
ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Н А Ц И О Н А Л Ь Н Ы Й
С Т А Н Д А Р Т

Р О С С И Й С К О Й
Ф Е Д Е Р А Ц И И

ГОСТР
56047-

2014

Системы охранные телевизионные

КОМПРЕССИЯ ОЦИФРОВАННЫХ
АУДИОДАННЫХ

Классификация. Общие требования
и методы оценки алгоритмов

Издание официальное

Москва
Стандартинформ

2015

строительный контроль

https://meganorm.ru/Index2/2/4294853/4294853346.htm

ГОСТ Р 56047—2014

Предисловие

1 РАЗРАБОТАН Закрытым акционерным обществом «Нордавинд» и Всероссийским
научно-исследовательским институтом стандартизации и сертификации в машиностроении
(ВНИИНМАШ)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 234 «Системы тревожной сигнализа­
ции и противокриминальной защиты»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому
регулированию и метрологии от 30 июня 2014 г. № 677-ст

4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8).
Информация об изменениях к настоящему стандарту публикуется в годовом (по состоянию на
1 января текущего года) информационном указателе «Национальные стандарты», а официальный
текст изменений и поправок— в ежемесячно издаваемом информационном указателе «Националь­
ные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответству­
ющее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного
указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты
размещаются также в информационной системе общего пользования — на официальном сайте
Федерального агентства по техническому регулированию и метрологии (gost.ru)

© Стандартинформ, 2015

Настоящий стандарт не может быть полностью или частично вопроизведен, тиражирован или рас­
пространен в качестве официального издания без разрешения Федерального агентства по техническо­
му регулированию и метрологии

ГОСТ Р 56047—2014

Содержание

1 Область применения... 1

2 Нормативные с с ы л ки .. 1

3 Термины и определения...1

4 Общие требования..3

5 Классификация... 4

6 Методы оценки алгоритмов компрессии..5

6.1 Общее описание методов оценки.. 5

6.2 Метрика PEAQ ..7

6.3 Метрика PSN R ..7

6.4 Метрика «коэффициент различия форм сигналов»..7

6.5 Метрика «коэффициент сж а ти я » .. 8

7 Методы сравнения алгоритмов компрессии оцифрованных аудиоданных.. 8

Приложение А (обязательное) Математическое описание алгоритмов расчета метрик оценки
качества алгоритмов компрессии аудиоданных...9

А.1 Алгоритм расчета метрики P E A Q ... 9

А.2 Алгоритм расчета метрики P S N R ... 23

А.З Алгоритм расчета метрики «коэффициент различия форм сигналов»..23

А.4 Алгоритм расчета коэффициента сж атия ..24

Приложение Б (рекомендуемое) Листинги программ расчета метрик качества аудиоданных..............25

Б.1 Листинг программы расчета метрики PEAQ на языке M a tla b .. 25

Б.2 Листинг программы расчета метрики PEAQ на языке С ...50

Б.З Листинг программы расчета метрики PSNR на языке M a tla b .. 89

Б.4 Листинг программы расчета метрики PSNR на языке С ...89

Б.5 Листинг программы расчета метрики «Коэффициент различия форм сигналов»
на языке M a tla b ...89

Б.6 Листинг программы расчета метрики «Коэффициент различия форм сигналов» на языке С . . 90

ГОСТ Р 56047—2014

Введение

Активное применение в системах охранных телевизионных (СОТ) методов компрессии оцифро­
ванных аудиоданных, заимствованных из мультимедийных применений телевидения, из-за низкого
качества восстановленных после компрессии оцифрованных аудиоданных привело к невозможности
осуществления следственных мероприятий, а также оперативных функций, с использованием отдель­
ных СОТ.

Важной отличительной особенностью методов компрессии оцифрованных аудиоданных для СОТ
является необходимость обеспечения высокого качества звука в восстановленных аудиоданных.
Настоящий стандарт позволяет упорядочить существующие и разрабатываемые методы компрессии
оцифрованных аудиоданных, предназначенные для применения в составе систем противокриминаль-
ной защиты.

В качестве критерия для классификации алгоритмов компрессии оцифрованных аудиоданных в
настоящем стандарте установлены значения метрик качества, характеризующих степень отклонения
восстановленных оцифрованных данных от соответствующих им исходных аудиоданных.

Методика классификации алгоритмов компрессии оцифрованных аудиоданных, приведенная в
настоящем стандарте, основана на оценке качества восстановленных аудиоданных, с учетом психо­
акустических особенностей человеческого слуха. Этот подход к оценке качества восстановленных
аудиоданных рекомендован Сектором радиосвязи Международного союза электросвязи (МСЭ-Р),
членом которого является Российская Федерация.

IV

ГОСТ Р 56047—2014

Н А Ц И О Н А Л Ь Н Ы Й С Т А Н Д А Р Т Р О С С И Й С К О Й Ф Е Д Е Р А Ц И И

Системы охранные телевизионные

КОМПРЕССИЯ ОЦИФРОВАННЫХ АУДИОДАННЫ Х

Классификация. Общие требования и методы оценки алгоритмов

Video surveillance systems. Digital audio data compression.
Classification. General requirements and evaluation algorithm methods

Дата введения — 2015—09—01

1 Область применения

Настоящий стандарт распространяется на цифровые системы охранные телевизионные
(далее — ЦСОТ) и устанавливает классификацию, общие требования и методы оценки алгоритмов ком­
прессии оцифрованных аудиоданных.

Настоящий стандарт устанавливает методику сравнения различных алгоритмов компрессии и
декомпрессии оцифрованных аудиоданных.

Настоящий стандарт применяют к алгоритмам компрессии и декомпрессии аудиоданных незави­
симо от их реализации на аппаратном уровне.

Настоящий стандарт применяют совместно с ГОСТ Р 51558.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ГОСТ 15971 Системы обработки информации. Термины и определения
ГОСТ Р 51558 Средства и системы охранные телевизионные. Классификация. Общие техничес­

кие требования. Методы испытаний

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылоч­
ных стандартов в информационной системе общего пользования — на официальном сайте Федерального
агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному
указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпус­
кам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылоч­
ный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию
этого стандарта с учетом всех внесенных в данную версию изменений. Если ссылочный стандарт отменен без заме­
ны, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 15971 и следующие термины с соответству­
ющими определениями:

3.1 алгоритм быстрого преобразования Фурье (БПФ) (fast Fourier transform, FFT): Набор
алгоритмов, реализация которых приводит к существенному уменьшению вычислительной сложности
дискретного преобразования Фурье (ДПФ).

П р и м е ч а н и е — Смысл быстрого преобразования Фурье состоит в том, чтобы разбить исходный
N-отсчетный сигнал х(п) на два более коротких сигнала, дискретные преобразования Фурье которых могут быть
скомбинированы таким образом, чтобы получить дискретное преобразования Фурье исходного N-отсчетного
сигнала.

Издание официальное

1

ГОСТ Р 56047—2014

3.2 алгоритм декомпрессии (decompression algorithm): Точный набор инструкций и правил, опи­
сывающий последовательность действий, согласно которым сжатые аудиоданные преобразуются в
восстановленные, реализуемый при помощи аудио декодера.

3.3 алгоритм компрессии (compression algorithm): Точный набор инструкций и правил, описыва­
ющий последовательность действий, согласно которым исходные аудиоданные преобразуются в сжа­
тые, реализуемый при помощи аудио кодера.

3.4 амплитудно-временная метрика (time-amplitude metric): Метрика качества, основанная на
сравнении оцифрованных и восстановленных аудиоданных по форме волны.

3.5 аналого-цифровой преобразователь, АЦП (analog-to-digital converter, ADC): Устройство,
преобразующее входной аналоговый аудиосигнал в оцифрованные аудиоданные.

3.6 аудио декодер (audio decoder): Программные, аппаратные или аппаратно-программные сре­
дства, с помощью которых осуществляется декомпрессия сжатых аудиоданных.

3.7 аудио кодер (audio encoder): Программные, аппаратные или аппаратно-программные сре­
дства, с помощью которых осуществляется компрессия оцифрованных аудиоданных.

3.8 аудиоданные (audio data), аудиосигнал (audio signal), моноканальный аудиосигнал (mono
channel audio): Аналоговый сигнал, несущий информацию об изменении во времени амплитуды звука.

3.9 битрейт (bitrate): Выраженная в битах оценка количества сжатых аудиоданных, определен­
ная для некоторого временного интервала и отнесенная к длительности выбранного временного интер­
вала в секундах.

3.10 восстановленные аудиоданные (recovered audio data): Данные, полученные из сжатых
аудиоданных после их декомпрессии.

3.11 декомпрессия сжатых аудиоданных (decompression of compressed digitized audio
data): Восстановление оцифрованных данных из сжатых аудиоданных.

3.12 дискретное преобразование Фурье, ДПФ (discrete Fourier transform, DFT): Преобразова­
ние, ставящее в соответствием отсчетам дискретного сигнала N отсчетов дискретного спектра сигнала.

3.13 дифференциация (differentia): Выделение частного из общей совокупности по некоторым
признакам.

3.14 искаженный фрейм (distorted frame): Фрейм, для которого максимальное отношение шума к
порогу маскирования превышает 1,5 дБ.

3.15 искусственная нейронная сеть (artificial neural network, ANN): Модель биологической ней­
ронной сети, которая представляет собой сеть элементов — искусственных нейронов — связанных
между собой синаптическими соединениями.

П р и м е ч а н и е — Нейронная сеть предназначена для обработки входной информации и в процессе изме­
нения своего состояния во времени формирует совокупность выходных сигналов.

3.16 качество восстановленных аудиоданных (decoded audio data quality): Объективная оцен­
ка соответствия восстановленных аудиоданных исходным оцифрованным аудиоданным на основе рас­
считанных метрик качества.

3.17 кодекаудиоданных(аибюсобес): Программный, аппаратный или аппаратно-программный
модуль, способный выполнять как компрессию, так и декомпрессию аудиоданных.

3.18 компрессия (сжатие) оцифрованных аудиоданных (digitzed audio data compression):
Обработка оцифрованных аудиоданных с целью уменьшения их объема.

3.19 компрессия оцифрованных аудиоданных без потерь (lossless digitized audio
compression): Обработка оцифрованных аудиоданных, при которой не происходит потери информации,
вследствие чего восстановленные (в результате выполнения декомпрессии) оцифрованные аудиодан­
ные не отличаются от исходных оцифрованных аудиоданных.

3.20 компрессия оцифрованных аудиоданных с потерями (lossy compression of digitized audio
data): Обработка оцифрованных аудиоданных, при которой происходит потеря информации, и всле­
дствие этого восстановленные (в результате выполнения декомпрессии) оцифрованные аудиоданные
отличаются от исходных оцифрованных аудиоданных.

3.21 метод оценки алгоритма компрессии (evaluation method of compression algorithm): Метод
аналитического определения значений метрик качества на соответствие требованиям, предъявляемым
к алгоритмам компрессии аудиоданных.

3.22 метрика качества (quality metric): Аналитически определяемые параметры, характеризую­
щие степень отклонения восстановленных аудиоданных от исходных оцифрованных аудиоданных.

3.23 многоканальный аудиосигнал (multi-channel audio): Аудиосигнал, состоящий из объеди­
нения определенного количества аудиосигналов (каналов), которые несут информацию об одном и том
же звуке.

2

ГОСТ Р 56047—2014

П р и м е ч а н и е — Предназначен для более качественной передачи звука с учетом пространственной
ориентации.

3.24 окно (window): Весовая функция, которая используется для управления эффектами,
обусловленными наличием боковых лепестков в спектральных оценках (растеканием спектра).

П р и м е ч а н и е — Имеющуюся конечную запись данных или имеющуюся конечную корреляционную по­
следовательность удобно рассматривать как некоторую часть соответствующей бесконечной последовательности,
видимую через применяемое окно.

3.25 оконное преобразование Ханна (short-time FouriertransformwithHann window): Дискретное
преобразование Фурье с весовой функцией — окном Ханна.

3.26 оцифрованные аудиоданные (digitized audio data): Данные, полученные путем аналого-
цифрового преобразования аудиоданных, представляющие собой последовательность байтов в неко­
тором формате (WAV или др.).

3.27 передискретизация аудиосигнала (resampling): Изменение частоты дискретизации аудио­
сигнала.

3.28 пиковое отношение сигнал/шум (peak-to-peak signal-to-noise ratio): Соотношение между
максимумом возможного значения сигнала и мощностью шума.

3.29 порог маскирования (masking threshold): Пороговый уровень сигнала, не различаемого
человеком из-за эффекта психоакустического маскирования.

3.30 психоакустическая модель (psychoacoustics model): Модель для сжатия аудиоданных с
потерями, использующая особенности восприятия звука человеческим ухом.

3.31 психоакустическое маскирование (psychoacoustics masking): Подавление (сокрытие) при
определенных условиях одного звука другим звуком из-за особенностей восприятия звука человеческим
ухом.

3.32 разрядность АЦП (resolution of ADC): Количество бит, которым кодируется каждый отсчет
сигнала в процессе АЦП.

3.33 сжатые аудиоданные (compressed audio data): Данные, полученные путем компрессии
оцифрованных аудиоданных.

3.34 спектр сигнала (frequency spectrum): Результат разложения сигнала на простые синусои­
дальные функции (гармоники).

3.35 спектрограмма (spectrogram): Характеристика плотности мощности сигнала в частот­
но-временном пространстве.

3.36 степень сжатия (compressionratio): Коэффициент сокращения объема оцифрованных ауди­
оданных в результате компрессии.

3.37 стереофонический двухканальный аудиосигнал (stereophonic audiosignal), стерео ауди­
осигнал (stereo audio signal), двухканальный аудиосигнал (two-channel audio signal): Многоканаль­
ный аудиосигнал, состоящий издвухмоноканальных аудиосигналов.

3.38 формат оцифрованных аудиоданных (digitized audio data format): Представление оциф­
рованных аудиоданных, обеспечивающее их обработку цифровыми вычислительными средствами.

3.39 фрейм (frame): Фрагмент звукового сигнала с заданным количеством значений (длиной
фрейма).

3.40 частота дискретизации (sample rate): Частота взятия последовательных значений непре­
рывного во времени сигнала при его аналого-цифровом преобразовании в оцифрованные аудио­
данные.

3.41 частотно-временная метрика (time-frequency metric): Метрика качества, основанная на
сравнении спектрограмм оцифрованных и восстановленных аудиоданных.

3.42 шум (noise): Совокупность апериодических звуков различной интенсивности и частоты, не
несущая полезную информацию.

4 Общие требования

4.1 Оценку качества восстановленных после сжатия аудиоданных определяют по качеству каждо­
го отдельного звукового фрагмента восстановленных аудиоданных.

4.2 Размер звукового фрагмента определяется в секундах или количеством оцифрованныхзначе-
ний внутри фрагмента.

4.3 Качество звукового фрагмента восстановленныхаудиоданныхопределяют по значениям мет­
рик качества алгоритмов компрессии оцифрованных аудиоданных (далее — метрики качества), харак-

3

ГОСТ Р 56047—2014

теризующих степень искажения восстановленных после сжатия аудиоданных в сравнении с исходными
оцифрованными аудиоданными. Описание метрик приведено в разделе 6 настоящего стандарта, а
порядок их расчета приведен в приложении А.

4.4 Алгоритмы компрессии оцифрованных аудиоданных относят к одному из трех классов, уста­
новленных в разделе 5 настоящего стандарта.

5 Классификация

5.1 Класс алгоритма компрессии оцифрованных данных определяют по рассчитанным для него
значениям метрик качества. Для оценки качества восстановленныхаудиоданных и классификации алго­
ритмов компрессии используют метрики качества, указанные в таблице 1.

Т а б л и ц а 1 — Диапазоны значений метрик качества по классам алгоритмов компрессии оцифрованных аудио­
данных

Метрика качества

Диапазон значений метрик качества по классам алгоритмов
компрессии оцифрованных аудиоданных

Класс III Класс II Класс I

Пиковое отношение сигнал/шум (PSNR), дБ Менее 30 [30; 40] Свыше 40

Коэффициент различия форм сигналов Более 10"4 [10-5; 10-4] МенееЮ"5

Объективная оценка аудиоданных с точки
зрения восприятия (PEAQ)

[-3,98; -2,3) [-2,3; -0,62] (-0,62; 0,22]

П р и м е ч а н и е — Метрики качества отражают изменения оцифрованных аудиоданных (после их обра­
ботки алгоритмами компрессии и декомпрессии), которые могут оказать критическое влияние на возможность
использования восстановленных аудиоданных для установления наличия звуковых сигналов, дифференциации
звуков и речи.

5.2 В зависимости от значений метрик качества, вычисленных в ходе проведения их оценки, алго­
ритм компрессии оцифрованных аудиоданных относят к одному из классов:

- класс III — алгоритмы компрессии, обеспечивающие качество восстановленных аудиоданных,
достаточное для установления наличия звуковых сигналов и не уступающее в этом качеству исходных
аудиоданных, но создающее помехи при дифференциации звуков, понимании речи.

- класс II — алгоритмы компрессии, обеспечивающие качество восстановленных аудиоданных,
достаточное для установления наличия звуковых сигналов, дифференциации звуков, речи и не уступаю­
щее в этом качеству исходных аудиоданных, но отличимое от качества исходных аудиоданных;

- класс I — полнофункциональные алгоритмы компрессии, обеспечивающие качество восстанов­
ленныхаудиоданных, неотличимое от качества исходных аудиоданных.

5.3 Значения метрик качества определяют для каждого звукового фрагмента (длиной 5 с) оцифро­
ванных аудиоданных, а в качестве результирующей оценки восстановленных аудиоданных выбирают
наименьшее значение для метрик PSNR и PEAQ и наибольшее значение для коэффициента различия
форм сигналов.

Для расчета метрик PSNR и коэффициента различия форм сигналов исходные и восстановленные
цифровые аудиоданные должны быть представлены с частотой дискретизации 44100 Гц, 16 битами
памяти на одно дискретное значение выборки и с одним звуковым каналом. Длина звукового фрагмента
5 с должна включать в себя 220500 оцифрованных значений.

Для расчета метрики PEAQ исходные и восстановленные цифровые аудиоданные должны быть
представлены с частотой дискретизации 48000 Гц, 16 битами памяти на одно дискретное значение
выборки и с одним или с двумя звуковыми каналами. Длина звукового фрагмента 5 с должна включать в
себя 240000 оцифрованных значений для каждого канала.

Для сигналов с частотой, отличной от требуемой, необходимо предварительно выполнить
передискретизацию аудиосигнала.

5.4 Алгоритмы компрессии следует различать по степени сжатия, выражаемой через коэффици­
ент сжатия. Коэффициент сжатия определяют какотношение объема исходных несжатых данных к объ­
ему сжатых данных [порядок расчета данной метрики выполняют в соответствии с А.4 (приложение А)].

4

ГОСТ Р 56047—2014

В зависимости от значения коэффициента сжатия алгоритмы компрессии аудиоданных подразде­
ляют на:

- алгоритмы с высокой степенью сжатия — коэффициент сжатия более 42;
- алгоритмы со средней степенью сжатия — коэффициент сжатия от 15 до 42 включительно;
- алгоритмы с низкой степенью сжатия — коэффициент сжатия менее 15.

6 Методы оценки алгоритмов компрессии

6.1 Общее описание методов оценки
Общая схема работы ЦСОТ при использовании алгоритмов компрессии и декомпрессии представ­

лена на рисунке 1.

Рисунок 1 — Общая схема работы ЦСОТ

Аналоговые аудиоданные подвергают аналогово-цифровому преобразованию, в результате кото­
рого получают оцифрованные аудиоданные с определенной частотой дискретизации и количеством
битов на одно дискретное оцифрованное значение. На компьютере оцифрованные аудиоданные следу­
ет хранить в одном из форматов хранения оцифрованных аудиоданных.

Оцифрованные аудиоданные подвергают компрессии, в результате которой формируют сжатые
аудиоданные.

Сжатые аудиоданные используют для хранения архива или для передачи по сети, после чего их
подвергают декомпрессии. В результате декомпрессии сжатых аудиоданных получают восстановлен­
ные аудиоданные, которые используют для воспроизведения оператору и подают на вход программным
модулям анализа аудиоданных.

В соответствии с представленной общей схемой работы ЦСОТ классификацию алгоритмов ком­
прессии оцифрованных аудиоданных осуществляют путем оценки метрик качества восстановленных
аудиоданных от исходных оцифрованных аудиоданных. В зависимости от особенностей технической
реализации конкретной ЦСОТ существует два метода оценки: с разделением оцифрованных аудиодан­
ных и с разделением аудиоданных.

Перед оценкой значений метрик качества оба аудиосигнала (исходный и восстановленный) дол­
жны быть преобразованы в сигналы с частотой дискретизации 44100 и 48000 Гц. Для указанных частот
количество бит, приходящееся на одно дискретное оцифрованное значение, должно быть равным 16.

6.1.1 Метод оценки алгоритма компрессии на основе разделения оцифрованных аудио­
данных

Для применения данного метода техническая реализация ЦСОТ должна позволять получить
оцифрованные аудиоданные до их обработки алгоритмами компрессии и декомпрессии.

5

ГОСТ Р 56047—2014

Рисунок 2 — Общая схема реализации метода оценки на основе разделения оцифрованных аудиоданных

Общая схема реализации метода оценки алгоритма на основе разделения оцифрованных аудио­
данных представлена на рисунке 2.

Оценку алгоритма выполняют в последовательности:
- на вход испытуемой ЦСОТ подают последовательные аудиоданные;
- оцифрованные и восстановленные аудиоданные сохраняют на устройствах хранения;
- выполняют расчет значений метрик качества и осуществляют классификацию алгоритма ком­

прессии по таблице 1. Описания метрик приведены в 6.2—6.5. Метрики должны быть рассчитаны в соот­
ветствии с приложением А.

6.1.2 Метод оценки алгоритма компрессии на основе разделения аудиоданных
Метод оценки алгоритма компрессии на основе разделения аудиоданных следует применять в слу­

чае, если техническая реализация ЦСОТ не позволяет применять метод оценки на основе разделения
оцифрованных аудиоданных. Применение данного метода требует наличия дополнительной ЦСОТ в
составе испытательного стенда, которая предназначена для сохранения оцифрованных аудиоданных.

Общая схема реализации метода оценки на основе разделения аудиоданных представлена на
рисунке 3.

Оценку алгоритма компрессии выполняют в последовательности:
- на вход испытуемой ЦСОТ подают последовательные аудиоданные, которые автоматически дуб­

лируются на другую ЦСОТ посредством делителя аудиосигнала, являющегося элементом испытатель­
ного стенда;

- восстановленные аудиоданные сохраняют на устройствах хранения ЦСОТ;
- оцифрованные аудиоданные сохраняют на устройствах хранения с использованием возможнос­

тей второй ЦСОТ (из состава испытательного стенда);
- выполняют расчет значений метрик качества и осуществляют классификацию алгоритма ком­

прессии по таблице 1. Описания метрик приведены в 6.2—6.5. Метрики должны быть рассчитаны в соот­
ветствии с приложением А.

6

ГОСТ Р 56047—2014

Рисунок 3 — Общая схема реализации метода оценки алгоритма компрессии
на основе разделения аудиоданных

6.2 Метрика PEAQ

6.2.1 Метрика PEAQ предназначена для оценки качества обработанного сигнала относительно
исходного с учетом слуховых особенностей человека (психоакустической модели). Метрика должна
быть рассчитана в соответствии с А. 1 (приложение А).

6.2.2 Для расчета метрики PEAQ к аудиосигналам предъявляют следующие требования:
- исходный и восстановленный аудиосигналы должны иметь частоту дискретизации равную

48000 Гц. Для сигналов с частотой отличной от указанной необходимо предварительно выполнить
передискретизацию аудиосигнала;

- исходный и восстановленный аудиосигналы должны иметь одинаковую длину, т. е. состоять из
одного и того же количества оцифрованных значений.

6.3 Метрика PSNR

6.3.1 Метрика PSN R выражает количественную характеристику отношения энергии шума (искаже­
ний), вносимого процессом кодирования, к максимально возможной энергии исходного сигнала. Значе­
ния метрики PSNR измеряют в децибелах. Метрика должна быть рассчитана в соответствии с А.2
(приложение А).

6.3.2 Для расчета метрики PSNR к аудиосигналам предъявляют следующие требования:
- исходный и восстановленный аудиосигналы должны иметь частоту дискретизации равную

44100 Гц. Для сигналов с частотой, отличной от указанной, необходимо предварительно выполнить
передискретизацию аудиосигнала;

- если исходный и восстановленный аудиосигналы многоканальные, то используют только один
канал исходного аудиосигнала и соответствующий ему один канал восстановленного аудиосигнала.

