ООО "Научно-производственная и проектная фирма "ЭКОСИСТЕМА"

МЕТОДИКА

выполнения измерений массовой концентрации изоцианатов и ароматических аминов в промышленных выбросах в атмосферу, воздухе рабочей зоны и атмосферном воздухе фотометрическим методом

M-24

ФР.1.31.2011.11269

Исполнитель - Главный специалист ООО «НППФ "ЭКОСИСТЕМА" Н.А.Анисёнкова

1 Назначение и область применения методики

- 1.1 Настоящий документ устанавливает методику выполнения измерений массовой концентрации анилина, п-нитроанилина, толуилендиизоцианата в пробах промышленных выбросов в атмосферу, воздуха рабочей зоны в диапазоне 0,0050-50 мг/м 3 и в пробах атмосферного воздуха в диапазоне 0,0020-1,0 мг/м 3 , при присутствии только одного из компонентов в анализируемом объекте. Измерения выполняют в целях экологического или санитарного контроля.
- 1.2 Методика также позволяет измерять массовую концентрацию изоцианатов или ароматических аминов суммарно, в диапазонах, которые указаны в п.1.1. Измерения проводят по одному из градуировочных веществ: толуилендиизоцианат, анилин, аналин гидрохлорид, пнитроанилин. При оформлении результата измерений указывают градуировочное вещество.

Измерения выполняют в целях получения предварительной информации о загрязнении анализируемого объекта.

1.3~ Изоцианаты — органические соединения с общей формулой RN=C=O, где R — органический радикал.

Амины – органические производные аммиака с общей формулой R-NH_{2.}

Данные вещества относятся к классу нитро- и аминосоединений. Вещества этого класса малолетучи. Однако возникновение токсичных концентраций не исключено. Высокая температура окружающего воздуха способствует проникновению данных веществ в организм. Большинство соединений этого класса относится к сильнодействующим веществам. Изоционаты и ароматические амины раздражают верхние дыхательные пути, вызывая астмоподобные заболевания, вызывают дерматиты, проникая через кожу.

Толуилендиизоцианат – бесцветная или бледножёлтая жидкость с резким запахом. Выпускается в виде смеси 2,4 и 2,6 изомеров. Полимеризующееся вещество. Исходное вещество в производстве полиуретанов, пенополиуретанов, уретановых эластомеров, вулканизирующий агент резиновых смесей, компонент в производстве лаков, красок.

Апилин – маслянистая бесцветная жидкость, быстро темнеющая на воздухе и на свету. Один из важнейших промежуточных продуктов аминокрасочной промышленности.

п-нитроанилии - кристаллы жёлтого цвета, применяется в производстве красителей

Таблица 1 Предельно допустимые концентрации (ПДК).

Наименование	Формула	ПДК м.р/с.с.	ПДК м.р/с.с. раб.зона	
компонента (вещеста)		атм.		
Аминобензол (анилин)	C ₆ H ₅ NH ₂	0,05/0,03	0,3/0,1	
1-амино-4-нитробензол (п-нитроанилин)	O ₂ NC ₆ H ₄ NH ₂	-	0,3/0,1	
диизоцианатметилбензол (толуилендиизоцианат)	CH ₃ C ₆ H ₃ (NCO) ₂	0,005/0,002	0,05	

2 Характеристика погрешности измерений

Расширенная неопределённость измерений (при коэффициенте охвата, равном 2): массовой концентрации изоцианатов и ароматических аминов соответствует U=25 %.

Примечание:

1) Указанная неопределённость измерений соответствует границам относительной суммарной погрешности измерений $\delta = \pm 25$ % (при доверительной вероятности P = 0,95).

3 Средства измерения, реактивы, материалы

3.1 Средсва измерения

Фотоэлектроколориметр	ГОСТ 12083-78
Секундомер класс 3, цена деления 0,2 с	ГОСТ 5072-79Е
Барометр-анероид М-67	ГОСТ 23696-79Е
Термометр лабораторный шкальный ТЛ-2, цена деления	ГОСТ 215-73E
1°С, предел 0-100°С.	
Электроаспиратор ПУ-4Э	ТУ 4215-000-11696625
Манометр U-образный	ГОСТ 9933-75
Весы аналитические электронные ВЛ-120	ГОСТ 24104-2001
Колбы мерные (2-10-2, 2-25-2, 2-100-2.)	ГОСТ 1770-74Е
Пипетки (1,0; 2,0; 5,0; 10,0; см ³)	ГОСТ 29227-91
Пробирки колориметрические (П-1-10-0,1хс)	ГОСТ 1770-74
Цилиндр (100 см ³)	ГОСТ 1770-74
3.2 Вспомогательные устройства	
Стакан химический (100, 500 см ³)	ГОСТ 23932-79
Зонд пробоотборный.	Приложение 1
Сорбционные трубки СТ 412	ТУ -25-1110-039-82
Трубка поливинилхлоридного пластиката	ГОСТ 19034-82
3.3 Реактивы	
2,4-толуилендиизоцианат, массовая доля основного	имп. Т6889
вещества	98%
Анилин гидрохлорид ч.д.а., массовая доля основного	ГОСТ 5822-78
вещества	99,5%
Анилин (аминобензол),ч.д.а., массовая доля основного	ΓOCT 5819-78
вещества	99,5%
1-амино-4-нитробензол (п-нитроанилин), массовая доля	ТУ 6-09-258-77
основного вещества	99,5%
~	mx. c oo oogo ga
п-диметиламинобензальдегид ч.	ТУ 6-09-3272-77
Глицерин, чда	ΓΟCT 6259-75
Кислота уксусная, ледяная, хч	ΓΟCT 61-75
Вода дистиллированная	ГОСТ 6709-77

Примечание: допускается применение других средств измерения и вспомогательного оборудования с техническими и метрологическими характеристиками не ниже указанного.

