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Введение

В «Руководстве по выражению неопределенности измерений» (GUM) [JCGM 100:2008] рассматрива­
ются, в основном, одномерные модели измерений, включающие в себя единственную скалярную выход­
ную величину. Однако на практике часто встречаются измерительные задачи с двумя и более выходными 
величинами. Примеры таких задач имеются в GUM для случаев электрических измерений с тремя выход­
ными величинами [JCGM 100:2008 (раздел Н.2 приложения Н)] и температурных измерений с двумя выход­
ными величинами [JCGM 100:2008 (раздел Н.З приложения Н)]. В настоящем стандарте рассматриваются 
многомерные модели измерения, включающие в себя произвольное число выходных величин. В большин­
стве случаев выходные величины коррелированны, поскольку зависят от общих входных величин. В на­
стоящем стандарте рассматривается обобщение способа оценивания неопределенности по GUM [JCGM 
100:2008 (раздел 5)], позволяющее получить оценки выходных величин, а также стандартные неопреде­
ленности и ковариации, соответствующие этим оценкам. Входные и выходные величины модели измере­
ния могут быть действительными или комплексными.

Дополнение 1 к GUM [JCGM 101:2008] рассматривает трансформирование распределений [JCGM 
100:2008 5] при заданной модели измерения как основу для выражения неопределенности измерения и 
реализацию данной процедуры посредством метода Монте-Карло [JCGM 100:2008 (раздел 7)]. Как и в 
GUM, в нем рассмотрены только модели с единственной скалярной выходной величиной [JCGM 101:2008 
(раздел 1)]. Настоящий стандарт рассматривает обобщение метода Монте-Карло с целью получения диск­
ретного представления совместного распределения вероятностей для выходных величин многомерной 
модели. Такое дискретное представление служит основой для получения оценок выходных величин, их 
стандартных неопределенностей и ковариаций. Использование метода Монте-Карло является альтернати­
вой способу оценивания неопределенности по GUM, особенно в ситуациях, когда последний не способен 
обеспечить достоверные результаты измерений вследствие того, что (а) линеаризация модели приводит к 
существенному искажению результатов измерения или (б) распределение вероятностей для выходной ве­
личины (или величин) не может быть описано многомерным нормальным распределением.

Настоящий стандарт устанавливает также метод определения области охвата для выходных величин 
многомерной модели, являющейся аналогом интервала охвата в случае одномерной модели, для задан­
ной вероятности охвата. Рассматриваются области охвата в форме эллипсоидов или прямоугольных парал­
лелепипедов. Применение численных процедур расчета неопределенности измерения с использованием 
метода Монте-Карло дает возможность приближенного построения областей охвата наименьшего объема.

IV



ГОСТ Р 54500.3.2— 2013/Руководство ИСО/МЭК 98-3:2008/Дополнение 2:2011

Н А Ц И О Н А Л Ь Н Ы Й  С Т А Н Д А Р Т  Р О С С И Й С К О Й  Ф Е Д Е Р А Ц И И

НЕОПРЕДЕЛЕННОСТЬ ИЗМЕРЕНИЯ 

Ч а с т ь  3

Руководство по выражению неопределенности измерения 

Дополнение 2

Обобщение на случай произвольного числа выходных величин

Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement. Supplement 2.
Extension to any number of output quantities

Дата введения — 2014 — 09 — 01

1 Область применения

Настоящий стандарт является дополнением к «Руководству по выражению неопределенности изме­
рений» (GUM) (JCGM 100) и распространяется на модели измерения с произвольным числом входных и 
выходных величин. Входящие в модель измерения величины могут быть действительными и/или комплек­
сными. Рассмотрено два подхода к использованию таких моделей. Первый представляет собой обобще­
ние способа оценивания неопределенности по GUM. Второй — использование метода Монте-Карло для 
трансформирования распределений. Использование метода Монте-Карло дает возможность получить до­
стоверные результаты в ситуациях, когда условия применимости первого подхода не выполняются.

Способ оценивания неопределенности по GUM применим, когда информацию о входных величинах 
можно представить в виде их оценок (например, полученных измерением), связанных с этими оценками 
стандартных неопределенностей и, при необходимости, ковариаций. Использование соответствующих фор­
мул и процедур позволяет на основе указанной информации получить оценки, а также соответствующие им 
стандартные неопределенности и ковариации для выходных величин. Эти формулы и процедуры примени­
мы к моделям измерения, для которых выходные величины (а) выражены непосредственно как функции от 
выходных величин (функции измерения) или (Ь) могут быть получены решением уравнений, связывающих 
входные и выходные величины.

В целях упрощения формулы, применяемые в настоящем стандарте, даны в матричной форме запи­
си. Дополнительным преимуществом такой формы записи является ее приспособленность к реализации на 
многих языках программирования и в системах, которые поддерживают матричную алгебру.

Способ оценивания неопределенности измерения с применением метода Монте-Карло основывается 
на (i) присвоении входным величинам модели измерения соответствующих распределений вероятностей 
[JCGM 101 (раздел 6)], (ii) определении дискретного представления совместного распределения вероятно­
сти для выходных величин и (Ш) получения из этого дискретного представления оценок выходных величин, 
их стандартных неопределенностей и ковариаций. Данный подход является обобщением метода Монте- 
Карло, установленного в JCGM 101 применительно к моделям с единственной скалярной выходной вели­
чиной.

Применение вышеуказанных подходов позволяет получить при заданной вероятности охвата область 
охвата для выходных величин многомерной модели — аналог интервала охвата для одномерной модели с 
единственной скалярной выходной величиной. Рассматриваемые в настоящем стандарте области охвата 
имеют формы гиперэллипсоидов (далее — эллипсоидов) и прямоугольных гиперпараллелепипедов (да­
лее — параллелепипедов) в многомерном пространстве выходных величин. В случае применения метода 
Монте-Карло приведена также процедура приближенного построения области охвата наименьшего объема.

Применение стандарта иллюстрировано подробными примерами.
Настоящий стандарт служит дополнением к GUM и должен быть использован вместе с ним и с Допол­

нением 1 к GUM (соответственно, JCGM 100 и JCGM 101). Настоящий стандарт предназначен для тех же 
пользователей, что и два вышеуказанных документа (см. также JCGM 104).

Издание официальное

1
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2 Нормативны е ссылки

В настоящем стандарте использованы нормативные ссылки на следующие документы:
JCGM 100:2008 Оценивание данных измерений. Руководство по выражению неопределенности изме­

рения (GUM) [JCGM 100:2008, Evaluation of measurement data —  Guide to the expression of uncertainty in 
measurement (GUM)]

JCGM 101:2008 Оценивание данных измерений. Дополнение 1 к «Руководству по выражению неопре­
деленности измерения». Трансформирование распределений с использованием метода Монте-Карло (JCGM 
101:2008, Evaluation of measurement data — Supplement 1 to the "Guide to the expression of uncertainty in 
measurement" — Propagation of distributions using a Monte Carlo method)

JCGM 104:2009 Оценивание данных измерений. Введение к «Руководству по выражению неопре­
деленности измерения» и сопутствующим документам (JCGM 104:2009, Evaluation of measurement data — 
An introduction to the "Guide to the expression of uncertainty in measurement" and related documents)

JCGM 200:2008 Международный словарь по метрологии. Основные и общие понятия и связанные 
с ними термины (VIM) [JCGM 200:2008, International Vocabulary of Metrology — Basic and general concepts 
and associated terms (VIM)]

3 Термины и определения

В настоящем стандарте применены термины по JCGM 100 и JCGM 200, некоторые из которых (при 
необходимости, модифицированные) приведены в настоящем разделе, а также следующие термины с 
соответствующими определениями (обозначения, использованные в настоящем стандарте, приведены в 
приложении D).

3.1 действительная величина (real quantity): Величина, числовое значение которой является дей­
ствительным числом.

3.2 комплексная величина (complex quantity): Величина, числовое значение которой является ком­
плексным числом.

П р и м е ч а н и е  — Комплексная величина Z может быть представлена двумя действительными 
величинами в форме алгебраической

Z -  (Zr, Z;)Т -  ZR + iZ;

или тригонометрической
Z = (Zr, Ze)T = Zr (cosZg + isinZg),

где символ «т» обозначает транспонирование; 
i — мнимая единица, \2 = —1;
ZR и  Z, — соответственно действительная и мнимая части Z;
Zr и Zg — соответственно модуль и аргумент Z.

3.3 векторная величина (vector quantity): Совокупность величин, упорядоченных в виде элементов 
матрицы с одним столбцом.

3.4 действительная векторная величина (real vector quantity): Векторная величина, элементами 
которой являются действительные величины.

Пример — Действительная векторная величина X, состоящая из N элементов (действительных 
чисел) Х1,..., XN может быть представлена в виде матрицы размерности Nx  1 (матрицы-столбца):

X =

*1

X N
= (Xb ...,XN) \

3.5 комплексная векторная величина (complex vector quantity): Векторная величина, элементами 
которой являются комплексные величины.

Пример — Комплексная векторная величина Z, состоящая из N элементов (комплексных чисел) 
Ъ\ ZN может быть представлена в виде матрицы размерности Nx 1 (матрицы-столбца):

Z  =

*1

Z N
= (Zt,...,ZN) \

2
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3.6 векторная измеряемая величина (vector measurand): Векторная величина, подлежащая изме­
рению.

П р и м е ч а н и е  — Данное определение модифицировано по отношению к JCGM 200 (словарная 
статья 2.3).

3.7 модель (измерения) (measurement model): Математическое соотношение между всеми величи­
нами, используемыми для получения результата измерения.

П р и м е ч а н и е  1 — Данное определение модифицировано по отношению к JCGM 200 (словарная 
статья 2.48).

П р и м е ч а н и е  2 — В общем виде модель измерения имеет вид уравнения h (У, Х -|,..., ) = 0, где У —
выходная величина модели измерения, являющаяся одновременно измеряемой величиной, значение которой 
должно быть получено на основе информации о входных величинах Х ь ..., XN.

П р и м е ч а н и е  3 — Если модель измерения содержит две и более выходные величины, то она включает 
в себя более одного уравнения.

3.8 многомерная модель (измерения) (multivariate measurement model): Модель измерения с про­
извольным числом выходных величин.

П р и м е ч а н и е  1 — В общем случае многомерная модель измерения имеет вид уравнений

h,(Yb ..., Ym, Х ь ..., XN) = 0,..., hm (Yb ..., Ym, Х ь  ..., XN) = 0,

где У ]...... Ym — т выходных величин, в совокупности составляющих измеряемую величину, значения которых
должны быть получены на основе информации о входных величинах многомерной модели X1t ..., XN.

П р и м е ч а н и е  2 — Общий вид многомерной модели измерения может быть представлен также в 
векторной форме

h(Y,X) = 0,

где Y = (У |.....Ym)T и h = (h^ , ..., hm)T — матрицы размерности mx1.
П р и м е ч а н и е  3 — В случае одной выходной величины, т. е. т = 1 (см. примечание 1), модель измерения 

называют одномерной.

3.9 многомерная ф ункция (измерения) (multivariate measurem ent function): Функция, определяю­
щая зависимость выходных величин от входных величин в многомерной модели измерения.

П р и м е ч а н и е  1 — Данное определение модифицировано по отношению к JCGM 200 (словарная 
статья 2.49).

П р и м е ч а н и е  2 — Если уравнения, входящие в модель измерения h(Y,X) = 0, могут быть разрешены
в явном виде Y = f(X), где X = (Х |.....XN)T — входные величины, a Y = (У1; ..., Ym)T — выходные величины модели
измерения, то f  = (^, ..., fm)T — многомерная функция измерения. В более общем случае под f  можно понимать 
алгоритм, посредством которого устанавливается однозначное соответствие значений выходных величин 
Ут = f-i(x),..., ут = fm(x) значениям входных величин х  = (Xi.....xN)T.

П р и м е ч а н и е  3 — В случае одной выходной величины, т.е.т =1 (см. примечание 2), функцию измерения 
называют одномерной.

3.10 модель (измерения) с действительны ми величинами (real m easurement model): Модель 
измерения (в общем случае многомерная), в состав которой входят только действительные величины.

3.11 модель (измерения) с комплексными величинами (complex m easurement model): Модель 
измерения (в общем случае многомерная), в состав которой входят комплексные величины.

3.12 модель многоступенчатого измерения (multistage m easurement model): Модель измерения 
(в общем случае многомерная), состоящая из последовательности подмоделей, связанных между собой 
таким образом, что выходные величины подмодели одной ступени являются входными величинами подмо­
дели следующей ступени.

П р и м е ч а н и е  — Зачастую потребность в определении области охвата для выходных величин (на основе 
их совместного распределения) имеет место только на заключительном этапе измерения.

Пример — Измерение, включающее в себя процедуру калибровки, может рассматриваться как двух­
ступенчатое. Д ля первой подмодели значениями входных величин являют ся передаваемые от эталонов 
и соответствующие им показания средства измерений, а выходными величинами — параметры калиб­
ровочной функции (градуировочной характеристики). Эта подмодель определяет способ определения 
вы ходны х величин по входным величинам, например решением системы уравнений, получаемых при при­
менении метода наименьших квадратов. Входными величинами второй подмодели являю т ся парамет­
ры  калибровочной функции и новое показание средства измерений, а выходной величиной  — измеряемая 
величина, для получения значения которой было применено средство измерений.
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3.13 функция (совместного) распределения (вероятностей) (joint distribution function): Функция, 
дающая для каждого значения В, -  (£,, .... <*W)T значение вероятности того, что каждый элемент^) случайной 
векторной переменной X будет меньше или равен

П р и м е ч а н и е  — Функцию распределения случайной переменной X обозначают Gx(i;), где

Gx© = Pr(X i<^i,...,XN<^N).

3.14 плотность (совместного) распределения (вероятностей) (joint probability density function): 
Неотрицательная функция gx(q), удовлетворяющая условию

 ̂ £

Gx ($) = J ■■■Jgx (z)dzw...dz1.

3.15 маргинальная плотность распределения (вероятностей) (marginal probability density function): 

Плотность распределения Эх, (<5/) элементах) случайной векторной переменной X с  плотностью совмест­
ного распределения gx(ij), которая имеет вид

9 x ,fa )  = I - l 9 x ( S № i -  d^_1...d^/+1...d ^ .

Пр и ме ч а н и е  — Если все элементы X/, / = 1 N, составляющие случайную переменную X, независимы,

то 9х(^) = 9x^ ) 9 x2(^ )  - 9 xn ^ n )-

3.16 математическое ожидание (expectation): Характеристика случайной величиныХ„ являющейся 
элементом случайной векторной переменной X с плотностью совместного распределения дх(£), которая 
имеет вид

E(X i )=  J - J ^ /gx ( ^ 1. . . d ^ =  J ^ f o )  d | , .

П р и м е ч а н и е  1 — Данное определение модифицировано по отношению к JCGM 101 (словарная 
статья 3.6).

П р и м е ч а н и е  2 — Математическим ожиданием случайной векторной величины X является Е(Х) = 
= (Е(Х|) Е(Хд))т — матрица размерности Л/х 1.

3.17 дисперсия (variance): Характеристика случайной величины X), являющейся элементом случай­
ной векторной переменной X с плотностью совместного распределения дх(£), которая имеет вид

V(X i )=  J . . .J fe -E (X f.)]2gx (^) d ^ . . . d ^ =  J [$/ -  E(X j ) f  gXj (^)d^/.

П р и м е ч а н и е  — Данное определение модифицировано по отношению к JCGM 101 (словарная 
статья 3.7).

3.18 ковариация (covariance): Характеристика двух случайных величин X, и X), являющихся эле­
ментами случайной векторной переменной X с плотностью совместного распределения дх(£), которая име­
ет вид

Cov(XhX j ) =C ov(X j,X j )=  j  j  [с, E {X j) %  -  Е(Х ] )]gx (^)dc1 ...6qN =

= J fe  -  E(X, ) |c ; -  E (X j )\gXhXj (§„ ) dc,d^,

где 9xi:X j(^ i’ I j ) — плотность совместного распределения случайных величинX,иX).
П р и м е ч а н и е  1 — Данное определение модифицировано по отношению к JCGM 101 (словарная 

статья 3.10).
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П р и м е ч а н и е  2 — Ковариационной матрицей случайной векторной величины X является симметрич­
ная положительно полуопределенная матрица V(X) размерности Л/х Л/, элементами которой являются ковариа­
ции Cov(Xh Ху), / = 1, N, j  = 1, N. Некоторые операции с использованием V(X) налагают более строгое 
ограничение в виде положительной определенности этой матрицы.

3.19 корреляция (correlation): Характеристика двух случайных величин X, и Ху, являющ ихся эле­
ментами случайной векторной переменной X  с плотностью совместного распределения gx(k)> которая име­
ет вид

C o i r ( X i , X j )  =  C o r r ( X  j , X j )

Cov(Xj,Xj) 

<JV(Xj)V(Xj)  '

П р и м е ч а н и е  — Величина Corr(Xh Xj) имеет размерность единица.

3.20 ковариационная матрица (оценок) (measurement covariance matrix): Связанная с оценкой дей­
ствительной векторной величины размерности Л/х 1 симметричная положительно полуопределенная матри­
ца размерности Л/х Л/, на главной диагонали которой расположены квадраты стандартных неопределеннос­
тей, соответствующих оценкам элементов векторной величины, а остальные члены матрицы представляют 
собой ковариации между парами соответствующих оценок элементов векторной величины.

П р и м е ч а н и е  1 — Термин и определение модифицированы по отношению к JCGM 101 (словарная 
статья 3.11).

П р и м е ч а н и е  2 — Ковариационная матрица 1)х размерности Л/х Л/, соответствующая вектору оценок х 
векторной величины X, имеет вид

U(X-|,Xi) ••• 1/(X-|,XW )

u (*n .*i) ■■■ u(xn’*n)J ’

где и(х/, Xj) = u2(Xj) — дисперсия (квадрат стандартной неопределенности) оценки х(;
u(Xj, Ху) — ковариация между х, и Ху. Если элементы X) и Ху вектора X некоррелированны, то и(х,, xj) = 0.

П р и м е ч а н и е  3 — В JCGM 101 ковариационная матрица называется матрицей неопределенности.
П р и м е ч а н и е  4 — При работе с ковариационными матрицами могут возникать некоторые вычислитель­

ные трудности. Например, ковариационная матрица 1)х, соответствующая оценке х, может не быть положительно 
определенной (это зависит от того, каким образом была рассчитана матрица 11х). Как следствие, для такой матри­
цы не будет существовать разложение Холецкого, часто применяемое в численных методах вычислений (см. [7] и 
приложение В). Более того, дисперсия для линейной комбинации элементов х, которая предположительно 
должна иметь небольшое положительное значение, может оказаться отрицательной. Для таких ситуаций разра­
ботаны методы «коррекции» Ux, после применения которых полученная матрица будет положительно определе­
на, и, соответственно, для нее будет существовать разложение Холецкого, а дисперсия линейной комбинации 
элементов х  будет всегда положительна. Один из таких методов приведен в [27], а его принцип состоит в следую­
щем. Выполняют спектральное разложение матрицы 1)х, представляя ее в виде

их = СЮСГ1,

где Q — матрица, столбцы которой являются ортонормированными собственными векторами матрицы 1)х, 
a D — диагональная матрица, на главной диагонали которой расположены соответствующие собственные значе­
ния Ux. Строят новую диагональную матрицу D', заменяя в матрице D элементы, меньшие чем c/mjn, на c/mjn, где с/тю 
равно произведению наибольшего элемента D на единичную ошибку округления компьютера, применяемого при 
вычислениях. Тогда «корректированная» ковариационная матрица, применяемая для последующих вычислений, 
будет иметь вид

U i = QD'Q-1.

П р и м е ч а н и е  5 — Некоторые операции с использованием 1)х требуют, чтобы данная матрица была
положительно определенной.

3.21 корреляционная матрица (оценок) (correlation matrix): Связанная с оценкой действительной 
векторной величины размерности Л/х 1 симметричная положительно полуопределенная матрица размерно­
сти N x N , членами которой являются корреляции между парами соответствующих оценок элементов век­
торной величины.

5



ГОСТ Р 54500.3.2— 2013

П р и м е ч а н и е  1 — Корреляционная матрица Rx размерности Л/хЛ/, соответствующая вектору оце­
нок х  векторной величины X, имеет вид:

RX —

r{xb Xi) r(xv xN)

r{xN,x  1) r{xN,xN)

где r{Xj, x,) = 1, a r(xh Xj) — корреляция между x, и Ху. Если элементы Xt и Ху вектора X некореллированы, то
г(Х/, Ху) = 0.

П р и м е ч а н и е  2 — г(х,-, Ху) называют также коэффициентом корреляции.
П р и м е ч а н и е  3 — Корреляционная матрица Rx и ковариационная матрица Ux (см. 3.20) связаны 

между собой соотношением

их -  dxrxdx,

где Dx — диагональная матрица размерности N xN  с диагональными элементами и(хл), ..., u(xN). Элементы 
матрицы Ux могут быть представлены в виде

u{Xh Ху) = Г(Х„ Ху) u(Xi)u(Xj).

П р и м е ч а н и е  4 — Корреляционная матрица Rx будет положительно определенной/сингулярной в том 
и только в том случае, если соответствующая ей ковариационная матрица 1)х будет положительно определенной/ 
сингулярной. Некоторые операции с использованием Rx требуют, чтобы данная матрица была положительно 
определенной.

П р и м е ч а н и е  5 — При представлении численных значений недиагональных элементов корреляционной 
матрицы часто достаточно округлять их с точностью до трех знаков после запятой. Однако если корреляционная 
матрица близка к сингулярной, то, чтобы избежать вычислительных сложностей при использовании корреляци­
онной матрицы среди прочих исходных данных в оценивании неопределенности измерения, число сохраняемых 
десятичных знаков необходимо увеличить. Это число зависит от характера последовательных вычислений, но в 
качестве ориентировочного значения рекомендуется брать его равным числу десятичных знаков, необходимых 
для представления наименьшего собственного значения корреляционной матрицы с двумя значимыми десятич­
ными знаками. Так для корреляционной матрицы размерности 2 x2  собственные значения А,тах и Xmin равны 
соответственно 1 + \г\ и 1 -  |г|, где г — недиагональный элемент корреляционной матрицы, и, значит, таким 
наименьшим собственным значением будет 1 -  |г|. Если заранее известно, что корреляционная матрица являет­
ся сингулярной, то округление к меньшему по модулю снижает риск того, что после операции округления корреля­
ционная матрица не окажется положительно полуопределенной.

3.22 матрица (коэффициентов) чувствительности (sensitivity matrix): Матрица частных производ­
ных первого порядка функций, описывающих модель измерения с действительными величинами, по вход­
ным или входным величинам в точке оценок этих величин.

П р и м е ч а н и е  — В случае модели с N входными и т выходными величинами матрицы чувствительности 
в отношении входных величин X и выходных величин Y имеют размерности соответственно m xN  и тхт.

3.23 интервал охвата (coverage interval): Интервал, построенный на основе имеющейся информации 
и содержащий значение скалярной случайной величины с заданной вероятностью.

П р и м е ч а н и е  1 — Данное определение модифицировано по отношению к JCGM 101 (словарная 
статья 3.12).

П р и м е ч а н и е  2 — Вероятностно симметричный интервал охвата для скалярной величины представ­
ляет собой интервал охвата, для которого вероятность того, что значение случайной величины меньше наимень­
шего значения (нижней границы) интервала охвата, равна вероятности того, что значение случайной величины 
больше наибольшего значения (верхней границы) интервала [см. JCGM 101 (словарная статья 3.15)].

П р и м е ч а н и е  3 — Наименьший интервал охвата представляет собой интервал охвата, имеющий 
наименьшую длину среди всех возможных интервалов охвата для данной случайной величины с одинаковой 
вероятностью охвата [см. JCGM 101 (словарная статья 3.16)].

3.24 область охвата (coverage region): Область, определенная на основе имеющейся информации и 
содержащая значение векторной случайной величины с заданной вероятностью.

3.25 вероятность охвата (coverage probability): Вероятность того, что значение случайной величины 
находится в границах интервала охвата или области охвата.

П р и м е ч а н и е 1 — Данное определение модифицировано по отношению к JCGM 101 (словарная 
статья 3.13).
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П р и м е ч а н и е 2  — Вероятность охвата иногда называют уровнем доверия [JCGM 100 (6.2.2)].

