МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT28656—2019

ГАЗЫ УГЛЕВОДОРОДНЫЕ СЖИЖЕННЫЕ

Расчетный метод определения плотности и давления насыщенных паров

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 РАЗРАБОТАН Акционерным обществом «Волжский научно-исследовательский институт углеводородного сырья» (АО «ВНИИУС»)
- 2 ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 52 «Природный и сжиженные газы»
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 января 2019 г. № 115-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Россия	RU	Росстандарт
Украина	UA	Минэкономразвития Украины

4 Приказом Федерального агентства по техническому регулированию и метрологии от 3 апреля 2019 г. № 119-ст межгосударственный стандарт ГОСТ 28656—2019 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2020 г.

5 B3AMEH FOCT 28656-90

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, оформление, 2019

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения	1
2 Нормативные ссылки	
3 Термины и определения	
4 Метод определения плотности сжиженных углеводородных газов	2
5 Метод определения давления насыщенных паров	3
Приложение А (обязательное) Значения плотности углеводородов в жидком состоянии	5
Приложение Б (обязательное) Значения молярных масс индивидуальных компонентов	9
Приложение В (рекомендуемое) Пример расчета плотности	10
Приложение Г (обязательное) Значения летучести (фугитивности) компонентов	
сжиженных углеводородных газов	11
Приложение Д (рекомендуемое) Пример расчета давления насыщенных паров	
при температуре плюс 45 °C методом последовательного приближения	14
Приложение Е (рекомендуемое) Примеры расчета давления насыщенных паров	16
Библиография	18

Поправка к ГОСТ 28656—2019 Газы углеводородные сжиженные. Расчетный метод определения плотности и давления насыщенных паров

В каком месте	Напечатано	Должно быть
Раздел 1. Примечание 2	но не используют	и используют

(ИУС № 10 2020 г.)

Поправка к ГОСТ 28656—2019 Газы углеводородные сжиженные. Расчетный метод определения плотности и давления насыщенных паров

В каком месте	Напечатано		Дол	жно быть
Предисловие. Таблица согла- сования	-	Туркмения	TM	Главгосслужба «Туркменстандартлары»

(ИУС № 12 2021 г.)

ГАЗЫ УГЛЕВОДОРОДНЫЕ СЖИЖЕННЫЕ

Расчетный метод определения плотности и давления насыщенных паров

Liquefied hydrocarbon gases. Calculation method for determination of saturated vapour density and pressure

Дата введения — 2020—01—01

1 Область применения

- 1.1 Настоящий стандарт распространяется на сжиженные углеводородные газы (далее СУГ) пропан, пропен, бутаны, бутены и их смеси, применяемые в качестве моторного топлива для автомобильного транспорта, топлива технологического и коммунально-бытового потребления или сырья для химических процессов, и устанавливает упрощенный метод вычисления плотности и избыточного давления насыщенных паров на основе данных измерения углеводородного состава методом газовой хроматографии.
- 1.2 Настоящий метод применяют для определения плотности СУГ в диапазоне температур от минус 50 °C до плюс 50 °C и избыточного давления насыщенных паров СУГ в интервале от 0,06 до 2,0 МПа при температурах минус 35 °C, минус 30 °C, минус 20 °C, плюс 45 °C.
- 1.3 Настоящий стандарт предназначен для вычисления плотности и давления насыщенных паров СУГ, в которых диапазон массовой доли компонентов составляет от 0,005 % до 99,80 %.

Примечания

- 1 Расчетный метод определения плотности и давления насыщенных паров может быть применен для широкой фракции легких углеводородов.
- 2 Значения плотности и давления насыщенных паров СУГ, вычисленные на основе данных компонентного состава, применяют для подтверждения соответствия требованиям документов на продукцию, но не используют для проведения учетных (коммерческих) операций.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 10679—2019 Газы углеводородные сжиженные. Метод определения углеводородного состава

ГОСТ 31369—2008 (ИСО 6976:1995) Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава

ГОСТ 33012—2014 (ISO 7941:1988) Пропан и бутан товарные. Определение углеводородного состава методом газовой хроматографии

Применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

- 3.1 В настоящем стандарте применены следующие термины с соответствующими определениями:
- 3.1.1 **сжиженные углеводородные газы**; СУГ: Смесь углеводородов (пропана, пропилена, бутанов, бутиленов и бутадиенов с присутствием метана, этана, этилена и (или) пентанов и пентенов), преобразованная в жидкое состояние.
- 3.1.2 **плотность сжиженного углеводородного газа:** Масса СУГ, заключенная в единице его объема при определенных значениях давления и температуры.
- 3.1.3 **давление насыщенных паров:** Давление, при котором жидкость находится в равновесном состоянии со своей газовой фазой; давление насыщенных паров складывается из избыточного давления и атмосферного давления.
- 3.1.4 абсолютное давление: Истинное давление, отсчитываемое от абсолютного нуля (давление абсолютного вакуума).
- 3.1.5 **избыточное давление:** Давление, равное разности между абсолютным и атмосферным давлением.
- 3.1.6 **летучесть (фугитивность)**: Величина, предназначенная для применения ряда термодинамических соотношений модели идеального газа к поведению реальных смесей в различных фазах, является функцией давления, температуры и концентрации компонентов газовой смеси, выраженная в единицах давления.
 - 3.1.7 идеальный газ: Газ, подчиняющийся законам идеального газа.
 - 3.2 В настоящем стандарте использовано следующее обозначение:
- C_{5+} группа углеводородов с числом атомов углерода от пяти и выше, массовую долю которых рассматривают как один компонент со свойствами H-пентана.

4 Метод определения плотности сжиженных углеводородных газов

4.1 Определение плотности сжиженных углеводородных газов

4.1.1 Значение плотности СУГ ρ_t , кг/м³, вычисляют на основе закона аддитивности по данным измеренного компонентного состава, определенного хроматографическим методом и значениям плотности индивидуальных углеводородов, входящих в состав СУГ, при заданной температуре по формуле

$$\rho_t = 100 / \sum_{i=1}^n \frac{w_i}{\rho_{it}} \,, \tag{1}$$

где *n* — число компонентов сжиженного газа;

 w_i — массовая доля *i*-го компонента, %;

 ρ_{it} — плотность *i*-го компонента при данной температуре t, кг/м³.

4.1.2 Если компонентный состав измерен в молярных долях, то плотность вычисляют по формуле

$$\rho_t = \sum_{i=1}^n x_i \cdot \rho_{it} \,, \tag{2}$$

где x_i — молярная доля i-го компонента, доли единицы.

Компонентный состав определяют по ГОСТ 10679 или ГОСТ 33012.

4.1.3 Плотность индивидуальных углеводородов в жидком состоянии в зависимости от температуры приведена в таблице А.1 (приложение А).

Значения молярных масс индивидуальных компонентов приведены в приложении Б.

- 4.1.4 Если в таблице А.1 (приложение А) отсутствует значение плотности компонента при конкретной температуре измерений, то ее значение вычисляют интерполированием табличных значений плотностей, соответствующих температурам, ближайшим к данной.
 - 4.1.5 Примеры расчета плотности СУГ приведены в таблицах В.1, В.2 (приложение В).

4.2 Оформление результатов вычисления плотности сжиженных углеводородных газов

4.2.1 За результат вычисления плотности СУГ при данной температуре принимают значение единичного определения.

4.2.2 Результат вычисления плотности СУГ записывают в виде

$$\rho_t \pm U_{(\rho_t)},\tag{3}$$

где $U_{(\rho_t)}$ — расширенная неопределенность результата вычисления плотности для данной температуры t, кг/м 3 , при коэффициенте охвата k = 2, [1]—[3].

t, кг/м³, при коэффициенте охвата k = 2, [1]—[3]. $U_{(p_t)}$ вычисляют по таблице 1. Вычисленные значения плотности СУГ и расширенной неопределенности (абсолютной погрешности) округляют до первого десятичного знака.