4 Метод измерения

Для проведения измерений проводят следующие операции:

- *отбор проб* паров компонентов в две последовательно соединённые сорбционные трубки, пропитанные поглотительным раствором (3 объёма 40% уксусной кислоты и 1 объём глицерина), где в растворе уксусной кислоты происходит гидролитическое расщепление компонента:
- *пробоподготовку* смывание (объединение) компонентов поглотительным раствором, уловленных сорбционными трубками, в один объём;

- измерение оптической плотности раствора шиффового основания жёлтого цвета, которое образуется при взаимодействии продуктов гидролитического расщепления компонентов с п-диметиламинобензальдегидом в уксуснокислой среде;
- расчёт массовой концентрации компонента при помощи градуировочной характеристики, представляющей собой линейную зависимость оптической плотности раствора от массы градуировочного вещества (любого, указанное в п.3.3), и объёма паровоздушной смеси, приведённого к нормальным условиям (0^{0} C, 101,3к Π a) для промышленных выбросов в атмосферу и атмосферного воздуха и к условиям (20^{0} C, 101,3к Π a) для воздуха рабочей зоны.

При выполнении измерений по n. 1.1 градуировочную характеристику устанавливают по определяемому веществу.

В тех случаях, когда в анализируемом объекте присутствует более чем один компонент, суммарную массовую концентрацию компонентов измеряют по любому из компонентов (толуилендиизоцианат, анилин, аналин гидрохлорид, п-нитроанилин), близкому по свойствам.

5 Условия безопасного проведения работ

- **5.1** При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.4.021.
 - 5.2 Электробезопасность при работе с электроустановками по ГОСТ 2.1.019.
 - 5.3 Организация обучения работающих безопасности труда по ГОСТ 12.0.004.
- 5.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.
- 5.5 Содержание вредных веществ в воздухе не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005 -88.
- **5.6** Работы при анализе проб газа должны выполняться с соблюдением требований техники безопасности, регламентируемых "Основными правилами безопасной работы в лаборатории".
- 5.7 Работы, связанные с отбором проб на высоте, допускается проводить только при наличии прочных и устойчивых площадок, ограждённых перилами.

Обязательным является ознакомление со следующими инструкциями:

"Общие правила по технике безопасности при работе в химической лаборатории".

"Правила пожарной безопасности на предприятиях газовой или химической промышленности".

"Правила пользования спецодеждой и предохранительными приспособлениями".

"Оказание помощи при несчастных случаях".

6 Требования к квалификации оператора

К работе допускаются лица не моложе 18 лет, прошедшие инструктаж по технике безопасности, имеющие квалификацию инженера-химика или техника-химика, имеющие опыт работы и владеющие техникой анализа, прошедшие инструктаж по правилам работы с токсичными газами.

7 Условия измерений

7.1 При отборе проб должны быть соблюдены условия: в промышленных выбросах ПНД Ф 12.1.1-99 «Методические рекомендации по отбору проб при определении концентраций вредных веществ (газов, паров) в выбросах промышленных предприятий»,

Ротаметр от 0°C до 50°C Температура от 82,5кПа до 106,7кПа Давление до 95 %

Газоход ло 80^{0} С от 82.5кПа до 106.7кПа ло 95 %

Относительная влажность

воздух рабочей зоны- ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны», атмосферный воздух - РД 52.04.186-89 «Руководство по контролю загрязнения атмосферы».

7.2 При выполнении измерений в лаборатории должны быть соблюдены условия СанПиН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений».

 $20^{\circ}C \pm 5^{\circ}C$ Температура 101.3 кПа + 3кПа *Павление*

15 - 75 %. Относительная влажность

8 Подготовка и проведение измерений

8.1 Приготовление растворов

8.1.1 Приготовление раствора 40% уксусной кислоты

Для приготовления 40 % уксусной кислоты смешивают 4 объёма концентрированной уксусной кислоты (p = 1,05 г/см3) и 6 объёмов дистиллированной воды. Раствор устойчив в течение года. Хранить в стеклянной посуде с притёртой пробкой.

8.1.2 Приготовление поглотительного раствора

Для приготовления поглотительного раствора смешивают 3 объёма 40% уксусной кислоты и 1 объём глицерина. Раствор устойчив в течение года. Хранить в стеклянной посуде с притёртой пробкой.

8.1.3 Приготовление 2% раствора п-диметиламинобензальдегида

Для приготовления 2 % раствора п-диметиламинобензальдегида взвешивают 2 г пдиметиламинобензальдегида с точностью до 0,0001г, навеску помещают в стеклянный стакан вместимостью 150 см³ и при помощи цилиндра, вместимостью 100 см³, сначала приливают 40 см³ концентрированной уксусной кислоты и растворяют навеску, затем при помощи цилиндра в этот же стакан приливают 60 см³ дистиллированной воды. Раствор тщательно перемешивают. Срок хранения раствора 1 сутки

8.1.4 Приготовление растворов для установления градуировочный характеристики по п-нитроанилину или анилин гидрохлориду.

8.1.4.1 Приготовление исходного раствора.

Навеску (0.025±0.0001) г п-нитроанилина (анилина гидрохлорида) помещают в мерную колбу вместимостью 25 см³, при помощи пипетки на 10 см³ приливают 10 см³ концентрированной уксусной кислоты, растворяют навеску и доводят до метки дистиллированной кислотой.

