типовой проект 901-2-106

Насосные станции на трубчатых колодцах с насосами ЗЦВ производительностью до 16 м/ч с бактерицидными установками ов-10

АЛЬБОМ I

ОБЩАЯ ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

16.531-01

Poccapon CCCP

ЦЕНТРАЛЬНИЙ ИНСТИТУТ ТИПОВОГО ПРОЕКТИРОВАНИЯ

Свердловский филиал

520062, г.Свердловск-62, ул.Чебынева,4 Заказ #2542 Инг. # 16531-01 тираж 1400 Сдано в печать 4.06 1986г цена 1-56

Типовой проект 901-2-106

ХАДДОЛОН ХИТАРАЦОТ АН ИНДНАТЭ ЭИНЭОЭАН 1/м 11 од Онтэоналэтидовсиооп ОДЕ имаэоэан э 2/м 11 - ОО ИМАНФОНАТЭЦ ИМИНДИЦИЧАТА

альбом І

Состав проекта

AABEOM I ПОВЩАЯ ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Альбом II Технологические решения. Нестандартисированное оборудование. Альбом III Генеральный план и транспорт. Архитектурно-строительные решения. Конструкции железобетонные. Отопление и вентиляция.

Электрооборудование и автоматизация. ЧЕРТЕЖИ ЗАДАНИЯ ЗАВПДУ-ИЗГОТОВИТЕЛЮ. Заказные спецификации. Альбом ∑ AABOOM VI

B ADHUMU NOCERM BACCENSI USHENENUS:
NOOUSBEDENO BONENO BACCENSI USHENDA 13 18, 113-24, 113-25

PASDAGDTAH

CMETH

AAHERM VI

Утвержден Минводхозом СССР притокол Л ЗОЛ ОТ Б ИННЯ 1978 г. Высаен в действие Миноахозом СССР с 10.03.1980 г. Приказ № 70 рт 29.02.1980г.

CMP.

19:24

25-26

27:33

34-35

Альбом 2-106

Mapra

13-2-3

Общие данные

Наименование

IDOORY Типовой

инв.и подп. Подп. и дата

введение. Основные положения 113-24:25 Электрооборудование и автоматина 5÷7 лэ-гь-эг Т**аб**лица выбора станции управления 13-7 Насосное оборудование пз-8:13 Техническая характеристика насосов 13-33-34 Строительная часть 9:14 13-14-17 Xapakmepucmuku Hacacab 15-18 901-2-106 HIM AUCH Nº BOKYM. NOBNUS JOM THIN PROP AND 11-79
HOU, OME ANYWEB ANAT M.cney. MUNUN Содержание

Mapro

cmp.

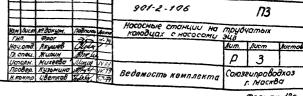
3:4

113-35+38 Doea HU304UR U NOQUISOOCMBO DOGOM 36÷39 Π3 НОСОСНЫЕ СТАНЦИИ НА ТРУВЧАТЫХ КОЛОВЦОХ С НОСОСОМИ 348 AUM. Aucm AUCTOS 38 Союзгипроводкоз r. MockBa

Наименование

ПЗ-18:23 Вспомогательное оборудование

Papmam 12r 16531-01


POPMOM: 125

16531-01

H		Формал	Nucm	Наименование	Примечание
Альбом		Rr	1	Содержание	
ŏ	1	R	2	Общие данные	
ā		Pr	3	Bedomocmь комплекта	
5		e-	4	введение. Основные положения (начало)	
~		e	5	введение. Основные положения (продолжение)	
		Ø	6	введение. Основные положения (окончание)	
4	1	er	7	Насосное оборудование	
801-4-106	1	æ	8	Техническоя хароктеристика нососов (начало)	
ď,	1	Per	3	Техническоя характеристина насосов (прадоложение)	
₹	1	æ	10	Техническоя характеристика насосов (продолжение)	
ò	1	er	#	Техническая характеристика насосов (продолжение)	
u,		rer	12	Техническая характеристика насосов (прадолжение)	
+		12r	13	Техническая характеристика насосов (окончание)	
O X		jer	14	Характеристики насосов (начало)	
Õ		121	15	Характеристики насосов (продолжение!	
проект	-	121	16	Характеристики насосов (продолжение)	
-		er	17	Характеристики насосов (окончание)	
۶Ž		ter	18	веломогательное оборудование (начало)	USM 1 (3ar
8		per	19	вспамогательное обарудование (продолжение)	
Гиповой		1er	20	вспомогательное оборудование (продолжение)	
		ver	21	Зспомогательнае оборудование (продалжение)	
_	1	ier	22	Вспомоготельное оборудование (продолжение)	
	1	jer	23	вспомогательное оборудование (окончание)	
Ď		12	24	Электрооборудование и автомотика (начало)	U3M 1 (30M)
gawa	1	rer	25	Электрообарудование и автоматика (окончание)	U3N1. (30)
3	1	ier	26	Таблица выбора станций управления (начало)	
Лоди.	i	121	27	Тоблица выбора станции управления (продолжение)	
_	1	ier		Таблица выбора станции управления (продолжение)	
vB.N nodn.		12	29	Таблица выбора станции управления (продалжение)	
18	i	-			

Uнв,м подп. Подп. ∪ дата

600	Лист	Ноименование	Примечание
er	30	Таблица выбора станции управления (продолжение)	
2	31	Тоблица выбора станций управления (продоложение)	
12	32	Тоблица выбора станций управления (окончание)	
121	33	Строительная часть (начало)	
6	34	Строительная часть (окончание)	
2	35	Организация и производства работ	
		(Hayano)	
er.	36	Ορεακυσαμυρ υ προυσδοσεπόο ραδοπ	
		(продолжение)	
er	37	Организация и производство робот	
		(продолжение)	
æ	38	Организация и производство робот	
	L	(окончание)	1

1-901-2-106

Tunoboù npoemm

N-901-2-107

Bbearnue

В общей пояснительной записке даны указания по привязке типовых проектов насосных станций на трубчитых колодцах с насосами ЭЦВ. Указания являются общими для следующих типивых проектов, разработан-

ных институтом Союзгипроводжоз: Типовой проект "Насосные станции на трубчатых N-901-2-116 KOJODUOX C HOCOCOMU JUB/NODZEMHWE/"

Tunoboú npoekm "Насосные станции на трубчатых ко-N-901-2-115 sadyax c Hacocamu 34B |HasemHole|

Tunoboú npoemm "Насосные станции на трубчатых колодцах с насосами ЭЦВ производительностью до

> 16 м3/ч с бактерицидными установками ОВ-1П "Насосные станции на трубчатых колодиах с насосами ЭЦВ производительностью от

25 до 63 м у с вактерицидными установ-KO.NU OB-50'

Tunaboù npoekm .Насосные станции на трубчатых колод-N-901-2-108 цах с насосами ЭЦВ произвадительностью до 375 м / для вертикального дренажа!

В проекте приведены технические данные по насосному

оборудованию, приборам учета расхода воды, бактерицидным установкам, электрооборудованию, станциям управления и другие необжодимые для привязки данные.

Типовые проекты предназначены для применения при проектировании систем хозяйственно-питьевого, противопожарного и производственного водоснавжения, вертимального дренажа с забором подземных вод из трубчатых колодцев, при проектировании строительного и рудничного водоотлива, для площадочного и законтурного заводнения нефтяных пластов. В наждом конкретном случае необходимо выполнить соответствующию привязку чертежей в части применения приборов для учета расхода воды, аппаратуры автоматического управления агрегатами и электрооборудования, подбора технологического оборудования, а также чертежей строительных конструкций применительно к принятому технологическому оборудованию и местным условиям.

		901-2-106		Π3	
USA JUST N- OOK YA	Voanuce Da	HOCOCHWE CMOHUUU KOJODUOX C HOCOCOM	HO MP	youami B	VX.
TUN POOR			Jum.	Jucm	Vucino
Hay.omo Grey We 21. CREW. YULUK			P	4	
UCROSH HUICED	0 Muy- 1.7	Введение. Основные	Toms	zunnah)	20203
H KONTO UDEMKO	O Start A.	POLOXCEHUR /HOVOJO/	7. A	tunpabe Nacr b	ď

невского СКТВН.

Основные положения

1. В качестве водоподыемного оборудования приняты скважинные насосы марки 34,54; 8; 8: 10 и 12
с погружными электродвигателями мощностью до
65 квт, выпускаемые и подлежащие выпуску специализированными заводами общесоюзной промышленности
по номенклотуре и технической документации Киши-

- г. Принятое в проекте автоматическое и ручное управление насосными агрегатами и бактерицидными установками осуществляется станциями управления, поставляемыми комплектно с обарудованием, и дополнительной аппаратурой, устанавливаемой в шкафах управления.
- з. Герметизация оголовка трубчатого колодца выполнена в соответствии с требованиями СНиПТ-31-74. Серметичные оголовки в комплект поставки не входят. Рекомендуется изготовлять их пользуясь чертежами серии 4-901-16. , Герметизированные оголовки трубчатых колодуев" выпуски 1 и 2.
 - 4. Учет расхода воды предусмотрен скоростными счетчиками жидкости для производительности до 63 м³/ч, дифманометрами-расходомерами для производительности от 120 до 375 м³/ч. В системах дренажа

в большинстве случаев откачивается вода с повышенной минерализацией в связи с этим рекомендуется применять электромагнитные расходомеры, ито предусмотрено в настоящем проекте.

- з Обеззараживание воды в системах хозяйственно--питьевого водоснабжения предусмотрено при помощи бактерицидных установок ОВ-10 и ОВ-50
- в Трубопроводы и фасонные части в пределах насосной станции приняты стальные При привяже проекта к конкретному объекту необходимо учитывать, что водопроводная арматура в пределах насосной станции и бактерицидные установки приняты на давление в сети до LMN a
- т. Строительные конструкции запроектированы из унифицированных сборных железоветонных изделий монолитного ветона и кирпича.
- в. При использовании проектов для систем водоснавжения категория надежности насосной станции

\pm				901 - 2 - 106		<i>[13</i>	
USAN TUCT	Nº OOKYN	Nodruci	Dara	Hacochwe cmanuu n Hasodyax c nacoca,	o mp	убчат Б	6/X
HOY OMA.	ARYWED	22	V-77		Jum.	Jucm	Juemo
J. CHEU.	MUNUH	Comes,	W. 77		P	5	(
UCTOJIH. Toobep. H. Kontp.	Muxeeba MyssMuna Nodosak	ding	17.79 17.79 101.21	Введение. Основные положения	C0103	unpoba	dxo3

определяется в зависимости от характеристики водопотребителя по таблице 51 СН и П II—31—74. При привязке проектов для систем противопожарного водоснабжения, для объединенных систем производственно-противопо-жарного или противопожарно-питьевого водоснабжения насосные станции следует относить к первой категории надежности, их количество должно соответствовать таблице 52 СН и П II—31—74.

я При размещении насосных станций расстояние до других объектов должно объекть и пожаробезопасность сооружений насосной станции.