6.4 Метрика «коэф ф ициент различия форм сигналов»

6.4.1 Разница соседних последовательныхзначений амплитуд исходного аудиосигнала, получен­
ных в результате импульсно-кодовой модуляции, и разница соседних последовательных значений
амплитуд восстановленного аудиосигнала определяют соответственно форму исходного аудиосигнала
и форму восстановленного аудиосигнала в последовательные моменты времени. Конечное значение
метрики «коэффициента различия форм сигналов» подсчитывают как суммарную среднеквадратичную

7

ГОСТ Р 56047—2014

ошибку между формой исходного аудиосигнала и формой восстановленного аудиосигнала. Метрика
должна быть рассчитана в соответствии с А.З (приложение А).

6.4.2 Для расчета метрики «коэффициент различия форм сигналов» к аудиосигналам предъявля­
ют следующие требования:

- исходный и восстановленный аудиосигналы должны иметь частоту дискретизации равную
44100 Гц. Для сигналов с частотой, отличной от указанной, необходимо предварительно выполнить
передискретизацию аудиосигнала;

- если исходный и восстановленный аудиосигналы многоканальные, то для расчета метрики
используют только один канал исходного аудиосигнала и соответствующий ему один канал восстанов­
ленного аудиосигнала.

6.5 Метрика «коэффицент сжатия»
6.5.1 Метрика «коэффициент сжатия»предназначена для характеристики качества алгоритма

компрессии сточки зрения уменьшения объема занимаемой исходными аудиоданными памяти после их
обработки алгоритмом сжатия. Метрика должна быть рассчитана в соответствии с А.4 (приложение А).

7 Методы сравнения алгоритмов компрессии
оцифрованных аудиоданных

7.1 Два и более алгоритмов компрессии сравнимы друг с другом, если они принадлежат одному и
тому же классу в соответствии с таблицей 1.

7.2 Из двух и более сравниваемых алгоритмов компрессии лучшим признают алгоритм, обеспечи­
вающий лучшие значения хотя бы двух из трех метрик, приведенных в таблице 1. Лучшим значением
метрики признают большее значение — для метрик PSNR и PEAQ и меньшее значение — для метрики
«коэффициент различия форм сигналов». Если сравниваемые алгоритмы имеют одинаковые значения
метрик качества, приведенных в таблице 1, то лучшим считают алгоритм с наибольшей степенью сжа­
тия, определяемой коэффицентом сжатия по 6.5.

8

Приложение А
(обязательное)

ГОСТ Р 56047— 2014

Математическое описание алгоритмов расчета метрик оценки качества
алгоритмов компрессии аудиоданных

А.1 Алгоритм расчета метрики PEAQ

А.1.1 Обозначения, используемые в алгоритме:
Fs = 48000 Гц — частота дискретизации сигналов;
Nf = 2048 — количество оцифрованных значений сигнала, определяющих длину звукового фрагмента (раз­

мер фрейма);
х[п\ — оцифрованные данные фрейма, где п — целое число, представляющее собой индекс конкретного

значения амплитуды сигнала внутри звукового фрагмента (фрейма), п е[0, M f-*!].
покадровый шаг вперед: Npl2 = 1024, таким образом перекрытие фреймов составляет 50 %;
Fss = Fs/1024 — частота выборки кадров с учетом покадрового шага;
Nc - 109 — количество частотных полос фильтрации.
А.1.2 Расчет метрики должен состоять из пяти этапов:
I — предварительная обработка сигналов;
II — обработка образов;
III — расчет выходных значений психоакустической модели;
IV — нормирование значений выходных переменных психоакустической модели;
V — оценка качества восстановленного сигнала с помощью искусственной нейронной сети.
А.1.2.1 Предварительная обработка сигналов
А. 1.2.1.1 Применение оконного преобразования
Исходные оцифрованные данные разбивают на фреймы. Оцифрованные данные каждого фрейма подверга­

ют масштабированному оконному преобразованию Ханна, hw, по формуле

hw[n\ = J M h [n , N F], (А.1)

где h[n, Nf] — функция, рассчитываемая по формуле

Переход в частотную область осуществляют путем применения дискретного преобразования Фурье (ДПФ)
X [к] по формуле

1 Wp-1

где 0 < к <Nf - 1;
j — мнимая единица.

А.1.2.1.2 Модель наружного и среднего уха
Частотную характеристику наружного и среднего уха W(f) вычисляют по формуле

W(f) = юА*в(0 /2° i (А.4)

где f — частота, заданная в кГц, a AaB(f) вычисляют по формуле

(А.5)

По формуле (А.4) вектор весовых коэффициентов W[k] вычисляют следующим образом:

(А.6)

9

ГОСТ Р 56047—2014

Используя веса, рассчитанные по формуле (А.6), вычисляют взвешенную энергию ДПФ IX ^ /гЦ2 по формуле:

\Xw[k]\2 = G2LW 2[k]\X [k r, (А-7)

Л /сгде 0 < к < — ;
2

Gl = 2,794 - К Г 3.
А.1.2.1.3 Разложение критической полосы слуха
Для преобразования частоты сигнала в высоту звука используют шкалу Барка. Расчет следует производить

по формуле (А.8), для обратного преобразования — по формуле (А.9)

z= B (f) = 7 asinh (f/650), (А.8)

где z — высота звука, измеряемая в Барках.

f= S "1(z) = 650sinh(z/7). (А.9)

Полосы частот определяют заданием нижней, центральной и верхней частот каждой полосы и их значение по
шкале Барка определяют по формулам

z,[/] = zl + /A z, (А. 10)

м - z l + (/ + 1)Az , / + 1<-
*„[/] =

-и,
A z

в остальных случаях,
(А.11)

* , [/]=
z,[i] (А. 12)

где Az = 1/4;
zL = B(fL)-
Zu=B(fuY’
fL = 80 Гц;
Fu = 18 кГ ц.

Обратное преобразование выполняют по формулам

Щ = 6-1(z,[/]),

fc[i] = B~\zc[i]),

fu[i] = B r \z u[i])

где / = 1,2 ,...,N C= 109.
Вклад энергии от /с-ой основной частоты ДПФ U[i, к] для /-й полосы частот вычисляют по формуле

U[i, к] :

max 0, min
г 2к +1 F, Л
т 2 Nf

-m ax /)[/],
2 N ,FJ

Nf

Энергию /-й полосы частот Еа[/] вычисляют по формуле

kuVht
Еа[Ц = U j[i]- \Xw[k fi]]\2 + ^ \X w[k]\2 i Uu[i]\X w[ku[i]]\2,

k=k/[i}F 1

(A. 13)

(A. 14)

(A. 15)

(A. 16)

(A. 17)

где U,[i] = U[i, k,[i]]-
Uu[i] = U[i,ku[i]].

Конечную формулу энергии /-й полосы частот Eb[i] вычисляют по формуле

Eb[/] = m ax(E [/],E min), (А. 18)

r A e E min = 1 - 1 0 " 12-
А. 1.2.1.4 Внутренний шум уха
Для компенсации внутренних шумов в самом ухе, следует ввести надбавочное значение Е/дД/] для энергии

каждой полосы частот, £[/]:

Е[/] = Еь[/] + Ein [/], (А. 19)

где внутренний шум EIN [/] моделируют следующим образом:

10

ГОСТ Р 56047—2014

J Е ,ш в(/Ы = 1.456(тООО) 0’8,
\ е ;л̂] = 10е'™в(^ ['1)/10.

Энергии £ [/] — образы высоты.
А. 1.2.1.5 Энергия распространения в пределах одного фрейма
Характеристику энергии распространения в шкале Барка Es[i] рассчитывают по формуле

£ J /] = es1[/] (£- [/] + £ - [/])2'5’

где В [/] — характеристика рассчитываемая по формуле

Bs[i]
(Nc -Л \

£ (S (/,/,E [/]))2’5
/=о

где Е[/] — надбавочные значения энергий из (А.19);
Е[0] устанавливают равным 1;

S(i, /, Е) — характеристика рассчитываемая по формуле

—— (102>7Az)M ,
A / ,E)V

S(i, /, E) ■

i </,

1
A(/,E)

(23 Az^

(1 0 -2,4 A z) 1 0 (E °-2Az)

^)

, / > /

1 a - / </,----------- a I »
A(/,E)

1 [auac [!]aE{E)V J <1,
M (/.E) ‘

где (для упрощения записи выражения) aL = 102-7Az;
аи = 1(T2-44z;

23 Дг

Д/) = 10 7с[/);
аЕ = E°’2Az.

Тогда А-1 (/, Е) преобразуется по формуле

/=0 1=1 1_aL 1_а[Уас1'.1аЕ(ь .)

Слагаемые и EsU[/] из формулы (А.21) вычисляют по формулам
, 0,4

£SJN C- 1] =
E[NC -1]

А(/,Е[Л/с -1])

где/ = N - 2 , . . . ,0.

EsJ /]= a L-°'4 Es, (/+ 1) +

/ ____ \ 0,4

' Е [/] ^
А (/,£ [/])

E A i] =
Е[1]

А (/, Е [/])
[(аи ас [/]аЕ(Е[/]))°

Энергии Es[/] в дальнейшем в тексте стандарта — образы нераспространенных возбуждений.
А.1.2.1.6 Фильтрация энергии
Фильтрацию энергии вычисляют по формулам

Ef [/, а] = а [/]Е ,[/, п - 1] + (1 - а [/])ES[/, л],

Es[/, л] = max (ЕД/, л], Es [/, л])

где л — индекс фрейма (фреймы проиндексированы, начиная с л = 0);
ЕД/, л] — энергия л-го фрейма, соответствующая формуле (А.21);

а [/] — постоянная времени для угасающей энергии. Начальное условие для фильтрации: ЕД/, -1] = 0
ЕД/. л] — конечные значения (образы возбуждений в дальнейшем).

(А.20)

(А.21)

(А.22)

(А.23)

(А.24)

(А.25)

(А.26)

(А.27)

(А.28)

(А.29)

11

ГОСТ Р 56047— 2014

А.1.2.1.7 Постоянные времени
Постоянную времени т [/] для фильтрации /-й полосы вычисляют по формуле

100т Г/] = т . + -----(т„т - т .)L J min f [/] ' 0̂0 min7

где т 100 = 0,03 c;
г = 0,008 c.

Постоянную времени для угасающей энергии а [/] следует вычислять по формуле

а [/] = ехр
1

v Fss^[i])

Ha рисунке А. 1 приведена схема предварительных вычислений.

(А.ЗО)

(А.31)

Рисунок А. 1 — Схема предварительных вычислений

12

ГОСТ Р 56047—2014

Индексами R и Т обозначают исходный и восстановленный аудиосигналы соответственно. Индексом к
обозначают индекс полосы частот (всего 109 полос частот), а индексом п — номер фрейма. Для рекуррентных фор­
мул на этом этапе и этапе III всегда выбирают нулевые начальные условия.

А.1.2.2 Обработка образов
А. 1.2.2.1 Обработка образов возбуждений
Входными данными для этой стадии вычислений являются образы возбуждений EsR [/с, п] и Esl{k, л], рассчиты­

ваемые по формулам (А.28) и (А.29) для исходного и восстановленного аудиосигналов соответственно.
Коррекция образов возбуждений
Сначала осуществляют фильтрацию для обоих аудиосигналов по формулам

PR[k, п] = а [k\PR [к, п - 1] + (1 - a [k])EsR [к, n], (А.32)

Рт[к, п] = а [к]Рт[к, п - 1] + (1 - а [k])EsT[к, п], (А.ЗЗ)

где а [/] — постоянная времени, рассчитываемая по формулам (А.ЗО) и (А.31), но при т100 = 0,05с, Tmin = 0,008с.
Начальное условие для фильтрации выбирают равным 0.
Далее вычисляют коэффициент коррекции, CJn]:

CL[n] =

I 'N c - 1 ' 2
£ V P t [M F r [M]
к=0_____________

Nc-1

к=0

Образы возбуждений, ELR[k, п] и ELT[k, п], корректируют по формулам

| sr[M]
ELR[k, п] ■

, CJn]>1,
CJn]

EsR[k,n], CL[n] < 1.

(А.34)

(А.35)

Е [к п] = Г зт[к’п]’ c d n]> \
LT ’ \ i sT[k,n]CL[n], CJn] < 1

(A. 36)

Адаптация образов возбуждений
Используя те же постоянные времени и начальные условия, что и при коррекции образов возбуждений,

выходные сигналы, рассчитанные по формулам (А.35) и (А.36), сглаживают в соответствии с формулами

Rn[k, п] = a [k\Rn[k, п - 1] + ELT[k, n]ELR[k, n], (А.37)

Rd[k, n] = a [k\Rd[k, n - 1] + ELR[k, n]ELR[k, п]. (A.38)

На основе соотношения между рассчитанными в формулах (А.37) и (А.38) значениями вычисляют пару вспо­
могательных сигналов:

р. Rn[k ,n]> R d[k,n],
R J k ,n]= \R n[k,n] Rn[k ,n]< R d[k,n], (A.39)

[Rd[k ,n]’

(Rd[k,n]
R „[k ,n]>R d[k,n],

RJ/f, n] = j Rn[k, л] ' (A.40)

ь . R „[k ,n]<R d[k,n].

Если в формулах (А.39) и (А.40) числитель и знаменатель равны нулю, то необходимо выполнить действия:

RT [к, п] = RT [к — 1, л] и RR[k, п] = RR[k - 1, л]. (А.41)

Если к = 0, то RT[k, л] = RR[k, л] = 1. (А.42)
С целью формирования множителей для коррекции образов вспомогательные сигналы подвергают фильтра­

ции с использованием тех же постоянных времени и начального условия, что и в формулах (А.32) и (А.ЗЗ):

PCR[k, п] = а [k\PCR[k, л - 1] + (1 - a [k \R J i, л], (А.43)

Рст[к, л] = а [к\Рст[к, л - 1] + (1 - а [k])RaT [/, л], (А.44)

13

ГОСТ Р 56047— 2014

где

RJLk, п]

R J k , п]

1 к+М2[к]
У RR[i,n \

Щ к] + М2[к] + 1 i^-M fik]

. к+М2[к]
■■------- ------- У RT[i,n \
Ц[/с]+ М2[к] + 1 /-к м^[к]

(А.45)

(А.46)

М,[к\ = min (3, к), М2[к] = min (4, Nc - 1 - к). (А.47)

Конечным результатом этой стадии обработки, на основе формул (А.43) и (А.44) получают спектрально адап­
тированные образы, Ерт[к, п] и TPR[k, л], по формулам

Ерт[к, п) = ELT[k, п]Рст[к, л], (А.48)

EPR[k, п] = Еш[к, n]PCR[k, л]. (А.49)

А.1.2.2.2 Обработка образов модуляции
Входными данными для этой стадии вычислений являются образы нераспространенных возбуждений

ЕзК [к ,п]» Е зТ [к, л], которые рассчитывают по формуле (А.21) для исходного и восстановленного аудиосигналов
соответственно. Вычисляют меры модуляций огибающих спектра.

Предварительно вычисляют среднюю громкость, ER[k, п] м Ет[к, л] по формулам

Еи[к, п] = а [к]Ёр[к, п - 1] + (1 - a [k])(EsR [к, л])°-3,-R 1п* -I ** V'r-RV'* " 'J V ^ L'4A•-sRl

Е т[к, п] = а Ш т[к, п - 1] + (1 - а [k])(EsT[k, л])°-3.

Далее необходимо вычислить разности D R[k, п] и D т[к, п]:

D R[k, п] = а [ф р[к, п - 1] + (1 - a [k])Fss\(EsR [к, л])0-3 - (E J k , п - 1])°-3|,

D T[k, л] = а [k]Dт[к, л - 1] + (1 - а [k])Fss\(EsT[k, л])0-3 - (EsT[k, п - 1])03|.

Постоянные времени и начальные условия используют те же самые, что и в А.1.2.2.1.
Меры модуляции огибающих спектра вычисляют по формулам

DR[k,n]MJk, п] =

М [к, п] ■■

1 + Ек [/с,л]/0,3

g r t M]
1 + Ет [М]/0 ,3 '

(А.50)

(А.51)

(А.52)

(А.53)

(А. 54)

(А. 55)

А.1.2.2.3 Вычисление громкости
Образы громкости вычисляют в соответствии с формулами

,0 ,23

NJk, п] = с 5 [*]
S[ft]Ec

/\ -s [k] +
s[k] + EsR[k,n

Et [k]
(A. 56)

где c = 1,07664.

14

NJk, л] = c 5 M
s[ft]Ec

0,23 / ~ \ 0,23

1 -S [k] + Slk] + E^
\ EJk] J

s J f) = -2 - 2,05 atan [-J — I - 0,75 atan
dB ' 4000 '

(' f ' 2Л
v1600y

S[/c] = io Sds(fc[*l,1000)'

Еив(0 = 3,64 • (/71 ООО)-0-8,

Et [k] = -|0£“ в(*с[*])/10

(A-57)

(A.58)

(A.59)

(A.60)

(A.61)

ГОСТ Р 56047— 2014

Общие громкости для обоих сигналов вычисляют по формулам
Nc -1

NtotR[n] = (24/лу £ m a x(NR[k, п],0),
/с=0

Nc -1

Л/(0,г [п] = (241 Nc) £ т а х (Л /г [/с, п],0).
/с=0

(А.62)

(А.63)

А.1.2.3 Расчет выходных значений психоакустической модели
А. 1.2.3.1 Общее описание процесса расчета параметров
Выходные характеристики из А.1.2.1 используют для вычисления выходных характеристик А.1.2.2 в соот­

ветствии со схемой, приведенной на рисунке А.2.

Образы возбуждений Образы нераспространенных
возбуждений

Спектрально Общая Меры Модифици-
адаптированные громкость модуляции рованные

образы образы

Рисунок А.2 — Схема обработки образов

Значения из А.1.2.2 используют для вычисления выходных значений переменных психоакустической модели
(см. таблицу А.1 и рисунок А.З).

Рассчитывают значения 11 переменных психоакустической модели. Наименование и краткое описание пере­
менных психоакустической модели приведены в таблице А.1.

Т а б л и ц а А.1 — Выходные переменные психоакустической модели

Наименования выходной переменной модели Описание

Bandwidth RefB Ширина полосы исходного аудиосигнала

BandwidthTestB Ширина полосы восстановленного аудиосигнала

Total NMRB Отношение уровня шума к порогу маскирования

WinModDiffIB Оконная разница модуляций

ADBB Среднее поблочное искажение

EHSB Гармоническая структура ошибки

AvgModDiffIB Средняя разница модуляции 1

AvgModDiff2B Средняя разница модуляции 2

RmsNoiseLoudB Громкость шума

MFPDB Максимальная вероятность обнаружения искажения

RelDistFramesB Относительное искажение фреймов

15

ГОСТ Р 56047— 2014

EPR[k, п] ЕРТ[к, п] NtotR[n]
MR[k, п] Мт[к, п] NtotT[n]

<\>0
&с

>:з
: з
S
=3
£<ь

1
О

Рисунок А.3 — Схема вычисления значений выходных переменных психоакустической модели

Для двухканальных аудиосигналов значения переменных для каждого канала следует рассчитывать отдель­
но, а затем усреднять. Значения всех переменных (кроме значений переменных ADBB и МРРОВ)для каждого кана­
ла сигнала рассчитывают независимо от второго канала.

Все значения выходных переменных модели получают путем усреднения по всем фреймам функций времени
и частоты, введенных на предыдущем шаге (в результате имеем скалярное значение).

Значения, которые будут усреднены, должны лежать в границах, определяемых следующим условием: нача­
ло или конец данных, которые будут подвержены усреднению, определяют как первую позицию с начала или с конца
последовательности значений амплитуд аудиосигнала, для которой сумма пяти последовательных абсолютных
значений амплитуд превышает 200 в любом из аудио каналов. Фреймы, которые лежат вне этих границ, следует
игнорировать при усреднении. Значение порога 200 используют в случае, если амплитуды входных аудиосигналов
нормализованы в диапазоне от минус 32768 до плюс 32767. В противном случае значение порога Ath вычисляют
следующим образом:

Ап ахAth = 200
th 32768

(А.64)

где Amax — максимальное значение амплитуды аудиосигнала.
В дальнейшем индекс фрейма п начинается с нуля для первого фрейма, удовлетворяющего условиям про­

верки границ с порогом Ath, и отсчитывает число фреймов N вплоть до последнего фрейма, удовлетворяющего
вышеприведенному условию.

А.1.2.3.2 Оконная разница модуляций 1 (WinModDiffIB)
Вычисляют мгновенную разницу модуляций, Мш в [к, п], по формуле

м атв[к,п] = \MT[k ,n]-M R[k,n]\
1+ MR[k,n]

(А.65)

16

ГОСТ Р 56047—2014

Значение мгновенной разницы модуляций усредняют по всем полосам частот Л/с в соответствии со следую­
щей формулой

Цш1в И
100 Nc 1

Z * W M] .
к-0

(А. 66)

Конечное значение выходной переменной получают усреднением формулы (А. 66) со скользящим окном L = 4
(85 мс, так как каждый шаг равен 1024 оцифрованных значений):

MwamB N -L + 1
(А.67)

При этом при меняют усреднение с задержкой — первые 0,5 с сигнала не участвуют в вычислениях. Количес­
тво пропускаемых фреймов составляет:

Ndel = fO,5Fssl. (А.68)

В формуле (А.68) операция |~ "] означает отбрасывание дробной части.
В формуле (А.67) индекс фреймов включает только фреймы, которые идут после задержки величиной 0,5 с.
А .1.2.3.3 Средняя разница модуляций 1 (WinModDiffIB)
Значение данной выходной переменной психоакустической модели, Мш и в , вычисляют по формуле

где

М — л - 0 ______
™АМТ1В ДМ

Т Щ в [п]Матв[п]

5 Х [п]

N r-1
Щ в [п]= £

ЕК[к,п]
Го Er[M]+ 1 0 0 (E /n[/c]),0.3-

Для вычисления этого значения также применяют усреднение с задержкой.
А .1.2.3.4 Средняя разница модуляций 2 (WinModDiff2B)
Сначала вычисляют значение мгновенной разницы модуляций по формуле

(А.69)

(А.70)

Hvdiff2fi П1 “ '

MT[k ,n]-M R[k,n]
0,01 +M R[k,n] ’

МТ[к ,п]> MR[k,n],

„ MR[k ,n]-M r[k ,n] r, , ,
0,1 Rl 1 74 J, MT[k,n] < MR[k,n],

0 m + M R[k,n] 74 J R

(A.71)

Затем вычисляют усредненное по полосам частот значение разности модуляций:

ИяГ2в И " .. У Mdiff2BА/,
(А.72)

Конечное значение переменной психоакустической модели Ммт2 вычисляют по формулам (А.73) и (А.74)

кл - п=0
М А(Ш2В ------------

У Щ В{П]МШ2В[П]

А/-1
2 > 2в[л]

(А.73)

п=0

где

N«-1 ER[k,n]W2 \п]= У = --------------------------Го ER[k,n] + 100(E/w[/c])0,3
(А.74)

При вычислении этого значения также применяют усреднение с задержкой.

17

ГОСТ Р 56047—2014

А.1.2.3.5 Громкость шума (RmsNoiseLoudB)
Значение мгновенной громкости шума рассчитывают по формуле

—1
NiL[n] = (24/л у [*. «1.

к-0

где NJk, п] ■

где Е0 = 1.

Et [k]
,0 ,2 3

sT [k,n]E0
11 max(s7-[/r,n]EP7-[/r ,n]-s R[/r,n]EPR[/(,f7],0)

Ef [к] + р [k ,n ^R[k,n]EPR[k,n]

SR[k, п] = T0MR[k, п] + S0;

ST[k, п] = Т0Мт[к, п] + S0;

EPT[k ,n]-E PR[k ,n f'

.0,23

Р [к, п\ = ехр - а
Ерг?[к,п]

где а = 1,5;
7л = 0,15;

, = 0,5.
Если мгновенная громкость менее 0, ее устанавливают равной 0:

/Л/J n] NiL[n] > 0,A /Jn]:
0 NiL[n]< 0.

-1

(А.75)

(А.76)

(А. 77)

(А.78)

(А. 79)

(А. 80)

Значение конечной выходной переменной психоакустической модели NLrmsB находят усреднением мгновен­
ной громкости по формуле (А.81):

(А.81)

Для вычисления этого значения применяют усреднение с задержкой. Совместно с усреднением с задержкой
используют порог громкости для нахождения значения мгновенной громкости шума, начиная с которого выполняют
процесс усреднения. Таким образом, усреднение начинают с первого значения, определяемого условием превы­
шения порога громкости, но не позднее 0,5 с от начала сигнала (в соответствии с усреднением с задержкой).

Условие превышения порога громкости
Значения мгновенной громкости шума в начале обоих сигналов (исходного и восстановленного) игнорируют

до тех пор, пока не пройдет 50 мс после того, как значение общей громкости превысит в обоих каналах одного из сиг­
налов значение порога, равное 0,1.