Массовая концентрация п-нитроанилина (анилин гидрохлорида) в исходном растворе соответствует 1,0 мг/см3 (в 40 % уксусной кислоте). Срок хранения исходного раствора гидрохлорида анилина – 1 месяц.

8.1.4.2 Приготовление рабочих растворов п-нитроанилина (анилин гидрохлорида) В мерную колбу вместимостью 100 см³ при помощи пипетки на 10 см³ приливают 10 см³исходного раствора (п.8.1.4) и доводят до метки 40 % уксусной кислотой.

Массовая концентрация п-нитроанилина (анилин гидрохлорида) в рабочем растворе №1 соответствует 100 мкг/см³.

Для приготовления рабочего раствора №2 в мерную колбу вместимостью 100 см³ при помощи пипетки на 5 см³ приливают 5 см³ рабочего раствора №1 и доливают до метки поглотительным раствором, приготовленным по п.8.1.2.

Массовая концентрация п-нитроанилина (анилин гидрохлорида) в рабочем растворе №2 соответствует 5,0 мкг/см 3 .

Срок хранения рабочего раствора- 1 неделя.

8.1.5 Приготовление растворов для установления градуировочной характеристики по толуилендиизоцианату или анилину

8.1.5.1 Приготовление исходного раствора толуилендиизоцианата (анилина) В мерную колбу вместимостью $100~{\rm cm}^3$, при помощи цилиндра, вносят $40~{\rm cm}^3$ концентрированной уксусной кислоты. Колбу закрывают пробкой и взвешивают на аналитических весах с точностью до \pm 0,0001 г. Затем в колбу вносят 1-2 капли толуилендиизоцианата (анилина), закрывают пробкой и снова взвешивают на аналитических весах с точностью до \pm 0,0001 г. По разнице весов определяют массу (m, в г) толуилендиизоцианата (анилина), внесенную в мерную колбу. Навеску растворяют в кислоте и доводят до метки дистиллированной водой. Рассчитывают массовую концентрацию толуилендиизоцианата (анилина), C_{nex} , мг/см 3 , в исходном растворе по формуле:

$$C_{ucx} = \frac{m}{V_{b}} \cdot 1000 \tag{1}$$

где V_k - объем мерной колбы, см³; $V_k = 100 \text{ см}^3$

Срок хранения исходного раствора -1 неделя;

8.1.5.2 Приготовление рабочих растворов толуилендиизоцианата (анилина)

В мерную колбу вместимостью 100 см^3 , при помощи пипетки на 10 см^3 вносят определенной объём исходного раствора, содержащий 10 мг толуилендиизоцианата (анилина) и доводят до метки раствором 40 % уксусной кислотой.

Массовая концентрация толуилендиизоцианата (анилина) в рабочем растворе №1 соответствует 100 мкг/см³.

Для приготовления рабочего раствора №2 в мерную колбу вместимостью 100 см^3 при помощи пипетки на 5 см^3 приливают 5 см^3 рабочего раствора №1 и доливают до метки поглотительным раствором, приготовленным по n.8.1.2.

Массовая концентрация толуилендиизоцианата (анилина) в рабочем растворе №2 соответствует 5,0 мкг/см³.

Срок хранения рабочих растворов -3 дня.

8.1.6 Приготовление градуировочных растворов

Для приготовления градуировочных растворов используют колориметрические пробирки на 10 см³, в которые заливают определенные объемы растворов в соответствии с таблицей 2. Для установления градуировочной характеристики готовят пять серий градуировочных растворов вещества. Одновременно готовят нулевую пробу, не содержащую определяемого вещества. Содержимое пробирок перемешивают после прибавления очередного раствора.

Гаолица 2 Приготовление градуировочных растворов						
№ градуировочного раствора	1	2	3	4	5	
Объём (в см³) рабочего град.раствора $№2$, (C_i =5мкг/ см³)	0,10	0, 20	0,50	1,0	2,0	
В каждую пробирку доливают поглотительный раствор до общего объёма 2,0 см ³ .						
В калсдую пробирку приливают 2,0 см³ раствора n-диметиламинобензальдегид.						
Масса компонен та в 4,0 см ³ р-ра, мкг	0,50	1,0	2,5	5,0	10	

8. 2 Построение градуировочной характеристики (ГХ)

- 8.2.1 Через 10 минут каждый градуировочный раствор (нулевой раствор) переносят в кювету с толщиной поглощающего слоя 10 мм и измеряют оптическую плотность градуировочного раствора при длине волны 440 нм относительно нулевого раствора.
- 8.2.2 Результаты измерений оптической плотности каждого из градуировочных растворов признают приемлемыми при выполнении условия:

$$\frac{D_i^{\text{max}} - D_i^{\text{min}}}{\overline{D}_i} \cdot 100 \le r_D \tag{2}$$

где D_i^{\max} , D_i^{\min} , \overline{D}_i . — максимальное, минимальное и среднее значения оптической плотности і-го градуировочного раствора (5 серий); единица оптической плотности (далее – е.о.п.);

 r_D - норматив (допускаемый размах результатов, отнесённый к среднему арифметическому), соответствующий вероятности P=0.95,~%;

$$r_D = 10 \%$$

8.2.3 Градуировочную характеристику выражают линейным уравнением вида:

$$D = a + b \cdot m \tag{3}$$

где D- оптическая плотность раствора, е.о.п.; m-масса вещества в 4,0 см 3 раствора, мкг;

а и b – коэффициенты градуировочной характеристики

8.2.4. Коэффициенты градуировочной характеристики "a" и "b" находят по методу наименьших квадратов по формулам:

$$a = \frac{\sum m_i^2 \sum \overline{D}_i - \sum m_i \sum m_i \overline{D}_i}{n \sum m_i^2 - \left(\sum m_i\right)^2}$$
(4)

$$b = \frac{n\sum m_i \bar{D}_i - \sum m_i \sum \bar{D}_i}{n\sum m_i^2 - (\sum m_i)^2}$$
 (5)

где \overline{D}_i . - оптическая плотность i-го градуировочного раствора (среднее арифметическое 5-ти измерений) относительно нулевого раствора , e.o.n.;

п- количество градуировочных растворов;

m_i- масса вещества в 4,0 см³ і-го градуировочного раствора, мкг.

