко­

дирует фазы линии. Дополнительная информация содержится в элементе потока битов INDIenhaPara ()
и оценивается следующим образом:

Все операции базового декодера должны быть выполнены, чтобы можно было корректно декоди­
ровать параметры для продолжающихся линий.

Если envFlag == 1, тогда улучшенные параметры t_maxEnh, r_atkEnh и r_decEnh декодируются с
использованием данных огибающей, переданных в HILNbasicFrame () и HILNenhaFrame ()\

t_maxEnh = (envTmax + (envTmaxEnh+0,5) / (1 «tmEnhbits)) /(1 « tmbits);
if(envRatk == 0)
r_atkEnh = 0;
else
r_atkEnh =tan (pi/2 * (envRatkA + (envRatkEnh+0,5) / C\ «atkEnhbits)) /
((1 «atkbits)A))/0,2;
i f (envRdec == 0)
r_decEnh = 0;
else
r_decEnh = tan (pi/2 * (envRdec-'l + (envRdecEnh+0,5J/(1 «decEnhbits)) /
((1 <<decbits)A))/0,2.

35

ГОСТ Р 53556.7—2013

Для каждой линии i текущего фрейма
/ = 0 numLine-1
улучшенные параметры линии получаются путем уточнения параметров из базового декодера

данными в INDIenhaPara Q:

amplEnh [i] = ampl [i];
i f (fEnhbits [l]! = 0){

i f (ILFreqlndex <160J
freqEnh [i] = (ILFreqlndex+0,5 + ((HneFreqEnh [i] +0,5) / (1 « fEnhbits[i])- 0,5)) *3,125;
else
freqEnh [i] = 500 * exp ('0,00625 * (ILFreqlndex+0,5 -160 +
((HneFreqEnh [i] +0,5)/(1 «fEnhbits [i])- 0,5)));

}
else
freqEnh [i] = частота [i].

Для обоих типов линии фаза декодируется из потока битов улучшения:
phaseEnh [i] = 2*pi * (linePhase [i] +0,5)/(1 «phasebits) - pi.
5.1.3 Декодер шума
5.1.3.1 Описание инструмента
Этот инструмент декодирует параметры шума, переданные в потоке битов.
5.1.3.2 Определения

prevNumNoisePara

noiseLPCPara [i]

prevNoiseLPCPara [i]

noiseAmpI

noisePwr

noiseT_max

noiseR_atk

noiseR dec

Число параметров LPC шума в предыдущем фрейме.
Параметр LPC шума / в текущем фрейме (LARs для спектра шума).
Параметр LPC шума / в предыдущем фрейме (LARs для спектра шума).
Амплитуда шума.
Мощность шума.
Параметр огибающей шума: время максимума.
Параметр огибающей шума: темп нарастания.
Параметр огибающей шума: темп спада.

5.1.3.3 Процесс декодирования
5.1.3.3.1 Базовый декодер
Если noiseFlag установлено и, таким образом, данные NOISEbasicPara () доступны в текущем

фрейме, параметры компонента сигнала шума декодируются и деквантуются следующим образом.
Шум представляется его энергией и рядом LPC-параметров.
Сначала восстанавливаются LAR параметры noiseNumPara. Прогноз из предыдущего фрейма ис­

пользуется, когда установлен noiseContFlag.

float noiseLPCMean [25] = {2,0 ,-0 ,75 ,0 ,0 ,0 ,0 ,0 ,0 .. ., 0,0};
for (i = 0; i <numNoisePara; i ++) {

i f (i <prevNumNoisePara && noiseContFlag)
pred = noiseLPCMean [i]+ (prevNoiseLPCPara [i]-noiseLPCMean p]) *0,75;
else
pred = noiseLPCMean p];
noiseLPCPara p] = pred + noiseLAR p];

Параметры, необходимые в следующем фрейме, сохраняются в межфреймовой памяти:

prevNumNoisePara = numNoisePara;
for (i = 0; i <numNoisePara; i ++) {

prevNoiseLPCPara p] = noiseLPCPara p];

36

ГОСТ Р 53556.7—2013

Амплитуда и мощность шума деквантуются следующим образом:

noiseAmpI = 32768 * pow (10,-1,5 * (noiseAmpllndex+0,5)/20);
noisePwr = noiseAmprnoiseAmpl.

Если noiseEnvFlag == 1, тогда шумовые параметры огибающей noiseEnvTmax, noiseEnvRatk и
noiseEnvRdec деквантуются в noiseT_max, noiseR_atk и noiseR_decтаким же образом, как описано для
декодера отдельной линии.

5.1.3.3.2 Декодер улучшения
Поскольку для шумовых компонентов нет никаких данных улучшения, для шумовых параметров

нет специального режима улучшенного декодирования. Если шум должен быть синтезирован с дан­
ными улучшения для других компонентов, может использоваться базовый декодер параметров шума.
Если декодер HILN используется в качестве ядра в масштабируемом кодере, никакой сигнал шума не
должен синтезироваться для сигнала, который подается на декодер улучшения.

5.1.4 Синтезатор гармонической и отдельной линии
5.1.4.1 Описание инструмента
Этот инструмент синтезирует аудиосигнал согласно параметрам гармонической и отдельной ли­

нии, декодируемым соответствующими инструментами декодера. Это включает комбинацию гармо­
нических и отдельных линий, базовый синтезатор и синтезатора улучшения. Чтобы получить полный
декодированный аудиосигнал, выходной сигнал этого инструмента добавляется к выходному сигналу
синтезатора шума.

5.1.4.2 Определения
totalNumLine

sampleRate

synth Sam pleRate

speedFactor

pitchFactor

T

N

env(t)

a(t)

P(t)
x(t)

x [n]

startPhi [i]

phi [i]

previousEnvFlag

previousT_max

previousR_atk

previousR_dec

previousEnv (t)

previous TotalNumLine

previousAmpi [k]

previousFreq [k]

previousPhi [k]

previousLineEnvFlag [k]

Общее количество линий в текущем фрейме, который будет синтезирован (от­
дельные плюс гармонические).
Частота дискретизации, Гц, как обозначено. HILNsampleRateCode (см. таблицу 7).
Частота дискретизации синтезируемого выходного сигнала х[п], Гц.
Коэффициент изменения скорости синтеза (> 1 для большей, чем исходная ско­
рость воспроизведения).
Коэффициент изменения шага синтеза (> 1 для большего, чем исходный шаг
воспроизведения).
Длина фрейма синтеза в секундах.
Длина фрейма синтеза в выборках.
Амплитудная функция огибающей в текущем фрейме.
Мгновенная амплитуда синтезируемой линии.
Мгновенная фаза синтезируемой линии.
Синтезируемый выходной сигнал.
Дискретный синтезируемый выходной сигнал.
Стартовая фаза /-й линии в текущем фрейме (в радианах).
Фаза окончания /-й линии в текущем фрейме (в радианах).
Флаг огибающей в предыдущем фрейме.
Параметр огибающей t_max в предыдущем фрейме.
Параметр огибающей r_atk в предыдущем фрейме.
Параметр огибающей r_deс в предыдущем фрейме.
Функция огибающей амплитуды в предыдущем фрейме.
Общее количество линий в предыдущем фрейме.
Амплитуда /с-й линии в предыдущем фрейме.
Частота /с-й линии в предыдущем фрейме, Гц.
Фаза окончания /с-й линии в предыдущем фрейме (в радианах).
Флаг, указывающий, что предыдущая огибающая амплитуды применяется к /с-й
линии в предыдущем фрейме.

