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Введение

Дзета-потенциал — параметр, который можно использовать для определения долгосрочной ста­
бильности суспензий и эмульсий и изучения поверхностной морфологии и адсорбции на частицах и 
других поверхностях в контакте с жидкостью. Дзета-потенциал не является непосредственно измеряе­
мой величиной. Его можно определить, используя соответствующие теоретические модели, из экспери­
ментально определенных параметров, таких как электрофоретическая подвижность. Цель настоящего 
стандарта состоит в описании электрокинетических методов измерения электрофоретической подвиж­
ности и вычисления на этой основе дзета-потенциала.

IV
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М Е Ж Г О С У Д А Р С Т В Е Н Н Ы Й  С Т А Н Д А Р Т

Государственная система обеспечения единства измерений 

МЕТОДЫ ОПРЕДЕЛЕНИЯ ДЗЕТА-ПОТЕНЦИАЛА 

Ч а с т ь  1

ЭЛЕКТРОКИНЕТИЧЕСКИЕ МЕТОДЫ

State system for ensuring the uniformity of measurements.
Methods forzeta-potential determination. Part 1. Electrokinetic methods

Дата введения —  2017— 03— 01

1 Область применения

Настоящий стандарт распространяется на электрокинетические методы определения дзета-по­
тенциала в гетерогенных системах, таких как дисперсные системы, эмульсии, пористые тела с жидкой 
дисперсионной средой.

Метод реализуется в разбавленных или в концентрированных гетерогенных системах.
Форма частиц или геометрия пор может быть любая. Важным параметром для количественно­

го описания результата является соотношение радиуса кривизны поверхности и дебаевской длины 
экранирования. Жидкость дисперсионной среды может быть как водной, так и неводной, с различ­
ными значениями электрической проводимости, диэлектрической проницаемости, различным хими­
ческим составом. Материал частиц может быть как проводящим электрический ток, так и непрово­
дящим. Двойные слои могут быть изолированными или перекрывающимися с различной толщиной 
перекрытия.

2 Термины, определения и обозначения

2.1 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:
2.1.1 двойной электрический слой; ДЭС (electric double layer): Пространственное распределе­

ние электрических зарядов, которое появляется на и в непосредственной близости от поверхности объ­
екта, когда он находится в контакте с жидкостью.

2.1.2 приближение Дебая—Хюккеля (Debye-Huckel approximation): Модель, предполагающая 
небольшие электрические потенциалы в двойном электрическом слое.

2.1.3 длина Дебая к-1, нм (Debye length): Характерная длина двойного электрического слоя в 
растворе электролита.

2.1.4 коэффициент диффузии D (diffusion coefficient): Среднеквадратичное смещение частицы 
в единицу времени.

2.1.5 число Духина Du (Dukhin number): Безразмерное число, которое характеризует вклад по­
верхностной проводимости в электрокинетических и электроакустических явлениях, а также в прово­
димость и диэлектрическую проницаемость гетерогенных систем.

2.1.6 динамическая вязкость r|i Па/с (dynamic viscosity): Соотношение между приложенным на­
пряжением сдвига и скоростью сдвига жидкости.

Издание официальное
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П р и м е ч а н и я

1 В настоящем стандарте динамическая вязкость используется в качестве меры сопротивления жидкости, 
деформированной напряжением сдвига.

2 Динамическая вязкость определяет динамические свойства несжимаемой ньютоновской жидкости.

2.1.7 поверхностная плотность электрического заряда ст, К/м2 (electric surface charge density): 
Заряд на границе раздела сред на единицу площади за счет специфической адсорбции ионов из объ­
ема жидкости или за счет диссоциации поверхностных соединений.

2.1.8 поверхностный потенциал i|is, В (electric surface potential): Разность потенциалов на по­
верхности и в объеме жидкости.

2.1.9 электрокинетический потенциал, дзета-потенциал, ^-потенциал, В (electrokinetic potential, 
zeta-potential, ([-potential): Разность между электрическими потенциалами в плоскости скольжения и в 
объеме жидкости.

2.1.10 модель Гуи-Чепмена-Штерна (Gouy-Chapman-Stern model): Модель, описывающая двой­
ной электрический слой.

2.1.11 изоэлектрическая точка (isoelectric point): Условие состояния жидкой среды, описываемое 
обычно значением pH, которое соответствует нулевому дзета-потенциалу дисперсных частиц.

2.1.12 плоскость скольжения, плоскость сдвига (slipping plane): Абстрактная плоскость в непо­
средственной близости от границы раздела жидкость/твердое тело, где жидкость начинает скользить по 
отношению к поверхности под воздействием напряжения сдвига.

2.1.13 потенциал Штерна ipd, В (Stern potential): Электрический потенциал на внешней границе 
слоя специфически адсорбированных ионов.