Т а б л и ц а 1 — Расширенная неопределенность результатов вычисления плотности сжиженных углеводородных газов

Диапазон измерений плотности $ ho_{t}^{}$, кг/м 3	Расширенная неопределенность $U_{(ho_l)}$, кг/м 3
От 480 до 530 включ.	0,0179·p _t – 8,381
Св. 530 до 560 включ.	$0.0119 \cdot \rho_t - 5.140$
Св. 560 до 800 включ.	$0,0171 \cdot \rho_{\star} - 8,104$

4.3 Требования к показателям точности метода

Метод обеспечивает получение результатов вычисления плотности СУГ по измеренному компонентному составу со значением расширенной неопределенности $U_{(\rho_t)}$, не превышающей значений, приведенных в таблице 1, при доверительной вероятности P=0.95.

5 Метод определения давления насыщенных паров

5.1 Давление насыщенных паров СУГ вычисляют по углеводородному составу, определенному методом газовой хроматографии в молярных долях, и значениям летучести углеводородов, входящих в состав СУГ, соответствующим заданной температуре измерений.

Углеводородный состав, определенный в массовых долях, пересчитывают в молярные доли x_i по формуле

$$x_i = \frac{w_i}{M_i} / \sum_{i=1}^n \frac{w_i}{M_i}, \tag{4}$$

где M_i — молярная масса i-го компонента по таблице Б.1 приложения Б, кг/кмоль.

5.2 Абсолютное давление насыщенных паров СУГ P, МПа, вычисляют методом последовательного приближения, задавая произвольные значения двух ближайших значений давления насыщенных паров при данной температуре (приложение Γ), по формуле

$$P = P_{\mathsf{Z}}' + \left(P_{\mathsf{Z}}'' - P_{\mathsf{Z}}'\right) \frac{\Delta P_{\mathsf{Z}}'}{\Delta P_{\mathsf{Z}}' - \Delta P_{\mathsf{Z}}''},\tag{5}$$

где P_z' — меньшее выбранное значение абсолютного давления СУГ, МПа, по таблицам Г.1—Г.8 (приложение Г);

 P_z'' — большее выбранное значение абсолютного давления СУГ, МПа, по таблицам Г.1—Г.8 (приложение Г).

Пример расчета давления насыщенных паров методом последовательного приближения приведен в приложении Д.

 $^{\cdot}$ Значения $\Delta P_z'$ и $\Delta P_z''$ вычисляют по формулам:

$$\Delta P_z' = P_0' - P_z'; \tag{6}$$

$$\Delta P_z'' = P_0'' - P_z'',\tag{7}$$

где P_0' и P_0'' — значения абсолютного давления насыщенных паров, МПа, вычисленные по формулам:

$$P_0' = \sum x_i f_i'; \tag{8}$$

$$P_0'' = \sum x_i f_i'', \tag{9}$$

FOCT 28656—2019

где f_i' и f_i'' — значения летучести (фугитивности) i-го компонента СУГ при абсолютных давлениях P_z' и P_z'' , МПа, приведенные в таблицах Г.1—Г.8 (приложение Г).

В результате вычисления должно соблюдаться условие $P_0' > P_z'$. Если $P_0' \le P_z'$, то расчет прекращают, задают следующую пару значений давления насыщенных паров и повторяют процедуру приближения.

5.3 Избыточное давление насыщенных паров СУГ Р_{изб}, МПа, вычисляют по формуле

$$P_{\text{M35}} = P - P_{\text{ATM}},\tag{10}$$

где Р — абсолютное давление насыщенных паров СУГ, МПа;

 $P_{\rm aтm}$ — атмосферное давление, МПа; $P_{\rm atm}$ = 101,3 кПа (0,1 МПа).

5.4 Примеры расчета давления насыщенных паров СУГ приведены в таблицах Е.1—Е.4 (приложение E).

5.5 Оформление результатов вычисления давления насыщенных паров СУГ

5.5.1 За результат вычисления значения давления насыщенных паров СУГ при данной температуре принимают значение единичного определения.

5.5.2 Результат вычисления давления насыщенных паров СУГ $P_{\text{из6}}$, МПа, записывают в виде

$$P_{\text{N36}} \pm U(P_{\text{N36}}),\tag{11}$$

где $U(P_{\mathsf{изб}})$ — расширенная неопределенность результата вычисления давления насыщенных паров для данной температуры t, МПа, при коэффициенте охвата k = 2; $U(P_{\mathsf{изб}})$ вычисляют по таблице 2.

Т а б л и ц а 2 — Расширенная неопределенность результатов вычисления давления насыщенных паров СУГ

Температура измерений, °С	Диапазон измерений $P_{\rm изб},$ МПа	Расширенная неопределенность $\mathit{U}(P_{изб})$, МПа
Минус 35	От 0,06 до 0,12 включ.	0,271 P _{изб} – 0,003
	Св. 0,12 до 0,20 включ.	$0,291 P_{изб} - 0,005$
Минус 30	От 0,06 до 0,12 включ.	0,271 Р _{изб} – 0,003
	Св. 0,12 до 0,20 включ.	$0,291 P_{\text{изб}} - 0,005$
Минус 20	От 0,06 до 0,12 включ.	0,271 Р _{изб} – 0,003
	Св. 0,12 до 0,20 включ.	$0,291 P_{\text{изб}} - 0,005$
	Св. 0,20 до 0,50 включ.	0,079 Р _{изб} + 0,037
Плюс 45	От 0,20 до 0,50 включ.	0,079 P _{изб} + 0,037
	Св. 0,50 до 1,00 включ.	0,082 Р _{изб} + 0,035
	Св. 1,00 до 2,00 включ.	0,115 P _{ผзб} + 0,002

Вычисленные значения давления насыщенных паров СУГ и расширенной неопределенности (абсолютной погрешности) округляют до второго десятичного знака.

5.6 Требования к показателям точности метода

Метод обеспечивает получение результатов вычисления избыточного давления насыщенных паров СУГ по измеренному компонентному составу со значением расширенной неопределенности $U(P_{N36})$, не превышающей значений, приведенных в таблице 2 при доверительной вероятности P = 0.95.

Приложение А (обязательное)

Значения плотности углеводородов в жидком состоянии

В настоящем приложении приведены значения плотности углеводородов в жидком состоянии (см. таблицу А.1).