3.26 наименьшая область охвата (shortest coverage region): Область охвата, имеющая наимень­
ший объем среди всех возможных областей охвата для данной случайной величины с одинаковой вероят­
ностью охвата.

П р и м е ч а н и е  — В случае скалярной случайной величины наименьшая область охвата совпадает 
с наименьшим интервалом охвата. Для случайной величины, описываемой вектором в двумерном простран­
стве, наименьшая область охвата представляет собой поверхность с наименьшей площадью из всех, имеющих 
ту же вероятность охвата.

3.27 многомерное нормальное распределение (вероятностей)1* (multivariate Gaussian distribution): 
Распределение вероятностей векторной случайной величины X  размерности N  + 1, плотность совместного 
распределения которого имеет вид:

П р и м е ч а н и е  — ц. — математическое ожидание X, V — ковариационная матрица X, которая 
должна быть положительно определена.

3.28 многомерное (-распределение (multivariate (-distribution): Распределение вероятностей век­
торной случайной величины X  размерности Л/х 1, плотность совместного распределения которого с пара­
метрами ц, V  и v имеет вид:

П р и м е ч а н и е  1 — Многомерным (-распределением описывается векторная случайная величина X 
размерности Л/х 1, удовлетворяющая соотношению X -  д = (v/W)1/2 Q, где Q — векторная случайная величина 
размерности Л/х 1, имеющая нормальное распределение с нулевым математическим ожиданием и положитель­
но определенной ковариационной матрицей V размерности Л/хЛ/, a W — скалярная случайная величина, имею­
щая ^-распределение (распределение хи-квадрат) с v степенями свободы.

П р и м е ч а н и е  2 — Плотность (-распределения дх(с,) нельзя представить в виде произведения N 
плотностей распределения элементов вектора X даже в том случае, когда V — диагональная матрица. В общем 
случае между элементами вектора X существует статистическая зависимость. Например, при N = 2, v = 5 и V — 
единичной матрице размерности 2 x2  вероятность того, что Х 1 > 1 составляет 18 %, в то время как условная 
вероятность того, что при Х2 > 2 значение Х 1 будет превышать единицу, составляет 26 %.

4 Соглашения и условные обозначения

В настоящем стандарте использованы следующие соглашения и условные обозначения.
4.1 В GUM [JCGM 100 (пункт 4.1.1, примечание 1)] для экономии условных обозначений один и тот же 

символ (прописная буква) используется для:
(i) физической величины, которая предполагает наличие единственного истинного значения;
(ii) случайной переменной, ассоциированной с этой физической величиной.

П р и м е ч а н и е  — Случайная переменная выполняет разные роли при оценивании неопределенности 
по типу А и В. При оценивании неопределенности по типу А, случайная переменная представляет собой 
«... возможный результат наблюдения величины». При оценивании неопределенности по типу В вероят­
ность распределения случайной переменной характеризует имеющиеся знания о возможных значениях этой 
величины.

Эта двойственность обозначений в большинстве случаев не вызывает неудобств.

1* Многомерное нормальное распределение называют также многомерным распределением Гаусса.

где Г (z) = j t z 1е (d( — гамма-функция, z > 0.
о
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В настоящем стандарте (также, как и в JCGM 101) в случае входных величин, неопределенность 
которых оценивают по типу А, один и тот же символ (прописная буква) использован для трех понятий, а 
именно:

a) физическая величина;
b) случайная переменная, для которой получают результаты наблюдений;
c) случайная переменная, распределение вероятности которой ассоциируют с имеющимися знания­

ми о возможных значениях физической величины.
Два последних понятия, относящиеся к случайной величине, в GUM (JCGM 100) не разделяются, что 

может явиться источником недоразумений. Так рассматриваемая в настоящем стандарте и в JCGM 101 
процедура оценивания неопределенности с использованием метода Монте-Карло может быть неправиль­
но истолкована как реализация процедуры, изложенной в JCGM 100 (пункт 4.1.4, примечание 1). В действи­
тельности же, хотя указанные процедуры схожи в том, что в обеих получают выборку значений выходной 
величины для данной модели измерения из соответствующего распределения, сами распределения в об­
щем случае будут разными. В JCGM 100 (пункт 4.1.4, примечание 1) это частотное распределение, т. е. 
случайная величина интерпретируется в смысле перечисления Ь), тогда как в методе Монте-Карло это 
распределение случайной величины, интерпретируемой в смысле перечисления с). Для большинства 
измерительных задач подход, предложенный в JCGM 100 (пункт 4.1.4, примечание 1), не рекомендуется 
(см. [2]).

4.2 Для входных величин модели измерения в настоящем стандарте принято обозначение Х ь  ..., X N 
или в виде матрицы Х =  (X,, ...,XN)T размерности Л/х 1 (символ «т» обозначает транспонирование).

4.3 Для выходных величин модели измерения в настоящем стандарте принято обозначение У1.....Ym
или в виде матрицы Y  = (У , , ..., Ут )т размерности т х  1.

4.4 Если Yj могут быть выражены через X в явном виде, то модель измерения имеет вид

Y = f(X ), (1)

где f —  многомерная функция измерения. Другая форма записи для той же модели (см. 3.9) имеет вид

У, = M X), Ym = у х ) ,

где M X )......У Х )  являются составляющими f(X ).
4.5 Если Yj не выражены в явном виде через X, то модель измерения имеет вид

h(Y, X) = 0 (2)

или в другой форме записи (см. 3.8)

M(Y,X) = 0, ..., hm{Y,X) = 0.

4.6 Оценку X  обозначают в виде х  = (х1; ..., xN)T —  матрицы размерности Л/х 1. Ковариационную 
матрицу, соответствующую х, обозначают в виде Ux —  матрицы размерности N x N  (см. 3.20).

4.7 Оценку Y  обозначают в виде у  = (у,, ..., ут )т —  матрицы размерности т х 1 .  Ковариационную 
матрицу, соответствующую у, обозначают в виде Uy —  матрицы размерности т хт .

П р и м е ч а н и е  — 1)у в случае многомерной модели с т выходными величинами является аналогом 
дисперсии и2(у) для у  в случае одномерной модели измерения, рассматриваемой в JCGM 100 и JCGM 101. 
В JCGM 100 и(у) обозначается как ис(у), где подстрочный индекс “с” применительно к стандартной неопределен­
ности обозначает «суммарная». Как и в JCGM 101, в настоящем стандарте использование подстрочного 
индекса “с” в данном контексте рассматривается как излишнее [см. JCGM 101 (пункт 4.10)].

4.8 Если оценки выходных величин предполагается использовать по отдельности, то каждая из этих 
величин может рассматриваться как выходная в соответствующей одномерной модели измерения. Если 
же, например для последующих расчетов, эти оценки должны быть использованы совместно, то должны 
быть приняты во внимание корреляции между ними.

4.9 Стандартную неопределенность, соответствующую х, обозначают и(х). Если контекст исключает 
возможность ошибочного истолкования, то может применяться сокращенная форма записи их. Данная 
форма записи не рекомендуется, если при х  имеется индекс или иной знак, например х, или х .

4.10 Под х  можно понимать как «оценки входных величин», так и «оценку входной величины (вектор­
ной)». В настоящем стандарте преимущественно используется последнее определение (то же самое спра­
ведливо для выходных величин).
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4.11 Как указано в 4.2—4.10, величина в общем случае обозначается с помощью прописной буквы, а 
ее оценка или некоторое фиксированное значение величины (такое, как математическое ожидание) соответ­
ствующей строчной буквой. Данное правило удобно для общего анализа, но зачастую не подходит для 
обозначения величин в конкретных приложениях из-за устоявшейся практики использования для конкрет­
ных физических величин специальных обозначений, например Тдля температуры и f для времени. Поэто­
му в некоторых примерах настоящего стандарта используются иные обозначения: физическая величина 
обозначается ее общепринятым символом, а ее математическое ожидание или оценка этим же символом с 
циркумфлексом («крышкой»). Например, амплитуда переменного тока (пример 1 из 6.2.2) обозначается/, 
а оценка/— / [см. JCGM 101 (пункт 4.8)].

4.12 Настоящий стандарт отступает от обозначений, часто используемых для обозначения плотнос­
тей распределения вероятностей и функций распределения. В JCGM 100 одно и то же обозначение f  ис­
пользовано как для функции измерения, так и для плотности распределения вероятностей, что создает 
неоднозначность понимания. Поскольку в настоящем стандарте моделям уделено особое внимание, для 
плотности распределения вероятностей и функции распределения вместо обозначений fv\ F использова­
ны соответственно д и G. Применяемые подстрочные индексы соответствуют случайной величине, о кото­
рой идет речь. Обозначение доставлено для описания функции измерения (в скалярной или векторной 
форме).

4.13 Плотность распределения может быть поставлена в соответствие как скалярной (X), так и вектор­
ной (X) величине. В случае скалярной величины плотность распределения для Хобозначается как д ^ ) ,  
где <* — переменная, принимающая возможные значения величины X. Здесь Xрассматривается, как слу­
чайная переменная с математическим ожиданием Е(Х) и дисперсией ЦХ).

4.14 В случае векторных величин плотность распределения для X обозначается как дх{%), где 
\  = ( ! i , ..., <*N)T — переменная, принимающая возможные значения величины X. Здесь X рассматривается 
как случайная переменная с ожиданием Е(Х) и ковариационной матрицей V(X).

4.15 Аналогично, в случае скалярных величин (У) плотность распределения обозначается какду(77), 
а в случае векторных величин {У )-д \{ц ).

4.16 Для обозначения десятичной дроби используется запятая1 \

5 Основные принципы

5.1 Общие положения

5.1.1 В GUM [JCGM 100 (пункт 4.1)] измерение моделируется функцией, связывающей действи­
тельные входные величины X |,...,X N и действительную выходную величину У в виде формулы (1), т. е. 
У = /(X), где X = (Х|, ..., XN)T — действительная векторная входная величина. Это одномерная функция 
измерения для действительных величин (см. 3.9 примечание 3).

5.1.2 На практике не все измерения могут быть смоделированы с помощью функции измерения с 
одной скалярной выходной величиной. В реальных измерительных задачах могут иметь место:

a) несколько выходных величин У,, ..., Ym (которые совместно обозначаются действительной вектор­
ной выходной величиной Y = (У |, ..., Ут )т), для которых формула (1) принимает вид Y = f(X);

b) более общий вид модели измерения в виде формулы (2), т. е. h(Y,X) = 0.
5.1.3 Кроме того, некоторые или все элементы X и, соответственно, элементы Y могут представлять 

собой комплексные величины. Если каждую такую комплексную величину представить в виде двух со­
ставляющих (действительная и мнимая часть или модуль и аргумент комплексного числа), то, в принципе, 
без нарушения общности модель измерения может рассматриваться как модель с действительными вели­
чинами. Однако в большинстве случаев вид алгоритмов, работающих с комплексными величинами, про­
ще, чем если бы модель включала только действительные величины [14]. Применение моделей измерения 
с комплексными величинами позволяет записать закон трансформирования неопределенностей в компакт­
ном матричном виде (см. 6.4 и приложение А).

5.1.4 В настоящем стандарте модели, указанные в 5.1.2 и 5.1.3, рассматриваются в более общем
виде.

1) В оригинале на английском языке в данном подразделе указывается на использование в качестве деся­
тичного знака точки вместо запятой.
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5.2 Основные этапы оценивания неопределенности

5.2.1 Основные этапы оценивания неопределенности включают в себя формулировку измерительной 
задачи, трансформирование распределений и получение окончательного результата:

a) формулировка измерительной задачи включает в себя:
1) задание выходной величины Y (измеряемой векторной величины);
2) выявление входных величин, составляющих векторную входную величину X, от которых зависит Y;
3) составление модели измерения, определяющей взаимосвязь Y с X в виде функции измерения 

[см. формулу (1)] или в более общем виде [см. формулу (2)];
4) приписывание распределений вероятностей (нормального, прямоугольного и т. д.) входным вели­

чинам Xj (элементам вектора X) или совместного распределения вероятностей входным величинам, не 
являющимся независимыми, на основе имеющейся о них информации,

b) трансформирование распределений предусматривает определение плотности совместного распре­
деления выходной величины Y на основе плотностей распределения входных величин X; и используемой 
модели измерения,

c) получение окончательного результата предполагает использование плотности распределения Y 
для определения:

1) оценки математического ожидания Y в виде у;
2) ковариационной матрицы Uy, соответствующей у;
3) области охвата, содержащей Y с заданной вероятностью р (вероятность охвата).
5.2.2 Формулировку измерительной задачи осуществляет метролог. Рекомендации по выбору плотно­

сти распределения [стадия 4) этапа а) в 5.2.1] для некоторых общих случаев приведены в JCGM 101 и в 
5.3. Этапы трансформирования распределений и получения окончательных результатов [б) и в) в 5.2.1], для 
которых приведены подробные указания, не требуют дополнительной метрологической информации и мо­
гут быть выполнены с любой требуемой вычислительной точностью для поставленной задачи.

П р и м е ч а н и е  — Как только этап постановки задачи а) в соответствии с 5.2.1 выполнен, тем самым 
плотность распределения вероятностей для выходной величины Y формально полностью определена. Однако 
вычисление математического ожидания, стандартного отклонения и области охвата может потребовать приме­
нения численных методов, обладающих некоторой степенью приближения.

5.3 Функции плотности вероятности для входных величин

5.3.1 Общие положения
Руководство по выбору плотностей распределения для входных величин X, на этапе формулировки 

измерительной задачи приведено в JCGM 101 (раздел 6) для некоторых общих случаев. Однако един­
ственным многомерным распределением, рассмотренным в JCGM 101, является многомерное нормальное 
распределение JCGM 101 (пункт 6.4.8). Это распределение приписывают входной величине X, если дос­
тупная информация об X включает в себя только оценку х и соответствующую ковариационную матрицу Ux. 
В 5.3.2 рассматривается еще одно многомерное распределение — f-распределение. Его применяют, если 
единственной доступной информацией о величине X является выборка наблюдений (предполагаемых неза­
висимыми) векторной величины из многомерного нормального распределения с неизвестными математи­
ческим ожиданием и ковариационной матрицей (см. также 6.5.4).

5.3.2 Многомерное f-распределение
5.3.2.1 Предположим, что для векторной вел ичиныХ размерностью А/х 1, имеющей многомерное нор­

мальное распределение N(|i,E) с неизвестными математическим ожиданием ц и ковариационной матрицей 
£  размерностью NxN, доступны п независимых наблюдений, п > N. Пусть ц -  искомое значение X. Тогда, 
выбирая в качестве априорных распределений для р и X соответствующие неинформативные распределе­
ния и используя теорему Байеса, получим, что совместным распределением для ц (или распределением, 

приписываемым X) будет многомерное f-распределение tv(x,S/n) c v  -  л-Л/степенями свободы [11], где

х = ^ ( х 1 + ... + х п), S = ^ [(х 1- х ) ( х 1- х ) т +... + (хп - х ) ( х „  - х ) т ]

П р и м е ч а н и е  — При наличии соответствующих оснований в качестве априорных распределений 
могут быть взяты другие распределения, что может привести к другому значению числа степеней свободы для
fv(x,S/n) или даже к другому типу распределения для X.
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5.3.2.2 Плотность распределения, полученного для X, имеет вид

9x(S) =
Г(п/2)

T(v/2)(nv)N12 [det(S/n)] - 1/2 1 + r ( ^ - x ) T( f ) " 1( ^ - x )
-Ш 2

где T(Z) — гамма функция аргумента z.
5.3.2.3 Математическим ожиданием и ковариацией X будут соответственно

Е(Х) = х, V(X) = у S 
у -  2 п ’

где Е(Х) определено только для v > 1 (что соответствует п > N + 1).
5.3.2.4 Чтобы сформировать случайное выборочное значение^ из tv(x,S/n), возьмем N случайных

выборочных значений Z„ / = 1, ... N, из стандартного распределения Гаусса N(0,1) и одно выборочное
2

значение w из %v -распределения с v степенями свободы. Тогда

Z = x  + L z J ^ , Z  = (Z 1,...,Z/V)T,

где L — нижняя треугольная матрица размерности Л/хЛ/ в разложении Холецкого S/л = 1_1_т [13]. 

П р и м е ч а н и е  — Матрица L может быть определена, например, как в [13].

5.3.3 Построение многомерных функций плотности распределения
Когда входные величины Хь ...,XN коррелированны, то обычно доступной о них информацией явля­

ется вид плотности распределения для каждой из этих величин (например, для одной — нормальное, для 
другой — прямоугольное и т.п.), оценки хь ..., xN, используемые в качестве математических ожиданий, 
стандартные неопределенности и(х.,),..., u(xN), используемые в качестве стандартных отклонений, и кова­
риации, соответствующие парам х,. Построить по маргинальным распределениямХ1..... Хмсовместную
плотность распределения для X можно, зная их копулу. Однако вышеуказанной исходной информации 
может соответствовать множество копул, поэтому вид построенной совместной плотности распределения 
будет не единственным.

5.4 Трансформирование распределений
5.4.1 В левой части рисунка 1 показан пример модели измерения c N  = 3 взаимно независимыми 

входными величинами Х = (Х |,Х2, Х3)т и т = 2 выходными величинами Y = (У-,, У2)т. Функция измерения —

f  = (f-i, f2)T■ Величинам Х„ / = 1,2, 3, приписаны плотности распределения 9х, (£;), a Y характеризуется 

совместной плотностью распределения д^Сп) = 9 уьу2('Пь 'П2) ■ В правой части рисунка 1 показан пример, в 

котором X, иХ2 взаимно зависимы и характеризуются совместной плотностью распределения 9хьх 2 (£i. ̂ 2 )

9x/^ i) 

QxJ&v) 

9х3йз)

у  = ЦХЬ Х2, Х3) 

y2 = f2(X1,X2,X3)
Л2)

9xbx jk v  ^2) 

9х3й  3)

У  = ЦХЬ Х2, Х3) 

y2 = f2(X1,X2,X3)
9уьу2(Л1. Л2)

Рисунок 1 — Трансформирование распределений для модели с N = 3 входными величинами и т = 2 выходными 
величинами, когда входные величины Хь Х2 и Х3 взаимно независимы (слева) и когда Х1 и Х2 взаимно зависимы

(справа)

5.4.2 Выходная величина Y может сама служить основой для получения следующей величины, на­
пример, Q. Тогда Убудет рассматриваться как входная величина в модели измерения, описываемой, на­
пример, функцией измерения t и имеющей вид

Q = t(Y)-
Так, Y может представлять собой набор эталонов массы, a Q — суммы некоторых из них.
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5.4.3 Объединение функций измерения f и t для двух подмоделей позволяет получить зависимость Q 
непосредственно от входных величин X. Однако в ряде измерительных задач желательно сохранить раз­
биение на подмодели, если они относятся к функционально разным этапам. Совокупность двух подмоде­
лей представляет собой пример модели многоступенчатого измерения (см. 3.12).

5.4.4 Случай, когда на финальном этапе многоступенчатого измерения с применением многомерных 
подмоделей имеется единственная выходная скалярная величина, может быть рассмотрен с применением 
JCGM101.

5.5 Получение итоговой информации

5.5.1 Оценка у  выходной величины Y  рассматривается как математическое ожидание E(Y). Ковариа­
ционная матрица Uy, соответствующая у, —  как ковариационная матрица V(Y).

5.5.2 Для вероятности охвата р  область охвата f?Y для Y получают решением уравнения

\9 х (ч Р п  = Р-
Ry

П р и м е ч а н и е  1 — Некоторым величинам могут быть поставлены в соответствие случайные 
переменные с распределениями, у которых математического ожидания и ковариационной матрицы не существу­
ет (см, например, 5.3.2). Однако область охвата для Y существует всегда.

П р и м е ч а н и е  2 — В общем случае существует более одной области охвата для заданной вероятности 
охвата р.

5.5.3 Прямого многомерного аналога вероятностно симметричного 100 р %-ного интервала охвата, 
рассмотренного в JCGM 101, не существует. Однако существует аналог наименьшего 100 р %-ного интер­
вала охвата —  это 100 р %-ная наименьшая область охвата.

5.6 Способы трансформирования распределений

5.6.1 Трансформирование распределений осуществляют несколькими способами:
a) аналитическими методами, обеспечивающими получение математического представления плотно­

сти распределения для Y;
b) применением закона трансформирования неопределенностей, основанного на замене функции из­

мерения ее аппроксимацией рядом Тейлора с членами разложения первого порядка [обобщение подхода, 
изложенного в JCGM 100 (пункт 5.1.2)];

c) численными методами [см. JCGM 100 (пункт G. 1.5)], в том числе с использованием метода Монте- 
Карло (ММК).

П р и м е ч а н и е  1 — Аналитические методы превосходят все прочие с той точки зрения, что они не 
используют приближений. Однако они применимы только в простых случаях. Такие методы в настоящем стандар­
те не рассматриваются за исключением примеров, где они используются для сравнения.

П р и м е ч а н и е  2 — Метод Монте-Карло в настоящем стандарте используется для получения распреде­
ления векторной выходной величины, а не в качестве метода имитационного моделирования. При оценивании 
неопределенности на этапе трансформирования распределений решаемая задача является детерминирован­
ной, поэтому в имитационном моделировании физического случайного процесса нет необходимости.

5.6.2 В законе трансформирования неопределенностей оценка х = Е(Х) для X и соответствующая 
ковариационная матрица Ux = V(X) подвергаются преобразованию посредством линеаризованной модели 
измерения. В настоящем стандарте данная процедура рассматривается для моделей разных типов.

5.6.3 В левой части рисунка 2 показан обобщенный закон трансформирования неопределенностей 
для модели измерения с N -  3 взаимно независимыми входными величинами X = (X,, Х2, Х 3)т и т -  2 
выходными величинами Y =  (У^, У2)т. Оценкой Xявляется х  = (х1,х 2,х 3)т с соответствующими стандартны­
ми неопределенностями и(х.,), и(х2) и и(х3). Оценкой Y является у  = (уь у2)т с соответствующей ковариаци­
онной матрицей Uy. В правой части рисунка 2 тот же закон показан для случая, когда X, и Х 2 взаимно 
зависимы и имеют ковариацию tv(xi,x2) оценокXi и х2.
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ХЬ Х2
*1, ► u(xj, и(х2) _►

Y1= f1(X1,X2,X3) u(xi, х2) = f1(X1,X2,X 3)
х2, и(х2) —► -► у. иу

y2 = f2(X1,X2,X3)
х3, и(х3) _►

У2 = f2(Xb X2, Х3)
х3, и(х3) —►

Рисунок 2 — Обобщенный закон трансформирования неопределенностей для N = 3 взаимно независимых 
величин Хь Х2 и Х3 и т = 2 взаимно зависимых выходных величин (слева) и тот же закон, но для взаимно

зависимых и X, и Х2 (справа)

5.6.4 В методе Монте-Карло совместное распределение вероятностей для X, представленное в циф­
ровом виде, трансформируется с помощью модели измерения для того, чтобы получить дискретное пред­
ставление совместного распределения вероятности для Y, на основе которого затем получают окончатель­
ные результаты измерения.

6 Способ оценивания неопределенности по GUM

6.1 Общие положения

6.1.1 В настоящем стандарте способ оценивания неопределенности через трансформирование нео­
пределенностей, рассмотренный в JCGM 100 (пункты 6.2 и 6.3) для моделей измерения вида Y = /(X), 
обобщен на более широкий класс моделей с многими выходными переменными. Хотя непосредственно в 
JCGM 100 такие модели не рассматриваются, для их изучения могут быть применены те же самые основ­
ные принципы трансформирования оценок входных величин и соответствующих им неопределенностей в 
оценки выходных величин и соответствующих им неопределенностей. Для математического представле­
ния указанных процедур вместо сумм величин с подстрочными индексами, как это сделано в JCGM 100 , 
удобнее использовать компактную матрично-векторную форму записи, хорошо приспособленную для со­
временных пакетов программ и языков программирования.