37

ГОСТ Р 53556.7—2013

previous T_maxEnh

previousR_atkEnh

previousRjdecEnh

previousAmplEnh [k]

previousFreqEnh [k]

previousPhaseEnh [k]

Улучшенный параметр огибающей t_max в предыдущем фрейме.
Улучшенный параметр огибающей r_atk в предыдущем фрейме.
Улучшенный параметр огибающей r_deс в предыдущем фрейме.
Улучшенная амплитуда к-\л линии в предыдущем фрейме.
Улучшенная частота к-\л линии в предыдущем фрейме, Гц.
Фаза к-й линии в предыдущем фрейме (в радианах).

5.1.4.3 Процесс синтеза
5.1.4.3.1 Комбинация гармонических и отдельных линий
Для синтеза гармонических линий используется тот же самый метод синтеза, что и для отдельных

линий.
Если никакая гармоническая составляющая не декодируется для следующих шагов, numHarmLine

должен быть обнулен.
Иначе параметры гармонических линий добавляются к списку параметров отдельных линий как

декодируемые декодером отдельных линий:

for (i=0; i <numHarmLine; i ++) {
freq [numLine+i] = hLineFreq [i];
ampl [numLine+i] = hLineAmpI [i];
if (harmContFlag && prevNumLine+i <previousTotalNumLine) {

HneContFlag [numLine+i] = 1;
linePred [numLine+i] = prevNumLine+i;

}
else
HneContFlag [numLine+i] = 0;
HneEnvFlag [numLine+i] = harmEnvFlag;
startPhase [numLine+i] = hStartPhase //];
startPhaseAvail [numLine+i] = hStartPhaseAvaii [i];

Таким образом, общее количество параметров линий, поступивших на синтезатор гармонических
и отдельных линий равно:

totalNumLine = numLine + numHarmLine.
В зависимости от значения HILNcontMode возможно соединить линии в смежных фреймах, чтобы

избежать разрывов фазы в случае переходов с гармонических линий (HILNcontMode == 0) или допол­
нительно с отдельных линий на отдельные линии, для которых бит продолжения HneContFlag в потоке
битов не был установлен кодером (HILNcontMode == 1). Это дополнительное продолжение линии также
может быть полностью отключено (HILNcontMode == 2).

Для каждой линии /= 0.. totalNumLine-1 текущего фрейма, у которой нет никакого предшественни­
ка (то есть HneContFlag [i] == 0), линия оптимальной подгонки j предыдущего фрейма, не имеющая пре­
емника и с комбинацией, удовлетворяющей требованиям, определенным HILNcontMode определяется,
максимизируя следующую меру q:

d f = freq [i] / previousFreq [j];
d f = max(df, 1/df);
da = ampl [i] / previousArnpl [j];
da = max (da, 1/da);
q = (1 - (df-1) / (dfConM)) * (1 - (da-1)/(daC onM)),

где dfCont= 1,05 и daCont = 4 являются максимальными разрешенными относительными изменениями
частоты и амплитуды. Если имеется больше одного кандидата в предшественники, достигающего мак­
симума q, то выбирается кандидат с самым маленьким индексом j. Для дополнительных продолжений
линии, определенных таким образом, информация о предшественнике строки обновляется:

38

lineContFlag [i] = 1;
linePred p] = j.

ГОСТ P 53556.7—2013

Если нет по крайней мере одного возможного предшественника с df <dfCont и da <daCont,
lineContFlag p] и linePred p] остаются неизменными.

Для улучшенного синтезатора параметры улучшенной гармонической (максимум до 10) и отдель­
ной линии объединяются следующим образом:

for (i = 0; i <min (10, numHarmLine); i ++) {
freqEnh [numLine+i] = hLineFreqEnh p];
amplEnh [numLine+i] = hLineAmplEnh [i];
i f (harmContFlag && prevNumLine+i <previousTotalNumLine) {

lineContFlag [numLine+i] = 1;
linePred [numLine+i] = prevNumLine+i;

}
else
lineContFlag [numLine+i] = 0;
lineEnvFlag [numLine+i] = harmEnvFlag;
phaseEnh [numLine+i] = hLinePhaseEnh [i];

}

Таким образом, общее количество параметров линии, переданных на синтезатор улучшенной гар­
монической и отдельной линии, если декодер HILN используется в качестве ядра в масштабируемом
кодере, равно:

totalNumLine = numLine + min (10, numHarmLine).
Так как информация о фазе доступна для всех этих линий, никакое продолжение линии не вводит­

ся для улучшенного синтезатора.

5.1.4.3.2 Изменение скорости и шага
Благодаря используемому кодером HILN параметрическому представлению сигнала и продолже­

нию фазы, обеспечиваемому базовым синтезатором линии, скорость воспроизведения и шаг легко мо­
гут быть изменены во время синтеза сигнала в декодере. Если требуется воспроизведение на исходной
скорости и шаге, соответствующие факторы управления устанавливаются в их значения по умолчанию:

speedFactor = 1,0;
pitch Factor =1,0;
Если скоростью управляет масштабный коэффициент времени в поле speed узла AudioSource

BSF, фактор изменения скорости будет:
speedFactor = 1 /speed;
Если шагом управляет поле pitch узла AudioSource BSF, фактор изменения шага будет:
pitchFactor = pitch;
Когда вместо базового синтезатора используется синтезатор улучшения, speedFactor и pitchFactor

должны всегда устанавливаться в их значение по умолчанию 1,0.
Изменение скорости реализуется изменением длины фрейма синтеза согласно требующемуся

speedFactor.
Изменение шага реализуется изменением параметров частоты гармонических и отдельных линий

следующим образом:

for (i = 0; / <totalNumLine; / ++) {
freq р]* = pitchFactor;
}

Синтезатор шума также поддерживает изменение скорости и шага.
5.1.4.3.3 Структурирование синтеза
Создание фреймов при синтезе
Синтезатор гармонический и отдельной линии восстанавливает один фрейм аудиосигнала. Так как

параметры линии, закодированные во фрейме потока битов, действительны для центра соответствую-
39

ГОСТ Р 53556.7—2013

щего фрейма аудиосигнала, синтезатор генерирует секцию аудиосигнала х (t) длиной в один фрейм, ко­
торая стартует в центре предыдущего фрейма (t = 0), и заканчивается в центре текущего фрейма (t= Т).

По умолчанию синтезатор HILN работает при частоте дискретизации synthSampleRate, как указа­
но samplingFrequency, передающимся в AudioSpecificInfo ():

synthSampleRate = samplingFrequency
Фрейм синтеза содержит N выборок:
N = (int) (HILNframeLength * synthSampleRate / sampleRate / speedFactor + 0,5).
Таким образом продолжительность Т фрейма синтеза равна:
Т = N/synthSampleRate.
В дальнейшем описывается вычисление синтезируемого выходного сигнала х (t)
для 0 < = t< T . Вариант интервала времени (то есть фактический фрейм выходных выборок) опре­

деляется как
x [n] = x (t) c t = (л+0,5) * (T/N)
для 0 <= n <N.
Синтезатор шума использует тот же синтез создания фреймов, как синтезатор гармонической и

отдельной линии.
5.1.4.3.4 Базовый синтезатор
Некоторые параметры предыдущего фрейма (имена, начинающиеся со слова «предыдущий»), из­

влекаются из межфреймовой памяти, которая должна быть сброшена перед декодированием первого
фрейма потока битов.

Сначала вычисляются функции огибающей previousEnv (t) и env(t) предыдущего и текущего фрей­
мов согласно следующим правилам:

Если envFlag == 1, тогда функция огибающей env(t) получается из параметров оги­
бающей tjmax, r_atk и r_dec. При Т, являющемся длиной фрейма, env(t) вычисляется для
-772 <= / <3/2*7:

i f (-1 /2 <= t/T && t/T <t_max)
env (t) = max (0,/\-(t_max-t/T) *r_atk);
if (t_max <= t/T && t/T <3/2J
env (t) = max (0,1-(t/T-t_max) *r_dec).

