

МИНИСТЕРСТВО ЧЁРНОЙ МЕТАЛЛУРГИИ СССР ГЛАВРУДА

Всесоюзный научно-исследовательский и проектноконструкторский институт по осушению месторождений полезных ископаемых, специальным горным работам, рудничной геологии и маркшейдерскому делу ВИОГЕМ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПО РЕШЕНИЮ ЗАДАЧ ПРОМЕРЗАНИЯ ГРУНТОВ НА ЭЛЕКТРОМОДЕЛЯХ

Белгород 1974 Настоящие указания составлены в лаборато – рии математического моделирования и электронно-вычислительных средств института ВИОГЕМ инженером Н.Т.Прокофьевым.

В работе приводится методика электромоделирования задач промерзания грунтов на моделяханалогах *R* и *R* С-сетках, излагаются вопросы применения теории подобия к расчёту температурных полей в грунтах, показаны различные способы учёта скрытой теплоты льдообразования для случаев, когда Δ Т_{кр} = 0 и Δ Т_{кр} ≠0. Описан комбинированный способ решения задач, описываемых уравнениями типа теплопроводности, на *R* С-сетках.

Указания утверждены научно-техническим советом института ВИОГЕМ от 11 ноября 1971 г.

Научный редактор канд.техн.наук В.М.Чуйко.

Всесоюзный научно-исследовательский и проектно-конструкторский институт по осушению месторождений полезных ископаемых, специальным горным работам, рудничкой геологии и маркшейдерскому делу (ВИОГЕМ), 1974г. В гидротехническом и шахтном строительстве при проведении земляных работ в зимнее время, назначен и и глубин залегания фундаментов сооружений, разработ ке мероприятий по борьбе с пучинами на дорогах и в других случаях возникает потребность в научно обоснован ном расчёте температурных полей во влажных грунтах.

При изучении вопроса расчёта промерзания грунтов наиболее перспективным является метод математического моделирования.

Математическая модель процесса промерзания грунта – это основные уравнения, описывающие явления, и уравнения для краевых условий. Эта модель в настоящей работе изучается с помощью электрической аналогии, когда соответствующее электрическое явление имеет так ое же математическое описание.

Опыт показывает, что для решения задачи промер зания грунта эффективнее применять аналоговые вычисли – тельные машины по сравнению с электронными цифровы – ми вычислительными машинами, хотя последние и меют принципиально неограниченные возможности. Это объя с – няется, с одной стороны, практически мгновенным быст – родействием аналоговых машин и относительно небольшой потребной точностью решения данной инженерной задачи, с другой стороны, - большим объёмом работ по составлению программ для ЭЦВМ при решении нелинейных задач.

Из аналоговых вычислительных машин для решения нелинейных теплофизических задач (а задача промерза – ния грунтов относится к этому классу) нашли примене – ние главным образом модели-аналоги, структурные же модели почти не применяются. Среди моделей-аналогов для расчёта нестационарных полей в промерзающих грунтах наиболее широкое распространение получили гидравлические интеграторы системы В.С.Лукьянова. Однако нельзя соглашаться с утверждением Б.А.Волынского [6], что они являются пока единственными, которые позволяют учитывать скрытую теплоту при исследовании тепловых процессов, ибо такие процессы могут быть изуче ны и на электрических моделях. Однако электрические модели не нашли пока широкого применения для этих целей, несмотря на ряд их преимуществ перед гидравлическими (стабильность результатов, высокая точность, быстрота и удобство электрических измерений, сравнительно невысокая стоимость электромоделей, простота устройства и эксплуатации). Сказанное выше относится к электромоделям-сеткам омических сопротивлений, где задача решается по методу, предложенно му Либманом [38], [39]. Метод Либмана позволяет решать задачи замораживания не только одномерные, но и двух- и трёхмерные.

Этот метод, однако, лишён наглядности и довольно трудоёмок (особенно для уравнений параболического типа с разрывными коэффициентами). Кроме того, измерение потенциальной картины во времени ведется ручным измерительным устройством, что еще увеличивает время решения. Большой объём работ, производимых вручную, не позволяет применять этот метод для решения задач с большим количеством узловых точек.

Не нашел пока широкого применения для решения задач замораживания метод решения при помощи стати ческого электроинтегратора, разработанного в проблем ной лаборатории процессов горения и теплообмена Казахского университета группой Л.А.Вулиса и А.Т.Лукьянова. Удобство этого метода заключается в использовании под вижного счётного элемента, который может быть анало гом любого разностного оператора. Вместе с тем нужно отметить, что при этом методе требуется дополнитель ное цифровое устройство для использования итеративного метода решения.

На статическом электроинтеграторе Л.А.Вулиса и А.Т. Лукьянова можно реализовать самые различные конечноразностные аппроксимации дифференциального уравнен и я теплопроводности.

Что касается электронных аналоговых математических машин на *R* С-сетках, то в Советском Союзе от сутствуют такие, на которых решаются в настоящее время подобные задачи и, как пишет один из авторов математической машины УСМ-1 Н.С.Николаев [28], было бы большим достижением обеспечение возможности решения тепловых задач в средах с изменяющимся фазовым состоянием на этих машинах.

Во НИИУВМ (г.Пенза) в первой половине 60-х годов велись работы по созданию аналоговой математической машины на *RC*-сетках, способной решать задачи с фазовыми переходами [43]. К сожалению, эта машина не была создана. Такая машина была создана в США [40].

В настоящей работе предпринята попытка систематически изложить методику применения электромоделей *R* и *R* С-сеток для расчёта теплопередачи в промерзающих влажных грунтах.

Автор благодарит к.т.н. В.М.Чуйко – нау ного редактора, чьи советы и критические замечания содейство в ал и улучшению формы и содержания пособия, а также инжене – ра В.И.Ростовцева, оказавшего большую помощь при по – становке задач на моделях и создании необходимых приборов.

Условные обозначения

- Т температура, град С;
- ∆ Т перепад температур, град С;
 - γ время, час;
 - Q плотность теплового потока, ккал/м² час;
 - д коэффициент теплопроводности, ккал/м час град;
 - С удельная теплоёмкость, ккал/кг град;
 - С объёмная теплоёмкость, ккал/м3 град;
 - **γ-** удельный или объёмный вес, кг/м³;
 - а коэффициент температуропроводности, м²/час;
 - ↓ коэффициент теплоотдачи, ккал/м² час град;
 - W- влажность, доли единицы;
 - i льдистость, доли единицы;
 - б теплота льдообразования, ккал/кг;
 - ω источник тепла, ккал/м³ час;

- Q количество тепла, ккал;
- 5 граница промерзания, м;
- n нормаль, м;
- х, ц координаты, м;
 - h интервал пространства, м;
 - е масштаб;
- d_{в,т} масштабные коэффициенты перехода;
- Тэ полный период решения на УСМ-1, сек;
- R электрическое сопротивление, ом;
- V электрический потенциал, в;
- J сила тока, а;
- q_э количество электричества, кул.

Индексы

n - момент времени;

0,1,...,4 - номера узлов сетки;

- о внутренний узел;
- п поверхность;
- с среда;
- м максимальное значение;
- н начальное значение;
- эф эффективное;

- т тепловая система;
- э электрическая система;
- τ временное;
- кр кристаллизация.

Сокращения терминов

R - сетка - сетка сопротивлений;

RC- сетка - сетка сопротивлений и емкостей.

Глава 1

МЕТОДИКА РАСЧЁТА ПРОМЕРЗАНИЯ ГРУНТА НА ЭЛЕКТРИЧЕСКИХ МОДЕЛЯХ-СЕТКАХ ОМИЧЕСКИХ СОПРОТИВЛЕНИЙ

1.1. Математическая теория вопроса

В соответствии с задачей дать доступный для практики и в основном правильно учитывающий главные факторы метод расчёта промерзания влажного грунта следует [22]:

1) считать главным фактором, определяющим тепловой режим грунта, процесс теплопередачи, происходящий в нем как в "истинно твердом теле", т.е. в таком, в котором отсутствует перенос тепла за счёт взаимного перемещения отдельных частиц тела;

2) полагать возможным при исследовании тепло во го режима промерзшего влажного грунта в большинстве случаев не учитывать процесс миграции влаги. Наличие же влаги в грунте следует учитывать путем учёта выдел я е – мого влагой тепла, при изменениях фазового состояния, и путём учёта изменения при этом теплофизических хар актеристик грунта;

3) различать случаи замерзания влаги в грунте при постоянной температуре, $\Delta T_{Kp} = 0$, т.е. случаи промерзания грунта с образованием границы промерзания и случаи промерзания влаги в грунте в некотором диапазоне температур $\Delta T_{Kp} \neq 0$, т.е. случаи промерзания грунта с образованием зоны промерзания.

При $\Delta T_{\kappa p} = 0$ промерзают крупнозернистые грунты, например пески, размеры пор которых сравнительно велики и влага очень мало связана со скелетом грунта.

При <u>∧</u> Т_{кр} ≠0 замерзают пылеватые и глинистые грунты, размеры пор которых малы, и вода, заполняющая эти поры, находится в связанном состоянии.

Напишем для простоты одномерную математическую модель промерзания грунта с поверхности для случая $\Delta T_{\rm Kp} = 0$ [23]. Принимаем, что коэффициент теплопров одности и объёмная теплоёмкость С грунта меняются скачкообразно при переходе температуры через 0°С от значений при положительных температурах Λ_2 и С₂ до величин, соответствующих отрицательным температурам Λ_1 и С₁. Замерзание всей термоактивной грунтовой влаги, сопровождающееся выделением скрытых теплот, происходит при 0°С.

Температурное поле в грунте в этом случае описывается следующей системой дифференциальных уравнений:

на поверхности грунта

$$-\Lambda, \frac{\partial T}{\partial x} = d(T_{B} - T_{n}), \qquad (1.1)$$

где Т_в - температура воздуха; в мерзлой зоне

$$\lambda \frac{\partial^2 T}{\partial x^2} = C_1 \frac{\partial T_1}{\partial \tau} ; \qquad (1.2)$$

в талой зоне

$$\Gamma_1 = T_2 = 0^{\circ}C;$$
 (1.3)

на границе промерзания

$$T_1 = T_2 = 0^{\circ}C.$$
 (1.4)

Перемещение этой границы во времени определяется уравнением

где Т - температура;

- γ время;
- Х координата;
- - Q₀ содержание скрытых теплот замерзания воды в единице объёма грунта.

Таким образом, задача о промерзании грунта в этом случае может быть сформулирована как задача о сопряжений двух температурных полей при наличии особого условия на движущейся границе раздела.

При промерзании грунта с поверхности с образованием

зоны промерзания, когда <u>∧</u> Т_{кр} ≠0, математическая модель для одномерного случая будет списываться так:

На поверхности грунта и в талой зоне уравнениями(1.1), (1.3) соответственно:

в мерэлой зоне

$$\frac{\partial}{\partial x} \left(\lambda_1 \frac{\partial T_1}{\partial x} \right) - C_1 \frac{\partial T_1}{\partial \tau} + \mathcal{O} \frac{\partial q_A}{\partial T_1} \frac{\partial T_1}{\partial \tau} = 0 , \qquad (1.6)$$

где q_{Λ} - количество льда в единице объёма грунта, кг/м³; <u>Б</u> - скрытая теплота льдообразования, ккал/кг. Уравнение (1.6) можно записать в виде:

$$\frac{\partial}{\partial X} \left(\lambda_1 \frac{\partial T_1}{\partial X} \right) - \left(C_1 - \mathcal{O} \frac{\partial q_A}{\partial T_1} \right) \frac{\partial T_1}{\partial \tau} = 0 , \qquad (1.7)$$

Величину - $\int \frac{\partial \Psi_{A}}{\partial T_{i}} = C_{cn}$ называют спектральной объёмной теплоёмкостью, величину $(C_{1} - \int \frac{\partial \Psi_{A}}{\partial T_{4}}) = C_{3\phi} - 3\phi$ фективной объёмной теплоёмкостью. С учётом этого уравнения (1.7) примет вид обычного уравнения типа Фурье:

$$\frac{\partial}{\partial X} \left(\Lambda_1 \frac{\partial_a I_1}{\partial X} \right) - C_{3\alpha} \frac{\partial I_1}{\partial \tau} = 0$$
 (1.8)

В уравнении (1.8) параметры \mathcal{N}_1 и С_{эф}являются функциями температуры.

Удобно считать, что функция $C_{\ni \varphi}(T)$ распространяется A на область немерэлого грунта, принимая при этом з начения для $T > T_{O,H}$, где $T_{O,H}$ – температура начала промерзания, $C_{\ni \varphi} = C_2$, т.е. становится равной объёмной теплоёмкости талого грунта.После такого обобщения отпадает необходимость в особом рассмотрении зоны талого грунта, как это было выше (и зоны полностью промерзшего грунта, как это было выше (и зоны полностью промерзшего грунта, если бы это потребовалось), и дифференциальное урав н е – ние процесса промерзания в этом случае дается в обычном виде, но $C_{\ni \varphi}$ и A не будут постоянными, а будут довольно сложными функциями от T:

$$\frac{\partial}{\partial x}\left(\lambda\frac{\partial T}{\partial x}\right) = C_{9\varphi}\left(\frac{\partial T}{\partial \tau}\right) \qquad (1.9)$$

Зависимости Л (Т) и С_{эф}(Т) можно получить опытным путём, а можно воспользоваться аналитическими зави симостями, приведенными в работе Н.С.Иванова [11].

1.2. Схемы конечно-разностных аппроксимаций уравнений теплопроводности. Вопросы устойчивости и сходимости. Электрическая реализация неявных разностных схем

Остановимся на конечно-разностных аппроксимациях пространственных производных и производной по времени на примере уравнения теплопроводности [13]:

$$\frac{\partial T}{\partial \tau} = \Omega \frac{\partial^2 T}{\partial x^2} ; \qquad (1.10)$$

$$\frac{\partial I}{\partial X} \approx \frac{T_0 - T_1}{\Delta X} - разность назад; (1.11)
$$\frac{\partial I}{\partial X} \approx \frac{T_2 - T_0}{\Delta X} - разность вперед; (1.12)
$$\frac{\partial I}{\partial X} \approx \frac{T_2 - T_1}{2\Delta X} - среднее из разностей (1.13)
вперед и назад (симмет-ричная разность).$$$$$$

Индексы здесь относятся к узлам. Из уравнений (1.11)-(1.13) уравнение (1.13) обычно предпочтительнее, так как оно дает аппроксимацию для первой производной в узле 0, а не при <u>+</u> x/2.

Аппроксимация второй пространственной производной имеет вид:

$$\frac{\partial^2 T}{\partial X^2} \approx \frac{T_1 + T_2 - 2 T_0}{\Delta X^2}$$
(1.14)

Первая производная от Т по времени в (**п** – 1) момент может быть аппроксимирована тремя способами:

$$\frac{\partial I}{\partial \tau} \approx \frac{T_n - T_{n-1}}{\Delta \tau}$$
 - разность вперед; (1.15)

$$\frac{\partial T}{\partial \tau} \approx \frac{T_{n-1} - T_{n-2}}{\Delta \tau} - pазность назад; (1.16)$$

$$\frac{\partial T}{\partial \tau} = T_{n-2} - cpeднee из разностей$$

$$\frac{\partial T}{\partial \tau} \approx \frac{1}{2\Delta\tau}$$
 BREPER и назад. (1.17)

Здесь индексы относятся к соответствующим моментам времени. Комбинации пространственных аппроксимаций с временными дают полностью дискретную аппроксимацию уравнения (1.10). Если уравнение (1.10) заменено конечноразностным уравнением

$$a \frac{T_{1,n-1} + T_{2,n-1} - 2 T_{0,n-1}}{\Delta X^2} \approx \frac{T_{0,n} - T_{0,n-1}}{\Delta \Upsilon}$$
(1.18)

то говорят, что имеем конечно-разностную аппроксимацию по явной схеме.

Если уравнение (1.10) аппроксимировано уравнением

$$\alpha \frac{T_{1.n} + T_{2,n} - 2 T_{0.n}}{\Delta X^2} = \frac{T_{0,n} - T_{0,n-1}}{\Delta Y}$$
(1.19)

то говорят, что имеем конечно-разностную аппрокси мацию по <u>неявной схеме</u>.

Схему

$$a \frac{T_{1,n-1} + T_{2,n-1} - 2 T_{0,n-1}}{\Delta X^2} = \frac{T_{0,n} - T_{0,n-2}}{2\Delta T}$$
(1.20)

называют схемой Ричардсона.

Вычислительная схема является устойчивой, если ошибка, сделанная в момент времени И (а при вычислениях ошибки округления неизбежны), в дальнейшем будет затухать, и неустойчивой, если такая ошибка возрастает и после сравнительно небольшого числа шагов увеличи в ается до неприемлемой величины. Явление вычислительной неустойчивости не связано с погрешностями округления, оно является свойством самой системы разностных уравнений.

Математическая теория устойчивости различных разностных схем подробно изложена в работах [20], [32] и др. Из указанных работ вытекает, что дискретизация производных по времени приводит к возможности появления неустойчивости. Схема (1.20) неустойчива при любых соот ношениях интервалов пространства и времени.

Условие устойчивости для явной схемы [7] имеет вид:

$$0 \frac{\Delta \Upsilon}{\Delta \chi^2} \leq \frac{1}{2} \tag{1.21}$$

Схема (1.19) является безусловно устойчивой. У словие устойчивости (1.21), как правило, вынуждает брать слишком малые интервалы времени и много раз повторять одни и те же операции. По этой причине явная форма не получила распространения даже на быстродействующих цифровых вычислительных машинах.