2.2 Обозначения

В настоящем стандарте применены следующие обозначения: 
а — радиус частицы, м; 
с — концентрация электролита, моль/м3;
Cdi — емкость двойного слоя, Ф;
С| — концентрация ионов /-го типа, моль/м3;
D+ — коэффициент диффузии катионов, м2/с;
Deff— эффективный коэффициент диффузии электролита, м2/с;
Du — число Духина;
D_ — коэффициент диффузии анионов, м2/с; 
е — элементарный электрический заряд, Кл;
F — постоянная Фарадея, F = 96485,33 Кл/моль;
К? — поверхностная проводимость, См;
кв — постоянная Больцмана, Дж/К, кв = 1,3806488 -10-23 Дж/К;
Кт — проводимость дисперсионной среды, См/м;
Кр — проводимость дисперсной частицы, См/м;
Ks — проводимость дисперсной среды, См/м;
т — параметр, характеризующий вклад электроосмотического потока в поверхностной проводи­

мости;
Л/д — число Авогадро, моль-1, NA = 6,02214129-1023 моль-1; 
р — давление, Па;
qeo — электроосмотическая скорость жидкости на единицу силы тока, м/(с-А);
R — универсальная газовая постоянная, Дж/(моль-К), R = 8,3144621 Дж/(моль-К); 
г — расстояние от центра частицы, м;
Rc — радиус воображаемой оболочки вокруг частиц, рассчитанный при условии, что объемная 

доля твердых тел внутри оболочки и в дисперсной системе равны, м;
Т — абсолютная температура, К; 
l/str— потенциал в потоке флюидов, В; 
х — расстояние от поверхности частиц, м; 
z± — валентности катионов и анионов;
Zj — валентность /-го вида ионов;
е0 — диэлектрическая постоянная, Ф/м, е0= 8,854187817-10-12 Ф/м;

2



ГОСТ 8.653.1—2016

zm — относительная диэлектрическая проницаемость среды;
Z, — электрокинетический потенциал, дзета-потенциал, В;
П — динамическая вязкость, Па-с;
к — обратная длина Дебая, м-1 ;
р — электрофоретическая подвижность, м2/(В-с);
рт — плотность среды, кг/м3;
рр — плотность частиц, кг/м3;
а — поверхностная плотность заряда, Кл/м2;
ad— плотность электрического заряда диффузного слоя, Кл/м2;
Ф —  объемная доля частиц;
Фоуег — критическая объемная доля частиц;

— потенциал Штерна, В;
Ф(х) — электрический потенциал в двойном слое, В.

3 Теория: основные положения

Дзета-потенциал является расчетной величиной, получаемой в результате количественной обра­
ботки экспериментальных данных в рамках известных теоретических моделей. Существует множество 
различных теорий, которые действительны для определенных условий и для определенной группы 
реальных дисперсных систем. Теории делятся на две группы: элементарные и модифицированные.

Элементарные теории для непроводящих твердых тел являются общими для всех электрокинети- 
ческих явлений [1]. В них рассматривается только один параметр двойного электрического слоя (ДЭС) — 
дзета-потенциал, определяемый из экспериментальных данных. Элементарные теории имеют границы 
применимости. Вне этих границ их применение приводит к существенной погрешности расчета значе­
ний дзета-потенциала.

В настоящем стандарте модифицированные теории рассмотрены в приложении Г. Теории содер­
жат дополнительные параметры ДЭС, например длину Дебая (см. приложение А), поверхностную про­
водимость, потенциал Штерна [2]—[4].

4 Расчет дзета-потенциала. Элементарные теории

Существуют три условия, определяющих область применения теории Смолуховского для любых 
электрокинетических явлений.

Первым условием является то, что размеры ДЭС должны быть малы по сравнению с характери­
стическим размером гетерогенной системы [см. приложение А, формула (А.4)]:

к а » 1 ,  (1)

где к — обратная длина Дебая, м-1; 
а — радиус частицы, м.

Условию (1) удовлетворяют многие водные дисперсные системы. Условие (1) не распространяет­
ся на наночастицы в водных растворах с низкой ионной силой и для многих органических жидкостей.

Второе условие заключается в незначительном вкладе поверхностной проводимости К?. В прило­
жении Б дано подробное описание поверхностной проводимости. Величина относительной поверхност­
ной проводимости выражается безразмерным числом Духина Du, которое удовлетворяет следующему 
условию:

Du «  1. (2)

Третье условие заключается в том, что граница раздела сред не проводит электрический ток меж­
ду фазами. Это условие действует для непроводящих частиц, для идеально поляризованных частиц 
металлов и для пористых тел стокоизолирующей основой.

Уравнение Смолуховского для электрофоретической подвижности р имеет вид [1]:

м =

где £т  — относительная диэлектрическая проницаемость среды; 
£д — диэлектрическая постоянная, Ф/м;

(3)

з
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С, — дзета-потенциал, В;
П — динамическая вязкость, Па-с.
Уравнение справедливо для любой модели ДЭС.
Электроосмотическая скорость жидкости на единицу силы тока qeo вычисляют по формуле

_ t mt<£
Яео П Кт ’ (4)

где £т — относительная диэлектрическая проницаемость среды;
£0 — диэлектрическая постоянная, Ф/м;
Q — дзета-потенциал, В;
П — динамическая вязкость, Па-с;

Кт — проводимость дисперсионной среды, См/м.
В целом, невозможно количественно определить распределение электрического поля и скоростей 

в порах с неизвестной или сложной геометрией. Тем не менее эта проблема устраняется приближе­
нием Смолуховского, когда гидродинамические и электродинамические поля имеют одинаковое про­
странственное распределение.