Таблица А.1 — Значения плотности углеводородов в жидком состоянии в зависимости от температуры

Ė									Плотность, кг/м ³	гь, кг/м ³								
тем- пера- тура, °С	Метан	Этан	Пропан	Пропен	Изо- бутан	н-бутан	Бутен-1	Изо- бутен	<i>транс-</i> бутен-2	цисбу- тен-2	Бутади- ен-1,3	2,2-ди- метил- про- пан	Изо- пентан	<i>н</i> -пен- тан	3-ме- тилбу- тен-1	Пен-	2-ме- тилбу- тен-1	транс- пен- тен-2
-20	343,8	496,1	6,065	611,4	635,2	651,1	673,2	673,3	681,4	699,4	701,4	661,4	8,989	691,5	694,2	7,707	716,5	714,0
-45	338,9	488,8	585,2	605,2	630,0	646,4	0,899	8,799	0,929	694,0	0,969	2,959	682,1	0,789	2,689	703,2	712,1	9,607
-40	333,9	481,0	579,4	598,9	624,7	641,5	662,7	662,4	670,5	688,5	690,5	652,0	677,4	682,5	685,2	8,869	7,707	705,2
-35	328,9	473,1	573,7	592,6	619,5	636,7	657,3	0,759	0,599	683,0	0,589	647,2	672,7	678,0	9,089	694,2	703,2	9,007
-30	323,9	464,9	2,199	586,3	614,1	631,7	621,9	651,5	9,639	9,779	679,4	642,4	0'899	673,4	0,929	9,689	698,7	0,969
-25	323,9	456,3	561,6	579,9	608,7	626,8	646,4	646,2	654,2	672,2	673,8	637,5	663,2	8,899	671,3	684,9	694,1	691,3
-20	314,1	447,3	555,5	573,5	603,3	621,8	640,9	640,5	648,7	2,999	668,3	632,6	658,5	664,3	9,999	680,2	689,4	9,989
-15	309,4	437,8	549,3	566,7	597,8	616,6	635,3	635,0	643,2	661,2	662,6	627,7	653,7	9,639	6,199	675,4	684,7	681,8
-10	304,7	427,5	542,9	559,9	592,3	611,5	629,7	629,4	637,8	8,559	8,959	622,8	648,9	655,0	657,1	9'029	6,629	0,779
-5	299,9	416,6	536,4	552,7	586,7	9,909	624,0	623,7	632,4	650,4	651,0	617,9	644,0	650,2	652,2	665,7	675,1	672,2
0	295,4	404,8	529,7	545,7	581,0	0,109	618,2	618,0	656,9	644,9	645,2	613,0	639,2	645,5	647,2	8,099	670,2	667,5
2	291,8	391,8	522,8	538,0	575,3	595,7	612,4	612,2	621,4	639,4	639,2	0,809	634,3	640,8	642,2	655,8	665,3	662,8
10	286,3	377,5	515,8	530,6	569,4	590,2	606,5	606,5	616,0	634,0	633,3	603,0	629,4	636,0	637,2	8,059	660,3	0,859
15	281,9	361,1	508,6	522,7	563,4	584,6	600,5	9,009	610,6	628,6	627,2	598,0	624,5	631,1	632,2	645,6	655,3	653,1
20	277,6	342,1	501,1	514,8	557,3	6,875	594,5	594,7	605,1	623,1	621,1	592,9	619,6	626,2	627,2	640,5	650,3	648,2
25	273,3	319,7	493,4	506,4	551,1	573,2	588,4	588,6	9,669	617,6	614,8	8,785	614,6	621,3	622,1	635,3	645,0	643,1
30	269,0	291,9	485,5	498,1	544,8	567,3	582,3	582,6	594,2	612,2	608,4	582,6	2,609	616,3	617,0	630,0	640,0	638,1
35	264,3	262,3	477,5	489,2	538,5	561,3	2,00	576,4	588,8	8,909	8,109	8,773	604,7	611,2	611,9	624,6	634,9	632,8
40	260,8	226,3	468,9	480,4	531,8	555,2	8,695	570,3	583,3	601,3	595,3	573,1	599,7	606,2	8,909	619,3	629,8	627,5
45	256,8	184,1	460,4	471,0	525,2	549,0	563,4	564,0	8,773	595,8	588,5	2,199	594,6	601,0	601,6	613,8	624,6	651,9
20	253,6	134,5	451,3	461,7	518,2	542,6	557,1	557,8	572,4	590,4	581,7	562,3	589,5	595,9	596,4	608,4	619,4	616,3

Продолжение таблицы А.1

	1,3-ди- метил- цикло- пентан- <i>цис</i>	807,5	803,1	7,867	794,4	789,8	785,3	780,8	776,3	771,8	767,3	762,8	758,3	753,8	749,3	744,8	740,2	735,7	731,1	726,5	721,8	717,2
	1,1-ди- метил- цикло- пентан	817,9	813,4	0,608	804,5	0,008	795,4	6'062	786,2	781,8	777,2	772,7	768,0	763,6	759,0	754,5	749,9	745,3	740,6	736,0	734,3	726,6
	3-ме- тил- гексан	744,7	740,7	736,7	732,6	728,6	724,5	720,4	716,3	712,2	0,807	703,9	8,669	9,569	691,4	687,2	682,9	9'829	674,3	0,079	9,599	661,1
	2-ме- тил- гексан	736,2	732,2	728,2	724,2	720,1	716,0	711,9	707,8	703,7	9,669	695,4	691,2	0,789	682,8	678,6	674,3	0,079	665,8	661,5	657,0	652,6
	2,3-ди- метил- пентан	753,5	749,4	745,2	741,0	736,9	732,8	728,6	724,4	720,3	716,2	712,0	707,8	703,6	699,4	695,1	6,069	9,989	682,3	678,0	673,6	669,3
	2,4-ди- метил- пентан	732,7	728,4	724,2	720,0	715,7	711,4	707,2	703,0	698,7	694,4	690,2	685,8	681,5	677,1	672,7	668,3	663,9	659,4	655,0	650,5	646,0
	2,2-ди- метил- пентан	733,4	729,2	724,9	720,7	716,5	712,2	6,707	703,6	699,4	695,2	691,0	686,7	682,4	678,1	673,8	669,5	665,2	8,099	656,5	652,2	647,8
13	Бензол	951,7	946,6	941,4	936,2	931,1	926,0	920,8	915,6	910,4	905,2	0,006	894,8	9,688	884,3	879,0	873,7	868,4	863,0	9,758	852,2	846,8
Плотность, кг/м ³	Цикло- гексан	843,8	839,2	834,5	829,8	825,2	820,5	815,9	811,2	9,908	802,0	797,3	792,6	788,0	783,3	778,6	773,9	769,2	764,4	759,6	754,4	749,9
Плотн	Метил- цикло- пентан	813,7	809,0	804,4	799,8	795,1	790,4	785,8	781,2	776,5	771,8	767,2	762,6	757,9	753,4	748,6	743,9	739,3	734,6	730,0	725,4	720,7
	<i>н-</i> гек- сан	719,9	715,7	711,5	707,3	703,1	8,869	694,6	690,3	0,989	681,6	677,2	672,8	668,4	663,9	659,4	654,8	650,2	645,6	640,9	636,2	631,5
	3-ме- тил- пентан	724,4	720,2	716,1	712,0	707,8	703,6	699,4	695,2	6'069	9,989	682,2	8,779	673,3	8,899	664,3	659,8	655,2	9,059	642,9	641,2	636,4
	2-ме- тил- пен- тан	713,0	708,8	704,7	9'002	696,4	692,2	0,889	683,8	679,5	675,2	6,079	666,4	662,0	9,759	653,2	648,6	644,1	639,5	634,9	630,2	625,5
	2,3-ди- метил- бутан	721,7	717,6	713,4	709,2	705,1	6,007	2,969	692,4	688,2	683,8	679,5	675,0	9,079	666,1	661,6	0,759	652,5	647,8	643,2	638,5	633,8
	2,2-ди- метил- бутан	709,4	705,2	701,1	0,769	692,8	688,6	684,4	680,2	6,529	672,6	667,2	662,7	658,2	653,7	649,2	644,6	640,0	635,3	9'089	625,8	621,1
	Цикло- пентан	813,0	808,2	803,4	9,867	793,8	789,0	784,2	779,4	774,5	9'692	764,8	0,097	755,1	750,2	745,4	740,4	735,6	730,7	725,8	720,9	716,0
	2-ме- тилбу- тен-2	728,4	724,0	719,6	715,1	710,6	0,907	701,4	2,969	692,0	687,2	682,3	677,4	672,4	667,4	662,3	657,2	652,0	646,8	641,5	636,2	8,089
	<i>цис</i> - пен- тен-2	722,7	718,2	713,8	200,3	704,8	700,2	9,569	6,069	686,2	681,2	6,929	671,2	0,999	8,099	655,5	650,2	644,8	639,4	634,1	628,8	623,4
	Тем- пера- тура, °С	-20	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	2	10	15	20	25	30	35	40	45	90