Неявный метод обладает фундаментальным преимуществом: требование устойчивости решения здесь не накладывает никаких ограничений на величину временного шага. Его величину можно назначать в разумных пределах так, чтобы уменьшить время расчётов без потери точности решения.

Условие устойчивости (1.21) записано для одно мерной задачи. Для двухмерной и трехмерной задачи условие устойчивости соответственно имеет вид:

$$a \frac{\Delta \mathcal{T}}{h^2} \leq \frac{1}{4} \tag{1.22}$$

$$\Omega \frac{\Delta \tau}{h^2} = \frac{1}{6} \tag{1.23}$$

13

где h - интервал пространства.

Помимо математического подхода к анализу вычислительной неустойчивости, существует физический подход, предложенный В.Карплюсом [13]. Так как непрерывное проводящее поле может быть заменено сеткой сопротивлений, у которой уравнение узла или контура совпадает с конечноразностной аппроксимацией дифференциального уравнения, описывающего поле, то можно считать, что всякому конечно-разностному уравнению соответствует своя сетка сопротивлений. Следует при этом ожидать, что вычислительная неустойчивость в соответствующей сетке сопротивлений будет проявляться в виде электрической неустойчи вости, т.е. любое флуктуационное отклонение напряжения в узловой точке от номинала, изображающего истинную величину решения, приводит к лавинообразному нарастанию токов и напряжений.

Для выяснения вопроса вычислительной неустойчи в ости конечно-разностного уравнения строится соответствующий ему электрический конструктивный блок. Если он содержит только положительные сопротивления, то цепь должна быть устойчивой, так как она имеет в этом случае только элементы, рассеивающие энергию.

Если помимо положительных сопротивлений имеются отрицательные, то цепь будет устойчивой только в том случае, если суммы всех отрицательных сопротивлений больше суммы всех положительных.

Вторая проблема, возникающая при конечно-разностном представлении временной переменной в дифференциальных уравнениях с частными производными, связана с возможностью отсутствия сходимости. Говорят, что конечноразностная аппроксимация "сходится", если приближенное решение конечно-разностного уравнения стремится к точному по мере измельчения сетки конечных разностей при условии, что отношение пространственных шагов сетки вдоль различных координат сохраняется постоянным [13]. Общего критерия сходимости в литературе не имеется. Однако устойчивость всегда предполагает сходимость, хотя обратное не всегда верно. Но, так как одним из важнейших требований к вычислительным алгоритмам является требование устойчивости, рассмотрение вопроса сходимости не представляет дополнительной проблемы.

При моделировании процесса промерзания грунтов на R - сетках будем использовать, как наиболее распространенную, только неявную конечно-разностную аппроксимацию типа (1.19). Детальное описание различных видов неявных разностных схем изложено в работе [9].

В 1956 г. Дж.Либман предложил оригинальный метод решения задач нестационарной теплопроводности [38]. Метод представляет собой реализацию неявной конечно-разностной схемы на электрической модели. В качестве примера рассмотрим реализацию схемы (1.19) по Либману.

Соберем электрическую цепь, как показано на рис.1.1.

Рис. 1.1. Узел сетки сопротивлений в точке 0. J, ; J₂; J₃ - токи в ветвях цепи.

По закону Кирхгофа

$$\sum_{i=1}^{3} J_i = 0$$
 (1.24)

Так как

$$J_{1} = \frac{V_{1,n} - V_{0,n}}{R_{x}}; J_{2} = \frac{V_{2,n} - V_{0,n}}{R_{x}}; J_{3} = \frac{V_{3,n-1} - V_{0,n}}{R_{\tau}},$$

$$\frac{V_{1,n} - 2V_{0,n} + V_{2,n}}{R_{x}} = \frac{V_{0,n} - V_{0,n-1}}{R_{x}}$$
(1.25)

Здесь · Ки - сопротивление цепи, а Ки связано с соотношением

$$R_{\tau} = \frac{\alpha \Delta \tau}{(\Delta X)^2} R_X \qquad (1.26)$$

Уравнение (1.25) формально тождественно с уравнением в конечных разностях (1.19) при условии (1.26).

Следовательно, уравнение напряжений в рассматривае-

мой цепи (1.25) моделирует уравнение в конечных разностях (1.19), а уравнение в конечных разностях аппроксимирует дифференциальное уравнение в частных производных (1.10) с точностью, определяемой выбором интервалов пространства и времени.

Другую оригинальную реализацию неявной конечно-разностной схемы на электромодели предложил В.Карплюс [13]. Принципы, положенные им в основу построения дискретной сеточной модели, является развитием метода Либмана.

1.3. <u>Правила моделирования, Электротепловая</u> <u>аналогия</u>

При составлении электрических моделей для иссле дования нестационарных задач теплопроводности следует руководствоваться следующими правилами [87]:

1) электрическая модель должна быть геометрически подобна исследуемому объекту;

2) явления в модели и в исследуемом объекте долж ны принадлежать к одному и тому же классу, то есть описываться одинаковыми дифференциальными уравнениями;

3) граничные условия должны быть подобными.

Кроме того, при электрическом моделировании на сетках необходимо выполнение условия [16]

$$\left(\frac{\ell_{x^{2}}\ell_{cj}}{\ell_{A}\ell_{\tau}}\right)_{T} = \left(\frac{\ell_{x^{2}}\ell_{cr}}{\ell_{A}\ell_{\tau}}\right)_{g} = idem \qquad (1.27)$$

При электрическом моделировании на RC-сетках выполняется условие

$$\left(\frac{\ell_{x^{2}}\ell_{c}\ell_{z}}{\ell_{\tau}}\right)_{T} = \left(\frac{\ell_{x}^{2}\ell_{c}\ell_{z}}{\ell_{\tau}}\right)_{3} = idem \qquad (1.28)$$

где С-масштаб;

С - удельная теплоемкость;

и – удельное тепловое сопротивление;

R₀- удельное электрическое сопротивление.

Индексы Т и Э относят выражения соответственно

к тепловой и электрической системам.

Выражения (1.27) и (1.28) аналогичны.

В табл. 1 приведена наиболее часто встречающаяся система электротепловых аналогий (ЭТА).

Таблица 1

Аналогия	между	тепловым	ИИ	электрическими
	Be	эличинами	[34]

Теплова	я система	Электрическая система		
Величина	Размерность	Величина	Размерность	
Т-температура	град	V -напря-	В	
У -коэффилиент		Q -удель-		
теплопроводност	и ккал/м.час. Град	ная проводи- мость	1/ом•м	
Q -количество тепла С = C X U ¹⁾ -	ккал	Ч _э -количе- ство элект- ричества	кулон	
- теплоемкость	ккал/град	С-ёмкость	ф	
R _T = тепловое сопротивлени	град. не час/ккал	R -электриче ское сопроти	 в- ом	
Ҭ_т - в ремя	час	ление t ²⁾ -время	час	
$q_{T} = \frac{dQ}{d\tau_{T}}$	ккал/час	$J = \frac{d^{q_3}}{d\tau_3}$	a	
расход тепла или		- Сила тока		
$q_{\tau} = c \gamma v \frac{d\tau}{d\tau_{\tau}}$	_*_	$J = C \frac{dV}{d\tau_3}$		
1) - объём,	м ³ .			

2) При моделировании на R С-сетках электрическое время обычно выражается в секундах. В основу метода ЭТА положена аналогия между лифференциальными уравнениями процесса распространения тепла и распределения потенциалов в электропроводной среде.

Уравнения, описывающие нестационарные поля температур и электрических потенциалов, в простейшем случае имеют вид:

$$\frac{\partial^2 T}{\partial x^2} = \frac{C \gamma}{\lambda} \frac{\partial T}{\partial \gamma} ; \qquad (1.29)$$

$$\frac{\partial^2 V}{\partial X^2} = R_0 C_0 \frac{\partial V}{\partial \tau} ; \qquad (1.30)$$

где R_o - удельное электрическое сопротивление, ом.м; C_o - удельная электрическая емкость (на единицу объёма), ф/м³.

Электромодель R С-сетка решает уравнение (1.30), которое аналогично уравнению (1.29), если соответствуюшим образом рассчитать параметры R С-сетки.

При электрическом моделировании на *R*-сетках используется аналогия между конечно-разностным выражением уравнения нестационарной теплопроводности и законом Кирхгофа для токов электрической цепи, сходящейся в узел

$$\frac{T_{\kappa-1,n} - T_{\kappa,n}}{h^2} + \frac{T_{\kappa+1,n} - T_{\kappa,n}}{h^2} + \frac{T_{\kappa,n-1} - T_{\kappa,n}}{\alpha \vartriangle \tau} = 0; \quad (1.31)$$

$$\Sigma \frac{\Delta V_i}{R_i} = 0; \qquad (1.32)$$

где ΔV_i – разность потенциалов в узлах на концах сопротивления R_i .

Методика электрического моделирования применительно к процессу промерзания грунта на R и R C-сетках излагается ниже.

1.4. Расчёт параметров R - сетки

К расчёту параметров *R*-сетки (или *R* С-сетки) для решения уравнения процесса промерзания грунтов, как и вообще краевых задач, возможны два подхода [7]:

 физический метод, основанный на аналогии уравнений;

2) математический метод, исходящий из приближен ного выражения решения для данного уравнения.

Первый метод (так называемый метод замещения) применяется как при физическом, так и при математическом моделировании. При этом сплошная среда заменяется сосредоточенными элементами. Такая замена обладает преимуществом физической наглядности и в простейших случаях может давать верный результат. Вопрос о погрешности при такой замене остается открытым. В сложных случаях, как показано в [7], погрешность может оказаться довольно большой, а нахождение эквивалентных элемен тов затруднительно.

Второй метод заключается в том, что дифференик альное уравнение заменяется конечно-разностным уравнени – ем для узловых точек сетки, а электрические сетки по нимаются как счётно-решающие механизмы. Элементы сое – диняются между собой так, чтобы выполнялись указанные уравнениями операции. При таком способе составления электрических схем теряется физическая наглядность, но появляется наглядность математическая, позволяющая оценить погрешность. Этот метод наиболее точный, и в дальнейшем электрические параметры будут рассчитываться главным образом исходя из него.

Уравнения, описывающие процесс промерзания грунтов, могут быть записаны в любой системе координат, лучше всего соответствующей геометрии поля. Наиболее часто встречаются прямоугольные и цилиндрические координатные системы.

Расчет нараметров *R*-сетки для решения уравнения процесса промерзания грунта, записанного в прямоугольной системе координат

При исследовании температурных полей в промерзающем влажном грунте (двумерный случай) уравнение теплопроводности имеет вид:

$$\frac{\partial}{\partial x} \left(\Lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\Lambda \frac{\partial T}{\partial y} \right) - (c \gamma) \frac{\partial T}{\partial \tau} + \omega = 0; \qquad (1.33)$$

где Λ , CY, ω - в общем случае функции пространственных координат х, у, температуры и времени;

и - функция тепловых источников, определяющая приток тепла в единице объёма и в единицу времени.

Функция Ш имеет различные выражения для случаев Т_{кр} = 0 и Т_{кр} ≠ 0, о чём будет сказано более подробно ниже. Граничные условия заданы обычно в виде условий 1 или Ш рода.

Начальные условия задаются в виде распределения температур в начальный момент времени T = T (x, y, o). Пусть Д - область моделирования плоскости хоу. Покроем её сеткой прямых, параллельных осям координат. Точки пересечения этих прямых будем называть узлами сетки, или узловыми точками. Расстояние между соседними узлами называют щагом сетки.

Уравнение [1.33] при выборе неравных пространст в е нных интервалов можно приближенно представить для узла 0 в виде [2]:

$$2\left[\frac{\lambda_{1}\frac{T_{1,n}-T_{0,n}}{h_{1}}-\lambda_{2}\frac{T_{0,n}-T_{2,n}}{h_{2}}}{h_{1}+h_{2}}\right]+\left[\frac{\lambda_{3}\frac{T_{0,n}-T_{0,n}}{h_{3}}-\lambda_{4}\frac{T_{0,n}-T_{1,n}}{h_{4}}}{h_{3}+h_{4}}\right]+$$

+
$$(C\gamma)_{o,n-1} \frac{T_{o,n-1} - T_{o,n}}{\Delta \tau} + \omega = 0;$$
 (1.34)

Умножив обе части уравнения (1,34) на $\frac{(h_1+h_2)(h_3+h_4)}{4}$ получим:

$$\frac{\mathcal{A}_{1}(h_{3}+h_{4})}{2h_{1}}\left(T_{4,n}-T_{0,n}\right)+\mathcal{A}_{2}\frac{h_{3}+h_{4}}{2h_{2}}\left(T_{2,n}-T_{0,n}\right)+$$

20

$$\frac{\hat{\mathcal{M}}_{3}(h,+h_{2})}{2h_{3}}(I_{3,h}-I_{0,n})+\frac{\hat{\mathcal{M}}_{4}(h,+h_{2})}{2h_{4}}(I_{4,h}-I_{0,n})+$$

$$+(c\chi)_{q,n-1}\frac{(h,+h_{2})(h_{3}+h_{4})}{4\Delta\tau}(I_{q,n-1}-I_{0,n})+$$

$$+\omega\frac{(h_{1}+h_{2})(h_{3}+h_{4})}{4}=0; \qquad (1.35)$$

Рис.1.2. Элемент *R* -сетки, эквивалентный элементарной площадке вокруг узла 0.

Индексы 0, 1, ..., 4 при Ти (СУ.) относят эти величины к узлам 0, 1, . . ., 4 соответственно (рис. 1.2, а). Индексы 1,2,3,4 при h относят величину соответ с твенно к интервалам пространства между узлами 0-1, 0-2, 0-3, 0-4. Величины λ.; λ₂; λ₃; λ₄определяются по средней температуре в соответствующих узлах в (n - 1) момент времени. Величина (СУ) определяется в соответствующих узлах в (n - 1) момент времени. Величина Ш задаётся для **П**-го момента

Уравнение электрических токов по первому закону Кирхгофа для нулевого узла (рис.1.2,б) запишется следующим образом:

времени.

$$\frac{V_{3,n} - V_{0,n}}{R_1} + \frac{V_{2,n} - V_{0,n}}{R_2} + \frac{V_{3,n} - V_{0,n}}{R_3} + \frac{V_{3,n} - V_{0,n}}{R_3}$$

$$+ \frac{V_{1,n} - V_{0,n}}{R_4} + \frac{V_{0,n-1} - V_{0,n}}{R_7} + \frac{V_m - V_{0,n}}{R_\omega} = 0$$
(1.36)

Для соблюдения аналогии между конечно-разност н о й аппроксимацией уравнения (1.35) и уравнением первого закона Кирхгофа (1.36) электрические сопротивления $R_1 - R_4$, R_{τ} , R_{ω} , должны быть рассчитаны по формулам

$$R_{1} = \frac{d_{R} \cdot 2h_{1}}{\Lambda_{1}(h_{3} + h_{4})}; \quad R_{2} = \frac{d_{R} \cdot 2h_{2}}{\Lambda_{2}(h_{3} + h_{4})};$$

$$R_{3} = \frac{d_{R} \cdot 2h_{3}}{\Lambda_{3}(h_{1} + h_{2})}; \quad R_{4} = \frac{d_{R} \cdot 2h_{4}}{\Lambda_{4}(h_{1} + h_{2})}; \quad (1.37)$$

$$R_{\tau} = \frac{\mathcal{L}_{R} \cdot 4 \Delta \tau}{(c_{\chi})_{o,n-1} (h_{1} + h_{2})(h_{3} + h_{4})}; \qquad (1.38)$$

$$R_{\omega} = \frac{d_{R} \cdot 4 (V_{M} - V_{0,n})}{d_{V} \cdot \omega (h_{1} + h_{2})(h_{3} + h_{4})}; \qquad (1.39)$$

где dy – масштабный коэффициент по напряжению, вольт/град;

- ок кал/час-град;
- Vм максимальное напряжение, которое можно подать, пользуясь данной измерительной схемой.

Так как потенциал Vo, м является искомым и не может быть использован при определении параметров модели, то обычно величину R и выбирают такой, чтобы

$$V_{\rm M} \gg V_{o,n} \tag{1.40}$$

Тогда выражение (1.39) с учётом (1.40) принимает вид:

22

$$R_{\omega} = \frac{d_{R} \cdot 4 \, V_{M}}{d_{v} \cdot \omega \, (h_{1} + h_{2}) (h_{3} + h_{4})} \tag{1.41}$$

Вместо R и можно подключить в узел "О" источник тока, величина которого рассчитана по формуле

$$J_{\omega} = \frac{d_{v} \cdot \omega (h_{1} + h_{2})(h_{3} + h_{4})}{4 d_{R}}$$
(1.42)

При заданных граничных условиях 1 рода в узлы задаются напряжения, соответствующие заданным температурам.

При задании граничных условий Ш рода выполняется равенство

$$d(T_n - T_e) = -\int (\frac{\partial T}{\partial n})_n \qquad (1.43)$$

где индекс И означает поверхность, С – среду; d – коэффициент теплоотдачи.

Условие (1.43) можно записать в виде

$$d(T_n - T_c) + \lambda_i \frac{T_{o,n} - T_{i,n}}{h_i} = 0;$$
 (1.44)

Уравнение электрических токов по закону Кир хгофа для сопротивлений, сходящихся в *i*. и поверхностный уз ел (рис. 1.3), имеет вид:

$$\frac{V_{i,n} - V_{c,n}}{R_{di}} + \frac{V_{o,n} - V_{i,n}}{R_i} = 0; \qquad (1.45)$$

Для аналогии между (1.44) и (1.45) необходимо, чтобы

$$R_{di} = \frac{\lambda_i R_i}{d_i h_i}; \qquad (1.46)$$

Сопротивление R; определяется по одной из формул (1.37).