Значение потенциала l/str получается из условия равенства проводимостей и равенства токов в 
потоке флюидов, т. е. суммарный ток равен нулю. Уравнение Смолуховского в этом случае имеет вид [5]:

i4 tr  _£т£рС 
А р  п К т  ’ (5)

где (Уд[Г — значение потенциала в потоке флюидов, В;
А р— разность давления в потоке флюидов, Па;
ет — относительная диэлектрическая проницаемость среды;
£0 — диэлектрическая постоянная, Ф/м;
П — динамическая вязкость, Па-с;
С — дзета-потенциал, В;

Кт — проводимость дисперсионной среды, См/м.
Формула (5) не содержит геометрические параметры, что делает ее удобной для определения 

дзета-потенциала.
Аналогично уравнению Смолуховского (5) потенциал седиментации l/sed выражается формулой

.. £m£oC(Pn_ Pm)9d<S>
sed -  цКт '

где гт — относительная диэлектрическая проницаемость среды;
£0 — диэлектрическая постоянная, Ф/м;
\  — дзета-потенциал, В; 

рр — плотность частицы, кг/м3; 
рт — плотность среды, кг/м3; 

д — ускорение свободного падения, м/с2;
d — расстояние между точками, между которыми измеряется разность потенциалов, м;
Ф —  объемная доля частиц;
П — динамическая вязкость, Па-с;

Кт — проводимость дисперсионной среды, См/м.

5 Модифицированные теории
Применение модифицированных теорий является более сложной задачей, но позволяет намного 

более подробно описать электрические свойства поверхностей. Двумя наиболее важными параметра­
ми являются длина Дебая к-1 и число Духина Du [2]. Расчет числа Духина Du приведен в приложении Б. 
Расчет длины Дебая к-1 приведен в приложении В.

Существуют две аналитические теории электрофореза, которые могут применяться в этом слу­
чае: упрощенная теория Духина—Семенихина [формула (Г.10) приложение Г] и теория О’Брайана 
[формула (Г.11) приложение Г].

Перекрытие ДЭС является еще одним фактором, который усложняет теоретическую интерпрета­
цию. Этот фактор становится важным для неполярных суспензий. В случае неполярных суспензий пе­
рекрытие ДЭС может проявиться даже при низких объемных долях, как описано в А.4 (приложение А). 
Описание теории, которая принимает во внимание этот фактор для электрофореза, приведено в Г.6 
(приложение Г).
4
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Приложение А 
(справочное)

Модели двойного электрического слоя

А.1 Основные положения
Двойной электрический слой (ДЭС) представляет собой пространственное распределение электрических заря­

дов, которое появляется в непосредственной близости от поверхности объекта, когда он находится в контакте с жидко­
стью. Этим объектом могут быть твердые частицы, пузырьки газа, капля жидкости и пористое тело. Данная структура 
состоит из двух параллельных слоев электрических зарядов. Один слой (положительный или отрицательный) совпа­
дает с поверхностью объекта и называется электрически заряженной поверхностью. Другой слой находится в окружа­
ющей частицу среде, которая экранирует первый слой. Этот слой называется диффузным, так как он образуется под 
действием электрической силы и теплового движения свободных ионов в окружающей частицу среде.

ДЭС играет очень важную роль в реальных системах. Например, молоко существует только потому, что кап­
ли жира покрыты ДЭС, что предотвращает их коагуляцию в масло. ДЭС существуют практически во всех гетеро­
генных системах на основе жидкости, например: в крови, краске, чернилах, керамических суспензиях, цементных 
растворах и т. д.

Самая ранняя модель ДЭС принадлежит Гельмгольцу [6], которая математически описывает ДЭС как про­
стой конденсатор, основанный на физической модели, в которой один слой ионов адсорбируется на поверхности с 
компенсацией противоположного заряда в растворе. Позже Гуи и Чепмен [7]— [8] добились значительного улучше­
ния модели с помощью введения диффузной модели ДЭС, в которой электрический потенциал экспоненциально 
убывает при удалении от поверхности в объем жидкости. Модель Гуи— Чепмена не выполняется для многозаряд­
ных ДЭС. Для того чтобы решить эту проблему, Штерн [9] предложил ввести дополнительный слой, прилегающий к 
поверхности, который называется слоем Штерна. На сегодняшний день комбинированная модель Гуи— Чепмена— 
Штерна применяется наиболее часто.

В модели Гуи— Чепмена—Штерна [23], [2]— [4] существуют следующие приближения:
- ионы рассматриваются как эффективные точечные заряды;
- единственные значимые взаимодействия в диффузном слое — кулоновские;
-диэлектрическая проницаемость остается постоянной на всей площади двойного электрического слоя;
-динамическая вязкость окружающей частицу жидкости постоянна вне плоскости скольжения.
Существуют более новые теоретические разработки, в которых критически рассматриваются указанные при­

ближения модели Гуи— Чепмена— Штерна.
Рисунок А.1 иллюстрирует межфазный ДЭС [2]. Причиной формирования устойчивого двойного слоя служит 

взаимодействие зарядоопределяющих ионов с поверхностью. Этот процесс приводит к накоплению поверхност­
ного электрического заряда, создающего электростатическое поле, которое влияет на ионы в объеме жидкости.