Если envFlag == 0, то используется постоянная функции огибающей env(t)\
env (0 = 1.
Соответственно, previousEnv(t) вычисляется исходя из параметров previousT_max, previousR_atk,

previousR_dec и previousEnvFlag.
Параметры огибающей, переданные в случае envFlag == 1, справедливы для гармонических ли­

ний, а также для отдельных линий. Таким образом, функции огибающей должны генерироваться всегда,
даже если все lineEnvFlag [i] == 0.

Прежде, чем выполняется синтез, очищается аккумулятор х (t) для синтезируемого аудиосигнала
для 0 <= t <Т:

x (t)= 0 ;
Линии I, продолжающиеся из предыдущего фрейма в текущем фрейме
all / = 0.. totalNumLine-1, that have lineContFlag [i] == 1
синтезируются для 0 <= t < T следующим образом:

к = linePred [i];
ap (t) = previousAmpI [k];
i f (previousLineEnvFlag [k] == 1)
ap (t) * = previousEnv (t+T/2);
ac (t) - ampI [k];
if (lineEnvFlag [i] == 1)
ac (t) * = env (t-T/2);
short_x_fade = (previousLineEnvFlag [k] &&! (previousR_dec <5 &&
(previousT_max <0,5 || previousR_atk <5))) ||
(lineEnvFlag [i] &&! (r_atk <5 && (t_max> 0,5 || r_dec <5)));
i f (short_x_fade == 1) {

40

ГОСТ Р 53556.7—2013

if(0 < = t& & t< m Q *T)
aft) = ар ft);
if (7П6*Т <= t && t <9/16*7J
aft) = ap ft) + (ac (t)-ap (t)) * (7/7-7/1 6) *8;
//'('9/16*7 <= t&& t <T)
aft) = ac ft);

}
else
aft) = ap ft) + (ac (t)-ap ft)) *t/T;
p ft) = previousPhi [k] +2*pi*previousFreq [k] *t +
2*pi * (частота [i]-previousFreq [k]) / (2*T) *t*t;
x f t) + = ft) *sin (p (t));
phi [i] = P (T).

Линии /, стартующие в текущем фрейме
все / = 0.. totalNumLine-1, у которых lineContFlag [i] == 0
синтезируются для 0 <= t< T следующим образом:

i f (lineEnvFlag [i]&&! (r_atk <5 <S<S (t_max> 0,5 || r_dec <5))) {
if(0 <= t&& t <7/16*77
fade_in ft) = 0;
i f (7/16*T <= t& & t <9/16 *T)
fade jn ft) = 0,5 - 0,5*cos ((8ЧГГ-И2) *pi);
//('9/16*7 <= t&& t <T)
fade jn ft) = 1;

}
else
fade jn ft) = 0,5-0,5*cos (t/T*pi);
aft) = fade jn ft) *ampl [i];
i f (lineEnvFlag [i] == 1)
aft) * = env (t-T/2);
i f (startPhaseAvail [i])
startPhi [i] = startPhase [i];
else
startPhi [i] = random (2 *pi);
p ft) = startPhi [i] + 2 *pi*freq [i] * (t-T);
x ft) + = ft) *sin (p (t));
phi[i] = p(T)

random(x) является функцией, возвращающей случайное число с универсальным распределени­
ем в интервале

О <= random (х) <х
Линиии к, оканчивающиеся в предыдущем фрейме
all k = 0.. previousTotalNumLine-1, that have prevLineContFlag [k] == 0
синтезируются для 0 <= / < 7 следующим образом:

i f (previousLineEnvFlag [k] &&! (previousR_dec <5 &&
(previousT_max <0,5 || previousR_atk <5))) {

if(0 <= t&& t <7/16*7;
fade_out ft) = 1;
/7(7/16*7 <= t&& t <9/16*7J
fade_out ft) = 0,5 + 0,5*cos ((8ЧГГ-И2) *pi);
//('9/16*7 <= t&& t <T)
fade_out ft) = 0;

;
else

41

ГОСТ Р 53556.7—2013

fade_out ft) = 0,5+0,5*cos (t/T*pi);
a(t) = fade_out ft) *previousAmpl [k];
if (previousLineEnvFlag [k] == 1)
aft) * = previousEnv (t+T/2);
p ft) = previousPhi [k] +2*pi*previousFreq [k] *t;
x ft) + = ft) *sin (p ft)).

Чтобы избежать искажений из-за наложения спектров, синтезируемые линии заглушаются (то
есть a(t) = 0), пока их мгновенная частота выше или равна половине частоты дискретизации, то есть

d phi ft) / dt> = pi*N/T.
Параметры, необходимые в следующем фрейме, сохраняются в межфреймовой памяти:

previousEnvFlag = envFlag;
previousT_max = t_max;
previousR_atk = r_atk;
previousR_dec = r_dec;
previousTotalNumLine = totalNumLine;
for (i=0; i <totalNumLine; i ++) {

previousFreq [i] = freq [i];
previousAmpi [i] = ampI [i];
previousPhi ft] = fmod (p [i], 2 *pi);
previousLineEnvFlag [i] = lineEnvFlag [i];

}

fmod (x, 2*pi) является функцией, возвращающей модуль 2*р/для х.
5.1.4.3.5 Синтезатор улучшения
Синтезатор улучшения основан на базовом синтезаторе, но оценивает также фазы линии при вос­

становлении одного фрейма аудиосигнала. Так как параметры линии, закодированные во фрейме по­
тока битов и соответствующем фрейме улучшения, имеют силу в середине соответствующего фрейма
аудиосигнала, синтезатор гармонической и отдельной линии генерирует секцию аудиосигнала длиной в
один фрейм, который стартует в середине предыдущего фрейма и заканчивается в середине текущего
фрейма.

Некоторые параметры предыдущего фрейма (имена, начинающиеся со слова «previous»), извле­
каются из межфреймовой памяти, которая должна быть сброшена прежде, чем будет декодироваться
первый фрейм потока битов.

Сначала вычисляются функции огибающей previousEnv (t) и envft) предыдущего и текущего фрей­
мов согласно следующим правилам.

Если envFlag == 1, тогда функция огибающей envft) получается из параметров огибающей
t_maxEnh, r_atkEnh и rjdecEnh. При Т, являющемся длиной фрейма, envft) вычисляется для-7/2 <=
/<3/2*7:

i f (-1 /2 <=t/T&& t/T <t_maxEnh)
env ft) = max (0,1 -(t_maxEnh-t/T) *r_atkEnh).
i f (t_maxEnh <= t/T & & tfT <3/2;
env ft) = max (0A-(t/T-t_maxEnh) *r_decEnh);

Если envFlag == 0, тогда используется постоянная функция огибающей env(t):
env (0 = 1.
Соответственно previousEnv ft) вычисляется, исходя из параметров previousT_maxEnh, previousR_

atkEnh, previousRjdecEnh и previousEnvFlag.
Параметры огибающей, переданные в случае envFlag == 1, справедливы для гармонических ли­

ний, а также для отдельных линий. Таким образом, функции огибающей должны быть сгенерированы
всегда, даже если все lineEnvFlag [i]== 0.

Прежде, чем выполняется синтез, аккумулятор х (t) для синтезируемого аудиосигнала очищается
для 0 <= / <7:

х (0 = 0.
42

ГОСТ Р 53556.7—2013

Все линии / в текущем фрейме
all i =0.. totalNumLine-1
синтезируются следующим образом для 0 <= t <Т-

if(envFlag &&! (r_decEnh <5 && (t_maxEnh <0,5 II r_atkEnh <5))) f
i f (8 <= t&& t <7/16*7)
fade_in (t) = 0;
i f (7/16*7 <= t&& t <9/16*1)
fade jn (t) = 0,5 - 0,5*cos ((8Ч/Т-7/2) *pi);
/7(9/16*7 <= t&& t <T)
fade jn (t) = 1 ;

}
else
fade jn (t) = 0,5-0,5*cos (t/T*pi);
a(t) = fade jn (t) *amplEnh [i];
i f (envFlag [i] == 1)
aft) * = env (t-T/2);
phi (t) = 2*pi*freqEnh [i] * (t-T) +phaseEnh [i];
x (t) + = (t) *sin (phi (t)).