Условие превышения порога имеет вид:

(NtotгМ - Lt) Л (Ч о « И - Lf)’ Д™ моносигнала

[(\ (л [п] > д A(Nto m [n]> L t)]v [(N totT2[n]> L t) A(NtotR2[n] > L t)], стереосигнала,
(А.82)

где Lt = 0,1.
Количество пропускаемых после превышения порога фреймов Noff рассчитывают по формуле (А.83)

NoH=0,05Fss. (А.83)

А.1.2.3.6 Ширина полос исходного и восстановленного аудиосигналов (Bandwidth Ref В и BandwidthTestB)
Операции вычислений ширины полос исходного и восстановленного аудиосигналов описывают в терминах

операций на выходных значениях ДПФ, выраженных в децибелах. Прежде всего для каждого фрейма выполняют
следующие операции:

- для восстановленного сигнала: находят самую большую компоненту после частоты 21600 Гц. Это значение
называют уровнем порога;

- для исходного сигнала: выполняя поиск вниз, начиная счастоты 21600 Г ц, находят первое значение, которое
превышает значение уровня порога на 10 дБ. Соответствующую этому значению частоту называют шириной поло­
сы для исходного сигнала;

- для восстановленного сигнала: выполняя поиск вниз, начиная со значения ширины полосы исходного сигна­
ла, находят первое значение, которое превышает значение уровня порога на 5 дБ. Обозначают соответствующую
этому значению частоту как ширину полосы для восстановленного сигнала.

Если найденные частоты для исходного сигнала не превышают 8100 Гц, то ширину полосы для этого фрейма
игнорируют.

18

ГОСТ Р 56047— 2014

Значения ширин полос для всех фреймов называют основными частотами ДПФ.
Основную частоту ДПФ для л-го фрейма обозначают как Кк [п]для исходного сигнала и как К-^п]— для восста­

новленного сигнала. Вычисление конечных значений переменных психоакустической модели, значений ширин
полос исходного и восстановленного сигналов необходимо выполнять по следующим формулам соответственно:

1 N-1

/v n=0
(A.84)

. N-1-2Хи,
/v n=0

(A.85)

где суммирование осуществляют только для тех фреймов, в которых основная частота ДПФ превышает 8100 Гц.
А.1.2.3.7 Отношение уровня шума к порогу маскирования (TotaINMRB)
Порог маскирования М[к, п] вычисляют по формуле (А.86)

где

М[к, п] =
EsR[k,n]

-|0 mdsW10 9m[k]EsR[k, Л], (А.86)

J3, к < 12/Az,
т<1в[{о 25/cAz , к > 12/Az.

(А.87)

Уровень шума, X „N [к], вычисляют по формуле (А.88)

К М = \XWM 2 - 2 J \X wT[k f \ X wR[k]\2 + |XWR [к]\2,

где к — индекс основной частоты ДПФ.
Отношение уровня шума к порогу маскирования в /с-й полосе частот выражают формулой (А.89)

EbR[k’n] - EbN[k,n]
RNJ k< nl :

M M] gm[ky=sR[k,n]

Конечное отношение уровня шума к порогу маскирования дБ, вычисляют по формуле (А.90)

10 log.
(1 N-1 . Afc-1

n ^ n ~ E r wm[M]
,v n=0,vC к=0

(А.88)

(А.89)

(А.90)

А.1.2.3.8 Относительное искажение фреймов (RelDistFramesB)
Максимальное отношение шума к порогу маскирования фрейма R/vmax[n] вычисляют по формуле (А.91):

R /v m ax H = max(RNM[M]) ■ (А.91)
0<k<Nc -1

Искаженным считают тот фрейм, в котором максимальное отношение шума к порогу маскирования более
1,5дБ.

Конечное значение выходной переменной психоакустической модели представляет собой отношение коли­
чества искаженных фреймов к общему количеству фреймов.

А.1.2.3.9 Максимальная вероятность обнаружения искажения (MFPDB)
Сначала вычисляют асимметричное возбуждение:

L [к п] = \®$RsRdB[k ’n] + Q?EsTdB[k,n],

1 Ё3тс1в[к ’п]’

EsR[k ,n]> E sT[k,n],
EsR[k ,n]< E sT[k,n],

(A. 92)

где b RdB[k,n] = 10|ogio(£sR[M]) ,
EsTdB[k >n] = 10log10(EsT[/c,n]).

Далее вычисляют шаг для обнаружения искажения, s [к, л], по формуле

S[k, п] = <с0 i c^L[k,n] i cj_2[k,n] i c3L3[/(,n] + c4L4[/f,n] i dJ “ 2
L[k,n]

/\-/\Q30,L [k,n]<0,

L[k, n] > 0,

где c0 =-0,198719;
c3 = 5,05622-10“ 6;
d2 = 6,39468;

c ! = 0,0550197;
c4 = 9,01033 Ю -11;
у = 1,71332;

c2 = -0,00102438;
d, = 5,95072.

(A.93)

(A. 94)

(A. 95)

19

ГОСТ Р 56047— 2014

Вероятность обнаружения вычисляют по формуле

Рс[к, п] = 1 -(0,5)

где показатель степени Ь вычисляют по формуле

EsraelMbEsraelM]
s[k,n]

b = \4 EsR[k ,n]> E sT[k,n],
[6 EsR[k,n] < EsT[k,n],

Затем вычисляют количество шагов сверх порога вероятности обнаружения, qc[k, п], по формуле

ЯЖ п] =
_ \ \ ’EsRdB[k,n]-EsTdB[k,n]~\\

s[k,n]

(А. 96)

(А-97)

(А. 98)

Характеристики по формулам (А.96) и (А.98) вычисляют для каждого канала сигнала. Для каждой частоты и
времени полную вероятность обнаружения и полное число шагов сверх порога выбирают как большее значение из
всех каналов:

Nr-1
Pb[n] = 1 - П(1“тах (Pi№ п], р2[к, п])),

к=0
Nc - 1

Qb[n] = £ т а х (с?1 [/с, л], q2[k, п]),
к=0

где индексы 1 и 2 — номера каналов.
Для одноканальных сигналов характеристики вычисляют по формулам (А. 101) и (А. 102):

N r- 1

(А. 99)

(А. 100)

рьИ = 1 - П (1- Р с М ’ (А.101)
к=0

Nc-1
Qb[n] = j ^ q c[k, п]. (А. 102)

к=0

)[п] = с Д [п - 1] + (1 - с 0)Рь[п], (А. 103)

Выполняют следующие вычисления:

где с0 = 0,9 и начальное условие — нулевое.
Максимальную вероятность обнаружения искажения Рм [п] вычисляют по рекуррентной формуле

Рм [п] = тах(Рм[л - 1], Рь[п]). (А. 104)

Конечное значение выходной переменной психоакустической модели MFPDB рассчитывают по форму­
ле (А.105)

M F P D = P J N - 1]. (А.105)

А. 1.2.3.10 Среднее поблочное искажение (ADBB)
Сначала вычисляют сумму общего числа шагов сверх порога обнаружения Qs по формуле

N- 1

Qs = Z Q b M - (АД 06)

Причем суммирование ведут для всех значений, для которых Рь[п] > 0,5.
Конечная характеристика ADBB имеет вид:

ГО,

ADBa (О,
10910 ̂ Л/
-0,5

Л/= 0,

Л/ >0, Qs >0,

N > 0, Qs =0.

(А.107)

А .1.2.3.11 Гармоническая структура ошибки (EHSB)
Выходы ДПФ для исходного и восстановленного сигналов обозначают какХК[к] и Х т[к] соответственно.

20

ГОСТ Р 56047—2014

Вычисляют характеристику D[k]\

D[k\ = log (\W[k]XT[k]\2) - log (\W[k]XR[k]\2) = log \X T[k f
l l X R[/c]|

2 , , 0 < K < N f /2.

Формируют вектор длины M из значений D[k\:

где М = = Z— of l°92 (Np 9000/Fs)~| -1 256.
Нормализованную автокорреляцию вычисляют по формуле (А. 110)

рА+/С (/ , /) =
A | 2 |D /+/|2

гДе / е [0> ^maxl'
При С[1] = С (/, 0) необходимо вычислить:

2 - f A o l2 ,|D |2 = n-U ! » 1 -0»

' 'ID m |2+D[/ + M - 1]2 - D[/ - 1]2 1 < / < Lmax.

(A.108)

(A.109)

(A. 110)

(A.111)

При вычислении по формуле (А.110) в случае, если сигналы равны, необходимо установить нормализован­
ную автокорреляцию равной единице, чтобы избежать деления на ноль.

Вводят оконную функцию:

Н[/] = 0,5^813

0,

1 — COS 2nl

vAmax — 1
0 <1 < Lmax 1,

в остальных случаях.

(А.112)

К нормализованной автокорреляции применяют оконное преобразование по формуле (А.113)

С^т\ = Н [т](С [т + 1] - С), 0 < т < Lmax - 1,

__ л -̂гпах
где С = ------ £ С [/] .

‘ -max /=1

Спектр мощности S[k] вычисляют по формуле (А.115)

/ -̂тах 1
S[/c] = ^ - £ c ff[/]e ^ w,L-

-max /=0

(А.113)

(А.114)

(А.115)

Поиск максимального пика спектра мощности начинают с к = 1 и заканчивают при S[k] > S[k - 1] или fcX-max'2-
Найденное значение максимального пика обозначают как ЕН тахИ Тогда конечное значение выходной перемен­
ной психоакустической модели рассчитывают по формуле (А.116)

лм
ЕНв = (1 0 0 0 //\/)£ E Hmax(n). (А.116)

п =0

При вычислении этого значения исключают фреймы с низкой энергией. Для определения фреймов с низкой
энергией вводят пороговое значение

A ir = 8000(/4max/32768)2, (А. 117)

гдеАтах =32768 для амплитуд, хранимых в виде 16 битного целого числа.
Энергию фрейма А2 оценивают по формуле (А.118):

nf ~ 1
А2 = £ x 2 [n].

n=NF! 2

При вычислении гармонической структуры ошибки фрейм игнорируют, если:

(А?<Л1г) а (А^ <А$,Г), для моносигнала,

(& < Ahr) а (Ди < Ллг) а (А^2 < ^ г) а (Д |2 < 4 i) , для стереосигнала.

(А.118)

(А.119)

21

ГОСТ Р 56047— 2014

А.1.2.4 Нормирование значений выходных переменных психоакустической модели
Нормирование полученных на предыдущем шаге значений выходных переменных психоакустической моде­

ли выполняют по формуле (А.120)

м ; [/] = Mv[i] ^minl/']
^ max̂ ' 1 ‘Trun '̂l

(А.120)

rp,eMv[i] — значение /-й выходной переменной психоакустической модели, а значения amin[/] и атах[/] приведены
в таблице А.2.

Т а б л и ц а А.2 — Константы для нормирования значений выходных переменных психоакустической модели

Индекс переменой, i Наименование переменной Минимальное
значение amin[/]

Максимальное
значение amax[/]

0 BandwidthRefB 393,916656 921,0

1 BandwidthTestB 361,965332 881,131226

2 TotaINMRB -24,045116 16,212030

3 WinModDiffIB 1,110661 107,137772

4 ADBB -0,206623 2,886017

5 EHSB 0,074318 13,933351

6 AvgModDiffIB 1,113683 63,257874

7 AvgModDiff2B 0,950345 1145,018555

8 RmsNoiseLoudB 0,029985 14,819740

9 MFPDB 0,000101 1,0

10 RelDistFramesB 0,0 1,0

А.1.2.5 Оценка качества восстановленного сигнала с помощью искусственной нейронной сети
На вход нейронной сети подают значения 11 выходных переменных психоакустической модели, рассчитан­

ных в А.1.2.1—А.1.2.4. Нейронная сеть имеет 11 нейронов во входном слое, один скрытый слой стремя нейронами
и один нейрон в выходном слое. Выход нейронной сети — конечное значение метрики PEAQ рассчитывают по
формуле (А.121)

PEAQ = bmin + (bmax + bmin)sig (D(),

где bmin = -3,98 и bmax = 0,22, а функция sig (x) — асимметричная сигмоида:

1sig (x) :
1 + e

(A.121)

(A. 122)

Значение DT вычисляют следующим образом:
j -1

D I = W y b + H
<=0

Wy\j]sig
(V
wXb L /]+ Z wx ['.y]w ;[']

, i=0
(A.123)

гдeMy[i]— нормализованное значение /-й выходной переменной, I — количество выходных переменных (рав­
ное 11), J — количество нейронов в скрытом слое (равное трем), [wx[i, j] , (wxb\ j], wy\j], wyb — значения
весов и смещений нейронной сети, приведенные в таблицах А.З—А.5.

Т а б л и ц а А.З — Веса нейронной сети

Индекс i Вес wx[i, 0] Вес wy [/, 1] Вес wx [/, 2]

0 -0,502657 0,436333 1,219602

1 4,307481 3,246017 1,123743

2 4,984241 2,211189 -0,192096

3 0,0511056 -1,762424 4,331315

4 2,321580 1,789971 -0,754560

5 -5,303901 -3,452257 -10,814982

22

ГОСТ Р 56047—2014

Окончание таблицы А.З

Индекс / Вес wx[i, 0] Вес wx [/, 1] Вес wx [/, 2]

6 2,730991 -6,111805 1,519223

7 0,624950 -1,331523 -5,955151

8 3,10288 0,871260 -5,922878

9 -1,051468 -0,939882 -0,142913

10 -1,804679 -0,503610 0,620456

Т а б л и ц а А.4 — Смещения нейронной сети

Bias wyb Bias i/i^JO] Bias ivxb[1] Bias wxb[2]

-0,307594 -2,518254 0,654841 -2,207228

Т а б л и ц а А.5 — Веса и смещения нейронной сети

Индекс j Bee wy\j]

0 -3,817048

1 4,017138

2 4,629582

Это значение метрики (PEAQ) представляет собой вещественное число, принадлежащее отрезку [-3,98;
0 ,22].

А.2 Алгоритм расчета метрики PSNR

Пиковое отношение сигнал/шум между исходным аудиосигналом XR и восстановленным Х Т рассчитывают
по формулам:

PSNR = 10lg (А. 124)
S

S = — . t v ,
п - 1/и

(А.125)

где разности значений сигналов dj и их математическое ожидание d рассчитывают по формулам:

d, = X Ri X Ti, d Z d/-
i=1

(A. 126)

гд еХ я v\XT — i-e оцифрованные значения исходного и восстановленного аудиосигналов соответственно,/= 1,
2 , — ,/7;

m axXR — максимальное значение среди оцифрованных значений исходного аудиосигнала.

А.З Алгоритм расчета метрики «коэффициент различия форм сигналов»

Пусть XR — исходный моноканальный аудиосигнал (либо один канал исходного многоканального аудиосиг­
нала), а Х т — восстановленный моноканальный аудиосигнал (либо один канал восстановленного многоканального
аудиосигнала). Оба сигнала состоят из одинакового количества значений N.

Массивы значений амплитуд сигналов X R и Х т представляют в виде относительного изменения значений
амплитуд сигнала:

dXR[i] = X R[i] - X R[i - n i = 2,N, (A. 127)

dXT[i] = X T[i] - X T[i - 1], i = 2J\l. (A. 128)

23

ГОСТ Р 56047— 2014

Значение метрики «коэффициент различия форм сигналов» К вычисляют как среднеквадратическое откло­
нение массивов значений амплитуд dXR и dXT

К =

N

YJ{dXR -d X Tf
м

N
(А. 129)

А.4 Алгоритм расчета коэффициента сжатия

Пусть S0 — объем памяти, который занимают исходные аудиоданные, a Sc — объем памяти, который зани­
мают сжатые данные, тогда коэффицент сжатия к рассчитывают по формуле

к = (А. 130)

24

ГОСТ Р 56047—2014

Приложение Б
(рекомендуемое)

Листинги программ расчета метрик качества аудиоданных
Б.1 Листинг программы расчета метрики PEAQ на языке Matlab
function ODG = PQevalAudio (Fref, Ftest, Starts, EndS)
% Оценка качества аудиоданных сточки зрения восприятия (Perceptual evaluation of audio quality)

% - Starts - индекс значения, соответствующего началу сигнала.
% - EndS - индекс значения, соответствующего концу сигнала.

% глобальные переменные
global MOVC PQopt

% параметры
NF = 2048;
Nadv = NF / 2;
Version = 'Basic';

% настройки
PQopt.ClipMOV = 0;
PQopt. PCinit = 0;
PQopt. PDfactor = 1;
PQopt.Ni = 1;
PQopt. DelayOverlap = 1;
PQopt. DataBounds = 1;
PQopt.EndMin = NF/2;

addpath ('OB', 'MOV', 'Misc', 'Patt');

if (nargin < 3)
Starts = [0, 0];

end
if (nargin < 4)

EndS = [];
end

% вычислить количество значений и каналов для каждого входного файла
WAV(1) = PQwavFilePar (Fref);
WAV(2) = PQwavFilePar (Ftest);

% согласовать размеры файлов
PQ_CheckWAV (WAV);
if (WAV(1).Nframe ~= WAV(2).Nframe)

disp ('» > Number of samples differ: using the minimum');
end

% границы данных
Nchan = WAV(1).Nchan;
[Starts, Fstart, Fend] = PQ_Bounds (WAV, Nchan, Starts, EndS, PQopt);

% фреймов PEAQ
Np = Fend - Fstart + 1;
if (PQopt.Ni < 0)

PQopt.Ni = ceil (Np /abs(PQopt.Ni));
end

% инициализация структуры MOV
MOVC = PQJnitMOVC (Nchan, Np);

Nc = PQCB (Version);
for (j = 0:Nchan-1)

Fmem(j+1) = PQinitFMem (Nc, PQopt.PCinit);
end

is = 0;
for (i = -Fstart:Np-1)

25

ГОСТ Р 56047— 2014

% считать фрейм данных
xR = PQgetData (WAV(1), StartS(1) + is, NF); % Reference file
xT = PQgetData (WAV(2), StartS(2) + is, NF); % Test file
is = is + Nadv;

% обработка фрейма
for (j = 0:Nchan-1)

[MOVI(j+1), Fmem(j+1)] = PQeval (xR(j+1,:), xTQ+1,:), FmemG+1));
end

if(i >= 0)
% вывести MOV в новую структуру
PQframeMOV (i, MOVI); % выходные значения теперь в глобальной переменной MOVC

% вывод значений
if (PQopt.Ni ~= 0 & mod (i, PQopt.Ni) == 0)

% PQprtMOVCi (Nchan, i, MOVC);
end

end
end

% усреднение по времени значений MOV
if (PQopt.DelayOverlap)

Nwup = Fstart;
else

Nwup = 0;
end
MOVB = PQavgMOVB (MOVC, Nchan, Nwup);

% запуск нейронной сети
ODG = PQnNet (MOVB);

% совокупный вывод значений
% PQprtMOV (MOVB, ODG);

%--------
function PQ_CheckWAV (WAV)
% проверка файлов

Fs = 48000;

if (WAV(1).Nchan ~= WAV(2).Nchan)
error ('» > Number of channels differ');

end
if (WAV(1). Nchan >2)

error ('» > Too many input channels');
end
if (WAV(1 J.Nframe ~= WAV(2).Nframe)

disp ('» > Number of samples differ');
end
if (WAV(1).Fs ~= WAV(2).Fs)

error ('» > Sampling frequencies differ');
end
if (WAV(1).Fs ~= Fs)

error ('» > Invalid Sampling frequency: only 48 kHz supported');
end

%--------
function [Starts, Fstart, Fend] = PQ_Bounds (WAV, Nchan, Starts, EndS, PQopt)

PQ_NF = 2048;
PQ_NADV = (PQ_NF / 2);

if (isempty (Starts))
StartS(1) = 0;
StartS(2) = 0;

elseif (length (Starts) == 1)
StartS(2) = StartS(1);

end

26

ГОСТ Р 56047— 2014

Ns = WAV(1).Nframe;
% границы данных
if (PQopt.DataBounds)

Lim = PQdataBoundary (WAV(1), Nchan, StartS(1), Ns);
fprintf ('PEAQ Data Boundaries: %ld (%.3f s) - %ld (%.3f s)\n', ...

Lim(1), Lim(1)/WAV(1).Fs, Lim(2), Lim(2)A/VAV(1).Fs);
else

Lim = [Starts(1), StartS(1) + Ns -1];
end

% номер первого фрейма
Fstart = floor ((Lim(1) - StartS(1)) / PQ_NADV);

% номер последнего фрейма
Fend = floor ((Lim(2) - StartS(1) + 1 - PQopt.EndMin) / PQ_NADV);

%----------
function MOVC = PQ_lnitMOVC (Nchan, Np)
MOVC.MDiff.Mt1 В = zeros (Nchan, Np);
MOVC.MDiff.Mt2B = zeros (Nchan, Np);
MOVC.MDiff.Wt = zeros (Nchan, Np);
MOVC.NLoud.NL = zeros (Nchan, Np);
MOVC.Loud.NRef = zeros (Nchan, Np);
MOVC.Loud.NTest = zeros (Nchan, Np);
MOVC.BW.BWRef = zeros (Nchan, Np);
MOVC.BW.BWTest = zeros (Nchan, Np);
MOVC.NMR.NMRavg = zeros (Nchan, Np);
MOVC.NMR.NMRmax = zeros (Nchan, Np);
MOVC.PD.Pc = zeros (1, Np);
MOVC.PD.Qc = zeros (1, Np);
MOVC.EHS.EHS = zeros (Nchan, Np);

function ODG = PQnNetB (MOV)
% нейронная сеть для получения конечного значения метрики

persistent amin amax wx wxb wy wyb bmin bmax I J CLIPMOV
global PQopt

if (isempty (amin))
I = length (MOV);
if (I == 11)

[amin, amax, wx, wxb, wy, wyb, bmin, bmax] = NNetPar ('Basic');
else

[amin, amax, wx, wxb, wy, wyb, bmin, bmax] = NNetPar ('Advanced');
end
[I, J] = size (wx);

end

sigmoid = inline ('1 / (1 + exp(-x))');

% Scale the MOV's
Nclip = 0;
MOVx = zeros (1, I);
for (i = 0:1-1)

MOVx(i+1) = (MOV(i+1) - amin(i+1)) / (amax(i+1) - amin(i+1));
if (~ isempty (PQopt) & PQopt.ClipMOV ~= 0)

if (MOVx(i+1) < 0)
MOVx(i+1) = 0;
Nclip = Nclip + 1;

elseif (MOVx(i+1) > 1)
MOVx(i+1) = 1;
Nclip = Nclip + 1;

end
end

end
if (Nclip > 0)

fprintf ('» > %d MOVs clipped\n', Nclip);
end

27

ГОСТ Р 56047— 2014

% нейронная сеть
Dl = wyb;
for (j = 0:J-1)

arg = wxb(i+1);
for (i = 0:1-1)

arg = arg + wx(i+1,j+1) * MOVx(i+1);
end
Dl = Dl + wy(j+1) * sigmoid (arg);

end

ODG = bmin + (bmax - bmin) * sigmoid (Dl);

function [amin, amax, wx, wxb, wy, wyb, bmin, bmax] = NNetPar (Version)

if (strcmp (Version, 'Basic'))
amin = ...

[393.916656
0.074318,
0];

amax = ...
[921, 881.131226, 16.212030, 107.137772, 2.886017

13.933351, 63.257874,1145.018555, 14.819740, 1,

361.965332, -24.045116, 1.110661, -0.206623,
1.113683, 0.950345, 0.029985, 0.000101,...

0.436333,
3.246017,

-2.211189,
-1.762424,
1.789971,

-3.452257,
-6.111805,
-1.331523,
0.871260,

1];
wx = ...

[[-0.502657,
[4.307481,
[4.984241,
[0.051056,
[2.321580,
[-5.303901,
[2.730991,
[0.624950,
[3.102889,
[-1.051468,
[-1.804679,

wxb = ...
[-2.518254, 0.654841

wy = ...
[-3.817048, 4.107138

wyb = -0.307594;
bmin = -3.98;
bmax = 0.22;

else
amin = ...

[13.298751, 0.041073
amax = ...

[2166.5, 13.24326,

1.219602];
1.123743];

-0.192096];
4.331315];

-0.754560];
-10.814982
1.519223];
-5.955151];
-5.922878 1;

0.939882, -0.142913
0.503610, -0.620456;

-2.207228

4.629582

-25.018791, 0.061560, 0.024523

13.46708, 10.226771, 14.224874;
wx = ...