1

1 — слой Штерна; 2 — область заряженных частиц;
3 — заряженный диффузный слой; 4 — плоскость Штерна; 5 — плоскость скольжения; 6 — длина Дебая 

Рисунок А.1 — Структурная схема двойного электрического слоя согласно модели Гуи— Чепмена— Штерна

5
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Это электростатическое поле в сочетании с тепловым движением ионов экранирует поверхностный электрический 
заряд. Суммарный электрический заряд в экранирующем диффузном слое равен по величине суммарному поверх­
ностному заряду, но имеет противоположный знак. В результате структура электрически нейтральна. Некоторые 
из противоположно заряженных ионов вблизи поверхности могут специфически адсорбироваться и способствуют 
формированию слоя Штерна. Внешнюю часть экранирующего слоя обычно называют диффузным слоем.

Диффузный слой или, по крайней мере, его часть могут перемещаться под действием касательного напря­
жения. Вводится понятие плоскости скольжения, которая разделяет окружающую частицу среду на подвижную 
часть и часть, связанную с поверхностью. Электрический потенциал в этой плоскости называется электрокинети- 
ческим или дзета-потенциалом.

Электрический потенциал на внешней границе слоя Штерна называют потенциалом Штерна ф̂ . Разность 
потенциалов между жидкостью (флюидом) и поверхностью называется потенциалом поверхности фя.

Экспериментально показано, что плоскость скольжения расположена очень близко к внешней плоскости 
Гельмгольца, определяющей потенциал Штерна. Слой между этой плоскостью и границей раздела обычно назы­
вают «неподвижным слоем». Обе плоскости являются условными. Это означает, что величина дзета-потенциала С 
меньше или равна потенциалу Штерна ф̂ .

Основные модели геометрического представления ДЭС приведены в подпунктах А.2 — А.4.

А.2 Плоские поверхности
Толщину ДЭС характеризуют так называемой длиной Дебая к-1 и вычисляют по формуле

К2 = р2% С'2'-
em£n RT’/ 0

(А.1)

где F — постоянная Фарадея, Кл/моль;
с,-— молярная концентрация /-го вида ионов, моль/м3;
Zj— максимальная валентность/-го вида ионов; 

t m — относительная диэлектрическая проницаемость жидкости; 
е0 — диэлектрическая постоянная, Ф/м;
R — универсальная газовая постоянная, Дж/(моль К);
Т — абсолютная температура, К.

Если количество анионов равно количеству катионов в электролите (симметричный электролит), то суще­
ствует простая зависимость между плотностью электрического заряда в диффузном слое od и потенциалом Штер­
на ф0*, а именно:

od = -л ]8гтг0сЯТ s 'm b r^ j,  (А.2)

где £т  — относительная диэлектрическая проницаемость жидкости;
£0 — диэлектрическая постоянная, Ф/м; 
с — концентрация электролита, моль/м3;
R — универсальная газовая постоянная, Дж/(мольК);
Т — абсолютная температура, К;
F — постоянная Фарадея, Кл/моль;

Фd — потенциал Штерна, В.
Если диффузный слой рассматривается у поверхности, формула (А.2) может быть использована для связи 

поверхностного заряда с поверхностным потенциалом.
В некоторых случаях используется понятие дифференциальной емкости ДЭС С *  Для плоской поверхности 

и симметричного электролита дифференциальную емкость ДЭС Cd/ вычисляют по формуле

do Fuid
°d i = = £m£oKCOShw , (А.З)

где £m — относительная диэлектрическая проницаемость жидкости;
£0 — диэлектрическая постоянная, Ф/м; 
к — обратная длина Дебая, м-1;
F — постоянная Фарадея, Кл/моль; 

ф^— потенциал Штерна, В;
R — универсальная газовая постоянная, Дж/(мольК);
Т — абсолютная температура, К.
Для симметричного электролита электрический потенциал ф на расстоянии х от плоской поверхности в ДЭС 

вычисляют по формуле
ta n h ^ (x ) /4 R 7 ] 

e,<'>(- KX, = ta n h ^ -MRT) '
где z — валентность иона;

F — постоянная Фарадея, Кл/моль; 
ф(х) — электрический потенциал в двойном слое, В;

(А.4)
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i(jd— потенциал Штерна, В;
R — универсальная газовая постоянная, Дж/(моль К);
Т — абсолютная температура, К.
Соотношение между плотностью электрического заряда и потенциала диффузного слоя для асимметрично­

го электролита вычисляют по формуле

ad = -(sgm)jd) Aj2zmz0cRT[v+exp(-z+\yd) + v_exp(-z_tjid) -  v+ -  v_]1/2, (A.5)

где 4Jd — потенциал Штерна, В;
Em — относительная диэлектрическая проницаемость жидкости; 
е0 — диэлектрическая постоянная, Ф/м; 
с — концентрация электролита, моль/м3;
R — универсальная газовая постоянная, Дж/(мопь-К);
Т — абсолютная температура, К;

v± — количество катионов и анионов, произведенных при диссоциации одной молекулы электролита, моль; 
tjjd — безразмерный потенциал, определяемый по формуле

, , Fipd
Ф _ R j  ■ (А.6)

А.З Изолированный сферический двойной электрический слой
Для плоского ДЭС существует только один геометрический параметр, а именно длина Дебая к-1. В случае 

сферического ДЭС существует дополнительный геометрический параметр — радиус частицы а. Произведение 
двух параметров ка является безразмерной величиной, которая играет важную роль в области дисперсных систем. 
В зависимости от значения ка существует две асимптотические модели ДЭС.