10. При использовании насосной станции в системах питьгвого, объединенного, производственно-питьгвого или противапожарно-питьгвого водоснавжения вокруг насосной станции необходимо предусмотреть зону санитарной охраны. В случаях, когда насосная станция применяется для нужд непитьгвого водоснавжения, но завор воды насосом производится из горизонта, используемого для хозяйственно-питьгвого водоснавжения, вокруг насосной станции также обязательно устройство зоны санитарной охраны. Проект зоны санитарной охраны выполняется при привяже проекта в соответствии с требованирми (НиПІЗ-5-14.

11 Выбор схемы насосной станции производится в зависимости ат требуемой производительности Аля выбранной насосной станции ипределяется состав технической документации. 12. При привязке проекта допускается:
-применять насогы, быпускаемые ведомственными заводами или иностранных марок, - не установливать дренажный насос при наличии согласия заказчика и органов
местной санитарно-зпидемиологической службы;

-злектрооборудование и устройство овтоматики размещать в наземном помещении, размеры которого определяются при привазке проекта, в тех случаях, когда по местным условиям /суровый климат и пр./ не представляется возможным устанавливать шкафы управления на открытом воздухе;

-при применении подземного варианта распологать дифманаметр в ближайшем отапливаемом здании (на расстоянии до 10 м.)

_					901-2-106		/73	
73.4	Nucm	N-DONYN.	TOOnucs	Jama	Насосные станции н	d mpe	16 Vamb	x
Ho	U N V. Omo	PPOZ	They	V-19		JUM.	Jucm	Jucme
Ve.	CALU.	MUXELOO	luxer	04. 19 11.79	Medeune Couchuse	1000	6	<u> </u>
no	ohep.	Kyss MUHO	dilyr	11.79	Введение. Основные по 10 жения /окончание)	7. 1	vunpob Voca bo	000

Насосное оборудование

В проектах в качестве водоподъемного оборудования приняты насосы типа ЭЦВ; для водоснавжения с электродвигателями мощностью до 65 квт.; для вертикального дренажа низконапорные насосы-с электродвигателями мощностью до 45 квт, серийно выпускаемые заводами Министерства химического и нефтяного машиностроения

СССР и других Министерств. B coombemembuu c FOCTON 10428-11 Hacocu центробежные скважинные для воды с погружным электродвигателем. Общие технические требования" насосы предназначены для подачи воды с общей минерализацией /сухой ocmamon | He bosee 1500 MI/1 | B MEXHUVECKU ObocHobaHHHX случиях допускиется до 2000 мг/л./, с водородным показателем рн от 65 до 9.5; с температурой до 25°С, с содер-ACTHUR M: твердых механических примесей не волее 0.01% по массе; xxopudob HE BOJEE 350 NE/A. сульфатов HE GOJEE 500 MZ/J. сероводорода

234.12-255-30Г; ЭЦВ12-375-30 допускают подачу воды с содержанием твердых механических примесей до 0.05% по массе с общей минерализацией до 2500 мг/л. Аля насосов, работоющих на химически активной воде, на воде повышенной температуры или на воде с повышенным содержанием твердых жеханических примесей в условном обозначении после чисел должны соответственно Dobabsamoca byrbu X, Tp, S.

Hacocw 34, \$10-120-401; 34, \$10-63-401, 34, \$10-160-351;

He bosee 1.5 MI/s.

При подборе насосов следует учитывать потери напора в водоподъемных трубах, так как при испытании насосов на заводских стендах с гидравлической разгрузкой через напорную задвижку они не находят отражения в характеристиках насосов. Напоры, указанные в характеристике насосов, следует считоть от отметки динамического уровня в трубиатом колодис.

Насосы работают с подпором. Под подпаром понима-

ется расстояние от повержности воды /динамического уровня/ до середины входных кромок лопастей рабочего полеса первой ступени насоса Максимальная длина напорного трубопровода в трубчатом колодце должна быть такой, чтобы расстояние

от забая /дна/ до нижнего фланца электродвигателя состовляло не менее 1 метра. Монтож насосов и технологического обарудования дол-

жен производиться в соответствии с действующими нор-Mamu'u npabunamu. Технические данные насосов приведены по номенклатуре 1977года. В связи с постоянно проводимой модификацией конструкций насосов, при привазке проекта необходимо запрашивать подтверждения о выпуске насосов с соответствующими параметрами непосредственно у заводов-изготовителей.

901-2.106 13 HOCOCHUC CMOHUUU HO MPYÕUDMUX NOLOOUOX C HOCOCOMU JUB SU JUCIA A- BONYAL VIODAUCO DOTO TUN PPOE STAN Jum Jucm Jucrob La City of a serior with the property of the cochoe observed the c Constungated xos z. Močrba PODNOM 121

-
Σ
0
O
A.nb
إسلبو
-
۳,
_
<
,
٤.
30
ģ
1
`
~
٠,٨
٠,٠
ò
Įς.

õ проскт Типовой

Онв. А-поил Помись и дита

H	a c o	C					JACK	177	po	ð 6	U 2	a m	11	6	labap pas.	UTHWE HEP W	6	
Марка	Бнутренний Ouamemp oocadнoй калонной nm, nemenee	Бодоподъемный трубопровод, мм	P/em'	Hanop, m sono H	M	Подпор, м, же женее	Марка	Номинальная мощность, квт	Наминальнос напрэжение, в	Наминальный ток, а	603 4	1, NUX %	Apamyocmo nyckoboto mona	Частота браще- ния, об/жин	Длина электронасос ного агрегата, мм	MORCU NO JOHAN OUG- MEMP 3 LEN MODAGO HOLO GLOELOMO, MM	пресат	3 авад- изготовителя
1	2	3	4	5	6	7	8	g	10	11	12	13	14	15	16	17	18	18
1. 3484-1.6-30	100	48×4-A	1.6	30	40	1.0	N3AB-0.4-93	0.4	220	3. 2	0.95	82	3.4	2820	920	95	25	Ο ως κυύ κας ος κωύ
2. 3484-1.6-50	100	48 x 4-A	1.6	50	42	1.0	N 3 A B - 0.7-93	0.7	220	5.3	0.95	65	3.4	2820	1110	95	28	То же
3. 3484-1.6-65	100	48 × 4 - A	1.6	65	41	1.0	{ПЭДВ- 1 -93	1.0	380	2.8	0.75	73	5.0	2800	1200	95	29	,
4. 34.84-1.5-85	100	48 × 4 - A	1.6	85	41	1.0	1 11348-1-93	1.0	380	2.8	0.75	73	5.0	2800	1300	95	30	,
5. 3484-1.6-130	100	48×4-A	1.5	130	40	1.0	1 N 3 A B - 1.6-93	1.6	380	4.2	0.76	76	5.5	2800	1640	95	42	•
s. 3484-25-65	100	48 × 4-A	2.5	65	50	1.0	113,48-1.0-93	1.0	380	2. 8	0.75	73	5.0	2800	1350	95	33	"
7. 3484-4-30	100	4814-4	4.0	30	50	1.0	П ЗДВ - 0.7 - 93	0.7	220	5. 3	0. 95	65	3.4	2820	990	95	25	,
s. 134B4-4-45	100	48×4-A	4.0	45	47	1.0	111348-1-93	1.0	380	2.8	0.75	73	<i>5.0</i>	2 800	1060	<i>g5</i>	29	ľ

				901-2-106		173	
isu Juan	N. BONY.N.	Toonucs	Data	HOCOCHWE CMOHUUU HO N KONOOLOX C HOCOCO.	npyby MU 3	amыx ЦВ	
TUR.	PPOE	95	479		Jum.	Jucm	Sucmo
	gryweb	944	1.39		0	8	1
T.J. CHEG.	MUNUH	GARRY	04.79			0	<u> </u>
DC170. H.	BONKODO	Back	W 79	Terningerada Tanakmeni-	Comze	แกลกหักกิ	2003
TWOOEP.	KU30 NUHO	Harry.	IV. 79	cours vacach / unude	0.000	Van K	~
H. KOHTO	Ubemkob	The said	122.79	Texhuveckan xapakmepu- cmuka hacacah havasa)	7. 1	UCRU	u .
		Maria and A			1	DAUGA	121

16531-01

•	Ξ
٠,	
	,
	-
	_
	_
	_
	v
	~
	1
	301-
	- 3
	•
	٩
	١,
	٠,
	6-100
	•
	0
	•
	たいり ついに
	٠,
	-
	a
	Ξ
	C
	ā
	-
	_
2	3
-	NO CO
	C
	Ξ
	р
	-

E	
2	
Ď	
E	
9	
B	
100	
S	
100	
6	

1	2	3	4	5	б	7	8	g	10	11	12	13	14	15	16	17	18	19
9. 13ЦВ4-4-10	100	48×4-A	4	70	50	1.0	1ПЗДВ-1.6-93	1.6	380	4. 2	0.76	76	5.5	2 800	1180	95	33	Ο ω ς κυύ Η α ς ο ς Η
10. 34,35-4-125	122	yK-40	4	125	50	1.0	ПЭДВ 2.8-114	2. 8	380	8.3	0.70	74	6.0	2850	1810	116	75	3 σραύς κυύ Μεχσηυνες κυς
H. IUB 5-63-80	122	YK - 40	6.3	80	58	1.0	ПЗДВ 2.8-114	2.8	380	8.3	0.70	74	<i>5.0</i>	2850	1600	116	15	To me
12. IUB6-4-90	150	60 × 5-A	4	90	60	1.0	N3AB 2.8-140	2.8	380	7.0	0.82	74.5	6.0	2850	1545	145	85	Kuwu nebenuú nacocywú um. Komobenoco
13. 34,86-4-130	150	60×5-A	4	130	60	1.0	ПЭДВ 2.8-140	2. 8	380	7.0	0.82	74.5	6.0	2850	1750	145	g 7	То же
14. IUB 6-4-190	150	60×5-A	4	190	60	1.0	ПЭДВ 4.5-140	4.5	360	10.7	0. 83	17	6.0	2850	2155	145	112	,
15. 33ЦД6-63-60	150	60×5-A	6.3	60	δ4	1.0	ПЗДВ 2-140	2.0	380	5.2	0.81	12.5	6.0	2850	1350	145	10	Ο Ψ C Κ U Ú Η Ο C O C Η ΟΙ Ú
16. 234,86-63-85	150	60 × 5 - A	6.3	85	67	1.0	ПЗДВ 2.8-140	2. 8	380	7.0	0.82	74.5	6.0	2850	15 50	145	85	Kuwu nebekuu nocochow u.m Komobekoro
П. 33ЦВ6-6 3-85	150	60×5-A	6.3	85	68	1.0	ПЗДВ 2.8-140	2. 8	380	7. 0	0.82	74.5	6.0	2850	1590	145	78	Ο Ψ C R U Ú Η Ο C O C H Ы Ú
18. 134,86-6 3-125	150	60 × 5-A	6.3	125	63	1.0	1N3AB4.5-140	4.5	380	10.7	0.83	77	6.0	2850	1800	145	102	Kuwuhebekuù Hacacholú um Kamabekaza
19. 33486-63-125	150	60×5-A	6.3	125	68	1.0	4113AB4.5-140	4.5	380	10.7	0.83	77	6.0	2850	1960	145	86	Ο ως κυύ κας ος κωύ