Продолжение таблицы А.1

		_																				_
	2,5-ди- метил- гексан	752,0	747,9	743,8	739,6	735,5	731,3	727,1	722,9	718,7	714,5	710,3	706,1	701,9	2,769	693,5	689,3	685,1	8,089	9'929	672,3	0,899
	Этил- цикло- пентан	825,7	821,6	817,4	813,2	0,608	804,8	800,5	796,8	792,0	787,8	783,5	779,2	775,0	770,8	766,5	762,2	757,8	753,4	749,1	744,7	740,3
	1,1,3-триме- тилцикло- пентан	807,4	803,2	799,1	794,9	7,067	786,4	782,2	778,0	773,7	769,4	765,2	761,0	756,7	752,4	748,2	743,9	739,6	735,3	731,0	726,6	722,3
	Метил- цикло- гексан	830,1	825,8	821,5	817,2	812,9	9,808	804,2	799,8	795,5	791,2	786,8	782,4	778,1	773,8	769,4	765,0	9,097	756,2	751,8	747,4	743,0
	<i>н-</i> геп- тан	741,5	737,5	733,5	729,4	725,4	721,3	717,2	713,1	709,0	704,8	7007	696,5	692,3	0,889	683,8	679,5	675,2	8,029	666,4	662,0	657,6
	1,2-ди- метил- цикло- пентан- <i>цис</i>	834,6	830,2	825,9	821,5	817,1	812,6	808,2	803,8	799,3	794,8	790,4	786,0	781,5	777,1	772,6	768,1	763,6	759,0	754,5	750,0	745,3
	1,2-ди- метил- цикло- пентан- <i>транс</i>	814,1	7,608	805,3	8,008	796,4	791,9	787,4	782,9	778,4	773,9	769,4	764,9	760,4	755,9	751,4	746,9	742,4	737,8	733,1	728,4	723,7
KT/M ³	1,1-ме- тил- этил- цикло- пентан	838,7	834,6	830,6	826,5	822,4	818,2	814,1	810,0	802,8	801,6	797,5	793,4	789,2	785,0	6'082	7,977	772,6	768,4	764,1	759,8	755,5
Плотность, кг/м ³	1,1-ди- метил- цикло- гексан	838,0	834,0	830,0	826,0	821,9	817,8	813,7	9,608	805,5	801,4	797,3	793,2	789,1	785,0	780,9	8,977	772,8	9'892	764,4	760,2	755,9
п	3-этил- гексан	769,1	765,2	761,4	2,757	753,6	749,6	745,7	741,7	737,7	733,8	729,8	725,8	721,7	717,6	713,6	2,607	705,4	701,2	697,1	692,9	688,7
	3-ме- тил- гептан	2,097	7.957	752,9	749,0	745,2	741,3	737,4	733,4	729,5	725,6	721,7	717,8	713,8	8,607	705,8	701,8	2,769	9,569	9,689	685,4	681,3
	4-ме- тилгеп- тан	759,2	755,4	751,6	747,8	743,9	740,0	736,1	732,2	728,2	724,3	720,4	716,4	712,5	9'802	704,6	9,007	9,969	692,6	688,5	684,4	680,3
	3,4-ди- метил- гексан	774,2	770,4	766,5	762,6	7.837	754,8	750,8	746,8	742,9	739,0	735,0	731,0	727,1	723,2	719,2	715,2	711,3	707,2	703,2	699,1	695,0
	2-метил- тилгеп- тан	752,6	748,8	745,0	741,2	737,3	733,4	729,5	725,6	721,6	717,7	713,8	8,607	6'502	701,9	6,769	663,9	8,689	685,8	681,7	9,779	673,4
	1,1,2-три- метил- цикло- пентан	832,2	828,0	823,9	819,7	815,5	811,2	0,708	802,8	798,5	794,5	0,067	785,8	781,0	8'922	772,5	768,2	764,0	9,657	755,3	742,1	737,7
	Толуол	931,8	927,2	922,5	917,8	913,2	908,6	903,9	899,3	894,7	1,068	885,5	8,088	876,2	871,6	6'998	862,3	9,758	853,0	848,3	843,6	838,8
	1,3-ди- метил- цикло- пентан- <i>транс</i>	810,8	806,8	802,1	8,767	793,3	788,8	784,4	780,0	775,5	770,0	9'992	762,2	7,737	753,0	748,8	744,3	739,8	735,2	730,7	726,1	721,5
	Тем- пера- тура, °С	-20	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	2	10	15	20	25	30	35	40	45	50

∞ Окончание таблицы А.1

				ОП	Плотность, кг/м ³			
Температура, °С	1,2,4-три- метил- циклопентан- <i>транс, цис</i>	1,2-метил- этилцикло- пентан <i>цис</i>	н-октан	<i>н</i> -пропилцик- лопентан	Этилбензол	1,4-диметил-бензол	1,3-диметил- бензол	1,2-диметил- бензол
-50	806,5	842,3	758,1	833,4	928,8	920,9	922,7	938,7
-45	802,4	838,3	754,2	829,4	924,6	916,6	918,5	934,6
-40	798,2	834,3	750,4	825,4	920,1	912,5	914,5	930,5
-35	794,0	830,2	746,5	821,4	915,8	908,2	910,4	926,4
-30	789,8	826,2	742,6	817,3	911,3	904,0	906,2	922,2
-25	785,6	822,1	738,6	813,2	8'906	2,668	902,0	918,0
-20	781,3	818,0	734,7	809,1	902,4	895,4	897,8	913,8
-15	777,0	813,9	730,7	805,0	0'868	891,1	893,6	9,606
-10	772,8	808,8	726,7	6,008	893,5	886,8	889,4	905,4
-5	768,6	805,7	722,8	796,8	0,688	882,5	885,2	901,2
0	764,3	801,6	718,8	792,7	884,6	878,2	881,0	0,768
2	760,0	797,5	714,8	788,6	880,2	873,9	876,8	892,8
10	755,8	793,4	710,7	784,5	875,7	9,698	872,6	888,6
15	751,6	789,3	9'902	780,4	871,4	865,3	868,4	884,4
20	747,3	785,2	702,6	776,3	867,0	861,0	864,2	880,2
25	743,0	781,1	698,4	772,3	862,6	856,7	859,9	876,0
30	738,7	777,0	694,3	768,1	858,3	852,5	855,6	871,9
35	734,4	772,6	690,2	764,0	853,8	848,0	851,3	9,798
40	730,0	768,7	686,0	759,8	849,4	843,7	847,0	863,4
45	725,6	764,5	681,8	755,6	844,9	839,3	842,7	859,1
20	721,2	760,3	677,6	751,4	840,4	834,9	838,4	854,8
Примечание	1	тучены в соответ	гствии с ГОСТ	Значения получены в соответствии с ГОСТ 31369, ГОСТ 33012, [1].	12, [1].			

Приложение Б (обязательное)

Значения молярных масс индивидуальных компонентов

В настоящем приложении приведены значения молярных масс индивидуальных компонентов (см. таблицу Б.1.)