8.2.5 Градуировочную характеристику признают приемлемой при выполнении условия

$$\frac{\left|\overline{D}_{i} - D_{i_{pac}}\right|}{D_{i_{pac}}} \cdot 100 \le r_{zp} \tag{6}$$

где $D_{i_{pac}}$. оптическая плотность i-го градуировочного раствора (e.o.п.), вычисленная по формуле (3) для соответствующего значения $m_{i;}$

$$r_{ep}$$
 - норматив, %;

$$r_{yy} = 12 \%$$

8.3 Отбор проб

Отбор проб в промышленных выбросах в атмосферу (Приложение 1).

Место для отбора проб выбирают с таким расчётом, чтобы обеспечить получение достоверных результатов. Измерительное сечение должно располагаться на прямом участке газохода с

установившимся газовым потоком. Оптимальным местом выбора измерительного сечения является расстояние, определяемое 5-6 диаметрами прямолинейного участка газохода перед местом проведения измерений и 3-4 диаметрами - после него. Для отбора проб в газоходе на уровне измерительного сечения делают два отверстия диаметром до 40 мм, для отбора 2-х единичных проб одновременно (2 линии пробоотбора по 2 последовательно соединённых трубки в каждой). Измерение температуры и разрежения газа в линии пробоотбора проводят с помощью термометра и U —образного манометра, помещённых в линию отбора пробы. (Приложение 1, рис.2).

Схема одной линии отвора: к концу пробоотборного зонда, носик которого заполнен стекловолокном на высоту 10 мм для устранения мешающего влияния взвешенных веществ (Приложение 1, рис.1), при помощи поливинилхлоридной трубки присоединяют вертикально сорбентом вниз 2 последовательно соединённые сорбционные трубки, пропитанные 0,5 см³ поглотительного раствора для улавливания компонентов, так, чтобы ток газа проходил через стеклянные гранулы снизу вверх. Отбор проб проводят с объёмным расходом 5 дм³/мин в течение 20 мин.

Отбор проб в атмосферном воздухе проводят согласно РД 52.04.186-89 п.4 «Руководство по контролю загрязнения атмосферы» п.4 . Собирают две линии пробоотбора. В каждой линии по 2 последовательно соединённые трубки, установленные вертикально сорбентом вниз, пропитанные поглотительным раствором. Воздух протягивают через каждую линию в течении 60 мин с объёмным расходом 5дм³/мин.

Отбор проб в воздухе рабочей зоны производят согласно ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны» п.4. Собирают две линии пробоотбора. В каждой линии по 2 последовательно соединённые трубки, установленные вертикально сорбентом вниз, пропитанные поглотительным раствором. Воздух протягивают через каждую линию в течении 15 мин с объёмным расходом 5дм³/мин.

Отобранные пробы закрывают полиэтиленовыми заглушками. Хранить в холодильнике не более 2-х суток.

8.4 Выполнение измерений

В лаборатории смывают, объединяя уловленные сорбционными трубками компоненты, в один уксуснокислый раствор.

Для этого в колориметрическую пробирку наливают ≈ 1 см³ поглотительного раствора и тщательно промывают вторую из последовательно соединённых сорбционных трубок (прокачивая раствор грушей), затем в этом же растворе промывают первую из последовательно соединённых сорбционных трубок. (приложение 1). После этого первую трубку ещё раз промывают 0,5 см³ поглотительного раствора, сливают раствор в эту же пробирку и доводят общий объём раствора в пробирке до 2,0 см³ поглотительным раствором.

При предполагаемой больше, чем 0,10 мг/м³ массовой концентрации компонента, раствор, содержащий пробу разбавляют в соответствии с таблицей 3. Затем добавляют 2,0 см³ раствора п-диметиламинобензальдегида. Одновременно готовят нулевой раствор, не содержащий определяемое вещество. Через 10 мин замеряют оптическую плотность при длине волны 440 нм и кювете с толщиной поглощающего слоя 10 мм.

Таблица 3

Пробоподготовка

Массовая	Macca	Аликвота для	Объём колбы	Аликвота для	Кратность
концентрация	компонента	разбав-	для	измерений,	разбавления,
компонента	т, мкг	ления U _a , см ³	разбавления	U_a , cm ³	K _{pa3.}
мг/м ³			U_p , см ³		
0,0050-0,10	0,50-10	2,0	-	2,0	1
0,10-1,0	10-100	1,0	10	2,0	10
1,0-10	100-1000	1,0	100	2,0	100
10-50	1000-5000	1,0	250	2,0	250

9 Обработка результатов измерений

9.1 Массовую концентрацию компонента в пробе (в мг/см³) анализируемого объекта вычисляют по формуле:

$$C = \frac{M}{V_{\circ}} \tag{7}$$

где М - масса компонента в пробе анализируемого объекта, мкг;

 V_0 — объем паровоздушной пробы, приведенной к определенным условиям, дм³

9.2 Массу компонента в пробе анализируемого объекта вычисляют по формуле:

$$M = m \cdot K_{pas} \tag{8}$$

где K_{pax} - кратность разбавления (см. табл.3);

m — масса компонента в 4,0 см 3 фотометрируемого раствора вычисляют (в мкг) по формуле:

$$m = \frac{D - a}{h} \tag{9}$$

где D - оптическая плотность раствора относительно нулевого раствора, е.о.п.;

а и b- градуировочные коэффициенты, найденные по формулам (4,5) при построении градуировочной характеристики.