##=	#			901-2-106		/13	
SA JUST Nº 00	KU W	OUNUED	2000	Hacochwe cmanyuu na nosodyax c nacoo	тру	בון היים	τ
TUN PD		20		NOSOUGOZ E NOCOE		Jucm	Мисто
OY. OMO SIKY	weh le		7 %		0	0	1
LOREY TOU	DOM S	Mening	4.77	-	1-		
gobep Ky3	NUNO G	114	N.79	Техническая характери- стика насосаб (продолжение).	2.4	zunpob Ock b	00x03
- Automotive in	WAGO W	1		INDUDUA SICEHUE).		TOPNO	
				165	31-0	,	

Anb6om 1	
301-2-108	
проект	
Типовой	

THE A NOOS (TOTINGS O DOME)

1	2	3	4	5	б	7	8	g	10	11	12	13	14	15	16	17	18	19
20. ЭЦВ 6-6.3-175	150	60×5-A	6.3	175	1.0	62	N3A B 5.5-140	5.5	380	12.7	0.83	7.9	6.0	2850	2012	145	112	Kuwu nebekue ngcoensy um. Komobekozo
21. 34,86-63-250	150	60×5-A	6.3	250	1.0	62	113458-140	8	380	18.3	0.83	80	6.0	2850	2491	145	128	To see
22. 134,56-10-50	150	60×5-A	10	50	1.0	65	111348 2.8-140	2.8	380	7.0	0.82	74. 5	6.0	2850	1400	145	73	,
23. 34,56-10-80	150	60×5-A	10	80	1.0	70	111348 4.5-140	4.5	380	10.7	0.83	77	6.0	2850	1580	145	95	,
24. 134,136-10-80	150	60×5-A	10	80	1.0	70	N31B 4.5-140	4.5	380	10.7	0.83	77	6.0	2850	1570	145	82	Ошский насов ный
25. 34,58-10-110	150	60×5-A	10	110	1.0	67	N3AB 5.5-140	5. 5	380	12.7	0.83	7.9	6.0	2850	1820	145	98	Kuwu neberu û ngeochwa un Komobero eo
26. 13456-10-140	150	60×5-A	10	140	1. O	68	311345 8-140	8	380	18.3	0.83	80	6.0	2 8 50	2060	145	116	Toxe
27. 1348-10-185	150	60×5-A	10	185	1.0	65	3 N 3 A B 8 - 140	δ	380	18.3	0.83	80	6.0	2850	2330	145	121	,
28. IUB6-10-235	150	60×5-A	10	235	1.0	71	ПЗДВ 11-140	И	380	24.8	0.83	81	6.0	2850	2740	145	140	,
28. 334,56-16-50	150	73 = 5.5-A	16	50	1.0	89	ПЗДВ 4.5-140	4.5	380	10.7	0.83	77	6. O	2850	1500	145	77 5	Ο Ψ C Κ U Ú Η Ο C O C Η Ы Ú
30. 334B6-16-75	150	73 × 5.5 - A	16	75	1.0	10	ПЭДВ 5.5-140	5.5	380	12.7	0.83	79	б. <i>0</i>	2850	1710	145	85	Toxe
31. 3UB8-16-110	200	89×6.5-A	16	110	1.0	68	AAN 180-8/2	8.0	380	24	0.83	80	6. O	2850	1655	186	180	Тевастопольска злектроремант ный

		_	401-2-106		ПЗ	
USM JUCIT N- CONYM	Поопись	Ildmo	HOCOCHOIC CMAHUUU KOJOOYAL C HOCOCA.			
TUN PPOZ	96	1-19		Jum.	Juem	Jucmo
Havomo gryweb Cy. cney. Жилин	Grain	V. Z		1	10	
UCROSH DOSKOGO	apais	V 79	Texhuveckan xapakme-	1003	zunpob V a c K b	od xo.
A TOWARD USEM KOL	1	oğ,	ристика насосов /продолжение/	2.1	y o c Ko	0
					POBMO	111/2

	1	2	3	4	5	6	7	8	g	10	11	12	13	14	15	16	17	18	19
-	32. 334B8-18-140	200	89165Д	18	140	85	1.0	N3AB11-18U	11	380	24.2	0.83	83	5.5	2850	1795	186	150	Южный гидрав- лических машин
HIPOOW	33. 34,B 8-25-70s	200	89×6.5-4	25	70	10	1.0	N3AB 11-180	11	380	24.2	0.83	83	5.5	2850	1108	186	142	Jededa Heruú Mawuhocmpou- Messholú
	34. 34,88-25-100	200	89×6.5-A	25	100	70	1.0	N34B 11-180	11	380	24.2	0.83	83	5. 5	2850	_	186	185	Mededancruu Mamuhocmpou- menshou
1	35. 34B8-25-100	200	89×8.5-A	25	100	70	1.0	411341311-180	11	380	24.2	0.83	83	5.5	2850	1832	186	145	KUWU NEBERUÚ NGCOCHDIÚ UM KOMOBEROZO
	36. 34B8-25-150	200	89×8.5-A	25	150	85	1.0	1113AB16-180	16	380	3 S. 6	0.82	84.5	6.0	2850	2460	186	202	To me
	37. 34B8-25-150XTps	200	89×5.5-A	25	150	65	1.0	IN3AB22-180H	22	380	48.5	0.80	86	7.0	2 900	2698	186	355	,
	38. 34B8-25-195	200	89×6.5-4	25	195	68	1.0	3N3AB 22-180	22	380	48.5	0.80	86	7.0	2900	2830	186	246	,
	39. 13488-25-300	200	114×7-A	25	300	68	1.0	ПЭ <u>ДВ</u> 32-18С	32	380	66.5	0.80	87	8. O	2 900	4330	186	390	HEPEMX OBCRUS MUUU HOCMPOU MENSHOIÚ
	40. 34,58-40-60	200	114×7-A	40	60	69	1.0	AAN 180-11/2	11	380	26	0.83	87	5.5	2850	1598	186	162	Себастопольска злектро - ремонтный
	41. 3488-40-65	200	114×7-A	40	65	68	1.0	П3 ДВ [1-180	11	380	24.2	0.83	87	5 . 5	2850	2245	186	207	Lepemzobekuu Mawuhoempou- Merrhoiú
	42. 34.88-40-90	200	114 × 7-A	40	90	69	1.0	AAN180-16/2	16	380	40	0.80	86	б. О	2850	1981	186	225	CEBUCMONUJOCKE JJEKMPO- PENOHMHOLÚ
	43. 34,88-40-165	200	114 x 7-A	40	165	70	1.0	N3AB 32-180	32	380	66.5	0.83	86	8.0	2 900	3465	186	360	Черемховский мишинострои- тельный
	44. JUB10-63-401	250	114 x 7-A	63	40	74	<i>1.0</i>	ПЭДВ11-180r	Ħ	380	24.2	0.83	81	5.5	2850	1980	235	220	Kuwuhebenuu Hacochbiú um Komobekoro
									Ħ				+		901 -	2 -	106	-	/73
-									list.	UCT V- 01	OKYM.	/loanu	co Dai	A EO	LOCHO	ne c	M O A	iguu Coco.	NU JUB
									HOU.	omo O K Lu M C IN BO	YWLD IJUH	Sme	7 F.Z		HILLIPP	+110	THAN	KMe-	Dum. Jucm J.
									A.ro	SEP ZUS	BAUH.	0 7/4	1 1.7. 1 126	puc	muro npo	ON X	COCO	10/	lowszunpobods z. Nockó a

Coroseunpobodxos 7. No créa POPNOM 125

AJILGOM
901-7-106
проект
ПОВОЙ

	1.106
	IIDO CKT
2	ІИПОВОИ

	_
dma	
11.4.11	
Tunn	
Short.	
1 411	5

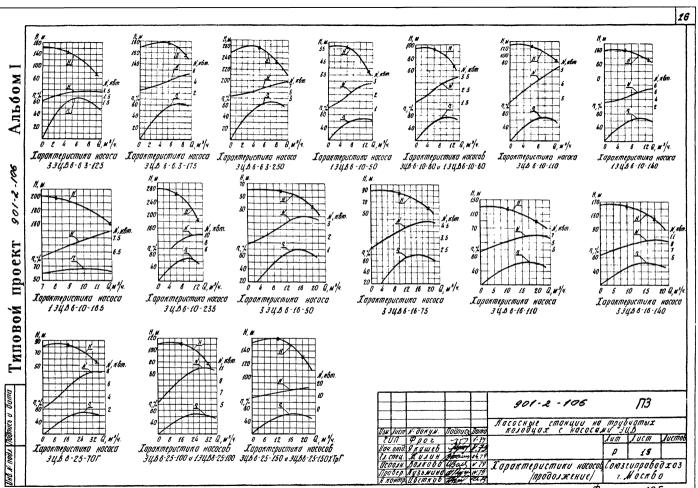
1	2	3	4	5	6	7	8	g	10	H	12	13	14	15	16	17	18	19
45. 134B10-63-65	250	114×7-A	63	65	10	1.0	П3 <u>Д</u> В22-219	22	380	47.4	0.83	85	6.0	2 900	1925	235	271	Kuwu nebekuu nacocnoù um Komobekoro
46. 34B 10-63-110	250	11417-A	63	110	74	1.0	ПЭДВ 32-230	32	380	66.7	0.84	86.5	7.4	2900	2425	235	348	Nymaucekuú szermpowe za nu veckuú
47. <i>!3ЦВ10-63-110</i>	250	114×7-A	63	110	74	1.0	ПЗДВ 32-219	32	380	56	0.85	86.5	6.0	2900	2170	235	310	Kuwu ne bekuú na coennú um. Komobekoro
48. 13UB10-63-150	250	114×7-A	63	150	70	1,0	ПЗДВ 45-219	45	380	92.5	0.85	87	6.5	2900	2605	235	400	AUWUHEBERUY H O C O C H &I U UN ROMOBEROLO OWERUU HOCOCHHI
49. 13 UB 10-63-180	250	114×7-A	63	180	70	1,0	ПЗДВ 45-219	45	380	92.5	0.85	87	6.5	2 900	2755	235	406	Huwuneberuú HOCOCHSIÚ UM. Komoberoco
50. 34B10-83-270	250	114×7-A	63	270	74	1.0	N3,4B 65-230	65	380	132	0.85	88	9.5	2 900	3790	235	727	Aymauceroù 3)ermponeza- HUVECRUÙ
51. 3 <i>4,B 10-120-401</i>	250	168 × 6-A	120	40	77	1.0	134822-2191	22	380	47.4	0. 63	85	5.0	2900	1930	235	258	Namuù Lubpubju Vecrua juduun /r. Depogner/
52. 13UB10-120-60	250	168 × 9-A	120	60	74	1.0	N3AB 32-219	32	380	66	0.84	86.5	7.4	2 900	2030	235	344	Toxe
53. 34B10-160-151°	250	188 × 6 - A	160	15	78	1.0	ПЭДВ 11-1801	11	380	24.2	Ú. 83	83	5.8	2850	1778	235	180	,
54. 3 <i>ЦВ 10-160-351</i>	250	168×6-A	160	35	80	1.0	N34822-2191	22	380	47. 4	0.83	85	8.0	2900	1760	235	275	,
55. 34 B10 -160-65	250	168 × 9-A	160	85	74	10	ПЭДВ 45-230	45	380	92	0.84	87	8.0	2900	2190	235	408	RUWUHEBERUU HACOCHOIY UM KOMOBEROZO
56. 34B12-160-65	301	16819-1	160	65	74	1.0	AAN 213-45/2	45	380	95	0.84	87	8.0	2900	2000	281	440	Севастопольские электроремонтны