6.1.2 Для применения закона трансформирования неопределенностей используется та же информа­
ция о входных величинах, что и для одномерной модели измерения, рассмотренной в JCGM 100:

a) оценка х = (х.,,..., xN)T входной величины X;
b) ковариационная матрица Ux, соответствующая х, содержащая ковариации u{xhXj), /’= 1, N, 

j=  1, ..., N, соответствующие х, и Ху.
6.1.3 Описание трансформирования неопределенностей, приведенное в 6.2 и 6.3, распространяется 

на модели с действительными величинами, включая случаи комплексных величин, представленных пара­
ми действительных составляющих. Трансформирование неопределенностей в случае моделей с комплек­
сными величинами рассматривается в 6.4 (см. также 5.1.3).

6.1.4 Способ получения области охвата для векторной выходной величины описан в 6.5.

6.2 Трансформирование неопределенностей для многомерных моделей измерения с 
явным видом функциональной зависимости

6.2.1 Общие положения
6.2.1.1 Многомерная модель измерения с явным видом функциональной зависимости между выход­

ной величиной Y = (У,, ..., Ym)T и входной величиной X = (X,, ..., XN)T имеет вид

Y = f(X), f = f i ..... У т,

где f  обозначает многомерную функцию измерения.

П р и м е ч а н и е  — Аргументами отдельных функций /)(Х) могут быть разные подмножества X. При этом 
каждый элемент X должен являться аргументом как минимум одной функции /)(Х).

6.2.1.2 При заданной оценке хдля X оценка у для Y имеет вид

У = f(x).
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6.2.1.3 Ковариационная матрица размерности тхт, соответствующая у, имеет вид

и(У ьУ д ---и {уь у т) ~
и„

У(Ут’У'у) У(Ут’Ут)

где Cov{yj, yj) = u2(yj), и определяется по формуле

иу = схихсхт,

где Сх— матрица чувствительности размерности m xN, определяемая по формуле
(3)

df̂ df.
ах '" ЗХм

dfm dfm
ах ' II

где все производные берутся в точке X = х  ([19], страница 29).
6.2.2 Примеры
Пример 1 — Активное и реактивное сопротивления элемента цепи [JCGM (раздел Н.2)]
Активное R и реактивное Хсопротивления элемента цепи определяют путем измерения амплитуды V 

изменяющегося по гармоническому закону напряжения на его клеммах, амплитуды / проходящего через 
элемент переменного тока и фазового сдвига ф между напряжением и силой тока. Двумерная модель 
измерения для R и X, выраженных через V, / и ф, имеет вид

R = ^(\/,1,ф) = ycos0, X  = f2(V ,l^ )  =ysin0. (4)

В обозначениях, принятых в настоящем стандарте, N = 3, т = 2, X = (У,1,ф)Т и Y = (R,X)T.

Оценку y  = (R,x)T активного и реактивного сопротивлений получают по формуле (4) в точке 

х  = (у,],ф)Т — оценке входной величиныХ.
Ковариационную матрицу Uy размерности 2x2, соответствующую у, рассчитывают по формуле (3), 

где Сх— матрица чувствительности размерности 2x3, получаемая вычислением

"а/й dfi ах cos ф V cos ф \/ sin 0
dV а/ дф 1 I2 /
df2 df2 df2 sin 0 \/ sin 0 V cos ф
д\/ dl дф / /2 1

вточкеХ = х, a Ux — ковариационная матрица размерности 3x3, соответствующая х.

П р и м е ч а н и е  — В JCGM 100 реактивное сопротивление обозначено X. Это обозначение использовано 
и в настоящем стандарте. Реактивное сопротивление X  является элементом векторной выходной величины Y, 
и его не следует путать с векторной входной величиной X.

Пример 2 — Коэффициент отражения, измеряемый микроволновым рефлектометром (подход 1)
Комплексный коэффициент отражения Г, измеряемый микроволновым рефлектометром, например, 

таким который используют для определения повреждения кабельных линий, описывается моделью с ком­
плексными величинами в виде

aW + b
1 "  cW + 1 ’ (5)

где W — комплексный неисправленный коэффициент отражения, а а, Ь и с — комплексные коэффициенты, 
полученные при градуировке (калибровке) рефлектометра [10,16,26].
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В обозначениях настоящего стандарта, описывая комплексные величины через их действитель­
ные и мнимые части, получаем N = 8, т -  2, X = (aR,a/,bR,b/,cR,c/, WR, Wj) и Y = ( r R,rj)T.

Оценку у = (f R, f комплексного коэффициента отражения в виде его действительной и мнимой

частей вычисляют по формуле (5), подставляя в нее оценку х входной величины X.
Ковариационную матрицу Uy размерности 2x2, соответствующую у, рассчитывают по формуле (3), 

где Сх — матрица чувствительности размерности 2x8, получаемая при вычислении производных

d rR d rR d rR d rR d rR d rR d rR d rR

daR да/ dbR dbj dcR dCj dWR dW,

<ЭГ, дГ, дГ, дГ, дГ, дГ, дГ, дГ,

daR да/ dbR dbj dcR dCj dWR dW,

вточкеХ = х, a Ux — ковариационная матрица размерности 8x8, соответствующая х.
Пример 3 — Калибровка эталонов массы
Этот пример описывает модель многоступенчатого измерения (см. 3.12,5.4.2 и 5.4.3).
Набор из q эталонов массы со значениями m = (тЛ..... mq)J калибруют сличением с эталоном кило­

грамма с использованием компаратора массы, калибровочной гири для определения калибровочной функ­
ции компаратора и ряда вспомогательных приборов, таких как термометр, барометр и гигрометр для опре­
деления поправок на выталкивающую силу воздуха. Эталон килограмма и гиря имеют массы mR и ms, 
соответственно. Калибровку проводят в соответствии с подходящей методикой измерений посредством 
достаточного числа /(сличений между наборами эталонов с получением видимых, т. е. заметных при изме­
рениях в воздухе разностей 5 = (5),..., <5Л)Т. Вычисляют соответствующие поправки на выталкивающую 
силу воздуха b = фь ..., bk)T. Разности масс в вакууме X получают из подмодели X = f(W), в которой 
W = (mR, ms, ST, bT)T.

Оценку у = (ть ...,тч У  масс m обычно получают решением по методу наименьших квадратов пере­

определенной системы уравнений Am = X, где А — матрица размерности k x q  с элементами равными 
единице, минус единице или нулю в соответствии с тем, какие эталоны массы включены в сличение, с 
учетом неопределенностей, соответствующих оценке х величины X. В этом случае формула для определе­
ния у имеет вид

у = UyATUx 1x, (6)

где ковариационную матрицу Uy размерности qxq, соответствующую у, получают по формуле 
Uy=(ATUx- 1A)-1,a U x — ковариационная матрица размерности /сх/с, соответствующая х. Более подробное 
описание подмодели, а также процедура получения Ux через Uw— ковариационной матрицы, соответству­
ющей оценке w величины W, — приведено в [3].

Многомерная модель измерения для этого примера имеет вид

Y = UyATUx 1X,

где UyATUx-1X — функция измерения. В принятых обозначениях настоящего стандарта N = k,m  = qw Y =m .

П р и м е ч а н и е  — С вычислительной точки зрения для получения оценки у предпочтительнее использо­
вать не формулу (6), а алгоритм, основанный на ортогональном разложении матриц (см. [13]).

6.3 Трансформирование неопределенностей для многомерных моделей измерения с
неявным видом функциональной зависимости

6.3.1 Общие положения
6.3.1.1 Многомерная модель измерения с неявным видом функциональной зависимости между вы­

ходной величиной Y = (Y ,̂ ..., Ym)T и входной величиной Х = (Хь ..., XN)T имеет вид

h(Y,X) = 0, h = (hb ..., hm) \

6.3.1.2 При заданной оценке х величины X оценку у величины Y получают решением системы 
уравнений

h(y,x) = 0. (7)
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П р и м е ч а н и е  — Систему уравнений (7) относительно у обычно решают численными методами, напри­
мер методом Ньютона [12] или одной из его модификаций, задавая начальное значение корня у(°) и последо­
вательно приближаясь к решению.

6.3.1.3 Ковариационную матрицу Uy размерности т хт , соответствующую у, получают решением 
системы уравнений

СуиуСут = СхихСхт, (8)

где Су — матрица чувствительности размерности т хт , содержащая частные производные dhtldYj, 
I -  1, ..., т, j  = 1, ..., m, а Сх — матрица чувствительности размерности m xN, содержащая частные 
производные <Э/7,/<ЭХ;, I -  1, ..., т, / = 1..... N. Производные вычисляются в точках X = х и Y = у.

П р и м е ч а н и е  1 — Ковариационная матрица 1)у в формуле (8) не определена, если матрица Су является 
вырожденной (сингулярной).

П р и м е ч а н и е  2 — Формулу (8) получают аналогично формуле (3) с использованием правила дифферен­
цирования неявной функции.

6.3.1.4 Из формулы (8) следует, что решение относительно ковариационной матрицы Uy может быть 
записано в виде

иу = сихст, (9)

Iкот
*оIIо

(10)

матрица размерности m xN, сформированная из коэффициентов чувствительности.
6.3.1.5 Процедура расчета матрицы Uy приведена в приложении В. Применение для этих целей не­

посредственно формул (9) и (10) не рекомендуется вследствие неустойчивости соответствующих им алго­
ритмов вычислений.

6.3.2 Примеры
Пример 1 — Давления, задаваемые грузопоршневым манометром
Давление р, задаваемое грузопоршневым манометром, определяют в соответствии с уравнением

преобразования, имеющим вид

" U 1 ~Pa/Pw)9l
Р ~ у40(1 + Лр)(1 + а8в) > (11)

где mw— полная приложенная масса (груза и поршня), ра и рш— плотности воздуха и приложенного груза 
соответственно, д; — локальное значение ускорения свободного падения, А0— эффективная площадь 
манометра при нулевом давлении, Я — коэффициент деформации поршневой пары манометра, а  — 
коэффициент теплового расширения, 5в— отклонение от нормальных условий по температуре (20 °С) [17].

Пусть Pi, ...,pq обозначают давления уравновешивания для приложенных масс, соответственно, 
/77w1, ..., mwq и температурных отклонений 8в^,..., 86q.

В обозначениях, принятых в настоящем стандарте, N = 6 + 2q, т = q, X = (A0,X,a,86-\,mw/i, ..., 
Seq,mwq,pa, pw,g, )T, Y = (рь ..., pq )т.

Модель измерения, определяющая вид зависимости междуХ и Y, имеет вид

V Y’X) = A)Py(1 +cc8ej)-m w j(1 -  palp w)g, -0 ,у '=  1, ...,q. (12)
Оценку ру величины ру получают решением уравнения (12) при заданных оценках А0, Л,а, 86j, mwj,

pa, p w и g;. Однако полученные оценки P j, j=  1, ..., q, имеют соответствующие ковариации, т. к. все они 
зависят от одних и тех же случайных величин А0, Л,а, ра, pw и д,.

Ковариационную матрицу Uy размерности qxq, соответствующую у = (p-\,- -,Pq) , вычисляют по фор­

муле (8), где Су — матрица чувствительности размерности qxq, содержащая частные производные dh/ldYj, 
I -  1, ..., q , j -  1, ..., q-, Сх — матрица чувствительности размерности дх(6  + 2q), содержащая частные 
производные dhjldX-,, I -  1, . . . , q , i -  1, ..., 6 + 2q, (все производные берут в точках X = х и Y = у), a Ux — 
ковариационная матрица размерности (6 + 2q) х  (6 + 2q), соответствующая х.

П р и м е ч а н и е 1  — В данном примере выражение зависимости У) (или, что то же самое, р,) через X может 
быть задано в явном виде как решение квадратного уравнения. Однако числовой алгоритм нахождения корня
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квадратного уравнения не всегда будет устойчив. Более того, иногда в уравнение преобразования включают 
дополнительные члены, представляющие собой степени р более высоких порядков. В таких случаях получение 
явной функции измерения не всегда возможно.

П р и м е ч а н и е  2 — Рассматриваемая в данном примере модель измерения может быть представлена 
разными способами. Например, вместо зависимости, описываемой формулой (12), может быть использована 
модель в виде сравнения с нулем разности между левой и правой частями уравнения (11). От выбора модели 
зависит эффективность и устойчивость численного решения.

П р и м е ч а н и е  3 — Могут быть рассмотрены более полные модели давления для грузопоршневого 
манометра, которые включают, например, поправки, учитывающие эффекты поверхностного натяжения.

П р и м е ч а н и е  4 — Функции измерения имеют в качестве своих аргументов не все входные величины. 
Так, в выражение для у'-й функции входят только А0, Я, а, 1Щ, mwj, pa, pw и gh

Пример 2 —  Коэффициент отражения, измеренный микроволновым рефлектометром (подход 2)
Другой подход к задаче, описанной в примере 2 из 6.2.2, заключается в выражении зависимости 

между входной величиной X = (aR, a,, bR, bh cR, ch WR, W/)7 и выходной величиной Y = ( r R, Г,)т через 
двумерную модель измерения, имеющую вид

fti(Y,X) = 0, ft2(Y,X) = 0, (13)

где /?i(Y,X) и (72(Y,X) соответственно действительная и мнимая части выражения

(cW  + 1 )Г -  (aW + b).

Преимущество этого подхода состоит в том, что вычисление производных и, следовательно, коэффи­
циентов чувствительности производится более прямым способом.

Оценку у  = ( r R, r , ) T комплексного коэффициента отражения находят в результате подстановки

X = х в формулы (13) и численного решения полученных уравнений.
Ковариационную матрицу Uy размерности 2 x 2 , соответствующую у, вычисляют по формуле (8), 

где Су— матрица чувствительности размерности 2 x 2 , содержащая частные производные d h ,ld Y j,l-  1,2, 
у= 1 ,2 ; Сх —  матрица чувствительности размерности 2 x 8 , содержащая частные производныеdhfldXj, 
I -  1 ,2, / = 1, ..., 8 (все производные вычисляют в точках X = х и Y = у), a Ux —  ковариационная матрица 
размерности 8 x8 , соответствующая х.

Пример 3 —  Калибровка рефлектометра
Калибровку рефлектометра (см. пример 2 из 6.2.2) обычно проводят, измеряя неисправленный коэф­

фициент отражения W  при применении эталонов с заданными значениями коэффициента отражения Г. 
Часто в этих целях используют три эталона, что позволяет получить систему из трех совместных 
уравнений:

(cWy + 1 )Гу -  (aWy + Ь) = 0, у = 1 ,2 , 3. (14)

Разделение выражений в левой части уравнения (14) на действительную и мнимую части приведет 
к получению шести совместных линейных уравнений, решение которых позволяет найти действительную 
и мнимую части коэффициентов а, b и с калибровочной функции при заданных значениях действительной 
и мнимой частей неисправленных коэффициентов отражения Wy и коэффициентов отражения Гу для 
эталонов.

В обозначениях, принятых в настоящем стандарте, Л/ = 12, m = 6,
X = (И^1 :R,Wj ,,-Г| д ,Ц  j,W 2iR,W2 i , r 2д ,Г 21,\/\/3 R,W3j , r 3 R, r 3j  )т и Y = (а^а/ф^Ь/.с^с,)1".

Входные и выходные величины связаны между собой посредством многомерной модели измерения, 
в которой /?2y_i(Y,X) и /?2y(Y,X),y = 1 ,2, 3, —  соответственно действительная и мнимая части левой части 
уравнения (14).

Оценку у = (aR,ah bR,bi,cR,C iy  калибровочных коэффициентов получают, подставляя оценки для Wy

и Гу в уравнения (14) и решая эти уравнения численно.
Ковариационную матрицу Uy размерности 6 x 6 , соответствующую у, вычисляют по формуле (8), 

где Су —  матрица чувствительности размерности 6 x6 , содержащая частные производные dhfldYj, 
1= 1 , ..., 6, у = 1 , ..., 6; Сх —  матрица чувствительности размерности 6x12, содержащая частные производ­
ные dhildXh I -  1, ..., 6, / = 1, ..., 12 (все производные вычисляют в точках X = х и Y = у), a Ux —  ковариа­
ционная матрица размерности 12x12, соответствующаях.
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П р и м е ч а н и е  1 — При наличии программы обработки данных, работающей с комплексными величи­
нами, разделение уравнений модели измерения на действительную и мнимую части необязательно. Эти урав­
нения могут быть решены непосредственно для а, b и с.

П р и м е ч а н и е  2 — Каждое j-e уравнение модели измерения включает только четыре входные вели­
чины: WjR, Wjh rj  R и r j:l.

6.4 Трансформирование неопределенности для моделей с комплексными величинами

В приложении А приведен компактный алгоритм вычисления частных производных многомерных ком­
плексных функций измерения первого порядка, которые необходимо знать при распространении закона 
трансформирования неопределенностей на модели с комплексными величинами. Данный алгоритм может 
быть применен для многомерных моделей измерения с комплексными величинами общего вида.

Пример — Коэффициент отражения, измеряемый микроволновым рефлектометром (подход 3) 
Рассмотрим вновь пример 2 из 6.2.2.
Комплексная выходная величина Y = Г  и комплексная входная величина X = (Х-, ,Х2,Х3,Х4)Т = (a,b,c,W)T 

связаны между собой моделью измерения, описываемой формулой (5). С учетом результатов, приведен­
ных в приложении А, матрицу чувствительности Сх размерности 2 x8  получают в виде

Сх = Сь Сс Cw],

где

С, = м ( £ )  t = a,b,c,W

в точке оценки х для величины X. Например, для

дГ 1
d b “ cW+1 (15)

использование результатов приложения Адает

Сь
Qr Q, 

Q i  Qr

где Qr и Q, — соответственно действительная и мнимая части выражения в правой части формулы (15). 

Ковариационную матрицу Uy размерности 2x2, соответствующую у=  Г , где

u ( f R, f R) u ( f R, f , )

1
с: N>

и ( 4 . л )

_ u ( f „ f R) u ( f „ f l ) _ у ( л Л ) " 2( л )  .

вычисляют по формуле (А. 1) приложения А, где Ux— ковариационная матрица размерности 8x8, соответ­
ствующая х.

6.5 Область охвата векторной выходной величины

6.5.1 Общие положения
6.5.1.1 В некоторых областях метрологии, например, связанных с измерениями электрических вели­

чин, для дальнейшего использования результатов измерения выходную величину удобно оставить в век­
торной форме вместе с поставленным ей в соответствие совместным распределением вероятностей. Такое 
представление результата измерения позволяет в максимальной степени сохранить всю полученную ин­
формацию о выходной величине.

6.5.1.2 Если же результат измерения представляют в виде полученной оценки у  выходной величи­
ны Y= (Y |,..., Ym)T, соответствующей ей ковариационной матрицы Uy и вероятности охвата р, то это требует 
определения области охвата RY в гл-мерном пространстве, которая содержит Y с вероятностью р.

6.5.1.3 Если доступная информация о выходной величине Y содержит только значения оценок у  и Uy, 
то в соответствии с принципом максимума энтропии случайной величине, ассоциированной с измеряемой 
величиной и характеризующей имеющиеся на данный момент представления о ее возможных значениях, 
приписывают многомерное нормальное распределение N(y,Uy) [см. JCGM 101 (пункт 6.4.8)].
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П р и м е ч а н и е  — Такой выбор функции распределения согласуется с используемым в способе 
оценивания неопределенности по GUM представлением о нормальном распределении скалярной выходной 
величины У в случаях, когда число степеней свободы, связанное с оценкой У, бесконечно.

6.5.1.4 В общем случае, как только получено совместное распределение для выходной величины Y, 
появляется возможность определить вероятность охвата для некоторой заданной области охвата или, на­
оборот, построить область охвата для заданной вероятности охвата. Эта задача не вызывает затруднений, 
если совместное распределение является многомерным нормальным распределением (см. 6.5.2,6.5.3 
и 6.5.4). Для других распределений возможно получение приближенных решений с точностью, приемлемой 
для практических задач, благодаря использованию численных методов, таких как метод Монте-Карло 
(см. раздел 7).

6.5.1.5 В 6.5.2 рассматривается метод определения области охвата для двумерной величины, что 
потом позволит распространить его на общий многомерный случай (см. 6.5.3). Также рассматривается 
определение области охвата для случая, когда оценка выходной величины получена усреднением резуль­
татов наблюдений этой величины, представляемых как случайная независимая выборка из многомерного 
нормального распределения (см. 6.5.4).

6.5.2 Двумерный случай
6.5.2.1 На примере двумерной модели измерения можно продемонстрировать все отличия в 

определении многомерной области охвата от получения одномерного интервала охвата. Рассмотрим точку 
Y = (У.|, У2)т в прямоугольной системе координат, где У, является абсциссой точки, а У2 ее ординатой. 
Пусть измерение обеих координат проведено с использованием одного средства измерений. Полученная 
информация об Y будет включать в себя оценки у-, и у2 ее координат, стандартные неопределенности и(у-,) 
и и(у2), соответствующие этим оценкам, и ковариацию и(уь у2), наличие которой в данном случае обуслов­
лено использованием одного и того же средства измерений для каждой координаты.

6.5.2.2 Согласно способу оценивания неопределенности по GUM при наличии информации о выход­

ной величине Y, указанной в 6.5.2.1, ей приписывают плотность распределения в виде дву­

мерного нормального распределения N(y,Uy) (см. 6.5.1.3), где

> 1 ’
, Uv =

u2( / i )  и ( /1>у2)

У 2. ’ У u(y2, / i )  и2{у2)

6.5.2.3 Из возможных форм областей охвата рассматриваются две:
a) эллипс с центром в точке у  [19, страница 38], описываемый формулой

(Л -У )Т Ц Г1С п -у ) = /с£, (16)

где кр — постоянная, которую находят из условия, что интеграл от 9ул,у2 (Hi.^2 ) по площади, ограниченной

эллипсом, равен р. При данной форме области охвата в учет принимается взаимная зависимость между 
У| и У2. Если Y характеризируется нормальным распределением, то величина

(Y -  y)TUy_1(Y- у) (17)

имеет распределение хи-квадрат с двумя степенями свободы. Отсюда следует, что представляет собой 
квантиль уровня р указанного распределения, т. е.

Р = Рг(х1</Ср),
2

где %2 имеет распределение хи-квадрат с двумя степенями свободы. Для вероятности охвата р = 0,95 
кр -  2,45 (см. 6.5.3);

b) прямоугольник с центром в точке у  со сторонами, параллельными осям и равными длинам по 
отдельности определенных интервалов охвата для У: и У2. Интервал охвата для У| находят из маргиналь­
ного распределения У,, определяемого формулой

0у1( ^ ) =  I  9уьуг(ЛьЛ2№Л2’ (18)

и он не зависит от имеющейся информации о величине У2. То же самое справедливо для интервала охвата 
для У2. Интервалы охвата у  ± kqy(yj),j=  1,2, определяют для вероятности охвата
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q =  1 - ( 1  - р ) /2  = (1 +р )/2 . (19)

Данный прямоугольник представляет собой область охвата для Y, соответствующий вероятности охвата не 
меньшей р [5]. Если Y характеризуется нормальным распределением, то маргинальное распределение (18) 
для У,, равно как и распределение для У2, также будет нормальным. Отсюда следует, что kq представляет 
собой квантиль уровня q стандартного нормального распределения, т. е.

q = P r ( \ Z \ < k q),

где Z  имеет нормальное распределение N(0,1). Для вероятности охвата р  = 0,95 д = 0,975 v\kq- 2 ,2 4  
(см. 6.5.3).

П р и м е ч а н и е  1 — При выполнении условий применимости способа оценивания неопределенностей 
по GUM область охвата в виде эллипса, указанная в перечислении а), является наименьшей 100 р %-ной облас­
тью охвата.

П р и м е ч а н и е  2 — Если Ул и У2 взаимно независимы, то q в формуле (19) может быть заменено 
на q = р1/2.

Пример 1 — Рассмотрим двумерную величину Y , характеризуемую нормальным распределением 
N(y,Uy), где

У -
0,0 

1,0 ;

На рисунке 3 слева показаны 95%-ные эллиптическая и прямоугольная области охвата для Y, 
полученные методами а) и Ь). Также на рисунке показано 1000 точек, представляющих случайную выбор­
ку из указанного распределения вероятности. Интервал охвата в форме эллипса будет иметь наимень­
шую площадь при заданной вероятности охвата. Для данной случайной выборки 950 из 1000 точек содер­
жатся внутри эллиптической области охвата площадью 26.6 квадратных единиц и 953— внутри прямо­
угольной области охвата площадью 28.4 квадратных единиц.