Модель тонкого ДЭС соответствует дисперсным системам, в которых размеры ДЭС намного меньше радиуса 
частицы:

ка »  1. (А.7)

Подавляющее большинство водных дисперсных систем удовлетворяют этому условию, за исключением на­
ночастиц с размерами менее 100 нм в условиях низкой ионной силы раствора. Если предположить, что ионная 
сила превышает 10-3 моль/л, что соответствует большинству природных водных систем, условие ка »  1 выполня­
ется практически для всех частиц, имеющих размер более 100 нм.

Модель ДЭС больших размеров соответствует системам, где ДЭС намного больше радиуса частиц:

ка «  1. (А.8)

Условию  (А.8) удовлетворяют многие водные нанодисперсные системы, имеющие низкую ионную силу, и 
подавляющее число дисперсных систем в углеводородных средах, также имеющих низкую ионную силу. Эти два 
асимптотических случая позволяют представить примерно структуру ДЭС вокруг сферических частиц. Изображе­
ния моделей ДЭС показаны на рисунке А.2:

а) б)

к-1 — длина Дебая; 2а —  диаметр частицы

Рисунок А.2 — Изображение моделей тонкого ДЭС (а) и ДЭС больших размеров (б)
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Основное аналитическое решение существует только для низких значений потенциала (приближение 
Дебая—Хюккеля):

i|jd RT 
F ' (А. 9)

где R — универсальная газовая постоянная, Дж/(моль К);
Фс*— потенциал Штерна, В;

Т — абсолютная температура, К;
F — постоянная Фарадея, Кл/моль.

В этом случае выражение для электрического потенциала ф(г) в сферическом ДЭС на расстоянии гот центра 
частицы:

ф (г) =  ^)d { ~  J e x p [ - K ( r  -  а )] , ( А . 1 0 )

где фd — потенциал Штерна, В; 
а — радиус частицы, м; 
г— расстояние от центра частицы, м; 
к — обратная длина Дебая, м-1.
Тогда соотношение между плотностью электрического заряда в диффузном слое и потенциалом Штерна:

od = -£т £0кф^1 + ^ ) ,  (АН )

где £т  — относительная диэлектрическая проницаемость жидкости;
£0 — диэлектрическая постоянная, Ф/м; 
к — обратная длина Дебая, м-1;

Ф^— потенциал Штерна, В; 
а — радиус частицы, м.
Приближение Дебая—Хюккеля справедливо для любого значения ка, но охватывает только изолированные 

двойные слои.
Плотность электрического заряда в диффузном слое для значений ка > 2 выражается формулой 

[10]—[12]:

оd 2 Fez 
к 2sinh-

z $ d
2

4tanh(z (jjd/4) 
ка (A.12)

где F — постоянная Фарадея, Кл/моль; 
к — обратная длина Дебая, м-1; 

i}Jd — нормированное значение потенциала, В; 
с — концентрация электролита, моль/м3; 
а — радиус частицы, м; 
z — валентность ионов.

А.4 Перекрытие двойных слоев

Приближение Дебая—Хюккеля не учитывает вероятность перекрытия двойных слоев в концентрирован­
ных дисперсных системах, то есть с высокой объемной долей частиц. Оценка значения критической объемной 
доли частиц <pover при котором длина Дебая равна кратчайшему расстоянию между частицами, выражается 
формулой [13]:

_ 0,52
Vover° [1 + (1/ка)]3 ’ (А-13^

где к — обратная длина Дебая, м-1; 
а — радиус частицы, м.

Эта зависимость показана на рисунке А.З.

Для ка »  1 (тонких ДЭС) ДЭС рассматривается как изолированный объект, вплоть до объемных долей ча­
стиц, равных 0,4. Модель изолированного ДЭС является некорректной для малого ка (ДЭС больших размеров), так 
как перекрытие ДЭС в таком случае происходит даже в очень разбавленных суспензиях.

Когда ДЭС сильно перекрываются, они теряют свою первоначальную экспоненциальную диффузную струк­
туру, область наложения становится все более и более однородной. Можно представить, что заряженные частицы 
просто экранируют с однородным облаком противоположно заряженных ионов. Эта модель носит название «гомо­
генная» [14].
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Эта модель описывает упрощенную связь между плотностью электрического заряда диффузного слоя od и 
дзета-потенциалом Q сферических частиц в дисперсных системах, особенно для монодисперсных систем:

оd = 1 RT 1 -ср 
3 F Ф emaK2sinh f L

RT’ (А.14)

где R — универсальная газовая постоянная, Дж/(моль К);
Т — абсолютная температура, К;
F — постоянная Фарадея, Кл/моль; 
ср — объемная доля частиц;

t m — относительная диэлектрическая проницаемость жидкости; 
а — радиус частицы, м; 
к — обратная длина Дебая, м-1;
С, — дзета-потенциал, В.

Формула (А.14) отражает различие между «тонкими ДЭС» и «перекрывающимися ДЭС». В случае модели 
«тонкого ДЭС» как поверхностный заряд, так и дзета-потенциал являются поверхностными свойствами, независи­
мо от объемной доли частиц. В случае «перекрывающихся ДЭС» поверхностный заряд является истинным пара­
метром свойства поверхности. Электрокинетический потенциал может привести к ошибочным выводам, поскольку 
он зависит еще и от объемной доли, а не просто от поверхностного заряда. Таким образом, при работе с концен­
трированными дисперсными системами с ДЭС больших размеров должны быть представлены оба параметра, и 
дзета-потенциал, и поверхностный заряд.