Таблица Б.1 — Значения молярных масс индивидуальных компонентов

Компонент	Молярная масса, г/моль*
Метан (CH ₄)	16,043
Этан (C ₂ H ₆)	30,070
Этилен (C ₂ H ₄)	28,054
Ацетилен (этин) (C ₂ H ₂)	26,038
Пропан (C ₃ H ₈)	44,097
Пропилен (C ₃ H ₆)	42,081
Пропадиен (C ₃ H ₄)	40,065
Метилацетилен (C ₃ H ₄)	40,065
Изобутан (<i>u</i> C ₄ H ₁₀)	58,123
<i>н</i> -Бутан (<i>н</i> С ₄ Н ₁₀)	58,123
Бутен-1 (<i>н</i> С ₄ Н ₈)	56,108
Изобутен (<i>u</i> C ₄ H ₈)	56,108
транс-Бутен-2 (транс С ₄ Н ₈)	56,108
<i>цис</i> -Бутен-2 (<i>цис</i> -С ₄ Н ₈)	56,108
Бутадиен-1,2 (С ₄ Н ₆)	54,092
Бутадиен-1,3 (С ₄ Н ₆)	54,092
2,2-Диметилпропан (С ₅ Н ₁₂)	72,150
Изопентан (иС ₅ Н ₁₂)	72,150
<i>н</i> -Пентан (<i>н</i> С ₅ Н ₁₂)	72,150
Пентен-1 (C ₅ H ₁₀)	70,134
Циклопентан (С ₅ Н ₁₀)	70,134
<i>н</i> -Гексан (<i>н</i> С ₆ Н ₁₄)	86,177
2-Метилпентан (С ₆ Н ₁₄)	86,177
3-Метилпентан (С ₆ Н ₁₄)	86,177
2,2-Диметилбутан (С ₆ Н ₁₄)	86,177
2,3-Диметилбутан (С ₆ Н ₁₄)	86,177
Метилциклопентан (С ₆ Н ₁₂)	84,161
Циклогексан (C ₆ H ₁₂)	84,161
Бензол (C ₆ H ₆)	78,114
<i>н-</i> Гептан (<i>н</i> С ₇ Н ₁₆)	100,204
Этилциклопентан (С ₇ Н ₁₄)	98,188
Толуол (C ₇ H ₈)	92,141
<i>н</i> -Октан (<i>н</i> С ₈ Н ₁₈)	114,231

Приложение В (рекомендуемое)

Пример расчета плотности

В таблицах В.1, В.2 приведены примеры расчета плотности при различных температурах.

Т а б л и ц а В.1 — Пример расчета плотности СУГ при температуре 20 °C через массовые доли

Компонент	Плотность р _і , кг/м ³	Массовая доля <i>w_i</i> ,%	$\frac{w_i}{\rho_i}$	$\rho_t = 100 / \sum_{i=1}^{n} \frac{w_i}{\rho_{it}}$, $\kappa \Gamma / M^3$
CH ₄	277,6	0,06	0,0002	-
C_2H_6	342,1	1,16	0,0034	_
C ₃ H ₈	501,1	62,36	0,1244	_
u-C ₄ H ₁₀	557,3	13,42	0,0241	_
н-С ₄ Н ₁₀	578,9	22,39	0,0387	_
нео-С ₅ Н ₁₂	592,9	0,09	0,0002	_
u-C ₅ H ₁₂	619,6	0,43	0,0007	_
u - C_4H_{10} H - C_4H_{10} H eo- C_5H_{12} u - C_5H_{12} H - C_5H_{12}	626,2	0,09	0,0001	_
Σ	_	100,00	0,1918	521,4

Т а б л и ц а В.2 — Пример расчета плотности СУГ при температуре 20 °C через молярные доли

Компонент	Плотность р _і , кг/м ³	Молярная доля x_i	$x_i \cdot \rho_i$	$ \rho_t = \sum_{i=1}^n x_i \cdot \rho_i $, кг/м ³
CH ₄	277,6	0,0011	0,3054	-
C ₂ H ₆	342,1	0,0180	6,1578	_
C ₃ H ₈	501,1	0,6486	325,0135	_
u-C ₄ H ₁₀	557,3	0,1255	69,9412	-
<i>н</i> -С ₄ Н ₁₀	578,9	0,2017	116,7641	_
нео-С ₅ Н ₁₂	592,9	0,0008	0,4743	_
u-C ₅ H ₁₂	619,6	0,0036	2,2306	_
и-С ₅ Н ₁₂ н-С ₅ Н ₁₂	626,2	0,0007	0,4383	-
Σ	_	1,0000	521,3252	521,3

Приложение Г (обязательное)

Значения летучести (фугитивности) компонентов сжиженных углеводородных газов

В таблицах Г.1—Г.8 приведены значения летучести (фугитивности) компонентов СУГ при различных температурах.

Таблица Г.1 — Значения летучести (фугитивности) компонентов СУГ при температуре плюс 45 °C

Дав-		Летучесть углеводородов										
ление, МПа	CH ₄	C ₂ H ₆	C ₂ H ₄	C ₃ H ₈	C ₃ H ₆	<i>u</i> C ₄ H ₁₀	<i>н</i> С ₄ Н ₁₀	C ₄ H ₈	<i>u</i> С ₅ Н ₁₂	<i>н</i> С ₅ Н ₁₂	C ₅ H ₁₀	<i>н</i> С ₆ Н ₁₄
0,1	13,200	4,000	5,600	1,250	1,500	0,550	0,410	0,360	0,200	0,130	0,170	0,045
0,5	14,000	4,200	5,700	1,370	1,550	0,600	0,450	0,410	0,210	0,150	0,190	0,053
1,0	15,000	4,400	6,200	1,450	1,650	0,660	0,480	0,450	0,240	0,170	0,210	0,060
1,5	15,500	4,700	6,500	1,530	1,730	0,690	0,510	0,480	0,260	0,180	0,230	0,063
2,0	16,400	5,000	7,000	1,680	1,920	0,760	0,560	0,540	0,280	0,200	0,240	0,072

Таблица Г.2 — Значения летучести (фугитивности) компонентов СУГ при температуре минус 20 °C

Дав-		Летучесть углеводородов										
ление, МПа	CH ₄	C ₂ H ₆	C ₂ H ₄	C ₃ H ₈	C ₃ H ₆	<i>u</i> C ₄ H ₁₀	<i>н</i> С ₄ Н ₁₀	C ₄ H ₈	<i>u</i> C ₅ H ₁₂	нС ₅ Н ₁₂	C ₅ H ₁₀	<i>н</i> С ₆ Н ₁₄
0,05	15,0	1,40	2,50	0,260	0,33	0,075	0,0450	0,060	0,0130	0,0090	0,009	0,0010
0,10	13,0	1,15	2,10	0,235	0,28	0,068	0,0425	0,054	0,0125	0,0089	0,011	0,0018
0,50	11,5	1,15	2,00	0,245	0,29	0,075	0,0435	0,062	0,0150	0,0103	0,013	0,0025
1,00	9,6	1,16	1,90	0,250	0,29	0,079	0,0500	0,064	0,0150	0,0115	0,014	0,0026
1,50	10,5	1,26	2,10	0,277	0,32	0,090	0,0585	0,075	0,0188	0,0140	0,018	0,0036
2,00	11,0	1,40	2,30	0,300	0,37	0,106	0,0680	0,088	0,0220	0,0160	0,022	0,0040

Таблица Г.3 — Значения летучести (фугитивности) компонентов СУГ при температуре минус 30 °C