У2

У̂

Рисунок 3 — Эллиптические и прямоугольные области охвата для двумерной величины Y, описываемой нормаль­
ным распределением, элементы которой У, и У2 взаимно независимы (слева) и коррелированны (справа)

Пример 2 — Рассмотрим двумерную величину Y, характеризуемую нормальным распределением
N(y,Uy), где

2,0 1,9
1,9 2 ,0 /

На рисунке 3 справа показаны 95%-ные эллиптическая и прямоугольная области охвата для Y, 
полученные методами а) и Ь). В отличие от примера 1, элементы Y1 и У2 величины  У являются коррели­
рованными. Для случайной выборки из указанного распределения 957 из 1000 точек содержатся внутри
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эллиптической области охвата площадью 11.8 квадратных единиц и 972 — внутри прямоугольной обла­
сти охвата площадью 40.1 квадратных единиц, что показывает, что вероятность охвата для прямо­
угольной области превышает 0.95. Область в форме прямоугольника, построенная согласно методу Ь) 
без учета коррелированности элементов выходной величины и распределения точек выборки на плоско­
сти, может рассматриваться как представление области охвата для У, не соответствующее данной 
измерительной задаче. Прямоугольник со сторонами, параллельными осям эллипса, будет иметь мень­
шую площадь и мог бы рассматриваться, как более подходящая область охвата, но неудобство его 
применения состоит в том, что для него теряется ясный физический смысл соответствия формы 
построенной области охвата элементам выходной величины.

6.5.2.4 Другие примеры областей охвата для выходных величин двумерной модели измерения приве­
дены в разделе 9.

6.5.3 Многомерный случай
Если размерность вектора выходной величины более двух, то способы построения областей охвата 

становятся менее наглядным, но по существу ничем не отличаются от описанных в перечислениях а) и Ь) 
в 6.5.2.3 для двумерного случая. Необходимо построить такую область f?Y в m-мерном пространстве, кото­
рая содержала бы Y = (У1......Ут) с вероятностью р. Как и в 6.5.2.3. [перечисления а) и Ь)], рассматривают­
ся формы Яу ДвУх видов:

а) эллипсоид в m-мерном пространстве, описываемый формулой (16). Если Y харакгеризируется мно­
гомерным нормальным распределением, то величина, задаваемая формулой (17), имеет распределение

хи-квадрат с т степенями свободы. Таким образом, кр представляет собой квантиль уровня р указанного 

распределения, т. е.

р = Рг(Х2т < к 2р),

где х% имеет распределение хи-квадрат cm  степенями свободы. Значения коэффициента охвата кр для 
вероятности охвата р = 0,95 и разных значений т приведены в таблице 1;

Ь) параллелепипед в m-мерном пространстве с центром в точке у с ребрами, параллельными осям 
элементов Y}, j  = 1,..., т, выходного вектора Y в прямоугольной системе координат и равными длинам по 
отдельности определенных интервалов охвата для У). Интервалы охвата определяют для вероятности ох­
вата q = 1 -  (1 -  p)hn. Данный параллелепипед представляет собой область охвата для Y, соответствующий 
вероятности охвата не меньшей р [5]. Для каждого элемента Ypj -  1,..., т, интервал охвата вычисляют 
через его маргинальное распределение. Если Y характеризуется нормальным распределением, то марги­
нальное распределение для каждого Y) также будет нормальным. Отсюда следует, что, как и в 6.5.2.3. 
[перечисление b)], kq представляет собой квантиль уровня q стандартного нормального распределения. 
Значения коэффициента охвата kq для вероятности охвата р -  0,95 и разных значений т приведены 
в таблице 2.

Т а б л и ц а  1 — Коэффициенты охвата для областей охвата в форме m-мерного эллипсоида, соответствующие 
вероятности охвата р = 0,95

т кР т кР т кР т кР

1 1,96 6 3,55 11 4,44 20 5,60
2 2,45 7 3,75 12 4,59 25 6,14
3 2,80 8 3,94 13 4,73 30 6,62
4 3,08 9 4,11 14 4,87 40 7,47
5 3,33 10 4,28 15 5,00 50 8,22

Т а б л и ц а 1 — То же, что в таблице 1, но для областей охвата в форме m-мерного параллелепипеда

т кР т кР т кР т кР

1 1,96 6 2,64 11 2,84 20 3,02
2 2,24 7 2,69 12 2,87 25 3,09
3 2,39 8 2,73 13 2,89 30 3,14
4 2,50 9 2,77 14 2,91 40 3,23
5 2,58 10 2,81 15 2,94 50 3,29
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П р и м е ч а н и е  1 — Для одномерного случая (т = 1) выражение (16) упрощается до

(7J- у)2 = к2ри2у,

что дает граничные точки интервала охвата для У

г? = у + kpUy.

Для вероятности охвата р = 0,95 кр = 1,96 (см. таблицу 1).
П р и м е ч а н и е  2 —  Если У), j  = 1,..., т, взаимно независимы, то q может быть заменено на q = p 1/m.

6.5.4 Область охвата для оценки в виде выборочного среднего из многомерного 
нормального распределения
Рассмотрим п векторов у1;..., уп размерностью т  х  1 каждый, п >  т, соответствующих повторяю­

щимся наблюдениям многомерной величины Y = (У ,......  Ym)T. Предположим, что ......уп могут быть
интерпретированы как реализации независимых случайных векторов Y.|,..., Y„, каждый из которых характе­
ризуется многомерным нормальным распределением с математическим ожиданием д  и ковариационной 
матрицей £. Определим среднее и ковариационную матрицу

А  = ^ (Y , + ... + Y„), V  = ^[(Y , -  A)(Y| -  А )т + ... + (Y„ -  A)(Y„ -  A )T]

размерности m  x  1 и m  x  m  соответственно. Тогда случайная переменная

^ ( А - д )т У - 1( А - д )

будет иметь распределение Фишера Fmn_m (называемое также F-распределением) с ал и п -т  степеней 
свободы [19, пункт 3.5.2.1].

П р и м е ч а н и е  — Аналогом этого результата для одномерной величины будет следующее утвержде­
ние: для независимых случайных переменных У|, ..., У„, каждая из которых характеризуется одномерным нор­
мальным распределением с математическим ожиданием р и дисперсией а 2, величина (п -  1)1/2 (А -  p)IS имеет 
f-распределение с л—1 степенями свободы, где

Л = ^ ( Y i ......Y„), S2 = -1[(У -  A f  + ... + (Yn -  A)2].

Пример — Рассмотрим n = 12 повторных парных наблюдений объемных долей микроклина (Af) и 
биотита (Аг) в одном тонком разрезе гранита G-2 [4, 25]. На рисунке 4 значения парных наблюдений 
изображены в виде точек. На нем также построена 95%-ная эллиптическая область охвата для мате­
матического ожидания величины А размерности 2 x 1 .  Оценка математического ожидания и соответ­
ствующая ей ковариационная матрица имеют вид

27,6 1,202 -0,396
а = 6,2 , V = -  0,396 0,381 .

а 95-я перцентиль распределения F2:w равна 4,10.95%-ная область охвата для А — это эллипс, описыва­
емый формулой

(А-а)Т v 1 (А-а) = 4,10 х ^  .

Небольшое число наблюдений в данном примере не позволяет сделать содержательные выводы  
о том, насколько справедливы исходные допущения, чтобы считать построенную область охвата 
достоверной.
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Объемная доля микрокпина, %

Рисунок 4 — Двенадцать пар выборочных значений и 95%-ная эллиптическая 
область охвата вокруг их выборочного среднего

7 Метод Монте-Карло

7.1 Общие положения

7.1.1 В настоящем разделе рассматривается применение метода Монте-Карло для трансформирова­
ния распределений (соответствующая процедура описана в 7.1.7 и представлена в виде диаграммы на 
рисунке 5).

7.1.2 Метод Монте-Карло позволяет реализовать общий подход к получению дискретного приближен­
ного представления G функции распределения GY(t|) для  Y [18, страница 75]. Суть подхода состоит в 
получении повторных выборок из плотности распределения для Х, (или совместной плотности распределе­
ния для X) и вычислении для каждого выборочного значения векторной выходной величины.

7.1.3 Поскольку GyCn) содержит максимально полную информацию о Y, любые характеристики Y, 
такие как математическое ожидание, дисперсия и ковариация, а также области охвата могут быть рассчита­
ны из полученного приближения G. В общем случае достоверность получаемых характеристик возрастает 
с увеличением числа выборок.

7.1.4 Полученные в соответствии с 7.1.2 значения выходной величины рассматриваются как незави­
симая выборка из совместного распределения вероятности для Y. Математические ожидания, дисперсии 
(и высшие моменты), а также ковариации могут быть рассчитаны непосредственно по этим выборочным 
значениям. Определение областей охвата требует предварительного анализа полученных значений 
(см. 7.7).

7.1.5 Пусть ур г=  1, ..., М, обозначает выборочные значения выходной величины (см. 7.1.4). 
Выборка уг позволяет получить приближенные значения математического ожидания E(Y) и дисперсии V(Y) 
величины Y. Как правило, в качестве моментов величины Y [включая E(Y) и V(Y)] принимают соответствую­

щие выборочные моменты. Обозначим Муо число векторов в выборке уг, для которых каждый их элемент 

не превосходит соответствующий элемент некоторого вектора у0 размерности т х 1 .  Тогда вероятность 
Pr(Y < у0) может быть приближенно представлена отношением Муо j M . Таким образом, выборка векторов

У !,..., ум позволяет получить дискретное представление функции распределения Gy (ti).
7.1.6 Приближение G является первым результатом применения метода Монте-Карло и представляет 

собой матрицу размерности т х М

G =  (У1 . -.Ум )-
7.1.7 Процедура применения метода Монте-Карло для трансформирования распределений в случае
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явной зависимости Y  через X  и заранее заданного числа испытаний М  (в противном случае см. 7.8) показа­
на в виде диаграммы на рисунке 5 и включает в себя следующие этапы:

a) выбирают число испытаний М  (см. 7.2);
b) формируют в каждом из М  испытаний Л/-мерный вектор входных величин Х „ элементами которого 

являются случайные выборочные значения из распределений для X, или совместного распределения 
для X (см. 7.3);

c) рассчитывают для каждого выборочного значения вектора входной величины вектор выходной 
величины Y, получая таким образом выборку векторов выходной величины объемом М  (см. 7.4);

d) формируют представление G функции распределения Y  в виде ряда Л4значений векторной выход­
ной величины (см. 7.5);

e) на основе G вычисляют оценку у  величины Y  и ковариационную матрицу Uy, соответствующую у  
(см. 7.6);

f) на основе G строят соответствующую область охвата для Y  для заданной вероятности 
охвата р (см. 7.7).

П р и м е ч а н и е  — Выборочное среднее для М векторных выходных величин имеет математическое 
ожидание E(Y) и дисперсию V(Y)/Af. Таким образом, расхождение между E(Y) и его оценкой в среднем будет 
пропорционально Л4~1/2.

7.1.8 Эффективность метода Монте-Карло при определении у, Uy и области охвата для Y зависит от 
адекватного выбора числа испытаний М  [этап а) в 7.1.7]. Рекомендации по выбору достаточного числа 
испытаний М  и по другим вопросам реализации метода Монте-Карло приведены в [8] (см. также 7.2 и 7.8).

7.2 Число испытаний метода Монте-Карло

7.2.1 Для применения метода Монте-Карло необходимо выбрать число испытаний М, т. е. объем вы­
борки векторной выходной величины. Это число может быть выбрано заблаговременно (до проведения 
испытаний), но тогда будет исключена возможность управления точностью результатов, полученных с по­
мощью данного метода. Причиной этому служит то, что число испытаний, необходимое для получения 
результата вычисления с заданной точностью, зависит от формы плотности распределения выходной вели­
чины и от заданного значения вероятности охвата. Кроме того, метод вычисления является стохастическим 
по своей природе, поскольку зависит от случайной выборки.

7.2.2 Поскольку нельзя заранее гарантировать, что выбранное значение М обеспечит достаточную 
точность приближения, можно использовать процедуру адаптивного выбора, уточняя значение М  в процес­
се испытаний. Адаптивная процедура, установленная в 7.8, позволяет оптимальным образом получить 
значение М, соответствующее заданной точности вычислений.

П р и м е ч а н и е  — Для сложной модели, например, требующей получения решения методом конечных 
элементов, применение большого числа испытаний может оказаться невозможным. В этом случае рекомендует­
ся приближенно представить плотность распределения выходной величины gY (т|) нормальным распределени­
ем (как в GUM). Это позволяет использовать относительно небольшое число испытаний М, например 50 или 100, 
а полученные по результатам испытаний выборочное среднее и выборочные ковариации принять, соответствен­
но, в качестве оценок у и Uy. Для описания Y и построения области охвата используют плотность нормального 
распределения N(y, Uy). Хотя уменьшение числа испытаний неизбежно ухудшает свойства метода в части аппрок­
симации распределения выходной величины, оно все же позволяет учесть нелинейность модели измерения.

7.3 Получение выборок из распределений вероятности

7.3.1 Для применения метода Монте-Карло формируют М  векторов хг, г -  1, в соответствии 

с плотностями распределения вероятностей Эх, (4 ) Для N  входных величин X ) или, если это необходимо,

из совместной плотности распределения ФПВ дх(£).
7.3.2 Рекомендации по формированию выборки для наиболее распространенных распределений (рав­

номерного, нормального, многомерного нормального и f-распределения) приведены в JCGM 101 (пункт 6.4 
и приложение С). Однако возможно получение выборок, соответствующих и другим распределениям [см. 
JCGM 101 (раздел С.2)]. Некоторые распределения могут быть аппроксимированы распределениями, полу­
ченными в результате применения метода Монте-Карло при предыдущих вычислениях неопределенности 
[см. JCGM 101 (пункт 6.5 и приложение D)].

7.3.3 Процедура формирования выборки для многомерного f-распределения описана в 5.3.2.4.

П р и м е ч а н и е  — Для достоверности результатов применения метода Монте-Карло необходимо, чтобы 
генераторы псевдослучайных чисел, используемые для формирования выборок из заданных распределе-

24



ГОСТ Р 54500.3.2— 2013

Рисунок 5 — Этапы трансформирования распределений и получения результатов оценивания неопределен­
ности методом Монте-Карло для случая явной зависимости выходных величин от входных величин

ний, обладали соответствующими свойствами. BJCGM 101 (пункт С.3.2) приведены некоторые тесты сформи­
рованных выборок на случайность.

7.4 В ы чи сл е н и е  ве кто рно й  в ы х о д н о й  в е л и ч и н ы

7.4.1 Векторную выходную величину вычисляют для каждого из М  выборочных значений N-мерного 
вектора входной величины, полученных из соответствующих распределений. Если обозначить М  выбо­
рочных значений вектора входной величины размерности N  х  1 через х 1; .... х м, где r-й вектор х г
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содержит х 1г, xrN, и x i r —  выборочное значение из распределения д п я Х „ то соответствующие значения 
векторов выходной величины для модели измерения с явным видом функциональной зависимости вычис­
ляют по формуле

Уг~ f(Xf)> г = 1......М.

П р и м е ч а н и е  — При использовании закона трансформирования неопределенностей, когда аналитичес­
кие выражения производных функции измерения по входным величинам известны точно, значения этих произ­
водных и значения функции измерения берут в точке оценок входных величин. Если аналитические выражения 
для производных неизвестны и для их оценок используют приближение в виде конечных разностей, то получают 
оценки только для функции измерения. Согласно рекомендации GUM [JCGM 100 (примечание 2 к пункту 5.1.3)] 
значения функции измерения берут в точках оценок входных величин, а также в точках, отстоящих по обе стороны 
от этих оценок на расстоянии одной стандартной неопределенности (варьируя по очереди для каждой входной 
величины). В методе же Монте-Карло значения функций измерения получают при варьировании входных величин 
в окрестности их оценок, т.е. в точках, которые могут отстоять от этих оценок на несколько стандартных отклоне­
ний. Поскольку в методе Монте-Карло значения функции измерения получают в разных точках, может возникнуть 
вопрос о свойствах вычислительной процедуры, в частности, о ее устойчивости и (в случае применения адаптив­
ной процедуры) сходимости. При возникновении сомнений пользователю следует убедиться в том, что метод 
дает достоверные оценки выходной величины для достаточно больших окрестностей оценок входных величин. 
Однако следует ожидать, что вопросы устойчивости и сходимости численного метода могут стать критическими 
только в исключительных случаях.

7.4.2 Если X jявляются зависимыми величинами, то в 7.4.1 распределения для Х( следует заменить 
на совместное распределение для X.

7.4.3 В случае модели с неявным видом ф ункциональной зависимости в процедуре, описанной в 
7.4.1, значения векторной выходной величины уг получают, в результате решения уравнений

h(yr,xr) = 0 , r = 1 ......М.

7.5 Дискретное представление функции распределения для выходной величины

Дискретное представление функции распределения для векторной выходной величины формируется 
из М  значений векторной выходной величины, полученных согласно 7.4. В общем случае это представле­
ние является матрицей G размерности т х  М, г-й столбец которой является r-м значением векторной вы­
ходной величины. Для одномерной модели G —  вектор-строка.

П р и м е ч а н и е  1 — у'-я строка матрицы G является приближенным дискретным представлением 
функции маргинального распределения для У,.

П р и м е ч а н и е  2 — Для т = 1,2, 3 возможна графическая интерпретация приближения G. Пусть 
т = 2. Для г= 1, ..., М построим в плоскости (Уг1,V2) точку с координатами, соответствующими двум элементам в 
столбце г матрицы G. При достаточно большом М плотность нанесенных точек в любой локальной области 
плоскости будет приблизительно пропорциональна плотности распределения в этой области.

П р и м е ч а н и е  3 — Построенное приближение G позволяет извлечь разнообразную информацию, 
в частности, относительно моментов высших порядков. Однако в способе оценивания неопределенности по 
GUM для трансформирования неопределенностей и последующего оценивания неопределенности измерения 
[JCGM 100 (пункт 0.4)] для получения оценки Y и соответствующей ей ковариационной матрицы необходимо 
знать моменты только первых двух порядков.

П р и м е ч а н и е  4 — Если величина Y будет использоваться в качестве входной величины на следую­
щем этапе многоступенчатого измерения, то на этом этапе выборку входных величин можно получить из уже 
имеющихся значений уг, г = 1,..., М, (или, что то же самое, из столбцов матрицы G), последовательно осуществляя 
случайный выбор (с равной вероятностью) из этих значений [JCGM 101:2008 6.5].

7.6 Оценка выходной величины и соответствующей ей ковариационной матрицы

Среднее арифметическое и ковариационную матрицу

У = М(У1 + -  + У/и). Uy = м Ы ( У 1 -У )(У 1 -У )Т + -  + (У м -У )(У /и -У )Т]

принимают, соответственно, в качестве оценки у  величины Y  и ковариационной матрицы Uy, соответствую­
щей у.

П р и м е ч а н и е  — Независимо от того, является ли модель измерения линейной или нелинейной, при М 

стремящемся к бесконечности у  стремится по вероятности к E(f(X)), если последнее существует.
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7.7 Область охвата для векторной выходной величины

7.7.1 Общие положения
Теоретически существует сколь угодно много 100 р  %-ных областей охвата для Y. В настоящем стан­

дарте рассматриваются области охвата трех видов, которые, как ожидается, могут найти наибольшее прак­
тическое применение. Однако в отдельных обстоятельствах может оказаться предпочтительным использо­
вание области охвата специальной формы. Независимо от вида области охвата построение последней ос­
новано на полученном приближении G, т. е. на наборе М точекур случайным образом выбранных из распре­
деления вероятностей для Y  при реализации метода Монте-Карло (см. 7.5). Рассматриваемые здесь обла­
сти охвата имеют вид:

a) эллипсоида. Данная область охвата будет близка к наименьшей области охвата в случае, если 
распределение вероятностей для Y  близко к нормальному;

b) параллелепипеда. Область охвата данного вида допускает простую интерпретацию, но зачастую 
ее объем существенно превосходит объем наименьшей области охвата;

c) наименьшей области охвата, которая в общем случае не имеет какой-либо заданной геометричес­
кой формы и определяется в некотором приближении, зависящем от М.

7.7.2 Область охвата в форме эллипсоида
Уравнение 100 р  %-ной области охвата для Y  в форме эллипсоида имеет вид:

(Т1 -  у)т Ц Г 1С п -у )  = кр, (20)

где у  определяет положение центра эллипсоида в пространстве выходных величин, Uy — форму эллипсо­
ида (степень вытянутости и ориентацию в пространстве), а кр— его размер (объем). Процедура построения 
области охвата в форме эллипсоида по формуле (20) при известных оценках у  и Uy (см. 7.6) требует нахож­
дения кр и состоит в следующем:

a) трансформируют точки у г в у°г (г -  1,.... М ) по формуле

у% = L - 1(yr - у ) , / - = 1 , . . . , М ,  (21)

где L —  нижняя треугольная матрица размерности т х т  разложения Холецкого Uy = LLT;
b) сортируют трансформированные точки у°г в порядке возрастания значения dr, где

м 2
dr =У°гТУ°г = х (у °у ,г )  , г=  1, ..., М; 

j =1

c) используют упорядоченные у°г для определения коэффициент охвата кр, значение которого опре­
деляют из условия: dr < кр для всех у°г с номером г, не превышающим рМ\

d) строят 100 р %-ную область охвата для Y, границы которой определены уравнением (20).

П р и м е ч а н и е  1 — Основы описанной процедуры изложены в [1], где массив векторных данных сортиру­
ют по метрике

(yr - a ) TZ _1(yr -a ) ,

где а — статистика параметра положения, а X  — статистика параметра масштаба (дисперсии). Формулы, приве­
денные в процедуре, получены заменами а = у и £  = Uy. Использование в процедуре трансформирование точек 
необходимо для того, чтобы сделать ковариационную матрицу, соответствующую трансформированным точкам, 
единичной, т.е. элементы векторов выборки становятся некоррелированными. Это позволяет сопоставлять (сор­
тировать) трансформированные точки по их расстоянию от оценки у. Из способа получения точек угследует, что 
они характеризуют разброс значений случайной величины Y вокруг центральной точки у. Область охвата в виде 
эллипсоида с центром в у по своему смыслу должна содержать 100 р % общего числа точек уг

П р и м е ч а н и е  2 — Приемлемость полученной области охвата для представления неопределенности 
измерения зависит от конкретной измерительной задачи. Полученное представление может стать неприемле­
мым, если распределение точек уг в пространстве выходной величины Y плохо согласуется с описанием этой 
величины многомерным нормальным распределением.

П р и м е ч а н и е  3 — Матрица L, полученная на этапе а), может быть определена, например, способом, 
описанным в [13] (см. пример ниже).

П р и м е ч а н и е  4 — Процедура построения области охвата учитывает существование зависимости меж­
ду элементами вектора Y.

П р и м е ч а н и е  5 — Для сложной модели, например, требующей получения решения методом конечных 
элементов, применение большого числа испытаний М может оказаться невозможным. В этом случае рекоменду-
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ется приближенно представить плотность распределения выходной величины Y нормальным распределением. 
Это позволяет использовать относительно небольшое число испытаний М, например 50 или 100, а полученные 
по результатам испытаний выборочное среднее и выборочные ковариации принять, соответственно, за оценки 
у и Uy. Для описания Y и построения области охвата используют плотность нормального распределения с мате­
матическим ожиданием у и ковариационной матрицей Uy. Хотя уменьшение числа испытаний неизбежно ухудша­
ет свойства метода в части аппроксимации распределения выходной величины, оно все же позволяет учесть 
нелинейность модели измерения. В таблице 1 приведены значения кр для вероятности охвата р = 0,95 в зависи­
мости от размерности т вектора выходных величин при допущении нормальности распределения Y.