Линии к в предыдущем фрейме
all к=0.. previous TotalNumLine-l
синтезируются следующим образом для 0 <= t <Т-

if (previousEnvFlag &&! (previousR_atkEnh <5 &&
(previousT_maxEnh> 0,5 || previousRjdecEnh <5))) (

if(0 <= t&& t <7/16*7;
fade_out(t) = 1;
i f (7/16*7 <= t&& t <9/16*7;
fade_out (t) = 0,5 + 0,5*cos ((8J/T-7/2) *pi);
/7^9/16*7 <= t&& t <T)
fade_out (t) = 0;

}
else
fade_out (t) = 0,5+0,5*cos (t/T*pi);
a(t) = fade_out (t) *previousAmplEnh [k];
i f (previousEnvFlag [k] == 1;
a(t) * = previousEnv (t+T/2);
phi (t) = 2*pi*previousFreqEnh [k] *t+previousPhaseEnh [i];
x (t) + = (t) *sin (phi (t)).

Если мгновенная частота линии выше или равная половине частоты дискретизации, то есть
d phi (t) / dt> = pi*N/T,
она не синтезируется, чтобы избежать искажения из-за наложения спектров.
Параметры, необходимые в следующем фрейме, сохраняются в межфреймовой памяти:

previousEnvFlag = envFlag;
previousT_maxEnh = t_maxEnh;
previousR_atkEnh = r_atkEnh;
previousR_decEnh = r_decEnh;
previousTotalNumLine = totalNumLine;
для (i=0; i <totalNumLine; i ++; {

previousFreqEnh [i]= freqEnh [i];
previousAmplEnh [i]= amplEnh [i];
previousPhaseEnh [i]= phaseEnh [i];

}
43

ГОСТ Р 53556.7—2013

5.1.5 Синтезатор шума
5.1.5.1 Описание инструмента
Этот инструмент синтезирует шумовую часть выходного сигнала, основанного на параметрах

шума, декодируемых декодером шума. Шумовой сигнал добавляется к выходному сигналу синтезатора
гармонической и отдельной линии, чтобы получить полный декодированный аудиосигнал

5.1.5.2 Определения
noiseWin [п]
noiseEnv [п]
М
w [т]
xf[m.]
хп [п]
previousXn [п]
previousNoiseWin [п]

гр]
hpi

hlpp]

Окно для наложения-добавления шума.
Огибающая для шумового компонента в текущем фрейме.
Длина фрейма в выборках перед передискретизацией.
Белый шум с мощностью pw.
Фильтруемый сигнал шума в текущем фрейме.
Синтезируемый сигнал шума в текущем фрейме.
Синтезируемый сигнал шума в предыдущем фрейме.
Окно и огибающая для шумового компонента в предыдущем фрейме.
Коэффициенты отражения LPC.
Импульсная характеристика LPC.
Импульсная характеристика фильтра передискретизации низких частот

5.1.5.3 Процесс синтеза
5.1.5.3.1 Базовый синтезатор
Если для текущего фрейма передаются шумовые параметры, сигнал шума со спектральной фор­

мой, которая описана шумовыми параметрами, декодируемыми из потока битов, синтезируется и до­
бавляется к аудиосигналу, сгенерированному синтезатором гармонической и отдельной линии.

Шум представляется его энергией и рядом LPC-параметров. Шумовые параметры LPC преобра­
зовываются в коэффициенты отражения гр] и во временную характеристику h р]\

for (7 = 0; / <numNoisePara; i ++)
г р] = (exp (noiseLPCPara р]) - 1) / (exp (noiseLPCPara p]) + 1).

После этого коэффициенты отражения гр] преобразовываются во временную характеристику h р],
используя функцию С

void Convert_k_to_h (float *х, int N),
вызов с х р] = гр]и N = numNoisePara возвращает с х p] = h р]).
Фильтруемый сигнал шума x f[m] генерируется, применяя фильтр IIR синтеза LPC к белому шуму,

представленному случайными числами w [т]. Энергия этого белого шума с нулевым средним обозна­
чается pw. Для шума с равномерным распределением в [-1,1] энергия будет

pw= 1/3.
Чтобы достигнуть необходимой энергии шумового сигнала, требуется следующий масштабный

коэффициент s:

ss = 1,0;
for (i = 0; / <numNoisePara; i ++)
ss *= '\- rp] *rp];
s = noiseAmpI * sqrt (ss/pw).

Затем белый шум w [m] IIR-фильтруется, чтобы получить синтезируемый сигнал шума xf[m]

for (т = startup; т <2*М; т ++) {
xf[m] = s * w [т];
for (7 = 0; / <min (m-startup, numNoisePara); i ++)
xf[m] + = h p] *xf[m-i-1];

}
44

ГОСТ Р 53556.7—2013

Чтобы гарантировать, что фильтр IIR может достигнуть достаточно устойчивого состояния, ис­
пользуется фаза запуска:

startup = - numNoisePara
Если производится декодирование с изменением шага (то есть pitchPactor ! = 1,0) или с другой

частотой дискретизации, чем у кодера (то есть synthSampleRate! = sampleRate), к сигналу xf[m] должна
быть применена операция передискретизации с использованием коэффициента передискретизации

resampleFactor = (sampleRate * pitchFactor) / synthSampleRate;
где, например, pitchFactor2 указывает, что этот сигнал синтезируется при его удвоенном исходном

шаге. Иначе resampleFactor устанавливается в 1,0. На базе resampleFactor перед передискретизацией
определяется длина фрейма М:

М = N * resampleFactor.
Передискретизация может быть реализована, применяя две операции фильтра нижних частот FIR

к сигналу xf[m] и линейно интерполируя между этими двумя значениями, чтобы получить заключитель­
ный сигнал шума хп [п].

i f (resampleFactor <1)
fc = 1;
else
fc = 1/resampleFactor.

Следующая функция вычисляет временную характеристику hlp[0.. 31] соответствующего фильтра
нижних частот FIR с 16 отводами и коэффициентом передискретизации 4. Частота среза будет fc.

void GenLPFilter (float, *hlp, double fc),
{

double x, f;
int i;
hip [0] = (float) fc;
for (i = 1; i <32; i ++)
{

x = i*pi/4,0;
hip [i] = (float) ((0,54+0,46*cos (0,125*x)) *sin (fc*x)/x);

}
}

Чтобы выполнить работу фильтра FIR, может использоваться следующая функция С. Параметра­
ми являются сигнал, временная характеристика (как результат функции выше) и позиция точки выбор­
ки. Позиция дается как разница между ближайшей позицией выборки до требующейся позиции выборки
(х [7]) и требующейся позицией выборки. Поэтому 0 <= pos <1. Интерполяция выполняется между х[7] и
х[8], полученное значение представляет позицию выборки 7+pos.

float LPInterpolate (float *x, float *hlp, double fc),
{

longj;
double s, t;
pos * = 4,0;
j = (long) pos;
pos - = (double) j;
s = t = 0,0;
j = 32-j;
i f (j == 32)
{

t = h [31] * (*x);
x++;
j - = 4;

45

ГОСТ Р 53556.7—2013

}
while (j> 0)
{

s + = h [j] * (*x);
t + = h [j-1] * (*x);
x + + ;

j - = 4;
}

j =-j;
while (j <32-1)

{
s + = h [j] * (*x);
t + = h [j+1] * (*x);
x ++;
j + = 4;

}
if (j <32)
s + = h [j] * (*x);
return (float) (s+pos * (t-s));

}

Используя функции GenLPFilter () и LPInterpolate (), производится передискретизация, как описано
ниже. xf[m] устанавливается в 0,0 для т <startup и m> = 2*М.