Рис. 1.3. Задание ГУ Ш рода в і -й узел.

Расчёт параметров *R* -сетки для решения уравнения процесса промерзания грунта, записанного в цилиндрической системе координат

Покажем расчёт на примере процесса промерзания одиночной скважиной с внешним радиусом \mathcal{Z}_{K} .

Задача описывается уравнением

$$\frac{\partial}{\partial \tau} \left(\Lambda_{\tau} \frac{\partial T}{\partial \tau} \right) + \frac{\Lambda_{\tau}}{\tau} \frac{\partial T}{\partial \tau} - (c \gamma) \frac{\partial T}{\partial \tau} + \omega = 0 ; \qquad (1.47)$$

где λ , С γ , ω - функции координаты 7, температуры и времени.

Граничные условия 1 рода

$$\int_{ZK} = f(\tau) \tag{1.48}$$

Начальные условия

$$\int_{(2,0)} = f(2)$$
(1.49)

Уравнение (1.47) в конечно-разностной форме при неравных пространственных интервалах можно записать (для узла 0) так:

$$2\frac{\lambda_{2}\frac{I_{2,n}-I_{0,n}}{h_{2}}-\lambda_{2}\frac{I_{0,n}-I_{1,n}}{h_{1}}}{h_{1}+h_{2}}-\frac{\lambda_{2}(I_{2,n}-I_{0,n})-\lambda_{1}(I_{1,n}-I_{0,n})}{z_{0}(h_{1}+h_{2})}+$$

24

+
$$(C \chi)_{o,n-1} \frac{T_{o,n-1} - T_{o,n}}{\Delta \tau} + \omega = 0;$$
 (1.50)

Обозначения даны на рис. 1.4.

Умножив обе части уравнения (1.50) на $\frac{(h_1+h_2)z_o}{2}$ получим:

$$\frac{\lambda_{2} \tau_{o}}{h_{2}} (I_{2,n} - I_{0,n}) + \frac{\lambda_{1} \tau_{o}}{h_{1}} (I_{1,n} - I_{0,n}) + \frac{\lambda_{2}}{2} (I_{2,n} - I_{0,n}) - \frac{\lambda_{1}}{2} (I_{1,n} - I_{0,n}) + (C_{0})_{0,n-1} \frac{(h_{1} + h_{2}) \tau_{o}}{2} \frac{I_{0,n-1} - I_{0,n}}{\Delta \tau} + \omega \frac{(h_{1} + h_{2}) \tau_{o}}{2} = 0;$$
(1.51)

Так как рассматривается осесимметричная задача, то область исследования удобно ограничить сектором с центральным углом в один радиан.

Для аналогии с законом Кирхгофа (1.36) для цепи, сходящейся в узел 0 (рис. 1.4), необходимо, чтобы параметры R-сетки были рассчитаны так:

$$R_{1} = d_{R} \frac{2}{\lambda_{1}} \frac{z_{o} - z_{1}}{z_{o} + z_{1}}; \qquad (1.52)$$

25

$$R_{2} = d_{R} \frac{2}{\lambda_{2}} \frac{z_{2} - z_{o}}{z_{2} + z_{o}}; \qquad (1.53)$$

$$R_{\gamma} = \frac{d_{R} 2 \Delta T}{(c_{\gamma})_{0,n-1} (z_{2} - z_{1}) z_{0}}; \qquad (1.54)$$

$$R_{\omega} = \frac{d_{R} 2 V_{m}}{d_{V} \omega (z_{2} - z_{1}) z_{o}}; \qquad (1.55)$$

В данном случае параметры R -сетки более точно В данном случае пареле рассчитать методом замещения, считая, что уз лы расположены в центре площадки.

положены в центре шентри концентрически Ма Для этого нужно, расси окружностями, определить центры тажести блоков (рис.

$$R_{c} = \sqrt{\frac{z_{j}^{2} + z_{j+1}^{2}}{2}} \quad (1.56)$$

Рис. 1.5. Схема разбивки на блоки при замораживании грунтов одиночной колон кой (узлы внутри блоков).

$$R_{j,j+1} = d_R \frac{1}{\Lambda} ln \frac{Z_{c,j+1}}{Z_{c,j}};$$

(1.57)

R₇ и R_W выразятся так:

$$R_{T} = \frac{\mathcal{L}_{R} \, 2 \, \Delta T}{(c \chi)_{c,j,n-1} \, (Z_{j+1}^{2} - Z_{j}^{2})}; \qquad (1.58)$$

$$R_{\omega} = \frac{d_{R} 2 V_{M}}{d_{V} \omega (Z_{j+1}^{2} - Z_{j}^{2})}; \qquad (1.59)$$

В формулах (1.57) и (1.58) Ли (СУ) берутся соответственно в талом и мерзлом состояниях.

Граничные условия Ш рода для такой цилиндрической поверхности имеют вид:

$$d(T_n - T_c) = -\lambda \left(\frac{\partial T(z_{\kappa}, \tau)}{\partial z} \right); \qquad (1.60)$$

Сопротивление Ка в этом случае нужно определять по формуле

$$R_{d} = \frac{d_{R}}{dZ_{ep}}$$
(1.61)

где $Z_{cp} = Z_{K} + \frac{\Delta Z}{2}$; ΔZ - приращение координаты Z в узловой точке $Z = Z_{K}$.

1.5. О расположения узлов в элементарных площадках

Вывод параметров R -сетки, приведенный выше, относится к случаю, когда узлы R -сетки находятся в углах граней элементарных площадок, на которые мы разбили область нашей сеткой. Такая разбивка характерия для решения уравнений в конечных разностях.

Но можно подойти к разбивке области на элементы с другой стороны: считать, что сетка разбивает область на элементы, а электрическая сетка заменяет сам элемент, у которого центр находится внутри [16].

На рис. 1.6 показаны два случая (разбивка прямоугольная), отвечающие практически одной и той же сетке, но в первом случае (а) узлы электрической сетки размещены в узлах геометрической сетки, во втором (б) в середине элементар ной площадки.

Рис. 1.6. Разбивка области элементарными площадками сеткой а-с узлами в углах граней и в-с узлами внутри площадки и сетки электрических сопротивлений для этих случаев соответственно б и 2.

Для случая а) выражения для параметров R - сетки имеют вид (1.37) - (1.39). Здесь h, ..., h_n - расстояния между узлами.

8)

Для случая б) h_1 , ..., h_n – расстояния от центра до границ элементарной площадки.

При прямоугольной разбивке для плоской задачи выражения параметров *R* --сетки при расположении узлов внутри площадки будут иметь вид:

$$R'_{1} = \frac{d_{R} \dot{h'_{1}}}{\Lambda_{1}(\dot{h'_{3}} + \dot{h'_{4}})}; \quad R'_{2} = \frac{d_{R} \dot{h'_{2}}}{\Lambda_{2}(\dot{h'_{3}} + \dot{h'_{4}})};$$
$$R'_{3} = \frac{d_{R} \dot{h'_{3}}}{\Lambda_{3}(\dot{h'_{1}} + \dot{h'_{2}})}; \quad R'_{4} = \frac{d_{R} \dot{h'_{4}}}{\Lambda_{4}(\dot{h'_{1}} + \dot{h'_{2}})}; \quad (1.62)$$

$$R_{\gamma} = \frac{\mathcal{L}_{R} \Delta \gamma}{(c_{\gamma})_{o,n-1} (\dot{h}_{1} + \dot{h}_{2})(\dot{h}_{3} + \dot{h}_{4})}; \qquad (1.68)$$

$$R'_{\omega} = \frac{d_{R} (V_{M} - V_{0,n})}{d_{V} \omega (h'_{1} + h'_{2})(h'_{3} + h'_{4})}; \qquad (1.64)$$

Отсюда видно, что выражения (1.62) – (1.64) отличаются от (1.37) – (1.39) отсутствием коэффициента 2 в формулах (1.62) и коэффициента 4 в формулах (1.63), (1.64).

Для выяснения достоинств и недостатков этих случаев расположения узлов рассмотрим пример, взятый из [44].

На рис. 1.7, а показан стержень, разбитый на 4 элементарных объёма. Задача одномерная. Шаг в длину $h = \frac{L}{h}$.

На этом же рисунке показаны две *R* -сетки: одна с узлами в углах граней (на границе элементов), другая с узлами внутри элемента.

На рис. 1,7,6 узлы 1,5 обслуживают участки $\frac{h}{2}$, а узлы 2,3,4 – участки h, т.е. на длине L мы имеем практически 5 узлов, а на рис. 1.7,в только 4 узла, обслуживающие участки длиной h.

Очевидно, что схема расположения узлов (1.7,6) будет давать более точные результаты, чем (1.7,в). Можно так объяснить причину повышенной точности сетки (1.7,б) : узлы 1 и 5 обслуживают участки $\frac{h}{2}$, а остальные узлыучастки h, т.е. мы имеем сетку, где есть более мелкая ($\frac{h}{2}$) и более крупная разбивка (h) на той же длине где в случае (1.7, в) есть только крупная разбивка. Но несмотря на то, что точность сетки типа (1.7, в) меньше, она практически удобна по следующим причинам:

1) количество сопротивлений в случае (1.7, в) (узлы внутри) мењьше;

2) расчёт сеток с узлами внутри производится по зависимостям, совпадающим с полученными исходя из мето да замещения, метода эквивалентных балансов, что упрощает физическую трактовку задачи, делает более наглядной сетку и приводит к уменьшению ошибок при расчёте.

Отметим, что разбивка с узлами внутри элемента требует расположения узла в центре элемента. Однако можно показать, что узел может быть расположен в любом месте внутри элемента.

В общем случае, чем больше отдален узел от центра, тем меньше точность данной модели при прочих равных условиях.

Разбивку с узлами в углах граней и с узлами внутри элемента можно применять при электромоделировании не только на R-сетках, но и на RC-сетках.

1.6. <u>Методика решения задач промерзания</u> <u>грунта при ∆ Т_{кр} =0</u>

При математической формулировке задачи промерзания грунта при $\Delta T_{\rm KP} = 0$ отмечалось, что процессы в мерзлой и талой зонах описываются уравнениями Фурье (1.2),(1.3) и на границе раздела зон соблюдается условие (1.5), коэффициент теплопроводности Λ и объёмная теплоемкость С меняются скачкообразно при переходе температуры чер ез $T_{\rm KP}$, которую без ограничения общности можно принять за нуль.

В процессе электромоделирования условие на грани це (1.5) можно включить или в граничное условие, или в основное дифференциальное уравнение теплопроводности.Это не меняет сути дела, будут меняться лишь методы изучения.

Процесс промерзания грунта при введении условия на границе (1.5) в основное дифференциальное уравнение имеет вид (1.33). Функцию Ш здесь можно рассматривать как внутренний источник тепла мощностью

$$\omega = \frac{Q_o}{\Delta \tau} , \qquad (1.65)$$

где G_0 - скрытая теплота льдообразования, приходящаяся на единицу объёма грунта.

Впервые условие на границе (1.5) включать в основное дифференциальное уравнение теплопроводности при моделировании на R – сетках предложил Либман [39].

Опишем подробнее методику решения этой задачи методом Либмана.

Параметры R -сетки рассчитываются по формулам (1.37), (1.38), (1.39). Следует помнить, что если R_{ω} определено по формуле (1.39), то условие (1.40) должно строго выполняться, чтобы не внести существенных погрешностей. Практически это означает, что рабочие напряжен и я в модели должны лежать в диапазоне 0-10% в тех узлах, куда подключается R_{ω} .

При электрическом моделировании с R_{ω} следует применять такой приём, который позволяет учесть факт замерзания за время $\Delta \Upsilon$ не всего элементарного объёма, соответствующего данному узлу, а его части. Для этого вводится коэффициент β , который предложил Либман. Коэффициент β изменяется от 0 до 1 во время решения задачи, когда исследуется процесс замерзания:

$$R_{\omega} = \frac{\mathcal{L}_{R} \, 4 \, V_{M}}{\mathcal{L}_{v} \, \omega \left(h_{1} + h_{2}\right) \left(h_{3} + h_{4}\right) \beta} \tag{1.66}$$

После расчёта параметров модели и её сборки подключаем модель к измерительной схеме. На концы сопрот и влений R_{τ} подаются напряжения, соответствующие температурам в данных точках согласно заданному начально му условию, то есть в (n - 1) момент времени. В граничные узлы сетки подаются напряжения, соответствующие температурам в n момент времени при ГУ-1 рода. На концы сопротивлений R_d подаются напряжения, соответст вующие температурам среды в n момент времени, на концы R_{ω} – максимальное напряжение источника. R_{ω} подключается, когда напряжение в узле становится равным V при этом время, в течение которого это произойдет, ищется подбором интервалов $\Delta \Upsilon$ способом исследовательских приближений. Это связано с большим объёмом работ по перерасчёту параметров R-сетки.

Методика моделирования с учётом β состоит в следующем. Рассчитываем \mathcal{R}_{ω} по формуле (1.41). Если напряжение в данном узле получится выше напряжения $\bigvee_{\text{кр.}}$, соответствующего температуре кристаллизации, то \mathcal{R}_{ω} рассчитываем по (1.66).

Практически это означает, что величина $R\omega$ увеличивается до тех пор, пока напряжение не станет равным $V_{\rm KP}$. Это равносильно тому, что мы ввели $\beta < 1$. По величи не

 β определяется часть блока, замерэшая за данный интервал $\Delta \gamma$.

В следующий момент времени в данный узел подключается сопротивление

$$R_{w} = \frac{4 d_{R} V_{m}}{d_{v} \omega (h_{i} + h_{2})(h_{3} + h_{4})(1 - \beta)}$$
(1.67)

и процесс решения задачи аналогичен предыдущему. Он продолжается до тех пор, пока на определенном шаге при подключении \mathcal{R}_{ω} напряжение в узле не будет меньше или равно напряжению $\mathcal{V}_{\mathbf{Kp}}$. Это означает, что весь эле ментарный объём затвердел. Тогда \mathcal{R}_{ω} отключается от даннного узла и подключается к следующему.

Условие окончания фазового перехода в данном узле можно записать несколько иначе, если принять $\Delta \Upsilon$ постоянным. Суммарный ток

$$J^{*} = \frac{d_{v} Q_{o}}{R_{\tau}(c\gamma)} . \qquad (1.68)$$

Так как при данном методе ток явно не измеряется, а зависит от величины сопротивления, условие (1.72) представим в виде:

$$\sum_{1}^{n} \left(\frac{1}{R_{\omega}^{n}}\right) = \frac{d_{v} Q_{o}}{V_{M} R_{\tau}(C\gamma)}$$
(1.69)

При некотором $\Delta \gamma$ может получиться, что процесс выделения скрытой теплоты льдообразования будет про должаться сверх положенного времени. Практически это означает, что напряжение в данном узле станет ниже $\bigvee_{\mathbf{kp}}$. При наступлении $\bigvee_{\mathbf{kp}}$ омические сопротивления между данным узлом и соседними узлами, где напряжение к этому времени уже ниже $\bigvee_{\mathbf{kp}}$, изменяются скачкообразно.

Преобразуем последние два члена в уравнении (1.34) следующим образом:

$$(c\gamma) \frac{T_{o,n-1} - T_{o,n}}{\Delta \tau} + \omega = \frac{(c\gamma)}{\Delta \tau} \left[T_{o,n} - \left(T_{o,n-1} + \frac{\theta_o}{(c\gamma)} \right) \right]$$
(1.70)

Из формулы (1.70) видно, что для учёта скрытой т е плоты льдообразования в этом случае следует на свободный конец временного сопротивления \mathcal{R}_{τ} подать значение напряжения V_{τ} , соответствующего величине температуры $T_{0,n-1} + \frac{Q_0}{(C\chi)}$. Величину ($C\chi$) во время фазового перехода можно принять либо как для мёрэлой зоны, либо как для талой. Если напряжение в узле $V_{0,n} > V_{kp}$, умень шеннем V_{τ} добиваемся, чтобы $V_{0,n} = V_{kp}$. С учётом (1.70) и зная значение подобранного напряжения V_{τ}' , находим, какая часть элементарного блока претерпела фазовое превращение, т.е. определяем коэффициент β .В дальнейшем процесс моделирования аналогичен.

Как показано в [42], при достаточной аппрокси мации можно полагать, что истинный фронт затвердевания лежит в центре явной зоны фазового изменения.

Область моделирования, где происходят фазовые переходы, желательно разбить на более мелкую сетку, а по мере продвижения фронта промерзания менять мелкую сетку на более крупную. Вкратце остановимся на масштабировании при моделировании этих процессов.

В работе Либмана [38] показано, что для моделирования уравнения типа Фурье без источников тепла необходимо выполнить условие

$$\frac{d_{i}d_{r}}{d_{e}^{2}d_{c}^{2}}=1, \qquad (1.71)$$

где d₁ - масштаб коэффициента теплопроводности;

dr – масштаб времени;
 de – масштаб линейных размеров;
 d' – масштаб объёмной теплоёмкости.

При моделировании уравнения (1.33) с источниками тепла мощностью Ш должно выполняться дополнительное условие на масштабирование Ш [39]

$$d\omega = \frac{d_v d_A}{d_e^2}$$
(1.72)

При заданных граничных условиях Ш рода (1.43) коэффициент теплоотдачи масштабируется так:

$$d_2 = \frac{d_e d\omega}{d_v} = \frac{d_1}{d_e}$$
(1.73)

При необходимости замера расхода тепла в узле, куда заданы ГУ-1 рода, в него подключается эталонное сопротивление, намного меньшее сопротивления сетки, и по падению напряжения на этом сопротивлении вычисляется эначение тока.