Пример — Рассмотрим модель измерения

Y1= X 1 + Х3, Y2 = X 2 + Х3, (22)

в которой входным величинам Х 1 и Х 2 приписано нормальное распределение N(0;0,1) каждой, Х3 припи­
сано прямоугольное распределение R (-(3x1,9)1/2, (Зх1,9)1/2), и все входные величины являю т ся  
независимыми. Математическими ожиданиями входны х величин X, являют ся х, = 0, /  = 1, 2, 3, а их 
дисперсиям и— и2(х) = 0,1, i - 1 , 2  и и2(х3) = 1,9. Тогда, как в примере 2 из 6.5.2.3, Y = (Y1,Y2) T имеет 
оценку математического ожидания и соответствующую ей ковариационную матрицу

У =
О
О ’

Uv
2,0 1,9 
1,9 2,0

Трансформированные точки у°г на этапе а) формируют с использованием L~1, имеющей следую­
щий вид (с точностью до третьего знака после запятой):

1,414 1,344 
0,000 0,442\ ’

L~1 =
0,707
0,000

-2,151
2,265

На рисунке 6 слева показаны 1000 выборочных точек для распределения вероятности Y, опреде­
ляемого моделью измерения [формула (22)] и приведенными выше распределениями вероятности для 
входных величин Х„ / = 1,2,3. 95%-ная эллиптическая область охвата для Y, полученная в предположении, 
что Y характеризуется двумерным распределением Гаусса N(y;Uy) [как и на этапе а) в 6.5.2.3J, показана 
пунктирной линией. Эта область имеет площадь 11.8 квадратных единиц, кр = 2,45 и содержит 968 из 
1000 точек. Эллиптическая область охвата, определенная на основе 1000 выборочных точек в соот­
ветствии с процедурой 7.7.2, показана сплошной линией. Эта область имеет площадь 10,6 квадратных 
единиц, кр = 2,33, что немногим меньше, чем область, полученная в предположении нормальности рас­
пределения выходной величины. Как и должно следовать из способа построения области охвата, эта 
область содержит ровно 950 точек.

Модель измерения [формула (22)] рассматривается более подробно в разделе 9, где приведены  
также другие примеры построения областей охвата для двумерных вы ходны х величин.

-5,0 -2,5 0 2,5 5,0
*1

Рисунок 6 — Эллиптические области охвата, построенные в соответствии с процедурами 6.5.2.3 а) и 7.7.2 для 
примера из 7.7.2 (слева) и прямоугольные области охвата, построенные в соответствии с процедурами 6.5.2.3 Ь)

и 7.7.3 для примера из 7.7.3 (справа)
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7.7.3 Область охвата в форме параллелепипеда
100 р %-ная область охвата для Y в форме параллелепипеда имеет вид

Уу ± k qu(yj), j  = 1, ..., т, (23)

где у = (уь ...,ут)Т определяет положение центра параллелепипеда в пространстве выходных величин, 
a u(y) = ( и ( у - | ) , u(ym))T и kq определят его размер (объем). Процедура построения области охвата в форме 
параллелепипеда по формуле (23) при известных оценках у и и(у) требует нахождения kq и состоит в 
следующем:

a) трансформируют точки уг в у °г (г-  1 , М) по формуле (21), но где L теперь является диагональ­
ной матрицей размерности m  х  ал с диагональными элементами и(ул) , ..., и(ут)ш,

b) сортируют трансформированные точки у°г в порядке возрастания значения dr, где dr теперь опре­
деляют по формуле

dr = max \y° jr\, r  =
j=\...,m ' ’ '

c) используют упорядоченные y ° r для определения коэффициента охвата kq, значение которого 
определяют из условия: dr < kq для всех у °г с номером г, не превышающим рМ\

d) строят 100 р  %-ную область охвата для Y, границы которой определены формулой (23).

П р и м е ч а н и е  — Процедура построения области охвата учитывает существование зависимости 
между элементами вектора Y.

Пример —  На рисунке 6 (справа) показаны те же 1000 точек, что и на рисунке 6 (слева). 95 %-ная 
прямоугольная область охвата для Y, полученная в предположении, что Yj , j=1 ,2 характеризу­
ется нормальным распределением N(yy, u2(yj)), а корреляция оценок у 1 и у2 [как и на этапе Ь) в 6.5.2.3] 
не учитывается, показана пунктирной линией. Эта область имеет площадь 40,1 квадратных еди­
ниц, kq = 2,24 и содержит все 1000 точек. Прямоугольная область охвата, определенная на основе 
1000 выбранных точек в соответствии с процедурой 7.7.3, показана сплошной линией. Эта область 
имеет площадь 25,5 квадратных единиц, kq = 1,78, что немногим меньше, чем область, в предположении 
нормальности распределения выходной величины. Как и должно следовать из способа построения обла­
сти охвата, эта область содержит ровно 950 точек.

7.7.4 Наименьшая область охвата
Процедура построения наименьшей 100 р %-ной области охвата включает в себя следующие этапы:
a) в m-мерном пространстве выходных величин строят исходный параллелепипед, предположи­

тельно охватывающих большую долю значений, которые могут быть приписаны векторной выходной 
величине Y;

b) равномерной m-мерной сеткой делят исходный параллелепипед на ячейки в виде подобных рав­
ных плотно уложенных малых параллелепипедов;

c) для каждого малого параллелепипеда подсчитывают число попавших в него выборочных точек уг;
d) долю точек ур попавших в малый параллелепипед, рассматривают как приближенное значение 

вероятности попадания в данный параллелепипед значения случайной векторной величины Y;
e) все малые параллелепипеды располагают в порядке уменьшения приписанной им вероятности;
f) суммируют вероятности, приписанные малым параллелепипедам, начиная с первого и последова­

тельно прибавляя вероятность каждого последующего вплоть до того, пока полученная сумма не превысит 
или не станет равной р;

д) совокупность малых параллелепипедов, внесших вклад в получение указанной суммы, рассмат­
ривают в качестве приближения наименьшей области охвата;

П р и м е ч а н и е  1 — Данная процедура, заимствованная из [20], заключается в разбиении пространства 
выходных величин на ряд малых ячеек (параллелепипедов), аппроксимации вероятности попадания значения 
случайной выходной величины Y в каждую из таких ячеек долей попавших в нее точек выборки и объединении 
минимального числа ячеек, в совокупности содержащих не менее 100р % из М выборочных значений векторной 
выходной величины, в конфигурацию, рассматриваемую как наименьшая область охвата.

П р и м е ч а н и е  2 — Параллелепипед, построенный на этапе а), должен включать в себя все точки уг.
П р и м е ч а н и е  3 — Число малых параллелепипедов, используемых для разбиения на этапе Ь) про­

странства выходных величин, ограниченного большим параллелепипедом, построенным на этапе а), влияет на 
качество полученного приближения.
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П р и м е ч а н и е  4 — В большинстве случаев качество приближения улучшается с ростом М. Чтобы 
получить достаточно хорошее приближение, особенно в случае, когда размерность пространства выходных вели­
чин т более двух или трех, может потребоваться очень большое число испытаний М.

П р и м е ч а н и е  5 — Построенная в соответствии с вышеописанной процедурой наименьшая область 
охвата может оказаться несвязной, особенно, если М недостаточно велико.

П р и м е ч а н и е  6 — На этапе d) вероятность, приписанная каждому малому параллелепипеду, опреде­
ляется относительной частотой попадания в него выборочного значения выходной величины. Использование 
более сложной аппроксимации (см. [23]) может позволить улучшить связность области охвата и сгладить ее 
границы.

П р и м е ч а н и е  7 — Приписанные на этапе d) вероятности могут оказаться одинаковыми для двух или 
нескольких малых параллелепипедов. В этом случае упорядочение малых параллелепипедов, выполняемое на 
этапе е), будет не единственным. Разным возможным вариантам упорядочения могут соответствовать разные 
приближения области наименьшего охвата.

П р и м е ч а н и е  8 — В двумерном случае (т = 2) этапы от а) до d) входят в начальные шаги типичного 
алгоритма визуализации распределения для Y (см. 9.1.6).

Пример — Рассмотрим ту же самую задачу, что и в примере 7.7.2. На рисунке 7 показано прибли­
жение для наименьшей 95 %-ной области охвата, полученное с использованием вышеуказанной  
процедуры при разбиении исходного большого прямоугольника на 10x10 малых прямоугольников  
(слева) и 100x100 малых прямоугольников (справа). Область охвата на рисунке 7 слева построена по 
1000 точкам, случайно выбранным из распределения для Y. Она имеет площадь 11,3 квадратных единиц 
и содержит 955 точек. Область охвата на рисунке 7 справа построена по 1000000 точек, полученных  
случайной выборкой из распределения для Y. Она имеет площадь 9,4 квадратных единиц и содержит  
950 074 точки. Для сравнения на каждом рисунке сплошной линией показана 95 %-ная эллиптическая 
область охвата для Y, построенная в соответствии с процедурой из 7.7.2.

Y,

Рисунок 7 — Эллиптические области охвата, построенные по процедуре из 7.7.2, и приближения наименьших 
областей охвата, построенные по процедуре из 7.7.4 для разбиения 10x10 и 1000 точек выборки (слева) и для

разбиения 100x100 и 1000000 точек выборки (справа)

7.8 Адаптивная процедура метода М онте-Карло

7.8.1 Общ ие положения
7.8.1.1 Эффективность метода Монте-Карло при определении оценки у выходной величины Y, соот­

ветствующей ковариационной матрицы и области охвата для Y зависит от числа испытаний М. Значение М  
может быть выбрано заранее, как в 7.2. Другой подход состоит в использовании адаптивной процедуры 
метода Монте-Карло, согласно которой число испытаний последовательно увеличивают до тех пор, пока 
полученные числовые оценки искомых величин не станут установившимися. Численный результат считает­
ся установившимся, если соответствующее ему удвоенное стандартное отклонение станет меньше задан­
ной точности вычисления (см. 7.8.2).
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7.8.1.2 Целью адаптивной процедуры, описанной в 7.8.3, является получение в среднем с заданной 
вычислительной точностью значений следующих величин:

a) оценки у  = {ул, ...,ут )т величины Y;
b) вектора u(y) = (и (у ,),..., и(ут))т стандартных неопределенностей, связанных с оценками;
c) положительно определенной матрицы Ry размерности m x m  коэффициентов корреляции -  г (у ^ ) ,  

связанных с парами оценок;
d) коэффициента охвата кр, определяющего 100 р %-ную область охвата для Y в форме т-м ерного  

эллипсоида.

П р и м е ч а н и е  1 — То, что выполнение требования к точности вычислений может быть гарантировано 
не безусловно, а только в среднем, обусловлено природой случайности, используемой в методе Монте-Карло.

П р и м е ч а н и е  2 — Как правило, чем больше вероятность охвата р ,  тем большее число испытаний мето­
да Монте-Карло необходимо для определения кр с заданной точностью вычислений.

П р и м е ч а н и е  3 — Стандартные неопределенности и(у) и корреляционная матрица Ry вместе 
определяют ковариационную матрицу Uy, соответствующую оценкам у (см. примечание 3 к 3.2.1 и 7.8.2.4).

П р и м е ч а н и е  4 — Если требуется построить область охвата иной формы, нежели эллипсоид в 
m-мерном пространстве, то проверку устойчивости метода выполняют для параметров, характеризующих об­
ласть охвата данной формы. Например, для области охвата в форме m-мерного параллелепипеда оценка точно­
сти вычисления может быть выполнена для коэффициента охвата kq. В этом случае процедура, описанная в 7.8.3, 
должна быть модифицирована соответствующим образом.

П р и м е ч а н и е  5 — Если в представлении результата измерения не требуется указывать область охва­
та, то процедуру увеличения числа испытаний останавливают после получения установившихся численных значе­
ний оценки у, соответствующих стандартных неопределенностей и корреляционной матрицы Ry.

П р и м е ч а н и е  6 — Матрица Ry может не быть положительно определенной в случае существования 
зависимостей между выходными величинами (для примера см. 9.4, в частности, примечание 2 к 9.4.2.3).

7.8.2 Точность вычисления числовых значений
7.8.2.1 Если обозначить через ndig число существенных значащих цифр в числовом представлении 

величины Z, то предел погрешности вычисления 8 значения Z  определяют следующим образом:
a) представляют значение Z  в виде cxIO*, где с —  целое число, состоящее из ndig значащих цифр, 

/ —  целое число;
b) определяют 8 по формуле

<5 = ^ 1 0 '.

7.8.2.2 При проверке получения установившейся оценки у7 величины Ys и стандартной неопределен­
ности и(уу), соответствующей у , при реализации адаптивной процедуры метода Монте-Карло, описанной 
в 7.8.3, предел погрешности вычисления 8s, j  -  1, ..., m, определяют по числу существенных значащих 
цифр в числовом представлении ц(уу).

7.8.2.3 При проверке получения установившейся оценки матрицы Ry корреляционных коэффициентов 
Гу, соответствующей оценке у, предел погрешности вычисления р  определяют по числу существенных 
значащих цифр в числовом представлении Атах—  наибольшем собственном значении матрицы Ry 
(см. примечание 3 к 3.21).

7.8.2.4 Матрица Ry занимает ключевое место в процедурах последовательного оценивания неопреде­
ленности. Обычно эта процедура связана с получением значения скалярной величины Q, представляющей 
собой некоторую комбинацию выходных величин У„ т. е.

Q = c1Y1 + ... + cmYm = cTY.

Используя формулу

Uy -  DyRyDy

(см. примечание 3 к 3.21), стандартную неопределенность u(q), соответствующую оценке

q  =  сту
величины Q, можно представить в виде

u2{q) = cTUyc = dTRyd,

где

d = Dyc.
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7.8.2.5 Точность вычисления u(q) зависит от точности вычисления Ry и d, а последняя зависит от Dy,
и, следовательно, от и(у) = .... и(ут))т.

7.8.2.6 При оценивании неопределенности в целях последующих расчетов, которые включают в себя 
более сложные преобразования, например, вычисления по методу наименьших квадратов, связанные с 
явным или неявным обращением матрицы Uy, необходимо использовать другие критерии останова адап­
тивной процедуры вычислений. Так в случае применения метода наименьших квадратов критерий может 
быть основан на расчете р (см. 7.8.2.3) по числу существенных значащих цифр в числовом представлении 
наименьшего собственного значения матрицы Ry (см. примечание 5 к 3.21). При этом устойчивость числен­
ного алгоритма решения задачи с использованием метода наименьших квадратов зависит от числа обус­
ловленности Amax/Amin матрицы Ry. Поэтому для уменьшения числа испытаний в методе Монте-Карло при 
постановке измерительной задачи ее следует определять через параметры, позволяющие сделать число 
обусловленности настолько малым, насколько это возможно.

7.8.2.7 Точность вычисления кр, используемая для проверки получения установившегося значе­
ния коэффициента охвата кр, определяют по числу существенных значащих цифр в числовом представ­
лении кр.

7.8.2.8 При последующих расчетах неопределенности, основанных на использовании G (см. 7.5) в 
качестве приближения функции распределения Y, необходимо убедиться, что такое дискретное пред­
ставление пригодно для этих расчетов, особенно если их целью является получение области охвата для 
некоторой величины. Более подробное рассмотрение данного вопроса выходит за рамки настоящего 
стандарта.

7.8.3 Описание адаптивной процедуры
Практическая реализация адаптивной процедуры метода Монте-Карло с последовательным увеличе­

нием числа испытаний состоит в следующем:
a) задают в качестве ndig небольшое положительное целое число (см. 7.8.2);
b) задают М = max(J, 104), где J —  наименьшее целое, большее или равное 100/(1 -  д);
c) задают h  = 1 (счетчик итераций метода Монте-Карло);
d) выполняют М  испытаний методом Монте-Карло (см. 7.3 и 7.4);
e) используют М  полученных на выходе модели значений векторной выходной величины ......у м

для вычислений очередных, /?-х значений у(Л), и(у(Л)), Rŷ  и kp ĥ\  являющихся соответственно оценкой 
величины Y, соответствующей стандартной неопределенностью, соответствующей корреляционной матри­
цей и коэффициентом охвата для 100 р %-ной области охвата;

f) если h < 10, то увеличивают h на единицу и возвращаются к этапу d);

д)для j -  1, ...,/77 вычисляют выборочные стандартные отклонения sy . средних значений получен­

ных в результате итераций оценок уА1), ..., у; (Л) величины Yj, по формуле

h) аналогичным образом вычисляют выборочные стандартные отклонения средних значений элемен­
тов вектора u(y(/i)), а также для Атах и kpih}',

i) используют все Ш зн ачен и й  векторной выходной величины для вычисления u(y), Ry и кр,
j) для j  -  1,..., /77 определяют пределы погрешности вычисления <5, для и(у), как описано в 7.8.2.1 и 

7.8.2.2;
k) определяют предел погрешности р для матрицы Ry коэффициентов корреляции, как описано в

7.8.2.1 и 7.8.2.3;
l) вычисляют численную точность кр, соответствующую кр, как описано в пунктах 7.8.2.1 и 7.8.2.7; 

т )  если для любого у = 1,..., m  или 2 sy . [или 2 su(y^  ] превосходит <5у, или 2 превосходит р , или

2 sk превосходит кр, то увеличивают h на единицу и возвращаются к этапу d);

п) если возврата к этапу d) не произошло, то считают все вычисленные оценки установившимися и 
используют все Ш значений  векторной выходной величины для вычисления у, Uy и коэффициент охвата кр 
для 100 р %-ной области охвата, как описано в 7.6 и 7.7.

П р и м е ч а н и е  1 — Чтобы алгоритм адаптивной процедуры был сходящимся, должны существовать 
математическое ожидание и ковариационная матрица Y.
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П р и м е ч а н и е 2  — Выбор М на этапе Ь) является произвольным, но практика показала его пригодность.
П р и м е ч а н и е З  — Использование в процедуре минимального числа итераций, равного 10, позволяет 

предотвратить преждевременный останов алгоритма и, кроме того, делает более обоснованным предположе­
ние, сделанное в примечании 6. Аналогичное изменение, будучи внесенным в адаптивную процедуру метода 
Монте-Карло для моделей с единственной скалярной выходной величиной [JCGM 101 (пункт 7.9.4)], также позво­
лит улучшить результаты применения этой процедуры для ряда задач.

П р и м е ч а н и е 4  — На этапе д) у  рассматривается как реализация случайной переменной со стандар­

тным отклонением sy ..

П р и м е ч а н и е б  — Стандартные отклонения, полученные на этапахд) и h), уменьшаются по закону 
/ г 1/2 (см. примечание к 7.1.7).

П р и м е ч а н и е б  — Коэффициент 2, используемый на этапе т ) ,  основан на представлении выборочных 
средних случайными, нормально распределенными величинами и соответствует вероятности охвата приблизи­
тельно равной 95 %.

П р и м е ч а н и е ?  — В [28] рассматриваются некоторые улучшения адаптивной процедуры, изложенной 
в JCGM 101 (подраздел 7.9).

8 Проверка результатов оценивания неопределенности по GUM 
сравнением с методом Монте-Карло

8.1 Способ оценивания неопределенности по GUM (далее обозначаемый GUF) во многих случаях 
позволяет получить удовлетворительные результаты. Однако не всегда можно сразу определить, соблюде­
ны ли все условия для его применения [см. JCGM 101, пункты 5.7 и 5.8]. Обычно гораздо проще оценить 
неопределенность с использованием метода Монте-Карло (при наличии соответствующего программного 
обеспечения), чем выяснить, выполнены ли все условия оценивания по GUM [8]. При наличии сомнений в 
обоснованности применения способа оценивания по GUM полученные с его помощью результаты нужда­
ются в проверке, а поскольку диапазон условий, при которых может быть применен метод Монте-Карло, 
значительно шире, чем для метода по GUM, то для такой проверки рекомендуется сопоставить результаты 
оценивания по GUM с результатами оценивания методом Монте-Карло. Если сравнение подтвердит обо­
снованность применения GUM, то способ оценивания неопределенности по GUM можно будет применять в 
будущем для схожих задач. В противном случае следует рассмотреть возможность замены на другой 
способ оценивания неопределенности, включая тот же метод Монте-Карло.

8.2 Для сравнения двух методов необходимо вначале:
а) применить способ оценивания неопределенности по GUM для получения (i) оценки yGUF величи

ны Y, (ii) стандартной неопределенности u(yGUF), соответствующей y GUh, (iii) корреляционной матрицы Ry1GUF

соответствующей yGUF, и (iv) коэффициент охвата /гр^и|", определяющего 100 р %-ную область охвата для Y 
в виде m-мерного эллипсоида;

Ь) применить адаптивную процедуру метода Монте-Карло (см. 7.8.3), чтобы получить аналогичные

GUF

оценки умсм, u (yMCM), RyMCM и крмсм.
8.3 Задача процедуры сравнения состоит в том, чтобы определить, согласуются ли между собой 

результаты, полученные способом оценивания неопределенности по GUM и методом Монте-Карло, в рам­
ках заданной точности вычислений. Для этого:

a) задают в качестве ndig небольшое положительное целое число (см. 7.8.2);
b) дпяу= 1..... т  рассчитывают пределы погрешности вычисления <5у для и(у,) как указано в 7.8.2.1 и

7.8.2.2;
c) рассчитывают предел погрешности вычисления рдпя  матрицы Ry коэффициентов корреляции как 

указано в 7.8.2.1 и 7.8.2.3;
d) рассчитывают предел погрешности вычисления кр для кр какуказано в 7.8.2.1 и 7.8.2.7;
e) сравнивают оценки, соответствующие стандартные неопределенности, коэффициенты корреляции, 

а также коэффициенты охвата, полученные с использованием способа оценивания неопределенности по 
GUM и метода Монте-Карло, чтобы определить, обеспечивает ли первый из указанных способов требуемое 
число правильных цифр в числовой записи полученных результатов. Для этого определяют

dv; = У/
GUF

У
мсм

У=1. т,
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du(yj) j  = 1..... т,

Л GUF 
^max

Л мсм
'''max

I#, GUF ь МСМ 
|™Р ''р

т. е. абсолютные разности соответствующих численных результатов. Тогда если для всех j = ‘\ , . . . ,m  dy . и 

du(y) не больше чем 8 j, dx^  не больше чем р, a dk̂  не больше, чем кр, то результат сравнения считают 

положительным, а способ оценивания неопределенности по GUM —  успешно прошедшим проверку.

П р и м е ч а н и е  1 — Выбор вероятности охвата и формы области охвата влияет на результат сравнения. 
Поэтому сравнение двух способов оценивания выполняют только для заданных вероятности охвата р и формы 
области охвата.

П р и м е ч а н и е  2 — В тех ситуациях, когда построение области охвата не требуется, проверку проводят 

только на основании полученных значений d v , d..(v )  и of, . Если форма области охвата должна быть отлична
"j J' л тах

от эллипсоида, то проверку проводят для соответствующей величины, определяющей объем области охвата за­
данной формы. Например, если область охвата должна иметь вид m-мерного параллелепипеда, то сравнивают 
полученные двумя способами значения коэффициента охвата kq с учетом требуемой точности вычисления кр.

П р и м е ч а н и е  3 — При проверке применимости способа оценивания неопределенности по GUM срав­
нением его результатов с результатами метода Монте-Карло, последние должны быть получены при достаточном 
числе испытаний М. Если для сравнения применяют адаптивную процедуру метода Монте-Карло, то достаточно 
задать пределы погрешности вычислений в адаптивной процедуре в пять раз меньшими соответствующих преде­
лов погрешности в процедуре проверки [см. JCGM 101 (пункт 8.2)] или, другой вариант, задать число значащих 
цифр при числовом преставлении величин, вычисляемых с помощью адаптивной процедуры, на единицу боль­
шим, чем используется в процедуре проверки.

9 Примеры

9.1 Иллюстрации положений настоящего стандарта

9.1.1 В первом примере (см. 9.2) рассматривается линейная модель измерения, в которой входные 
величины могут быть общими для всех выходных величин или влиять только на некоторые из них. Для 
частных случаев данного примера существуют аналитические решения.

9.1.2 Во втором примере (см. 9.3) рассматривается нелинейная модель преобразования декарто­
вых координат (действительной и мнимой части комплексной величины) в полярные координаты (модуль и 
аргумент комплексной величины). Для этого примера также в ряде случаев имеются аналитические реше­
ния [6].

9.1.3 В третьем примере (см. 9.3) рассматривается более сложная нелинейная модель. Он аналоги­
чен примеру из GUM, связанному с одновременным измерением активного и реактивного сопротивлений 
[JCGM 100 (раздел Н.2)]. Пример иллюстрирует обработку ряда одновременных независимых наблюдений 
векторной величины.

9.1.4 Четвертый пример (см. 9.5) посвящен измерению температуры с использованием термометра 
сопротивления. Этот пример демонстрирует обработку данных для одномерной и многомерной моделей 
измерения.