9



ГОСТ 8.653.1— 2016

Приложение Б 
(справочное)

Поверхностная проводимость

Б.1 Основные положения
Поверхностной проводимостью называется избыточная электрическая проводимость, которая имеет место 

в дисперсных системах в связи с наличием двойного электрического слоя. Избыточные заряды в них двигают­
ся под действием электрических полей, приложенных по касательной к поверхности. Это явление определяется 
термином «поверхностная проводимость К?у>, которая является аналогом объемной удельной проводимости Кт. 
Поверхностная проводимость К? является избыточной величиной, описываемой как поверхностная концентрация 
определенного типа.

Движение зарядов диффузного слоя, расположенных за пределами плоскости сдвига, приводит к появле­
нию поверхностной проводимости, называемой «бикермановской поверхностной проводимостью» [15]. Кроме того, 
данная проводимость может возникнуть и за счет проводимости неподвижного слоя. Она может включать в себя 
составляющие, обусловленные, с одной стороны, специфической адсорбцией заряда, а с другой — частью заряда 
диффузного слоя, который может находиться за плоскостью скольжения.

Предполагается, что заряд на твердой поверхности неподвижный.

Б.2 Расчет числа Духина
В данном разделе рассмотрены системы, где размер двойного слоя мал по сравнению с радиусом частиц, 

то есть ка »  1. Проводимость в диффузной части двойного слоя за пределами плоскости сдвига складывается из 
двух составляющих [15]: проводимости, вызванной движением зарядов по отношению кжидкости, и проводимости, 
вызванной за счет электроосмотического потока жидкости за пределы плоскости сдвига, что приводит к дополни­
тельной подвижности зарядов и, следовательно, к дополнительному вкладу в Ка. Для расчета К° может использо­
ваться уравнение Бикермана, в котором /<ст выражается как функция параметров электролита и двойного слоя. Для 
симметричного электролита используется выражение:

К° =
2 e2NAz2c

D+ е х р - 1 1 +
3 т+ 
~~z 2"”

+ Д (Б.1)

где е — элементарный электрический заряд, Кл; 
Л/д — число Авогадро, моль-1; 

z — валентность иона; 
с — концентрация электролита, моль/м3; 

кв — постоянная Больцмана, Дж/К;
Т — абсолютная температура, К;

D+ — коэффициент диффузии катионов, м2/с; 
Д_— коэффициент диффузии анионов, м2/с; 

С, — дзета-потенциал, В; „
Q — вычисляется по формуле С, = Rf -.

Параметры т± отражают относительный вклад электроосмоса в поверхностную проводимость:

т±
2 /к 7~\2 £т £0
3 \ е / п D± (Б.2)

где к — обратная длина Дебая, м"1;
Т — абсолютная температура, К; 
е — элементарный электрический заряд, Кл; 

t m — относительная диэлектрическая проницаемость жидкости; 
е0 — диэлектрическая постоянная, Ф/м;
П — динамическая вязкость, Па-с;

D±— коэффициент диффузии катионов и анионов, м2/с.
Мера относительной величины поверхностной проводимости выражается безразмерным числом Духина Du, 

которое связывает поверхностную и объемную проводимости соотношением:

Du

где Ка — поверхностная проводимость, См;
К  — проводимость дисперсионной среды, См/м; 

а — локальный радиус кривизны поверхности, м.

Ка
Кт*

(Б.З)
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Для бикермановской проводимости Du можно записать в явном виде. Для симметричного электролита коэф­
фициенты диффузии катионов и анионов одинаковы, поэтому т+ = т_ = т, и тогда:

(Б.4)

где к — обратная длина Дебая, м-1; 
а — радиус частицы, м; 
z — валентность иона;

/77 —  выражается формулой т =

где к — обратная длина Дебая, м-1;
Т — абсолютная температура, К; 
е — элементарный электрический заряд, Кп; 

t m — относительная диэлектрическая проницаемость жидкости;
£0 — диэлектрическая постоянная, Ф/м;
П — динамическая вязкость, Па-с;

D eff~  коэффициент диффузии электролита, м2/с.
Формула (Б.4) для числа Духина отражает лишь поверхностную проводимость в диффузном слое за преде­

лами плоскости сдвига.
Поверхностная проводимость в неподвижном слое увеличивает число Духина. Это обстоятельство требует 

прямого измерения проводимости, потому что не существует в явном виде уравнения, которое включало бы в себя 
число Духина и параметры двойного слоя. По теории Максвелла—Вагнера—О'Конски [16]—[18] проводимость дис­
персных сред с непроводящими сферическими частицами Ks определяется формулой:

2 t mtp 
Фон

Ks 1 + 0 и -ф (1 -2 0 и ) 
Km ~ 1 + Du + 0,5ср(1 -2D u) ’

где ф — объемная доля частиц;
Du — число Духина.

11



ГОСТ 8.653.1—2016

Приложение В 
(справочное)

Длина Дебая
Этот параметр является оценкой толщины ДЭС в соответствии с приложением А. Он важен для понимания 

агрегативной устойчивости и взаимодействия частиц и используется для оценки среднего расстояния между при­
ближающимися друг к другу частицами в жидкости перед тем, как электростатическое взаимодействие между ними 
становится существенным.