[[21.211773,
[-8.981803,
[1.633830,
[6.103821,
[11.556344,

wxb = ...
[1.330890,

wy = ...
[-4.696996, -

wyb = -1.360308
bmin = -3.98;
bmax = 0.22;

end

-39.913052, -1.382553,
19.956049, 0.935389,
-2.877505, -7.442935,
19.587435, -0.240284,
3.892028, 9.720441,

-14.545348
-1.686586,
5.606502,
1.088213

-3.287205,

0.320899 '
-3.238586];

-1.783120];
-0.511314];

-11.031250 1

2.686103, 2.096598,-1.327851, 3.087055

3.289959, 7.004782, 6.651897, 4.009144

28

ГОСТ Р 56047—2014

function [Nc, fc, fl, fu, dz] = PQCB (Version)
% параметры критической полосы пропускания

В = inline (7 * asinh (f /650)');
Bl = inline ('650 * sinh (z/7)');

fL = 80;
fU = 18000;
if (strcmp (Version, 'Basic'))

dz = 1/4;
elseif (strcmp (Version, 'Advanced'))

dz = 1/2;
else

error ('PQCB: Invalid version');
end

zL = B(fL);
zU = B(fU);
Nc = ceil((zU - zL) / dz);
zl — zL + (0:Nc-1) * dz;
zu = min (zL + (1:Nc) * dz, zU);
zc = 0.5 * (zl + zu);

fl = Bl (zl);
fc = Bl (zc);
fu = Bl (zu);

if (strcmp (Version, 'Basic'))
fl == [80.000, 103.445, 127.023, 150.762, 174.694,

198.849, 223.257, 247.950, 272.959, 298.317
324.055, 350.207, 376.805, 403.884, 431.478
459.622, 488.353, 517.707, 547.721, 578.434
609.885, 642.114, 675.161, 709.071, 743.884,
779.647, 816.404, 854.203, 893.091, 933.119,
974.336, 1016.797, 1060.555, 1105.666, 1152.187,

1200.178, 1249.700, 1300.816, 1353.592, 1408.094
1464.392, 1522.559, 1582.668, 1644.795, 1709.021
1775.427, 1844.098, 1915.121, 1988.587, 2064.590
2143.227, 2224.597, 2308.806, 2395.959, 2486.169
2579.551, 2676.223, 2776.309, 2879.937, 2987.238
3098.350, 3213.415, 3332.579, 3455.993, 3583.817
3716.212, 3853.817, 3995.399, 4142.547, 4294.979
4452.890, 4616.482, 4785.962, 4961.548, 5143.463
5331.939, 5527.217, 5729.545, 5939.183, 6156.396
6381.463, 6614.671, 6856.316, 7106.708, 7366.166
7635.020, 7913.614, 8202.302, 8501.454, 8811.450,
9132.688, 9465.574, 9810.536, 10168.013, 10538.460

10922.351, 11320.175, 11732.438, 12159.670, 12602.412,
13061.229, 13536.710, 14029.458, 14540.103, 15069.295
15617.710, 16186.049, 16775.035, 17385.420];

fc = [91.708, 115.216, 138.870, 162.702, 186.742,
211.019, 235.566, 260.413, 285.593, 311.136,
337.077, 363.448, 390.282, 417.614, 445.479
473.912, 502.950, 532.629, 562.988, 594.065
625.899, 658.533, 692.006, 726.362, 761.644.
797.898, 835.170, 873.508, 912.959, 953.576
995.408, 1038.511, 1082.938, 1128.746, 1175.995,

1224.744, 1275.055, 1326.992, 1380.623, 1436.014
1493.237, 1552.366, 1613.474, 1676.641, 1741.946.
1809.474, 1879.310, 1951.543, 2026.266, 2103.573
2183.564, 2266.340, 2352.008, 2440.675, 2532.456
2627.468, 2725.832, 2827.672, 2933.120, 3042.309
3155.379, 3272.475, 3393.745, 3519.344, 3649.432
3784.176, 3923.748, 4068.324, 4218.090, 4373.237
4533.963, 4700.473, 4872.978, 5051.700, 5236.866
5428.712, 5627.484, 5833.434, 6046.825, 6267.931
6497.031, 6734.420, 6980.399, 7235.284, 7499.397.
7773.077, 8056.673, 8350.547, 8655.072, 8970.639
9297.648, 9636.520, 9987.683, 10351.586, 10728.695

29

ГОСТ Р 56047— 2014

11119.490, 11524.470, 11944.149, 12379.066, 12829.775,
13294.850, 13780.887, 14282.503, 14802.338, 15341.057,
15899.345, 16477.914, 17077.504, 17690.045];

fu = [103.445, 127.023, 150.762, 174.694, 198.849
223.257, 247.950, 272.959, 298.317, 324.055,
350.207, 376.805, 403.884, 431.478, 459.622,
488.353, 517.707, 547.721, 578.434, 609.885,
642.114, 675.161, 709.071, 743.884, 779.647,
816.404, 854.203, 893.091, 933.113, 974.336,

1016.797, 1060.555, 1105.666, 1152.187, 1200.178,
1249.700, 1300.816, 1353.592, 1408.094, 1464.392,
1522.559, 1582.668, 1644.795, 1709.021, 1775.427,
1844.098, 1915.121, 1988.587, 2064.590, 2143.227,
2224.597, 2308.806, 2395.959, 2486.169, 2579.551,
2676.223, 2776.309, 2879.937, 2987.238, 3098.350,
3213.415, 3332.579, 3455.993, 3583.817, 3716.212,
3853.348, 3995.399, 4142.547, 4294.979, 4452.890,
4643.482, 4785.962, 4961.548, 5143.463, 5331.939,
5527.217, 5729.545, 5939.183, 6156.396, 6381.463,
6614.671, 6856.316, 7106.708, 7366.166, 7635.020,
7913.614, 8202.302, 8501.454, 8811.450, 9132.688,
9465.574, 9810.536, 10168.013, 10538.460, 10922.351,

11320.175, 11732.438, 12159.670, 12602.412, 13061.229,
13536.710, 14029.458, 14540.103, 15069.295, 15617.710,
16186.049, 16775.035, 17385.420, 18000.000];

end

function Es = PQspreadCB (E, Ver)
% распространение возбуждений
% E и Es - энергии

persistent Bs Version

if (~ strcmp (Ver, Version))
Version = Ver;
Nc = length (E);
Bs = PQ_SpreadCB (ones(1,Nc), ones(1,Nc), Version);

end

Es = PQ_SpreadCB (E, Bs, Version);

%----------------------
function Es = PQ_SpreadCB (E, Bs, Ver);

persistent Nc dz fc aL aUC Version

e = 0.4;

if (~ strcmp (Ver, Version))
Version = Ver;
[Nc, fc, fl, fu, dz] = PQCB (Version);

end

% выделение памяти
aUCEe = zeros (1, Nc);
Ene = zeros (1, Nc);
Es = zeros (1, Nc);

% вычисление термов, зависящих от энергии
aL = 10Л(-2.7 * dz);
for (m = 0:Nc-1)

aUC = 10л((-2.4 - 23 / fc(m+1)) * dz);
aUCE = aUC * E(m+1)A(0.2 * dz);
gIL = (1 -aL A(m+1))/(1 - aL);
glU = (1 - aUCEA(Nc-m)) / (1 - aUCE);
En = E(m+1) / (gIL + glU -1);
aUCEe(m+1) = aUCEAe;
Ene(m+1) = EnAe;

end

30

ГОСТ Р 56047— 2014

% распространение вниз
Es(Nc-1 + 1) = Ene(Nc-1 + 1);
aLe = al_Ae;
for (m = Nc-2:-1:0)

Es(m+1) = aLe * Es(m+1 + 1) + Ene(m+1);
end

% распространение вверх i > m
for (m = 0:Nc-2)

r = Ene(m+1);
a = aUCEe(m+1);
for (i = m+1:Nc-1)

r — r * a;
Es(i+1) = Es(i+1) + r;

end
end

for (i = 0:Nc-1)
Es(i+1) = (Es(i+1))л(1/е) / Bs(i+1);

end

function Eb = PQgroupCB (X2, Ver)
% группировка вектора энергии ДПФ и критической полосы пропускания
% Х2 - вектор значений, возведенных в степень 2
% ЕЬ - вектор возбуждений

persistent Nc kl ku Ul Uu Version

Emin = 1 e-12;

if (~ strcmp (Ver, Version))
Version = Ver;

NF = 2048;
Fs = 48000;
[Nc, kl, ku, Ul, Uu] = PQ_CBMapping (NF, Fs, Version);

end

% выделение памяти
Eb = zeros (1, Nc);

% вычисление возбуждений в каждой полосе
for (i = 0:Nc-1)

Ea = UI(i+1)*X2(kl(i+1)+1);
for (k = (kl(i+1)+1):(ku(i+1)-1))

Ea = Ea + X2(k+1);
end
Ea = Ea + Uu(i+1) * X2(ku(i+1)+1);
Eb(i+1) = max(Ea, Emin);

end
%----------------------------------
function [Nc, kl, ku, Ul, Uu] = PQ_CBMapping (NF, Fs, Version)

[Nc, fc, fl, fu] = PQCB (Version);

df= Fs/NF;
for (i = 0:Nc-1)

fli = fl(i+1);
fui = fu(i+1);
for (k = 0:NF/2)

if ((k+0.5)*df > fli)
kl(i+1) = k;
Ul(i+1) = (min(fui, (k+0.5)*df)...

- max(fli, (k-0.5)*df)) / df;
break;

end
end

31

ГОСТ Р 56047— 2014

for (к = NF/2:-1:0)
if ((k-0.5)*df < fui)

ku(i+1) = k;
if (kl(i+1) == ku(i+1))

Uu(i+1) = 0;
else

Uu(i+1) = (min(fui, (k+0.5)*df)...
- max(fli, (k-0.5)*df)) / df;

end
break;

end
end

end

function [MOVI, Fmem] = PQeval (xR, xT, Fmem)
% PEAQ - обработка единичного фрейма

NF = 2048;
Version = 'Basic';

% оконное ДПФ
X2(1,:) = PQDFTFrame (xR);
X2(2,:) = PQDFTFrame (xT);

[EbN, Es] = PQ_excitCB (X2);

[Ehs(1Fmem.TDS.Ef(1,:)] = PQJimeSpread (Es(1Fmem.TDS.Ef(1,:));
[Ehs(2,:), Fmem.TDS.Ef(2,:)] = PQJimeSpread (Es(2,:), Fmem.TDS.Ef(2,:));

% адаптация паттернов возбуждения
[EP, Fmem.Adap] = PQadapt (Ehs, Fmem.Adap, Version, 'FFT');

% паттерны модуляции
[M, ERavg, Fmem.Env] = PQmodPatt (Es, Fmem.Env);

% громкость
MOVI.Loud.NRef = PQIoud (E hs(1Vers ion, 'FFT');
MOVI.Loud.NTest = PQIoud (Ehs(2,:), Version, 'FFT');

% разница модуляций
MOVI.MDiff = PQmovModDiffB (M, ERavg);

% громкость шума
MOVI.NLoud.NL = PQmovNLoudB (M, EP);

% полоса пропускания
MOVI.BW = PQmovBW (X2);

% отношений шума к маскированию
MOVI.NMR = PQmovNMRB (EbN, Ehs(1,:));

% вероятность обнаружения
MOVI.PD = PQmovPD (Ehs);

% ошибка гармонической структуры
MOVI.EHS.EHS = PQmovEHS (xR, xT, X2);
%-----------------
function [EbN, Es] = PQ_excitCB (X2)

persistent W2 EIN

NF = 2048;
Version = 'Basic';
if (isempty (W2))

Fs = 48000;
f = linspace (0, Fs/2, NF/2+1);
W2 = PQWOME (f);
[No, fc] = PQCB (Version);
EIN = PQIntNoise (fc);

end

32

ГОСТ Р 56047—2014

% выделение памяти
XwN2 = zeros (1, NF/2+1);

% фильтрация на основе модели внешнего и среднего уха
Xw2(1,:) = W2 .*Х2(1,1:NF/2+1);
Xw2(2,:) = W2 .* Х2(2,1:NF/2+1);
for (к = 0: NF/2)

XwN2(k+1) = (Xw2(1,k+1) - 2 * sqrt (Xw2(1,k+1) * Xw2(2,k+1))...
+ Xw2(2,k+1));

end

Eb(1,:) = PQgroupCB (Xw2(1,:), Version);
Eb(2,:) = PQgroupCB (Xw2(2,:), Version);
EbN = PQgroupCB (XwN2, Version);

E(1,:) = Eb(1,:) + EIN;
E(2,:) = Eb(2,:) + EIN;

Es(1,:) = PQspreadCB (E(1,:), Version);
Es(2,:) = PQspreadCB (E(2,:), Version);

%----------------
function [Ehs, Ef] = PQ_timeSpread (Es, Ef)

persistent No a b

if (isempty (No))
[No, fc] = PQCB ('Basic');
Fs = 48000;
NF = 2048;
Nadv= NF/2;
Fss = Fs / Nadv;
t100 = 0.030;
tmin = 0.008;
[a, b] = PQtConst (t100, tmin, fc, Fss);

end

Ehs = zeros (1, No);

for (m = 0:Nc-1)
Ef(m+1) = a(m+1) * Ef(m+1) + b(m+1) * Es(m+1);
Ehs(m+1) = max(Ef(m+1), Es(m+1));

end

function X2 = PQDFTFrame (x)

persistent hw

NF = 2048;

if (isempty (hw))
Amax = 32768;
fc = 1019.5;
Fs = 48000;
Lp = 92;
GL = PQ_GL (NF, Amax, fc/Fs, Lp);
hw = GL * PQHannWin (NF);

end

xw = hw .* x;
X = PQRFFT (xw, NF, 1);
X2 = PQRFFTMSq (X, NF);
%---------------------------------
function GL = PQ_GL (NF, Amax, fcN, Lp)

W = N F -1;
gp = PQ_gp (fcN, NF, W);
GL = 10A(Lp / 20) / (gp * Amax/4 * W);

33

ГОСТ Р 56047— 2014

%--------
function gp = PQ_gp (fcN, NF, W)

df = 1 / NF;
к = floor (fcN / df);
dfN = min ((k+1) * df - fcN, fcN - к * df);

dfW = dfN * W;
gp = sin(pi * dfW) / (pi * dfW * (1 - dfWA2));

function Lim = PQdataBoundary (WAV, Nchan, Starts, Ns)

PQ_L = 5;
Amax = 32768;
NBUFF = 2048;
PQ_ATHR = 200 * (Amax / 32768);
Lim(1) = -1;
is = Starts;
EndS = Starts + Ns -1;
while (is <= EndS)

Nf = min (EndS - is + 1, NBUFF);
x = PQgetData (WAV, is, Nf);
for (k = 0:Nchan-1)

Lim(1) = max (Lim(1), PQ_DataStart (x(k+1,:), Nf, PQ_L, PQ_ATHR));
end
if (Lim(1) >= 0)

Lim(1) = Lim(1) + is;
break

end
is = is + NBUFF - (PQ_L-1);

end
Lim(2) = -1;
is = Starts;
while (is <= EndS)

Nf = min (EndS - is + 1, NBUFF);
ie = is + Nf - 1;
js = EndS - (ie - Starts + 1)+ 1;
x = PQgetData (WAV, js, Nf);
for (k = 0:Nchan-1)

Lim(2) = max (Lim(2), PQ_DataEnd (x(k+1,:), Nf, PQ_L, PQ_ATHR));
end
if (Lim(2) >= 0)

Lim(2) = Lim(2) + js;
break

end
is = is + NBUFF - (PQ_L-1);

end
if (~ ((Lim(1) >= 0 & Lim(2) >= 0) | (Lim(1) < 0 & Lim(2) < 0)))

error ('» > PQdataBoundary: limits have difference signs');
end
if (~(Lim(1) <= Lim(2)))

error ('» > PQdataBoundary: Lim(1) > Lim(2)');
end

if (Lim(1) < 0)
Lim(1) = 0;
Lim(2) = 0;

end

%--------
function ib = PQ_DataStart (x, N, L, Thr)

ib = -1;
s = 0;

34

ГОСТ Р 56047— 2014

М = min (N, L);
for (i = 0:М-1)

s = s + abs (x(i+1));
end
if (s > Thr)

ib = 0;
return

end

for (i = 1:N-L)
s = s + (abs (x(i+L-1 + 1)) - abs (x(i-1 +1)));
if (s > Thr)

ib = i;
return

end
end

%--------
function ie = PQ_DataEnd (x, N, L, Thr)

ie = -1;
s = 0;
M = min (N, L);
for (i = N-M:N-1)

s = s + abs (x(i+1));
end
if (s > Thr)

ie = N-1;
return

end

for (i = N-2:-1:L-1)
s = s + (abs (x(i-L+1 + 1)) - abs (x(i+1 + 1))); if (s > Thr)

ie = i;
return

end
end

function x = PQgetData (WAV, i, N)

persistent Buff

iB = WAV.iB + 1;
if (N == 0)

Buff(iB).N = 20 * 1024; % Fixed size
Buff(iB).x = PQ_ReadWAV (WAV, i, Buff(iB).N);
Buff(iB).i = i;

end

if (N > Buff(iB).N)
error ('» > PQgetData: Request exceeds buffer size');

end
is = i - Buff(iB).i;
if (is < 0 | is + N -1 > Buff(iB).N -1)

Buff(iB).x = PQ_ReadWAV (WAV, i, Buff(iB).N);
Buff(iB).i = i;

end
Nchan = WAV.Nchan;
is = i - Buff(iB).i;
x = Buff(iB).x(1:Nchan,is+1:is+N-1 + 1);

%-----
function x = PQ_ReadWAV (WAV, i, N)

Amax = 32768;
Nchan = WAV.Nchan;

35

ГОСТ Р 56047— 2014

х = zeros (Nchan, N);

Nz = 0;
if (i < 0)

Nz = min (-i, N);
i = i + Nz;

end

Ns = min (N - Nz, WAV.Nframe - i);
if (i >= 0 & Ns > 0)

x(1:Nchan,Nz+1:Nz+Ns-1 + 1) = Amax * (wavread (WAV.Fname, [i+1 i+Ns-1 + 1]))';
end

function hw = PQHannWin (NF)

hw = zeros (1, NF);

for (n = 0:NF-1)
hw(n+1) = 0.5 * (1 - cos(2 * pi * n / (NF-1)));

end

function Fmem = PQinitFMem (No, PCinit)

Fmem.TDS.Ef(1:2,1: No) = 0;
Fmem.Adap.P(1:2,1:Nc) = 0;
Fmem.Adap.Rn(1:Nc) = 0;
Fmem.Adap.Rd(1:Nc) = 0;
Fmem.Adap.PC(1:2,1:Nc) = PCinit;
Fmem.Env.Ese(1:2,1:Nc) = 0;
Fmem.Env.DE(1:2,1:Nc) = 0;
Fmem.Env.Eavg(1:2,1:Nc) = 0;

function EIN = PQIntNoise (f)

N = length (f);
for (m = 0:N-1)

INdB = 1.456 * (f(m+1) / 1000)л(-0.8);
EIN(m+1) = 10A(INdB / 10);

End

function X = PQRFFT (x, N, ifn)

if (ifn > 0)
X = fft (x, N);
XR = real(X(0+1:N/2+1));
XI = imag(X(1+1:N/2-1 + 1));
X = [XR XI];

else
xR = [x(0+1:N/2+1)];
xl — [0 x(N/2+1 + 1:N-1 + 1) 0];
x = complex ([xR xR(N/2-1+ 1 :-1:1+ 1)], [xl -xl(N/2-1 +1 :-1:1 +1)]);
X = real (ifft (x, N));

end

function X2 = PQRFFTMSq (X, N)

X2 = zeros (1, N/2+1);

X2(0+1) = X(0+1)л2;
for (k = 1:N/2-1)

X2(k+1) = Х(к+1)л2 + X(N/2+k+1)A2;
end
X2(N/2+1) = X(N/2+1)A2;

36

ГОСТ Р 56047—2014

function [a, b] = PQtConst (t100, tmin, f , Fs)
N = length (f);
for (m = 0:N-1)

t = tmin + (100 / f(m+1)) * (t100 - tmin);
a(m+1) = exp (-1 / (Fs * t));
b(m+1) = (1 - a(m+1));

end

function W2 = PQWOME (f)
N = length (f);
for (k = 0:N-1)

fkHz = f(k+1) / 1000;
Ad В = -2.184 * fkHzA(-0.8) + 6.5 * exp(-0.6 * (fkHz - 3.3)л2) ...

-0.001 * fkHzA(3.6);
W2(k+1) = 10A(AdB / 10);

end

function WAV = PQwavFilePar (File)
persistent iB
if (isempty (iB))

iB = 0;
else

iB = mod (iB + 1, 2);
end
[size WAV.Fs Nbit] = wavread (File, 'size');
WAV.Fname = File;
WAV.Nframe = size(1);
WAV.Nchan = size(2);
WAV.iB = iB;
PQgetData (WAV, 0, 0);

function MOV = PQavgMOVB (MOVC, Nchan, Nwup)

Fs = 48000;
NF = 2048;
Nadv = NF / 2;
Fss = Fs / Nadv;
tdel = 0.5;
tex = 0.050;

[MOV(0+1), MOV(1 + 1)] = PQ_avgBW (MOVC.BW);

% Total NMRB, RelDistFramesB
[MOV(2+1), MOV(10+1)] = PQ_avgNMRB (MOVC.NMR);

% WinModDiffl B, AvgModDiffl B, AvgModDiff2B
N500ms = ceil (tdel * Fss);
Ndel = max (0, N500ms - Nwup);
[MOV(3+1), MOV(6+1), MOV(7+1)] = PQ_avgModDiffB (Ndel, MOVC.MDiff);

% RmsNoiseLoudB
N50ms = ceil (tex * Fss);
Nloud = PQIoudTest (MOVC.Loud);
Ndel = max (Nloud + N50ms, Ndel);
MOV(8+1) = PQ_avgNLoudB (Ndel, MOVC.NLoud);

% ADBB, MFPDB
[MOV(4+1), MOV(9+1)] = PQ_avgPD (MOVC.PD);

% EHSB
MOV(5+1) = PQ_avgEHS (MOVC.EHS);
%----------------------------------
function EHSB = PQ_avgEHS (EHS)

37

ГОСТ Р 56047—2014

[Nchan, Np] = size (EHS.EHS);

s = 0;
for (j = 0:Nchan-1)

s = s + PQ_LinPosAvg (EHS.EHS(j+1
end
EHSB = 1000* s/Nchan;
%---------------------------------
function [ADBB, MFPDB] = PQ_avgPD (PD)

global PQopt

cO = 0.9;
if (isempty (PQopt))

c1 = 1;
else

c1 = PQopt. PDfactor;
end

N = length (PD.Pc);
Phc = 0;
Pcmax = 0;
Qsum = 0;
nd = 0;
for (i = 0:N-1)

Phc = cO * Phc + (1 - cO) * PD.Pc(i+1);
Pcmax = max (Pcmax * c1, Phc);

if (PD.Pc(i+1) > 0.5)
nd = nd + 1;
Qsum = Qsum + PD.Qc(i+1);

end
end

if (nd == 0)
ADBB = 0;

elseif (Qsum > 0)
ADBB = log 10 (Qsum / nd);

else
ADBB = -0.5;

end

MFPDB = Pcmax;
%---------------------------------
function [TotaINMRB, RelDistFramesB] = PQ_avgNMRB (NMR)

[Nchan, Np] = size (NMR.NMRavg);
Thr = 10л(1.5 / 10);

s = 0;
for (j = 0:Nchan-1)

s = s + 10 * Iog10 (PQJJnAvg (NMR.NMRavgQ+1,:)));
end
TotaINMRB = s/Nchan;

s = 0;
for (j = 0:Nchan-1)

s = s + PQ_FractThr (Thr, NMR.NMRmaxQ+1,:));
end
RelDistFramesB = s / Nchan;
%---------------------------------
function [BandwidthRefB, BandwidthTestB] = PQ_avgBW(BW)

[Nchan, Np] = size (BW.BWRef);

sR = 0;
sT = 0;

38

ГОСТ Р 56047— 2014

for (j = 0:Nchan-1)
sR = sR + PQJJnPosAvg (BW.BWRef(j+1,:));
sT = sT + PQ_LinPosAvg (BW.BWTest(j+1,:));

end
BandwidthRefB =sR /N chan;
BandwidthTestB = sT / Nchan;

%-------------------------------------
function [WinModDiffl B, AvgModDiffl B, AvgModDiff2B] = PQ_avgModDiffB (Ndel, MDiff)

NF = 2048;
Nadv = NF / 2;
Fs = 48000;

Fss = Fs / Nadv;
tavg = 0.1;

[Nchan, Np] = size (MDiff.MtIB);
L = floor (tavg * Fss);
s = 0;
for (j = 0:Nchan-1)

s = s + PQ_WinAvg (L, MDiff.Mt1 B(j+1,Ndel+1:Np-1+1));
end
WinModDiffIB = s / Nchan;
s = 0;
for (j = 0:Nchan-1)

s = s + PQ_WtAvg (MDiff.Mtl B(j+1 ,Ndel+1 :Np-1 + 1), MDiff.Wt(j+1,Ndel+1:Np-1+ 1));
end
AvgModDiffl В = s / Nchan;
s = 0;
for (j = 0:Nchan-1)

s = s + PQ_WtAvg (MDiff.Mt2B(j+1,Ndel+1:Np-1+ 1), MDiff.Wt(j+1,Ndel+1:Np-1+ 1));
end
AvgModDiff2B = s / Nchan;

%-------------------------------------
function RmsNoiseLoudB = PQ_avgNLoudB (Ndel, NLoud)