9.3 Объём паровоздушной пробы

9.3.1 Объём паровоздушной пробы для промышленных выбросов в атмосферу и для атмосферного воздуха, приведенный к нормальным условиям (0° C,101,3кПа), вычисляют (в дм³) по формуле:

$$V_0 = \frac{273 \times V(P - \Delta P_p)}{101,3 \times (273 + t_p)}$$
 (10)

9.3.2 Объём паровоздушной пробы для воздуха рабочей зоны, приведенный к условиям (20^{0} C,101,3к Π a), вычисляют (в дм³) по формуле:

$$V_0 = \frac{293 \times V(P - \Delta P_p)}{101,3 \times (273 + t_p)} \tag{11}$$

где P - атмосферное давление при отборе проб, к Π а;

 ΔP_P – разрежение газа у ротаметра, кПа;

 t_p - температура паровоздушной смеси перед ротаметром, ${}^0{\rm C}.$

V - объем паровоздушной пробы при условиях отбора пробы (в дм 3)

$$V = \tau \cdot Q \tag{12}$$

где τ - время отбора пробы, мин.;

Q - объемный расход газа через каждую линию пробоотбора, дм 3 /мин.

10 Оформление результатов измерений

10.1 Результаты измерений, выполненные в целях экологического или санитарного контроля в полной форме, записывают как:

$$(C\pm 0,01\cdot U\cdot C)$$
 мг/м³ при k = 2 или $(C\pm 0,01\cdot \delta\cdot C)$ мг/м³ при P = 0,95, Допускается запись:

$$C$$
, мг/м³; при k = 2; U = 25 % или C , мг/м³; при P = 0,95; $\delta = \pm 25$ %

Значение массовой концентрации компонента округляют до двух значащих цифр.

10.2 Результаты измерений, выполненные с целью получения предварительной информации о загрязнении анализируемого объекта, рекомендуется оформлять в соответствии с ниже приведенными примерами в табличном или текстовом формате.

Пример:

Оформление результата измерений при отсутствии предварительной информации об одном компоненте (многокомпонентная смесь) в анализируемом объекте:

Наименование компонента	Градуировочное вещество	Массовая концентрация компонента, С, мг/м ³	Границы относительной суммарной погрешности $(\pm \delta,\%)$ при $P=0,95$
Сумма	Толуилендиизоцианат	0,0058	± 25
изоцианатов			

Массовая концентрация суммы изоцианатов (по толуилендиизоцианату) –

 (0.0058 ± 0.0016) мг/м³, $\delta = \pm 25$ %, при P = 0.95

или (0.0058 ± 0.0016) мг/м³, U = 25 %, при k = 2

Примечание: объекты анализа в примерах не указаны

11 Контроль точности результатов измерений

11.1 Контроль градуировочной характеристики

Контроль проводят в соответствии с внутрилабораторным планом. Рекомендованная частота контроля 1 раз в квартал. При эпизодической работе лаборатории рекомендуется проводить контроль перед каждой серией измерений.

11.1.1 Контроль проводят по одному контрольному раствору, приготовленному в двух сериях как градуировочный раствор по п. 8.1.6 с массовой концентрацией близкой к ожидаемой массовой концентрацией в объектах анализа.

Оптическую плотность растворов измеряют в соответствии с п. 8.2.1. Результаты измерений признаются приемлемыми при выполнении условия:

$$\frac{\left|D_{1}^{k} - D_{2}^{k}\right|}{D^{k}} \cdot 100 \le r_{D}^{k} \tag{13}$$

где D_1^k, D_2^k, D^k – оптическая плотность первого, второго контрольного раствора и среднее арифметическая, е.о.п.;

$$r_D^k$$
 — норматив, при P = 0,95, %; r_D^k = 8 %.

11.1.2 Контроль стабильности градуировочной характеристики.

Среднее арифметическое значение используют для вычисления массы компонента в контрольном растворе по формуле (9).

Результат контроля признают удовлетворительным при выполнении условия:

$$\frac{\left|m^k - m^*\right|}{m^*} \cdot 100 \le K_{zp} \tag{14}$$

где m^k — масса компонента в контрольном раствора (измеренное значение), мкг: m^* — масса компонента в контрольном растворе (приписанное значение), мкг K_{zp} — норматив, %; K_{zp} = 14 %