Определение расхода тепла в узле при заданных граничных условиях Ш рода производится по падению напряжения на сопротивлении R_{\star} . Для перехода от значения электрического тока к расходу тепла должен быть введен масштаб перехода

$$d_{y} = \frac{d_{v}}{d_{R}}$$
(1.74)

1.7. Методика решения задач промерзания грунта <u>при Δ Т_{кр} ≠0. Линеаризация уравления</u>

Выше показано, что для некоторых грунтов при их промерзании фазовые переходы происходят в спектре отрицательных температур, при этом теплофизические характеристики Л и С мерзлого грунта являются непрерывными функциями температуры. В связи с этим в мерзлой зоне имеет место нелинейное уравнение теплопроводности (1.7) с источниками, интенсивность которых зависит от температуры. В такой зоне имеет место линейное уравнение теплопроводности (1.3).

При электромоделировании на К-сетках процесса промерзания грунта при А Ткр #0 можно пользоваться обобщенным уравнением (1.9) либо уравнениями (1.3), (1.7), причём можно использовать два варианта моделирования [18] этого уравнения.

Первый вариант моделирования уравнения (1.6) - это вариант, в котором член $\omega = 6 \frac{\partial q_A}{\partial T} \frac{\partial T}{\partial T}$ рассматривается как внутренный источных тепла мощностью . Τ....

где Т_{о.к} - температура окончания фазового перехода, и при моделировании, проходя диапазон То,п-То,к, на каждом шаге решения АТ следует определять по формуле

$$\omega = \frac{\int_{T_{a,n}} C_{cn} dT}{\Delta T}$$
(1.76)
Когда в процессе моделирования достигается $V_{0,11}$ соответствующее температуре начала кристаллизации грунта, в данный узел подключается R_{ω} , которое рассчитывается по формуле (1.41).

При определении $R\omega$ величния $T_{0,n}$ входит как нижний предел интегрирования в ω . Но $T_{0,n}$ заранее неизвестно. Поэтому в расчёт $R\omega$ берется его ориентировочное значение.

Если напряжение в узле на данном $\Delta \tau$ станет выше V_{gn} следовательно, в расчёт R_{ω} взята температура ниже положенной. Для уточнения $T_{o,n}$ нужно сделать несколько приближений. Практически дело сводится к увеличению R_{ω} , т.е. вводится коэффициент β , и процесс аналогичен случаю $\Delta T_{\rm KD} = 0$.

Если напряжение в узле на данном $\Delta ?$ станет и и же $V_{o,n}$, то для соответствия полученной температуры температуре, принятой в расчёт $R\omega$, также следует произвести корретировку сопротивления $R\omega$.

Этот приём равносилен ступенчатой аппроксимации кривой $\omega = \omega(T)$, и чем меньше интервалы пространства и времени, тем большую точность получим.

Второй вариант моделирования – это учёт теплоты кристаллизации Q в С_{эф}, тогда задача решается без источ – ников тепла, но С_{эф} будет входить в R_{τ} . Для уравнения (1.9) после представления его в конечных разностях

$$R_{T} = \frac{2 \mathcal{L}_{R} \Delta T}{(c_{Y} + C_{c_{n}})(h_{i} + h_{2})}$$
(1.77)

При этом можно выбирать такие днапазоны температур $T_{0,n-1} - T_{0,n}$, в которых О выделяется по линейному закону, тогда $\frac{\partial q_A}{\partial T}$ = const и нужно учитывать в R_T лишь С γ (T).

Если $\mathfrak{O}Q_A(T)$ выделяется не по линейному закону, то на каждом шаге $\Delta \mathcal{T}$ необходимо учитывать и $C_{CII}(T)$. Учёт $\mathcal{A}(T)$, С $\mathcal{Y}(T)$ и $C_{CII}(T)$ ведется путём корректировки соответствующих сопротивлений \mathbb{R} -сетки. Покажем это на примере $\mathcal{A}(T)$. Если температура в узлах, между которыми стоит в R сетке сопротивление R_A , на данном шаге резко отлична от температуры на предыдущем шаге и A в них существенно зависит от температуры, то необходимо применить метод итераций. Для этого R_A нужно рассчитать по средним значениям A в узлах для (n - 1) и n мо ментов времени. Если имеется необходимость, то решение можно улучшить, повторив ту же операцию, и так до тех пор, пока разность температур между двумя последовательными приближенными станет достаточно малой.

Таким образом, при методе итераций два последних приближения сравниваются между собой, а Λ (T) в узлах находится как среднее значение между последним приближе – нием и начальным распределением температур. Такой подход соответствует замене плавной зависимости Λ (T) ступенчатой.

В случае, когда разность температур между шагами невелика, что может быть при достаточно малом $\Delta \Upsilon$, и кривая \mathcal{A} (T) в этом промежутке температур изменится незначительно, предыдущие уточнения делать не следует, а для очередного шага \mathcal{A} следует рассчитать по температуре последнего приближения предыдущего шага.

Процедура учёта зависимостей $\omega(T)$ и су(T) аналогична заданию R_{Λ} , где $\Lambda = \Lambda(T)$.

При достаточной разбивке области моделирования сеткой и при достаточно малых ΔT такой учёт нелинейности позволяет получить решение, близкое к точному.

Параметры R -сетки, решающей уравнения (1.37), можно записать различным образом в зависимости от постановки задачи (нелинейная, линейная, линеаризованная) [16]:

а) Л, С-переменные; Л входит в расчёт R_i (R_i -coпротивление грунта), С входит в R₇; задача нелинейная; б) Л, Спеременные; но Л введено в R₇ так, что

б) Λ , Спеременные ; но Λ введено в $R_{\dot{\tau}}$ так, что $\alpha = \frac{\lambda}{c}$ – величина переменная; линеаризованная задача;

в) Λ ; С-постоянные; Λ входит в R_i , Св R_τ ; задача линейная.

Если решать линеаризованную задачу, то уменьшается количество изменяемых сопротивлений. В [16] показано,

что в случае решения при б) соответствующим выбором \mathcal{A} и С можно получить решение, более близкое к а), чем при решении по б), и что для практического решения многочисленных вариантов нелинейной задачи можно рекомендовать следующий путь:

1) с помощью электромодели R -сетки решить один вариант нелинейной задачи;

 найти осредненные значения теплофизических характеристик;

3) все остальные многочисленные варианты решать при усредненных Λ и С.

Интересный способ учёта λ (Т) предложил Либман[38]. Если изменениями $\Delta \lambda$ коэффициента теплопроводности с температурой пренебречь нельзя, но они относительно малы в течение интервала времени $\Delta \tau$, так что

$$\frac{\partial}{\partial x} \left(\frac{\Delta \Lambda}{\Lambda} \right) \ll 1$$
, (1.78)

то для получения достаточной точности можно включить это изменение в R_{τ} вместо того, чтобы ввести это изменение в R_i , весля коэффициент в $R_{\tau} (1 + \frac{\Delta \Lambda}{\Lambda})$.

1.8. <u>Некоторые дополнительные возможности</u> учёта скрытой теплоты при моделировании на <u>R</u> -сетках

Остановимся еще на некоторых методах учёта внутренней теплоты фазового перехода:

 а) теплота фазового перехода включена в граничны е условия как внешний источник тепла, действующий на границе раздела фаз.

Граничные условия для этого случая имеют вид (1.5)и применяются, когда теплота фазового перехода выделяется при постоянной температуре Т_{кр}.

В данном случае учёт $Q \frac{d\xi}{d\chi}$ не совсем удобен, так как необходимо знать скорость движения границы промерзания $\frac{d\xi}{d\tau}$, которая при моделировании на R -сетках заранее неизвестна.

Это, однако, не означает, что такой путь учёта теплоты фазового перехода невозможен. Так как на каждом шаге решения известно положение фронта раздела фаз ξ , по предыдущим шагам можно определить

$$\frac{d\xi}{d\tau} \approx \frac{\xi_{n-1} - \xi_{n-2}}{\Delta \tau}$$
(1.79)

Из (1.79) видно, что для определения члена $Q \frac{d \xi}{d \tau}$ в n -ный момент времени необходимо иметь значения $\xi_{n-i,i}$ и ξ_{n-2} . ξ_{n-2} можно определить, например, решением дифференциального уравнения (1.3) по явной схеме.

Если будет выявлено, что скорость

$$\frac{dS}{d\tau} \approx \frac{5n - 5n - 1}{\Delta \tau}$$
 (1.80)

отличается существенно от принятой в расчете, то необхолимо сделать одно или кесколько приближений.

> Методика задания граничных условий П рода $q = Q \frac{d 5}{d7}$ заключается в следующем (рис. 1.8).

В конечно-разностной форме граничное условие Прода для 1 узла можно записать [38] так:

$$f_1 + \Lambda_1 \frac{T_{0,n} - T_{1,n}}{h_1} = 0$$
 (1.81)

Рис.1.8. Схема задания граничных условий Ш рода.

Уравнение электрических токов по закону Кирхгофа для сопротивлений, сходящихся в точку 1 на поверхности раздела фаз, принимает вид:

$$\frac{V_{M} - V_{i,n}}{Rq_{i}} + \frac{V_{o,n} - V_{i,n}}{R_{i}} = 0$$
(1.82)

Из (1.81) имеем

$$-T_{0,n} + T_{1,n} = \frac{q_1 h}{q_2}$$
(1.83)

$$V_{i,n} - V_{o,n} = d_v (T_{i,n} - T_{o,n}) = d_v \frac{q_i h_i}{\Lambda_i}$$
 (1.84)

откуда

$$R_{q_{1}} = \frac{V_{m} \hat{A} R_{1}}{d_{v} q_{i} h_{i}}$$
(1.85)

При выводе (1.85) учтено условие V_M ≫ V_{I,n} Если в узел R -сетки подается непосредственно ток, то его величина определяется формулой

$$J_{q_1} = \frac{d_v q_1 h_1}{\Lambda_1 R_1}$$
(1.86)

б) в некоторых работах, например [5],[31], выделение скрытой теплоты рассматривается как повышение тем пературы на

$$\Delta T = \frac{Q_o}{(C\chi)} \tag{1.87}$$

Такой приём задания Q₀ реализуется при использовании явного метода решения конечно-разностных уравнений [5].

При решении уравнений теплопроводности неявным методом нет нужде прибегать к такому приёму, который вносит определенную погрешность [31], занижая время замерзания.

Указанный приём применим и в случае, когда Q₀ выделяется в диапазоне температур Т_{0,n} – Т_{0,к} [31];

в) рассмотрим еще один приём учёта внутренних теп-

 $_{\rm JOT} \omega$.

Возьмём два последних члена уравнения (1.35) (одномерный случай):

$$(C\gamma)_{o,n-1} \frac{h_{1}+h_{2}}{2\Delta\tau} (T_{o,n-1} - T_{o,n}) + \omega \frac{h_{1}+h_{2}}{2}$$
(1.88)

Подставим вместо ω его значение по (1.65), умножим и разделим второй член в (1.88) на ($T_{o,n-1} - T_{o,n}$), тог да получим

$$\left(c\gamma - \frac{\mathcal{Q}_{o}}{\mathsf{T}_{o,n-1} - \mathsf{T}_{o,n}}\right) \frac{h_{1} + h_{2}}{2\Delta \tau} \left(\mathsf{T}_{o,n-1} - \mathsf{T}_{o,n}\right) \tag{1.89}$$

В выражении (1.89) в первых скобках стоит

$$c\chi - \frac{Q_o}{T_{o,n-1} - T_{o,n}}$$
(1.80)

т.е. какая-то новая эффективная теплоемкость, отнесённая к интервалу температур $T_{0,n-1} - T_{0,n}$.

При моделировании О таким способом нужно вна чале задаться интервалом температур, в котором будет происходить выделение скрытой теплоты Тон - Ток . Чем меньше разность Т_{0,н} - Т_{0,К}, тем больше мы приближаемся к тому, что фазовые превращения будут происходить при постоянной температуре. Величина Ш будет входить BRr

Наиболее правильным методом моделирования ω ,вы деляющегося как при Д Т_{кр} =0, так и при Д Т_{кр} ≠0, является приём, когда ток подводится через Rw, рассчитанное по формуле (1.41). Если Д Т_{кр} #0, то сопротивление *R w* следует включать во все узлы, попадающие в диа-

пазон температур $T_{0,H} = T_{0,K}$

Погрешность, возникающую при электромоделировании

дифференциального уравнения теплопроводности, слагается из четырёх погрешностей: а) погрешности метода, воз – никающей от замены дифференциального уравнения конечноразностным; б) собственной погрешности сетки, возникающей от неточного изготовления её элементов; в) погрешности из-за неточного задания напряжений и токов; г) погрешности измерений [3].

Можно считать, что погрешности б), в), г) остают с я неизменными. Справедливость такого утверждения подтверждается экспериментами [16]: при использовании компенсационного метода измерения результаты решения одной и той же задачи на одной и той же сетке после десятков опытов, проводимых в разное время, отличаются не более чем на 0,1%.

Оценка погрешности от замены дифференциального уравнения конечно-разностным является чисто математической задачей, решение которой отражено в работах Панова [29], Коллатца [20], Шура-Бура [36]. В общем виде определение этой погрешности связано с большими трудностями, так как она оценивается с помощью линейной комбинации максимальных значений модулей старших производных.

Так как электрическая модель R -сетка позволяет найти решение неявной разностной схемы, то устойчивость решения, полученного на R -сетке, не зависит от соотношения интервалов пространства и времени. Выбор величин пространственных интервалов h и временных ΔT вли я ет только на точность решения. Так как электрическая мо – дель является математической, т.е. моделируется решение уравнений описывающих явление, а не само явление, погрешность следует определять сравнением с аналитическим решением того дифференциального уравнения, математической моделью которого является электромодель – сетка. Однако для некоторых задач аналитическое решение найти практически невозможно. В этом случае результаты электромоделирования можно сравнить с численным расчётом или с данными опытов.

Общая погрешность и погрешность метода зависят от выбора интервалов h и $\Delta \mathcal{T}$. В каждом конкретном случае выбор h и $\Delta \mathcal{T}$ должен быть произведен, исходя из конкретных условий задачи. Если же отвлечься от конкретных условий задачи, то можно судить лишь о качественном влиянии величин h и $\Delta \gamma$ на точность. Уменьшение интервалов h и $\Delta \gamma$ ведёт к повышению точности, но зато резко увеличивается время решения, увеличение их приводит к обратному. Нельзя дать общий рецепт по выбору h и $\Delta \gamma$.

Выбор "оптимального" интервала времени и пространства, обеспечивающий нужную точность при минимальной затрате времени, производится решением с удвоенным и уменьшенным вдвое интервалом [29]. Если результат, полученный с удвоенным интервалом, незначительно отличается от полученного ранее, то интервал не больше оптимального. Если разница между результатом велика, то необходима проверка решения с шагом, уменьшенным вдвое.Если данные, полученные при первоначальной величине интервала и при уменьшенном вдвое, будут близки, то начальный шаг будет оптимальным. Это правило относится как к выбору интервалов пространства, так и к выбору временных интервалов. Примеры оценки погрешности при решении нестационарных задач теплопроводности можно найти в [16], а применительно к задачам исследования процессов промерзания грунта - в гл.4.

Глава 2

МЕТОДИКА РАСЧЕТА ПРОМЕРЗАНИЯ ГРУНТА НА ЭЛЕКТРОМОДЕЛЯХ RC-CETKAX

2.1. <u>Расчёт масштабных коэффициентов</u> при моделировании на <u>RC-сетках</u>

При электромоделировании на R С-сетках параметры и переменные величины электрической модели должны соответствовать параметрам и переменным функциям тепловой системы. Для расчёта необходимых величин электрических элементов, составляющих сетку, выбирают масштабные коэффициенты, при помощи которых осуществляет ся пересчёт соответствующих параметров и переменных величин согласно электротепловой аналогии из одной системы в другую.

Масштабные коэффициенты не могут быть произвольными, так как они связаны тремя основными зависимостями. В случае электрической системы эти зависимости следуюшие:

$$J = \frac{dq}{d\tau};
 (2.1)$$

$$J = \frac{V}{R}; \qquad (2.2)$$

$$J = L \frac{\partial T}{\partial \tau}; \qquad (2.3)$$

Аналогичные соотношения существуют и в тепловой системе. Отсюда следует, что только при масштабных коэффициентах, связывающих тепловую и электрическую системы, могут быть независимыми:

$$d_{v} = \frac{V}{T}; \qquad (2.4)$$

$$\mathcal{L}_{c} = \frac{C_{\mathfrak{F}}}{C_{T}}; \qquad (2.5)$$

$$d_{R} = \frac{R_{2}}{R_{T}}$$
 (2.6)

Три другие определяются из условий:

$$d_q = d_c \cdot d_V; \qquad (2.7)$$

$$d\tau = d_R d_c;$$
 (2.8)

$$d_3 = \frac{d_v}{d_e}; \qquad (2.8)$$

При выборе масштабных коэффициентов обычно исходят из конструктивных особенностей имеющегося интегратора. В большинстве случаев процесс выбора масштабных коэффициентов заключается в следующем.

Вначале удобно выбирать коэффициент , связываюший напряжение узловых точек сетки с температурой с оответствующих точек тепловой системы. Верхняя граница допустимого напряжения определяется рабочим диапазоном источников питания и допустимым рабочим напряжением ёмкостей. Нижняя граница выбирается такой, чтобы шумы в модели и измерительной аппаратуре были на порядок слабее минимального моделирующего напряжения. Часто масштабные коэффициенты требуют перерасчёта.