9.1.5 Многие из рисунков, используемых в примерах, для их лучшего восприятия даны в цветном 
исполнении. На контурных графиках каждому уровню контурной линии соответствует свой цвет. Если рису­
нок состоит из двух и более графиков, то для каждого из таких графиков один и тот же цвет использован для 
одних и тех же значений уровня за исключением особо оговоренных случаев. Если для сравнения резуль­
татов используется два и более рисунка, как это имеет место при сопоставлении результатов, полученных 
способом оценивания по GUM и методом Монте-Карло, то соответствующие графики на этих рисунках 
изображены в одних и тех же границах осей за исключением случаев, когда между этими результатами 
имеется существенное различие.

9.1.6 Поскольку первичными выходными данными для метода Монте-Карло являются М  выборочных 
векторов для выходной величины Y, собранные в матрицу G размерности т  х  М  (см. 7.1.6), зачастую
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желательно представить эти данные в виде приближения соответствующей функции плотности распреде­
ления и изобразить эту функцию в виде контурного графика. Рисунки настоящего раздела показывают 
контурные графики для случая двумерной выходной величины, т -  2. С ростом числа испытаний М  контур­
ные линии выборочного распределения должны все больше приближаться к линиям распределения для Y, 
что требует соответствующего сглаживания [22,24]. Некоторые контурные графики, приведенные в насто­
ящем разделе, построены, исходя непосредственно из приближения соответствующей плотности распре­
деления. Для других применен соответствующий алгоритм сглаживания контуров. На одном из рисунков 
(рисунок 10) для демонстрации эффекта сглаживания показаны сглаженные и несглаженные контурные 
линии.

9.2 Аддитивная модель

9.2.1 Постановка задачи
В этом примере рассматривается аддитивная (линейная) двумерная модель измерения (см. при­

мер в 7.7.2)

Yi -  X i + Х 3, У2 = Х 2 + Х3 (24)

для трех разных примеров сочетаний плотностей распределения SX(.(£,-) для входных величинХ„ рас­

сматриваемых как независимые. Из трех входных величин X ,, Х 2 и Х 3 величина Х 3 описывает фактор, 
влияющий на обе выходные величины У, и У2, тогда как каждая из величин X, и Х 2 описывают факторы, 
влияющие только на одну из выходных величин —  У, и У2 соответственно. В первом примере (см. 9.2.2),

все <?х, (£/) являются плотностями нормального распределения с нулевым математическим ожиданием и 

единичным стандартным отклонением. Второй пример (см. 9.2.3) идентичен первому за исключением того, 

что 9 х 3('53) является плотностью равномерного распределенияХ3 также с нулевым математическим

ожиданием и единичным стандартным отклонением. Третий пример (см. 9.2.4) идентичен второму за исклю­
чением того, что стандартное отклонение Х3 равно трем, что демонстрирует доминирующее влияние факто­
ра, соответствующего данной входной величине, на результат измерения.

9.2.2 Вычисления и результаты (пример 1)
9.2.2.1 В данном примере каждая входная величинах,описывается стандартным нормальным рас­

пределением, т. е. оценки X, имеют вид х, = 0, /= 1 ,2 , 3, с соответствующими стандартными неопределен­
ностями u(Xj) = 1. Результаты, полученные с применением способа оценивания неопределенности по GUM 
(см. раздел 6) и методом Монте-Карло (см. раздел 7) показаны в таблице 3 и на рисунках 8— 10. Некоторые 
данные в таблице с целью облегчения их сравнения представлены в виде чисел с четырьмя значащими 
цифрами.

Т а б л и ц а  3 — Результаты измерения способом оценивания неопределенности по GUM (GUF) и методом Монте- 
Карло (ММК) для аддитивной модели [формула (24)], с входными величинами Xh описываемыми стандартным 
нормальным распределением (9.2.2)

Метод М У Уг и(У-\) °(у2) r{yvy2) к9 кя

GUF — 0,000 0,000 1,414 1,414 0,500 2,45 2,24

ММК 1 х 1 0 5 0,003 0,005 1,412 1,408 0,498 2,45 2,22

ММК 1 х 1 0 6 0,000 0,000 1,416 1,415 0,500 2,45 2,21

ММК 1 х 1 0 7 0,000 0,000 1,414 1,414 0,500 2,45 2,21

Адаптивный
ММК

0 ,35x106 0,001 -0,001 1,417 1,417 0,502 2,45 2,22

Адаптивный
ММК

0 ,45x106 0,001 -0,001 1,416 1,414 0,501 2,45 2,21
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Э.2.2.2 Способ оценивания неопределенности по GUM, обобщенный на случай нескольких выходных 
величин, дает оценку у  = (0,0)т величины Y. Ковариационная матрица для данной оценки, имеющая вид

Uу
2 1 

1 2 ’

получена по формуле (3), Uy = CXUXCXT, где в соответствии с условиями настоящего примера

СМ

0 0

0

см

0

0 0 12
Сх

1 0 1 
0 1 1 '

Коэффициент корреляции, соответствующий оценкам и у2 (см. 3.21), будет г(у1 ,у2) = 0,5. 95%-ные 
области охвата для Y  в форме эллипса и прямоугольника определяются, соответственно, коэффициентами 
охвата кр = 2,45 (таблица 1) и kq -  2,24 (таблица 2). Эти результаты приведены в строке для GUF таблицы 3. 
В соответствии со способом оценивания неопределенности по GUM выходная величина Y  описывается 
двумерным нормальным распределением Л/(y,Uy).

9.2.2.3 Применение метода Монте-Карло с числом испытаний М равным 105,106 и 107 дает результа­
ты, приведенные в следующих строках таблицы для ММК. В строках для адаптивного ММК указаны значе­
ния М, равные 0 ,3 5 x1 06 и 0 ,4 5 x1 06 и представляющие собой число испытаний при двух применениях 
адаптивной процедуры метода Монте-Карло (см. 7.8.3) для ndig, равного трем (см. примечание 3 в 8.3). Все 
числовые значения, полученные с применением адаптивной процедуры, в частности, для ул,у2, и(Уч), и(у2), 
г(УьУг)' кр и kq, являются установившимися.

9.2.2.4 Полученная аналитически плотность распределения для Y  представляет собой двумерное 
нормальное распределение A/(y,Uy) с у  и Uy, приведенными в Э.2.2.2.

9.2.2.5 На рисунке 8 слева показана плотность двумерного нормального распределения для Y, полу­
ченная способом оценивания неопределенности по GUM (совпадающая с аналитическим решением). Кон­
турные линии равной вероятности имеют форму эллипсов и определяются уравнениями

(Л -  У)т Uy- 1(Ti - у )  = /с2

для различных значений к. На рисунке 8 справа показаны контурные линии приближения плотности распре­
деления для Y, полученные с применением метода Монте-Карло с М  = 107 испытаниями. Это приближение 
представляет собой отношение числа точек выборки из распределения Y, попавших в ячейку сетки разби­
ения плоскости Y, к общему числу испытаний М, приписанное области плоскости Y, занимаемой этой ячей­
кой (внутри данной ячейки плотность распределения считают постоянной). Контурные линии приближен­
ного распределения Y построены для тех же значений к, что были использованы для построения эллипти­
ческих контурных линий на рисунке 8 слева. Алгоритм сглаживания контурных линий при этом не приме­
нялся (см. 9.1.6).

П р и м е ч а н и е  — На рисунке 8 и других контурных графиках приведена цветовая шкала, показывающая 
соответствие цвета контурной линии определенному уровню (вероятности).

9.2.2.6 На рисунке 9 показаны маргинальная плотность распределения Л1^уь и у^) для Yb получен­

ная способом оценивания неопределенности по GUM, а также приближение плотности распределения той 
же величины, полученное методом Монте-Карло с числом испытаний М=  107. Приближение представлено 
в виде распределения частот (гистограммы). Эти две плотности распределения визуально практически не 
различимы. Аналогичный результат будет получен и для У2.
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Рисунок 8 — Контурные линии совместных плотностей распределения выходных величин в аддитивной модели 
измерения [формула (24)], полученных способом оценивания неопределенности по GUM (слева) и методом 
Монте-Карло (справа) без сглаживания контуров при стандартном нормальном распределении входных

величин (9.2.2)

Плотность распределения вероятностей

*1

Рисунок 9 — Маргинальная плотность распределения У-| для тех же условий, что и на рисунке 8 (9.2.2)

9.2.2.7 На рисунке 10 слева показаны контурные линии приближения плотности распределения для Y, 
полученные методом Монте-Карло с 0 ,45х  106 испытаниями. Эти линии значительно менее «гладкие», чем 
те, что изображены на рисунке 8 (справа) и получены для гораздо большего числа испытаний. На рисунке 
10 справа приведен пример сглаженных контурных линий (см. 9.1.6).

П р и м е ч а н и е  — В большинстве случаев гладкость контурных линий для приближения плотности Y 
может быть обеспечена выбором большего числа испытаний в методе Монте-Карло и более частой сеткой 
разбиения плоскости Y. Аналогичный эффект имеет место в случае единственной скалярной выходной величины, 
когда для обеспечения гладкости огибающей кривой построенного приближения плотности распределения 
(гистограммы) необходимо большое значение М и большое число классов гистограммы.
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Рисунок 10 — Контурные линии совместных плотностей распределения выходных величин в аддитивной модели 
измерения [формула (24)], полученных с использованием адаптивной процедуры Монте-Карло без сглаживания 

(слева) и со сглаживанием (справа) для тех же условий, что и на рисунке 8 (9.2.2)

9.2.2.8 Для сопоставления результатов, полученных способом оценивания неопределенности по GUM 
и с помощью адаптивной процедуры метода Монте-Карло, применена процедура проверки, описанная в 
разделе 8, при значении ndig равном двум. В этом случае точности вычисления будут определяться значе­
ниями

<5-1 = <52 = 0,05, р = 0,005, кр -  Kq -  0,05.

Адаптивная процедура метода Монте-Карло была применена дважды. В обоих случаях продемонст­
рирована хорошая согласованность результатов, чего и следовало ожидать, поскольку в данном примере 
полностью соблюдены все условия применимости способа оценивания неопределенности по GUM. Исклю­
чением мог стать только результат вычисления kq, поскольку расчет значения этой величины способом 
оценивания неопределенности по GUM не учитывает взаимную зависимость между У1 и У2 (см. 6.5.2.3). 
Однако и для kq результаты, полученные двумя методами, показали хорошую согласованность в пределах 
заданной точности вычисления.

9.2.3 Вычисления и результаты (пример 2)
9.2.3.1 Этот пример измерительной задачи идентичен описанному в 9.2.2 за тем исключением, что Х3 

характеризуется равномерным распределением с нулевым математическим ожиданием и единичным 
стандартным отклонением. Оценки X, и соответствующие стандартные неопределенности остались неиз­
менными: х, = 0, и(х;) = 1 , /=  1 ,2 ,3 . Результаты, полученные с применением способа оценивания неопре­
деленности по GUM (см. раздел 6) и методом Монте-Карло (см. раздел 7), показаны в таблице 4 и на 
рисунках 11 и 12.

Т а б л и ц а  4 — Результаты измерения для тех же условий, что в таблице 3, за исключением того, что Х3 
описывается равномерным распределением (9.2.3)

Метод М /1 У2 U ( У д и  (У 2 ) т(У-|,У2) к Р к Р

GUF — 0,000 0,000 1,414 1,414 0,500 2,45 2,24

ммк 1 x 1 05 0,008 0,010 1,414 1,410 0,500 2,38 2,15

ммк 1 х 106 0,001 0,001 1,414 1,411 0,499 2,38 2,15

ммк 1 х  107 0,000 0,000 1,414 1,414 0,500 2,38 2,15

Адаптивный
ММК

0 ,36x106 0,000 -0 ,002 1,413 1,414 0,500 2,38 2,15

Адаптивный
ММК

0,35x10е 0,002 -0,001 1,418 1,415 0,502 2,38 2,15
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9.2.3.2 Способ оценивания неопределенности по GUM дает абсолютно одинаковую двумерную плот­
ность распределения для Y  (см. рисунок 11, слева) независимо от того, распределена ли входная величина 
Х3 по нормальному (как в 9.2.2) или равномерному (как в настоящем примере) закону, поскольку в данной 
измерительной задаче вид этой плотности распределения полностью определен оценками входных вели­
чин и их стандартными отклонениями, а они в обоих примерах одинаковы. Поскольку модель измерения 
изначально линейна, ее дополнительной линеаризации для применимости закона трансформирования нео­
пределенностей не требуется, и в этом смысле способ оценивания неопределенности по GUM никаких 
приближений не использует. Тем не менее, результаты, полученные способом оценивания неопределенно­
сти по GUM для оценки у  величины Y  и соответствующей ковариационной матрицы Uy, не будут совпадать 
с аналитическим решением, поскольку последнее зависит не только от оценок входных величин и их стан­
дартных отклонений, но и от вида их распределений, в данном примере от распределения Х3.

9.2.3.3 На рисунках 11 (справа) и 12 показано, каким образом негауссовость распределения Х3 влия­
ет на приближения плотности распределения Y и маргинальной плотности распределения для Y,, получен­
ные методом Монте-Карло.

Рисунок 11 — То же, что на рисунке 8 для примера с входной величиной Х3, 
описываемой равномерным распределением (9.2.3)

Плотность распределения вероятностей

Рисунок 12 — То же, что на рисунке 9 для примера с входной величиной Х3, 
описываемой равномерным распределением (9.2.3)
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9.2.3.4 Проверка применимости способа оценивания неопределенности по GUM, описанная в разде­
ле 8 (см. также 9.2.2), была проведена сравнением результатов, полученных с его помощью и с помощью 
адаптивной процедуры Монте-Карло. Из таблицы4видно хорошее совпадение результатов дляу.|,у2, и{у^), 
и(у2) и г(уьу2), но недостаточно хорошее для кр и kq.

9.2.4 Вычисления и результаты (пример 3)
9.2.4.1 Этот пример измерительной задачи идентичен описанному в 9.2.3 за исключением того, что 

стандартное отклонение для Х3 теперь равно не единице, а трем. Результаты, полученные с применением 
способа оценивания неопределенности по GUM (см. раздел 6) и методом Монте-Карло (см. раздел 7), 
показаны в таблице 5 и на рисунках 13 и 14.

Т а б л и ц а  5 — Результаты измерения для тех же условий, что в таблице 4, за исключением того, что стандартное 
отклонение для Х3 равно трем (9.2.3)

Метод М У\ Уг и(У|) и(У2) r{yvy2) кР кс

GUF — 0,000 0,000 3,162 3,162 0,900 2,45 2,24

ММК 1x105 0,023 0,025 3,159 3,157 0,900 2,28 1,87

ММК 1 х 106 0,003 0,002 3,161 3,161 0,900 2,28 1,87

ММК 1 х 107 0,000 0,000 3,162 3,161 0,900 2,28 1,87

Адаптивный
ММК

1,49x10® 0,002 0,002 3,163 3,162 0,900 2,28 1,87

Адаптивный
ММК

1,85X10® 0,001 0,001 3,163 3,162 0,900 2,28 1,87

9.2.4.2 Способ оценивания неопределенности по GUM дает оценку у  = (0,0)т величины Y. Ковариаци­
онная матрица для данной оценки, имеющая вид

Uу
10 9
9 10 ’

получена по формуле (3), где в соответствии с условиями настоящего примера

12 0 0

0 12 0

0 0 з 2
Сх

1 0  1 

0 1 1

Коэффициент корреляции для оценок ул и у2 будет г{ул,у2) = 0,9. 95%-ные области охвата для Y в 
форме эллипса и прямоугольника определяются, соответственно, коэффициентами охвата кр -  2,45 (табли­
ца 1) и kq -  2,24 (таблица 2). Эти результаты приведены в строке для GUF таблицы 5. В соответствии со 
способом оценивания неопределенности по GUM выходная величина Y описывается двумерным нормаль­
ным распределением N(y,Uy), показанным в виде контурного графика на рисунке 13 (слева). В этом приме­
ре наблюдается более сильная корреляция между У, и У2 по сравнению с примерами, рассмотренными 
ранее, поскольку увеличен относительный вклад общего фактора, описываемого через Х3, в неопределен­
ности, связанные с оценками У, и У2.

9.2.4.3 Из рисунков 13 (справа) и 14 видно большее влияние (в сравнении с результатами в 9.2.3) 
распределения, описывающего Х3, на приближения плотности распределения для Y и маргинальной плот­
ности распределения для У,, полученные методом Монте-Карло.

3.2.4.4 Проверка применимости способа оценивания неопределенности по GUM, описанная в разде­
ле 8 (см. также 9.2.2 и 9.2.3), была проведена сравнением результатов, полученных с его помощью и с 
помощью адаптивной процедуры Монте-Карло. Из таблицы 5 видно хорошее совпадение результатов для 
ул, у2, и{ул), и{у2) и г(у1,у2), но плохое для кр и kq. Полученное способом оценивания неопределенности по 
GUM значение кр приблизительно на 7 %, а значение kq приблизительно на 20 % больше тех, что получены 
методом Монте-Карло.
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Рисунок 13 —  То же, что на рисунке 11 для примера с входной величиной Х 3, 
имеющей стандартное отклонение, равное трем (9.2.4)
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Рисунок 14 —  То же, что на рисунке 12 для примера с входной величиной Х 3, 
имеющей стандартное отклонение, равное трем (9.2.4)

9.3 П реобразование систем ы  координат

9.3.1 Постановка задачи
9.3.1.1 Комплексная величина Z  может быть представлена в алгебраической форме

*1  + i * 2>

где Х 1 = 2^  и Х 2 = Zj —  соответственно действительная и мнимая части Z, ил и в тригонометрической форме

R (c o s 0  + i s in 0  ) = Re10,

где R  и 0  —  соответственно модуль и аргумент Z. Эти две ф ормы записи соответствуют представлениям 
точки Z b комплексной плоскости соответственное декартовой и полярной системой координат. Преобразо­
ванию первой системы во вторую можно поставить в соответствие модель измерения вида

У,2 =  X 2 + х|, tanY2 = X 2/X 1 (25)

с входной величиной X  = (Х |,Х 2)Т = (Z^,Z |)T и выходной величиной У  = (У |,У 2)Т = (R ,0 )T .
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П р и м е ч а н и е  — Формула (25) описывает двумерную модель измерения для выходных величин R и 0. 
Поскольку модуль R всегда неотрицателен, то он однозначно может быть определен как положительный квад­
ратный корень из R2. Если аргумент в  определять через так называемый арктангенс двух переменных (в языках 
программирования обозначаемый «atan2»), то при заданном отношении Z//ZR значение аргумента также будет 
однозначно определено на интервале — ж < в  < ж. Таким образом, формула (25) допускает использование ее в 
качестве двумерной модели измерения.

9.3.1.2 Исходными данными для расчета неопределенности являются оценки х: их2 величин Х 1 и Х2, 
полученные из измерительной системы, и соответствующие им стандартные неопределенности и(х-,) и и(х2) 
и ковариации и(хьх2) - г и ( х 1)и(х2), где г -  г(хь х2) — коэффициент корреляции [см. JCGM 100 (пункт 5.2.2)]. 
При наличии таких данных [см. JCGM 101 (пункт 6.4.8.1)] X приписывают двумерное нормальное распреде­
ление с математическим ожиданием и ковариационной матрицей соответственно

V и2(х 1) ru(Xi)u(x2)

Х2_
}

М х^(х2) и2(х2)

Предполагается, что размерность Х 1 и Х 2 равна единице.
9.3.1.3 Оценки у величины Y  и соответствующей ковариационной матрицы Uy определены для разных 

сочетаний величин хь х2, и(х-,), и(х2) и г(х1,х2).
9.3.1.4 Рассмотрено шесть примеров, в каждом из которых х2 взято равным нулю, а и(х^) = и(х2) -  

-  их -  0,010. В первых трех примерах рассматривается случай некоррелированных входных величин, 
г(х.|,х2) = 0 для оценок соответственно х 1 = 0,001, х 1 = 0,010 и х 1 = 0,100 (см. 9.3.2). В остальных трех 
примерах использованы те же оценки д л яХ ,, но при сильной корреляции входных величин: г(хь х2) -  0,9 
(см. 9.3.3). На рисунке 15 [где не соблюден принцип использования на каждом графике одного цвета для 
одинаковых уровней (см. 9.1.5)] показаны контурные линии совместной плотности распределениях для 
примера 1 [х-| — 0,001 ил(х1,х2) = 0 ]и при м е ра 4 [х1 =0,001 и г(х1,х2) = 0,9]. Для остальных примеров графики 
плотности распределения X получают переносом контурных линий вдоль оси Х 1 таким образом, чтобы их 
центрам соответствовала координата х1 = 0,010 (примеры 2 и 5 ) или х-, =0,100 (примеры 3 и 6).

Рисунок 15 — Контурные линии совместных плотностей распределения входных величин в модели 
преобразования системы координат для примеров 1 (слева) и 4 (справа) (9.3.1.4)

9.3.2 Вычисления и результаты (случай нулевой ковариации)
9.3.2.1 Общие положения
9.3.2.1.1 Оценивание неопределенности выполняется применением трансформирования распределе­

ний (а) аналитически (для целей сравнения), (Ь) с использованием обобщенного способа оценивания нео­
пределенности по GUM и (с) с использованием метода Монте-Карло.
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9.3.2.1.2 Совместная плотность распределения для Y  и маргинальные плотности распределения для 
Yi и У2 могут быть получены аналитически в случае независимых и Х 2, описываемых нормальными

распределениями ы (х1,г / |)  и n (x2,l/^ ) соответственно (см. раздел С.2).
9.3.2.1.3 Согласно способу оценивания неопределенности по GUM величине Y соответствует дву­

мерное нормальное распределение N(y,Uy), при этом оценку у  = (у-|,у2)т для Y получают решением 
уравнений

у \  = х \  + х | ,  ta n y2 = x 2/xv

а ковариационную матрицу Uy получают применением закона трансформирования неопределенностей 
(см. разделы 6 и С.З).

9.3.2.1.4 Метод Монте-Карло применен с числом испытаний М -  107 (см. раздел 7).
9.3.2.2 Пример 1 (х1 = 0,001)
9.3.2.2.1 Результаты, полученные аналитически, способом оценивания неопределенности по GUM 

и методом Монте-Карло для входной оценки х1 = 0,001 и коэффициента корреляции г(х1,х2) = 0 приведены 
в таблице 6, строки 1— 3.

П р и м е ч а н и е  — Приведенные в первой строке таблицы 6 значения у1 и и(у^) получены в результате 
выполненных с высокой точностью численных расчетов определенных интегралов, представляющих собой задан­
ные в виде формул через маргинальную плотность распределения у  выражения для Е(У,) и 1/(У,) [см. формулу 
(С.2) в приложении С]. Аналогично значения у2 и и(у2) рассчитаны числено по формулам для E(Y2) и V(Y2), вклю­
чающим в себя маргинальное распределение У2 [см. формулу (С.З) в приложении С)]. Нетрудно показать, что 
соу(У],У2) = 0, и, следовательно, г(уьу2) = 0.