GenLPFilter (hip, fc);
for (n = 0; n <2 *N; n ++)
xn [n] = LPInterpolate (xf+ (int) n*resampleFactor)-7, hip, frac (n*resampleFactor)).

Если resampleFactor == 1,0, x f[m] просто копируется в xn [n] без передискретизации:

for (n = 0; n <2*N; n ++)
xn [n] = xf[n].

Для гладкого затухания-перекрытия сигнала шума на границе между двумя смежными фреймами
для этой операции перекрытия-добавления используется следующее окно:

for (п = 0; п <N; п ++) {
i f (п <N*318)
noise Win [п] = 0;

i f (N*3/8 <= п && п <N*5/8)
noiseWin [п] = грех (пи/2 * (n-N*3/8+0,5) / (N*218));
i f (N*5/8 <=n)
noiseWin [n] = 1;
noiseWin [2*N-1-n] = noiseWin [n];

}

Теперь вычисляется функция огибающей noiseEnv [п]. Если noiseEnvFlag == 1, тогда функция
огибающей

noiseEnv [n] = noiseEnv (t) c t = (n+0,5) * (T/N)-0,5
получается из параметров огибающей noiseT_max, noiseR_atk и noiseR_dec для-772 <= f <3/2*7 (то

есть 0 <= п <2*N):
если (-1/2 <= t /T && t/T <noiseT_max)
noiseEnv (t) = max (0,1-(noiseT_max-t/T) *noiseR_atk);
если (noiseT_max <= t/T && t/T <3/2)
noiseEnv (t) = max (0,1-(t/T-noiseT_max) *noiseR_dec).
Если noiseEnvFlag == 0, то используется постоянная функция огибающей noiseEnv (t):

46

ГОСТ Р 53556.7—2013

noiseEnv [п] = 1 ;
Сигнал шума хп [п] является оконным для перекрытия-добавления и умножается на огибающую

noiseEnv [п]. Затем этот сигнал и шум из предыдущего фрейма previousXn [п] добавляются к сигналу
х [п] из синтезатора гармонической и отдельной линии, чтобы создать полный синтезируемый signalx[n]:

for (п = 0; п <N; п ++)
х [п] + = хп [п] *noiseWin [п] *noiseEnv [п] + previousXn [п].

Вторая половина сгенерированного signalxn [п] шума сохраняется в межфреймовой памяти
previousXn [п] дпя перекрытия-добавления:

for (п = 0; п <N; п ++)
previousXn [п] = хп [N+n] *noiseWin [N+n] *noiseEnv[N+п].

Память previousXn [n] должна быть сброшена в 0,0 прежде, чем будет декодироваться первый
фрейм.

5.1.5.3.2 Синтезатор улучшения
Когда нет никаких данных улучшения для шумовых компонентов, нет и никакого определенного

режима синтезатора улучшения для шумовых компонентов. Если должен быть синтезирован шум и
имеются данные улучшения для других компонентов, может использоваться базовый декодер синте­
затора шума. Если декодер HILN используется в масштабируемом кодере в качестве ядра, никакой
шумовой сигнал не должен синтезироваться для сигнала, который подается декодеру улучшения.

5.2 Интегрированный параметрический кодер

Интегрированный параметрический кодер может работать в четырех различных режимах.
PARAmodes 0 и 1 представляют режимы фиксированных HVXC и HILN. PARAmode 2 разрешает авто­
матическое переключение между HVXC и HILN в зависимости от текущего типа входного сигнала. В
PARAmode 3 кодеры HVXC и HILN могут использоваться одновременно, и их выходные сигналы добав­
ляются (смешиваются) в декодере.

Интегрированный параметрический кодер использует длину фрейма 40 мс и частоту дискретиза­
ции 8 кГц и может работать со скоростью передачи 2025 бит/с или любой более высокой.

5.2.1 Интегрированный параметрический декодер
Для режимов “HVXC only" и “H ILNonly” параметрический декодер не изменяется.
В режимах “switchedHVXC/HILN” и “mixedHVXC/HILN” управление инструментами декодера HVXC

и HILN происходит альтернативно или одновременно согласно PARAswitchMode или PARAmixMode те­
кущего фрейма. Чтобы получить надлежащее выравнивание по времени выходных сигналов декодера
HVXC и HILN прежде, чем они будут добавлены, различие между задержкой декодера HVXC и HILN
нужно компенсировать с помощью буфера FIFO:

если HVXC используется в режиме декодера с низкой задержкой, его выход должен быть задер­
жан на 100 выборок (то есть 12,5 мс);

если HVXC используется в режиме декодера с нормальной задержкой, его выход должен быть
задержан на 80 выборок (то есть 10 мс).

Чтобы избежать трудных переходов на границах фрейма, когда включаются или выключаются
декодеры HVXC или HILN, соответствующие выходные сигналы декодера нарастают и спадают гладко.
Дпя декодера HVXC применяется линейное нарастание или спад 20 мс, когда он включается или вы­
ключается. Декодер HILN не требует дополнительного нарастания и исчезновения по причине гладких
окон синтеза, используемых в синтезаторе HILN.

6 Устойчивые к ошибкам полезные нагрузки потока битов

6.1 Обзор инструментов

Устойчивые к ошибкам полезные нагрузки потока битов позволяют эффективно использовать усо­
вершенствованные методы кодирования канала вроде неравномерной защиты от ошибок (UEP), кото­
рые могут быть отлично адаптированы к потребностям различных инструментов кодирования. Основ­
ная идея состоит в том, чтобы перестроить стандартную полезную нагрузку потока битов в зависимости

47

ГОСТ Р 53556.7—2013

от ее чувствительности к ошибкам в одном или более случаях, принадлежащих различным категориям
чувствительности к ошибкам (ESC). Эта перестановка работает сданными или поэлементно, или даже
порязрядно. Устойчивая к ошибкам полезная нагрузка потока битов создается, связывая эти случаи.

Поток битов переупорядочивается согласно чувствительности к ошибкам единичных элементов
потока битов или даже единичных битов. Этот поток битов с новым расположением канально кодирует­
ся, передается и канально декодируется. Перед декодированием поток битов перестраивается к свое­
му первоначальному порядку. Вместо того, чтобы выполнить переупорядочение описанным способом,
в этом перестроении определяется переупорядоченный синтаксис, который является порядком потока
битов, до форматизатора потока битов в месте расположения декодера.

6.2 ER HILN

Категории чувствительности к ошибкам (ESC) определяются в параметрическом потоке битов.
Ниже описывается упорядочивание различных ESC для четырех различных режимов PARAmode == 0,
1,2,3.