12 Нормативные и рабочие документы

ГОСТ Р ИСО/МЭК 17025-2000	Общие требования к компетентности испытательных и
ГОСТ Р ИСО	калибровочных лабораторий Точность (правильность и прецизионность) методов и результатов
5725-1-6-2002	измерений
ΓΟCT P 8.563-96	Методики выполнения измерений
ΓΟCT 12.1.005-88	Общие санитарно-гигиенические требования к воздуху рабочей зоны.
ГОСТ 12.1.016-79	Воздух рабочей зоны. Требования к методикам измерения концентраций вредных веществ.
ГОСТ 17.2.1.03-84	Охрана природы. Атмосфера. Термины и определения контроля загрязнения
ГОСТ 17.2.3.01-86	Охрана природы. Атмосфера. Правила контроля качества воздуха населенных пунктов.
ГОСТ 17.2.3.02-78	Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленных предприятий.
ГОСТ 17.2.4.02-81	Охрана природы. Атмосфера. Общие требования к методам определения загрязняющих веществ.
ГОСТ 17.2.4.06-90	Охрана природы. Атмосфера. Методы определения скорости
	газопылевых потоков, отходящих от стационарных источников загрязнения
ГОСТ 17.2.4.07-90	Охрана природы. Атмосфера. Методы определения давления и
	температуры газопылевых потоков, отходящих от стационарных
	источников загрязнения
ΓΟCT 17.2.4.08-90	Охрана природы. Атмосфера. Методы определения влажности
	газопылевых потоков, отходящих от стационарных источников
	загрязнения
ГОСТ Р 50820-95	Оборудование газоочистное и пылеулавливающее. Методы
1 301 1 30020 75	определения запыленности газопылевых потоков
ГН 2.2.5.1313-03	Предельно-допустимые концентрации (ПДК) вредных веществ в
. 11 5.5.0.13 13 03	воздухе рабочей зоны
ΓH 2.2.5.2308-07	Ориентировочные безопасные уровни воздействия (ОБУВ) вредных
111 2.2.0.0300 07	веществ в воздухе рабочей зоны
ΓH 2.1.6.1338-03	Предельно-допустимые концентрации (ПДК) загрязняющих веществ в
	атмосферном воздухе населённых мест
ГН 2.1.6.2309-07	Ориентировочные безопасные уровни воздействия (ОБУВ)
	загрязняющих веществ в атмосферном воздухе населённых мест
	Перечень и коды веществ, загрязняющих атмосферный воздух, 2008г
	Методическое пособие по расчёту, нормированию и контролю
	выбросов загрязняющих веществ в атмосферный воздух, 2005г
ПНД Ф 12.1.1-99	Методические рекомендации по отбору проб при определении
* 1	A P K A A A A

концентраций вредных веществ (газов и паров) в выбросах

промышленных предприятий

РД 52.04.186-89 Руководство по контролю загрязнения атмосферы

РД 52.04.59-85 Требования к точности контроля промышленных выбросов.

МУ 5813-91 («Методические указания по фотометрическому измерению

концентраций ароматических аминов и изоцианатов по стандартному веществу в воздухе рабочей зоны». Приказ Главного государственного

врача от 10.09.1991 № 5813-91.

МУ от 04.99 Методические указания по оборудованию мест отбора проб при

экоаналитическом контроле промышленных выбросов в атмосферу

Разработчик: гл. специалист ООО НППФ «Экосистема» Н.А.Анисёнкова

ПРИЛОЖЕНИЕ /

Схемя отбора проб в промышленных выбросах в атмосферу.

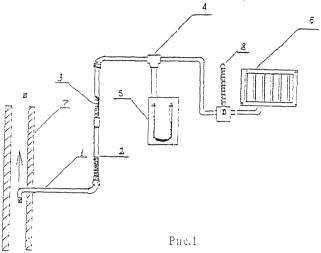


Схема расположения отверстий на воздуховоде при отборе 2-х единичных проб.

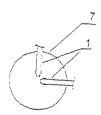


Рис.2

1-пробоотборный зонд, 2- первая сорбционная трубка, 3- вторая сорбционная трубка, 4- тройник, 5 – манометр, 6 – аспиратор. 7 – воздуховод, 8 –термометр.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ "ВНИИМ им.Д.И.МЕНДЕЛЕЕВА"

190005, Россия, г. Санкт-Петербург, Московский пр., 19 Факс: 7 (812) 713-01-14, телефон: 7 (812) 251-76-01, e-mail: info@vniim.ru, http://www.vniim.ru

СВИДЕТЕЛЬСТВО

об аттестации методики выполнения измерений

No 242/19-10

2/8

Методика выполнения измерений массовой концентрации:

- анилина, п-нитроанилина, толуилендиизоцианата.
- изоцианатов или ароматических аминов (суммарно по выбранному градуировочному веществу),

в пробах промышленных выбросов в атмосферу, воздуха рабочей зоны и атмосферного воздуха фотометрическим методом, разработанная ООО «Научно-производственная и проектная фирма «ЭКОСИСТЕМА» (197342, г. Санкт-Петербург, наб. Черной речки, д.41) и регламентированная в документе № М - 24 «Методика выполнения измерения массовой концентрации изоцианатов и ароматических аминов в промышленных выбросах в атмосферу, в воздухе рабочей зоны и атмосферном воздухе фотометрическим методом» (СПб, 2010 г., на 13 стр.), аттестована в соответствии с ГОСТ Р 8.563-96.

Аттестация осуществлена по результатам метрологической экспертизы материалов по разработке МВИ.

В результате аттестации МВИ установлено, что МВИ соответствует предъявляемым к ней метрологическим требованиям и обладает основными метрологическими характеристиками, приведенными на оборотной стороне свидетельства.

Лата выдачи свидетельства 01.06.2010 г.

Руководитель научно-исследовато отдела Государственных эталоно физико-химических измерений

МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 1

,	іе компоненты (вещества) бъекты анализа	Диапазон измерения массовой концентра- ции компонента, мг/м ³	Относительная рас- ширенная неопреде- лённость измерений (при k =2), U**, %
Изоцианаты и ароматические	Промышленные выбросы в атмосферу	от 0,0050 до 50	25
амины: A)*, Б)	Воздух рабочей зоны Атмосферный воздух	от 0,0050 до 50 от 0,0020 до 1,0	

- A)* толуилендиизоцианат, анилин, п-нитроанилин (при присутствии только одного из веществ).
- Б) изоцианаты или ароматические амины суммарно по выбранному градуировочному веществу.
- Градуировочное вещество: толуилендиизоцианат, анилин, аналин гидрохлорид, п-нитроанилин.