В большинстве электроинтеграторов с \vec{R} С - сетка ми диапазон изменения емкостей конденсаторов сравнительно мал. Следовательно, следующим должен выбираться коэффициент d_c . В электроинтеграторах с малой постоянной времени, где имеет место периодизация, время решения практически ограничено несколькими дискретными значениями. Исходя из этого, выбирают d_{τ} .

Масштабный коэффициент d_{g} вычисляется на основании определенных коэффициентов d_{c} и d_{x} из выражения (2.8). Масштабные коэффициенты d_{g} и d_{3} вычисляются тогда соответственно из выражений (2.7) и (2.9).

Легко видеть, что при математическом моделировании процесса промерзания грунтов все коэффициенты масштабирования являются размерными величинами, кроме, разумеется, коэффициента d_{χ} .

2.2. <u>Способы учёта скрытой теплоты при Δ Т_{кр}≠0</u>

Моделирование скрытой теплоты способом подключения в узел дополнительной емкости. Рассмотрим одном ерную задачу промерзания грунтов, записанную в прямоугольной системе координат в общем виде:

$$\frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) - c \gamma \frac{\partial T}{\partial \tau} + \omega = 0 . \qquad (2.10)$$

Функцию скрытых теплот $\omega = \frac{\partial_o}{\Delta \tau}$ преобразуем следующим образом:

$$\omega = \frac{Q_{\circ}}{\Delta \tau} \frac{\partial \tau}{\partial T} \frac{\partial T}{\partial \tau} \approx \frac{Q_{\circ}}{\Delta T} \frac{\partial T}{\partial \tau}$$
(2.11)

Учитывая (2.11), уравнение (2.10) можно записать так:

$$\frac{\partial}{\partial x} \left(\lambda \frac{\partial I}{\partial x} \right) - \left(c \gamma + \frac{\partial_o}{|\Delta T|} \right) \frac{\partial I}{\partial \tau} = 0$$
 (2.12)

Выражение $\frac{Uo}{|\Delta I|}$ в (2.12) представляет дополнительную объёмную теплоемкость, которой при электромоделировании соответствует дополнительная электрическая ёмкость С_ф.

Чем меньше ΔT , а следовательно чем больше дополнительная C_{Φ} , тем больше точность моделирования. Однако при её выборе нужно еще руководствоваться конструктивными особенностями интегратора. ΔT нужно вы бир ать так, чтобы соответствующая разность потенциалов ΔV измерялась достаточно точно. На УСМ-1 ΔV следует брать от 3 до 10% от максимальной величины 20 в. Может получиться, что C_{Φ} не разряжается до первоначального значения за время восстановления.

В этом случае для каждой такой дополнительной емкости Сф нужны от одного до трех разрядников, либо для этого следует применять герконы, закрывая ими Сф на время восстановления. Время наступления $V_{kp} + \Delta V_{kp} + \Delta V_{\phi}$ иксируется измерительным устройством. При достижении в узле $V_{kp} + \Delta V_{\phi} C_{\phi}$ стключается.

Моделирование скрытой теплоты подачей в узловую точку среднего тока. После разбивки области на элементарные блоки, расчёта электрических сопротивлений и ёмкостей подсчитываем количество электричества для каждого блока-эквивалент скрытой теплоты льдообразования по формуле

$$q_j = d_0 \cdot i \, W_{o5} \cdot \gamma_{\beta} \cdot \delta \cdot V_j \qquad (2.13)$$

При V кр необходимо отвести от каждого блока q_i :

$$q_i = \int_{r_i}^{r_i} J_i(r) dr \qquad (2.14)$$

где \mathcal{T}_{i} и \mathcal{T}_{i} – соответственно время начала и окончания фазового перехода.

Функция $J_i(\tau)$ должна быть такой, чтобы во время фазового перехода потенциал в узле оставался постоянным и соответствовал $\bigvee_{\rm KP}$. Однако функцию $J_i(\tau)$ найти очень трудно. Поэтому приходится брать средненитегральное значение электрического тока за время $\Delta \tau$:

$$J_{\varphi f} = \frac{\int_{\tau_i}^{\tau_i} J_i(\tau) d\tau}{\Delta \tau} = \frac{q_i}{\Delta \tau}$$
(2.15)

Уравнение (2.15) с двумя неязвестными. Эту неопределенность, однако, можно преодолеть подбором J_{cpf} и $\Delta \mathcal{T}$ таким образом, чтобы в конце $\Delta \mathcal{T}$ потенциал соответствовал температуре промерзания. На УСМ-1 ток задается с каналов ГУ-П или ГХ-ПМ. Малую величину элект – рического тока можно задать более точно, применяя масштабы каналов ГУ-П.

На электромодели переход происходит не при постоянном напряжении, а при несколько изменяющемся в сторону положительного значения. Это объясняется тем, что задается средненитегральное значение тока на промежуток времени $\Delta \Upsilon$. Величина этого напряжения относительно малая и на точности решения сказывается незначительно.

Время наступления и окончания фазового перехода для узла регистрируется измерительным устройством. Эксперименты показали, что для одномерных задач промерзания при подаче средненитегрального значения тока в узел ступенька фазового перехода получается достаточно хорошей. При моделировании двухмерных задач, учитывая взаимное влияние соседних блоков, в которых также идет процесс фазового перехода, при учёте скрытой теплоты среднеинтегрального значения тока для получения ступе нь к и фазового перехода недостаточно и приходится давать два или несколько больше среднеинтегральных значений на все время фазового перехода. В этом состоит неудобство данного метода.

Скрытую теплоту на электромодели можно учитывать путём задания через сопротивление R_{ω} напряжения V_{M} . R_{ω} рассчитывается по формуле (1.14). Такая схема представляет собой балансную систему: при умень шении (увеличении) напряжения в узле растёт (падает) ток через сопротивление R_{ω} , а напряжение в узле практически остается постоянным. Можно подавать не V_{M} , а в несколько раз уменьшенное напряжение, соответ ственно уменьшая во столько же раз R_{ω} . Эксперименты это полностью подтвердили.

<u>Модеяврование скрытой теплоты путём отбора вз узловой точки нужного количества электричества кана дом</u> <u>ГУ-1</u>. Два перечисленных выше способа учёта скрытой теплоты при моделировании двухмерных задач достаточно трудоёмки, хотя значительно дучше метода Либмана.Предлагаемый способ в несколько раз менее трудоёмок по сравнению с предыдущими в более точен. Сущность его применения на УСМ-1 заключается в следующем.

Когда в узловой точке наступит напряжение \bigvee_{kp} , к ней подключается канал задания граничных условий І рода ГУ-1, который работает по временной программе. Каналом \bigvee_{kp} удерживается в узле до тех пор, пока он не от – берёт необходимого количества электричества \P_3 , соответствующего скрытой теплоте льдообразования для этого узла. После этого канал отключается.

В качестве измерительного устройства количества заряда был сконструирован прибор, который состоит из чувствительного гальванометра магнитоэлектрической системы М 195/1 и телефонных ключей для независимого из м ерения тока в каждой узловой точке сетки. Диапазон из м ерения тока прибором был расширен до 560 мка. Внутреннее сопротивление прибора пренебрежимо мало по сравне и ию с сопротивлением сетки (на используемых практически диапазонах от 7 до 560 мка оно колеблется от 18 до 0,2 ома).

Прибор работает следующим образом (рис. 2.1).На вход ключа (Вх.) с канала ГУ-1 подается необходимое напряжение в соответствии с веременной программой. С выхода ключа (Вых.) это же напряжение через нормально замкнутые контакты ключа, когда он находится в положении, работа поступает в узловую точку. При включение ключа в положение "Измерение" нормально заминутые контакты его разрываются, а в разрыв их включается гальванометр G , который отмечает средневитегральное значение тока за период. Так как в приборе используется один гальванометр дая измерения тока в нескольких узловых точках области, то для каждого узла необходим свой ключ. Прибор сконструнрован так, что при нажатии определенного ключа происходит измерение в узловой точке, принадлежащей только этому ключу. Внешний вид прибора изображен на рис. (2.2).

Перед решением на машине УСМ-1 необходимо точно замерить при помощи осциллографа ИО-4 полный период решения T_3 машины. Так, при $T_1 = 10$ мсек и $T_2 = 30$ мсек $T_3 = 37,8$ мсек, а при $T_1 = 20$ мсек и $T_2 = 30$ мсек $T_3 = 58,6$ мсек.

Принцип измерения количества электричества основан на измерении среднеинтегрального тока J_{ф1} за период Т:

$$J_{cPJ} = \frac{1}{T} \int_{\tau_{H}}^{\tau_{K}} J(\tau) d\tau \qquad (2.16)$$

Откуда количество электричества для узла

$$q = J_{cPJ} T \qquad (2.17)$$

При моделировании на R С-сетках вначале, несмотря на то, что время представлено не прерывно, следует, учитывая большие градиенты температур, брать время натуры T_H небольшое(один или несколько десятков часов). Машинное время T_f при этом также следует брать минимальное, так как при желании уве-

личить 7_н этого можно добиться изменением положения переключателя

Т, машины.

Соответственно Јерг нужно изменить. В дальнейшем в процессе расчётавремя натуры нужно увеличить в несколько раз. Сопротивления сетки должны быть соответ с твенно увеличены во столько же раз, а электрическне ёмкости, учитывая их небольшой разброс и дискретность набора, следует оставить прежними. Совершенно очевидно, что при данном времени моделя T_4 J_{cPf} остается невзменным, так как dy Ħ de не меняются.

Прекмущества этого способа особенно наглядно проявляются при решении двухмерных задач,

когда нужно учитывать взаимное влияние соседних блоков.

Рис. 2.2. Прибор для измерения средненитегрального значения тока.

2.3. Блок учёта нелинейности (БУН)

При решении нелинейных задач математической физики в процессе решения необходимо изменять параметры и сследуемой области, т.е. изменять сопротивления и емкости электрической сетки. БУН предназначен для изме нения физических свойств области методом непрерывного представления времени. Пусть, например, нам нужно изменить сопротивление R_{y} на R_{y}^{o} ($R_{y}^{o} < R_{y}$) (рис. 2.2).

Для этего нужно параллельно сопротивлению Ку под-

ключить такое сопротивление R'_{y} , чтобы общее сопротивление стало R_{y} . Подключение сопротивления R'_{y} производится в необходимый момент времени решения задачи контактами $1P_{2}$ электронного ключа, выполненного на транзисторе ПП, и Реле Р1. При необходимости увеличить сопротивление ключ может работать на размыкание.

Специфические особенности работы коммутирующих элементов в сетке сопротивлений препятствуют применению бесконтактных ключей, имеющих конечное обратное (5-10 м g) и прямое (5-15 ом) сопротивления, сравнимые с сопротивлением сетки. Поэтому в качестве коммутирующих элементов для изменения параметров сетки были использованы герметизированные магнитоуправляемые контакты (герконы), по своим параметрам приближающиеся к бесконтактным ключевым элементам, но лишенные их недостатков, описанных выше.

В простейшем виде геркон представляет собой два частично расплющенных отрезка пермалоевой проволоки, заваренных в стеклянную ампулу, наполненную инертным газом. Под воздействием на геркон магнитного поля достаточно й напряженности пермалоевые проволоки пружины притягиваются друг к другу, соединяясь электрически. Переходное сопротивление контакта не превышает 0,2 ома. При уменьшения напряженностя магнитного поля ниже определенной величины пружины под воздействием упругих сил воз вращаются в исходное состояние и контакт размыкается. Один или несколько герконов, помещенных в электромагнитную катушку, образуют простые безъякорные реле на замыка ние. Механические движения в герконовых реле сведены до минимума и заключаются в смещении конца пружины на расстояние от нескольких десятков до нескольких сотен микрон. Поэтому чувствительность и быстродействие у герконовых реле намного выше, чем у обычных электромагнитных реле. Быстродействие его на замыкание не превышает 1 мсек, а на размыкание ≈ 0,3 мсек. Среднее число безотказных срабатываний при коммутации малых токов (до 10 ма) близко к 10⁹.

Основным элементом БУН является ячейка (см.рис. 2.3 и 2.4), состоящая из полупроводникового ключа на транзисторе П214 и подключаемых к нему нескольких герконовых реле.

Рис. 2.3. Схема подключения дополнительных сопротивлений и ёмкости к узловой точке 0 при помощи герконового реле.

Полупроводниковый ключ управляется каналом ГУ-1, который имеет временную программу. При поступления на вход 4 отрицательного импульса напряжения транзисто р ПП₆ отпирается и через обмотку герконового реле потечёт ток, контакты геркона сомкнутся и произведут подключение дополнительного сопротивления. В качестве дополнительных сопротивлений R'_{X} и R_{9}' используются магазины сопротивлений блока сетки. К одному транзисто рному ключу возможно подключение 10-15 катушек геркововых реле.

Рис. 2.4. Схема переключающей ячейки с одним герконом.

В свою очередь, к одному каналу ГУ-1 возможно подключение нескольких полупроводниковых ключей. В приборе используется 64 полупроводниковых ключа, 216 одиночных герконов и 54 двойных геркона. Питание прибора осуществляется от мощного выпрямителя с регулируемым напряжением от 0 до 30 в. Все входы и выходы ключей(4и5). входы катушек реле (1) и выходы контактов герконов(2,3)

Рис. 2.5. Блок-схема прибора для изменения параметров решаемой задачи.

вызедены на лицевую панель. При помощи шнуров, прилагаемых к машине УСМ-1, возможна различная их коммутация. На рис. (2.5) и (2.6) приведены блок-схема и сокращенная принципиаль ная схема прибора учёта нелинейностей.

У всех герконовых реле было проверено время отпускания. Время срабатывания лежит в пределах от 0,4 до 0,8 мсек, а время отпускания от 0,2 до 0,4 мсек. При работе ключей это необходимо учитывать и запитывать ключи с соответствующим опережением. В связи с этим была доработа на схема временного дешифратора машины УСМ-1. С него были выведены импульсы, соответствующие -2, -3, -4, -5, -6, -7 и -8% времени 7.

Описанный прибор можно использовать для из менения параметров об ласти, не прерывая времени решения, не только при решения теплофизи ческих задач с фазовыми переходами, но и других нелинейных задач. В математической формулировке задачи промерзания грунта для случая $\Delta T_{\rm Kp} \neq 0$ выделение теплоты льдообразования рассматривается как временное увеличение теплоемкости при A (T) и (Сў) (Т) в мерзлой зоне. Это увеличение настолько значительно, что технические особенности электронитегратора УСМ-1 не позволяют провести моделирование указанной задачи с использованием ёмкостей С_{раф}(Т).

Для этого случая предлагается следующий метод моделирования поставленной задачи.

Решение задачи идет "шаг за шагом". Зависи мость теплофизических характеристик Л и (СУ) от температуры за данный промежуток АТ учитывается, как и при моделировании на R -сетках (см.1.7 гл.1). Для измене ни я параметров модели используется БУН.

При достижении в узловой точке напряжения $V_{o,H}$, соответствующего $T_{o,H}$, на промежуток времени $\Delta \mathcal{I}$ в уз е л подключается кадал ГУ-1 (рис.2.7), на который с функционального преобразователя (ФП) подается линейно изменяющаяся функция напряжения (этим предполагается, что за $\Delta \mathcal{I}$ функция Соп (Т) изменялась бы линейно).

Рис. 2.7. Схема учёта скрытой теплоты при А Т_{кр} = 0 с помощью ФП и канала ГУ-1.

Обычно берут напря-Vo.н = 0. Значежение ные напряжения на конец ДТ берётся приближенно, так как оно является неизвестной величиной. Далее замеряется количество электрячества Q, потребляемое каналом ГУ-1 за время Д7 прибором М 195/1. Используя полученное значение Q, и график функции q'= = 9, (V) , BBOART COOTветствующие коррективы в наклон функции с

^{2.4.} Учёт скрытой теплоты при ∆ Т_{кр}≠0

канала ГУ-1 и последовательными приближениями добиваются соответствия измеренного q_3 графику $q_3 = q_3$ (V).

От величины $\Delta \tau$ зависит только точность. В на чале решения $\Delta \tau$ следует брать поменьше, учитывая большие градиенты T, затем постоянно увеличивая.

При описанном здесь способе учёта скрытой теплоты для создания линейно изменяющихся функций на канале ГУ-1 машины УСМ-1 требуются функциональные преобразователи, число которых равно всего 20, что ограничивает количество узловых точек, в которых идет процесс льдовы деления одновременно.

Более приемлемым является следующий способ учёта скрытой теплоты при ∧ Ткр≠0. При значении потенциала

V_{0,H} в уэловую точку на промежуток △?с канала ГУ-1 через переменное дополнительное сопротивление R_{gon} подается потенциал V_{0,H}. Канал включается программой (рис. 2.8).

Здесь также сравниваем замеренное прибором М 195/1 количество электричества

4 э с графиком q, (V). При несоответствии этих величии, изменяя величину дополнительного сопротивления R доб, добиваемся соответствия.

Данный с пособ менее трудоёмок по сравнению с предыдущим, и кроме того, позволяет одновременно учитывать скрытую теплоту для большего числа узловых точек.

Рис. 2.8. Схема учёта скрытой теплоты при Δ Т_{кр}=0 с помощью ГУ-1 и R доб.

2.5. Комбинированный способ решения уразнений типа теплопроводности на сеточных электромоделях (на примере УСМ-1)

В практике решения некоторых задач, описываемых уравнениями типа теплопроводности, на сеточных электроинтеграторах (R С-модель) неизбежен большой диапазон изменения емкостей. К таким задачам относштся, в частности, задача промерзания грунтов для случая, когда $\Delta T_{\rm KP} \neq 0$, задача промерзания грунтов в одиночной колонке, задача фильтрации при напорно-безнапорном режиме и другие. При их исследовании разброс по ёмкостям достигает нескольких порядков, в то время как на УСМ-1,к примеру, он равен всего 15. Это обстоятельство в значительной степени сужает количество типов решаемых задач на R С-сетках.