PARAmode == 0 (только HVXC)
HVXC: ESCO ESC1 ESC2 ESCZ ESC4

PARAmode == 1 (только HILN)
PARA/HILN: ESCO ESC1 ESC2 ESCZ ESC4

PARAmode == 2 (переключение HVXC / HILN),
PARA/HILN: ESCO [ESC 1 ESC2 ESCZ ESC4]
HVXC 1/двойной; [ESCO ESC1 ESC2 ESCZ ESC4]
HVXC 2/двойной; [ESCO ESC1 ESC2 ESC3 ESC4]

PARAmode == 3 (смешение HVXC / HILN),
PARA/HILN: ESCO [ESC 1 ESC2 ESCZ ESC4]
HVXC 1/двойной: [ESCO ESC1 ESC2 ESCZ ESC4]
HVXC 2/двойной: [ESCO ESC1 ESC2 ESC3 ESC4]

ESCO для “PARA/HILN' состоит из элемента потока битов PARAswitchMode или PARAmix-
Mode в PARAframeQ, сопровождаемого элементами потока битов в HILNbasicFrameESCOQ. Факти­
ческое присутствие этих элементов потока битов может зависеть от текущих значений PARAmode,
PARAswitchMode и PARAmixMode. “HVXC 1/двойной” и “HVXC 2/двойной” обозначают первый и второй
ErHVXCfixfram () в пределах ErHVXCdoubleframeQ. Присутствие ESC в квадратных скобках зависит от
значения PARAswitchMode или PARAmixMode в текущем фрейме.

48

ГОСТ Р 53556.7—2013

Приложение А
(справочное)

Параметрический аудиокодер

А.1 Краткий обзор инструментов кодера

В параметрическом кодере входной сигнал разделяется на две части, которые кодируются HVXC и инстру­
ментами HILN. Это может быть сделано вручную или автоматически. Автоматическое переключение между речью
и музыкальными сигналами поддерживается HVXC для речи и HILN для музыки. Общее средство форматирования
потока битов позволяет работу только в HVXC или только в HILN, или также в объединенных режимах, то есть
переключенном или смешанном режиме.

Следующее описание параметрического кодера HILN информативно, и также альтернативные методы для
сигнального разделения и оценки параметра могут использоваться в кодере.

А.2 Кодер HILN инструменты

Основной принцип HILN. кодер должен проанализировать входной сигнал, чтобы извлечь параметры, описы­
вающие сигнал. Эти параметры кодируются и передаются как поток битов. В декодере выходной сигнал синтезиру­
ется, основанный на параметрах, извлеченных и переданных кодером.

Кодер состоит из двух основных частей: “экстракция параметра” и “кодирование параметра”. В кодере вход­
ной сигнал делится на последовательные кадры, и для каждого фрейма ряд параметров, описывающих сигнал в
этом фрейме, извлекается и кодируется. Из-за этого параметрического описания возможен широкий диапазон ско­
ростей передачи, частот дискретизации и длин фрейма. Обычно используется длина фрейма 32 мс. Для входных
сигналов с частотой дискретизации на 8—16 кГц обычно используется скорость передачи 6—16 Кбит/с.

А.2.1 Экстракция параметра HILN

На экстракции параметра входной сигнал разделяется на три различные части: “гармонические строки”, “от­
дельные строки” и «шум».

Из этих параметров частей, описывающих сигнал, извлекаются:
гармонические строки: основная частота и амплитуды гармонических составляющих;
отдельные строки: частота и амплитуда каждой отдельной строки;
шум: спектральная форма шума.

Дополнительно параметры для амплитудных конвертов и для продолжения линий спектра от одного фрейма
до следующего могут быть определены.

Сигнальная оценка разделения и параметра реализуется в трех шагах: сначала оценивается основная ча­
стота гармонической части сигнала, затем оцениваются параметры соответствующих линий спектра, и эти строки
классифицируются как “отдельные строки” или “гармонические строки” в зависимости от частоты относительно ос­
новной частоты. После того, как все соответствующие линии спектра извлекаются, остающийся остаточный сигнал
подобен шуму, и его спектральная форма описывается рядом параметров.

Гармоническая экстракция строки инструментов HILN может быть использована в интегрированном параме­
трическом кодере, использующем инструменты кодирования речи HVXC и кодирование инструментов HILN одно­
временно.

А.2.1.1 Оценка основной частоты
Инструментами HILN используется метод оценки основной частоты “Cepstrum". Сначала входной сигнал

Hanning центрируется вокруг текущего фрейма. Для оконного сигнала вычисляется спектр:

w (f) = (1 +cos (2 *pi*f/fs))/2 0 <= f<= fs/2

Определяются локальные максимумы в cepstrum, и идентифицируется самый большой максимум в преде­
лах разрешенного “диапазона поиска” задержки подачи. Вычисляется основная частота от “задержки подачи” (пе­
риод основной частоты) самого большого максимума.

Основная частота, определенная на основе метода cepstrum, используется в качестве начальной (грубой)
оценки для следующей оценки параметра строки.

А.2.1.2 Гармоническая и отдельная оценка параметра строки
Оценка гармонических и отдельных параметров строки основана на “Цикле Анапиза/Синтеза”.
В первом шаге оцениваются параметры всех гармонических строк. Вычисляется оценка основной частоты

hFreq и «протяжения» hStretch, который минимизирует полную ошибку между реальными гармоническими строч­
ными частотами и вычисленными согласно

hLinefreq [i] = hFreq * (i+1) * (1 + hStretch * (i+1)) i = 0.. harmNumLine-1,

49

ГОСТ Р 53556.7—2013

где общее количество гармонических строк определяется пропускной способностью w сигнала и текущей основной
частоты hFreq\

harmNumLine = floor (w/hFreq)
Гармонический флаг конвертера устанавливается, используя конвертер амплитуды тока для всех гармониче­

ских результатов строк по более низкой остаточной ошибке.
Во втором шаге извлекаются соответствующие линии спектра из входного сигнала посредством цикла ана-

лиза/синтеза. Этот цикл использует психоакустическую модель, чтобы извлечь линии спектра в порядке их субъек­
тивной уместности. Если частота извлеченной линии спектра близка к частоте гармонической строки, она класси­
фицируется как гармоническая строка. Иначе она классифицируется как отдельная строка. Цикл анализа/синтеза
завершается, если требуемое число отдельных строк было извлечено или если остающиеся сигнальные компонен­
ты не могут быть должным образом смоделированы линиями спектра. Отношение между числом гармонических
извлеченных строк и полными извлеченными строками передается кодеру как мера «уместности» гармонических
строк.

А.2.1.2.1 Предварительный анализ
Преданалитический модуль определяет конвертер амплитуды сигнала, который используется в цикле ана­

лиза/синтеза.
А.2.1.2.2 Анализ/синтез, основанный на единственных линиях спектра
Отдельный кодер строки основан на модели единственных линий спектра, которые могут быть сгенерирова­

ны генератором синусоидальных колебаний. Для /-й строки цикл состоит из следующих шагов:
вычисление отклонения между спектрами FFT ввода и синтезируемых сигналов;
выбор соответствующей строки FFT с центральной частотой fi\
оценка частоты высокого разрешения окружения fi;
выбор информации о конверторе амплитуды и фазовая оценка;
синтез с решительными параметрами;
вычисление остаточной ошибки синтезируемого сигнала от входного сигнала.
Строка FFT определяется, вычисляя отклонение между входным спектром и синтезируемым спектром и на­

ходя максимальное отношение квадрата этого отклонения и порога маскирования, полученного из сигнала, синте­
зируемого от линий спектра.

Чтобы получить параметр частоты более высокой точности, чем разрешение FFT, используется центральная
частота fi выбранной строки FFT.

А.2.1.2.3 Психоакустическая модель
Психоакустическая модель вычисляет порог для синтезируемых сигнальных компонентов в цикле анализа/

синтеза.
А.2.1.3 Шумовая оценка параметра
Шумовые параметры используются, чтобы смоделировать спектральную форму остаточного сигнала. Снача­

ла вычисляется энергетический спектр Hanning оконного остаточного сигнала. Затем этот спектр преобразовывает­
ся в автокорреляционную функцию. Вычисляются параметры LPC, используя алгоритм Дербина. Параметры LPC
преобразовываются в коэффициенты отражения.

А.2.2 Кодер параметра HILN

Чтобы генерировать вывод потока битов кодера HILN, извлеченные параметры гармоники отдельной строки
и шумовых частей сигнала квантуются и кодируются.