Дав-		Летучесть углеводородов										
ление, МПа	CH ₄	C ₂ H ₆	C ₂ H ₄	C ₃ H ₈	C ₃ H ₆	<i>u</i> C ₄ H ₁₀	<i>н</i> С ₄ Н ₁₀	C ₄ H ₈	<i>u</i> C ₅ H ₁₂	<i>н</i> С ₅ Н ₁₂	C ₅ H ₁₀	<i>н</i> С ₆ Н ₁₄
0,05	13,3	1,10	1,93	0,180	0,227	0,0500	0,0283	0,039	0,0083	0,0053	0,0063	0,0006
0,10	11,3	0,89	1,70	0,165	0,193	0,2490	0,0268	0,036	0,0075	0,0052	0,0069	0,0008
0,50	9,7	0,90	1,63	0,173	0,210	0,2767	0,0285	0,042	0,0090	0,0066	0,0087	0,0012
1,00	8,5	0,91	1,53	0,177	0,213	0,0540	0,0320	0,044	0,0097	0,0070	0,0093	0,0013
1,50	9,3	1,00	1,70	0,202	0,237	0,0620	0,0388	0,051	0,0116	0,0087	0,0112	0,0021
2,00	9,9	1,07	1,83	0,228	0,270	0,0740	0,0467	0,060	0,0147	0,0104	0,0167	0,0026

Т а б л и ц а Γ .4 — Значения летучести (фугитивности) компонентов СУГ при температуре минус $35\,^{\circ}$ С

Дав-	Летучесть углеводородов								-4		
ление, МПа	CH ₄	C ₂ H ₆	C ₂ H ₄	C ₃ H ₈	C ₃ H ₆	<i>u</i> C ₄ H ₁₀	<i>н</i> С ₄ Н ₁₀	C ₄ H ₈	<i>u</i> C ₅ H ₁₂	<i>н</i> С ₅ Н ₁₂	C ₅ H ₁₀
0,05	12,50	0,950	1,65	0,140	0,175	0,038	0,020	0,029	0,006	0,0035	0,0049
0,10	10,50	0,760	1,50	0,130	0,150	0,034	0,019	0,027	0,005	0,0033	0,0048

FOCT 28656—2019

Окончание таблицы Г.4

Дав-	Летучесть углеводородов										
ление, МПа	CH ₄	C ₂ H ₆	C ₂ H ₄	C ₃ H ₈	C ₃ H ₆	<i>u</i> C ₄ H ₁₀	<i>н</i> С ₄ Н ₁₀	C ₄ H ₈	<i>u</i> C ₅ H ₁₂	<i>н</i> С ₅ Н ₁₂	C ₅ H ₁₀
0,50	8,75	0,775	1,45	0,137	0,170	0,040	0,021	0,032	0,006	0,0047	0,0065
1,00	8,00	0,790	1,35	0,140	0,175	0,042	0,023	0,034	0,007	0,0048	0,0067
1,50	8,70	0,870	1,50	0,165	0,195	0,048	0,029	0,039	0,008	0,0060	0,0078
2,00	9,40	0,900	1,60	0,192	0,220	0,058	0,036	0,046	0,011	0,0076	0,0102

Таблица Г.5 — Значения летучести (фугитивности) непредельных углеводородов СУГ при температуре плюс 45 °C

Давление, МПа	Этин (ацетилен), С ₂ Н ₂	Пропадиен (аллен), С ₃ Н ₄	Пропин (метилацетилен), С ₃ Н ₄	Бутадиен-1,3 (дивинил), С ₄ Н ₆
0,1	6,000	0,980	0,760	0,430
0,5	6,250	1,100	0,850	0,490
1,0	6,900	1,150	0,900	0,540
1,5	7,050	1,230	0,930	0,570
2,0	7,380	1,340	1,040	0,620

Таблица Г.6 — Значения летучести (фугитивности) непредельных углеводородов СУГ при температуре минус 20 °C

Давление, МПа	Этин (ацетилен), С ₂ Н ₂	Пропадиен (аллен), С ₃ Н ₄	Пропин (метилацетилен), С ₃ Н ₄	Бутадиен-1,3 (дивинил), С ₄ Н ₆
0,05	2,500	0,190	0,120	0,059
0,10	2,200	0,165	0,104	0,049
0,50	2,300	0,175	0,115	0,058
1,00	2,100	0,170	0,125	0,060
1,50	2,400	0,200	0,143	0,068
2,00	2,640	0,230	0,168	0,080

Таблица Г.7 — Значения летучести (фугитивности) непредельных углеводородов СУГ при температуре минус 30 °C

Давление, МПа	Этин (ацетилен), С ₂ Н ₂	Пропадиен (аллен), С ₃ Н ₄	Пропин (метилацетилен), С ₃ Н ₄	Бутадиен-1,3 (дивинил), С ₄ Н ₆
0,05	2,200	0,130	0,080	0,035
0,10	1,800	0,120	0,080	0,033
0,50	2,250	0,130	0,090	0,038
1,00	1,700	0,130	0,080	0,040
1,50	1,840	0,140	0,100	0,048
2,00	2,000	0,170	0,120	0,060

Таблица Г.8— Значения летучести (фугитивности) непредельных углеводородов СУГ при температуре минус 35 °C

Давление, МПа	Этин (ацетилен), С ₂ Н ₂	Пропадиен (аллен), С ₃ Н ₄	Пропин (метилацетилен), С ₃ Н ₄	Бутадиен-1,3 (дивинил), С ₄ Н ₆
0,05	1,800	0,090	0,070	0,026
0,10	1,500	0,082	0,057	0,025

Окончание таблицы Г.8

Давление, МПа	Этин (ацетилен), С ₂ Н ₂	Пропадиен (аллен), С ₃ Н ₄	Пропин (метилацетилен), С ₃ Н ₄	Бутадиен-1,3 (дивинил), С ₄ Н ₆
0,50	1,700	0,090	0,063	0,029
1,00	1,350	0,095	0,065	0,031
1,50	1,640	0,113	0,078	0,038
2,00	1,760	0,130	0,092	0,042

Приложение Д (рекомендуемое)

Пример расчета давления насыщенных паров при температуре плюс 45 °C методом последовательного приближения

Задают произвольные значения абсолютного давления насыщенных паров P_z' и P_z'' .

Принимают $P_Z' = 1,5$ МПа и $P_Z'' = 2,0$ МПа.
При выбранных значениях давления насыщенных паров согласно данным таблиц Г.1, Г.5 (приложение Г) выбирают значения летучести f_i' и рассчитывают P_0' по формуле $P_0' = \Sigma x_i f_i'$.

Расчет P_0' приведен в таблице Д.1.

Таблица Д.1 — Расчет P_0' при P_z' = 1,5 МПа и P_z'' = 2,0 МПа

Компонент	Молярная доля x_i	f_i' при P_z' = 1,5 МПа	x _i f _i '
C ₂ H ₆	0,0004	4,70	0,0019
C ₃ H ₈	0,0265	1,53	0,0405
C_3H_6	0,0059	1,73	0,0102
uC_4H_{10}	0,2100	0,69	0,1449
<i>н</i> С ₄ Н ₁₀	0,3053	0,51	0,1557
C_4H_8	0,3297	0,48	0,1583
C_4H_6	0,0012	0,57	0,0007
uC_5H_{12}	0,0721	0,26	0,0187
нС ₅ Н ₁₂	0,0191	0,18	0,0034
C ₅ H ₁₀	0,0298	0,23	0,0069
Σ	1,0000	_	$P_0' = 0,5412$

Так как при P_z' = 1,5 МПа получают P_0' = 0,54 МПа, следовательно, условие $P_0' > P_z'$ не выполняется, расчет прерывают.

Задают следующую пару значений абсолютного давления насыщенных паров P_z' и P_z'' и повторяют процедуру. Принимают пару значений $P_z'=1,0$ МПа и $P_z''=1,5$ МПа и возобновляют расчет (см. таблицу Д.2).