ПРИМЕЧАНИЯ:

- *- При наличии предварительной информации о присутствии в анализируемом объекте конкретного вещества.
- ** Соответствует границам относительной суммарной погрешности измерений (при P=0,95), δ = ± 25 %.
- Бюджет неопределённости измерений приведен в Приложении к настоящему свидетельству ни двух листах.

Нормативы

Таблица 2

Наименование операции	№ пункта в докумен- те на МВИ	Контролируемая (проверяемая) харак- теристика	Норматив
Проверка приемлемости выходных сигналов фото- электроколориметра при градуировке и контроле	8.2.2	Размах пяти значений оптической плотности градуировочных растворов, отнесенный к среднему арифметическому	$(P = 0.95)$ $r_D = 10 \%$
Проверка приемлемости градуировочной характеристики (ГХ)	8.2.5	Модуль относительного отклонения среднего арифметического значения оптической плотности градуировочного раствора, от соответствующего значения по ГХ	$r_{ep} = 12 \%$
Контроль градуировочной характеристики	11.1	Модуль разности двух значений опти- ческой плотности контрольного рас- твора, отнесенный к среднему арифме- тическому	(P = 0.95) $r_D^k = 8 \%$
		Модуль относительного отклонения результата измерений массы компонента в контрольном растворе от значения, приписанного этому раствору	$K_{.p} = 14\%$

Руководитель лаборатории

Научный сотрудник

Г.Р

Г.Р.Нежиховский

Н.Н.Звягина

ПРИЛОЖЕНИЕ

к свидетельству об аттестации № 242/19 – 10 от 01.06.2010 г (на двух листах) Лист 1

Бюджет неопределенности измерений массовой концентрации изоцианатов и ароматических аминов в промышленных выбросах в атмосферу, в воздухе рабочей зоны и атмосферном воздухе фотометрическим методом

Полное уравнение для расчёта массовой концентрации компонента:

$$C = \frac{M}{V_0} \cdot f_{npockok}$$

$$M = m \cdot K_{\textit{pas}}; \quad m = \frac{D - a}{b}$$

$$V_0 = \frac{273 \cdot V \cdot \left(P - \Delta P_p\right)}{101,3 \cdot \left(273 + t_\rho\right)} -$$
для промышленных выбросов и атмосферного воздуха;
$$V_0 = \frac{293 \cdot V \cdot \left(P - \Delta P_p\right)}{101,3 \cdot \left(273 + t_\rho\right)} -$$
для воздуха рабочей зоны.
$$V = V_1 + V_2; \quad V_{1(2)} = \tau_{1(2)} \cdot Q_{1(2)}$$

где М - масса компонента в пробе анализируемого объекта, мкг; $K_{\rho\sigma\sigma}$ - кратность разбавления; m — масса компонента в 4,0 см 3 фотометрируемого раствора, мкг; D - оптическая плотность раствора относительно нулевого раствора, е.о.п.; а и b - градуировочные коэффициенты; P - атмосферное давление при отборе проб, кПа; ΔP_p — разрежение газа у ротаметра, кПа; t_p - температура газовоздушной смеси перед ротаметром, 0 С; V - общий объем газовоздушной пробы при условиях отбора пробы, дм 3 ; V_1 и V_2 - объём каждой единичной пробы при температуре и давлении отбора, дм 3 ; $\tau_{1(2)}$ - время отбора каждой единичной пробы, мин.; $Q_{1(2)}$ - объемный расход газа при отборе каждой единичной пробы, дм 3 /мин; $f_{npockok}$ - коэффициент, возможный проскок компонента при отборе пробы.

Расчет расширенной неопределённости измерений проводился в соответствии с Руководством ЕВРАХИМ/СИТАК «Количественное описание неопределенности в аналитических измерениях», СПб 2002 г., второе издание.

Формула для расчёта расширенной неопределённости измерений компонентов: $\mathbf{U} = 2 \cdot u_0$

$$\begin{split} u_0 &= \sqrt{u_{\scriptscriptstyle M}^2 + u_{\scriptscriptstyle P_0}^2 + u_{\scriptscriptstyle L_{p_{\rm precent}}}^2 + u_{\scriptscriptstyle c}^2} = \sqrt{u_{\scriptscriptstyle m}^2 + u_{\scriptscriptstyle K_{p_{\rm nu}}}^2 + u_{\scriptscriptstyle n.n.}^2 + (u_{\scriptscriptstyle V_1}^2 + u_{\scriptscriptstyle V_2}^2 + u_{\scriptscriptstyle t}^2 + u_{\scriptscriptstyle P}^2) + u_{\scriptscriptstyle L_{p_{\rm precent}}}^2 + u_{\scriptscriptstyle c}^2} = \\ \sqrt{(u_{\scriptscriptstyle q}^2 + u_{\scriptscriptstyle IP}^2 + u_{\scriptscriptstyle ab}^2) + (u_{\scriptscriptstyle V_a}^2 + u_{\scriptscriptstyle V_b}^2) + u_{\scriptscriptstyle n.n}^2 + (u_{\scriptscriptstyle Q_1}^2 + u_{\scriptscriptstyle Q_2}^2 + u_{\scriptscriptstyle \tau}^2 + u_{\scriptscriptstyle t}^2 + u_{\scriptscriptstyle F}^2) + u_{\scriptscriptstyle L_{p_{\rm precent}}}^2 + u_{\scriptscriptstyle c}^2} \end{split}$$

где $u_{(x)}$ - вклады в суммарную стандартную неопределенность измерений (u_0 , %) расшифрованы в таблице 1.