А.2.2.1 Гармоническое квантование параметра строки
Число битов, доступных для гармонических параметров строки, зависит от величины гармонического сиг­

нального компонента. Если она низка, то число гармонических закодированных строк может быть меньше, чем
число извлеченных строк. Это соответствует ограничению пропускной способности гармонического сигнала.

Основная частота квантуется с 2048 шагами по логарифмической шкале в пределах от 20 Гц к 4 кГц.
Для описания спектра гармонического тона вычисляется автокорреляционная функция гармонического сиг­

нала. Из нее получают коэффициенты LPC. Этот процесс подобен LPC specral моделированию, используемому
для шумового сигнала.

А.2.2.2 Отдельное квантование параметра строки
В модуле квантования и кодирования параметры обрабатываются в порядке поступления из цикла анализа/

синтеза. Этот модуль в состоянии генерировать два потока битов, один основной поток битов, который позволяет
генерацию основного качественного аудиосигнала, и поток битов улучшения, который может использоваться в при­
ложениях. Основной поток битов содержит частоту и амплитудные параметры, в то время как поток битов улучше­
ния содержит фазовые параметры и информацию для квантования параметров конверта и частоты.

Для каждого фрейма входного сигнала передаются биты согласно требуемой скорости передачи. В каждом
фрейме передается бит, который указывает, используются ли параметры конверта или нет.

Так как человеческая слуховая система не чувствительна к изменениям фазы, то кодируются и передаются
в основном потоке битов только частота и информация об амплитуде линий спектра. В этом случае необходимо
предоставить информацию для декодера, который позволяет генерировать сигнал, свободный от фазовых разры­
вов на границах фрейма. Первый этап обработки обнаруживает строки, которые продолжаются от одного фрейма
50

ГОСТ Р 53556.7—2013

до другого. Если строка должна продолжаться от предыдущего фрейма, квантуются только частота и амплитудные
изменения и передаются вместо абсолютной частоты и амплитудных значений. Продолжение строки используется,
если относительное изменение частоты

находится в пределах интервала [1... qf тах]. Если есть более одной возможности продолжать строку от
предыдущего фрейма, выбирается та строка в’предыдущем фрейме, для которого следующий критерий достигает
своего максимума:

Частоты и амплитуды отдельных строк квантуются согласно шкале частот и логарифмической шкале ампли­
туд. Для каждой строки предыдущего фрейма бит продолжения передается в потоке битов, который указывает,
продолжается ли строка в текущем фрейме или нет. Для новых строк индексы для квантованной частоты и ам­
плитуды кодируются, используя SubDivisionCode (SDC). Для всех строк, продолжаемых от предыдущего фрейма,
индексные различия частоты и амплитуды, кодируются с кодом энтропии.

Так как основной поток битов не содержит фазовую информацию, нет необходимости вычислять остаточный
ошибочный сигнал, вычитая соответствующий выходной сигнал декодера входного сигнала. Чтобы включить режи­
мы масштабируемости, в которых остаточный сигнал передается в потоке битов более высокой скорости передачи,
генерируют дополнительный поток битов улучшения. Это создается следующим образом.

Если параметры конверта передаются в основном потоке битов, для лучшего квантования передаются до­
полнительные биты 3 параметров конверта.

Если строка запускается, то есть не продолжаемая от предыдущего фрейма, и его частота превышает дан­
ный порог, для лучшего квантования передаются дополнительные биты абсолютной частоты.

Для каждой строки фазовый параметр передается после универсального квантования.
Число битов на фрейм в потоке битов улучшения может измениться, это должно быть принято во внимание

в вычислении доступных битов для кодирования остаточной ошибки.
Так как позиция продолжительной строки в текущем фрейме зависит от позиции его предшественника в пре­

дыдущем фрейме, используется алгоритм выделения, который гарантирует, что строки Л/, переданные в текущем
фрейме, всегда являются N большинством соответствующих строк, найденных циклом анализа/синтеза.

Системная задержка кодера равна 1,5 длины фрейма. Эта задержка следует из длины фрейма непосред­
ственно и дополнительной задержки (0,5) времени длины фрейма, вызванная смещенным накладывающимся ок­
ном, используемым для оценки частоты.

SDC-кодирование:
к: число кодовых комбинаций (0... к-1)
/: значение для кодирования
tab: таблица, содержащая доменные пределы

void SDCEncode (int к, i, int *tab)
{
int *pp;
int g, dp, min, max, cwl;
long cw;
cw=cwl=0;
min=0
max=/(-1;
pp=tab+16;
dp=16;
while (min / = max)
{
if (dp)g=(k*(*pp))>> 10; else g = (max+min)» 1 ;
d p » = 1;
c w « = 1;
cwl++;
if (i<=g){pp -=dp; max=g;} else {cw |=1; pp+=dp; min=g+'\;}

не превышает порог qf mgx и если отношение амплитуд

9a {i 'k) =
а,- (т)/ак (т -1), если а,- (т) >ак (т - 1)

ак (т -1)/а,- (т), если а,- (т) <ак (т - 1)

Q =
Qf,max - q f (i,k) qa,тах Qaji’k)

Qf,max {q a ,m a x ~ ^a {h k)

51

ГОСТ Р 53556.7—2013

}
PutBits (cw, cwl);

}

PutBits () пишет кодовую комбинацию в поток битов, где LSB по часовой стрелке являются “vlclbf’ кодовой
комбинацией, и cwl определяет число битов, которые будут переданы.

А.2.2.3 Шумовое квантование параметра
Число шумовых параметров, которые квантуются и кодируются, зависит от размера компонента шумового

сигнала. Если число шумовых параметров мало, никакие шумовые параметры не передаются. Для более высоких
значений числа шумовых параметров соответствующие числа параметров LAR квантуются и кодируются. Из-за
свойств коэффициентов отражения число переданных параметров LAR может быть решено во время разрядного
выделения в кодере, и никакой перерасчет этих параметров не требуется.

Если устанавливается noiseEnvFlag, тогда дополнительный набор шумовых параметров конверта квантуется
и кодируется.

А.2.3 Масштабируемость скорости передачи HILN

Параметрические сигнальные представления, используемые параметрическим кодером HILN, хорошо под­
ходят для приложений, требующих скорости передачи масштабируемого кодирования. В таком приложении ско­
рость передачи, полученная декодером, может быть динамически адаптирована к свойствам ссылки передачи
или выбрана согласно некоторым другим правилам. В случае потока битов льготного тарифа передаются только
параметры перцепционно соответствующих сигнальных компонентов (отдельные строки, гармонический тон, шум).
В случае потока битов полного тарифа также передаются параметры дополнительных сигнальных компонентов
(например, отдельные строки).

Эта масштабируемость скорости передачи для потоков битов HILN может быть реализована, используя ос­
нову и потоки битов уровня расширения или динамически управляемый параметр, кодирующий, как описано ниже.

А.2.3.1 Масштабируемость скорости передачи HILN динамически управляемым кодированием
параметра
Чтобы реализовать масштабируемость скорости передачи посредством динамически управляемого кодиро­

вания параметра, используется то, что экстракцией параметра HILN и кодером параметра HILN можно управлять
независимо. Параметры, сгенерированные инструментом экстракции параметра, могут обращаться к инструмен­
там кодера параметра, каждый из которых генерирует поток битов с различной скоростью передачи. Также мож­
но сохранить неквантованные параметры, сгенерированные инструментом экстракции параметра в файле. Затем
инструмент кодера параметра может использоваться, чтобы генерировать поток битов с требуемой в настоящий
момент скоростью передачи от параметров, сохраненных в этом файле.