Таблица Д.2 — Расчет P_0' при P_z' = 1,0 МПа и P_z'' = 1,5 МПа

Компонент	Молярная доля x_i	f'_i при P'_z = 1,0 МПа	$x_i f_i'$	
C ₂ H ₆	0,0004	4,40	0,0018	
C ₃ H ₈	0,0265	1,45	0,0384	
C ₃ H ₆	0,0059	1,65	0,0097	
uC_4H_{10}	0,2100	0,66	0,1386	
<i>н</i> С ₄ Н ₁₀	0,3053	0,48	0,1465	
C ₄ H ₈	0,3297	0,45	0,1484	
C_4H_6	0,0012	0,54	0,0006	
uC_5H_{12}	0,0721	0,24	0,0173	
нС ₅ Н ₁₂	0,0191	0,17	0,0032	
C ₅ H ₁₀	0,0298	0,21	0,0063	
Σ	1,0000	<u> </u>	$P_0' = 0,5109$	

По результатам расчета из таблицы Д.2 получают P_0' = 0,51 МПа менее P_z' = 1,0 МПа, следовательно, условие $P_0' > P_Z'$ не выполняется, расчет прекращают, задают следующую пару значений абсолютного давления насыщенных паров P_Z' и P_Z'' и повторяют процедуру.

Принимают пару значений $P_Z' = 0.5$ МПа и $P_Z'' = 1.0$ МПа и возобновляют расчет (см. таблицу Д.3).

Компонент	Молярная доля x_{i}	f_i' при $P_z' = 0,5$ МПа	$x_i f_i'$
C ₂ H ₆	0,0004	4,20	0,0017
C ₃ H ₈	0,0265	1,37	0,0363
C ₃ H ₆	0,0059	1,55	0,0091
uC_4H_{10}	0,2100	0,60	0,1260
<i>н</i> С ₄ Н ₁₀	0,3053	0,45	0,1374
C ₄ H ₈	0,3297	0,41	0,1352
C_4H_6	0,0012	0,49	0,0006
uC_5H_{12}	0,0721	0,21	0,0151
<i>н</i> С ₅ Н ₁₂	0,0191	0,15	0,0029
C ₅ H ₁₀	0,0298	0,19	0,0057
Σ	1,0000	_	$P_0' = 0,4700$

Т а б л и ц а Д.3 — Расчет P_0' при P_z' = 0,5 МПа и P_z'' = 1,0 МПа

По результатам расчета получают $P_0' = 0.47$ МПа менее $P_z' = 0.5$ МПа, следовательно, условие $P_0' > P_z'$ не выполняется, расчет прекращают, задают следующую пару значений абсолютного давления насыщенных паров P_z' и P_{z}'' и повторяют процедуру.

Принимают пару значений $P_z'=0,1$ МПа и $P_z''=0,5$ МПа. При выбранных значениях P_z'' и P_z'' рассчитывают P_0'' и P_0'' (см. таблицу Д.4).

Таблица Д.4 — Расчет P_0' и P_0'' при $P_z''=0,1$ МПа и $P_z''=0,5$ МПа

Компонент	Молярная доля x_i	f_i' при $P_z' = 0,1$ МПа	$x_i f_i'$	f _i " при P _z " = 0,5 МПа	x _i f _i "
C ₂ H ₆	0,0004	4,00	0,0016	4,20	0,0017
C ₃ H ₈	0,0265	1,25	0,0331	1,37	0,0363
C ₃ H ₆	0,0059	1,50	0,0089	1,55	0,0091
<i>u</i> C ₄ H ₁₀	0,2100	0,55	0,1155	0,60	0,1260
<i>н</i> С ₄ Н ₁₀	0,3053	0,41	0,1252	0,45	0,1374
C ₄ H ₈	0,3297	0,36	0,1187	0,41	0,1352
C ₄ H ₆	0,0012	0,43	0,0005	0,49	0,0006
<i>u</i> C ₅ H ₁₂	0,0721	0,20	0,0144	0,21	0,0151
нС ₅ Н ₁₂	0,0191	0,13	0,0025	0,15	0,0029
C ₅ H ₁₀	0,0298	0,17	0,0051	0,19	0,0057
Σ	1,0000	_	$P_0' = 0,4254$	_	$P_0'' = 0,4700$

В результате расчета при $P_z'=0.1$ МПа и $P_z''=0.5$ МПа получают $P_0'=0.4254$ МПа более $P_z'=0.1$ МПа. Так условие $P_0' > P_z'$ выполняется, то продолжают расчет.

При выбранных значениях давления насыщенных паров по таблицам Г.1, Г.5 (приложение Γ) выбирают значения летучести f_i ", рассчитывают P_0 " по формуле P_0 " = $\Sigma x_i f_i$ "

$$\Delta P_z' = P_0' - P_z' = 0,425 - 0,1 = 0,325;$$

$$\Delta P_z'' = P_0'' - P_z'' = 0,470 - 0,5 = -0,030;$$

$$P = P_z' + \left(P_z'' - P_z'\right) \frac{\Delta P_z'}{\Delta P_z' - \Delta P_z''} = 0.1 + \left(0.5 - 0.1\right) \frac{0.325}{0.325 - (-0.030)} = 0.47 \text{ M} \Pi a.$$

В результате методом последовательного приближения получают P = 0,47 МПа, следовательно $P_{\text{изб}}$ = 0,47 - 0,1 = 0,37 МПа; $P_{\text{изб}}$ = (0,37 \pm 0,07) МПа.

Приложение E (рекомендуемое)

Примеры расчета давления насыщенных паров

В таблицах Е.1—Е.4 приведены примеры расчета давления насыщенных паров СУГ при различных температурах.

Таблица Е.1 — Пример расчета давления насыщенных паров при температуре 45 °C

Ком- по- нент	Молярная масса <i>М_і,</i> г/моль	Массовая доля <i>w_i,</i> %	w _i /M _i	Молярная доля <i>х_і</i>	<i>f_i'</i> при <i>P'</i> _z = 1,0 МПа	x _i f' _i	<i>f_i"</i> при <i>P</i> ″ = 1,5 МПа	x _i f _i "
C ₂ H ₆	30,070	2,0020	0,0666	0,0322	4,40	0,1417	4,70	0,1513
C ₃ H ₈	44,097	30,0066	0,6805	0,3291	1,45	0,4772	1,53	0,5035
C ₃ H ₆	42,081	22,9965	0,5465	0,2643	1,65	0,4361	1,73	0,4572
<i>u</i> C ₄ H ₁₀	58,123	19,9977	0,3441	0,1664	0,66	0,1098	0,69	0,1148
<i>н</i> С ₄ Н ₁₀	58,123	24,9972	0,4301	0,2080	0,48	0,0998	0,51	0,1061
Σ	_	100,0000	2,0678	1,0000	_	$P_0' = 1,2646$	_	$P_0'' = 1,3329$

$$\begin{split} &\Delta P_{z}' = P_{0}' - P_{z}' = 1,2646 - 1,0 = 0,2646; \\ &\Delta P_{z}'' = P_{0}'' - P_{z}'' = 1,3329 - 1,5 = -0,1671; \\ &P = P_{z}' + \left(P_{z}'' - P_{z}'\right) \frac{\Delta P_{z}'}{\Delta P_{z}' - \Delta P_{z}''} = 1,0 + \left(1,5 - 1,0\right) \frac{0,2646}{0,2646 - \left(-0,1671\right)} = 1,31\,\mathrm{M}\Pi\mathrm{a}; \\ &P_{\mathrm{M36}} = 1,31 - 0,1 = 1,21\,\,\mathrm{M}\Pi\mathrm{a}; \\ &P_{\mathrm{M36}} = \left(1,21 \pm 0,14\right)\,\mathrm{M}\Pi\mathrm{a}. \end{split}$$

Таблица Е.2 — Пример расчета давления насыщенных паров при температуре минус 20 °C