Такие задачи могут быть решены методом Либмана, но применение его к неличейным задачам с разрывными коэффлинентами, как уже отмечалось выше, нецелесообраз – но, ввиду большого объёма работ.

Предлагается новый способ решения таких задач (назовём его комбинированным) на R С-сетках. Сущность его заключается в следующем.

До тех пор, пока существующий диалазон изменения я емкостей удовлетьоряет диалазону изменения существующих характеристик натуры, решение ведется обычным способом. При наступлении в узловой точке в момент времени \mathcal{T}_{o} "критического" потенциала Y_{0} , при котором емкость должна резко увеличиться, перепад (скачок) емкости с этого момента времени на время $\Delta \mathcal{T}$ будет моделироваться определенным образом рассчитанным сопротивлением \mathcal{R}_{τ} . Одним концом сопротивление \mathcal{R}_{τ} подключается к узловой точке, а на свободный конец его подается по временной программе с канала ГУ-1 напряжение V_{o} .

Для обоснования этих рассуждений рассмотрим следующие электрические узлы сопротивлений и ёмкостей (рис. 2.9, а, б).

Разностно-дифференциальные уравнения на основании первого закона Кирхгофа для целей, изображенных на

Рис. 2.9. Уэлы RC-сетки.

рис. 2.9, а, б, будут соответственно:

$$\frac{V_1 - V_0}{R_1} + \frac{V_2 - V_0}{R_2} = (C_1 + C_2) \frac{\partial V}{\partial \tau} ; \qquad (2.18)$$

$$\frac{V_1 - V_0}{R_1} + \frac{V_2 - V_0}{R_2} = \int \frac{\partial V_0}{\partial \tau} + \frac{V_{0,n} - V_{0,m-r}}{R_{\tau}}, \qquad (2.19)$$

где Rr рассчитывается по формуле

$$R_{\tau} = \frac{\Delta \tau}{C_2} \quad (2.20)$$

При выборе интервалов $\Delta \tau$ следует руководствоваться характером изменения потенциальной функции.

Выразим $V_{0,n-1}(X, \mathcal{I})$ через функцию $V_{0,n}(d, \mathcal{I})$ при помощи ряда Тейлора через приращение времени $\Delta \mathcal{I}$:

$$V_{0,n-1}(\chi,\tau) = V_{0,n} - \frac{\partial V_{0,n}}{\partial \tau} \Delta \tau + \frac{1}{2!} \frac{\partial^2 V_{0,n}}{\partial \tau^2} \Delta \tau^2 - \cdots \quad (2.21)$$

Подставив выражение (2.21), ограничиваясь первыми двумя членами разложениями, в уравнение (2.19) и замения R₇ его значением из (2.20), получим

$$\frac{V_{1}-V_{0}}{R_{1}} + \frac{V_{2}-V_{0}}{R_{2}} = C_{1}\frac{\partial V_{0}}{\partial \tau} + \frac{V_{0,n}-V_{0,n}+\frac{\partial V_{0,n}}{\partial \tau}\Delta \tau}{\frac{\Delta \tau}{C_{2}}} = C_{1}\frac{\partial V_{0}}{\partial \tau} + C_{2}\frac{\partial V_{0}}{\partial \tau} = (C_{1}+C_{2})\frac{\partial V_{0}}{\partial \tau} , \qquad (2.22)$$

что требовалось доказать.

Так как при этом способе решения время является непрерывной величиной, то здесь вообще не возникает проблемы устойчивости решения, а от выбора величины временных интервалов зависит только точность решения.

При отработке нескольких интервалов $\Delta \mathcal{T}$ на свободный конец \mathcal{R}_{τ} должна быть подана ступенчатая функция, сформированная при помощи функциональных преобразователей машины УСМ-1. Таких преобразователей машина имеет 20 штук, что явно недостаточно при электромодели – ровании. Поэтому следует использовать еще методику формирования ступенчатых во времени функций с помощью формирования ступенчатых во времени функций с помощью формирователей импульсов. Эта методика подробно разработана А.П.Козьменко [19]. Использование её даёт возможность дополнительно получить около 100 таких функций.

Если R_{τ} будут меняться для разных $\Delta \tau$, то можно для учёта этих изменений использовать блок учёта нелинейностей (БУН), описанный выше.

Здесь описан случай примененкя комбинированного метода при скачкообразном увеличении емкости. Более трудным представляется случай, когда емкость будет скачкообразно уменьшаться, так как сопротивление R_T при этом становится отрицательным. Для его реализации необходим усилитель постоянного тока. Кроме того, требует с я следящее устройство, которое автоматически поддерживало бы нужную величину отрицательного сопротивления в о времени. Если такое устройство будет создано, то ком бинированный способ можно применять и в этом случае.

Комбинированный способ легко можно распространить и на случай не скачкообразного, с плавного изменения емкости в зависимости от потенциала, в частности для задач промерзания грунта при $\Delta T_{\rm KP} \neq 0$. Учёт нелинейности при этом производится по методике, описанной в п.1.7 гл.1.

Из изложенного видно, что предлагаемый способ представияет собой гибрид методов *R* С- и *R* -сеток и применение его к исследованию процессов, описываемых уравнениями типа теплопроводности, в существенной степени расширяет класс решаемых на электромоделях задач.

\$ 2.6. К вопросу точности решения, получаемого на R С-сетках

Метод электромоделирования на *R* С-сетках задач теплопроводности, как всякий экспериментальный метод, даёт также приближенное решение заданного уравнения. Помимо погрешностей решения, присущих *R* -сеткам, здесь доба вляются погрешности вследствие утечки в конденсаторах. (Это не говорит, однако, о том, что точность решения задач на *R* С-сетках при одинаковой разбивке по пространству хуже, чем на *R* -сетках).

При эксплуатации модели неизбежна утечка в изоляции диэлектрика сеточных конденсаторов. Конденсаторы во время зарядки пропускают ток утечки и постепенно разряжаются через сопротивление утечки. Узловая точка сетки (одномерный случай) фактически соответствует схеме, представленной на рис. 2.10.

Рис. 2.10. Типовой узел R Ссетки с включением сопротивления утечки конденсатора R_c.

Влияние сопротивления утечки на точность решения задачи зависит от напряжения в рассматриваемой точке. Если оно достаточно мало, ток утечки также очень мал и погрешность решения будет незначительной. Погрешность увеличится с увеличением напряжения в узловой точке. Подробный анализ этого источника погрешностей проведен В.Пашкисом и М.Хейслером [11]. Для уменьшения погрешностей от тока утечки желательно брать в модели меньшее число блоков, тогда как для уменьшения погрешности от замены непрерывного поля дискретной моделью необходимо включать возможно большее число блоков. В качестве компромиссного решения при моделировании одномерных задач авторы рекомендуют применять 6-8 блоков.

Сопротивления утечки включают сопротивления диэлектрика конденсаторов, сопротивления соединительных проводов и панели. Можно показать, что влияние этих утечек может быть объединено и включено в схему в виде одного сопротивления в каждую узловую точку параллельно с сопротивлением утечки конденсатора R_c . Отметим, что проведенный анализ погрешности характерен для R С-моделей с большой постоянной времени (решение задачи на приборе В.Пашкиса обычно длится от 5 до 15 мин).

Применительно к УСМ-1, учитывая что сопротивление изоляции машины не менее 50 мом, а сопротивление утечки применяемых конденсаторов R_c примерно на порядок больше, а также то обстоятельство, что диапазон применяемых при решении задач напряжений находится в пределах ±20 в и что точность измерения протекающего в сетке тока ±50 мка и сама машина принадлежит к R С-модели с малой постоянной времени, можно считать, что токи утечки на точность решения практически не влияют.

В большинстве экспериментальных работ погрешность вычисляется относительная, т.е. как отношение разности точного и приближенного решения к точному решению:

$$δ = \frac{V_{TOЧH} - V_{H3M}}{V_{H3M}} 100\%$$
(2.23)

Однако это определение не подходит к моделирующим устройствам и к решаемым на них задачам, т.к. точное значение потенциала в точках поля может быть равно нулю (или весьма мало), в этом случае относительная погрешность, согласно формуле (1.23), равна бесконечности, и создается впечатление о неправильности решения, в то время как V изм может быть как угодно близко к точнсму [14].

Более приемлемым определением процентной погрешности является отнесение погрешности не к точному значению решения в данной точке, а к 100% шкалы измерительного устройства:

$$\delta = \frac{V_{TOHH} + V_{HSM}}{\Delta V_{max}} 100\% \qquad (2.24)$$

Формула (2.24) также не лишена недостатков, в частности при значениях функций, отличающихся на один и ли более порядков от 100%, она не гарантирует приемлем ой степени точности, а в некоторых случаях является недостаточной для оценки точности решения задач с помощью электромоделирования.

Можно дать некоторые практические рекомендации,вы – полнение которых будет содействовать повышению точности решения задач нестационарной теплопроводности на R C-сетках [14].

1. В начале моделирования время натуры нужно брать достаточно малое, чтобы обеспечить приемлемую точность замера получаемых функций на участках значительной крутизны. В частности, на УСМ-1 погрешность измерения автоматического измерительного устройства изменяющихся во времени напряжений, скорость изменения которых не превышает 50% амплитуды на 1% времени, вычисляется по формуле

$$\delta \leq 0,2 \left(1 + \frac{\Delta V}{\Delta \tau}\right) \%.$$
 (2.26)

2. Следует использовать весь диапазон изменения потенциалов, имеющихся на модели.

3. В местах, где ожидаются большие градненты потенциала, следует поставить электрическую лупу или произвести раздельное моделирование в более крупном масштабе, используя данные основной модели для задания граничных условий. При отсутствии электрической лупы для соединения сеток с разными шагами можно использовать магазины добавочных сопротивлений.

4. В тех случаях, где это возможно, следует моделировать симметричные области.

5. При замерах поля градиентов следует иметь в виду, что в случае однородной среды значения их изменяются плавно и амплитудные значения наблюдаются вблизи точек задания граничных условий.

Для контроля отсутствия случайных обрывов сопротивлений сетки можно строить зависимости $\Delta V = f(X)$, где

ΔV - составляющая градиента потенциала в направления х; соединяя концы векторов ΔV, получаем плавную кривую. Резкие скачки значений ΔV в соседних точках, выпадающие из плавной линии, показывают места обрывов или неправильных наборов сопротивлений. Этот метод, названный Л.Г.Коганом "методом спрямления касательных", позволяет обнаружить неисправности моделя без перебора сетки или граничных условий.

Глава З

ПРИМЕНЕНИЕ ТЕОРИИ ПОДОБИЯ К ЗАДАЧАМ ПРОМЕРЗАНИЯ ГРУНТА

3.1. <u>Критерии подобия, используемые</u> при моделировании

Принцип подобия поэволяет из математической модели процесса, т.е. из дифференциальных уравнений в краевых условий, получить целый ряд следствий, не прибегая к самому решению. В основу метода положен принцип подобия температурных полей (в общем поля могут иметь различную физическую природу), который заключается в том,что если два температурных поля, описываемых уравнениями

$$\frac{\partial \Gamma}{\partial \tau} = \alpha \nabla^2 \Gamma; \qquad (3.1)$$

$$\frac{\partial T}{\partial \tau_i} = \alpha' \nabla^2 T, \qquad (3.2)$$

подобны, то это означает, что вид функций, выражающих возможное решение обоях уравнений, одинаков, а аргументы: размеры тела ℓ_i , температура Т, время \mathcal{T} , коэффициент температуропроводности Q, входящие под знак функции, в общем случае пропорциональны:

$$l=d_{\ell}l'; T=d_{\tau}T'; \tau=d_{\tau}\tau'; a=d_{a}a'.$$

Если перепишем (3.2) в форме

$$\frac{d_r \partial T}{d_\tau \partial \tau} = \frac{1}{d_a} \frac{d_{e^2}}{d_\tau} a \nabla^2 T$$
(3.3)

н сравним с уравнением (3.1), то уравнения тожлественны только в том случае, если множители в правой и левой частях между собой равны, т.е. если

$$\frac{dadr}{de^2} = 1$$
 (3.4)

Выражение (3.4) показывает, что для температурного поля, заданного системой значений a, γ , l, можно найти бесчисленное множество других полей, подобных ему и вполне определяемых подобными системами значений a', γ' , l'. Следовательно,

$$\frac{a\tau}{l^2} = \frac{a'\tau'}{l'^2} = \frac{a''\tau''}{l''^2} = \dots i dem$$

Откуда получаем

$$\frac{a\tau}{l^2} = F_o$$
 (критерий подобия Фурье) (3.5)

Критерий подобия Фурье используется как при физическом, так и при математическом моделировании.

Для вывода всех критериев подобия, которые необходимо соблюдать при исследовании процесса промерзания грунта на электрических моделях R С-сетках, рассмотрим одномерную математическую модель промерзания грунта с поверхности, описанную в п. 1.1. гл. 1.

Используя описанный выше способ, легко увидеть что для уравнений (1.2) и (1.3) критерии Фурье соответственно будут:

$$\frac{\lambda_i r}{C_i X^2} = i dem; \qquad (3.6)$$

$$\frac{\lambda_2 \tau}{C_2 \times^2} = idem \qquad (3.7)$$

Третий критерий подобия, выведенный Био, связывает температуру Т_в с законом теплообмена между поверхностью грунта и окружающей средой. Из уравнения (1.1) получаем

$$\frac{dx}{\Lambda_1} = idem. \tag{3.8}$$

Из критериев (3.6) - (3.8) видно, что при отсутствии в тепловых процессах изменения агрегатного состояния мас ш таб температур может быть выбран произвольным. Анализ уравнения (1.5) позволяет вывести дополнительные критерии подобия, учитывающие изменения агрегатного состояния вещества, в которых масштаб температур присутствует:

$$\frac{\Lambda_{1}T_{1}T}{X^{2}\Omega_{0}} = idem; \qquad (3.9)$$

$$\frac{\lambda_2 I_2 \tau}{x^2 Q_0} = idem; \qquad (3.10)$$

$$\frac{\Lambda_1 \overline{I}_1}{\Lambda_2 \overline{I}_2} = idem. \qquad (3.11)$$

Критерий (3.11) является производным критериев (3.9) и (3.10). Поэтому его можно не рассматривать. Таким образом, при моделировании процесса промерзания грунта, когда T_{кр} = CONSt, а Д и СУ меняются скачкообразно, необходимо соблюсти критерии (3.6) – (3.10).

3.2. <u>Применение подобных преобразований</u> при расчёте температурных полей <u>в грунтах</u>

Начало применения подобных преобразований к исследованию температурных полей в грунтах положил в 1952 г. С.Г.Гутман [8]. Он рассматривал стационарное температурное поле.

Сущность его метода заключается в проведении составной среды, состоящей из двух однородных областей с разными коэффициентами теплопроводности, к одной однородной среде.

Рассмотрим одномерное стационарное температур ное поле, состоящее из полуограниченного массива мерз ло – талого грунта, математическая модель которого след ую – щая.

В мерзлой зоне

$$\mathcal{N}_{1} \frac{\partial^{2} T_{1}}{\partial \chi^{2}} = 0 \qquad (3.12)$$

В талой зоне

$$\lambda_2 \frac{\partial^2 T_2}{\partial X^2} = 0. \tag{3.13}$$

67

На границе раздела зон - условия теплового равно весия:

$$T_1 = T_2 = 0^{\circ}C;$$
 (3.14)

$$\Lambda_1 \frac{\partial I_1}{\partial X} = \Lambda_2 \frac{\partial I_2}{\partial X}$$
(3.15)

Граничные условия на контуре области 1 рода

$$\Gamma = T(S) \tag{3.16}$$

Для решения этой задачи без применения подобных преобразований использовался бы способ последовательных приближений. Для этого по всей области значение коэффи – агента теплопроводности принимается равным \mathcal{A}_2 и соот – ветственно ему рассчитываются все сопротивления. Находчтся положение нулевой изотермы. Внутри этой зоны принчмается новое значение \mathcal{A} , \mathcal{U} , в соответствия с ним рассчитываются в этой зоне сопротивления. Далее определяется новое положение нулевой изотермы и т.д. до получекия совпадения.

Применение подобных преобразований позволяет избежать последовательных приближений и получить решение в один приём.

Приведём разнородные зоны к единой среде с коэффициентом теплопроводности Λ_{np} . Для этого введем понятие приведенной температуры:

$$T_{np} = \frac{\lambda}{\lambda_{np}} T \qquad (3.17)$$

Тогда соответственно для зон:

$$T_{1,np} = \frac{\lambda_1 T_1}{\Lambda_{np}}; \qquad (3.18)$$

$$T_{2,np} = \frac{\Lambda_2 T_2}{\Lambda_{np}} . \tag{3.19}$$

Т_{1, пр} и Т_{2, пр} удовлетворяют уравнениям соответственно (3.12) и (3.13), условия (3.14), (3.15) на границе раздела, исходя из (3.18) и (3.19), запишутся так:

$$T_{1,np} = T_{2,np} = 0;$$
 (3.20)

$$\frac{\partial T_{4,nP}}{\partial X} = \frac{\partial T_{2,nP}}{\partial X}, \qquad (3.21)$$

Таким образом, в приведенном тепловом потоке T_{пр} нулевая изотерма, а T_{1,пр} и T_{2,пр} разделяются как для однородной области, независимо от коэффициента теплопроводности приведенной среды. При определении однород ного поля необходимо согласно (3.17) корректировать граничные условия на контурах рассматриваемой области:

$$T_{nP}(S) = \frac{\lambda}{\lambda_{nP}} T(S). \qquad (3.22)$$

Если принять за приведенную среду одну из зон, например талую, приняв $\int_{np} = \int_2$, будем иметь

$$T_{1,np} = \frac{\hat{\lambda}_{i}}{\hat{\lambda}_{2}} T_{1};$$
 (3.23)

$$T_{2,np} = T_2;$$
 (3.24)

$$T_{1,np}(S_1) = \frac{\Lambda_1}{\Lambda_2} T_1(S_1) \qquad (3.25)$$

$$T_{2,np}(S_2) = T_2(S_2).$$
 (3.26)

Таким образом, температурные поля в талой зоне определяются без искажения, а в мерзлой зоне они являются увеличенными в $\frac{\Lambda_i}{\Lambda_2}$ раз.