[Nchan, Np] = size (NLoud.NL);

s = 0;
for (j = 0:Nchan-1)

s = s + PQ_RMSAvg (NLoud.NL(j+1,Ndel+1:Np-1 + 1));
end
RmsNoiseLoudB = s / Nchan;

%-------------------------------
function s = PQ_LinPosAvg (x)

N = length(x);

Nv = 0;
s = 0;
for (i = 0:N-1)

if (x(i+1) >= 0)
s = s + x(i+1);
Nv = Nv + 1;

end
end

if (Nv> 0)
s = s / Nv;

end

%--------
function Fd = PQ_FractThr (Thr, x)

N = length (x);

39

ГОСТ Р 56047—2014

Nv = 0;
for (i = 0:N-1)

if (x(i+1) > Thr)
Nv = Nv + 1;

end
end

if (N > 0)
Fd = N v/N ;

else
Fd = 0;

end

%-------
function s = PQ_WinAvg (L, x)

N = length (x);

s = 0;
for (i = L-1:N-1)

t = 0;
for (m = 0:L-1)

t = t + sqrt (x(i-m+1));
end
s = s + (t / L)A4;

end

if (N >= L)
s = sqrt (s / (N - L + 1));

end

%------
function s = PQ_WtAvg (x, W)

N = length (x);

s = 0;
sW = 0;
for (i = 0:N-1)

s = s + W(i+1) *x(i+1);
sW = sW + W(i+1);

end

if (N > 0)
s = s / sW;

end

%------
function LinAvg = PQ_LinAvg (x)

N = length (x);
s = 0;
for (i = 0:N-1)

s = s + x(i+1);
end

LinAvg = s / N;

%------
function RMSAvg = PQ_RMSAvg (x)

N = length (x);
s = 0;
for (i = 0:N-1)

s = s + x(i+1)A2;
end

if (N > 0)
RMSAvg = sqrt(s / N);

else
RMSAvg = 0;

end

40

ГОСТ Р 56047— 2014

function PQframeMOV (i, MOVI)

global MOVC

[Nchan,Nc] = size (MOVC.MDiff.Mt1B);

for (j = 1:Nchan)

% Modulation differences
MOVC.MDiff.Mt1B(j,i+1) = MOVI(j).MDiff.Mt1B;
MOVC.MDiff.Mt2B(j,i+1) = MOVI(j).MDiff.Mt2B;
MOVC.MDiff.Wt(j,i+1) = MOVI(j).MDiff.Wt;

% Noise loudness
MOVC.NLoud.NL(j,i+1) = MOVI(j).NLoud.NL;

% Total loudness
MOVC.Loud.NRef(j,i+1) = MOVI(j).Loud.NRef;
MOVC.Loud.NTest(j,i+1) = MOVI(j).Loud.NTest;

% Bandwidth
MOVC. BW.BWRefQ, i+1) = MOVIG).BW.BWRef;
MOVC.BW.BWTestG,i+1) = MOVI(j).BW.BWTest;

% Noise-to-mask ratio
MOVC.NMR.NMRavgG,i+1) = MOVI(j).NMR.NMRavg;
MOVC. NMR.NMRmax(j, i+1) = MOVIG).NMR.NMRmax;

% Error harmonic structure
MOVC.EHS.EHSG,i+1) = MOVI(j).EHS.EHS;

end

% Probability of detection (collapse frequency bands)
[MOVC.PD.Pc(i+1), MOVC.PD.Qc(i+1)] = PQ_ChanPD (MOVI);

%------------------------------------
function [Pc, Qc] = PQ_ChanPD (MOVI)

Nc = length (MOVI(l).PD.p);
Nchan = length (MOVI);

Pr = 1;
Qc = 0;
if (Nchan > 1)

for (m = 0:Nc-1)
pbin = max (MOVI(1).PD.p(m+1), MOVI(2).PD.p(m+1));
qbin = max (MOVI(1).PD.q(m+1), MOVI(2).PD.q(m+1));
P r = P r * (1 - pbin);
Qc = Qc + qbin;

end
else

for (m = 0:Nc-1)
P r = P r * (1 - MOVI.PD.p(m+1));
Qc = Qc + MOVI.PD.q(m+1);

end
end

Pc = 1 - Pr;

function Ndel = PQIoudTest (Loud)

[Nchan, Np] = size (Loud.NRef);

Thr = 0.1;
Ndel = Np;
for G = 0:Nchan-1)

Ndel = min (Ndel, PQ_LThresh (Thr, Loud.NRef(j+1,:), Loud.NTestG+1,:)));
end

41

ГОСТ Р 56047— 2014

%---------
function it = PQ_LThresh (Thr, NRef, NTest)

Np = length (NRef);

it = Np;
for (i = 0:Np-1)

if (NRef(i+1) > Thr & NTest(i+1) > Thr)
it = i;
break;

end
end

function BW = PQmovBW (X2)

persistent kx kl FR FT N

if (isempty (kx))
NF = 2048;
Fs = 48000;
fx = 21586;
kx = round (fx / Fs * NF); % 921
fl = 8109;
kl = round (fl / Fs * NF); % 346
FRdB = 10;
FR = 10A(F R d B /10);
FTdB = 5;
FT = 10A(FTdB / 10);
N = NF / 2; % Limit from pseudo-code

end

Xth = X2(2,kx+1);
for (k = kx+1:N-1)

Xth = max (Xth, X2(2,k+1));
end

BW.BWRef = -1;
XthR = FR * Xth;
for (k = kx-1:-1:kl+1)

if (X2(1,k+1) >= XthR)
BW.BWRef = k + 1;
break;

end
end

BW.BWTest = -1;
XthT = FT * Xth;
for (k= BW.BWRef-1:-1:0)

if (X2(2,k+1) >= XthT)
BW.BWTest = k + 1;
break;

end
end

function MDiff = PQmovModDiffB (M, ERavg)

persistent Nc Ete

if (isempty (Nc))
e = 0.3;
[Nc, fc] = PQCB ('Basic');
Et = PQIntNoise (fc);
for (m = 0:Nc-1)

Ete(m+1) = Et(m+1)Ae;
end

end

42

ГОСТ Р 56047—2014

negWt2B = 0.1;
offsetl В = 1.0;
offset2B = 0.01;
levWt= 100;

s1B = 0;
s2B = 0;
Wt = 0;
for (m = 0:Nc-1)

if (M(1,m+1) > M(2,m+1))
num1B = M(1,m+1) - M(2,m+1);
num2B = negWt2B * num1B;

else
num1B = M(2,m+1) - M(1,m+1);
num2B = num1B;

end
MD1В = num1 В / (offsetl В + M(1 ,m+1));
MD2B = num2B / (offset2B + M(1 ,m+1));
s1B = s1B + MD1B;
s2B = s2B + MD2B;
Wt = Wt + ERavg(m+1) / (ERavg(m+1) + levWt * Ete(m+1));

end

MDiff.MtIB = (100 / No) * s1B;
MDiff.Mt2B = (100 / No) * s2B;
MDiff.Wt = Wt;

function NL = PQmovNLoudB (M, EP)

persistent No Et

if (isempty (No))
[No, fc] = PQCB ('Basic');
Et = PQIntNoise (fc);

end

alpha = 1.5;
TF0 = 0.15;
SO = 0.5;
NLmin = 0;
e = 0.23;

s = 0;
for (m = 0:Nc-1)

sref = TF0 * M(1,m+1) + SO;
stest = TF0 * M(2,m+1) + SO;
beta = exp (-alpha * (EP(2,m+1) - EP(1,m+1)) / EP(1,m+1));
a = max (stest * EP(2,m+1) - sref* EP(1,m+1), 0);
b = Et(m+1) + sref * EP(1 ,m+1) * beta;
s = s + (Et(m+1) / stest)Ae * ((1 + a / b)Ae -1);

end

NL = (24 / No) * s;
if (NL< NLmin)

NL = 0;
end

function NMR = PQmovNMRB (EbN, Ehs)

persistent No gm

if (isempty (No))
[No, fc, fl, fu, dz] = PQCB ('Basic');
gm = PQ_MaskOffset (dz, Nc);

end

43

ГОСТ Р 56047—2014

NMR.NMRmax = 0;
s = 0;
for (m = 0:Nc-1)

NMRm = EbN(m+1) / (gm(m+1) * Ehs(m+1));
s = s + NMRm;
if (NMRm > NMR.NMRmax)

NMR.NMRmax = NMRm;
end

end
NMR.NMRavg = s / Nc;
%-------------------
function gm = PQ_MaskOffset (dz, Nc)

for (m = 0:Nc-1)
if (m <= 12 /dz)

mdB = 3;
else

mdB = 0.25 * m * dz;
end
gm(m+1) = 10A(-mdB / 10);

end

function PD = PQmovPD (Ehs)

Nc = length (Ehs);

PD.p = zeros (1, Nc);
PD.q = zeros (1, Nc);

persistent c g d1 d2 bP bM

if (isempty (c))
c = [-0.198719 0.0550197 -0.00102438 5.05622e-6 9.01033e-11];
d1 = 5.95072;
d2 = 6.39468;
g = 1.71332;
bP = 4;
bM =6;

end

for (m = 0:Nc-1)
EdBR = 10 * log 10 (Ehs(1,m+1));
EdBT = 10 * log 10 (Ehs(2,m+1));
edB = EdBR - EdBT;
if (edB > 0)

L = 0 .3* EdBR + 0 .7* EdBT;
b = bP;

else
L = EdBT;
b = bM;

end
if (L > 0)

s = d1 * (d2 / L)Ag ...
+ c(1) + L * (c(2) + L * (c(3) + L * (c(4) + L * c(5))));

else
s = 1e30;

end
PD.p(m+1) = 1 -0 .5A((edB /s)Ab);
PD.q(m+1) = abs (fix(edB)) / s;

end

function PQprtMOV (MOV, ODG)

N = length (MOV);
PQ_NMOV_B =11;
PQ_NMOV_A= 5;

44

ГОСТ Р 56047—2014

fprintf ('Model Output VariablesAn');
if (N == PQ_NMOV_B)

fprintf (' BandwidthRefB: %g\n', MOV(1));
fprintf (' BandwidthTestB: %g\n', MOV(2));
fprintf (' Total NMRB: %g\n', MOV(3));
fprintf (' WinModDiffIB: %g\n', MOV(4));
fprintf (' ADBB: %g\n', MOV(5));
fprintf (' EHSB: %g\n', MOV(6));
fprintf (' AvgModDiffIB: %g\n', MOV(7));
fprintf (' AvgModDiff2B: %g\n', MOV(8));
fprintf (' RmsNoiseLoudB: %g\n', MOV(9));
fprintf (' MFPDB: %g\n', MOV(10));
fprintf (' RelDistFramesB: %g\n', MOV(11));

elseif (N == NMOV_A)
fprintf (' RmsModDiffA: %g\n', MOV(1));
fprintf (' RmsNoiseLoudAsymA: %g\n', MOV(2));
fprintf (' Segmental NMRB: %g\n', MOV(3));
fprintf (' EHSB: %g\n', MOV(4));
fprintf (' AvgLinDistA: %g\n', MOV(5));

else
error ('Invalid number of MOVs');

end

fprintf ('Objective Difference Grade: %.3f\n', ODG);
return;

function PQprtMOVCi (Nchan, i, MOVC)

fprintf ('Frame: %d\n', i);

if (Nchan == 1)
fprintf (' Ntot : %g %g\n', ...

MOVC.Loud.NRef(1,i+1), MOVC.Loud.NTest(1 ,i+1));
fprintf (' ModDiff: %g %g %g\n', ...

MOVC.MDiff.Mt1 B(1 ,i+1), MOVC.MDiff.Mt2B(1,i+1), MOVC.MDiff.Wt(1 ,i+1));
fprintf (' NL : %g\n', MOVC.NLoud.NL(1,i+1));
fprintf (' BW : %g %g\n', ...

MOVC.BW.BWRef(1 ,i+1), MOVC.BW.BWTest(1 ,i+1));
fprintf (' NMR : %g %g\n', ...

MOVC.NMR.NMRavg(1,i+1), MOVC.NMR.NMRmax(1,i+1));
fprintf (' PD : %g %g\n', MOVC.PD.Pc(i+1), MOVC.PD.Qc(i+1));
fprintf (' EHS : %g\n', 1000 * MOVC.EHS.EHS(1,i+1));

else
fprintf (' Ntot : %g %g // %g %g\n', ...

MOVC.Loud.NRef(1 ,i+1), MOVC.Loud.NTest(1 ,i+1), ...
MOVC.Loud.NRef(2,i+1), MOVC.Loud.NTest(2,i+1));

fprintf (' ModDiff: %g %g %g // %g %g %g\n', ...
MOVC.MDiff.Mt1 B(1,i+1), MOVC.MDiff.Mt2B(1,i+1), MOVC.MDiff.Wt(1,i+1), ...
MOVC.MDiff.Mt1B(2,i+1), MOVC.MDiff.Mt2B(2,i+1), MOVC.MDiff.Wt(2,i+1));

fprintf (' NL : %g // %g\n', ...
MOVC.NLoud.NL(1,i+1), ...
MOVC. NLoud.NL(2, i+1));

fprintf (' BW : %g %g // %g %g\n', ...
MOVC.BW.BWRef(1,i+1), MOVC.BW.BWTest(1 ,i+1), ...
MOVC.BW.BWRef(2,i+1), MOVC.BW.BWTest(2,i+1));

fprintf (' NMR : %g %g // %g %g\n', ...
MOVC.NMR.NMRavg(1,i+1), MOVC.NMR.NMRmax(1,i+1), ...
MOVC.NMR.NMRavg(2,i+1), MOVC.NMR.NMRmax(2,i+1));

fprintf (' PD : %g %g\n', MOVC.PD.Pc(i+1), MOVC.PD.Qc(i+1));
fprintf (' EHS : %g // %g\n', ...

1000 * MOVC.EHS.EHS(1,i+1), ...
1000 * MOVC. EHS.EHS(2,i+1));

end

45

ГОСТ Р 56047—2014

function EHS = PQmovEHS (xR, xT, X2)

persistent NF Nadv NL M Hw

if (isempty (NL))
NF = 2048;
Nadv = NF / 2;
Fs = 48000;
Fmax = 9000;
NL = 2A(PQ_log2(NF * Fmax / Fs));
M = NL;
Hw = (1 / M) * sqrt(8 / 3) * PQHannWin (M);

end

EnThr = 8000;
kmax = NL + M -1;

EnRef = xR(Nadv+1 :NF-1 + 1) * xR(Nadv+1 :NF-1 + 1)';
EnTest = xT(Nadv+1:NF-1 + 1) * xT(Nadv+1:NF-1 + 1)';
if (EnRef < EnThr & EnTest < EnThr)

EHS = -1;
return;

end

D = zeros (1, kmax);
for (k = 0:kmax-1)

D(k+1) = log (X2(2,k+1)/X2(1,k+1));
end

C = PQ_Corr (D, NL, M);

Cn = PQ_NCorr (C, D, NL, M);
Cnm = (1 / NL) * sum (Cn(1:NL));
Cw = Hw .* (Cn - Cnm);

% DFT
cp = PQRFFT (Cw, NL, 1);
c2 = PQRFFTMSq (cp, NL);
EHS = PQ_FindPeak (c2, NL/2+1);
%---------------------------------
function log2 = PQ_log2 (a)

log2 = 0;
m = 1;
while (m < a)

log2 = log2 + 1;
m = 2 * m;

end
log2 = log2 -1;

%--------
function C = PQ_Corr (D, NL, M)

NFFT = 2 * NL;
DO = [D(1: M) zeros(1,NFFT-M)];
D1 = [D(1 :M+NL-1) zeros(1 ,NFFT-(M+NL-1))];

dO = PQRFFT (DO, NFFT, 1);
d1 = PQRFFT (D1, NFFT, 1);

dx(0+1) = d0(0+1) * d 1 (0+1);
for (n = 1 :NFFT/2-1)

m = NFFT/2 + n;
dx(n+1) = d0(n+1) * d1(n+1) + d0(m+1) * d1(m+1);
dx(m+1) = d0(n+1) * d1(m+1) - d0(m+1) * d1(n+1);

end
dx(NFFT/2+1) = dO(NFFT/2+1) * d1(NFFT/2+1);

46

ГОСТ Р 56047— 2014

% Inverse DFT
Сх = PQRFFT (dx, NFFT, -1);
C = Cx(1:NL);

%--------
function Cn = PQ_NCorr (C, D, NL, M)

Cn = zeros (1, NL);

sO = C(0+1);
sj = sO;
Cn(0+1) = 1;
for (i = 1:NL-1)

sj = sj + (D(i+M-1 + 1)A2 - D(i-1 + 1)A2);
d = sO * sj;
if (d <= 0)

Cn(i+1) = 1;
else

Cn(i+1) = C(i+1) / sqrt (d);
end

end

%--------
function EHS = PQ_FindPeak (c2, N)

cprev = c2(0+1);
стах = 0;
for (n = 1:N-1)

if (c2(n+1) > cprev) % Rising from a valley
if (c2(n+1) > стах)

стах = c2(n+1);
end

end
end
EHS = стах;

function [EP, Fmem] = PQadapt (Ehs, Fmem, Ver, Mod)

persistent a b Nc M1 М2 Version Model

if (-strcmp (Ver, Version) | -strcmp (Mod, Model))
Version = Ver;
Model = Mod;
if (strcmp (Model, 'FFT'))

[Nc, fc] = PQCB (Version);
NF = 2048;
Nadv = NF /2 ;

else
[Nc, fc] = PQFB;
Nadv = 192;

end
Version = Ver;
Model = Mod;
Fs = 48000;
Fss = Fs / Nadv;
t100 = 0.050;
tmin = 0.008;
[a b] = PQtConst (t100, tmin, fc, Fss);
[M1, М2] = PQ_M1 М2 (Version, Model);

end

EP = zeros (2, Nc);
R = zeros (2, Nc);

47

ГОСТ Р 56047— 2014

sn = 0;
sd = 0;
for (m = 0:Nc-1)

Fmem.P(1,m+1) = a(m+1) * Fmem.P(1,m+1) + b(m+1) * Ehs(1,m+1);
Fmem.P(2,m+1) = a(m+1) * Fmem.P(2,m+1) + b(m+1) * Ehs(2,m+1);
sn = sn + sqrt (Fmem.P(2,m+1) * Fmem.P(1,m+1));
sd = sd + Fmem.P(2,m+1);

end

CL = (sn / sd)A2;

for (m = 0:Nc-1)

if (CL > 1)
EP(1,m+1) = Ehs(1,m+1) / CL;
EP(2,m+1) = Ehs(2,m+1);

else
EP(1,m+1) = Ehs(1,m+1);
EP(2,m+1) = Ehs(2,m+1) * CL;

end

Fmem.Rn(m+1) = a(m+1) * Fmem.Rn(m+1) + EP(2,m+1) * EP(1,m+1);
Fmem.Rd(m+1) = a(m+1) * Fmem.Rd(m+1) + EP(1,m+1) * EP(1,m+1);
if (Fmem.Rd(m+1) <= 0 | Fmem.Rn(m+1) <= 0)

error ('» > PQadap: Rd or Rn is zero');
end
if (Fmem.Rn(m+1) >= Fmem.Rd(m+1))

R(1,m+1) = 1;
R(2,m+1) = Fmem.Rd(m+1) / Fmem.Rn(m+1);

else
R(1,m+1) = Fmem.Rn(m+1) / Fmem.Rd(m+1);
R(2,m+1) = 1;

end
end

for (m = 0:Nc-1)
iL= max (m - M1, 0);
iU = min (m + М2, Nc-1);
s1 = 0;
s2 = 0;
for (i = iL:iU)

s1 — s1 + R(1,i+1);
s2 = s2 + R(2,i+1);

end
Fmem.PC(1,m+1) = a(m+1) * Fmem.PC(1,m+1)
Fmem.PC(2,m+1) = a(m+1) * Fmem.PC(2,m+1 j

b(m+1)*s1 / (iU-iL+1):
b(m+1) * s2 / (iU-iL+1):

EP(1,m+1) = EP(1,m+1) * Fmem.PC(1,m+1);
EP(2,m+1) = EP(2,m+1) * Fmem.PC(2,m+1);

end
%----------------------------------
function [M1, М2] = PQ_M1 М2 (Version, Model)

if (strcmp (Version, 'Basic'))
M1 = 3;
М2 = 4;

elseif (strcmp (Version, 'Advanced'))
if (strcmp (Model, 'FFT'))

M1 = 1;
М2 = 2;

else
M1 = 1;
М2 = 1;

end
end

48

ГОСТ Р 56047—2014

function Ntot = PQIoud (Ehs, Ver, Mod)

e = 0.23;

persistent No s Et Ets Version Model

if (-strcmp (Ver, Version) | -strcmp (Mod, Model))
Version = Ver;
Model = Mod;
if (strcmp (Model, 'FFT'))

[Nc, fc] = PQCB (Version);
c= 1.07664;

else
[Nc, fc] = PQFB;
c= 1.26539;

end
E0 = 1e4;
Et = PQ_enThresh (fc);
s = PQ_exlndex (fc);
for (m = 0:Nc-1)

Ets(m+1) = c * (Et(m+1) / (s(m+1) * Е0))ле;
end

end

sN = 0;
for (m = 0:Nc-1)

Nm = Ets(m+1) * ((1 - s(m+1) + s(m+1) * Ehs(m+1) / Et(m+1))ле -1);
sN = sN + max(Nm, 0);

end
Ntot = (24 / Nc) * sN;

%====================
function s = PQ_exlndex (f)

N = length (f);
for (m = 0:N-1)

sdB = -2 - 2.05 * atan(f(m+1) / 4000) - 0.75 * atan((f(m+1) / 1600)л2);
s(m+1) = 10A(sdB / 10);

end

%----------------
function Et = PQ_enThresh (f)

N = length (f);
for (m = 0:N-1)

EtdB = 3.64 * (f(m+1) / 1000)л(-0.8);
Et(m+1) = 10A(EtdB / 10);

end

function [M, ERavg, Fmem] = PQmodPatt (Es, Fmem)

persistent Nc a b Fss

if (isempty (Nc))
Fs = 48000;
NF = 2048;
Fss = Fs / (NF/2);
[Nc, fc] = PQCB ('Basic');
t100 = 0.050;
Ш = 0.008;
[a, b] = PQtConst (t100, Ю, fc, Fss);

end

M = zeros (2, Nc);

49

ГОСТ Р 56047— 2014

е = 0.3;
for (i = 1:2)

for (m = 0:Nc-1)
Ее = Es(i,m+1)Ae;
Fmem.DE(i,m+1) = a(m+1) * Fmem.DE(i,m+1)...