Длина Дебая определяется расчетным методом или экспериментально. Расчет длины Дебая производится 
по формуле (А.1) при известных концентрации образца и валентности всех видов ионов.

Экспериментальный метод определения длины Дебая, основанный на измерении проводимости, предложен 
Духиным и Гетцем. Расчет производится по следующей формуле:

где гт — относительная диэлектрическая проницаемость жидкости;
£0 — диэлектрическая постоянная, Ф/м;

Deff— эффективный коэффициент диффузии электролита;
Кт — проводимость дисперсной среды, См/м.

Основной вклад в суммарную неопределенность при расчете к-1 вносит неизвестный эффективный коэффи­
циент диффузии Deff  Этот параметр варьируется в ограниченном диапазоне. Например, коэффициенты диффузии 
большинства ионов в водных растворах схожи и имеют значения, которые при комнатной температуре находятся в 
диапазоне от 0,6-10-9 м2/с до 2-10-9 м2/с. При этом неопределенность составляет несколько десятков процентов.

В случае неводных систем используется теория Фуосса [19] для связи коэффициента диффузии и электри­
ческой проницаемости жидкости.

(В.1)
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Приложение Г 
(справочное)

Модифицированные теории электрофореза 

Г.1 Основные положения
Элементарные теории электрофореза, представленные в основной части настоящего стандарта, предпо­

лагают, что ДЭС тонкий имеет незначительную поверхностную проводимость и непроводящие частицы. Теории 
ограничены следующими условиями:

ка »  1, (Г1)

Du «  1, (Г2)

II О (ГЗ)

Разработано несколько теоретических подходов, которые позволяют избавиться от некоторых из этих огра­
ничений и дают более общие выражения для электрофоретической подвижности.

Г.2 Численная теория О’Брайана и Уайта
Это наиболее общий подход, который позволяет рассчитывать электрофоретическую подвижность для лю­

бой разбавленной дисперсной среды невзаимодействующих сферических частиц [20]. Ограничения (Г.1) — (ГЗ) 
исключены.

Г.З Теория Генри-Ошима для проводящих и непроводящих частиц
Эта теория [21 ]—[22] позволяет избавиться отограничений (Г. 1) и (Г.З). Ограничение (Г.2) остается неизменным. 
По теории Генри для непроводящей сферы электрофоретическую подвижность вычисляют по форму­

ле [21]:

Н = (Г4)

где £т  — относительная диэлектрическая проницаемость среды; 
е0 — диэлектрическая постоянная, Ф/м;
П — динамическая вязкость, Па с;
С, — дзета-потенциал, В;
f| — плавно меняется от 1,0 при малых значениях ка до 1,5 при кз—<■«.

Существует два способа преобразований функции [21]: один для малых значений ка и один для больших 
значений кз. Приближенное аналитическое выражение имеет вид [21]—[22]:

М ка) = 1 + ~2 1 +
2,5

кэ[1 + 2ехр(-кз)]
-3

(Г5)

где к — обратная длина Дебая, м-1; 
а — радиус частицы, м.

Формула (Г.4) может использоваться при расчете электрофоретической подвижности частиц с ненулевой 
объемной проводимостью Кр. Формула (Г.4) в данном случае имеет вид [23]:

Н = % Г ^ ( к а Л р), (Гб)

/Й (ка Д ) = 1 + к т+ к  р [Г|(ка) -  1],

где £т  — относительная диэлектрическая проницаемость среды;
£0 — диэлектрическая постоянная, Ф/м;
П — динамическая вязкость, Па с;
С, — дзета-потенциал, В;

Кр — проводимость дисперсной частицы, См/м.
Эта теория подходит для проводящих частиц в дисперсных системах.

Г.4 Теория Хюккеля—Онзагера для ДЭС больших размеров
Эта теория [24] заменяет ограничение для тонкого ДЭС (Г.1) на ограничение для ДЭС больших размеров:

ка «  1. (Г7)

Ограничения (Г.2) и (ГЗ) остаются неизменными.
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Электрофоретическая подвижность определяется уравнением:
__2 2£m£QÎ

М "  3 п
(П8)

где гт — относительная диэлектрическая проницаемость среды;
£0 — диэлектрическая постоянная, Ф/м;
П — динамическая вязкость, Па с;
£ — дзета-потенциал, В.
Формула (П8) справедлива только для сферических частиц в разбавленных системах с неперекрывающими- 

ся ДЭС и обычно используется для описания электрофореза в неполярных жидкостях.

Г.5 Теории Духина — Семенихина и О’Брайана для тонкого ДЭС

Эти аналитические приближенные теории [25]—[27] учитывают вклад поверхностной проводимости для тон­
кого ДЭС непроводящих частиц. Ограничение (Г.2) устраняется, а (П1) и (ГЗ) остаются неизменными.

В случае независимо измеренной Du электрофоретическая подвижность представлена выражением [25]:

-  I n & L h  РЦ[1 + {4ln[cosh(C/4)yc}] 
м п \ 1+2 Du

где £т  — относительная диэлектрическая проницаемость среды; 
е0 — диэлектрическая постоянная, Ф/м;
П — динамическая вязкость, Па с;

Du — число Духина;
С, — дзета-потенциал, В;
С, — вычисляется по формуле С, = ^  j  .
Для случая, когда поверхностная проводимость связана только с диффузным слоем, электрофоретическая 

подвижность имеет вид [26]—[27]:

Н =
£т £оС .  