Этот способ может быть применен к исследованию экспериментально или аналитически плоских и пространственных задач.

Такое приведение при электромоделировании означает, что все электрические сопротивления данной зоны и все разности потенциалов изменяются в некотором отношении. Электрический ток после такого преобразования останется прежним. Следует отметить, что это приведение возможно только для однородных грунтов, вернее, в случаях, когда граница раздела не проходит по грунтам с различными теплофизическими характеристиками.

В 1957 г. проф. В.С.Лукьяновым был распространён принцип С.Г.Гутмана на решение задач нестационар ного процесса промерзания – оттаивания грунтов. При расчётах промерзания грунтов на гидравлическом интегратор е применение метода приведения составной среды к однородному виду относительно одного из теплофизических параметров грунта позволяет существенно упростить процесс решения и повысить точность. Еще большие преимущества такое приведение даёт при расчётах продесса промерзания грунта на R С-сетках с искусственной периодизацией (например на УСМ-1), так как для автоматического применения параметров R С-сетки требуется довольно дорогое и сложное электронное оборудование.

Теоретическое обоснование применения принципа С.Г. Гутмана дано в работе В.С.Лукьянова и Н.А.Цуканова [23].

Рассматривая математическую формулировку п.1.1 гл.1 и критерии подобия (3.6) – (3.10), можно установить, какие преобразования нужно выполнить с параметрами исходной системы при приведении её к однородному виду при сохранении теплового подобия исходной и приведенной системы. Дополнительное условие – неизменность линейных и временных масштабов. Возможны тогда два случая приведения системы к однородному виду: относительно коэффициентов теплопроводности и относительно объёмной теплоемкости.

<u>Приведение к однородному виду в отношении коэффициентов теплопроводности.</u> Произведем приведение относительно коэффициента теплопроводности талого грунта, т.е. считаем $M_{np} = M_2$. Тогда из критериев (3.6) – (3.10) получим:

$$\frac{\underline{\lambda}_{1}\tau}{C_{1}X^{2}} = \frac{\underline{\lambda}_{2}\tau}{\underline{\lambda}_{1}^{2}C_{1}X^{2}} = \frac{\underline{\lambda}_{2}\tau}{C_{1np}X^{2}} = idem; \qquad (3.27)$$

70

$$\frac{\int_2 \Upsilon}{C_2 \chi^2} = idem; \qquad (3.28)$$

$$\frac{dx}{\lambda_1} = \frac{\frac{\Lambda_2}{\Lambda_1} dx}{\Lambda_2} = \frac{d_{np} \chi}{\Lambda_2} = idem; \qquad (3.29)$$

$$\frac{\lambda_{1}T_{1}\chi}{\chi^{2}Q_{0}} = \frac{\lambda_{2}\frac{\lambda_{1}}{\lambda_{2}}T_{1}\chi}{\chi^{2}Q_{0}} = \frac{\lambda_{2}T_{1}\mu_{P}\chi}{\chi^{2}Q_{2}}$$
(3.30)

$$\frac{\int_{2} I_{2} \mathcal{X}}{\chi^{2} Q_{0}} = i dem. \qquad (3.31)$$

Из (3.27) - (3.31) следует, что для приведения к однородному виду в отношении коэффициента теплопроводности талого грунта параметры мерзлого слоя должны быть преобразованы так:

$$\mathcal{N}_{i,np} = \mathcal{N}_{i} K_{A} = \mathcal{N}_{2};$$
 (3.32)

$$d_{np} = dK_A; \qquad (3.33)$$

$$\mathcal{L}_{I,nP} = \mathcal{L}_{I} \mathcal{K}_{\mathcal{A}} ; \qquad (3.34)$$

$$\overline{T}_{i,np} = \frac{I_i}{K_A} , \qquad (3.35)$$

 $K_A = \frac{\Lambda_2}{\Lambda_1} \qquad (3.36)$

Параметры талого слоя остаются прежними. Вследствие приведенных преобразований температуры в слое мерзлого грунта искажаются относительно их истинных значений, и при обработке результатов расчёта это нужно учитывать.

<u>Приведение к однородному виду в отношения объемной</u> <u>теплоёмкости</u>. Как и в предыдущем случае, приведение произведем относительно объёмной теплоемкости талого грунта, т.е. С_{ПD} = С₂.

Непосредственно из критериев подобия (3.6) - (3.10)

где
находим:

$$C_{1,np} = C_1 K_c;$$
 (3.37)

$$\Lambda_{1np} = \Lambda_1 K_c; \qquad (3.38)$$

$$d_{np} = d_{Kc}; \qquad (3.39)$$

$$T_{1,np} = \frac{T_1}{K_c},$$
 (3.40)

где $K_c = \frac{C_2}{C_1}$.

Параметры талого слоя, как и в первом случае, остаются неизменными.

При обработке результатов расчёта истинные значения температур в мерзлом грунте получаются умножением их приведенных значений на К_с.

Тепловые потоки после данных приведений в мерзлой и талой зонах остаются постоянными.

Отметим, что при моделировании на УСМ-1 процесса промерзания грунтов, учитывая довольно малый разброс электрических емкостей и дискретность набора, приведение нужно делать относительно объёмных теплоёмкостей.

Укажем также на то, что моделирование на гидравлическом интеграторе и УСМ-1 процесса промерзания грунта после приведения к однородному виду относительно объемной теплоемкости и коэффициента теплопроводности возможно, т.к. С₁ и С₂, а также \mathcal{A}_1 и \mathcal{A}_2 отмечаются друг от друга относительно мало, ибо при их разбросе в несколько порядков Т_{1.пр} и Т₂ были бы величинами несравнимыми.

Полученные результаты справедливы также для двухи трехмерных задач.

Распространим принцип С.Г.Гутмана на приведение составной среды из мерзло-талого грунта к однородному виду в отношении коэффициента теплопроводности и объёмной теплоёмкости одновременно. Как и в указанных выше случаях, приведение осуществим относительно параметров талого грунта при дополнительном условии неизменности линейных масштабов, масштабов времени, исходной и приведенной системы в мерзлой зоне. Это относится также к масштабам сопротивлений и ёмкостей в мёрзлой зоне.

$$\frac{\Lambda_{1}T}{C_{1}X^{2}} = \frac{\Lambda_{1}K_{A}T\frac{\Lambda_{c}}{K_{A}}}{C_{1}K_{c}X^{2}} = \frac{\Lambda_{1}n_{P}T_{1}n_{P}}{C_{1}n_{P}X^{2}} = \frac{\Lambda_{2}T_{1}n_{P}}{C_{2}X^{2}}; \quad (3.41)$$

$$\frac{\Lambda_2 \tau}{C_2 \chi^2} = idem; \qquad (3.42)$$

$$\frac{dx}{\Lambda_1} = \frac{d\kappa_A X}{\Lambda_2} = \frac{dm X}{\Lambda_2} = idem; \qquad (3.43)$$

$$\frac{\int_{1}T_{1}T}{X^{2}Q_{0}} = \frac{\int_{1}K_{A}\frac{I_{1}}{K_{c}}T\frac{K_{c}}{K_{A}}}{X^{2}Q_{0}} = \frac{\int_{2}T_{imp}T_{imp}}{X^{2}Q_{0}} = idem; \qquad (3.44)$$

$$\frac{\int_{2} \overline{I_{2}\tau}}{\chi^{2}Q_{o}} = \frac{\int_{2} \overline{I_{2}} \frac{K_{A}}{K_{c}} \tau \frac{K_{c}}{K_{d}}}{\chi^{2}Q_{o}} = \frac{\int_{2} \overline{I_{2}} np \overline{I_{1}} np}{\chi^{2}Q_{o}} = idem. \quad (3.45)$$

. .

Поскольку граница промерзания принадлежит одновременно мерзлой и талой зонам, то в критериях (3.44)и(3.45) можно с одинаковым правом взять масштаб времени либо как для талой, либо как для мерзлой зоны. Самостоятельного же масштаба времени на границе раздела фаз взять нельзя. Эксперименты это полностью подтверждают. Следовательно, критерии (3.44), (3.45) могут быть заменены так:

$$\frac{\underline{\lambda}_{i}T_{i}\tau}{\chi^{2}Q_{0}} = \frac{\underline{\lambda}_{i}K_{A}}{\chi^{2}}\frac{I_{i}}{\chi^{2}}\frac{\tau}{Q_{0}} = \frac{\underline{\lambda}_{2}T_{i}}{\chi^{2}}\frac{T_{i}}{Q_{0}} = idem; \quad (3.44^{1})$$

$$\frac{\int_{2} T_{2} \tau}{\chi^{2} Q_{0}} = i dem .$$
 (3.45¹)

Учитывая то, что величина $\frac{K_c}{K_A}$ всегда больше единишы, при моделировании на R C-сетках масштаб времени на границе промерзания нужно брать как для талой зоны, т.е. использовать критерии (3.44¹), (3.45¹). Это существенно ускорит процесс моделирования. При электромоделировании приведенной к однородному виду в отношении A_2 п C₂ одновременно составной среды масштабные коэффициенты A_R и A_c должны быть взяты одинаковыми для обеих зон. В противном случае нельзя добиться постоянства электрических емкостей и сопротивлений на модели. Процессы в мерэлой зоне будут происходить, согласно критерию (3.41), замедленно в $\frac{K_c}{K_A}$ раз. Но

во столько же раз электрический процесс будет идти медленнее (по сравнению с моделированием исходной системы). Следовательно, d_{χ} также одинаково для обеих зон.

При расчёте $d_{v} = \frac{V}{T_{i,n\rho}}$ (если $|T_{1,np}| > T_{2}$) напряжение для увеличения точности моделирования долж но быть взято максимальным, d_{v} берётся одинаковым для всей области моделирования.

3 Hag dy u dc , Haxodem da .

Возможен и второй вариант расчёта электрических параметров. Вначале рассчитываются электрические параметры для исходной системы, а затем, используя критерии (3.41) - (3.45), в них взодятся соответствующие коррективы.

Время расчёта процесса промерзания на электромодели RC-сетки можно еще более сократить, если приведение сделать относительно параметров мерзлого грунта. В этом случае, однако, увеличится объём работ при обработке результатов в талой зоне.

Если использовать при моделировании критерии (3.44¹), (3.45¹), то время движения границы промерзания будет связано с истинным временем протекания процесса в натуре обычным соотношением

$$T_n = \frac{\tau_N}{d\tau} , \qquad (3.46)$$

где 7_м - время на электрической модели.

Если вместо (3.44¹), (3.45¹) использовать (3.44), (3.45), соответственно, то истинное время движения границы промерзания в натуре

$$T_{H} = \frac{T_{H}}{d_{T}} \frac{K_{A}}{K_{c}} . \qquad (3.47)$$

При определении температурных полей в мерэлой и талой зонах, учитывая то обстоятельство, что электрические напряжения в модели задаются в процентах, следует просто взять эти проценты от температур в исходной (а не приведенной) системе. Время брать при этом как для талой зоны.

Тепловые потоки и после приведения к однорядному виду в отношении коэффициента теплопроводности и объём – ной теплопроводности одновременно остаются в мерз лой и талой зонах неизмененными.

Такое приведение позволяет производить расчёты на электромодели R С-сетке при постоянных электрических сопротивлениях и емкостях и таким образом избавляет от необходимости иметь сложное электронное оборудование для учёта скачкообразного изменения параметров.Это значительно экономит время решения и повышает точность расчёта.

Особенно наглядно преимущества метода проявляются при решении сложных двух- и трехмерных задач с большим количеством элементарных блоков.

Проведение расчётов на гидравлическом интеграторе при таком приведении становится полностью автоматизированным.

Моделирование одномерной задачи промерзания грунта, имеющей точное аналитическое решение, при постоянных электрических сопротивлениях и емкостях и при различных масштабах времени в мерзлой и талой зонах подтвердило правильность этих теоретических положений.

Отметим, что подобным преобразованиям в общем случае можно подтвердить лишь те функции, которые обладают свойством гомогенности, так как только в этом случае подобное преобразование всех величин, стоящих под з наком функций, приводит к подобному преобразованию самих функций.

Если рассматривать слоистую среду, состоящую из нескольких однородных слоёв, то анализ критериев подоби я для неё показывает невозможность приведения к однородному виду в каждом слое относительно d_{пр} и C_{пр} одновременно из-за невыполнения условий на границе раздела слоёв – равенства температур и тепловых потоков.

3.3. <u>О различных линейных масштабах и масштабах</u> времени в мерзлой и талой зонах при моделировании

Впервые разные линейные масштабы и масштабы времени при исследовании тепловых процессов, сопровождающихся изменением агрегатного состояния, в одномер но й среде ввел Пушкин В.С. [30], рассматривая нагревание с торца полубесконечного стержня, боковая поверхность которого изолирована. Выведенные им критерии использовались Шадриным Г.С. при рассмотрении задач таяния.

Нами, кроме того, вводятся специальные масштабы времени и длины для границы раздела фаз. Правда, в работе [35] утверждается, что на поверхности раздела можно взять масштаб времени либо как в мерзлой, либо как в талой зоне. То же касается линейных масштабов. Однако связь между ними не показана.

Возьмём математическую модель одномерной задачи. Из условия (1.4) на границе раздела, беря полный дифференциал, получаем

$$\frac{\partial T_{i}}{\partial x}dx + \frac{\partial T_{i}}{\partial \tau}d\tau = 0 = \frac{\partial T_{2}}{\partial x}dx + \frac{\partial T_{2}}{\partial \tau}d\tau. \qquad (3.48)$$

Тогда условие (1.5) можно записать в следующем виде:

$$\mathcal{A}_{1}\frac{\partial T_{1}}{\partial x} - \mathcal{A}_{2}\frac{\partial T_{2}}{\partial x} = -Q_{0}\frac{\frac{\partial T_{1}}{\partial \tau}}{\frac{\partial T_{1}}{\partial x}} = -Q_{0}\frac{\frac{\partial T_{2}}{\partial \tau}}{\frac{\partial T_{2}}{\partial x}}$$
(3.49)

- -

В формуле (3.49) нелинейность данной задачи становится очевидной. Из (3.49) отчётливо видно, что время протекания процесса на границе промерзания можно брать как в мерзлой зоне, либо как в талой. Линейный размер на границе раздела должен соответствовать принятому времени протекания процесса. Следовательно, специальный масштаб времени и линейных размеров на границе промерзания ввести нельзя.

Исходя вз физических соображений, можно сделать вывод, что при физическом моделировании невозможно применить различные линейные масштабы, во-первых,потому, что в природе не существует таких грунтов,которые бы при перемене фазы автоматически изменяли свои ли нейные размеры в необходимое число раз, во-вторых, в этом случае площади соприхосновений зон будут различными и нарушится условие теплообмена на границе раздела.Поэтому выводы Шадрина Г.С. по этому вопросу являются о шибочными.

При математическом моделировании можно ввести разные линейные масштабы в мерзлой и талой зонах только в одномерном случае, если одну из зон "сжать" или раст януть" в определенное число раз только в направлении изменения температурного поля. В этом случае возмож но приведение составной среды к однородному виду в отношении термических сопротивлений и емкостей. Покажем, какие преобразования для этого нужно произвести над исходной системой критериев подобия на примере задачи п. 1.1 гл.1 Λ_1 и Λ_2 оставляем без изменения, линейный размер в мёрзлой зоне растигиваем в Λ_1/Λ_2 раз. Приведение делаем к R талое и С талое:

$$\frac{\lambda_{1}\tau}{C_{1}\times^{2}} = \frac{\lambda_{1}\tau}{C_{1}\kappa_{c}\kappa_{A}\times^{2}(\frac{1}{\kappa_{A}})^{2}} = idem; \qquad (3.50)$$

$$\frac{J_2\tau}{C_2\chi^2} = idem, \qquad (3.51)$$

77

$$\frac{d\mathbf{x}}{\mathcal{\Lambda}_1} = \frac{d \kappa_A \mathbf{X} \frac{1}{\kappa_A}}{\mathcal{\Lambda}_1} = idem; \qquad (3.52)$$

$$\frac{\hat{\mathcal{J}}_{i}T_{i}\tau}{\chi^{2}Q_{o}} = \frac{\hat{\mathcal{J}}_{i}T_{i}\frac{1}{K_{c}}\tau\frac{K_{c}}{K_{A}}}{\chi^{2}(\frac{1}{K_{A}})^{2}Q_{o}K_{A}} = ident; \qquad (3.53)$$

$$\frac{\hat{\Lambda}_{2}T_{2}\tau}{\chi^{2}Q_{0}} = \frac{\hat{\Lambda}_{2}T\frac{\kappa_{A}}{\kappa_{c}}\tau\frac{\kappa_{c}}{\kappa_{A}}}{\chi^{2}\frac{1}{\kappa_{A}}Q\kappa_{A}} = idem.$$
(3.54)

Легко видеть, что после таких преобразований термические сопротивления и емкости в мерзлой и талой зонах становятся равными. Расчёт электрических параметров R С-сетки, начальных и граничных условий для приведенной системы (3.50) – (3.54) и сравнение соответствен но с электрическими параметрами R С-сетки (пространственная разбивка одинакова), начальнымх и граничны ми условиями системы (3.6) – 3.10) показало полное сов падение результатов.