+ b(m+1) * Fss * abs (Ее - Fmem.Ese(i,m+1));
Fmem.Eavg(i,m+1) = a(m+1) * Fmem.Eavg(i,m+1) + b(m+1) * Ее;
Fmem.Ese(i,m+1) = Ее;

M(i,m+1) = Fmem.DE(i,m+1)/(1 + Fmem.Eavg(i,m+1)/0.3);
end

end

ERavg = Fmem.Eavg(1,:);

Б.2 Листинг программы расчета метрики PEAQ на языке С
Файл: common.h

#define DEBUG
#define HANN 2048
#define BARK 109

#define DOUBLE

#if defined(DOUBLE)
#define module(x) fabs((double) x)
#define p(x,y) pow((double)x, (double)y)

#elif defined(LDOUBLE)
#define module(x) fabsl((long double) x)
#define p(x,y) powl((long double)x, (long double)y)

#endif

*̂*********************** с!б1рго!э * j

#define C1 1.0
/************************** **************************/

^*********************** |«j g
#define AVGHANN
#define SKIPFRAME
#define GETMAX

**********************/

#define Fup 18000.0
#define Flow 80.0
#define PATCH 1
/****************************** a r >«J **************************,

^*****************************

#define LOGVARIABLE
peaqb *************************/

#ifdef LOGVARIABLE
#define LOGALLFRAMES
#endif
/****************************** end**************************/
struct processing {

double fftref[HANN/2];
double ffttest[HANN/2];
double ffteref[HANN/2];
double fftetest[HANN/2];
double fnoise[HANN/2];
double pptest[BARK];
double ppref[BARK];
double ppnoise[BARK];
double E2test[BARK];
double E2ref[BARK];
double Etest[BARK];
double Eref[BARK];

50

ГОСТ Р 56047— 2014

double Mref[BARK];
double Modtest[BARK];
double Modref[BARK];

Файл: peaqb.h
#define LOGRESULT "analized"

#ifdef DEBUG
#define LOGFILE "debugged.txt"
#endif

#define OPT_REF 0x01
#define OPT_TEST 0x02

#define THRESHOLDDELAY 0.050
#define AVERAGINGDEALAY 0.5

#define B(f) 7 * asinh((double)f/650)
#define Bl(z) 650 * sinh((double)z 17)

/* Function prototypes 7
void fatalerr(char
void usage(char *);
void logvariable(const char*, double *, int);
void ProcessFrame(signed int*, signed int*, int, signed int*,

signed int *, int, int, int, int);
/* Prototypes end 7

Файл: peaqb.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <getopt.h>
#include <assert.h>
#include <math.h>
#include <fftw.h>
#include <common.h>
#include <wavedump.h>
#include <getframe.h>
#include <bandwidth.h>
#include <levpatadapt.h>
#include <moddiff.h>
#include <modulation.h>
#include <loudness.h>
#include <neural.h>
#include <nmr.h>
#include <detprob.h>
#include <energyth.h>
#include <harmstruct.h>
#include <boundary.h>
#include <critbandgroup.h>
#include <earmodelfft.h>
#include <noiseloudness.h>
#include <reldistframes.h>
#include <spreading.h>
#include <timespreading.h>
#include threshold.h>
#include <peaqb.h>

extern int errno;
char *fileref, *filetest;______

51

ГОСТ Р 56047— 2014

double hannwindow[HANN];
double Etesttmpch 1 [BARK], Etesttmpch2[BARK], Ereftmpch1[BARK],

Ereftmpch2[BARK], Cffttmpch1[HANN/2], Cffttmpch2[HANN/2];
int delaytimel, delaytime2;
int count = 0;
int harmsamples = 1;
fftw_plan plan, plan2;

/* Bark Tables 7
double *fL, *fC, *fU;
int bark;

struct levpatadaptin levinchl, Ievinch2;
struct modulationin modintestchl, modintestch2, modinrefchl, modinrefch2;
struct moddiffin moddiffinchl, moddiffinch2;
struct bandwidthout bandwidthchl, bandwidthch2;
struct outframes processed;

int
main(int argc, char*argv[])
{

signed int ch1ref[HANN];
signed int ch2ref[HANN];
signed int ch1test[HANN];
signed int ch2test[HANN];

int opt_line = 0;
int rateref, numchref, bitsampleref, Ipref;
int ratetest, numchtest, bitsampletest, Iptest;
int boundflag, totalframes = 0;
FILE *fpref, *fptest;

struct boundaryflag boundbe = {0, 0};
struct out oveRet;

/* Parse command line 7
if (argc < 3)

usage(argv[0]);

{
int c = 0;

while ((c = getopt(argc, argv, "r:t:h")) != EOF)
switch (c) {

case 'h':
usage(argv[0]);
break;

case V:
op tjine |= OPT_REF;
fileref = optarg;
break;

case't':
op tjine |= OPT_TEST;
filetest = optarg;
break;

}
}

/* Input control 7
if (!(optJine & OPT_REF) || !*fileref)

fatalerr ("err: -r/-reference <arg> required");

if (!(optJine & OPT_TEST) || !*filetest)
fatalerr ("err: -t/—test <arg> required");

52

ГОСТ Р 56047—2014

Ipref = LevelPression(fileref);
Iptest = LevelPression(filetest);

/* Init routines 7
/ / make Hann Window (2.1.3)
{
int k;

for(k=0;k<HANN;k++)
hannwindow[k] = 0.5*sqrt((double)8/3)*

(1 - cos((double)2*M_PI*k/(HANN -1)));
}
/ / make Bark tables (2.1.5)
{
int k;
double zL, zU;
double *zl, *zc, *zu;
zL = B(Flow);
zU = B(Fup);

bark = ceil((zU - zL) / dz);
fL = (double *)malloc(bark * sizeof(double));
fC = (double *)malloc(bark * sizeof(double));
fU = (double *)malloc(bark * sizeof(double));
zl = (double *)malloc(bark * sizeof(double));
zc = (double *)malloc(bark * sizeof(double));
zu = (double *)malloc(bark * sizeof(double));
assert(fL != NULL && fC != NULL && fU != NULL && zl != NULL

&& zc != NULL && zu != NULL);

for(k=0;k<bark;k++) {
zl[k] = zL + k*dz;
zu[k] = zL + (k+1)*dz;
zc[k] = 0.5 * (zl[k] + zu[k]);

}
zu[bark-1] = zU;
zc[bark -1] = 0.5 * (zl[bark-1] + zu[bark-1]);

for(k=0;k<bark;k++) {
fL[k] = Bl(zl[k]);
fU[k] = Bl(zu[k]);
fC[k] = Bl(zc[k]);

}

free(zl);
free(zu);
free(zc);
}

// Initialize temp var
memset(&levinch1, 0x00, sizeof(struct levpatadaptin));
memset(&levinch2, 0x00, sizeof(struct levpatadaptin));

memset(&modintestch1, 0x00, sizeof(struct modulationin));

memset(&modintestch2, 0x00, sizeof(struct modulationin));
memset(&modinrefch1, 0x00, sizeof(struct modulationin));
memset(&modinrefch2, 0x00, sizeof(struct modulationin));

memset(Etesttmpch1, 0x00, BARK * sizeof(double));
memset(Etesttmpch2, 0x00, BARK * sizeof(double));
memset(Ereftmpch1, 0x00, BARK * sizeof(double));
memset(Ereftmpch2, 0x00, BARK * sizeof(double));
memset(Cffttmpch1, 0x00, (HANN/2) * sizeof(double));
memset(Cffttmpch2, 0x00, (HANN/2) * sizeof(double));

53

ГОСТ Р 56047—2014

memset(&moddiffinch1, 0x00, sizeof(struct moddiffin));
memset(&moddiffinch2, 0x00, sizeof(struct moddiffin));

memset(&bandwidthch1, 0x00, sizeof(struct bandwidthout));

memset(&bandwidthch2, 0x00, sizeof(struct bandwidthout));

// ref file
if ((fpref = fopen(fileref,"r")) == NULL)

fatalerr("err: %s", strerror(errno));
if ((rateref = SampleRate(fpref)) == -1)

fatalerr("err: error in WaveHeader");
if ((numchref = NumOfChan(fpref)) == -1)

fatalerr("err: error in WaveHeader");
if ((bitsampleref = BitForSample(fpref)) == -1)

fatalerr("err: error in WaveHeader");
if(FindData(fpref) == -1)

fatalerr("err: can't find Data Field");

//test file
if ((fptest = fopen(filetest,"r")) == NULL)

fatalerr("err: %s", strerror(errno));
if ((ratetest = SampleRate(fptest)) == -1)

fatalerr("err: error in WaveHeader");
if ((numchtest = NumOfChan(fptest)) == -1)

fatalerr("err: error in WaveHeader");
if ((bitsampletest = BitForSample(fptest)) == -1)

fatalerr("err: error in WaveHeader");
if(FindData(fptest) == -1)

fatalerr("err: can't find Data Field");

fprintf(stdout,"\n PEAQb Algorithm. Author Giuseppe Gottardi 'oveRet"'
" <gottardi@ailinux.org>\n");

fprintf(stdout,"\nRef File %s"
"\n - Sample Rate: %d"
"\n - Number Of Channel: %d"
"\n - Bits for Sample: %d"

"\n - Level Playback: %d\n\n", fileref, rateref,
numchref, bitsampleref, Ipref);

fprintf(stdout,"\nTest File %s"
"\n - Sample Rate: %d"
"\n - Number Of Channel: %d"
"\n - Bits for Sample: %d"

"\n - Level Playback: %d\n\n", filetest, ratetest,
numchtest, bitsampletest, Iptest);

// Processing
if(ratetest != rateref)

fatalerr("err: Can't process Wave Files with different Sample Rate");
if(numchref != numchtest)

fatalerr("err: Can't process Mono Wave with Stereo Wave");

// Find delaytimel for Loudness Threshold
delaytimel = ceilf((float)THRESHOLDDELAY*ratetest*2/HANN);
// Find delaytime2 for Delayed Averaging
delaytime2 = ceilf((float)AVERAGINGDEALAY*ratetest*2/HANN);

// make fft plan
plan = fftw_create_plan(HANN, FFTW_FORWARD, FFTW_MEASURE);

while(harmsamples < (Fup/ratetest)*(HANN/2.0)/2.0)
harmsamples *= 2;

plan2 = fftw_create_plan(harmsamples, FFTW_FORWARD, FFTW_MEASURE);

54

https://meganorm.ru/mega_doc/norm/gost_gosudarstvennyj-standart/14/gost_34767-2021_mezhgosudarstvennyy_standart_balansir.html

ГОСТ Р 56047—2014

if(numchref == 1) {
if (fseek(fpref, (HANN/2)*bitsampleref/8, SEEK_CUR) == -1)

fatalerr("err: %s", strerror(errno));
if (fseek(fptest, (HANN/2)*bitsampletest/8, SEEK_CUR) == -1)

fatalerr("err: %s", strerror(errno));

#ifdef DATABOUND_BE
#undef DATABOUND_ONE
{
int i = 0, flag = 0, f1, f2;
long dataref, datatest, br1, br2;

dataref = ftell(fpref);
datatest = ftell(fptest);

while(1) {
br1 = ftell(fpref);
br2 = ftell(fptest);
f1 = GetMonoFrame(fpref, (signed int *)ch1 ref,

bitsampleref/8, HANN);
f2 = GetMonoFrame(fptest, (signed int *)ch1test,

bitsampletest/8, HANN);
if(f1 && f2) {
totalframes++;

if(boundary(ch1ref, chltest, NULL, NULL, HANN) && iflag) {
boundbe. begin = totalframes;
flag = 1;

}
}
else {

fseek(fptest, br1, SEEK_SET);
fseek(fpref, br2, SEEK_SET);
break;

}
}
fseek(fptest, -(HANN/2)*bitsampletest/8, SEEK_CUR);

fseek(fpref, -(HANN/2)*bitsampleref/8, SEEK_CUR);
while(i<totalframes) {

GetMonoFrame(fpref, (signed int *)ch1 ref, bitsampleref/8, HANN);
GetMonoFrame(fptest, (signed int *)ch1test, bitsampletest/8, HANN);
fseek(fptest, -2*(HANN/2)*bitsampletest/8, SEEK_CUR);
fseek(fpref, -2*(HANN/2)*bitsampleref/8, SEEK_CUR);
i++;
if(boundary(ch1ref, chltest, NULL, NULL, HANN)) {

boundbe.end = totalframes-i;
break;

}
}
fseek(fptest, datatest, SEEK_SET);
fseek(fpref, dataref, SEEK_SET);
}
#endif

while (GetMonoFrame(fpref, (signed int *)ch1 ref,
bitsampleref/8, HANN)

&& GetMonoFrame(fptest, (signed int *)ch1test,
bitsampletest/8, HANN)) {

count++;
#ifdef DATABOUND_BE
if(count >= boundbe.begin && count <= boundbe.end)

boundflag = 1;

55

ГОСТ Р 56047— 2014

else
boundflag = 0;

#else
boundflag = boundary(ch1ref, chltest, NULL, NULL, HANN);

#ifdef DATABOUND_ONE
{
static int flagl = 0, flag2 = 0;
if(boundflag && Iflag 1)

flagl = 1;
if(!boundflag && flagl)

flag2 = 1;
if(flag2)

boundflag = 0;
}

#endif
#endif

ProcessFrame((signed int *)ch1 ref,
(signed int*)NULL, Ipref,

(signed int *)ch1test,
(signed int *)NULL,
Iptest, rateref, boundflag, HANN);

oveRet = neural(processed);

fprintf(stdout,"\nframe: %d"
#ifdef DATABOUND_BE
"/%d"

"\ndata boundary: %d -> %d"
#endif
"\nBandwidthRefb: %g"
"\nBandwidthTestb: %g"
"\nTotalNMRb %g"
"\nWinModDiff1b: %g"
"\nADBb: %g"
"\nEHSb: %g"
"\nAvgModDiff1b: %g"
"\nAvgModDiff2b %g"
"\nRmsNoiseLoudb: %g"
"\nMFPDb: %g"
"\nRelDistFramesb: %g"
"\nDI: %g"
"\nODG: %g\n",
count,
#ifdef DATABOUND_BE
totalframes, boundbe.begin, boundbe.end,
#endif
processed. BandwidthRefb,
processed.BandwidthTestb, processed.TotaINMRb,
processed.WinModDiffl b, processed.ADBb,
processed.EHSb, processed.AvgModDifflb,
processed. AvgModDiff2b,
processed.RmsNoiseLoudb, processed.MFPDb,
processed. RelDistFramesb,
oveRet.Dl, oveRet.ODG);

}

{
FILE *res;

res = fopen(LOGRESULT,"a+");
fprintf(res,"\nFile: %s\n"

"\nframe: %d"
"\nBandwidthRefb: %g"
"\nBandwidthTestb: %g"

56

ГОСТ Р 56047—2014

"\nTotalNMRb %g"
"\nWinModDiff1b: %g"
"\nADBb: %g"
"\nEHSb: %g"
"\nAvgModDiff1b: %g"
"\nAvgModDiff2b %g"
"\nRmsNoisel_oudb: %g"
"\nMFPDb: %g"
"\nRelDistFramesb: %g"
"\nDI: %g"
"\nODG: %g\n",
filetest, count, processed.BandwidthRefb,
processed.BandwidthTestb, processed.TotaINMRb,
processed.WinModDiffl b, processed.ADBb,
processed.EFISb, processed.AvgModDifflb,
processed. AvgModDiff2b,

processed.RmsNoiseLoudb, processed.MFPDb,
processed. RelDistFramesb,
oveRet.DI, oveRet.ODG);

fclose(res);
}

}
if(numchref == 2) {

if (fseek(fpref, HANN*bitsampleref/8, SEEK_CUR) == -1)
fatalerr("err: %s", strerror(errno));

if (fseek(fptest, HANN*bitsampletest/8, SEEK_CUR) ==-1)
fatalerr("err: %s", strerror(errno));

#ifdef DATABOUND_BE
#undef DATABOUND_ONE
{
int i = 0, flag = 0, f1, f2;
long dataref, datatest, br1, br2;

dataref = ftell(fpref);
datatest = ftell(fptest);

while(1) {
br1 = ftell(fpref);
br2 = ftell(fptest);
f1 = GetStereoFrame(fpref, (signed int *)ch1 ref,

(signed int *)ch2ref, bitsampleref/8, HANN);
f2 = GetStereoFrame(fptest, (signed int *)ch1test,

(signed int *)ch2test, bitsampletest/8, HANN);
if(f1 && f2) {
totalframes++;

if(boundary(ch1ref, chltest, ch2ref, ch2test, HANN) && Iflag) {
boundbe. begin = totalframes;
flag = 1;

}
}
else {

fseek(fptest, br1, SEEK_SET);
fseek(fpref, br2, SEEK_SET);
break;

}
}
fseek(fptest, -HANN*bitsampletest/8, SEEK_CUR);
fseek(fpref, -HANN*bitsampleref/8, SEEK_CUR);
while(i<totalframes) {

GetStereoFrame(fpref, (signed int *)ch1 ref,
(signed int *)ch2ref, bitsampleref/8, HANN);

57

ГОСТ Р 56047—2014

GetStereoFrame(fptest, (signed int *)ch1test,
(signed int *)ch2test, bitsampletest/8, HANN);

fseek(fptest, -2*HANN*bitsampletest/8, SEEK_CUR);
fseek(fpref, -2*HANN*bitsampleref/8, SEEK_CUR);
i++;
if(boundary(ch1ref, chltest, ch2ref, ch2test, HANN)) {

boundbe.end = totalframes-i+1;

break;
}

}
fseek(fptest, datatest, SEEK_SET);

fseek(fpref, dataref, SEEK_SET);

}
#endif

while (GetStereoFrame(fpref, (signed int *)ch1 ref,

(signed int *)ch2ref, bitsampleref/8, HANN)
&& GetStereoFrame(fptest, (signed int *)ch1test,

(signed int *)ch2test, bitsampletest/8, HANN)) {

count++;
#ifdef DATABOUND_BE
if(count >= boundbe.begin && count <= boundbe.end)

boundflag = 1;
else

boundflag = 0;
#else
boundflag = boundary(ch1ref, chltest, ch2ref, ch2test, HANN);

#ifdef DATABOUND_ONE
{
static int flagl = 0, flag2 = 0;

if(boundflag && iflag 1)
flagl = 1;

if(!boundflag && flag l)
flag2 = 1;

if(flag2)
boundflag = 0;

}
#endif

#endif

ProcessFrame((signed int *)ch1 ref,
(signed int *)ch2ref, Ipref,

(signed int *)ch1test,
(signed int *)ch2test,
Iptest, rateref, boundflag, HANN);

oveRet = neural(processed);

fprintf(stdout,"\nframe: %d"
#ifdef DATABOUND_BE
"/%d"
"\ndata boundary: %d -> %d"
#endif
"\nBandwidthRefb: %g"
"\nBandwidthTestb: %g"
"\nTotalNMRb %g"
"\nWinModDiff1b: %g"
"\nADBb: %g"

58

ГОСТ Р 56047— 2014

"\nEHSb: %g"
"\nAvgModDiff1b: %g"
"\nAvgModDiff2b %g"
"\nRmsNoiseLoudb: %g"
"\nMFPDb: %g"
"\nRelDistFramesb: %g"
"\nDI: %g"
"\nODG: %g\n",
count,
#ifdef DATABOUND_BE
totalframes, boundbe.begin, boundbe.end,
#endif
processed. BandwidthRefb,
processed.BandwidthTestb, processed.TotaINMRb,
processed.WinModDiffl b, processed.ADBb,
processed.EHSb, processed.AvgModDifflb,
processed. AvgModDiff2b,
processed.RmsNoiseLoudb, processed.MFPDb,
processed. RelDistFramesb,
oveRet.DI, oveRet.ODG);

}

{
FILE *res;
res = fopen(LOGRESULT,"a+");
fprintf(res,"\nFile: %s\n"

"\nframe: %d"
"\nBandwidthRefb: %g"
"\nBandwidthTestb: %g"
"\nTotalNMRb %g"
"\nWinModDiffl b: %g"
"\nADBb: %g"
"\nEHSb: %g"
"\nAvgModDiff1b: %g"
"\nAvgModDiff2b %g"
"\nRmsNoiseLoudb: %g"
"\nMFPDb: %g"
"\nRelDistFramesb: %g"
"\nDI: %g"
"\nODG: %g\n",
filetest, count, processed.BandwidthRefb,
processed.BandwidthTestb, processed.TotaINMRb,
processed.WinModDiffl b, processed.ADBb,
processed.EHSb, processed.AvgModDifflb,
processed. AvgModDiff2b,
processed.RmsNoiseLoudb, processed.MFPDb,
processed. RelDistFramesb,
oveRet.DI, oveRet.ODG);

fclose(res);
}

fftw_destroy_plan(plan);
fclose(fpref);
fclose(fptest);
return 0;

}

void
ProcessFrame(signed int *ch 1 ref, signed int*ch2ref, int Ipref,

signed int *ch1test, signed int*ch2test, int Iptest,
int rate, int boundflag, int hann)

59

ГОСТ Р 56047—2014

int к;
static int ch = 1;
double Ntotaltest, Ntotalref;
struct levpatadaptout lev;
struct moddiffout mod;
struct processing processchl, processch2;
earmodelfft(ch1ref, Ipref, hann, processchl.ffteref,

processchlfftref);
earmodelfft(ch1test, Iptest, hann, processchl.fftetest,

processch 1.fittest);

critbandgroup(processch1.ffteref, rate, hann, processchl. ppref);
AddlntNoise(processch1 .ppref);

critbandgroup(processch1.fftetest, rate, hann, processchl. pptest);
AddlntNoise(processch1 .pptest);

for(k=0;k<hann/2;k++)
processch1.fnoise[k] = module(processch1.ffteref[k])

- module(processch1.fftetest[k]);

critbandgroup(processch1.fnoise, rate, hann, processchl.ppnoise);

spreading(processch1.pptest, processchlE2test);
spreading(processch1.ppref, processch 1.E2ref);
timespreading(processch1.E2test, Etesttmpchl, rate, processchlEtest);
timespreading(processch1.E2ref, Ereftmpchl, rate, processchlEref);

threshold(processch1 .Eref, processchl.Mref);

modulation(processch1.E2test, rate, &modintestch1, processchIModtest);
modulation(processch1.E2ref, rate, &modinrefch1, processchlModref);
// Data boundary
if(boundflag) {

static int countboundary = 1;
static double RelDistFramesb = 0, nmrtmp = 0;

bandwidth(processch1.fittest, processchlfftref, hann,
&bandwidthch1);
processed.BandwidthRefb = bandwidthchlBandwidthRefb;
processed.BandwidthTestb = bandwidthchlBandwidthTestb;

processed.TotaINMRb = nmr(processch1.ppnoise, processchlMref,
&nmrtmp, countboundary);

processed.RelDistFramesb = reldistframes(processch1.ppnoise,
processchlMref,

&RelDistFramesb,
countboundary);

countboundary++;

// Data boundary + Energy threshold
if(energyth(ch1test, chlref, hann)) {

static int countenergy = 1;
static double EHStmp = 0;

processed.EHSb = harmstruct(processch1. fittest,
processchlfftref,
&EHStmp, rate, Cffttmpchl,
harmsamples, &countenergy);

countenergy++;
}

}
// Delayed Averaging
if(count > delaytime2) {

static double nltmp = 0;
static int noise = 0, internal_count = 0, loudcounter = 0;

60

ГОСТ Р 56047—2014

mod = moddiff(processch1.Modtest, processchl.Modref,
(double *)&(modinrefch1 .Etildetmp));

processed.WinModDifflb = ModDiff1(mod, &moddiffinch1,
count - delaytime2);

processed.AvgModDifflb = ModDiff2(mod, &moddiffinch1);
processed.AvgModDiff2b = ModDiff3(mod, &moddiffinch1);

Ntotaltest = loudness(processchl.Etest);
Ntotalref = loudness(processchl.Eref);

if(Ntotaltest > 0.1 || Ntotalref > 0.1) {
noise = 1;
#if defined(L0UDM0D02)
internal_count = 0;
#endif

}
// Delayed Averaging + loudness threshold
if(noise && internal_count <= delaytimel) {

// skip 0.05 sec (about 3 frames)
internal_count++;
loudcounter++;

}
else {

lev= levpatadapt(processch1.Etest, processchl.Eref, rate,
&levinch1, hann);

processed. RmsNoiseLoudb = noiseloudness(processch1.Modtest,
processchl.Modref,
lev, &nltmp,
count - delaytime2
- loudcounter);

}
}

/*{
extern double Cfft[];
extern int maxk;
FILE *fp;

logvariable("Cfftsx.txt", Cfft, 128);
fp = fopen("Cfftsxmaxpos.txt", "a+");
fprintf(fp,"%d\n", maxk);
fclose(fp);
}*/
if(*ch2ref && *ch2test) {

ch =2;

earmodelfft(ch2ref, Ipref, hann, processch2.ffteref,
processch2.fftref);

earmodelfft(ch2test, Iptest, hann, processch2.fftetest,
processch2.ffttest);

critbandgroup(processch2.ffteref, rate, hann, processch2.ppref);
AddlntNoise(processch2.ppref);

critbandgroup(processch2.fftetest, rate, hann, processch2.pptest);
AddlntNoise(processch2.pptest);

for(k=0;k<hann/2;k++)
processch2.fnoise[k] = module(processch2.ffteref[k])

- module(processch2.fftetest[k]);

critbandgroup(processch2.fnoise, rate, hann, processch2.ppnoise);

spreading(processch2.pptest, processch2.E2test);
spreading(processch2.ppref, processch2.E2ref);

61

ГОСТ Р 56047—2014

timespreading(processch2.E2test, Etesttmpch2, rate,
processch2.Etest);

timespreading(processch2.E2ref, Ereftmpch2, rate,
processch2.Eref);

threshold(processch2.Eref, processch2.Mref);

modulation(processch2.E2test, rate, &modintestch2,
processch2.Modtest);

modulation(processch2.E2ref, rate, &modinrefch2,
processch2.Modref);

// Data boundary
if(boundflag) {

static int countboundary = 1;
static double RelDistFramesb = 0, nmrtmp = 0;

bandwidth(processch2.fittest, processch2.fftref, hann,
&bandwidthch2);

processed. BandwidthRefb += bandwidthch2.BandwidthRefb;
processed. BandwidthTestb += bandwidthch2.BandwidthTestb;
processed.BandwidthRefb /= 2.0;
processed. BandwidthTestb /= 2.0;

processed.TotaINMRb += nmr(processch2.ppnoise,
processch2.Mref, &nmrtmp,

countboundary);
processed. RelDistFramesb += reldistframes(processch2.ppnoise,

processch2.Mref,
&RelDistFramesb,

countboundary);
processed.TotaINMRb /= 2.0;
processed. RelDistFramesb /= 2.0;
countboundary++;

// Data boundary + Energy threshold
if(energyth(ch2test, ch2ref, hann)) {

static int countenergy = 1;
static double EHStmp = 0;

processed.EHSb += harmstruct(processch2.fittest,
processch2.fftref,

&EHStmp, rate, Cffttmpch2,
harmsamples, &countenergy);

processed.EHSb /= 2.0;
countenergy++;