					901-2-106		/13	
[[3]0	Juci	N-DOKYM	Подпись	Jara	HOCOCHWE CMAHUU HA ROJODYAX C HACOCA	mpyo M U	UB CAR	
Val	1 000	ARYWEL	20	1.79		Jum	Jucm	Jucrob
11	razu	2 IIIIN	don	04.79		P	12	
Uch Apr	TOSH. TOEP.	BOINOOD LYSEMUN LOEMNOO	My	V 19	Texhuveckag xapakmepu- cmuka nacocob: npogoskenue/	10103	tunpobo	Oxos

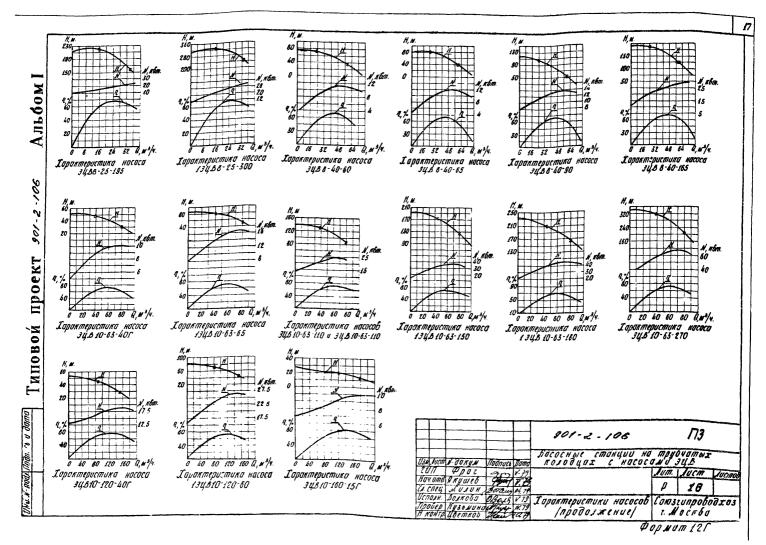
WORMOM 125

Аль 6
301-2-108
проект
Типовой

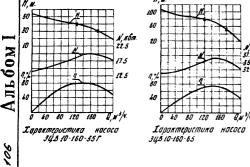
Инб.У-подл. Подпись и дата


1	2	3	4	5	6	7	8	g	10	11	12	13	14	15	15	17	18	19
57. 2 <i>34,B12-1</i> 60-65	301	168 : 9-1	160	65	74	1.0	N3AB45-270	45	380	93	0.84	87	6.5	2920	2000	281	400	Я ишиневский насосный им Котовского
58. 3UB12-160-100	301	108 = 9-1	160	100	74	1.0	N3AB 65-270	65	380	130	0.86	88	5.8	2920	2235	281	470	Kuwuneberuu ne cochou un Komob crozo, Oweruu noi
59. 34.B12-210-25	301	166 x 9-A	210	25	73	2.0	N3AB 22-230	22	380	47 2	0.83	85	8.3	2 900	1410	281	250	Лишиневский насосный им Котовского
60. 34.B12-210-55	301	178 = 8-4	210	55	74	2.0	1113 45 -45-210	45	380	93	0.84	87	6.5	2920	1750	281	395	To see
61. 2 3 Y B12-210-85	301	180×7-A	210	85	73	2.0	N3AB 65-230	85	380	132	0.85	88	9.5	2920	2725	281	563	MYMOUCERUU 3.JEN MEXCHUVECKUU LEBUCMONOJOCKUU 3.JENMPODENONTHO
62. 234,B12-255-301	301	219 × 6	255	30	72	2.0	2NJAB 32-219	32	380	66	0.84	86.5	7.4	2 900	3120	281	291	NACHOIÚ LUDDOU NUVECKUX MOMU! / DED DAHCK
63. ЭЦД 12-375-30	301	219×6	375	30	71	6.0	2 N3AB 45-230	45	380	92	0.85	87	8.0	2900	2180	281	360	Kumu nebenuú na goc n piú um. Komobenoz

	1			901-2-106		/13	
	M N-OOKYN	Viocinuce	IIOMO	Насосные стонции на т полодцаж с насосам	pyby	B	
	PPOZ	257	V-79		Jum.	Jucm	Vyemo
71 000	11 7111111	Tameus.	22 70		p	13	
(IDOBE H. KOH	P. Kysomuni P. Kysomuni P. K. Bemna	Mary	v 79 vv.79 v.a. ze	Техническая характери стика насосов/акончание/	CO103	unpobol Wocn b	0x03



ритов п ост лов гран 🖈 у


16531-01

Формат 12Г 16531-01

100

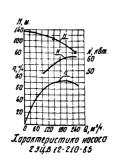
проект

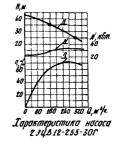
Типовой

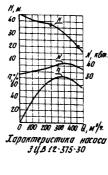
Инб.к. подл. Подпись и дата

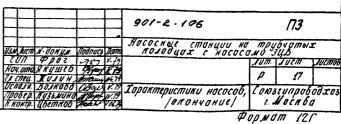
N3/V 0 50 100 150 200 U, N5/V CO JOPANNEPUCMUNO NOCOCOB 34512-160-65 U 234512-160-65

H, M.


40 9, m²/1 9000 Xa,


80 60


0 60 120 180 240 Q, m³/4.


**I apon mepucmuno nacoca

3 4.5 12 - 210 - 55

16531-01

θυσφρατιού.

В спомогательное оборудование Для измерения расхода воды в проекте приняты: счетчики типа ВТ, выпускаемые Кирововадским приборостроительным заводом; типа УВК, выпускаемые Луцким приборостроительным заводом; дифманометры--расходомеры, выпускаемые заводом "Теплоконтроль" г. Казань и поставляемые в комплекте с вескамерной

При демонтаже счетчика и расходомера на проберку или ремонт взамен устанавливается фланцевый патрубок соответствующей длины и диаметра. В насосных станциях, используемых для вертикального дренажа, учет воды, как правило, не предусматривается.

Насосы с двигателями мощностью выше 16 квт. поставляются заводом с датчиками сухого хода, монтаж которых ведется в соответствии с заводской инструкцией.

В насосных станциях, используемых в целях водоснавжения, для периодического замера уровня воды в трубчатом колодия предусмотрено применения электроуровнемера 43-75, выпускаемого Ремонтно-Механическим экспериментальным заводом, г. Ленинград.

При приврзке проекта могут быть использованы электроуравнемеры другого типа.

Для удаления воздуха из напорного трубопровода предусмотрен вантуз с задвижской. Отхлючение вантуза от сети или установка на нем специального воздуховчистительного фильтра производится при необходимости в соответствии со специальными требованиями.

В насосных станциях, предназначенных для водоснавжения, в цегах производства провных откачек воды из трубчатого колодца, а также непосред-

				901-2-10	6	113	
USM JUCK V.	OOKY M.	Лодпузь	A a ma	Насосные станции на п цах с насосами	7 P Y 6 41 3 U B	IMBIX EL	100.
HOY omd A K	200	90			Jum	Juem	Autmo
	UJUA	Tun.			<i>P</i>	18	
Venoun Aus				Вспоноготельное	6003	zunpob ock bi	0 x 03
MEDNIP 46	30 M U H B EM K D h	My		Вспоногательное оборудование (начало)	7. M	ockbi	7
Z17.						Mam: 1	25

ственной подачи се в передвижные емкости, на напорной трубе за оголовком предусмотрен отвод с зодбижной

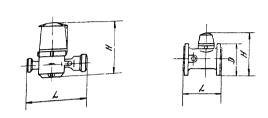
Откочко дреножных вод из подземных комер осуществляется насосом BEC-1/18. выпускоемым заводом Аивгидромош" г. Ливны.

Для контроля уровней в дренажном приямие на специшлоной подставке установливаются электродные датчики уровня, входящие в комплект регулятора-сиснализатора уровня типа ЭРСУ-3.

Обеззараживание воды для хозяйственно-литывого водоснавжения предусмотрено бактерицидными установками ОВ-1П, ОВ-50, выпускаемыми серийно Загорским машиностроительным заводом.

Пуско-регулирующая аппаратура в зависимости от мощности используемых ламп монтируется или непосредственно на камере вактерицидной установки (ОВ-1П/ или в специальных шкафах управления и сигнализации (ОВ-50/

Условия применения бактерицийных установок и расчет их произвадительности даны в ,Технических указаниях на просктирование, монтаж и эксплуатацию установок для обеззараживания вады вактерицийными лучами, разравотанных отделом научно-технической информации АКХ, Москва 1975.


Аля съроса промывных вод при пуске бактерицидных установок и ремонтных работах на напорном трубопроводе от насосной станции к водопотребителям должен быть предусмотрен колодец с выпуском

=				901-2-106	/13	
13.0 100	N- OORYN	VIOONUCI	nara	Насосные станции на колодиах с насосами	трубчать НИБ	æ
TUT Hav. oma	PROCE	30	V. 19		Jum Jucm	Jucm
Zs. cney Uchosh	AUS UH	Aust	04.79	Commence of the second	1 (23	7.3 -
A KOHTP	LUSO MUHO	der,	N.79	Вспомогательное обору- дование (продолжение)	1. Mocno	g uu x u

108

Сабариты скоростных счетчиков жидкости

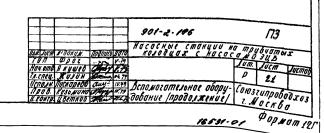
BT-50; BT-80; BT-100; BT-150

4BK-40

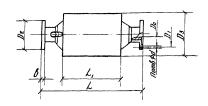
POSMEPOL,	M M.	Macca,	Примечание
CUEMUURO L D	175	4.0	Ιγικού προδορο
9 B K-40 330			стриительный з д
35"	214	6.8	Kupobobaderui
BT-50 155 100	250	12.0	приворострои-
$\frac{b7.80}{b7.80}$ $\frac{205}{215}$ $\frac{193}{215}$	270	14.0	Mesonoiú
17-100 213	329	24.8	30800
BT-150 262 260	L		

BINHHE

\mathbb{Z}_y	/ "	'pacxo	U3NEPEH By M3/4.	-,-		4y6¢m6U-
	CULMUNO	HUXCHUÜ	Bepx Hui	На минальн	m³/cym.	MeseHOCMU ^M /4
40	4.BK-40	0. 17	10.0	6.3	10	0.1
50	BT-50	1.6	30	15	150	0.7
80	BT-80	3	84	42	420	1.2
100	BT-100	4.5	140	10	700	2.0
150	BT-150	7. 0	300	150	1500	3. O


Технические требования "Верхний предел измерения по расходу № 1/4. допускается не волее 0.54 в течение суток г Счетчики рассчитаны на давление воды в mpybonpobode do 1MMa

\pm		-		901-2-106		/73	
130 1007	N-OORYN	Поопис	Dan	HOCOCHWE CMOHYUU H.	o mpe	1040Mbl	x
Hoy ami	ONHUER	22	1.19		Jum	Juem	Nucme.
1 chey	MUJUH,	toming	14.70		P	20	
COO IH.	Hurupopubl	Elux,	W.79	Benowarameshune abone	1700		2-3-
P. KONTO	4. Bemnob	The state of	N 19 W 29	Вспомогательное обору дование [продолжение,	1000	u o c n b	ovoxo O