Таким образом, применение различных динейных масштабов в мерзлой и талой зонах, а также приведение составной среды из тало-мерзлого грунта к однородной среде в отношении термических сопротивлений и ёмкостей при этих условиях нужно считать ограниченным (для одномерных задач).

Глава 4

РЕШЕНИЕ КОНКРЕТНЫХ ЗАДАЧ ПРОМЕРЗАНИЯ ГРУНТОВ

4.1. Задача промерзания полуограниченного массива грунта при ∆ Т_{кр}=0

Математическая формулировка задачи дана в п.1.1, но граничные условия 1 рода; T_с = CONst. Данные для решения приведены в табл. 4.1.

Таблица 4.1

T _c °C	Т _н оС	T₀ºC	Л.	Ĵ\₂	C1	C ₂	б	¥ 1,2	i	n
-20	10	0	2,5	1,8	0,3	0,46	80	1600	1	0,3

Задача решена методом Либмана на R -сетке и на R Ссетке. Моделирование на R С-сетке скрытой теплоты проводилось способами, описанными в п.2.2.

Разбивка полупространства приведена в табл. 4.2.

Таблица 4.2

№ узла	1	2-10	11	12-21	22-28	27–28	2 9-45
h ,м	0,025	0,05	0,075	0,1	0,2	0,4	0,8

Результаты решения сравнивались с точным аналитическим решением для границы промерзания и төмпөратурных полей.

На рис. 4.1 представлен график продвижения границы промерзания. ж - точки графика по результатам моделирования на R C-сетке. Результаты решения методом Либмана и на R C-сетке практически совпадают.

На рис. 4.2 показаны графики распределения температуры по результатам моделирования на *R* С-сетке и по аналитическому решению.

Моделирование на R С-сетке проведено при скачкообразно изменяющихся и постоянных электрических сопротивлениях и ёмкостях. Результаты хорошо согласуются.

ж моделирование на R С-сетке.

80

4.2. Задача промерзания грунта одиночной колонкой $\Delta T_{\rm kp} = 0$

Задача решена по данным табл. 4.3 моделированием на *R* -сетке методом Либмана и на *R* С-сетке.

Табляца 4.3

тgс	т <mark>я</mark> с	т°С	٨,	J,	с ₁	C ₂	б	81,2	2к	i	n
-20	+10	0	2,5	1,8	0,254	0 ,34	80	2100	0,057	1	0,35

Разбивка по пространству выполнена в соответствии с методикой [27] и представлена табл. 4.4.

Таблица 4.4

№ уз- ла 7;	1 0,057	2 0,2	3 0,45	4 0,6	5 0,75	6 0,9	7 1	8 1,1
9	10	11	12	13	14	15	16	17
1,3	1,6	2	2,5	2,7	2,9	3,1	3,3	3,5
18	19	20	21	22	23	24	25	26
3,7	3,9	4,1	4,3	4,5	4,7	4,85	5	5,15
27	28	29	30	31	32	33	34	35
5,3	5,6	5,9	6,1	6,366	6,621	6,867	7,104	7,334
38 7,557	37 7,773	38 7,983	39 8,188	40 8,388	41 8,583			

На рис. 4.3 приведены графики продвижения границы промерзания [45]. Из графика видно, что отличие результатов моделирования и аналитического решения составляет менее 10%.

При моделировании на R С-сетке скрытая теплота учитывалась способом, описанным в п.2.2 (случай В).

Рис. 4.3. Продвижение границы промерзания при замораживании одиночной колонкой: 1 – по методу Либмана; 2 – по моделированию на *R* С-сетке; 3 – по формуле Селезнёва H.A.

4.3. Задача промерзания грунта при расположении ряда колонок по прямой линии, ∆ Т_{кр}=0

Задача решалась как плоская симметричная.

Теплофизические характеристики были взяты из табл. 4.3, за исключением Т_н = 8°С.

На рис. 4.4 представлены графики продвижения гранины промерзания [21].

Температурные поля в ледяной зоне представлены на рис. 4.5.

4.4. Задача промерзания грунта при расположении ряда колонок по кольцу, ∆ Т_{кр} = 0

Задача решена по данным задачи замораживания прямолинейным рядом колонок. Количество колонок равно 44, радиус кольца, по которому расположены колонки, - 7 м.

Разбивка области моделирования была одномерной и двухмерной, согласно методике [25].

Движение границы промерзания для первого случая представлено на рис. 4.6, для второго – на рис. 4.7. Результаты обоих решений получились достаточно близкими друг другу. Они сравнивались с расчётом по формуле H.A.Селезнёва [45].

Расхождения результатов моделирования и аналитического решения составляют по внешнему направлению 7%, по внутреннему – около 12%.

4.5. Задача промерзания полуограниченного массива грунта при∆Т_{кр} ≠ 0

Данные для решения представлены в табл. 4.5.

Таблица 4.5

т _с °С	T ^o C	Л,	Лz	cy,	CSe	б	Sck	i	Whee	T ^l _o C
-20	+10	1,155	0,9	509,8	720,5	80	1140	0,8	0,412	-1

Задача моделировалась на RC-сетке двумя способами: 1-с учётом зоны промерзания; 2-путём сведения данной задачи к задаче Стефана.

Результаты полученного решения сравнили с решением Стефана при аналогичных условиях. Теплофизические характеристики \mathcal{M}_1 и С₁ в мерзлой зоне взяли усредненными. Кроме того, чтобы свести задачу, когда $\Delta T_{\rm KP} \neq 0$, к случаю $\Delta T_{\rm KP} = 0$, необходимо ввести расчётное количаст в о скрытой теплоты Q₀, которое явилось бы эквивален том количества скрытой теплоты, наблюдающейся при постепенном замерзании влаги грунта. Это расчётное количество скрытой теплоты Q₀ принято выражать в виде отношения его к величине скрытой теплоты, которая выделяется при замерзании всей влаги грунта Q¹ [24]:

i=
$$\frac{Q_o}{Q'} = \frac{q_{A,2} \delta}{\gamma_{ex} W_{bx} \delta} = \frac{q_{A,2}}{\gamma_{ex} W_{bx} \delta}$$

Рис. 4.6. Продвижение границы промерзания при кольцевом расположении колонок (одномерный случай).

Рис. 4.7. Продвижение границы промерзания при кольцевом расположении колонок (двухмерная разбивка замораживаемой области).

1 - моделирование на R С-сетке сведением к задаче Стефана; 2 - аналитическое решение сведением к задаче Стефана; 3 - моделирование на R Ссетке с учётом зоны промерзания. Величину *l* называют расчётной льдистостью. Она всегда меньше единицы и служит для того, чтобы приближенно учесть постепенное замерзание влаги.

В зависимости от вида грунта назначается также условная температура $T_0^1 < T_{0,H}$, при которой происходит кристаллизация.

В рассматриваемой задаче $T_0^1 = -1^{\circ}C$ и $\dot{l} = 0,8$ для глины взяты из (22).

На рис. 4.8 представлены кривые продвижения границы промерзания.

На рис. 4.9 изображены температурные поля промерзания в диапазоне температур.

Как видно из рис. 4.9, температурные поля практически совпадают. Процесс промерзания с учётом зоны промерзания идет более интенсивно, чем при постановке задачи сведением её к задаче Стефана. Этот вывод совпадает с выводом, сделанным В.Г.Меламедом в [26]. 1. Андерсон, Ботье, Коффель. Сравнение неявного и явного методов решения конечно-разностных задач теплопроводности. Теплопередача, т.83, с. № 4, 1962.

2. Березин И.С., Жидков Н.П. Методы вычислений, т.П, М., Физматгиз, 1960.

3. Быховский М.Л. Точность электрических сеток, предназначенных для решения уравнений Пуассона. В сб. "Точность механизмов и машин". Вып. 1, Машиздат, 1952.

4. Вазов В., Форсайт Дж. Разностные методы решения лифференциальных уравнений в частных производных. М. Изд-во ИЛ, 1963.

5. Вейник А.И. Теория затвердевания отливки. М., Маш-гиз, 1960.

6. Волынский Б.А. Об основных направлениях и работах в период 1962-1965 гг. В сб. "Расчёт физических полей методами моделирования". М., "Машиностроение", 1968.

7. Волынский Б.А. и Бухман В.Е. Модели для решения краевых задач. М., Физматгиз, 1960.

8. Гутман С.Г. К исследованию установившегося теплового потока в составной среде из мерзлого и талого грунта. (Приведение исследуемой области к однородной среде). Известия ЛНИИГ, т. 47, 1952.

9. Жеребятьев И.Ф., Лукьянов А.Т. Моделирование неявных разностных схем. Сб. Вестник АН Каз. ССР, № 10 (282), Алма-Ата, 1968.

10. Жеребятьев И.Ф., Лукьянов А.Т. Математическое моделирование уравнений теплопроводности с разрывными коэффициентами. М. "Энергия", 1968.

11. Иванов Н.С. Тепло- и массоперенос в мерзлых горных породах. М., "Наука", 1969.

12. Карплюс В. Вычислительная машина Д SДT. Первый международный конгресс ИФАК по автоматическом у управлению. М. Изд-во АН СССР, 1960.

13. Карплюс В. Моделирующие устройства дяд решения задач теории поля. М. Изд-во ИЛ, 1962.

14. Коган Л.Г. О точности решения задач фильтрации на электрических сетках. Известия ЛНИИГ, т.47, 1952.

15. Коздоба Л.А. Применение электрических модел е й

для решения задач тепло-массопереноса. Инженерно-физический журнал, т. X1, № 6, 1966.

16. Коздоба Л.А. Электромоделирование температурных полей в деталях суровых энергетических установок. Л., "Судостроение", 1964.

17. Коздоба Л.А. Электромодели - сетки омических сопротивлений для расчёта глубины промерзания грунтов. В сб. "Конвективный теплообмен". "Наукова лумка", Киев, 1965.

18. Коздоба Л.А. Решение обратных и инверсных задач металлургической теплотехники с помощью электрических моделей. Инженерно-физический журнал, т.ХУ, № 6, 1968.

19. Козьменко А.П. Некоторые вопросы расширения возможностей УСМ-1 при решении фильтрационных задач. Материалы 3-го семинара по применению геофизических методов при гидрогеологических исследованиях. "Недра", М., 1970.

20. Коллатц Л.Н. Численные методы решения дифференциальных уравнений. М. Изд-во ИЛ, 1953.

21.Крастошевский Г.М. Образование долговременны х ледогрунтовых ограждений и способы их расчёта. Автореферат диссертации на соискание учёной степени кандидата технических наук. М., ВЗПИ, 1969.

22. Лукьянов В.С., Головко М.Д. Расчёт глубины промерзания грунтов. М., Гострансжелдориздат, 1957.

23. Лукьянов В.С., Цуканов Н.А. О некоторых возможностях подобных преобразований при расчётах нестационарных температурных полей в промерзающих и оттаивающих грунтах. Известия ЛНИИГ, т. 47, 1952.

24. Лыков А.В. Теория теплопроводности. М.Изд.техн.теорет. литер., 1952.

25. Маньковский Г.И. и др. Методика расчёта с помощью гидроинтегратора основных параметров процесса замораживания горных пород при проходке шахтных стволов. М. Гогортехиздат, 1960.

26. Меламед В.Г. Промерзание пористых тел с учётом кривой незамерзшей воды в автомодельном случае. В сб. "Мерзлотные исследования", вып. У1, МГУ, 1966.

27. Меламед В.Г. О влиянии кривой льдистости на пропроцесс промерзания и оттаивания грунтов с различной естественной влажностью. В сб. "Мерэлотные исследования", выл. У1, МГУ, 1966.

28. Николаев Н.С., Козлов Э.С., Полгородник Н.П. Аналоговая математическая машина УСМ-1. М. Машгиз, 1962.

29. Панов Д.Ю. Справочник по численному решению дифференциальных уравнений в частных производных. М. Гостехиздат, 1951.

30. Пушкин В.С. К вопросу о теплопроводности в тверлых телах. Журнал технической физики, т. ХУШ, вып. 8, 1948.

31. Раддл У. Затвердевание отливок. М., Машгиз, 1960.

32. Рихтмайер Р. Разностные методы решения краевых задач. М. Изд-во ИЛ, 1960.

33. Селезнёв Н.А. Формулы к основным инженерным задачам определения продолжительности замораживания грунтов при отсутствии фильтрационных потоков. Изд. ВИОГЕМ, Белгород, 1970.

34. Тетельбаум И.М. Электрическое моделирование.М. Физматгиз. 1959.

35. Шадрин Г.С. Моделирование тепловых процессов, сопровождающихся изменением агрегатного состояния в слоистой среде. В сб. "Лёдотермические вопросы в гидроэнергетике". М.-Л., 1954.

36. Шура-Бура М.Р. Вероятностная оценка погрешности в решении конечно-разностных уравнений, аппроксимирующих задачу Дирихле для уравнения Лапласа на электрических сетках. Известия АН СССР, т.ХХУШ, № 1. 1951.

37. Эйгемсон Л.С. Моделирование. М. "Советская наука", 1952.

38. Liebmann G. A Mew Electrical Analog Method for the Solution of Transient Heat-Couduction Troblems. Trans. ASME, vol. 78, 1103, 1956.

39. Liebmann G. Q. Solution of Transient Heat-Transfer Troblems by the Resistance- Network Analog - Method Trans. ASME. vol. 78, No 3, 1956. 40. Paschkis V. The Heat and Mass Flow Analysis a Simulator for the Study of Heat Conduction. Annales de l'Association: internationale pour le calcul analogique, NI, Janvier, 1963. 41. Paschnis V, Heisler M.P. The accuracy of Measurements in Jumped RC-cable Circuits as used in the study of Transient Heat Flow Trans. AJEE, vol. 63, 1944.

42. Price P.H. and M.R. Slacke. The Effect of Latent Heat in Numerical Solutions of the Heat Flow Equation, British Yournal of applied Physics, Vol-5, 1954, pp 285-287.

Фондовая

43. Технический проект УСМ-2. Фонды института НИИУВМ, Пенза, 1965.

44. Коздоба А.А. Отчёт по теме "Методика электромоделирования прямых и обратных задач нестационарной теплопроводности применительно к задачам кристаллизации". Часть 1. Фонды Института гидромеханики, Киев, 1967.

45. Селезнёв Н.А. Отчёт по теме "Исследование процессов совмещения замораживания горных пород и водопонижения при проходке стволов шахт. Фонды института ВИОГЕМ, Белгород, 1969.

оглавление

Введение	3
Глава 1. Методика расчёта промерзания грунта на электрических моделях-сетках омических сопро-	
тивлений	8
1.1. Математическая теория вопроса	8
и сходимости, электрическая реализация неявных раз-	•
	11
1.3. Правила моделирования. Электротепловая	10
	10
1.4. Расчет параметров К -сетки	18
1.5. О расположении узлов в элементарных пло-	
цадках 1.6. Методика решения задач промерзания грун-	21
та при ∆ Т _{кр} = 0	30
1.7. Методика решения задач промерзания грунта	
при Δ Т _{кр} ≠ 0. Линеаризация уравнения 1.8. Некоторые дополнительные возможности учё-	35
та скрытой теплоты при молелировании на 8 -сетках	38
1.9. Точность решения, полученного на R-сетках	41
Глава 2. Методика расчёта промерзания грунта	
на электромоделях R C-сетках	44
2.1. Расчёт масштабных коэффициентов при моде-	
лировании на R C-сетках	44
2.2. Способы учёта скрытой теплоты при∆Т _{кп} ≖0	46
2.3. Блок учёта нелинейностей (БУН)	51
2.4. Учёт скрытой теплоты при Δ Т _{кр} ≠0	56
2.5. Комбинированный способ решения уравнений	
типа теплопроводности на сеточных электромоделях	
(на примере УСМ-1)	5 8
2.6. К вопросу точностя решения, получаемого на	
RC-сетках	61
Глава 3. Применение теории подобия к задачам	
промерзания грунта	65
3.1. Критерии подобия, используемые при моде-	

лировании	63
3.2. Применение подобных преобразований при рас-	
чёте температурных полей в грунтах	67
3.3. О различных линейных масштабах и масшта -	
бах времени в мерзлой и талой зонах при моделирова-	
нии	76
Глава 4. Решение конкретных задач промерзания	
грунтов	79
4.1. Задача промерзания полуограниченного мас-	
сива грунта при $\Delta T_{KD} = 0$	79
4.2. Задача промерзания грунта одиночной колон-	
кой, $\Delta T_{KD} = 0$	82
4.3. Задача промерзания грунта при расположении	
ряда колонок по прямой линии, $\Delta T_{kn} = 0 \dots \dots$	83
4.4. Задача промерзания грунта при расположении	
ряда колонок по кольцу, $\Delta T_{\kappa p} = 0$	83
4.5. Задача промерзания полуограниченного мас-	
сива грунта при △ Т _{кр} ≠ 0	85
Литература	89

Ответственный за выпуск Ю.Ф.Докукин Редактор А.Г.Воронцова Корректор Н.К.Шифрина

АЯ 02136. Подписано к лечати 3 марта 1974 года. Объём 5,0 уч.-изд.л. Тираж 150 экз. Заказ № 38. Ротапринт ВИОГЕМ, Белгород, ул.Б.Хмельницкого,86. Цена 50 коп.