П L
4[1 + (3m/z2)]sinh2( r /4) + {ln[cosh(r/4)]/Г }{2[1 + (3m/z2)]sinh(r/2 )-  12тГ } 

ка+ 8[1 + (3m/z2)]sinh2(^/4)-{24mln[cosh(Cy4)]/z2}
(ПО)

где £т  — относительная диэлектрическая проницаемость среды; 
е0 — диэлектрическая постоянная, Ф/м;
П — динамическая вязкость, Па с;
С, — дзета-потенциал, В;
С, — вычисляется по формуле £ = ;
к — обратная длина Дебая, м-1; 
а — радиус частицы, м; 
z -  валентность иона; 2 /к Г \2 £т£о

т — выражается формулой т = J .

где к — обратная длина Дебая, м-1;
Т — абсолютная температура, К; 
е — элементарный электрический заряд, Кл;

£т  — относительная диэлектрическая проницаемость жидкости;
£0 — диэлектрическая постоянная, Ф/м;

Deff— коэффициент диффузии электролита, м2/с;
П — динамическая вязкость, Па с.

Формулу (Г. 10) можно упростить, пренебрегая членами порядка (ка)—1, что приводит к выражению [27]:

_ In&LL _ 2+1п2[1-ехр(-С)]/С Т
М П I  2 + [ка/(1 + 3m/z2)]expK /2 ) У

где £т  — относительная диэлектрическая проницаемость среды;
е0 — диэлектрическая постоянная, Ф/м;
П — динамическая вязкость, Па с;
С, — дзета-потенциал, В;
С, — вычисляется по формуле £ = ^  j  ;
к — обратная длина Дебая, м-1;
а — радиус частицы, м;
z — валентность иона; 0 / „ т й .2 / к / Y- t nj£0

m — выражается формулой m = - у  ,
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где к — обратная длина Дебая, м-1;
Т — абсолютная температура, К; 
е — элементарный электрический заряд, Кл; 

t m — относительная диэлектрическая проницаемость жидкости;
£0 — диэлектрическая постоянная, Ф/м;

D eff~  коэффициент диффузии электролита, м2/с;
П — динамическая вязкость, Па-с.

Г.6 Теория электрофореза Овербека для перекрывающихся ДЭС
По теории электрофореза Овербека выражение для электрофоретической подвижности, учитывающее пе­

рекрывающиеся ДЭС [28], экспериментально подтвержденное Лонгом и Россом [29], имеет вид:

_ 2о1 + [(кRc- 1 )/(kRc + 1 )]ехр[2к(Я?с- а ) ] - (а/Я?с){1 + [(кЯ?с- 1 )/(кЯ?с + 1 )]ехр[к(Я?с-  а)]}
М [(к«с-1)/(кЯ с +1)](ка+1)ехр[2к(Яс-а ) ]- к а + 1  ’ (' Лг)

где к — обратная длина Дебая, м-1; 
а — радиус частицы, м; 
о — поверхностная плотность заряда, Кл/м2;

Rc — радиус условной оболочки вокруг частиц, рассчитанный при условии, что объемные доли твердых тел 
внутри оболочки и в дисперсной системе равны.

Формула (Г. 12) применима для концентрированных нанодисперсных и сильно разбавленных неполярных 
дисперсных сред.
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Приложение Д 
(справочное)

Равновесное разбавление и другие модификации образца
Сравнение различных методов определения дзета-потенциала осложняется тем фактом, что дзета-потенци­

ал зависит не только от свойств частиц, но также от химического равновесия между поверхностью частиц и жид­
костью. Любое изменение химического и ионного состава жидкости влияет на это равновесие и, следовательно, 
влияет на величину дзета-потенциала.

Это создает проблему для методов, которые предполагают сильное разбавление образца. Подготовку 
образца должны проводить таким методом, чтобы дзета-потенциал исходной системы и разбавленной пробы не 
изменялся.

При разбавлении не только поверхности частиц должны оставаться идентичными в исходном и разбавлен­
ном растворе, но и жидкости. Это условие сложно выполняется, если в процессе используется как разбавление, 
так и стабилизация поверхностно-активного вещества в образце.

При приготовлении образца следует использовать так называемый способ равновесного разбавления, в ко­
тором используется та же самая жидкость, что и в исходной системе, в качестве разбавителя. После разбавле­
ния единственным параметром, который изменяется, является концентрация частиц. Пробоподготовка на основе 
равновесного разбавления позволяет сохранить значения дзета-потенциала в исходном и разбавленном растворе.

Существуют два подхода к подготовке жидкости, используемой для разбавления. Первый подход заключает­
ся в извлечении жидкости после осаждения частиц путем седиментации или центрифугирования и подходит для 
субмикронных частиц с достаточно высокой концентрацией и менее применим для наночастиц.

Другой подход связан с применением диализа и больше подходит для нано- и биодисперных систем. Ис­
пользование диализных мембран связано с тем, что они пропускают ионы и молекулы и не пропускают дисперсные 
частицы [30].

В некоторых случаях может возникнуть необходимость приготовления более концентрированных проб. Это 
может быть достигнуто путем первоначального отделения частиц от жидкости и повторного диспергирования их в 
той же жидкости, но при более высокой объемной доле частиц.
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