Albom 6 проект Типовой

ине м-поди Подпись и дата

Данные по диафрагмам и дифманометрам DUDWONOMEMP FOCT 18 140-72 Диафрагма комерная 1000040 Mapro трубопро-Типораз-Ориенти-BepxHui Marcunasonpedes мер по ровочный надопустино сосо, сужоющим ROUMENOHUE TOCT DUAMENT MAS NOMED 14321-73 OMBEROUND B Mun HOCOCO WEOJN M 3/4 yempaú -N3/4 embou, un 150-85 207 AK 25-200 141 ACN-781, H 160 34810-120-405 0.32 Lyxanower yempoùembo-134810-120-60 150-80 207 141 0.32 160 диафрагма камерная 345 10-160-351 180-120 207 126 0.92 200 нормальная на условное 34B 10-160-65 175-125 207 126 0.92 200 давление до 2.5 МПа. 201 34812-160-65 200-100 126 0. 92 200 Вифманометр, показы-34812-160-100 200-115 207 126 0.92 200 вающий с интегратором. 34812-210-25 275-150 281 0.92 4K25-250 158 320 3UB 12-210-55 270-140 261 158 0.92 320 234112-210-85 250-150 251 0.32 176 250 234812-255-301 320-160 261 165 1.40 400 34812-375-30 480-250 313 AN 25-300 206 0.82 500

Сабариты датчиков для электромагнитных расходомеров типа 4 рим

Tun	Tun	Du	CRECH	UE CH	орост	U 06	CHE	Posee
расжадамера	damanka		1.25	1.6	2.0	2.5	3.2	4
1000 150 1				ve np				
4 PUM-150-1								
4 PUM-21:0-1	DPH-200-1	200	125	160	200	250	320	400

HOSHOUCHUE:

Инбукционные расходомеры типа 4 ДИМ предназначены для непрерывного автоматического измерения расхода воды с температурой до 50° в трубопроводих с рабочим давлением до 2.5МПа

NA n/n	Tun Domyuka	LMM	L, MM	Di nn	Dz ma	D3 mm	Dam	d mm	П	6 mm	Bec,
1	DPH-150-1	710	490	250	300	380	150	24	8	30	85
2	DPH-200-1	830	580	310	360	460	200	24	12	32	135

KONDIEKMHOCMO:

1. Damuur muna DPH-1 wm /b coombemcmbuu c sakasom/. 2. Πρυδορ ποκασωβαιοιιμού ΠΠΡ-1-1 μm.

3. Устройство соединительное типа УС-1.

4. Mrym

5. Принадлежности и запчасти согласно паспорту

в. Техническое аписание и инструкция по эксплуа-MOUNU YNA 3-01-1 3K3.

т. Техническое описание и инструкция по эксплуатации ТО-1экз.

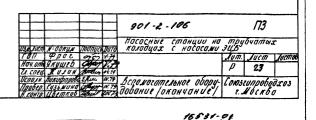
8. Формуляр-1 экз.

			901-2-106		/73	
Jan Juet Nº Ooryn	noonuce	nara	HOCOCHWE CMOHYUU HO	mpy	gyambia B	<i>-</i>
TUN PROZ	700	1.19		Jum	Jucm	Jucmo
TECNEY KULUH	Amay	7.79 4.79		P	22	
UCAONH HUKUDOPOO ADOO KY36NUHU	Hey of	W 79	Вспомогательное обору- дование /продолжение	Cows	zunpobe	Oxos
H. FUHIP VI DEMINOO	Trees?	01.74	OUDUHUE JIIPOOOSMEHOO		NOM .	

16531-08

Альбом

pacxodomepob muna NP-51


nomb.ed

Габариты преобразователей для индукционных

Τυπ	Покрытие	Po	3411	7 h/ M	M.		
npeobpasobamess	трубы	۷	A	\mathcal{I}	1,	d	П
ПРИ-150	PESUHO dosuyoetanoba 3 M a s b	810	370	250	300	27	8
ПРИ-200	резина полиуре- танобая	990	430	310	360	27	12

Tun	Tun	Dγ	Средни	ed of my	mu dby	DEEHUR ONEE	USMEPS	NOU
pacxodo.	ποιοδησ	MM	1.25	1.6	2.0	2. 5	3.2	4.0
Mepa	306011.19		Beps	HUE NO	edesu .	измерен	ua pacs	coda, #3/4
411-51	NPH-150	150	80	100	125	160	200	250
	NPH-200	200	125	150	200	250	320	400

Назначение:
Индукционные расходомеры типа ИР-51 предназначены для непрерывного овтоматического измерения
расхода вады с температурой до 50° в трубопроводах
с рабочим давлением до ІМПа при диаметре 150 мм и до
2.5 МПа при диаметре 200 мм.

Электрообору дование и автоматика Электросна вжени в

Электроснавжение одиночных насосных станций с погружными насосами типа ЭЦВ, комплектуемыми электродвигательни типа ЛЭДВ мощностью 0.4 да 65 квт, напряжением 380В, может осуществляться двумя способами:

1. ПО ЛИНИИ НОПРЯЖЕНИЕМ 6-10×В. 2. ПО ЛИНИИ НОПРЯЖЕНИЕМ 0.4/0.23×В

При электроснавжении по первому спосову у насосной станции должна быть сооружена понизительная комплектная трансформаторная подстанция типо КТП $\frac{6.10}{0.4}$ кв. Прилагаемые на стр. 26-32 таблицы позволяют выброть комплектные трансформаторные подстанции и станции управления в зависимости от мощности насосного агрегата.

Выбор мощности трансформаторов произведен исходя из допустимого снижения напряжения в сети при пуске электродвигателей в соответствии с техническим описанием и инструкцией по эксплуатации и монтажу. "Электродвигатель погружной асинкронный трежфазный ПЭДВ." | Кишинев, 1976 |

При расчете учитывались: Влина кабеля от трансформатора до станции управления (ШЭТ/-50м; погружного злектродвигателя-максимальная по заводской поставке /зависит от напора насоса/; эктивное и реактивное сопротивления трансформатора; нагрузка собственных нужд насосной станции.

При привязке проектов для каждого случая выбор мощности трансформаторов необходимо уточнить расчетом, исходя из конкретных условий.

Защита и управление.

Погружные насосы типа ЭЦВ комплектуются асинхронными электродвигателями типа ПЭДВ и станциями управления типа ШЭТ.

		901-2-	106	//3
USN JUST N- BOKYM. FIND POZ HOUSTO RKYWEB ZJ. CTEU, SKULUH	ary Britis		Jum P	29
Исполн. Пискарева Пров. Кузьмина КконтрИветков	Kul	З з г к трого ворудован и овтоматика / нача ировал: Астя		гипрободхоз ОХ к б а м в т : 12

Ина л: подл. Подпись и дата

Станции ШЗТ обеспечивают зощиту электронососов от токов короткого замыкания и перегрузки.

В комплекте с датчикоми уровней вышеуказанная станция составляет систему САННА, посредством которой осуществляется автоматическое и телемеханическое управление насасом.

Ноличие станции управления ШЭТ на каждой нососной станции создает возможность осуществить автомотическое управление группой насосных станций или телемеханическое - с диспетчерского пульта.

Быбор варианта управления произбодится при прибръке проекта. В типовом проекте представлены решения по автоматизации насосных станций следующего применения:

а/станция работает на водонапорную башню или резербуар; в/станция работает на водопроводную сеть; в/станция для водоснавжения с вактерицидными установками типа ОВ-1П или ОВ-50.

Дополнительная аппаратура управления основным оборудованием и аппарутура управления вспомогательным оборудованием устанавливается в шкафах, изготовляемых по чертежам задания заводу.

От опление и освещение. В насосной станции необходимо поддерживать температуру не ниже +5°С.

Для отопления на зеиных помещений насосной станции в холодное время в проекте приняты электрические печи типа ПЭТ-4 с автонатическим управленисм от датичка температуры типа ДТКБ-53.

ем от осточава температуры топо д 116 года. Рабочее асбещение наземных строений принята на напряжение 220В переменного така.

Освещение камер подземных насосных станции запроектировано на напряжение 12В переменного тока.

E					901-2-105 113
7/3W	Juen	Nº OOKYM.	//gdnu <u>c</u> i	Дата	насосные станции на трубчатых колад- цах с насосами ЭЦВ
		PROE PRYWED MUJUH	900		D 25
Util TID (олн. Бер.	Чапурская Вузьмина	UPAT		Электроорорудорания Союзгипрородкоз и ортоматико (окончания) , Москва
17. 6	UHIP	Цветков	ZIDY	L	a antitomoniara larandanas/ 1 m a c k a a

	Марка	KO HO	nepucmu ucoco	Joekmen 3.1ekmpod			Moronodba rabe	16	Мип станции	П и п прансформа-	Mun u Nowhocmb	прансфор-	Марка и сечение питающего
	нососа	Npousb. M³/4	напор,	Пип	MOUH.	Напр.	Пип	Kosuvecmbo M	управления	mophoù chanua	трансфор- матора	Mamopa N.S.A	nobeig, MN ²
	1	2	3	4	5	δ	7	B	g	10	11	12	13
	1. 3484-16-30	1.6	30	ПЭДВ 0.4-93	0.4	220		105	CAYHA -1-1	KTN-25/8-10	TM-25/6-10	6-10/0.4/0.23	ANSG 3×6+1×4
	2 34,84-1.6-50	1.6	50	П ЭДВ 0.7-93	0.7	220		165	CAYHA-1-1	KTN-25/8-10	TM-25/6-10	6-10 /0.4/0.23	ANB6 3×8+1×4
	3. 3UB4-1.6-65	1.6	65	£ПЭДВ 1-93	1	380	BNB	210	CAYHA-1-1	KTN-25/6-10	TM-25/8-10	6-10/0.4/0.23	ANB63×6+1×4
	4 3484-1.6-85	1.6	85	£ ПЭДВ 1-93	1	380	BNN 1.5	285	CAYHA-1-1	KTN-25/6-10	TM-25/8-10	6-10/0.4/0.23	ANB6 3×6+1×4
	5. 3484-1.6-130	1.6	130	<i>1ПЭДВ16-</i> 93	1.6	380		420	CAYHA-1.6-1	KT11-25/8-10	TM-25/6-10	6-10 /0 .4/0.23	ANB5 316+114
	6. 34B4-2.5-65	25	65	ПЗДВ 1-93	1.0	380		210	CAYHA-1-1	KTN-25/8-10	TM-25/6-10	S-10/0.4/0.23	ANB5 3×8+1×4
	7. JUL 4-4-30	4.0	30	ПЭДВ07-93	0.7	220		138	CAYHA-1-1	KTN-25/8-10	TM-25/6-10	<i>6-10 0.4 0.</i> 23	ANB6 3×6+1×4
L	8. 134B4-4-45	4.0	45	1 <i>N3LB</i> 10-93	1.0	380		180	CAYHA-1-1	KTN-25/8-10	TM-25/8-10	8-10/0.4/0.23	ANBB 3×6+1+4
	9. 13484-4-70	4.0	70	<i>[ПЭДВ16-93</i>	1.6	380		255	CAYHA-1.6-1	KTN-25/8-10	TM-25/8-10	6-10/0.4/0.23	ANB5 3×6+1×4
											901 · 2		<i>173</i>
									2011 POOR	1.39	MOJOBUAX	C HOCOCOA	O MPYÓYOMUX U 3 Y B [JUM.] JUCM
									Hav omd Rryweb (1. caeu 2. gozopoet Uchanh Racapes Inaben (ununganya Henro Ubemko	Marca, 467	สล์มบนส boli การสลังเหมล	бора станц /начало	P 26 UÚ Corostunpobodz
									I Some 1 Guemmon	1 -7)3'	<i>F</i>	7	POPMAN 121