А.З Музыка/речь — смешанный инструмент кодера

Аудиопараметрический кодер используется для того, чтобы кодировать естественные аудиосигналы в очень
низких скоростях передачи в пределах от 2 Кбит/с до 16 Кбит/с. Параметрический кодер обеспечивает два набора
инструментов для того, чтобы кодировать речевые и неречевые аудиосигналы соответственно:

гармоническое векторное возбуждение (HVXC) инструментов подходит для того, чтобы кодировать речевые
сигналы от 2 Кбит/с до 4 Кбит/с;

гармонические и отдельные строки плюс шум (HILN) инструментов подходят для того, чтобы кодировать не­
речевые аудиосигналы в скоростях передачи от 4 Кбит/с и выше.

В режиме только HVXC или только HILN, режим кодирования выбирается вручную во время кодирования, и
выбранный режим используется для всего закодированного аудиосигнала.

Интегрированный параметрический кодер автоматически выбирает инструменты кодирования, которые под­
ходят лучше всего для фактических характеристик входного сигнала. В случае речевого сигнала используются
инструменты HVXC, а для музыки используются инструменты HILN. Этот выбор делается на основании решения
об автоматическом инструменте классификации речи/музыки. Для сигналов, которые являются смесью речи и му­
зыки, также возможно использовать инструменты HVXC и HILN одновременно.

А.3.1 Инструмент классификации музыки/речи

Это инструмент для параметрического речевого кодера, который включается автоматической идентифика­
цией музыки/речи для параметрического кодера речи/аудио (HVXC и HILN). Инструмент принимает решения, ис­
пользует внутренние параметры HVXC.

Этот инструмент классификации музыки/речи может быть применен двумя способами:
первые 5 секунд сигнала, который будет закодирован, анализируются инструментом классификации, и затем

выбираются HVXC или HILN, чтобы кодировать сообщение согласно решению речи/музыки;
инструментом классификации управляют непрерывно, и его текущее решение речи/музыки используется,

чтобы выбрать HVXC или HILN для текущего фрейма. В этом приложении должна быть принята во внимание за­
держка решения с 5 секундами.

52

ГОСТ Р 53556.7—2013

А.3.1.1 Энергия фрейма
Энергия фрейма Р вычисляется как

159
Р= e s(nf

п=0
где s (п) является входным сигналом.
В этом случае фреймы с энергетическими уровнями выше, чем предопределенный минимальный уровень,

используются (искпючая>-78 дБ). Краткосрочная средняя энергия фрейма определяется как
з

Pav = q P { t } / 4,
t=о

который вычисляется из последних четырех энергий фрейма.
Различие между энергией фрейма и краткосрочной средней энергией фрейма вычисляется как:

Pd[frm] = |Р - Pav| / Pav,

Pd[frm] сохраняется приблизительно для 250 фреймов (5 секунд).
А.3.1.2 Сила подачи
В HVXC максимальная автокорреляция остатка LPC (гОг) вычисляется во время процесса обнаружения по­

дачи. гОг сохраняются приблизительно для 250 фреймов.
А.3.1.3 Решение музыки/речи
Среднее значение и различие энергий фрейма и гОг вычисляются соответственно как:

249
Pd i(а л) =

I 249
Pd (па) = е 1

\ (frm=0

гО г (» =

1 249

О "1 и е (
frm =0

frm=0

249

е г
frm= О

В том же самом диапазоне среднего значения гОг у речевых данных есть более высокие различия, чем музы­
кальные данные. Матрица классифицируется в трех областях.

(1) speech rQr(va) >0,153 rOr(av) + 0,113
(2) unknown 0,07 rOr(av) = 0,137 < r0r(va) <0,153 rOr(av) + 0,113
(3) music 0,07 rOr (av) + 0,137 > rOr (va)
Если среднее значение и различие включаются в область (1), данные классифицируются как речь. Если они

находятся в области (3), данные классифицируются как музыка.
Если среднее значение и различие существуют в области (2), среднее значение и различие (дифференци­

ального) энергетического Pd фрейма используются дополнительно. У речевых данных есть более выразительные
средства и различия Pd, чем музыкальные данные. Речевые и музыкальные данные разделяются на следующие
две области.

(1) speech Pd (va) > - 0,5 Pd rOr (av) + 0,8
(3) music Pd (va) < - 0,5 Pd (av) + 0,8
Используя выше упомянутые два критерия, разделяются речь и музыка.

А.3.2 Интегрированный параметрический кодер

Интегрированный параметрический кодер может работать в следующих режимах:

PARAmode Описание
0 Только HVXC

1 Только HILN

2 Переключенный HVXC/HILN

3 Смешанный HVXC/HILN

PARAmodes 0 и 1 представляют фиксированный HVXC и режимы HILN. PARAmode 2 разрешения автомати­
ческое переключение между HVXC и HILN в зависимости от текущего типа входного сигнала. В PARAmode 3 HVXC
и кодеры HILN могут использоваться одновременно, и их выходные сигналы добавляются (смешанные) в декодере.

53

ГОСТ Р 53556.7—2013

Интегрированный параметрический кодер использует длину фрейма 40 мс и частоту дискретизации 8 кГц и
может работать с 2025 бит/с или любой более высокой скоростью передачи.

А.3.2.1 Интегрированный параметрический кодер
Для режима “только HVXC" и “только HILN" параметрический кодер не изменяется. “Коммутируемые HVXC/

HILN" и “смешанный HVXC/HILN" режимы описываются ниже.
А.3.2.2 Коммутируемый режим HVXC/HILN
Поскольку инструмент классификации речи/музыки основан на кодере HVXC, кодером HVXC управляют не­

прерывно для каждого фрейма. Фрейм потока битов, сгенерированный кодером HVXC и входным аудиосигналом,
сохранен в двух буферах FIFO, чтобы компенсировать задержку с 5 секундами решения речи/музыки. Если фрейм
классифицируется как «речь», тогда PARAswitchMode устанавливается в 0 и фрейм потока битов HVXC, доступ­
ный в FIFO потока битов, передается. В случае «музыкального» решения PARAswitchMode устанавливается в 1, и
вывод сигнального буфера FIFO кодируется кодером HILN, и этот кадр потока битов HILN передается. Если HVXC
используется для фрейма, кодер HILN сбрасывается (prevNumLine = 0).

А.3.2.3 Смешанный режим HVXC/HILN
Чтобы управлять параметрическим кодеком в “смешанном HVXC/HILN' режиме, речь и музыкальные компо­

ненты входного сигнала должны быть разделены. Если оба компонента уже доступны отдельно (например, речь и
фоновая музыка), кодирование является прямым.

Библиография

[1] ИСО/МЭК 14496-3:2009 Информационные технологии. Кодирование аудиовизуальных объектов.
Часть 3. Аудио (ISO/IEC 14496-3:2009 Information technology— Coding of au­
dio-visual objects — Part 3: Audio)

54

ГОСТ Р 53556.7—2013

УДК 621.396 : 006.354 ОКС 33.170

Ключевые слова: звуковое вещание, электрические параметры, каналы и тракты, технологии MPEG-
кодирования, синтетический звук, масштабирование, защита от ошибок, поток битов расширения, пси­
хоакустическая модель

Редактор Н.А. Аргунова
Технический редактор В.Н. Прусакова

Корректор М.В. Бучная
Компьютерная верстка Е.О. Асташина

Сдано в набор 22.08.2014. Подписано в печать 31.10.2014. Формат 60x84%. Гарнитура Ариал.
Усп. печ. л. 6,51. Уч.-изд. л. 5,21. Тираж 39 экз. Зак. 4418.

Издано и отпечатано во ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.
wvw.gostinfo.ru info@gostinfo.ru

ГОСТ Р 53556.7-2013

https://meganorm.ru/Index/75/75989.htm
https://meganorm.ru/Data1/46/46111/index.htm