Составляющие неопределённости измерения массовой концентрации компонентов

Таблица 1

Источник неопределенности		Тип оценки	Относительная стандартная неопределенность, %		
			для 2·10 ⁻³ мг/м ³	0,1 кгд ⁶ м\лм	для 50 мг/м ³
Измерение	Чистота реактива, взятого для приготов-	В	1,2	1,2	1.2
массы компо-	ления градуировочных растворов, $u_{\scriptscriptstyle q}$				
нента, u_m	Приготовление градуировочных раство-	В	2,0	2,0	2,0
	ров, $u_{\Gamma P}$				
	Построение градуировочной характери-	В	6,9	6,9	6,9
	стики (градуировка по аналин гидрохло-				
	риду), <i>u_{ab}</i>		1		
Проболодготовк	a, <i>u_{n.n.}</i>	В	1,2	1,2	1,2
Разбавле-	Измерение объёма аликвоты, взятой для	В	-	0,4	0,4
ние, $u_{K_{pas}}$	разбавления $u_{V_{aa}}$				İ
	Объем мерной колбы, u_{ν_k}	В	-	0,3	0,07
Измерение объёма газовоздушной пробы, приведение к опре-	Измерение объёмного расхода, $u_{\mathcal{Q}_1}$	В	2,9	2,9	2,9
	Измерение объёмного расхода, $u_{\mathcal{Q}2}$	В	2,9	2,9	2.9
	Измерение времени отбора пробы, $u_{\mathfrak{r}}$	В	0,03	0,03	0,03
деленным ус-	Измерение температуры, u_i		0,02	0,02	0.02
ловням, $u_{l'_0}$	Измерение давления, u_p	В	0,1	0,1	0,1
Возможный проскок, $u_{f_{npocon}}$		В	-	1,0	5.0
Стандартное отклонение результатов измерений в условиях		А	9,0	7,0	7.0
повторяемости,	u_c				
Суммарная стандартная неопределенность, u_0		12.4	11,0	12,1	
Расширенная неопределенность (k=2), U			24,8	22,0	24,2
		Принято:]	25 %	

Примечания: 1) $u_{\rm C}$ – соответствует СКО относительной случайной составляющей погрешности в условиях повторяемости; 2) Оценка типа А получена путем статистического анализа ряда наблюдений (в данном случае, ряда парных результатов измерений массовой концентрации компонента, полученных при параллельном отборе газовых проб); 3) Оценка типа В получена способами, отличными от статистического анализа ряда наблюдений.

Научный сотрудник

Н.Н.Звягина

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "Научно-исследовательский институт охраны атмосферного воздуха" ОАО "НИИ Атмосфера"

194021. г.Санкт-Петербург, ул.Карбышева, 7, тел./факс: (812) 297-8662 E-mail: info@nii-atmosphere.ru, http://www.nii-atmosphere.ru ОКПО: 23126426, ОГРН: 1097847184555, ИНН/КПП: 7802474128 / 780201001

ЭКСПЕРТНОЕ ЗАКЛЮЧЕНИЕ

№ 09-2/267 от 16.04.2010 г.

В ОАО «НИИ Атмосфера» рассмотрена «Методика выполнения измерения массовой концентрации изоцианатов и ароматических аминов в промышленных выбросах в атмосферу, воздухе рабочей зоны и атмосферном воздухе фотометрическим методом. М-24 », разработанная ООО «НППФ «Экосистема».

По результатам экспертизы методика соответствует требованиям действующих государственных стандартов и других нормативных документов в области охраны атмосферного воздуха и может быть использована для измерения массовой концентрации изоцианатов и ароматических аминов в следующих диапазонах определяемых концентраций:

в промышленных выбросах в атмосферу от 0,005 до 50мг/м³,

в воздухе рабочей зоны от 0,005 до 50 мг/м³,

в атмосферном воздухе от 0,002 до 1 мг/м 3 .

Срок действия экспертного заключения на методику 5 лет.

Генеральный директор

А.Ю. Недре

Цибульский В.В. Тел/факс: (812) 380-92-41

mi

АКЦИОНЕРНОЕ ОБЩЕСТВО "Научно-исследовательский институт охраны атмосферного воздуха" АО "НИИ Атмосфера"

194021, r.Санкт-Петербург, ул.Карбышева, 7, тел./факс: (812) 297-8662 E-mail: info@nii-atmosphere.ru, http://www.nii-atmosphere.ru ОКПО: 23126426, ОГРН: 1097847184555, ИНН/КПП: 7802474128 / 780201001

Mcx. № 09-2-148/15-0

от 23.03.2015 г.

На № 59а от 03.03.2015 г.

Директору ООО НППФ "Экосистема" А.Н. Лавриненко

197046, г. Санкт-Петербург, Петровская набережная, 4, а/я 513

О продлении срока действия экспертного заключения на МВИ

Настоящим письмом срок действия экспертного заключения НИИ Атмосфера № 06-2/267 от 16.04.2010 г. на «Методику выполнения измерений массовой концентрации изоцианатов и ароматических аминов в промышленных выбросах в атмосферу, воздухе рабочей зоны и атмосферном воздухе фотометрическим методом, М-24» продлен до 16.04.2020 года.

Miller

у сператьный пректор

С.Э.Левен

Исп. В.В. Цибульский Тел/факс: (812) 372-57-82

my