	ł
Альбом	The state of the s
301-2-108	
проект	The second name of the second na
Типовой	The same of the sa

	oamo
ı	s١
1	/odnuce
t	S
ľ	- 100
	CHA

1	2	3	4	5	6	7	8	g	10	11	12	13
10. 34,85-4-125	4.0	125	ПЗДВ2 Б -Ц4	2.8	380	BAB BAA usu	420	CAUHA-2.8-1	KTN-25/8-10	TM-25/6-10	5-10/0.4/0.2 3	ANBB-3=6+1=4
U. 34B 5-83-80	6.3	80	ПЭДВ 2.8-114	2.8	380		295	CAYHA - 2.8-1	KTN-25/6-10	TM-25/8 - 10	6-10/0.4/0.23	ANB5-3=6+1=4
12. 3486-4-90	4.0	90	<i>ПЭДВ28-1</i> 40	2.8	380		270		KTN-25/6-10	TW-25/6-10	6-10/0.4/0.23	Alio5-3=6+1=4
13. 348 6-4-130	30÷5.6	100÷140	ПЭДВ2.8-140	2.8	380	B11B	420	CAYHA-2.8-1				
14. 3UB 6-4-190	4.0	90	ПЗДВ 4.5-140	4.5	380	טבט 12 בא אחת ב	570	CAYHA - 4.5-1	KTN-25/6-10	TM-25/6-10	8-10/0.4/0.23	ANB6-3=6+1=4
15. 23425-03-85	6.3	85	П 3.4.1 5 2.8-140	2.6	380		225	CAYHA-2.8-1	KTN-25/8-10	TM-25/8-10	6-10/0.4/0.23	ANB5-3×6+1×4
18. 13486-6.3-125	5.3	125	17734.84.5-140	4.5	380		375	CAYHA-4.5-1	KTN-25/8-10	TM-25/6-10	6-10/0.4/0.2 3	ANB5-3=6+1=4
17. 3 34,5 6-6.3-60	6.3	60	П ЭДВ 2-140	г	380	BNB BNN 2.5	210	CAYHA-2-1	KTN-25/6-10	TM-25/6-10	6-10/0.4/0.23	11135-3×6+1×4
18. 33486-6.3-85	6.3	85	<i>1134.82.8:140</i>	2.8	380		270	- CASHA - 4.5-1	KTN-25/6-10	TM-25/8-10	6-10/0.4/0.23	ANB6-3:8+1:4
19. 334,6 6-6.3-125	8.3	125	ПЗД.В.4.5-140	4.5	380	\$11.8 UNU \$11.114	405	- LASTA - 4.3-1	KTN-25/6-10	TM - 25/8-10	8-10/0.4/0.23	ANB5-3×6+1×4

$\exists \exists$				901-2-106		/73	
Usa Jucin	A-dony.u	Подпись	Dama	Насосные станции на колодиах с насоса	mpye wu 3U	бчатых В	
	PPOZ	7/5	11-79		Jum	Jucm	Jucmot
	A Kyweb Zoucopoeb .	Thu	067		P	27	
				Таблица выбара станций упрабления (прадолжение)	LONOS	runpob V a c m ho	00 x03

		2	3	4	5	6	7	8	g	10	11	12	13
20. JUB6-	6.3-[75	6.3	175	ПЭДВ55-140	5.5	380	8/18	546	CAYHA - 5.5 - 1	KTN-25/6-10	TM-25/6-10	6-10/0.4/0.23	AN863×16+1×10
21. 34,56-0	5.3-250	6.3	250	<i>∏3<u>4</u>86-140</i>	8.0	380	BUU 10	780	CAYH4-8-1	KTN-25/6-10	TM-25/6-10	6-10/0.4/0.23	ANB63×16+1×10
22. 34,8 6-1	10-50	10	40-58	1 114.52.8-140	2.8	380	BNB usu BNN 4	150	CAYHA-2.8-1	KTM-25/6-10	TM-25/6-10	6-10/04/0.23	ANBB 3 x 6 + 1 x 4
23. 34B6-1	(0-80	10	80	!П 3<u>1</u>.8 4 5:140	4.5	380		240	CASHA-4.5-1	KTN-25/6-10	TM-25/6-10	6-10/0.4/0.23	ANB63×6+1×4
24. <i>134,</i> 56-	10-80	10	80	ПЗДВ 4.5-140	4. 5	380		270	CAYHA - 4.5-1	KTA-25/6-10	TM-25/6-10	6 <i>-10 0.4 0.</i> 23	ANB6 3=6+1=4
25. 34B6-10	7-110	10	110	<i>1134855-1</i> 40	5.5	380		330	CAYHA - 5.5-1	KTN-25/6-10	TM-25/6-10	6-10/0.4/ 0.2 3	A11853×16+1×1
28. 13UB6-1	10-140	10	140	3.N34.B 8 -140	8	380	BNB USU BNN 10	420		KTN-25/6-10	TM-25/8-10	6-10/0.4/0.23	ANB5-3×16+1×1
27. 13486-1	0-185	10	185	3N3AB8-140	8	380		55 5	CAYHA-0-1	KTN-25/6-10	TM-25/6-10	6-10/0.4/023	ANBB 3×16+1×10
28. IYB6-10	- 235	10	235	ПЗ <u>Д.В.11-140</u>	Ħ	380		705	CAYHA-11-1	KTN-40/6-10	TM-40/5-10	6-10/0.4/0.23	ANB6 3116+111

AJIB60M I

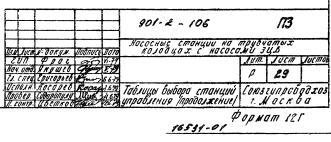
-106

Типовой проект

(Iнв. 4-ноды Удапись и дата

opmam 125

31. 34.88-16-110 16 140 AAN 180-6/2 8.0 380 347 (A 9HA - 8-1 KTN-25/6-10 TM-25/6-10 6-10/04/023 AN 86 3. 32. 334.58-16-140 12+20 110-150 N3A511-180 11 380 450 (A 9HA - 11-1 KTN-40/6-10 TM-40/6-10 6-10/04/023 AN 86 3. 33. 34.58-25-100 25 100 N3A511-180 11 380 450 (A 9HA - 11-1 KTN-40/6-10 TM-40/6-10 6-10/04/023 AN 86 3. 450 (A 9HA - 11-1 KTN-40/6-10 TM-40/6-10 6-10/04/023 AN 86 3. 450 (A 9HA - 11-1 KTN-40/6-10 TM-40/6-10 6-10/04/023 AN 86 3. 450 (A 9HA - 11-1 KTN-40/6-10 TM-40/6-10 6-10/04/023 AN 86 3.
31. 3488-16-110 16 140 AAN180-6/2 8.0 380 347 CAYHA-6-1 KTN-25/6-10 TM-25/6-10 6-10/04/023 AN86 3. 32. 33458-16-140 12-20 110-150 N3A811-160 11 380 450 CAYHA-11-1 KTN-40/6-10 TM-40/6-10 6-10/04/023 AN86 3. 33. 3458-25-100 25 100 N3A811-160 11 380 450 CAYHA-11-1 KTN-40/6-10 TM-40/5-10 6-10/04/023 AN86 3. 450 CAYHA-11-1 KTN-40/6-10 TM-40/6-10 6-10/04/023 AN86 3. 450 CAYHA-11-1 KTN-40/6-10 TM-40/6-10 6-10/04/023 AN86 3.
32. \$34458-16-14012-20 110-150 N3A511-180 11 380 450 CAYHA-11-1 KTN-40/6-10 TM-40/6-10 6-10/04/023 ANB6 31 33. 3458-25-100 25 100 N3A511-180 11 380 BNS UNU BNN 10 450 CAYHA-11-1 KTN-40/6-10 TM-40/5-10 6-10/04/023 ANB6 31 54. 3458-25-100 25 100 N3A511-180 11 380
33. 34.5 8-25-101 25 70 13.6.511-160 11 380 511.5 255 CAYHA-11-1 KTTT-40/6-10 TW-40/5-10 6-10/04/023 ATT 65.32 54. 34.5 8-25-100 25 100 13.6.511-160 11 380 450 CAYHA-11-1 KTTT-40/6-10 TW-40/6-10 6-10/04/023 ATT 65.32
33. 345 8-25-100 25 100 N34511-160 11 380 ANN 10 450 CAYHA-11-1 KTN-40/6-10 TW-40/6-10 6-10/04/025 ANB6-31
54. 34.5 8-25-100 25 100 N3A5H-160 11 380 450 CAYHA-11-1 KTN-40/6-10 TM-40/6-10 6-10/0.4/0.25 ANS5 31
35. 1344 8-25-100 16-34 75-110 4134811-180 11 380 360 CAYHA-11-1 NTN-40/6-10 TM-40/6-10 6-10/0.4/025 ARB 5 3-
36. 3458-25-150 20-34 110-180 1134816-180 16 380 510 CAYHA-16-1 KTN-63/6-10 TW-63/6-10 6-10/04/023 AN 653
31. 34.6 6-25-150-77 25 150 1034.822-100 22 380 3:16 170 CAYHA-22-1 KTN-63/6-10 TM-63/6-10 6-10/04/025 ANB6 3.