Т а б л и ц а  6 — Результаты измерений для модели преобразования системы координат для случая нулевой 
ковариации между оценками входных величин (9.3.2.2.1, 9.3.2.3.1 и 9.3.2.4.1)

*1 Метод ŷ Уг U(/l) w(y2) r{yvy2)

0,001 Аналитический 0,013 0,000 0,007 1,744 0,000

GUF 0,001 0,000 0,010 10,000 0,000

ммк 0,013 -0,001 0,007 1,744 0,000

0,010 Аналитический 0,015 0,000 0,008 1,118 0,000

GUF 0,010 0,000 0,010 1,000 0,000

ММК 0,015 0,000 0,008 1,117 0,000

0,100 Аналитический 0,101 0,000 0,010 0,101 0,000

GUF 0,100 0,000 0,010 0,100 0,000

ММК 0,101 0,000 0,010 0,101 0,000

9.3.2.2.2 На трех верхних графиках рисунка 16 показаны плотности распределения для Y, полученные 
аналитически, способом оценивания неопределенности по GUM и методом Монте-Карло. Последняя хоро­
шо согласуется с аналитическим решением, в то время как результат оценивания по GUM отличается от 
них очень сильно, вплоть до того, что для него использована другая шкала соответствия цвета и уровня 
(см. 9.1.5). Более того, способ оценивания неопределенности по GUM дает ненулевую вероятность появле­
ния физически невозможных значений выходных величин в областях г/-, < 0, г/2 < ж и г\2 > п.
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Рисунок 16 — Совместные плотности вероятности для Y, полученные аналитически (сверху), оцениванием по GUM 
(в центре слева) и методом Монте-Карло (в центре справа) и маргинальные плотности распределения для У1 
(внизу слева) и У2 (внизу справа), полученные аналитически (пунктирная линия), оцениванием по GUM (сплошная 
линия) и методом Монте-Карло (гистограмма) для модели преобразования координат с х1 = 0,001 и r(xi,x2) = 0

(9.3.2.2.2 и 9.3.2.2.3)
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9.3.2.2.3 На двух нижних графиках рисунка 16 изображены маргинальные плотности распределения 
для выходных величин У, и У2, полученные из совместных распределений для Y. Маргинальные плотности 
распределения, полученные методом Монте-Карло (показаны каждая в форме гистограммы или распреде­
ления частот), согласуются с теми, что получены аналитически (показаны пунктирными линиями), в то вре­
мя как маргинальные распределения, полученные способом оценивания неопределенности по GUM (пока­
заны сплошными линиями) очень сильно отличаются от аналитических решений. Для удобства представле­
ния все графики маргинальной плотности распределения для У2 ограничены областью физически возмож­
ных значений 772, т-е- интервалом -  к  < rj2< я, хотя полученное способом оценивания по GUM нормальное 
распределение N(0,102) для У2 простирается далеко за границы этого интервала. На этих графиках также 
хорошо видно, что согласно способу оценивания неопределенности по GUM физически невозможным зна­
чениям 77! и 772 присвоена ненулевая вероятность (см. 9.3.2.2.2).

9.3.2.3 Пример 2 (х., = 0,010)
9.3.2.3.1 Результаты, полученные аналитически, способом оценивания неопределенности по GUM 

и методом Монте-Карло для входной оценки -  0,010 и коэффициента корреляции т(х1,х2) = 0, приведены 
в строках 4—6 таблицы 6. На рисунке 17 показаны контурные графики совместных плотностей распределе­
ния для Y, полученных с использованием трех вышеуказанных методов, а также маргинальные плотности 
вероятности для У, и У2, полученные из соответствующих совместных распределений.

9.3.2.3.2 Видно, что результаты, полученные с использованием метода Монте-Карло, согласуются с 
аналитическим решением. В то время как результаты, полученные с использованием способа оценивания 
неопределенности по GUM, от аналитического решения отличаются, хотя и не так существенно, как в 
примере ex-, = 0,001. Относительные разности между стандартными неопределенностями и(ул) и и(у2), 
определенные с использованием способа оценивания неопределенности по GUM и аналитическим мето­
дом, составляют приблизительно 25 % и 10 % (в сравнении с 40 % и 470 % для примера с х.| = 0,001).

9.3.2.4 Пример 3 (х., = 0,100)
9.3.2.4.1 Результаты, полученные аналитически, оцениванием неопределенности по GUM и методом 

Монте-Карло для входной оценки х., = 0,100 и коэффициента корреляции г(х-|,х2) = 0, приведены в 
строках 7—9 таблицы 6 и на рисунке 18.

9.3.2.4.2 Видно, что результаты, полученные с использованием способа оценивания неопределенно­
сти по GUM и методом Монте-Карло согласуются с аналитическим решением. Показанные на рисунке 18 
маргинальные распределения, полученные тремя методами, практически неразличимы. Оценки, соответ­
ствующие стандартные неопределенности и соответствующие коэффициенты корреляции совпадают с точ­
ностью до двух значащих цифр.
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Рисунок 17 — То же, что на рисунке 16, но для х ■, = 0,010 (9.3.2.3.1)
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Рисунок 18 — То же, что на рисунке 16, но для хл = 0,100 (9.3.2.4.1)

30

140

20

100

80

60

3

20

0,50 
. рад

47



ГОСТ Р 54500.3.2— 2013

9.3.3 Вычисления и результаты (случай ненулевой ковариации)
9.3.3.1 Оценивание неопределенности выполняется применением трансформирования распределе­

ний с использованием (а) обобщенного способа оценивания неопределенности по GUM (см. разделы 6 и 
С.З) и (Ь) метода Монте-Карло с числом испытаний М  = 107 (см. раздел 7).

9.3.3.2 Результаты, полученные для входных оценок х  ̂ -  0,001, х^ -  0,010 и х1 = 0,100 (примеры 4 ,5  
и 6 соответственно) и коэффициента корреляции г(хь х2) = 0,9 приведены в таблице 7. На рисунках 19— 21

Т а б л и ц а  7 — Результаты измерений для модели преобразования системы координат для случая ненулевой 
ковариации между оценками входных величин (9.3.3.2)

*1 Метод /1 Уг w(/i) U (У2) r(yvy2)

0,001 GUF 0,001 0,000 0,010 10,000 0,900
ММК 0,012 -0 ,556 0,008 1,599 -0 ,070

0,010 GUF 0,010 0,000 0,010 1,000 0,900
ММК 0,015 -0 ,343 0,008 0,903 0,352

0,100 GUF 0,100 0,000 0,010 0,100 0,900
ММК 0,101 -0 ,009 0,010 0,102 0,882

Рисунок 19 — Совместные плотности вероятности для Y, полученные оцениванием по GUM (вверху слева) и 
методом Монте-Карло (вверху справа) и маргинальные плотности распределения для У-| (внизу слева) и У2 (внизу 
справа), полученные оцениванием по GUM (сплошная линия) и методом Монте-Карло (гистограмма) для модели

преобразования координат с х-, = 0,001 и г(х1,х2) = 0,9 (9.3.3.2)
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показаны совместные плотности распределения для Y и маргинальные плотности распределения для 
У-, и У2, полученные указанными двумя методами для всех трех примеров.

9.3.3.3Для случаев х1 = 0,001 их1 = 0,010 результаты, полученные способом оценивания неопреде­
ленности по GUM и методом Монте-Карло плохо согласуются друг с другом. В частности, метод Монте- 
Карло дает в этих двух примерах маргинальные плотности распределения для У2 с двумя пиками, что 
сильно отличается от одномодального нормального распределения, полученного оцениванием по GUM. 
Эти пики находятся вблизи точек г)2 -  я/4 = 0,785 и rj2 = тг/4 -  п ~ -  2,356, что соответствует углам 
ориентации главной оси эллиптических контурных линий плотности распределения для X [см. рисунок 15 
(справа)].

9.3.3.4Для случая х-, = 0,100 результаты, полученные способом оценивания неопределенности по 
GUM и методом Монте-Карло, согласуются намного лучше.
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Рисунок 20 — То же, что на рисунке 19, но для х-| = 0,010 (9.3.3.2)
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Рисунок 21 — То же, что на рисунке 19, но для х-\ = 0,100 (9.3.3.2)

9.3.4 Обсуждение результатов
9.3.4.1 Для обоих случаев (с нулевой и ненулевой ковариацией) по мере удаления оценки х1 от нуля 

результаты, полученные способом оценивания неопределенности по GUM и методом Монте-Карло, начина­
ют приближаться друг к другу.

9.3.4.2 Для оценок -  0,001, х1 = 0,010 и, вообще говоря, для всех значений хь близких к нулю, 
эффект ненулевой ковариации значительно изменяет результаты, полученные с помощью метода 
Монте-Карло.

9.3.4.3 Численные данные, представленные в таблицах 6 и 7, соответствуют показанным на рисунках 
совместным и маргинальным плотностям распределения. В некоторых случаях такие данные могут быть 
неподходящими или недостаточными для описания распределения, характеризующего выходную величи­
ну. Так, для примера с входной оценкой х-, = 0,001 и ненулевой ковариацией г(хь х2) -  0,9 (рисунок 19) 
маргинальная плотность распределения для У2, полученная с помощью метода Монте-Карло, существен­
но бимодальна, между тем оценка у2 величины У2 нах0дится между модами распределения в той области 
значений У2, где плотность вероятности мала.

П р и м е ч а н и е  — Для выходной величины, имеющей многомерное нормальное распределение, вектор 
математического ожидания и соответствующая ковариационная матрица описывают это распределение исчер­
пывающим образом.

9.3.4.4 Для входных оценок х 1 = 0,001, х-, = 0,010 и, вообще говоря, для всех значений х ь  близких к 
нулю, определение интервалов охвата в форме эллипсов и прямоугольников не является подходящим.
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9.4 Одновременное измерение активного и реактивного сопротивлений

9.4.1 Постановка задачи
9.4.1.1 Активное R и реактивное Хсопротивления элемента цепи определяют путем измерения амп­

литуды V изменяющегося по гармоническому закону напряжения на его клеммах, амплитуды / проходя­
щего через элемент переменного тока и фазового сдвига ф между напряжением и силой тока. Входными 
величинами модели являются V, I и ф, а выходными —  указанные сопротивления R и X, а также модуль 
полного импеданса элемента цепи Z, Z2 = R2 + X 2.

9.4.1.2 Применение закона Ома дает трехмерную модель измерения

R = y c o s 0 , X  = y s in 0 , Z = у ,  (26)

связывающую входную величину X  = {Хь Х2, Х3)т = (V, I, ф)т с выходной величиной Y = =
= (Я, X, Z)T.

П р и м е ч а н и е  1 — В настоящем примере в целях упрощения не учитываются систематические эффек­
ты, которые могут оказывать влияние на оценки V, I и ф.

П р и м е ч а н и е  2 — Аналогичный пример рассмотрен в JCGM 100 (раздел Н.2), где реактивному сопро­
тивлению присвоено обозначение X. Такое же обозначение используется в настоящем примере. Реактивное 
сопротивление X  является элементом векторной выходной величины Y, и его не нужно путать с X — векторной 
входной величиной.

9.4.1.3 В одинаковых условиях проведено п = 6 повторных независимых наблюдений х 1; ...,хп вход­
ной величины X. Результаты этих наблюдений приведены в таблице 8.

П р и м е ч а н и е  — В примере из JCGM 100 (раздел Н.2) число наблюдений было равно пяти, и результаты 
тех наблюдений приведены в первых пяти строках таблицы 8. Однако для определения ковариационной матрицы 
(см. 9.4.2.5) необходимо как минимум 6 наблюдений. Поэтому в таблицу 8 было добавлено шестое наблюдение, 
полученное как среднее арифметическое значение первых пяти наблюдений. Для настоящего примера несуще­
ственно, каким способом было получено шестое наблюдение, но выбор в качестве шестого наблюдения среднего 
значения выборки позволяет сохранить это среднее значение неизменным.

Т а б л и ц а  8 — Данные п = 6 одновременных независимых наблюдений входных величин для модели измерения 
активного и реактивного сопротивлений (9.4.1.3)

Наблюдение V, В /, мА Ф, рад

1 5,007 19,663 1,0456

2 4,994 19,639 1,0438

3 5,005 19,640 1,0468

4 4,990 19,685 1,0428

5 4,999 19,678 1,0433

6 4,999 19,661 1,0445

9.4.2 Вычисления и результаты
9.4.2.1 Результат измерения в настоящем примере должен быть представлен в виде оценки у величи­

ны Y и соответствующей ковариационной матрицы Uy. Этот результат должен быть получен на основе моде­
ли измерения, заданной формулами (26), и данных наблюдений Xi, ..., х„, приведенных в таблице 8. Реше­
ние данной задачи на основе способа оценивания неопределенности по GUM приведено в JCGM 100 (пункт 
Н.2.3). В настоящем примере помимо данного способа рассматриваются модификация способа оценива­
ния неопределенности по GUM на основе применения многомерного /-распределения (см. 5.3.2) для вход­
ных величин, а также применение метода Монте-Карло.

9.4.2.2 Для того, чтобы применить способ оценивания неопределенности по GUM необходимо знать

оценку х  = (у ,1 ,ф ) входной величины X = (V, /, ф)т, определяемую как выборочное среднее по наблюде­
ниям, данные которых приведены в таблице 8 [JCGM 100 (пункт 4.2)]:

x  = -£(Xi + ... + х „ ) .
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Ковариационная матрица Ux, соответствующая х, содержит дисперсии, соответствующие средним 
значениям [JCGM 100 (пункт 4.2)], и ковариации, соответствующие каждой паре средних значений 
[JCGM 100 (пункт 5.2.3)], и вычисляется по формуле:

° х  =  А7(АТ̂ 1) М, м  =  (X! -  Х)(Х! -  Х)т +  ... +  (Хп -  Х)(Х„ -  Х)Т,

где М —  матрица сумм квадратов и произведений. Оценки входных величин и соответствующие стандар­
тные неопределенности приведены в таблице 9, а коэффициенты корреляции, соответствующие парам та­
ких оценок, —  в таблице 10.

Т а б л и ц а  9 — Оценки входных величин X = (V, I, ф)т при одновременном измерении активного и реактивного 
сопротивлений и соответствующие стандартные неопределенности (9.4.2.2)

Параметр V, В /, мА Ф, рад

Оценка 4,9990 19,6610 1,04446

Стандартная неопределенность 0,0026 0,0077 0,00061

Т а б л и ц а  10 — Коэффициенты корреляции, соответствующие парам оценок входных величин X = (V, /, ф)т, при 
одновременном измерении активного и реактивного сопротивлений (Э.4.2.2)

V / Ф

V 1 -0,355 0,858

1 1 -0,645

Ф 1

П р и м е ч а н и е  — В JCGM 100 (раздел Н.2) для данной задачи рассмотрены два способа оценивания 
неопределенности измерения, причем принцип, положенный в основу второго способа, изложен в JCGM 100 
в примечании к пункту 4.1.4. В настоящем стандарте этот второй способ не рассматривается по причинам, указан­
ным в 4.1.

9.4.2.3 Согласно способу оценивания неопределенности по GUM, оценку у  = (r , X, z) выходной 

величины Y  = (R, X, Z)T рассчитывают на основе оценки х по формулам (26),

У =
V
/ ]

т

Ковариационную матрицу Uy, соответствующую у, вычисляют по формуле (3) из 6.2.1.3, Uy = CXUXCXT, 
где Сх —  матрица чувствительностей, имеющая вид

cos <; 
/

sinф 
I 
1 
/

\/ sin с

\/sin<j

_ Usinij 
/

V cos ф 
I

(27)

Результаты, полученные с применением способа оценивания неопределенности по GUM, приведены 
в первой строке (метод GUF) таблицы 11.

П р и м е ч а н и е  1 — В последнем столбце таблицы 11 приведены значения для 1-r(X,Z), поскольку 
коэффициент корреляции r(X,Z) близок к единице (см. 3.21, примечание 5).
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П р и м е ч а н и е  2 — При имеющейся в модели, описываемой формулами (26), зависимости между 
выходными величинами

Z2 = R2 + X 2, (28)

ковариационная матрица 1)у теоретически должна быть сингулярна. Вследствие ошибок округления корреляци­
онная матрица, элементы которой приведены в первой строке таблицы 11, не является ни сингулярной, ни поло­
жительно определенной. Но из-за малости стандартных неопределенностей для оценок входных величин эта 
сингулярность не оказывает практически значимого влияния на полученные результаты [20, раздел 4].

Т а б л и ц а  11— Результаты одновременного измерения активного и реактивного сопротивлений (9.4.2.3, 
Э.4.2.4 и 9.4.2.5)

Метод R, Ом X, Ом Z, Ом u(R), Ом и(Х), Ом и(/), Ом r(R,X) r(R, Z) 1-r(X,Z)

GUF 127,732 219,847 254,260 0,058 0,241 0,193 -0,588 -0,485 0,749 X 10-2

ММК 127,732 219,847 254,260 0,130 0,536 0,429 -0,587 -0,482 0,770x10-2

Альтернативный
GUF

127,732 219,847 254,260 0,130 0,540 0,431 -0,588 -0,485 0,749x10-2

9.4.2.4 В предположении, что данные, приведенные в таблице 8, являются единственной доступ­
ной информацией о входных величинах и что каждое наблюдение можно рассматривать как выборку из 
одного и того же многомерного нормального распределения, входную величину X  описывают многомер­
ным (-распределением fv(x,M/(vn)), c v  -  п -  N  -  3 степенями свободы, где х  —  выборочное среднее, 
определенное в 9.4.2.2 (см. 5.3.2). Результаты, полученные с применением М  -  106 испытаний метода 
Монте-Карло, показаны во второй строке (метод ММК) таблицы 11.

9.4.2.5 Величина X, описываемая многомерным (-распределением (см. Э.4.2.4) имеет ковариацион­
ную матрицу

V <X> = (T J 2jHM -

Учет этого обстоятельства позволяет несколько улучшить процедуру оценивания неопределенности 
по GUM, рассмотренную в 9.4.2.3, заменив в формуле (3), Uy = CXUXCXT, матрицу Ux на V(X). Результаты, 
полученные с применением такого альтернативного подхода, приведены в третьей строке (метод Альтерна­
тивный GUF) таблицы 11 (см. также [15]).

П р и м е ч а н и е  1 — V(X) — ковариационная матрица, полученная с учетом дополнительной информа­
ции, рассмотренной в 9.4.2.4.

П р и м е ч а н и е  2 — Ковариационная матрица для X, полученная таким способом, может быть опре­
делена только при выполнении условия v = п -  N > 2. Именно по этой причине для настоящего примера 
потребовалось не менее п = 6 одновременных наблюдений для N = 3 входных величин (см. примечание к 
9.4.1.3).

9.4.2.6 Ковариационная матрица V(X), полученная из распределения для X, связана с ковариацион­
ной матрицей Ux, используемой в способе оценивания неопределенности по GUM, соотношением

3.4.2.7 Расхождение результатов, полученных при применении метода Монте-Карло и альтернативно­
го способа оценивания неопределенности по GUM, пренебрежимо мало. Это означает, что функции измере­
ния в формуле (26) могут быть линеаризованы с хорошей степенью приближения в окрестности оценок 
входных величин.

3.4.2.8 В JCGM 100 рассматривается возможность описания выходной величины (-распределением с 
использованием формулы Уэлча-Саттертуэйта [см. JCGM 100, формула (G.2b)] для расчета числа эффек­
тивных степеней свободы. Однако применение этой формулы предполагает независимость входных вели­
чин, стандартным отклонениям которых соответствуют конечные числа степеней свободы. Данное условие 
в настоящем примере не выполняется.
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9.5 Измерение температуры с использованием термометра сопротивления

9.5.1 Основное
В настоящем примере рассматривается измерение температуры промышленным платиновым термо­

метром сопротивления путем сравнения сопротивления термометра с эталонным сопротивлением в схеме 
измерительного моста. Если измерению подлежит конкретная температура, то для этой цели исполь­
зуют одномерную модель измерения (см. 9.5.2), а если нескольких температур — то многомерную модель 
(см. 9.5.3). В примере рассматривается обработка данных в рамках указанных моделей измерения спосо­
бом оценивания неопределенности по GUM.

9.5.2 Измерение одной температуры
9.5.2.1 Температуру в измеряют сравнением сопротивления R(6) термометра сопротивления с эталон­

ным сопротивлением Rs измерительного моста. На интервале температур от 0 до 30 °С, сопротивление 
термометра может быть приближенно описано квадратичной функцией его температуры в :

R{6) = (1 + Ав + B62)R0, (29)

где R0, А и В — параметры, определяемые при градуировке (калибровке) термометра. Оценки R0, А и В и 
соответствующие стандартные неопределенности приведены в таблице 12, а коэффициенты корреляции 
для пар таких оценок — в таблице 13.

Т а б л и ц а  12 — Оценки входных величин Х= {R0,A, В, Rs, г)т и соответствующие стандартные неопределен­
ности при измерении температуры (9.5.2.1, 9.5.2.2 и 9.5.2.3)

Параметр R0, Ом А, °С 1 В, °С~2 Rs, Ом Г

Оценка 99,99610 0,0039096 -6 ,0 x1 0 '7 99,99947 1,0780057

Стандартная неопределенность 0,00050 0,0000027 1,1x10-7 0,00010 0,0000050

Т а б л и ц а  13 — Коэффициенты корреляции, соответствующие парам оценок входных величин при измерении 
температуры (9.5.2.1, 9.5.2.2 и 9.5.2.3)

Во А В

Во 1 -0,155 0,092

А 1 -0,959

В 1

9.5.2.2 Оценка величины Rs и соответствующая стандартная неопределенность, получаемые при 
калибровке, приведены в таблице 12. Rs не зависит от параметров R0, А\лВ.

9.5.2.3 Посредством измерительного моста определяют отношение сопротивлений

m
■ Rs (30)

Полученное значение г и соответствующая стандартная неопределенность приведены в таблице 12. 
Отношение сопротивлений не зависит от параметров R0, А и В термометра сопротивления и эталонного 
сопротивления Rs. Таким образом, в таблице 13 содержатся все ненулевые коэффициенты корреляции 
входных величин.

9.5.2.4 Модель измерения температуры в, полученная из формул (29) и (30), имеет вид

(1 + Ав + Be2)RQ- r R s = 0. (31)

В обозначениях, принятых в настоящем стандарте, N -  5, m -  1, X = (R0, А, В, Rs, г)т, У = в и

/?(У,Х) = (1 + Ав + BQ2)R0 -  rRs.

П р и м е ч а н и е  — Модель измерения, определяемая формулой (31), может быть преобразована к явному 
виду путем решения квадратного уравнения относительно в. Однако такое преобразование включает в себя 
процедуру вычитания близких чисел, что может привести к потере точности вычисления, и, кроме того, оно услож­
няет вычисление коэффициентов чувствительности.
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9.5.2.5 Оценку температуры у  = в получают на основе полученного отношения сопротивлений г, 
подставляя данные из таблицы 12 в уравнение (31) и находя решение этого уравнения. Искомая оценка 
равна в = 20,0232 °С.

9.5.2.6 Стандартную неопределенность иу -  и(в ), соответствующую оценке у, вычисляют с исполь­
зованием формулы (8) из 6.3.1.3, СуиуСут = CXUXCXT. Вычисление матриц чувствительности Су и Сх по 
формулам

C x = ^  = §  = (A+2Be)R0,

Сх ах
dh dh dti dh] = Г 

dR0 ’ dA’ dB’ dRs ’ d r \  L̂ + A в + B в 2, R 0в,  R 0e 2 ,

с подстановкой оценок входных величин, приведенных в таблице 12, и соответствующей оценки выходной
величины дает

Су = 0,389 Ом-“С-1,

С* =[1,08; 2,00х103Ом °С; 4,01 Ом °С2; -1,08; -1,ООхЮ2Ом].

Элементы ковариационной матрицы Ux, соответствующей оценкам входных величин, вычисляют 
из стандартных неопределенностей в таблице 12 и коэффициентов корреляции в таблице 13, что дает

и(в) = 0,0045 °С.
9.5.3 Измерение нескольких температур
9.5.3.1 Термометр сопротивления, эталонное сопротивление и измерительный мост, описанные в 9.5.2,

используют для измерения отношений сопротивлений г,.....г10, соответствующих десяти разным темпера­
турам вь ..., 01О.

9.5.3.2 Оценки входных величин, R0, А, В и Rs и соответствующие стандартные неопределенности 
приведены в таблице 12, а оценки гь ..., г10 — в таблице 14. Единственными ненулевыми коэффициентами 
корреляции, соответствующими парам оценок, по-прежнему остаются коэффициенты, приведенные в таб­
лице 13. Предполагается, что отношения сопротивлений независимы между собой. Данное предположе­
ние можно считать справедливым, если преобладающий вклад в неопределенность измерения отношения 
сопротивлений вносят случайные эффекты.

Т а б л и ц а  14 — Оценки отношения сопротивлений и соответствующие им стандартные неопределенности при 
измерении нескольких температур (9.5.3.2)

Параметр И г2 Гз га г5

(гу -  1) х 107 53 150054 300055 450056 600056

u ( f j}  х 107 50 50 50 50 50

Параметр г6 Г/ Гй г9 По

[ f j  -  1) х 107 780057 900058 1050059 1200060 780057

u(?j} х 107 50 50 50 50 50

9.5.3.3 Из формулы (31) следует, что связь отношения сопротивлений гу с соответствующей темпера­
турой задается уравнением

(l + A d j + B92) r 0 - r jR s = 0, j=  1,...,10. (32)

В обозначениях, принятых в настоящем стандарте, N -  14, m =10, Х = (R0, А, В, Rs, гь ..., г10)т,
Y = (<?!, ..., 01о)т и
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h(Y,X)

~/>i(Y,X) ' (1 + Л 0 | + B0|2)f?o ~r-\Rs

hw (Y,X) (1 + Л0Ю + BO?0)R0 - r 10Rs

П р и м е ч а н и е  — Модель измерения, описываемая формулой (32), может быть приведена к явному 
виду (см. 9.5.2.4).