}
}
// Delayed Averaging
if(count > delaytime2) {

static double nltmp = 0;
static int noise = 0, intern a l_count = 0, loudcounter = 0;

mod = moddiff(processch2.Modtest, processch2.Modref,
(double *)&(modinrefch2.Etildetmp));

processed.WinModDifflb += ModDiff1(mod, &moddiffinch2,
count - delaytime2);

processed.AvgModDifflb += ModDiff2(mod, &moddiffinch2);
processed.AvgModDiff2b += ModDiff3(mod, &moddiffinch2);
processed. WinModDiffl b /= 2.0;
processed. AvgModDiffl b /= 2.0;
processed.AvgModDiff2b /= 2.0;

Ntotaltest = loudness(processch2.Etest);
Ntotalref = loudness(processch2.Eref);

62

ГОСТ Р 56047—2014

if(Ntotaltest > 0.1 || Ntotalref > 0.1) {
noise = 1;
#if defined(L0UDM0D02)
internal_count = 0;
#endif

}
// Delayed Averaging + loudness threshold
if(noise && internal_count <= delaytimel) {

// skip 0.05 sec (about 3 frames)
internal_count++;
loudcounter++;

else {
lev= levpatadapt(processch2.Etest, processch2.Eref, rate,

&levinch2, hann);
processed. RmsNoiseLoudb += noiseloudness(processch2.Modtest,

processch2.Modref,
lev, &nltmp,
count - delaytime2
- loudcounter);

processed.RmsNoiseLoudb /= 2.0;
}

}
}
{
static int ndistorcedtmp = 0;
static double Ptildetmp = 0, PMtmp = 0, Qsum = 0;

if(ch == 2)
processed.ADBb = detprob(processch1.Etest, processch2.Etest,

processchl. Eref, processch2. Eref,
&Ptildetmp, &PMtmp, &Qsum,
&ndistorcedtmp, hann);

else
processed.ADBb = detprob(processch1.Etest, NULL,

processchl.Eref, NULL,
&Ptildetmp, &PMtmp, &Qsum,
&ndistorcedtmp, hann);

processed. MFPDb = PMtmp;
}
/*
#ifdef LOGVARIABLE
logvariable("fftetestsx.txt", processchl.fftetest, hann/2);
logvariable("ffterefsx.txt", processchl.ffteref, hann/2);
logvariable("ffttestsx.txt", processchl.fittest, hann/2);
logvariable("fftrefsx.txt", processchl.fftref, hann/2);
logvariable("Etestsx.txt", processchlEtest, bark);
logvariable("Erefsx.txt", processchl Eref, bark);
logvariable("E2testsx.txt", processchlE2test, bark);
logvariable("E2refsx.txt", processchlE2ref, bark);
logvariableCpptestsx.txt", processchlpptest, bark);
logvariableCpprefsx.txt", processchlppref, bark);
logvariableCppnoisesx.txt", processchlppnoise, bark);
logvariable("Mrefsx.txt", processchl.Mref, bark);
logvariable("Modtestsx.txt", processchlModtest, bark);
logvariable("Modrefsx.txt", processchlModref, bark);

logvariable("fftetestdx.txt", processch2.fftetest, hann/2);
logvariable("ffterefdx.txt", processch2.ffteref, hann/2);
logvariable("ffttestdx.txt", processch2.fittest, hann/2);

63

ГОСТ Р 56047—2014

logvariable("fftrefdx.txt", processch2.fftref, hann/2);
logvariable("Etestdx.txt", processch2.Etest, bark);
logvariable("Erefdx.txt", processch2.Eref, bark);
logvariable("E2testdx.txt", processch2.E2test, bark);
logvariable("E2refdx.txt", processch2.E2ref, bark);

logvariableCpptestdx.txt", processch2.pptest, bark);
logvariableCpprefdx.txt", processch2.ppref, bark);
logvariable("ppnoisedx.txt", processch2.ppnoise, bark);
logvariable("Mrefdx.txt", processch2.Mref, bark);
logvariable("Modtestdx.txt", processch2.Modtest, bark);
logvariable("Modrefdx.txt", processch2.Modref, bark);
#endif
7

/*{
extern double Cfft[];
extern int maxk;
FILE *fp;

logvariable("Cfftdx.txt", Cfft, 128);
fp = fopen("Cfftdxmaxpos.txt", "a+");
fprintf(fp,"%d\n", maxk);
fclose(fp);
}*/
return;

}
void
fatalerr(char * pattern,...) /* Error handling routine 7
{

va_list ap;

va_start(ap, pattern);

f p ri ntf(std err," P E AQ-");
vfprintf(stderr, pattern, ap);
fprintf(stderr," (exit forced).\n");

va_end(ap);

exit(-1);
}
#ifdef DEBUG
void
debug(char * pattern,...) /* Debug handling routine 7
{

FILE *log;
va_list ap;

va_start(ap, pattern);

log = fopen(LOGFILE,"a+");
vfp ri ntf(I og, patte rn, a p);

va_end(ap);
fclose(log);

return;
}
#endif

#ifdef LOGVARIABLE
void

64

logvariable(const char ‘ filename, double *var, int len)
{

ГОСТ Р 56047— 2014

FILE *fp;
int к;

#ifdef LOGALLFRAMES
fp = fopen(filename,"a+");
#else
fp = fopen(filename,"w");
#endif

for(k=0;k<len;k++)
fprintf(fp,"%g\n",var[k]);

fclose(fp);
return;

}
#endif

void
usage(char * name) /* Print usage 7
{

fprintf(stderr, "PEAQ Algorithm. Giuseppe Gottardi 'oveRet"'
"<gottardi@ailinux.org>\n\n");

fprintf(stderr, "usage: %s <option>\n", name);
fprintf(stderr," -r reffile[:Ip] (Ip default = 92)\n"

" -t testfile[:lp] (Ip default = 92)\n"
" -h print this help\n");

exit (0);
}

Файл: bandwidth.h
#define ZEROTHRESHOLD 921
#define BwMAX 346

struct bandwidthout {
double sumBandwidthRefb;
int countref;
double sumBandwidthTestb;
int counttest;
double BandwidthRefb;
double BandwidthTestb;

};

/* Function prototypes 7
int bandwidth(double *, double *, int, struct bandwidthout *);
/* Prototypes end 7

Файл: bandwidth.c
#include <stdlib.h>
#include <math.h>
#include <common.h>
#include <bandwidth.h>

int
bandwidth(double *ffttest, double *fftref, int hann,

struct bandwidthout *out)
{

int k, BwRef = 0, BwTest = 0;
double Flevtest, Flevref;
double ZeroThreshold;

ZeroThreshold = 20.0 * log10((double)ffttest[ZEROTHRESHOLD]);

for(k=ZEROTHRESHOLD;k<hann/2;k++) {
Flevtest = 20.0 * log 10((double)ffttest[k]);

65

https://meganorm.ru/Index/0/421.htm

ГОСТ Р 56047— 2014

if(Flevtest > ZeroThreshold)
ZeroThreshold = Flevtest;

}

for(k=ZEROTHRESHOLD-1 ;k>=0;k—) {
Flevref = 20.0 * log 10((double)fftref[k]);

if(Flevref >= 10.0+ZeroThreshold) {
BwRef = к + 1;
break;

}
}

for(k=BwRef-1;k>=0;k-){
Flevtest = 20.0 * log 10((double)ffttest[k]);

if(Flevtest >= 5.0+ZeroThreshold) {
BwTest = к + 1;
break;

}
}

if(BwRef > BwMAX) {
out->sumBandwidthRefb += (double)BwRef;
out->countref++;

}

if(BwTest > BwMAX) {
out->sumBandwidthTestb += (double)BwTest;
out->counttest++;

}

if(out->countref == 0)
out->BandwidthRefb = 0;

else
out->BandwidthRefb = out->sumBandwidthRefb/(double)out->countref;

if(out->counttest == 0)
out->BandwidthTestb = 0;

else
out->BandwidthTestb = out->sumBandwidthTestb/(double)out->counttest;

return 0;
}

Файл: boundary.h
#define BOUNDWIN 5
#define BOUNDLIMIT 200

struct boundaryflag {
int begin;
int end;

};

/* Function prototypes 7
int boundary(signed int *, signed int *, signed int *, signed int *, int);
/* Prototypes end 7

Файл: boundary.c
#include <stdlib.h>
#include <math.h>
#include <common.h>
#include <boundary.h>

int
boundary(signed int *ch1ref, signed int *ch1test, signed int *ch2ref,

signed int *ch2test, int hann)
{

66

ГОСТ Р 56047— 2014

int к, i, sum;
int ch it = 0, ch1 r = 0, ch2t = 0, ch2r = 0;

for(k=0;k<hann-BOUNDWIN+1 ;k++) {
if(!ch1t){

sum = 0;
for(i=0;i<BOUNDWIN;i++)

sum += abs(ch1test[k+i]);
if(sum > BOUNDLIMIT)

ch it = 1;
}

if(!ch1r) {
sum = 0;
for(i=0;i<BOUNDWIN;i++)

sum += abs(ch1ref[k+i]);
if(sum > BOUNDLIMIT)

ch1r = 1;
}

if(ch1t || ch1 r) / / 1| or&&
return 1;

}

if(ch2test == NULL && ch2ref == NULL)
return 0;

for(k=0;k<hann-BOUNDWIN+1 ;k++) {
if(!ch2t) {

sum = 0;
for(i=0;i<BOUNDWIN;i++)

sum += abs(ch2test[k+i]);
if(sum > BOUNDLIMIT)

ch2t= 1;
}

if(!ch2r) {
sum = 0;
for(i=0;i<BOUNDWIN;i++)

sum += abs(ch2ref[k+i]);
if(sum > BOUNDLIMIT)

ch2r = 1;
}

if((ch1t || ch2t) || (ch1 r || ch2r)) / / 1| or &&
return 1;

return 0;

Файл: critbandgroup.h
/* Function prototypes 7
int critbandgroup(double *, int, int, double *);
int AddlntNoise(double *);
/* Prototypes end 7

Файл: critbandgroup.c
#include <stdlib.h>
#include <math.h>
#include <common.h>
#include <critbandgroup.h>

extern double *fL, *fC, *fU;
extern int bark;

67

ГОСТ Р 56047—2014

int
critbandgroup(double *ffte, int rate, int hann, double *pe)
{

double fres;
int i, k;

fres = (double)rate/hann;

for(i=0;i<bark;i++) {
pe[i] = 0 ;
for(k=0;k<hann/2;k++) {

if(((double)(k-0.5)*fres) >= fL[i]
&& ((double)(k+0.5)*fres <= fU[i]))

pe[i] += p(ffte[k], 2.0);
else

if(((double)(k-0.5)*fres) < fL[i]
&& ((double)(k+0.5)*fres > fU[i]))

pe[i] += p(ffte[k], 2.0)*(fU[i]-fL[i])/fres;
else
if(((double)(k-0.5)*fres) < fL[i]
&& ((double)(k+0.5)*fres > fL[i]))

pe[i] += p(ffte[k], 2.0)*(double)((k+0.5)
*fres-fL[i])/fres;

else
if(((double)(k-0.5)*fres) < fU[i]
&& ((double)(k+0.5)*fres > fU[i]))

pe[i] += p(ffte[k], 2.0)*(fU[i]-(double)(k-0.5)
*fres)/fres;

}
if(pe[i] < p(10.0, -12.0))

pe[i] = p(10.0, -12.0);
}
return 0;

}
int
AddlntNoise(double *pe)
{

int k;
double Pthres;

for(k=0;k<bark;k++) {
Pthres = p(10.0, 0.4*0.364*p(fC[k]/1000.0, -0.8));
pe[k] += Pthres;

}
return 0;

}

Файл: detprob.h
/* Function prototypes 7
double detprob(double *, double *, double *, double *, double *,

double *, double *, int *, int);
/* Prototypes end 7

Файл: detprob.c
#include <stdlib.h>
#include <math.h>
#include <common.h>
#include <detprob.h>

extern int bark;

68

ГОСТ Р 56047— 2014

double
detprob(double *Etestch1, double *Etestch2, double *Erefch1,

double *Erefch2, double *Ptildetmp, double *PMtmp,
double *Qsum, int *ndistorcedtmp, int hann)

{
int k;
double Etilderefchl, Etilderefch2, Etildetestch 1, Etildetestch2;
double L, s, e, b, a, pch 1, pch2, pbin,

qch1, qch2, qbin, P, cO, c1, ADBb;
double prod = 1.0, Q = 0.0;

for(k=0;k<bark;k++) {
Etildetestchl = 10.0*log10((double)Etestch1[k]);
Etilderefchl = 10.0*log10((double)Erefch1[k]);

if(Etilderefch1 > Etildetestchl)
L= 0.3*Etilderefch1;

else
L = 0.3*Etildetestch 1;

L += 0.7*Etildetestch1;

if(L > 0)
s = 5.95072*p(6.39468/L, 1.71332)+9.01033*p(10.0, -11.0)

*p(L, 4.0)+5.05622*p(10.0, -6.0)*p(L, 3.0)-0.00102438
*p(L, 2.0)+0.0550197*L-0.198719;

else
s = p(10.0, 30.0);

e = Etilderefchl - Etildetestchl;

if(Etilderefch1 > Etildetestchl)
b = 4.0;

else
b = 6.0;

a = (double)p(10.0, Iog10((double)log10((double)2.0))/b)/s;
pch1 = 1.0 - p(10.0, -p(a*e, b));
qch1 = abs((int)e)/s; / / don't touch this

pbin = pch1;
qbin = qch1;

if(Etestch2 != NULL && Erefch2 != NULL) {
Etildetestch2 = 10.0*log10((double)Etestch2[k]);
Etilderefch2 = 10.0*log10((double)Erefch2[k]);

if(Etilderefch2 > Etildetestch2)
L = 0.3*Etilderefch2;

else
L = 0.3*Etildetestch2;

L += 0.7*Etildetestch2;

if(L> 0)
s = 5.95072*p(6.39468/L, 1.71332)+9.01033*p(10.0, -11.0)

*p(L, 4.0)+5.05622*p(10.0, -6.0)*p(L, 3.0)
-0.00102438*p(L, 2.0)+0.0550197*L-0.198719;

else
s = 1.0*p(10.0, 30.0);

e = Etilderefch2 - Etildetestch2;

if(e > 0)
b = 4.0;

else
b = 6.0;

a = (double)p(10.0, Iog10((double)log10((double)2.0))/b)/s;

69

ГОСТ Р 56047— 2014

pch2 = 1.0 - р(10.0, -р(а*е, Ь));
qch2 = abs((int)e)/s; // don't touch this

if(pch2 > pch1)
pbin = pch2;

if(qch2 > qch1)
qbin = qch2;

}
prod *= (1.0 - pbin);
Q += qbin;

}

P = 1.0 - prod;
if(P > 0.5) {

*Qsum += Q;
(*ndistorcedtmp)++;

}

if(*ndistorcedtmp == 0)
ADBb = 0;

else
if(*Qsum > 0)

ADBb = log10((double)*Qsum / (*ndistorcedtmp));
else

ADBb = -0.5;

cO = p(0.9, hann/(2.0*1024.0));
#if !defined(C1)
c1 = p(0.99, hann/(2.0*1024.0));
#else
c1 = C1;
#endif
*Ptildetmp = (1.0 - c0)*P + (*Ptildetmp)*c0;
if(*Ptildetmp > (*PMtmp)*c1)

*PMtmp = *Ptildetmp;
else

*PMtmp = (*PMtmp)*c1;

return ADBb;
}

Файл: earmodelfft.h
#define NORM 11361.301063573899
#define FREQADAP 23.4375 // for 48 kHz

/* Function prototypes 7
int earmodelfft(signed int *, int, int, double *, double *);
/* Prototypes end 7

Файл: earmodelfft.c
#include <stdlib.h>
#include <math.h>
#include <fftw.h>
#include <common.h>
#include <earmodelfft.h>

extern double hannwindow[];
extern fftw_plan plan;

int
earmodelfft(signed int *ch, int Ip, int hann, double *ffte, double *absfft)
{

70

int k;
double w, fac;

ГОСТ Р 56047—2014

fftw_complex in[HANN], out[HANN];

fac = p(10.0, lp/20.0)/NORM;

for(k=0;k<hann;k++) {
in[k].re = hannwindow[k] * (double)ch[k];
in[k].im = 0;

}
fftw_one(plan, in, out);

for(k=0;k<hann/2;k++) {
out[k].re *= (double)(fac/hann);
out[kj.im *= (double)(fac/hann);
absfft[k] = sqrt((double)(p(out[k].re, 2.0) + p(out[k].im, 2.0)));

w = -0.6*3.64*p(k * FREQADAP/1000.0, -0.8) +
6.5*exp((double)-0.6*p(k * FREQADAP/1000.0 - 3.3, 2.0))-
0.001*p(k * FREQADAP/1000.0, 3.6);

ffte[k] = absfft[k]*p(10.0, w/20.0);

}
return 0;

}

Файл: energyth.h
#define ENERGYLIMIT 8000

/* Function prototypes 7
int energyth(signed int *, signed int *, int);
/* Prototypes end 7

Файл: energyth.c
#include <stdlib.h>
#include <math.h>
#include <common.h>
#include <energyth.h>

int
energyth(signed int *test, signed int *ref, int hann)
{

int k;
double sum;

sum = 0;
for(k=0;k<hann/2;k++) {
sum += p(test[hann/2 + k], 2.0);
if(sum > ENERGYLIMIT)

return 1;
}
sum = 0;
for(k=0;k<hann/2;k++) {
sum += p(ref[hann/2 + k], 2.0);
if(sum > ENERGYLIMIT)

return 1;
}
return 0;

Файл: getframe.h
#define LP 92

/* Function prototypes 7
signed int GetFrameValue(FILE *, int);

71

ГОСТ Р 56047—2014

int GetMonoFrame(FILE *, signed int *, in t, in t);
int GetStereoFrame(FILE *, signed int *, signed int *, in t , int);
int LevelPression(char *);
int Readlnt(FILE *, int);
void fatalerr(char *,...);
/* Prototypes end 7

Файл: getframe.c
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <getframe.h>

extern int errno;

signed int
GetFrameValue(FILE *fp, int bytes)
{

int intvalue;

if (bytes <= 0)
return 0;

intvalue = Readlnt(fp, bytes);
switch(bytes) {

case 3:
if (intvalue & 0x00800000)

intvalue |= OxffOOOOOO;
break;

case 2:
if (intvalue & 0x00008000)

intvalue |= OxffffOOOO;
break;

case 1:
if (intvalue & 0x00000080)

intvalue |= OxffffffOO;
break;

}
return (signed int) intvalue;

}
int
GetMonoFrame(FILE *fp, signed int *vect, int bytes, int hann)
{

int i = 0;

if (fp == NULL)
return 0;

if (fseek(fp, (-hann/2)*bytes, SEEK_CUR) == -1)
fatalerr("err: %s", strerror(errno));

while(!feof(fp) && i < hann) {
vect[i] = GetFrameValue(fp, bytes);
i++;

}
if(i < hann) {

bzero(vect, hann*4);
fseek(fp, -i*bytes, SEEK_END);
return 0;

}
/* Number of samples wrote 7
return i ;

}
72

ГОСТ Р 56047— 2014

int
GetStereoFrame(FILE *fp, signed int *sx, signed int *dx, int bytes,

int hann)
{

int i = 0, к = 0, count = 0;

if (fp == NULL)
return 0;

if (fseek(fp, -hann*bytes, SEEK_CUR) == -1)
fatalerr("err: %s", strerror(errno));

while(!feof(fp) && count < hann*2) {
if(!k){

sx[i] = GetFrameValue(fp, bytes);
k= 1;
i—;
count++;

}
else {

dx[i] = GetFrameValue(fp, bytes);
к = 0;
count++;

}
i++;

}
if (count < hann*2) {

bzero(sx, hann*4);
bzero(dx, hann*4);
fseek(fp, -count*bytes, SEEK_END);
return 0;

}

/* Number of samples wrote 7
return count;

}

int
LevelPression(char *f)
{

int Ip;

while(*f != ':'& & *f)
f++;

if(*f = = ':'){
Ip = atoi(f + 1);
*f = '\0';
return Ip;

}
else
return LP;

Файл: harmstruct.h
/* Function prototypes 7
double harmstruct(double *, double *, double *, int, double *, int, int *);
void debug(char *,...);
/* Prototypes end 7

Файл: harmstruct.c
#include <stdlib.h>
#include <math.h>
#include <string.h>

ГОСТ Р 56047—2014

#include <fftw.h>
#include <common.h>
#include <harmstruct.h>

extern char *filetest;
extern int count;
extern fftw_plan plan2;

double Cfft[HANN/2];
int maxk;

double
harmstruct(double *ffttest, double *fftref, double *EHStmp, int rate,

double *Cffttmp, int p, int *n)
{

int k, i;
double F0[HANN/2], C[HANN/2], hannwin[HANN/2];
double num, denoma, denomb, Csum = 0;
fftw_complex in[HANN/2], out[HANN/2];
double max;

bzero(Cfft, 8 * HANN/2);

for(k=0;k<p*2-1;k++) {
if(!fftref[k] || !ffttest[k]) { // skip log(0)

#if defined(SKIPFRAME) && Idefined(ZERO)
(*n)-;
return 0;
#elif defined(ZERO)
if(!fftref[k]) {

fftref[k] = ZERO;
#ifdef DEBUG
debug("Warning [%s:%d] in Harmstruct.c:"

"fftref[%d] is set around zero\n",
filetest, count, k, fftref[k]);

#endif
}
if(!ffttest[k]) {

ffttest[k] = ZERO;
#ifdef DEBUG
debug("Warning [%s:%d] in Harmstruct.c:"

"ffttest[%d] is set around zero\n",
filetest, count, k, ffttest[k]);

#endif
}
F0[k] = log 10(p(fftref[k], 2.0)) - Iog10(p(ffttest[k], 2.0));
#else
if(!fftref[k] && !ffttest[k])

F0[k] = 0;
else {

#ifdef DEBUG
debug("Error [%s:%d] in Harmstruct.c:"

"log(fftref[%d] = %g log(ffttest[%d] = %g\n",
filetest, count, k, fftref[k], k, ffttest[k]);

#endif
F0[k] = 0;

}
#endif

}
else

F0[k] = log 10(p(fftref[k], 2.0)) - Iog10(p(ffttest[k], 2.0));
}
for(i=0;i<p;i++) {

num = 0;

74

denoma = 0;
denomb = 0;
for(k=0;k<p;k++) {

num += F0[k] * F0[i+k];
denoma += p(F0[k], 2.0);
denomb += p(F0[i+k], 2.0);

}
hannwin[i] = 0.5*sqrt((double)8.0/3.0)*(1.0 - cos((double)2.0

*M_PI*i/(p-1.0)));
C[i] = num / (sqrt((double)denoma) * sqrt((double)denomb));

#if Idefined(AVGHANN)
C[i] *= hannwin[i];
#endif
Csum += C[i];

}
for(i=0;i<p;i++) {

C[i] -= (double)Csum/p;
#if defined(AVGHANN)
C[i] *= hannwin[i];
#endif
in[i].im = 0;
in[i].re = C[i];

}
fftw_one(plan2, in, out);

for(k=0;k<p/2;k++) {
out[k].re *= (double)(1.0/p);
out[k].im *= (double)(1.0/p);
Cfft[k] = p(out[k].re, 2.0) + p(out[k].im, 2.0);

}
#ifdef EHSMOD02
for(k=0;k<p/2;k++) {

Cffttmp[k] += Cfft[k];
Cfft[k] = Cffttmp[k]/(*n);

}
#endif

#if !defined(GETMAX)
i = 0+PATCH;
while(1) {

if(Cfft[i] >= Cfft[i+1]){
while(i < p/2-1 && Cfft[i] >= Cfft[i+1])

i++;

if(i < p/2-1)
break;

else {
(*n)~;
return 0;

}
}
else {

while(i < p/2-1 && Cfft[i] <= Cfft[i+1])
i++;

while(i < p/2-1 && Cfft[i] >= Cfft[i+1])
i++;

if(i < p/2-1)
break;

else {
(*n)-;
return 0;

ГОСТ Р 56047— 2014

}
}

}
#else
i = 0;
#endif

max = 0;
for(k=i+1;k<p/2;k++)

if(Cfft[k] > max) {
max = Cfft[k];
maxk = k;

}

#ifdef EHSM0D02
return max*1000.0;
#endif

(*EHStmp) += max;
return ((*EHStmp)*1000.0/(*n));

Файл: levpatadapt.h
#define T100 0.05
#define Tmin 0.008
#define M 8
// if M is odd
/*
#define M1 (M-1)/2
#define М2 M1
7
// if M is even
#define M1 M/2 -1
#define М2 M/2

struct levpatadaptout {
double Epref[BARK];
double Eptest[BARK];

};

struct levpatadaptin {
double Ptest[BARK];
double Pref[BARK];
double PattCorrTest[BARK];
double PattCorrRef[BARK];
double Rnum[BARK];
double Rdenom[BARK];

};