AJIB 60M

301-8-108

проект

Типовой

инв. К подл. Людпись и дата

1	2	3	4	5	6	7	8	g	10	H	12	13	14
38.	3ЦВ8-25-195	25	195	3N 3AB22-18 0	22	380	BNB USU BNN 10	645	CAUHA-22-1	KTN-63/6-10	TM-63/6-10	6-10/0.1/0.23	ANBB 3×25+1×16
3 <i>9</i> .	13488-25-300	15÷33	200÷340	ПЭДВ 3 2-18 0	32	380	BNB UJU BNN 25	310	CAYHA-32-1	KTN100/6-10	TM-100/6-10	6-10/0.4 0.23	ANB6 3 × 35 + 1 × 16
40.	34£6-40-60	40	60	AAN180-14/2	11	380		195	CAYHA-11-1	NTT 1-40/6-10	TM-40/6-10	6-10/0.4/0.23	ANBB 3×18+1×10
41.	3UB8-40-65	26÷57	44÷79	ПЗДВ11-140	H	380	BNB UNU BNN-10	210	CAYHA-11-1	KTN-40/5-10	TM-40/6-10	6-10/04/0.23	ANBS 3×16+1×10
42.	3UB 8-40-90	40	90	AAN 180-16/2	18	380		287	CAYHA-16-1	KTM-63/6-10	TM-63/6-10	6-10/0.4/0.23	ANBB 3×16+1×10
43.	34B8-40-165	26÷57	105-1 9 0	ПЭ <u>Д</u> В32:180	32	380	BNB USU BNN-25	510	CAYHA-32-1	KTT1-100/6-10	TM-100/8-10	6-10 0.4 0.23	ANB5 3×35+1×10
44.	3US10-63-401	63	40	ПЭ <u>ДВ1i-180</u> 1	H	380	BNB	150	CAYHA-11-1	KTN-40/6-10	TM-40/8-10	<i>6-10 0.4 0.23</i>	ANB6 3416+1×10
15.	134,810-63-65	50÷75	52÷75	N3,4,8 22-219	22	380	BAATO	240	CAYHA-22-1	KTN-63/5-10	TM-63/6-10	6-10 0.4 0.23	ANBB 3×25+1×10
6.	3UB10-63-110	50÷75	106÷132	N348 32-230	32	380	811.5	90	<i>CAYHA-32-1</i>	KTN-100/6-10	7M-100/6-10	6-10/0.4/0.23	ANBB 3+35+1+16
7.	134810-83-110	50÷75	88÷125	N3 <u>A</u> B32-219	32	380	BAA 25	380	CASUA SE I	KTN-100/6-10	TM-100/6-10	6-10 0.4 <i> 0.23</i>	ANB6 3×35+1×18
				~							901-2.	106	<i>173</i>

Альбом I

90%

2.108

проект

Типовой

Und Arnada. Nadnucs u dama

Паручет к донум 1000тесь пото 2010 — Фрос 16-19 Воч ото Януше 5 — 16-19 Осполь Колорось 12-16-18 Осполь Колорось 12-16-18 Тоблицы выбора станций воногипроводхоз Продост Гивиросии Мара 3.53 Тоблицы выбора станций воногипроводхоз К конто востью 22-22 упровления /продолжение/ г. И осно а

Формат 121 Jum Jucm Jucmob

1	1 2	3	4	5	1 6	7		7				
· ·	+-	 	-	٠	+-		8	g	10	11	12	13
48. 13U,B10-63-150	63	150	ПЭД.В 45-219	45	380	\$118 WU \$1111 35	460	CAYHA-45-1	KTN-180/8-10	TM-180/6-10	6-10/0.4/0.23	ANBO 3×50+1×25
49. 134B10-63-180	63	180	ПЭ <u>Д</u> .Б 45-219	45	380		570	CAYHA-45-1	KTN-160/6-10	TM-160/6-10	6-10/0.4/0.23	ANBB 3×50+1×25
50. 34B10-83-270	50÷75	216÷310	N3AB 65-230	65	380	\$17.5 UJU B1111.50	525	CA4HA-65-1	KTN-250/6-10	TM-250/6-10	8-10/0.4/0.23	ANBB 3×95+1×35
51 . 34, 810 -120-401			П3 <u>Д.В22-219</u> Г	22	380	\$N\$ UJU \$NN 10	150	CAYHA-22-1	KTT1-63/6-10	TM-63/6-10	6-10/0.4/0.23	ATIBB 3×25+1×16
52. 131,510-120-60	90÷150	45÷68	ПЭДВ 32-219	32	380	BNB BNO 25	195	EAYHA-32-1	KTN-100/6-10	TM-100/6-10	6-10/0.4/0.23	ANB6 3×35+1×16
53 . 34,8 10-160-151	160	15	N3A.B.H-1801	Ħ	380	505	75	CAYHA-11-1	KTN-40/6-10	TM-40/8-10	6-10 04 023	ANBB 3 × 16 + 1 × 10
54. 34,8 10-160-351	160	35	<i>П3ДВ22-219Г</i>	22	380	טנע 10 אחת ב	135	CAYHA-22-1	KTN-63/6-10	TM-63/6-10	6-10/0.4/0.23	ANBB 3×25+1×16
55. 34B10-160-65			<i>[134,845-230</i>	45	380	שנט מחמ		Cause 45 1	KTN-160/6-10	TM-160/6-10	6-10/0.4/0.23	ANBB 3×50+1×25
56. 34,812-160-65	/40÷200	55÷69	AAN 273-45/2	45	380	<i>ΔΠΠ35</i>	210	CAYHA - 45-1	KTN-180/8-10	TM-160/6-10	6-10 0.4 0.23	ANBA 3×50+1×25
57. 234812-160-65	160	85	ПЗДВ45-270	45	380		315	CAYHA-45-1	KTN-180/6-10	TM-160/6-10	6-10/0.4/0.23	ANBS 3×50+1×25
										981 - 2 -	106	/13
									daucs Damo	COCHDIE CI KONODYOL	танции на С насоса	
								HOY OMO RKYWEG				Jum. Jucm Ju
								Z. CREY ZOUTOBALE & UTROLIC MODEL NOT TO THE TOTAL A CONTROL OF THE	can 1.679 Tol	лицы выбор	а_ стонции	Союзгупровода
								H. KOHTP. U. B. E. M. ROB		авления /при	OQUACEHUE/	z.Mócnba

Альбом

проект

Типовой

Инв. А:подл. Подпись и дата

Формат 125 16531-01

-	1	2	3	4	5	6	7	8	9	T		T	.,
1 1	58. 3 4 B 12-160-10	150÷205	15÷107	N34,B 65-270	65	380	BNB USU BNN 35	300	CAYHA-65-1	10 KTN-250/6-10	11 TN-250/6-10	12 8-10/04/023	13 ANBB 3195+1135
	59. 34.612-210-23	140÷250	20÷32	<i>113,4,1</i> 5 22-230	22	380	\$115 \$111110	90	CAYHA-22-1	ļ			ANBB 3125+1116
	60. 34.812-210-55	210	55	£113 4.8 45-270	45	380	B/IB B/I/I 35	210	CAYHA-45-1	KTN-160/6-10	TM-160/6-10	6-10/0.4/0.23	ANBB 3:50+1:25
	61. 234B12-210-85	140÷ 250	10÷110	N3AB65-230	65	380	BNB UJU BNN 35	300	CAYHA-65-1	NTT1-250/6-10	6-10/0.4/0.23	TM-250/6-10	ANBO 3 = 95+ 1 = 35
	62. 234,B12-255-30F	180÷298	29÷41	2113 <u>AB</u> 32-219	32	380	BNB BNN 25	450	CAYHA-32-2	KTN-100/8-10	6-10/0.4/0.23	TM-100/6-10	ANB6 3×35+1×16
	63.34,b12-375-30	375	30	2 <i>113,4,545230</i>	45	380	\$N\$ UJU BNN 35	150	CAYHA - 45-2	KTN-180/8-10	6-10/0.4/0.23	TM-160/6-10	ANB6 3×50+1×23
	1. Eucme	, un	muni	o CAYHA	,	- []							
	cocmou	M U3	cm	ני נמשחמ שנעט קו שמע 580 נ	npab.	1ehug							

уровня и сухого хода. 2. Cucmena CAYHA DI-D. NOXCEM nocmobлаться без датчиков уровня и сухого xoda

Инб. К. подл. Подпись и дата

| Deliver | Deli Popmam 125

901-2-106

ROCOCHUR CMOHUUU NO MPYOYOMOLE ROLOQUOX C HACOCOMU JUB

16531-01

/73

Jum Jucm Jucmot

Етроительная часть

Типовые проекты насосных станций на трубчатых колод цах разработаны для применения в районах со следующими природно-климатическими условиями: расчетная зимняя температура воздуха $-20^{\circ}C$, $-30^{\circ}C$, $-40^{\circ}C$; скоростной напор ветра для $\overline{\mathbb{H}}$ географического района по $\mathrm{CHun}\,\overline{\mathbb{H}}$ -6-74; вес снегового покрова для $\overline{\mathbb{H}}$ района по $\mathrm{CHun}\,\overline{\mathbb{H}}$ -6-74; сейсмичность района не выше в баллов; грунтовые воды ниже подошвы фундамента подземной камеры на 0.50 м и балее, грунты непросадочные, непучинистые, с нормативным давлением $2 \kappa r/cn^{2}$; территория без подработки горными выработками; релье ф территории спокойный. $\sqrt{1000}$ дем н оге $\sqrt{1000}$ в м е ры

Подземные комеры для насасных станций приняты диаметром 2.0 и 1.5 метра, высотой 2.4 м. и разработаны в 3 вариантах
1 мей вариант из унифицированных сборных железобетонных
изделий для колодцев серии 3900-2, вып. 5
2 мі вариант из монолитного бетона марки 150
3 мі вариант из кирпичной кладки. Кирпич обыкновенный
глиняный марки 100 на цементном растворе марки 50
Дорианты из унифицированных сборных железоветонных
изделий, кроме стеновых колец серии 3,500-2 вып. 6, включает
в себя стеновые кольца КС 20-1-1К и КС-15-1-1К, изготовливаемые в оснастке стеновых колец КС 20-1-1 и КС 15-1-1 мо
имеющие отверстия для пропуска труб и устройства вентиляции.

Дыбор варианта камеры при привазке производится с учетом наличия местных строительных материалов. Предпочтение сле-

погочам жестная строотсяная житеристо предпочтные следует отдовать варианту из унифицированных сворных железоветонных изделий.

Фундаменты всех камер во всех вариантах решены из монолитного бетона.

Перекрытия камер осуществляется плитой перекрытия, принятой по серии 3.900-2, выпуск 5.

Сорловины и крышки люков приняты металлические по ГОСТ 5634-61 и индивидуального изготовления

Ейдроизоляция стен комер осуществляется обмазкой наружной побержности комеры горячим битумом за 2 раза, плиты перекрытия покрываются слоем асфальтоветона

Выступающая над поверхностью земли часть камеры обсыпается местным грунтом.
Вокруг люка устраивается булыжная отмостка шириной

10 метр. Откосы насыпи покрываются дерном. Для утепления камер горловина люка снабжается второй крышкой, выполняемой из дерева.

				901-2-106		/13	
Usa Juci	N- OOKUN	Подпись	Jara	насосные станции н колодцах с насосам	и тр	убчать В	IX
Unu om	AKUWEÓ	90	17		Aum	Jucm	Jucmo
Menney	PHAROF	This	5069	,	P	33	
Пробер Н. Контр	Кузин Цветкой	Ber.	506.19 26.79	Строительная часть /начало/	COIOS	zunpob Mack	gaxos

Глубина заложения днища и высота выступающей части над поверхностью земли назначаются при привязке проекта в зовисимости от отметки размещения оборудования. Ноземные здания насосных станций. Здания насосных станции решены в кирпичном исполнении. Фундаменты из соорных ветонных блоков стен подвалов по серии 1.116-1, выпуск 1 Блоки выкладываются на раствоpe mapre 50.

Стены кирпичные. Кирпич марки 75 на растворе марки 25 Клодку стен вести с расшивкой швов. Перемычки сворные железоветонные по серии 1.139-1, выпуск 1. Попрытие из сворных железоветонных плит по серии 1.141-1, выпуск 10. Кровля - рулонная совмещенная. **Горизонтальная** гидроизоляция стен на отметке -0.020 выполняется из слоя цементного растворо состова 1:2 толщиной 20 мм. Norm-reparaureckas arumka (1007 6787-69) na yemenmhom

растворе по бетонной подготовке. Окна деревянные со спаренными переплетами по ГОСТ 11214-65. Авери дереванные по ГОСТ 14824-69.

Отмостка выкруг здания асфальтовая по песчано-гравийному основанию.