9.5.3.4 Оценки у  = ( в , , . . . , ^ ) 1 температуры Y  (см. таблицу 15) получают подстановкой оценок, приве­

денных в столбцах с первого по четвертый таблицы 12, а также в таблице 14, в уравнения (32) и решением 
этих уравнений.

Т а б л и ц а  15 — Оценки выходных величин Y и соответствующие стандартные неопределенности при 
измерении нескольких температур (9.5.3.4 и 9.5.3.5)

Параметр V C V C Vе V C V C % °c V  C Vе V C О О

Оценка 0,0100 3,8491 7,6928 11,5410 15,3938 20,0232 23,1131 26,9797 30,8509 20,0232

Стандартная
неопределенность

0,0018 0,0027 0,0040 0,0046 0,0047 0,0045 0,0046 0,0060 0,0089 0,0045

Т а б л и ц а  16 — Коэффициенты корреляции, соответствующие парам оценок выходных величин Y, при измере­
нии нескольких температур (9.5.3.5)

01 62 3̂ 04 05 06 07 8̂ 09 010

01 1 0,252 0,127 0,079 0,059 0,054 0,056 0,054 0,050 0,054

02 1 0,815 0,800 0,755 0,580 0,312 -0,092 -0,358 0,580

03 1 0,902 0,868 0,691 0,400 -0,057 -0,365 0,691

04 1 0,909 0,766 0,495 0,040 -0,281 0,766

05 1 0,847 0,629 0,208 -0,115 0,847

06 1 0,841 0,549 0,264 0,918

#7 1 0,812 0,613 0,841

08 1 0,909 0,549

09 1 0,264

010 1

9.5.3.5 Ковариационную матрицу Uy, соответствующую у, вычисляют с использованием формулы (8) 
из 6.3.1.3, СуиуСут = CXUXCXT, где Су и Сх —  матрицы чувствительности, получаемые из матриц CY и Сх в 
точках оценок входных и выходных величин; CY— диагональная матрица размерности 10x10 с диагональ­
ными элементами R0(A + ВО-i), ...,R0{A + В01О); Сх —  матрица размерности 10x14 вида

С х = [С х <1> CX« J ,
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где

1 +/4О| + В012 R 0 6 :  R0ftf — Г|

1 + / 4 0 1О + 6 0 ^ 0  R q ^ o г ю

матрица размерности 10x4, а Сх<2) — диагональная матрица размерности 10х 10 со всеми диагональными 
элементами, равными (~RS). Ковариационную матрицу 1)х вычисляют из стандартных неопределенностей, 
приведенных в столбцах 1—4 таблицы 12 и в таблице 13. Стандартные неопределенности для оценок 
температур, и коэффициенты корреляции для пар этих оценок, полученные из матрицы Uy, приведены в 
таблицах 15 и 16, соответственно.

9.5.3.6 Результаты, приведенные в таблице 15 и на рисунке 22, показывают, как стандартная неопре­

деленность u(6j) изменяется вместе с оценкой температуры 0у. Неопределенность измерения темпера­

туры минимальна вблизи нуля и резко возрастает при температурах выше 25 °С. Этот эффект обусловлен 
тем, что градуировка термометра сопротивления была выполнена при опорных значениях температуры 0, 
15, 20 и 25 °С, причем температура 0 °С создавалась при помощи ледяной ванны, в условиях которой 
стандартная неопределенность была в три раза меньшей, чем в условиях масляной ванны, используемой 
при градуировке на трех других опорных значениях.

П р и м е ч а н и е  — Отрезки прямых линий, соединяющих точки на рисунках 22 и 23, использованы в целях 
большей наглядности.

9.5.3.7 На рисунке 23 график, построенный по данным последнего столбца таблицы 16, показывает, 

как изменяется коэффициент корреляции, соответствующий паре оценок ф и 01О температур по Цельсию

в] и 01О -  20 °С в зависимости от 0у ,_/ = 1, ..., 9. Коэффициент корреляции имеет максимум при 0у -  в6 и

стремится к нулю при увеличении абсолютной разности 0, -  01О| . Пример демонстрирует, что величины, 

измеряемые одним и тем же средством измерения, могут иметь высокую степень корреляции.

Стандартная неопределенность, °С
0 , 010

0, 004-

0, 008-

0, 006-

0 ,  002 -

0, 000
-5 0 5 10 15 20 25 30 35

Оценка температуры, °С

Рисунок 22 — Стандартная неопределенность д(0у), соответствующая оценке 0у
температуры 0у (9.5.3.6)
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Коэффициент корреляции 
1,0

0,8

0,6

0,4

0,2

0,0
-5 0 5 10 15 20 25 30 35

Оценка температуры, °С

Рисунок 23 — Коэффициент корреляции, соответствующий паре оценок и 0]О 
температур 0j и 01О = 20 °С (9.5.3.7)
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Приложение А 
(справочное)

Производны е многомерны х функций измерения с комплексными
величинами

А.1 В настоящем приложении рассматривается компактный алгоритм вычисления частных производных 
первого порядка функции измерения f  в многомерной модели измерения с комплексными величинами

Y = f(X),

где

Х = (Х!.....XN)T, Y = (Y ,......Ym)T

и

f= ( f i .....fm)T-

X; обозначает комплексную величину X)R + iX)j, X)R и X(-j — действительные величины, а \2 = -1 . Аналогичные 
представления справедливы для комплексных величин Yy и fy.

А.2 Пусть Ux обозначает ковариационную матрицу размерности 2Л/Х2Л/, соответствующую оценке х величи­
ны X. Ux имеет вид

UX —

U (X!,X !) U{XVXN)

U{xN,Xi) U(xN,xN)

где

u{Xi:R,xJR) u{xi:R,xj:])

u{Xi:\,Xуд) w(X,|,Xy|) —

ковариационная матрица размерности 2x2, соответствующая оценкам х, и Ху комплексных величин X,- и Ху, соот­
ветственно.

А.З Ковариационная матрица

U(x,-,Xy) =

размерности 2т х  2т, где

U(yi,Yi) и(у!,ут ) 

U(ym.yi) U(ym,ym)_

и(У/,Уу)
w(y/,R,yy,R) w(y/R,yy |) 
и(У/,|,Уу,К) w(yyi,yyj)

соответствующая оценке

y = f(x)

величины Y, определяется обобщенным законом трансформирования неопределенностей

иу = схихсхт.

А.4 Сх — матрица чувствительности размерности 2mx2N, получаемая вычислением

(А.1)

Су =
С1,1 ' ' C1,W

Cm, 1 Cm_N
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вточкеХ = х, где Су,-— матрица размерности 2x2  частных производных первого порядка действительных 
и мнимых частей fy, соответствующих действительной и мнимой частям X,-:

d fjf i.  d fjR

dXi:R дХ,}
J i d fj,\ d fj ,  i

dXi}R SXn _

A.5 Для произвольной комплексной скалярной величины Q = QR + iQ| рассмотрим матричное представле­
ние размерности 2x2  вида [14]:

M(Q) =
Qr -Q | 

Q| Qr

Тогда Су,- можно представить как

Данное представление является основой для расчетов частных производных первого порядка комплексных ве­
личин fy по X,-.
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Приложение В 
(справочное)

Вы числение коэф фициентов чувствительности и ковариационны х  
матриц для многомерны х моделей

В.1 Если измерительная задача может быть выражена в терминах линейной алгебры [13], то вычислитель­
но устойчивый алгоритм определения матрицы 11у, являющейся решением уравнения (8), состоит в следующем:

a) для матрицы Ux выполняют разложение Холецкого, RXTRX = Ux , в результате чего получают матрицу Rx;
b) матрицу Сх представляют в виде произведения Сх = QXWX, где Qx — ортогональная матрица, a Wx — 

верхняя треугольная матрица;
c) матрицу Су представляют в виде произведения Су = LyWy, где Ц, — нижняя треугольная, a Wy — верхняя 

треугольная матрицы;
d) решают матричное уравнение WyTM-| = I относительно М ;̂
e) решают матричное уравнение Ц,ТМ2 = относительно М2;
f) вычисляют матрицу М3 = QXTM;
g) вычисляют матрицу К  = WXTM3;
h) вычисляют матрицу М = RXK;
i) матрицу М приводят к треугольному виду R;
j) вычисляют Uy = RTR.
В.2 Указанная процедура может быть проверена методами элементарной матричной алгебры (см. [7]).

61



ГОСТ Р 54500.3.2— 2013

Приложение С 
(справочное)

Преобразование системы  координат

С.1 Основные положения

В настоящем приложении рассматриваются некоторые аспекты задачи преобразования системы коорди­
нат (см. 9.3). В разделе С.2 приведен аналитический вывод совместной плотности распределения для Y в случае,

когда X описывается нормальным распределением N (x -|,u *j, а Х2 — нормальным распределением и при этом 
Х-| и Х2 взаимно независимы.

С.2 Аналитическое решение для особого случая

С.2.1 Предположим, что X имеет плотность распределения дх(?)> и с, = Р 1(т|)<’ = f  ^  — взаимно-однознач­
ное преобразование значений ц = (т^, ..., r/N)T величины Y в значения % = (Е,ь ..., £N)T величины X. Тогда [19, страница 
35], Y имеет плотность распределения

9 v(il) = 9x(f " 1(Tl))|det(J)|, (С.1)

где det(J) — детерминант матрицы Якоби J,

Ё к  .. д^_
дщ дцм

%N ...
дщ dTiN

рассматриваемый как функция т|. Предполагается, что det(J) нигде не равен нулю или бесконечности.

П р и м е ч а н и е  1 — Формулу (С.1) иногда называют формулой замены переменных.
П р и м е ч а н и е  2 — В случае одномерной величины (N = 1) преобразование переменных r\ = f {§), 

где f(.) — дифференцируемая и монотонная функция, дает следующую плотность распределения для Y 
[21, страницы 57—61]:

9V(?7) = 9 x ( f \л ) ) drj

С.2.2 Для задачи преобразования системы координат, рассмотренной в 9.3, Х = (Х |,Х 2)Т со значениями 
% = ( | . | , ..., <̂2)т. Y = (R, 0)т со значениями т| = (77-1,..., г)2)т и

l i  = щ cos772, | 2 = щ sin 772.

Таким образом,

J = COSTfc - Щ  Sin7 ) 2

sin?72 T^COS^

det(J ) = щ.

Из этого следует, что при г?-, > 0

9уьу2 (9ь Л2 ) = W x bx 2 cos rj2, щ sin ц2 )■

С.2.3 Рассмотрим случай, когда Х^ описывается нормальным распределением Nl x ^ w^ ) , а Х2 — нормаль­

ным распределением N х2,и* , и Х-| и Х2 взаимно независимы. Тогда

9 хьх2(£ь %2) ~ 9 х^ ) 9 х2{§2) ~ 2nu i
exp

(  (<gl - Х1 )2 + f e - x 2)2  ̂

2 u i
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т
9YbY2 (rh’Th )  = ^ “ 2 ехР2лu t

(  (^ c o s T b -x ^ 2 +  (77|Sin7b-x2)2 ^
22ui

С.2.4 Маргинальное распределение для У] = R имеет вид

9 у л Ш =  | 9 у1;у2('?1.'72)с|'?2 = П \  ехр
u t

Лч + У\
2 U2X ,

т + у 1
,,2 (С.2)

где
2 2 2 y f  = х (  + Х2,

а /0 — модифицированная функция Бесселя первого рода нулевого порядка.

П р и м е ч а н и е  1 — Полученное распределение представляет собой распределение Райса с парамет­
рами yi и их.

П р и м е ч а н и е  2 — Если у-, = 0, то данное распределение является распределением Рэлея с 
параметром их.

П р и м е ч а н и е  3 — Если их = 1, то данное распределение представляет собой нецентральное распреде­

ление хи-квадрат с двумя степенями свободы и параметром нецентральности у 2 .

С.2.5 Маргинальное распределение для У2 =&  имеет вид
оо /

9y2(Tte) = |9 у1,у2('№)<*?1 = 4 : exP 
о V

Л
2(7

г 1

L  1 + V?rTexp(T2)erfc(-T ) ,
X )

(С.З)

где

т = x-|COSTb + x 2 sinTb

•J~2.ux

erfc(Z) = 1— 2 ^Je xp (-f2)d f- 
v?r 0

дополнительная функция ошибок.
С.2.6 Если, кроме того, выполнено условие хл = х2 = 0, тогда

9YbY2(VbV2)=
2.Ж и „

/ 2 \  
Ж

v 2" Ъ

и, следовательно, У1 и У2 взаимно независимые величины с маргинальным распределением Рэлея с парамет­
ром их для У1

9 y M ) = \ g x p

u t

(  2 \  
Ж

\2 и х )

и маргинальным равномерным распределением на интервале от -ж  до к  для У2

9Y2(Th ) = 2 7 Р

С.З Применение способа оценивания неопределенности по GUM

С.3.1 Для задачи преобразования системы координат, рассмотренной в 9.3, модель измерения может 
быть записана как двумерная модель

У, = Ц Х ЬХ 2) = J  X? + Х | ,  У2 = f2(Xb X 2) = arctan(X2/ X 1),

при этом подразумевается, что У1 > 0 и - ж  < У2 <ж. Входные величины Хл и Х2 имеют оценки х1 и х2, 
соответствующие стандартные неопределенности и(хл) и и(х2) и ковариацию (т(х1,х2).
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С.3.2 Из 6.2.1.2 следует, что оценки величин У1 и У2 имеют вид

У1 = \  хл + x f , У2 = arctan (х2/х-,).

С.3.3 Матрицу чувствительности Сх размерности 2 x 2  получают, вычисляя

дЦ
дХ1

а г , '
Щ ,

i__ x 2

J x f  + x | x f  + x f
df2 df2 - x 2 *1
ОХ-] СЛХ 2 X 2 + x f x f  + x f

в точке Х-| = х-|, Х2 = х2. Таким образом, при условии у 1 = J  x f  + х2 >0 получаем

СX ”

*1 *2

J x f  + x f x f  + x f

-x ? X 1
2 2 x f  + x f x f  + x f

COSy2
-(s in  y 2 ) / y i

siny2

(соs y 2 ) / y i  '

С.3.4 Из 6.2.1.3 следует, что

и(УъУ^)

и(УьУ2)

и2(у2).

является ковариационной матрицей, соответствующей оценкам у = (у^ у2)т, с и(у2, у-1) = и(уь у2) и

W2(yi) = w2(x1)cos2y2 + u2(x2)sin2y2 + 2u(x1,x2)cos y2 sin y2,

U(/1, У2) = (w2(x2) -  ^ (x ^H s in  y2 cos y2)/y-i + u(x1,x2)(cos2y2 -  sin2y2)/y1, 

u2(y2) = u2^ )  (sin2 y2) /y f  + u2(x2) (cos2y2) /y 12 -  г ^ . х г )  (cos y2 sin y2) /y f  .

C.3.5 В рамках способа оценивания неопределенности по GUM Y приписывают двумерное нормальное 
распределение N(y,Uy), по которому могут быть построены области охвата для Y при заданной вероятности 
охвата р (см. 6.5).

С.3.6 Рассмотрим случай, когда и(х 1) = и(х2) = их и и(х-|,х2) = 0 (см. С.2.3). Тогда

w2(yi) = и2 , и(уь у2) = 0, и2{у2) = u2 / y f

с Y, характеризуемым двумерным нормальным распределением, как в С.3.5. Т.е. в этом случае У, и У2 являются 
независимыми величинами, и двумерное нормальное распределение для У] и У2 распадается на два одномер­
ных распределения N(y1,t/2(y1)) и N(y2,u2(y2)), соответственно.

П р и м е ч а н и е  — Напротив, при аналитическом решении (см. С.2) в случае, когда Y не характеризуется 
двумерным распределением Гаусса, выполнения условий и(х-1) = и(х2) и u(xi,x2) = 0 недостаточно для независимо­
сти У] и У2. Чтобы выходные величины были независимы, необходимо также, чтобы хл = х2 = 0 (см. С.2.6).
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Приложение D 
(справочное)

Сх
С у

с
Corr(Xj,Xj)

Cov(Xj,Xj)
det(J)
Е ( Х , )
Е(Х)

Гт,п
f

f
G

G x©

9 x ©
GY(T1)
9y(t1)
h

h

kq

L
/

m
M
M
N
N(0,1)

Ы(д,ст2)
N(p,V)
n

ndig
Pr(Z)

P
Ry

Ry
R(0,1)
R(a,b)

Основные обозначения

матрица чувствительности размерности т  х  Л/, связанная с х 
матрица чувствительности размерности т  х  т ,  связанная с у 
целое десятичное число с ndjg знаками 
корреляция случайных величин X, и Xj 
ковариация случайных величин X, и Xj 
определитель Якоби
математическое ожидание случайной величины X, 
математическое ожидание случайной величины X 
распределение Фишера с т  и п - т  степенями свободы 
одномерная функция измерения, зависящая от входных величин X 
многомерная функция измерения, зависящая от входных величин X
дискретное представление функции распределения Gy(t|) вы хо д но й  величины Y, полученное 
методом Монте-Карло
функция распределения переменной % для входной величины X 
плотность распределения переменной ^  для входной величины Xj 
плотность совместного распределения переменной % для входной величины X 
функция распределения переменной ц для выходной величины Y 
плотность совместного распределения переменной ц для выходной величины Y 
одномерная модель измерения, выражающая соотношение между выходной величиной Y и входны­
ми величинами X, от которых зависит Y
многомерная модель измерения, выражающая соотношение между выходной величиной Y и вход­
ными величинами X, от которых зависит Y 
мнимая единица, \2 = -1 
матрица Якоби
коэффициент охвата для области охвата в форме эллипсоида, соответствующий вероятности охвата р 
коэффициент охвата для области охвата в форме параллелепипеда, соответствующий вероятности 
охвата q
нижняя треугольная матрица
целое число в представлении с х  10' числового значения, где с — целое десятичное число с ndjg 
знаками
число выходных величин Yh ..., Ym
число испытаний метода Монте-Карло
матрица сумм квадратов и произведений
число входных величин X-,,..., XN
стандартное нормальное распределение
нормальное распределение с параметрами д и о 2
многомерное нормальное распределение с параметрами д и V
число наблюдений
количество значащих цифр числа, рассматриваемых как достоверные
вероятность события Z
вероятность охвата
m-мерная область охвата для Y
корреляционная матрица размерности т х т  для оценки у 
стандартное равномерное распределение на интервале [0, 1] 
равномерное распределение на интервале [а, Ь]
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г(х„Ху) коэффициент корреляции оценок х, и Ху входных величин X, и Ху 
s оценка стандартного отклонения по п наблюдениям x1t ..., х„
sz стандартное отклонение для среднего Z значений Z<1), Z (/,> в адаптивной процедуре метода

Монте-Карло, где Z может означать оценку у, выходной величины Yy, стандартную неопределенность 
и(уу) оценки уу, максимальное собственное значение лтах корреляционной матрицы Ry или коэффи­
циент охвата кр области охвата для Y 

Т верхний индекс, обозначающий транспонирование матрицы
fv(p.,S) многомерное f-распределение с параметрами ц и S и v степенями свободы 
ир расширенная неопределенность, соответствующая вероятности охвата р
Ux ковариационная матрица для оценок х  входной величины X
Uy ковариационная матрица для оценок у входной величины Y
их, и(х) стандартная неопределенность оценки х  входной величины X
u(Xj) стандартная неопределенность оценки х, входной величины X,
u(Xj, Ху) ковариация оценок х, и Ху входных величин X, и Ху
и(х) вектор (и(х,),..., u(xN) f  стандартных неопределенностей для оценок х  входной величины X
V(Xj) дисперсия случайной переменной X,
V ковариационная матрица
V(X) ковариационная матрица случайной величины X
Xj /-я входная величина, рассматриваемая как случайная переменная
X вектор (Х |, ..., XN)T входных величин
х среднее арифметическое п наблюдений хл, ..., хп
X/ оценка (математическое ожидание) величины X) или /-е наблюдение в серии наблюдений
х оценка (математическое ожидание) (х-], ..., xN)T величины X
Х( Г г-й элемент выборки случайных значений, полученных при реализации метода Монте-Карло, из плот­

ности распределения для X/
х г г-й вектор, содержащий элементы х1г, ..., xNr, полученные из N плотностей распределения для вход­

ных величин Х |..... Хд/ или из совместной плотности распределения для величины X
Yy у-я выходная величина, рассматриваемая как случайная переменная
Y вектор (/■]..... Y'fl,)1 выходных величин, рассматриваемых как случайные переменные
Уу оценка (математическое ожидание) величины Yy
у оценка (математическое ожидание) (у ,.......ут)т величины Y
у оценка величины Y, полученная как выборочное среднее М значений выходной величины уг

в результате реализации метода Монте-Карло 
уг r-е значение функции измерения f(xr)
у°г трансформированное значение уг

h-e значение величины Z в адаптивной процедуре метода Монте-Карло, где Z может означать оцен­
ку уу выходной величины Yy, стандартную неопределенность и(уу) оценки уу, максимальное соб­
ственное значение Хтах корреляционной матрицы Ry или коэффициент охвата кр области охвата 
Для Y

а  значение вероятности
T(Z) гамма-функция переменной Z
S точность вычисления числового значения
г\ переменная, описывающая возможные значения выходной величины Y
кр точность вычисления коэффициента охвата кр для области охвата в форме эллипсоида
Kq точность вычисления коэффициента охвата kq для области охвата в форме параллелепипеда
Хщах наибольшее собственное значение корреляционной матрицы

наименьшее собственное значение корреляционной матрицы
д математическое ожидание случайной величины, характеризуемой плотностью распределения
д математическое ожидание векторной случайной величины, характеризуемой плотностью совмест­

ного распределения
v число степеней свободы f-распределения или распределения хи-квадрат;
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veff число эффективных степеней свободы, соответствующих стандартной неопределенности и(у)
переменная, описывающая возможные значения входной величины X,

^ переменная ( | i ,  ..., ^W)T, описывающая возможные значения входной величины X
р точность вычисления наибольшего собственного значения Хтах корреляционной матрицы
о стандартное отклонение случайной величины, характеризуемой распределением вероятностей
о2 дисперсия (квадрат стандартного отклонения) случайной величины, характеризуемой распределе­

нием вероятностей
Z ковариационная матрица векторной величины, характеризуемая совместным распределением ве­

роятности
Ху распределение хи-квадрат с v степенями свободы
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Приложение ДА 
(справочное)

Сведения о соответствии ссы лочны х международны х документов  
национальны м стандартам Российской Федерации

Т а б л и ц а  ДА.1

Обозначение
ссылочного международного 

документа

Степень
соответствия

Обозначение и наименование национального 
стандарта

JCGM 100:2008 ю т ГОСТ Р 54500.3—2011/Руководство ИСО/МЭК 98-3:2008 
«Неопределенность измерения. Часть 3. Руководство по вы­
ражению неопределенности измерения»

JCGM 101:2008 ю т ГОСТ Р 54500.3.1—2011/Руководство ИСО/МЭК 98-3:2008/ 
Дополнение 1:2008 «Неопределенность измерения. Часть 3. 
Руководство по выражению неопределенности измерения. 
Дополнение 1. Трансформирование распределений с исполь­
зованием метода Монте-Карло»

JCGM 104:2009 ю т ГОСТ Р 54500.1—2011/Руководство ИСО/МЭК 98-1:2009 
«Неопределенность измерения. Часть 1. Введение в руковод­
ства по неопределенности измерения»

JCGM 200:2008 — *

* Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использо­
вать перевод на русский язык данного международного документа. Перевод данного международного доку­
мента находится в Федеральном информационном фонде технических регламентов и стандартов.

П р и м е ч а н и е  — В настоящей таблице использовано следующее условное обозначение степени 
соответствия документов:

- ЮТ — идентичные стандарты.
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