/* Function prototypes 7
struct levpatadaptout levpatadapt(double *, double *, int,

struct levpatadaptin *, int);
/* Prototypes end 7

Файл: levpatadapt.c
#include <stdlib.h>
#include <math.h>
#include <common.h>
#include <levpatadapt.h>

extern int bark;
extern double *fC;

struct levpatadaptout

76

ГОСТ Р 56047—2014

levpatadapt(double *Etest, double *Eref, int rate,
struct levpatadaptin *tmp, int hann)

{
int k, i, m l, m2;
double T, levcorr, numlevcorr = 0, denomlevcorr = 0, R;
double pattcoeffref, pattcoefftest;
double Elref[BARK], Eltest[BARK], Rtest[BARK], Rref[BARK], a[BARK];
struct levpatadaptout out;

for(k=0;k<bark;k++) {
T = (double)Tmin + (100.0/fC[k])*(T100 - Tmin);
a[k] = exp((double)-hann/(2.0*rate * T));
tmp->Ptest[k] = tmp->Ptest[k]*a[k] + (1.0-a[k])*Etest[k];
tmp->Pref[k] = tmp->Pref[k]*a[k] + (1.0-a[k])*Eref[k];
numlevcorr += sqrt(tmp->Ptest[k]*tmp->Pref[k]);
denomlevcorr += tmp->Ptest[k];

}
levcorr = p(numlevcorr/denomlevcorr, 2.0);

for(k=0;k<bark;k++) {
if(levcorr > 1.0) {

Elref[k] = (double)Eref[k]/levcorr;
Eltest[k] = Etest[k];

}
else {

Eltest[k] = (double)Etest[k]*levcorr;
Elref[k] = Eref[k];

}
//Autocorrelation
tmp->Rnum[k] *= a[k];
tmp->Rdenom[k] *= a[k];
tmp->Rnum[k] += Elref[k]*Eltest[k];
tmp->Rdenom[k] += Elref[k]*Elref[k];

if(tmp->Rdenom[k] == 0 && tmp->Rnum[k] != 0) {
Rtest[k] = 0;
Rref[k] =1.0;

}
else
if(tmp->Rdenom[k] == 0 && tmp->Rnum[k] == 0) {

//copy from frequency band below
if(k) {

Rtest[k] = Rtest[k-1];
Rref[k] = Rref[k-1];

}
//if don't exist
else {

Rtest[k] = 1.0;
Rref[k] = 1.0;

}
}
else {

R = tmp->Rnum[k] / tmp->Rdenom[k];
if(R >= 1.0) {

Rtest[k] = 1.0/R;
Rref[k] = 1.0;

}
else {

Rtest[k] = 1.0;
Rref[k] = R;

}
}

77

ГОСТ Р 56047—2014

for(k=0;k<bark;k++) {
m l = М1;
m2 = М2;
pattcoefftest = 0;
pattcoeffref = 0;

if(m1 > к)
m l = к;

if(m2 > bark- к -1)
m2 = bark -k-1;

for(i = -m1;i <= m2;i++) {
pattcoefftest += Rtest[k+i];
pattcoeffref+= Rref[k+i];

}
tmp->PattCorrTest[k] = a[k]*tmp->PattCorrTest[k] +

pattcoefftest*(1,0-a[k])/(m1 +m2+1);
tmp->PattCorrRef[k] = a[k]*tmp->PattCorrRef[k] +

pattcoeffref*(1.0-a[k])/(m1+m2+1);

out.Epref[k] = Elref[k] * tmp->PattCorrRef[k];
out.Eptest[k] = Eltest[k] * tmp->PattCorrTest[k];

return out;

}

Файл: loudness.h
#define CONST 1.07664

/* Function prototypes 7
double loudness(double *);
/* Prototypes end 7

Файл: loudness.c
#include <stdlib.h>
#include <math.h>
#include <common.h>
#include <loudness.h>

extern double *fC;
extern int bark;

double
loudness(double *E)
{

int k;
double Ntot = 0;
double s, N, Ethres;

for(k=0;k<bark;k++) {
s = p(10.0, (-2.0-2.05*atan((double)fC[k]/4000.0) - 0.75

*atan((double)p(fC[k]/1600.0, 2.0)))/10.0);
Ethres = p(10.0, 0.364*p(fC[k]/1000.0, -0.8));
N = (double)CONST*p(Ethres/(s*10000.0), 0.23)

*(p(1.0-s+s*E[k]/Ethres, 0.23)-1.0);
if(N > 0)

Ntot += N;
}
Ntot *= (double)24.0/bark;

return Ntot;
}

78

ГОСТ Р 56047— 2014

Файл: moddiff.h
#define L 4

struct moddiffin {
double win;
int Lcount;
double modtmp;
double mod[L];
double num2;
double denom2;
double num3;
double denom3;

};

struct moddiffout {
double ModDiffl;
double ModDiff2;
double TempWt;

};

/* Function prototypes 7
struct moddiffout moddiff(double *, double *, double *);
double ModDiffl (struct moddiffout, struct moddiffin *, int);
double ModDiff2(struct moddiffout, struct moddiffin *);
double ModDiff3(struct moddiffout, struct moddiffin *);
/* Prototypes end 7

Файл: moddiff.c
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <common.h>
#include <moddiff.h>

extern double *fC;
extern int bark;

struct moddiffout
moddiff(double *Modtest, double *Modref, double *Etilderef)
{

int k;
struct moddiffout out;
double Pthres;

out. ModDiffl = 0;
out.ModDiff2 = 0;
out. TempWt = 0;

for(k=0;k<bark;k++) {
// WinModDiffl В && AvgModDiffl В
out.ModDiffl += module(Modtest[k] - Modref[k])/(1.0 + Modref[k]);
/ /AvgModDiff2B
if(Modtest[k] > Modref[k])

out.ModDiff2 += module(Modtest[k] - Modref[k])
/(0.01 + Modref[k]);

else
out.ModDiff2 += 0.1*module(Modtest[k] - Modref[k])

/(0.01 + Modref[k]);

Pthres = p(10.0, 0.4*0.364*p(fC[k]/1000.0, -0.8));
out.TempWt += Etilderef[k]/(Etilderef[k] + p(Pthres, 0.3)*100.0);

}

out.ModDiffl *= (double)100.0/bark;
out.ModDiff2 *= (double)100.0/bark;

79

ГОСТ Р 56047— 2014

return out;
}

double
ModDiffl (struct moddiffout in, struct moddiffin *intmp, int n)
{

int i;

intmp->mod[intmp->Lcount] = in.ModDiffl;
intmp->Lcount++;
if(intmp->Lcount == L)
intmp->Lcount = 0;

if(n < L)
return 0;

intmp->modtmp = 0;
for(i=0;i<L;i++)
intmp->modtmp += sqrt((double)intmp->mod[i]);

intmp->modtmp /= (double)L;

intmp->win += p(intmp->modtmp, 4.0);

return sqrt((double)intmp->win/(double)(n-L+1.0));
}

double
ModDiff2(struct moddiffout in, struct moddiffin *intmp)
{

intmp->num2 += in.ModDiffl * in.TempWt;
intmp->denom2 += in.TempWt;

return (intmp->num2/intmp->denom2);
}

double
ModDiff3(struct moddiffout in, struct moddiffin *intmp)
{

intmp->num3 += in.ModDiff2 * in.TempWt;
intmp->denom3 += in.TempWt;

return (intmp->num3/intmp->denom3);
}

Файл: modulation.h
#define T100 0.05
#define Tmin 0.008

struct modulationin {
double Edertmp[BARK];
double E2tmp[BARK];
double Etildetmp[BARK];

};

/* Function prototypes 7
int modulation(double *, int, struct modulationin *, double *);
/* Prototypes end 7

Файл: modulation.c
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <common.h>
#include <modulation.h>

extern int bark;

80

ГОСТ Р 56047— 2014

extern double *fC;

int
modulation(double *E2, int rate, struct modulationin *in, double *Mod)
{

int k;
double T, a;

for(k=0;k<bark;k++) {
T = (double)Tmin + (double)(100/fC[k])*(double)(T100- Tmin);
a = exp((double)-HANN/(2*rate * T));
in->Edertmp[k] = in->Edertmp[k]*a+(1-a)*(double)(rate/(HANN/2))

*module(p(E2[k], 0.3) - p(in->E2tmp[k], 0.3));
in->E2tmp[k] = E2[k];
in->Etildetmp[k] = a*in->Etildetmp[k]+(1-a)*p(E2[k], 0.3);
Mod[k] = in->Edertmp[k]/(1 + (in->Etildetmp[k]/0.3));

}

return 0;
}

Файл: neural.h
#define sig(x) (double)(1.0/(1.0 + exp((double)-(x))))

#define I 11
#define J 3

struct outframes {
double WinModDiffl b;
double AvgModDiffl b;
double AvgModDiff2b;
double RmsNoiseLoudb;
double BandwidthRefb;
double BandwidthTestb;
double TotaINMRb;
double RelDistFramesb;
double ADBb;
double MFPDb;
double EHSb;

};

struct out {
double ODG;
double Dl;

};

/* Function prototypes 7
struct out neural(struct outframes processed);
/* Prototypes end 7

Файл: neural.c
#include <stdlib.h>
#include <math.h>
#include <common.h>
#include <neural.h>

double amin[11] = {393.916656, 361.965332, -24.045116, 1.110661, -0.206623,
0.074318, 1.113683, 0.950345, 0.029985, 0.000101, 0.0};

double amax[11] = {921.0, 881.131226, 16.212030, 107.137772, 2.886017,
13.933351, 63.257874, 1145.018555, 14.819740, 1.0, 1.0};

double wx[12][3] = {{-0.502657, 0.436333, 1.219602},
{4.307481, 3.246017, 1.123743},
{4.984241, -2.211189, -0.192096},
{0.051056, -1.762424, 4.331315},

81

ГОСТ Р 56047— 2014

{2.321580, 1.789971, -0.754560},
{-5.303901, -3.452257, -10.814982},
{2.730991,-6.111805, 1.519223},
{0.624950, -1.331523, -5.955151},
{3.102889, 0.871260, -5.922878},
{-1.051468, -0.939882, -0.142913},
{-1.804679, -0.503610, -0.620456},
{-2.518254, 0.654841, -2.207228}};

double wy[4] = {-3.817048, 4.107138, 4.629582, -0.307594};
double bmin = -3.98;
double bmax = 0.22;

struct out
neural(struct outframes processed)
{

intj, i;
struct out oveRet;
double sum1, sum2;
double x[11];

x[0] = processed. BandwidthRefb;
x[1] = processed. BandwidthTestb;
x[2] = processed.TotaINMRb;
x[3] = processed. WinModDifflb;
x[4] = processed.ADBb;
x[5] = processed. EHSb;
x[6] = processed. AvgModDifflb;
x[7] = processed.AvgModDiff2b;
x[8] = processed.RmsNoiseLoudb;
x[9] = processed. MFPDb;
x[10] = processed. RelDistFramesb;

// gcodcla.wav
/*x[0] = 834.117;
x[1] = 647.095;
x[2] = -14.6048;
x[3] = 6.89483;
x[4] = 0.432969;
x[5] = 0.503605;
x[6] = 7.14863;
x[7] = 24.9353;
x[8] = 0.124738;
x[9] = 0.968876;
x[10] = 0.0485208; // cosmm tutto ok*/

// ccodsax.wav
/*x[0] = 853.375;
x[1] = 645.444;
x[2] = -7.94882;
x[3] = 11.4108;
x[4] = 1.41971;
x[5] = 0.491164;
x[6] = 12.6383;
x[7] = 44.7187;
x[8] = 0.21807;
x[9] = 1.15;//0.675505;
x[10] = 0.556215;*/

sum2 = 0;
for(j=0;j<J;j++) {

sum1 = 0;
for(i=0;i<l;i++)

sum1 += wx[i][j]*((x[i] - amin[i])/(amax[i] - amin[i]));
sum2 += wy[j]*sig(wx[l][j] + sum1);

}

82

ГОСТ Р 56047— 2014

oveRet.DI = wy[J] + sum2;
oveRet.ODG = bmin + (bmax - bmin)*sig(oveRet.DI);

return oveRet;
}

Файл: nmr.h
/* Function prototypes 7
double nmr(double *, double *, double *, int);
/* Prototypes end 7

Файл: nmr.c
#include <stdlib.h>
#include <math.h>
#include <common.h>
#include <nmr.h>

extern int bark;

double
nmr(double *Pnoise, double *M, double *nmrtmp, int n)
{

int k;
double sum = 0;

for(k=0;k<bark;k++)
sum += Pnoise[k]/M[k];

sum *= (double)1.0/bark;
*nmrtmp += sum;

return (10.0*log10((*nmrtmp)/n));
}

Файл: noiseloudness.h
#define THRESFACO 0.15
#define SO 0.5
#define E0 1.0
#define ALPHA 1.5

/* Function prototypes 7
double noiseloudness(double *, double *, struct levpatadaptout,

double *, int);
/* Prototypes end 7

Файл: noiseloudness.c
#include <stdlib.h>
#include <math.h>
#include <common.h>
#include <levpatadapt.h>
#include <noiseloudness.h>

extern int bark;
extern double *fC;

double
noiseloudness(double *Modtest, double *Modref, struct levpatadaptout lev,

double *nltmp, int n)
{

int k;
double Pthres, stest, sref, beta, num, denom;
double nl = 0;

83

ГОСТ Р 56047— 2014

for(k=0;k<bark;k++) {
Pth res = р(10.0, 0.4*0.364*p(fC[k]/1000.0, -0.8));
stest = (double)THRESFACO*Modtest[k] + SO;
sref = (double)THRESFACO*Modref[k] + SO;
if(lev.Eptest[k] == 0 && lev.Epref[k] == 0)

beta = 1.0;
else
if(lev.Epref[k] == 0)

beta = 0;
else

beta = exp((double)-ALPHA*(lev.Eptest[k] - lev.Epref[k])
/lev.Epref[k]);

num = stest*lev.Eptest[k] - sref*lev.Epref[k];
denom = Pthres + sref*lev.Epref[k]*beta;
if(num < 0)

num = 0;

nl += p(Pthres/(EO*stest), 0.23)*(p(1.0 + num/denom, 0.23) -1.0);
}
nl *= (double)24.0/bark;
if(nl < 0)
nl = 0;

*nltmp += p(nl, 2.0);

return sqrt((double)*nltmp/n);
}

Файл: reldistframes.h
/* Function prototypes 7
double reldistframes(double *, double *, double *, int);
/* Prototypes end 7

Файл: reldistframes.c
#include <stdlib.h>
#include <math.h>
#include <common.h>
#include <reldistframes.h>

extern int bark;

double
reldistframes(double *Pnoise, double *M, double *reldisttmp, int n)
{

int k;

for(k=0;k<bark;k++) {
if(10.0*log10((double)Pnoise[k]/M[k]) >= 1.5) {

*reldisttmp = *reldisttmp +1;
break;

}
}

return ((double)*reldisttmp/n);
}

Файл: spreading.h
#ifdef ADVANCED

#define dz 0.5
#else

#define dz 0.25
#endif

84

ГОСТ Р 56047— 2014

/* Function prototypes 7
int spreading(double *, double *);
/* Prototypes end 7

Файл: spreading.c
#include <stdlib.h>
#include <math.h>
#include <common.h>
#include <spreading.h>

extern double *fC;
extern int bark;

int
spreading(double *pp, double *e2)
{

int k, j, u;
double L;
double denom, sum1, sum2, Eline, Su, SI = 27.0;

for(k=0;k<bark;k++) {
sum1 = 0;
sum2 = 0;
// Eline
for(j=0;j<bark;j++) {

L = 10.0*log10((double)pp[j]);
Su = -24.0-230.0/fC[j]+0.2*L;
Eline = p(10.0, L/10.0);
if(k < j)

Eline *= p(10.0, -dz*(j-k)*SI/10.0);
else

Eline *= p(10.0, dz*(k-j)*Su/10.0);

denom = 0;
for(u=0;u<j;u++)

denom += p(10.0, -dz*Q-u)*SI/10.0);
for(u=j;u<bark;u++)

denom += p(10.0, dz*(u-j)*Su/10.0);

Eline /= denom;
sum1 += p(Eline, 0.4);

}
// Eline (tilde)
for(j=0;j<bark;j++) {

S u = -24.0-230.0 /fC [j];//L = 0
if(k < j)

Eline = p(10.0, -dz*(j-k)*SI/10.0);
else

Eline = p(10.0, dz*(k-j)*Su/10.0);

denom = 0;
for(u=0;u<j;u++)

denom += p(10.0, -dz*Q-u)*SI/10.0);
for(u=j;u<bark;u++)

denom += p(10.0, dz*(u-j)*(-24.0-230.0/fC[j])/10.0);

Eline /= denom;
sum2 += p(Eline, 0.4);

}

sum2 = p(sum2, 1.0/0.4);
sum1 = p(sum1, 1.0/0.4);

e2[k] = sum1/sum2;
}

return 0;
}

85

ГОСТ Р 56047— 2014

Файл: threshold.h
#ifdef ADVANCED

#define dz 0.5
#else

#define dz 0.25
#endif

/* Function prototypes 7
int threshold(double *, double *);
/* Prototypes end 7

Файл: threshold.c
#include <stdlib.h>
#include <math.h>
#include <common.h>
#include -«threshold.h>

extern int bark;

int
threshold(double *E, double *M)
{

int k;
double m;

for(k=0;k<bark;k++) {
if((m = к * dz) <= 12)

m = 3.0;
else

m *= 0.25;

M[k] = E[k]/p(10, m/10);
}

return 0;
}

Файл: timespreading.h
/* Function prototypes 7
int timespreading(double *, double *, int, double *);
/* Prototypes end 7

Файл: timespreading.c
#include <stdlib.h>
#include <math.h>
#include <common.h>
#include <timespreading.h>

#define T100 0.03
#define Tmin 0.008

extern int bark;
extern double *fC;

int
timespreading(double *E2, double *Etmp, int rate, double *E)
{

int k;
double a, T;

for(k=0;k<bark;k++) {
T = (double)Tmin + (double)(100.0/fC[k])*(double)(T100-Tmin);
a = exp((double)-HANN/(double)(T*2.0*rate));
Etmp[k] = Etmp[k]*a + (1,0-a)*E2[k];

86

ГОСТ Р 56047—2014

if(Etmp[k] >= Е2[к])
Е[к] = Etmp[k];

else
Е[к] = Е2[к];

}
return 0;

}

Файл: wavedump.h
Г Function prototypes 7
int HeaderDump(FILE *, const char*);
int Readlnt(FILE *, int);
int SampleRate(FILE *);
int BitForSample(FILE *);
int NumOfChan(FILE *);
int FindData(FILE *);
void fatalerr(char *,...);
/* Prototypes end 7

Файл: wavedump.c
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <wavedump.h>

extern int errno;

int
HeaderDump(FILE *fp, const char*string)
{

char buff[7];
int k, offset = 0;

while (!feof(fp)) {
if(!fread(buff, 7, 1, fp))

fatalerr("err: error in WaveHeader");
offset += 7;
for(k=0;k<4;k++)

if (!strncmp((char *)(buff + k), string, 4)) {
fseek(fp, k-3, SEEK_CUR);
offset += k-3;
return offset;

}
fseek(fp, -3, SEEK_CUR);
offset += -3;

}

return -1;
}
int
SampleRate(FILE *fp)
{

int rate, offset;

if ((offset = HeaderDump(fp,"fmt")) == -1)
return -1;

if (fseek(fp, 8, SEEK_CUR) == -1)
fatalerr("err: %s", strerror(errno));

rate = Readlnt(fp,4);
fseek(fp, -8 - offset, SEEK_CUR);

return rate;
}

87

ГОСТ Р 56047—2014

int
BitForSample(FILE *fp)
{

int bit, offset;

if ((offset = HeaderDump(fp,"fmt")) == -1)
return -1;

if (fseek(fp, 18, SEEK_CUR) == -1)
fatalerr("err: %s", strerror(errno));

bit = Readlnt(fp,2);
fseek(fp, -18 - offset, SEEK_CUR);

return bit;
}
int
NumOfChan(FILE *fp)
{

int chan, offset;

if ((offset = HeaderDump(fp,"fmt")) == -1)
return -1;

if (fseek(fp, 6, SEEK_CUR) == -1)
fatalerr("err: %s", strerror(errno));

chan = Readlnt(fp,2);
fseek(fp, -6 - offset, SEEK_CUR);

return chan;
}
int
FindData(FILE *fp)
{

int offset;

if (fp == NULL)
return -1;

if ((offset = HeaderDump(fp,"data")) == -1)
return -1;

if (fseek(fp, 4 + offset, SEEK_CUR) == -1)
fatalerr("err: %s", strerror(errno));

return 1;
}
#if defined(LITTLE) && idefined(BIG)
int
Readlnt(FILE *fp, int size)
{

int I;
unsigned char c;

if (size <= 0)
return 0;

c = fgetc(fp);
I = ((int) c) & 255;
11= (Readlnt(fp, size-1) « 8);

return I;
}
#elif defined(BIG) && !defined(LITTLE)
int
Readlnt(FILE *fp, int size)
{

int I;

88

ГОСТ Р 56047— 2014

if (size <= 0)
return 0;

I = (Readlnt(fp, size-1) « 8);
11= ((int) fgetc(fp)) & 255;

return I;
}
#endif

Б.З Листинг программы расчета метрики PSNR на языке Matlab
function PSNR = calcPSNR(X.Y)
% чем больше значение PNSR, тем более похожи сигналы

m = max(X);
d = var(X-Y);
R = m/sqrt(d);
PSNR = 20* log 10(R);

end

Б.4 Листинг программы расчета метрики PSNR на языке С
#include <math.h>

double var(double* arr, int size)
{

if(!arr || isize)
return 0.0;

double v = 0.0;
double avg = 0.0;

for(int i = 0; i < size; ++i)
avg+= arr[i];

avg/= size;

for(int i = 0; i < size; ++i)
{

v+= (arr[i] - avg) * (arr[i] - avg);
}

return v / (size -1);
}

double calcPSNR(double* X, int sizeX, double* Y, int sizeY)
{

if(!X || !sizeX || !Y || IsizeY || (sizeX != sizeY))
return 0.0;

double D[sizeX];
double maxX = X[0];
for(int i = 0; i < sizeX; ++i)
{

if(X[i] > maxX)
maxX = X[i];

D[i] = X[i] - Y[i];
}

double v = var(D, sizeX);

if(v == 0)
return 0.0;

return 20 * log10(maxX/ sqrt(v));

}

Б.5 Листинг программы расчета метрики «Коэффициент различия форм сигналов» на языке Matlab
function val = calcMeasureBasedOnSingalsForms(X,Y)
% чем меньше результирующее значение, тем более похожи сигналы

89

ГОСТ Р 56047— 2014

Х= Х(:,1);
Y= Y(:,1);
dX=X(2:end) - Х(1 :end-1);
dY=Y(2:end) - Y(1:end-1);

val = var(dX-dY);

end

Б.6 Листинг программы расчета метрики «Коэффициент различия форм сигналов» на языке С
#include <math.h>

double var(double* arr, int size)
{

if(!arr || Isize)
return 0.0;

double v = 0.0;
double avg = 0.0;

for(int i = 0; i < size; ++i)
avg+= arr[i];

avg/= size;

for(int i = 0; i < size; ++i)
{

v+= (arr[i] - avg) * (arr[i] - avg);
}

return v / (size -1);
}

double calcMeasureBasedOnSingalsForms(double* X, int sizeX, double* Y, int sizeY)
{

if(!X || !sizeX || !Y || isizeY || (sizeX != sizeY))
return 0.0;

double dX[sizeX -1];
double dY[sizeX -1];
double D[sizeX -1];

for(int i = 1; i < sizeX; ++i)
{

dX[i -1] = X[i] -X [i -1];
dY[i -1] = Y[i] - Y[i -1];
D[i -1] = dX[i -1] - dY[i -1];

}

return var(D, sizeX - 1);
}

90

ГОСТ Р 56047—2014

УДК 621.398:006.354 ОКС 13.320 П77 ОКП 43 7200

Ключевые слова: системы охранные телевизионные, аудиоданные, аудио-компрессия, аудиокодер,
аудиодекодер, кодек аудиоданных

Редактор Н.А. Аргунова
Технический редактор В.Н. Прусакова

Корректор В.И. Варенцова
Компьютерная верстка И.А. Налейкиной, Л.А. Круговой

Сдано в набор 19.03.2015. Подписано в печать 13.10.2015. Формат 60x84%. Гарнитура Ариал.
Уел. печ. л. 10,70. Уч.-изд. л. 7,50. Тираж 32 экз. Зак. 3277.

Издано и отпечатано во ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.
www.gostinfo.ru info@gostinfo.ru

ГОСТ Р 56047-2014

https://meganorm.ru/Data2/1/4294849/4294849527.htm
https://meganorm.ru/Index2/1/4293794/4293794196.htm
https://meganorm.ru/Index2/1/4294743/4294743477.htm