Толщины стен и утеплителя покрытий для различных плимотических районов рекомендуются принимать следующие:

Расчетная зинняя температура	Толщина наружных	Толщина утеплителя					
наружного воздуха	CITTEH MM.	Пеноветон у-500 кг/м3	Керамзитобетон У - 600 кг/м з				
- 20°C	380	80	100				
- 30°C	380	100	120				
- 40°C	510	120	160				

При привязке насосных станций в огрессивной среде мероприятия по защите конструкции должны назначаться в соответствии с тревованиями СНиП 11-28-73 и СНиЛ 11-23-76.

Отопление и вентиляция

Отопление ноземного павильона насосных станции запроектировано электрическое лучисто-конвективное, действующее периодически. В качестве нагревательных приворов приняты нагревательные печи типа ЛЭТ-4 с автоматическим управлением

Вентилация наземного павильона и подземных камер насосных станций запроектирована естественная с однократным воздухообменом вытяжки воздухо осуществляется через систему, оборудованную дефлектором.

				901-2-106		/73	
Usu fire	A-DOKY.N	Tobryce	Dora	Насосные станции на п полодцах с насоса	MUJ	UB COMB	
Hay ome	RHYWED	20	r-71		Jum.	Jucm	JUCTOB
Denosa	CYDNOD	12.5	2.06	,	p	34	
H KUHTP	Kyzu H Koemkoo	4	506.75 724.79	Строительная часть. окончание	100	runpoto o c n b a	Cx03
				16531	-01	OPNO	n 121

Σοοδραжения πο ορεαнизации и προυзводству ραδοπ

NOBSEMHOLE ROMEPOL

С поверхности участков гемли, где намечается рытые котлованов под камеры, снимается растительный

слой грунта булодозгром.
Рытье котлобана над трубоправоды и камеры выполнеется экскаватором обратная зопота с ковшом емкостью 0.35 м в этвал. Срунт отволов перемещается во временные кавалогры бульдозгром.

Дораватка котлована до проектных отметок производится вручную

Монтаж сборных железоветонных элементов камер, подача бетонный смеси, кирпича осуществляется автомо-бильными кранами или экскабатором, персоборудованным вран. Монтаж бодоподъемных труб и насосов выполнается при помощи автомовильного крана соответствующей грузоподъемности.

Обротная засыпка грунта производится бульдозером, а за стенки камер выполняется вручную с уплотнением пневмотрамвовками. Срунт для обратной засыпки доставляется из временных кавальеров бульдозером.
Насыпь над камерами устраивается вручную с качественным уплотнением грунта.

Верх и откосы насыпи планируются вручную, Последовательность выполнения строительно-монтажных работ рекомендуется следующая:

' а/ планировка площаджи и "устройство водоотвод ных панав; б/ рыты котлована; в/срезка обсадной трубы на заданной отметке и установка на ней временной заглушки;

е/бетонирование фундамента под оголовок трубчатого колодуи и пола камеры, д/устиновка оголовка с опарной плитой, мантаж водоподоемной трубы с насосный агрегатом и силовым кабелем, опускание их в трубчатый колодец; у/мантаж стен камеры, установка люка и венти-

ляционной трубы; ж/ падплючение напарной трубы к задвижке на осоловке:

s/ засыпка, οδδα зовка и устройство от мостки вокруг экока;

Здание насосной станции

Етроительство здания осуществляется методами, принятыми в промышленно-гражданском строительстве. Последовательность выполнения строительно-монтажных рибот при сооружении зданий насосных станций.

			901-2-106		/73	
USA JUCT Nº OORYN	Noonuce Di	ura	Насосные станции на полодиах с насосам	פקחת ע	oyamb.	x
How omd gryweb	200	24		Jum.	Jucm	Juemo
И спец рогранцев	acc v	29	Органузация и произ-,	Tons	unpobo	2507
H. KOHTO KO	786	¥,74	bodembo pabom /Hayaso/	2. A	ockbe	02.03 7

POPMOM 125

льбом

рекомендцется следущая: 1. CHAMUE PACMUMENTHOSO CAOR SPYHMA; г планировка площадки; з. рытьё котлована под фундаменты; 4. бетонирование фундамента под оборудование; 5. монтож фундаментов и фундаментных валок; в возведение стен и монтож сборных железоветонных 3 Semenmob: т. истройство железобетонного покрытия, утепление ποκρωπυρ υ μεπιρούεπιβο ρμόερουθμού κροβιω; в устройство ветонных полов по щевеночной подготов ке с затиркой цементом, перед бетонированием заложить трубы для прокладки кабелей Бетонная смесь и растворы приготавливают в растворо и бетономешалках. Уплотнение бетонной смеси в блоках осуществляется глубинными и поверхностными вибраторами. Электроэнергия для нужд строительства получается от ближаещей ТП или передвижных электростанmui. Сворные железоветонные изделия, кирпич, комень, щевень, лесок, цемент, трубы и другие материалы доставлоются автотранспортом.

ляются адтотранспортом. При выполнении работ по строительству камер, здания насосной станции и монтажа оборудования необходимо соблюдать правила техники безопасности согласно СНиП Ⅲ-А.Ⅱ-70. Техническоя характеристика рекомендуемых к применению автомобильных кранов

Марка кранз	DIUHU CMPES,M	Вылет стрелы,	BUCOMO NO OBEMO KONKO	PRISONODO NO PRISONODO PROPERTO DE PROPERT	
		4.0	9.5	10.0	4.0
	10.0	5.5	8.7	6.0	2.5
		8.0	7. 3	3.5	1.4
K-104		10.0	4.5	2.2	1.0
	18.0	5.0	18.4	6.0	1.5
		7.0	16.2	4.0	1.0
		<i>9.0</i>	16.0	2.5	0.6
		3. 9	10.5	16.0	4.4
		4.4	10.2	12.7	3.7
	10.0	5.3	9. 8	9.3	2.6
		7.0	8.7	5.9	2.0
K-102		10.0	4.7	2.8	1.0
		4.2	14.5	12.0	3.0
	14.0	5.0	14.2	8.7	2.2
	14.0	7.0	13.2	5.0	1.3
		11.0	11.5	2.7	0.8

		_	901-2-106		/73	
USU JUCT N-OORYN	//odnuce 1	ото	насосные станции н колодцаж с насоса,	o mp wu 3t	yovam. B	b/X
Нач отд Якушев Гл. спец Багранцев	The same	74		Jum. D	Jucm 36	[ucmo
H routh II bemine		0.79	Организация и производ- ство работ (продолжение)	[0103		0 x 0 3

Указания по производству работ в зимних условиях Строительные работы в зимних условиях должны

LMPOUMELOHUL ΡΕΘΟΠΉΟ Ο ΣυλΗΝΣ ΥΓΙΟΘΟΎΣ ΘΟΙЖΗΝ προυσθόθυπος ο Cοδικοθεμμελ πρεδοβομμό CHuΩ∭-B,4-72 μ CHuΩ∭-15-76.

Для кирпичной кладки принят способ заморожива-

ния с последующим оттоиванием кладки.
Раствор для кладки принят на портландцементах
при расчетной марке в период оттоивания 2 x1/cn2
Ниже привадятся основные указания по ведению
кладки из штучного кирпича.

1 Продольные и поперечные стены должны возводиться одновременно с тщательной перевязкой кладки в местах пересечения стен.

2. В уровне покрытия в углах здания должны выть уложены стальные связи-по 4 стержня ФВЛІ. Связи должны заходить в каждую из примыкающих стен на 1.00-1.50 метра и закончиваться на концах крюками.

3. Толщина швов кладки должна быть не более 10-12 мм. Поливка кирпича и заливка швов кладки растваром запрещается. К моменту перерыва в работе все вертикальные швы верхнего рада должны заполняться раствором.

4. Температура раствара в момент его применения
должна быть не ниже +10°С при температуре воздуха до-10°С
+15°С то же от-10°С до ниже -20°С
+20°С " ниже -20°С

s. Марка раствора должна быть повышена на одну ступень при температуре ваздуха до-20°C и на две ступени при температуре ниже-20°C.

в. Под опорами несущих перемычек 3 ряда кладки армировать сетками из стержней ф4мм с дчейкой 50:50мм в каждом швг. 7. Панели покрытия должны монтироваться немедленно после возведения стен.

в. Перед наступлением весенних аттепелей и на весь период оттаивания кладки с покрытия далжны быть удалены все случайные и временные нагрузки (строительные материалы, мусор, снег и т.д. /

я. В период оттаивания и первоначального твердения кладки необходимо вести регулярный контроль за состоянием сооружения.

				901-2-106		/73	
Usa Jucm	Nº OORYN.	Hadnuce	Dero	HOCOCKHE CMONYUU HO M KOJOOYOX C HOCOCOA	Pygy	nnux B	
l U II Hay. ama.	Q POZ	90	12.77		Jum.	Juem	Vacmou
U. cney.	Lyonob	mil	5.0679		0	37	
UCAOAH. H. KOHTO.	Lyzun 46emrob	Lair	505.79 24.2	Opranusayug u npousbod cmbo pabom/npodosmenug	1003	tunpob V o c it b	O TXO 3

Basbedenue моно литного бетонного фундамента подземной камеры при варианте ее из моно литного бетона вести в соответствии с СНиП № 15-16 с соблюдением следующих тревований:

1. Прочность бетона, выдерживоемого в зимних условиях, к моменту замерзания далжна составлять не менее 50% от проектной марки, т.е. не менее 75 куст?
2 Гемператира бетонной смеси пои быходе из бетоно-

2. Температура бетонной смеси при выходе из бетономешалки далжна назначаться с учетом теплопотерь при транспортировании

Претинартированов.

Рекомендуется применять метод электроподогрева ветона
Основные требования по устройству

труб ч о тых колод цев при исполозовании подземных вод надлежит рукаводствоваться положением о порядке исполозования и охране
подземных вод на территории СССР, утвержденным
18 апреля 1960 г. за м-СТ-2292/23 Министерством
геологии и охраны недр СССР и в апреля 1980 г. за м-324-60
Словным государственным санитарным инспектором СССР

Проектирование трубчатых колодцев, предназначасных для завора подземных вод для нужд хозяйственно-пить свого и производственного водоснавжения, должно выполноться в спответствии со СНиП Т.31-74

При проектировании, строительстве, реконструкции и эксплуатации трубчатых колодцев и связанных с ними сооружений, относящихся к хозяйственно-питоевым водопроводам, следует также руководствоваться санитарными правилахи проектирования, строительства и эксплуатации хозяйственно-питоевых водопроводов, утвержденными зом главного санитарного врача СССР в декабря 1963 г. за х. 456-63.

Привязка погруженого насоса должна выполняться с учетом паспартных данных по разведачной скважине или скважине пробуренной специально для проектируемого водозавора.

+		=		901-2-108		/73	
Usu Jum	N- ODRYM	noanua	Dame	HOCOCHOL CMOHUUU HO	יש או מ	YOYAMU JUB	x
1011	Ppor	90	V-79		Jum.	Jucm	Jucm
HOY OMO	HAYWED	977	P. 13		P	38	
J. Cirey.	Богрянцев	BUL	151		<u> </u>		
				Организация и производ- ство работ/окончание/.	60103	tunpobl	0050
V vnutn	//hamrok	2/-1	-	conto nation lorgina anuel	7. M	OCKE	1