Компо- нент	Молярная масса <i>М_і</i> , г/моль	Массовая доля <i>w_i</i> , %	w _i /M _i	Молярная доля <i>х_і</i>	<i>f</i> ′ _i ′ при <i>P</i> ′ _z ′ = 0,1 МПа	x _i f' _i	<i>f</i> _i ″ при <i>P</i> ″ = 0,5 МПа	x _i f _i "
C ₂ H ₆	30,070	2,4984	0,0831	0,0374	1,1500	0,0430	1,1500	0,0430
C ₃ H ₈	44,097	38,0098	0,8620	0,3880	0,2350	0,0912	0,2450	0,0951
C ₃ H ₆	42,081	38,0016	0,9031	0,4065	0,2800	0,1138	0,2900	0,1179
uC_4H_{10}	58,123	14,5005	0,2495	0,1123	0,0680	0,0076	0,0750	0,0084
<i>н</i> С ₄ Н ₁₀	58,123	0,9942	0,0171	0,0077	0,0425	0,0003	0,0435	0,0003
C ₄ H ₈	56,108	5,9955	0,1069	0,0481	0,0540	0,0026	0,0620	0,0030
Σ	_	100,0000	2,2217	1,0000	_	$P_0' = 0,2585$	_	$P_0'' = 0,2677$

$$\begin{split} &\Delta P_Z' = P_0' - P_z' = 0,2585 - 0,1 = 0,1585; \\ &\Delta P_Z'' = P_0'' - P_z'' = 0,2677 - 0,5 = -0,2323; \\ &P = P_Z' + \left(P_Z'' - P_Z'\right) \frac{\Delta P_Z'}{\Delta P_Z' - \Delta P_Z''} = 0,1 + \left(0,5 - 0,1\right) \frac{0,1585}{0,1585 - \left(-0,2323\right)} = 0,262 \ \text{M}\Pi a; \\ &P_{\text{M36}} = 0,262 - 0,1 = 0,16 \ \text{M}\Pi a; \\ &P_{\text{M36}} = \left(0,16 \pm 0,04\right) \ \text{M}\Pi a. \end{split}$$

0,1507

0,0065

0,0084

0,0004

0.0003

 $P_0'' = 0,2063$

Компо- нент	Молярная масса <i>М_і,</i> г/моль	Массовая доля <i>w_i</i> , %	w _i / M _i	Молярная доля х _і	f _i ' при P _z ' = 0,1 МПа	x _i f' _i	f _i " при P _z " = 0,5 МПа	$x_i f_i$ "
C ₂ H ₆	30,070	3,0312	0,1008	0,0445	0,8900	0,0396	0,9000	0,0400

0,8710

0,0310

0,0305

0,0150

0.0080

1,0000

0,1650

0,1930

0,2490

0,0268

0.0360

0,1437

0,0060

0,0076

0,0004

0,0003

 $P_0' = 0,1976$

0,1730

0,2100

0,2767

0,0285

0,0420

Т а б л и ц а Е.3 — Пример расчета давления насыщенных паров при температуре минус 30 °C

$$\begin{split} &\Delta P_z' = P_0' - P_z' = 0,1976 - 0,1 = 0,0976; \\ &\Delta P_z'' = P_0'' - P_z'' = 0,2063 - 0,5 = -0,2937; \\ &P = P_z' + \left(P_z'' - P_z'\right) \frac{\Delta P_z'}{\Delta P_z' - \Delta P_z''} = 0,1 + \left(0,5 - 0,1\right) \frac{0,0976}{0,0976 - \left(-0,2937\right)} = 0,1998 \ \text{M}\Pi a; \\ &P_{\text{M36}} = 0,1998 - 0,1 = 0,0998 \approx 0,10 \ \text{M}\Pi a; \\ &P_{\text{M36}} = \left(0,10 \pm 0,02\right) \ \text{M}\Pi a. \end{split}$$

1,9731

0.0702

0,0691

0,0340

0,0181

2,2653

87,0061

2,9551

4,0158

1,9750

1,0168

100,0000

44,097

42,081

58,123

58,123

56,108

 C_3H_8

 C_3H_6

 uC_4H_{10}

HC4H10

 C_4H_8

Т а б л и ц а Е.4 — Пример расчета давления насыщенных паров при температуре минус 35 °C

Компо- нент	Молярная масса <i>М_і</i> , г/моль	Массовая доля <i>w_i,</i> %	w _i / M _i	Молярная доля <i>х_і</i>	<i>f</i> ′ _{<i>i</i>} при <i>P</i> ′ _{<i>z</i>} = 0,1 МПа	$x_i f_i'$	f;" при P" = 0,5 МПа	$x_i f_i''$
C ₂ H ₆	30,070	6,0832	0,2023	0,0893	0,760	0,0679	0,775	0,0692
C ₃ H ₈	44,097	81,7078	1,8529	0,8180	0,130	0,1063	0,137	0,1121
<i>u</i> C ₄ H ₁₀	58,123	5,1272	0,0882	0,0389	0,034	0,0013	0,040	0,0016
<i>н</i> С ₄ Н ₁₀	58,123	7,0818	0,1218	0,0538	0,019	0,0010	0,021	0,0011
Σ	_	100,0000	2,2652	1,0000	_	$P_0' = 0,1765$	_	$P_0'' = 0,1840$

$$\begin{split} &\Delta P_z' = P_0' - P_z' = 0,1765 - 0,1 = 0,0765; \\ &\Delta P_z'' = P_0'' - P_z'' = 0,184 - 0,5 = -0,3160; \\ &P = P_z' + \left(P_z'' - P_z'\right) \frac{\Delta P_z'}{\Delta P_z' - \Delta P_z''} = 0,1 + \left(0,5 - 0,1\right) \frac{0,0765}{0,0765 - \left(-0,316\right)} = 0,178 \text{ M}\Pi a. \\ &P_{\text{M36}} = 0,178 - 0,1 = 0,078 \approx 0,08 \text{ M}\Pi a; \\ &P_{\text{M36}} = \left(0,08 \pm 0,02\right) \text{ M}\Pi a. \end{split}$$

FOCT 28656—2019

Библиография

[1]	РМГ 61	Государственная система обеспечения единства измерений. Показатели точности, правильности, прецизионности методик количественного химического анализа. Методы оценки
[2]	РМГ 76	Государственная система обеспечения единства измерений. Внутренний контроль качества результатов количественного химического анализа
[3]	РМГ 91	Государственная система обеспечения единства измерений. Совместное использование понятий «погрешность измерения» и «неопределенность измерения». Общие принципы

УДК 661.715-404:543.272.7:006.354

MKC 75.160.30

Ключевые слова: сжиженные углеводородные газы, расчетный метод определения плотности, определение давления насыщенных паров

БЗ 7—2018/74

Редактор *Л.С. Зимилова*Технический редактор *В.Н. Прусакова*Корректор *М.В. Бучная*Компьютерная верстка *Е.О. Асташина*

Сдано в набор 05.04.2019. Подписано в печать 23.04.2019. Формат $60 \times 84^{1}/_{8}$. Гарнитура Ариал. Усл. печ. л. 2,79. Уч.-изд. л. 2,23. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Поправка к ГОСТ 28656—2019 Газы углеводородные сжиженные. Расчетный метод определения плотности и давления насыщенных паров

Поправка к ГОСТ 28656—2019 Газы углеводородные сжиженные. Расчетный метод определения плотности и давления насыщенных паров

В каком месте	Напечатано		Дол	жно быть
Предисловие. Таблица согла- сования	_	Туркмения	TM	Главгосслужба «Туркменстандартлары»

(ИУС № 12 2021 г.)