
МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
(МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION
(ISC)

М Е Ж Г О С У Д А Р С Т В Е Н Н Ы Й
С Т А Н Д А Р Т

ГО СТ
34100 .3 .1— 2017/
ISO/IEC Guide 98-3/Suppl 1:2008

Н Е О П Р Е Д Е Л Е Н Н О С Т Ь  И ЗМ Е Р Е Н И Я

Ч а с т ь  3

Руководство по выражению неопределенности
измерения

Д о п о л н е н и е  1

Трансформирование распределений 
с использованием метода Монте-Карло

(ISO/IEC Guide 98-3/Suppl 1:2008, IDT)

Издание официальное

Москва
Стандартинформ

2018

скачать ту бесплатно

https://meganorm.ru/mega_doc/fire/opredelenie/12/opredelenie_moskovskogo_gorodskogo_suda_ot_17_09_2024_po.html


ГОСТ 34100.3.1—2017

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стан­
дартизации установлены в ГОСТ 1.0— 2015 «Межгосударственная система стандартизации. Основные 
положения» и ГОСТ 1.2— 2015 «Межгосударственная система стандартизации. Стандарты межгосудар­
ственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, при­
нятия, обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Межгосударственным техническим комитетом по стандартизации МТК 125 
«Статистические методы в управлении качеством продукции» на основе собственного перевода на рус­
ский язык англоязычной версии международного документа, указанного в пункте 5

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (про­
токол от 14 июля 2017 г. № 101-П)

За принятие проголосовали:

Краткое наименование страны по МК 
(ИСО 3166)004—97

Код страны по МК 
(ИСО 3166)004—97

Сокращенное наименование национального 
органа по стандартизации

Беларусь BY Госстандарт Республики Беларусь
Казахстан KZ Госстандарт Республики Казахстан
Киргизия KG Кыргызстандарт
Россия RU Росстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 12 сентября 
2017 г. № 1066-ст межгосударственный стандарт ГОСТ 34100.3.1— 2017/ISO/IEC Guide 98-3/ Suppl 1:2008 
введен в действие в качестве национального стандарта Российской Федерации с 1 сентября 2018 г.

5 Настоящий стандарт идентичен международному документу ISO/IEC Guide 98-3/Suppl 1:2008 
«Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения. 
Дополнение 1. Трансформирование распределений с использованием метода Монте-Карло» («Uncer­
tainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995) — Sup­
plement 1: Propagation of distributions using a Monte Carlo method», IDT).

Международный документ разработан Рабочей группой WG 1 Объединенного комитета по руко­
водствам в метрологии JCGM.

Официальные экземпляры международного стандарта, на основе которого подготовлен настоя­
щий межгосударственный стандарт, и международных стандартов, на которые даны ссылки, имеются в 
Федеральном агентстве по техническому регулированию и метрологии.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных междуна­
родных докуметов соответствующие им межгосударственные стандарты, сведения о которых приведе­
ны в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Июль 2018 г.

II



ГОСТ 34100.3.1—2017

Информация об изменениях к настоящему стандарту публикуется в ежегодном информаци­
онном указателе «Национальные стандарты» (по состоянию на 1 января текущего года), а текст 
изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». 
В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомле­
ние будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». 
Соответствующая информация, уведомление и тексты размещаются также в информационной 
системе общего пользования — на официальном сайте Федерального агентства по техническому 
регулированию и метрологии в сети Интернет (www.gost.ru)

© ISO/IEC, 2008 — Все права сохраняются 
© Стандартинформ, оформление, 2018

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроиз­
веден, тиражирован и распространен в качестве официального издания без разрешения Федерально­
го агентства по техническому регулированию и метрологии

https://meganorm.ru/Index2/1/4293843/4293843054.htm


ГОСТ 34100.3.1—2017

Содержание

1 Область применения...................................................................................................................................................1
2 Нормативные ссылки.................................................................................................................................................. 2
3 Термины и определения.............................................................................................................................................2
4 Соглашения и условные обозначения................................................................................................................... 5
5 Общие принципы......................................................................................................................................................... 6
6 Плотности распределения вероятностей входных величин...........................................................................16
7 Применение метода Монте-Карло.........................................................................................................................26
8 Проверка результатов.............................................................................................................................................. 32
9 Примеры...................................................................................................................................................................... 33
Приложение А (справочное) Историческая справка............................................................................................ 55
Приложение В (справочное) Коэффициенты чувствительности и бюджет неопределенности...............56
Приложение С (справочное) Формирование выборок из распределений вероятностей..........................57
Приложение D (справочное) Непрерывная аппроксимация функции распределения выходной

величины............................................................................................................................................62
Приложение Е (справочное) Интервал охвата для свертки четырех прямоугольных

распределений.................................................................................................................................64
Приложение F (справочное) Задача определения коэффициента рассогласования................................. 65
Приложение G (справочное) Основные обозначения.........................................................................................68
Приложение ДА (справочное) Сведения о соответствии ссылочных международных

документов межгосударственным стандартам......................................................................71
Приложение ДБ (справочное) Дополнительные замечания к межгосударственным 

стандартам, вводящим международные руководства в области
неопределенности измерения...................................................................................................72

Библиография................................................................................................................................................................75

IV



ГОСТ 34100.3.1—2017

Введение
0.1 Общие сведения

В настоящем стандарте рассматривается трансформирование распределений для заданной ма­
тематической модели измерений [ISO/IEC Guide 98-3:2008 (3.1.6)] с целью получения оценки неопреде­
ленности измерений и реализация этой процедуры методом Монте-Карло. Метод применим к моделям 
с произвольным числом входных величин и единственной выходной величиной.

Метод Монте-Карло является практической альтернативой способу оценки неопределенности по 
GUM [ISO/IEC Guide 98-3:2008 (3.4.8)]. Метод имеет особое значение, когда:

a) линеаризация модели не обеспечивает ее адекватного представления;
b ) распределение выходной величины, например, вследствие своей выраженной асимметрии не 

может быть описано нормальным распределением (распределением Гаусса) или масштабированным 
смещенным /-распределением.

В случае а) оценки выходной величины и соответствующей стандартной неопределенности, по­
лученные в соответствии с GUM, могут оказаться недостоверными. В случае Ь) при оценке неопреде­
ленности могут быть получены недостоверные интервалы охвата (обобщение понятия расширенной 
неопределенности, используемого в GUM).

GUM [ISO/IEC Guide 98-3:2008 (3.4.8)] «...устанавливает общую методологию оценивания не­
определенности...», основанную на использовании закона трансформирования неопределенностей 
[ISO/IEC Guide 98-3:2008 (раздел 5)], когда выходная величина подчиняется нормальному распределению 
или масштабированному смещенному /-распределению [ISO/IEC Guide 98-3:2008 (G.6.2, G.6.4)]. При 
этом закон трансформирования неопределенностей позволяет учесть неопределенности входных ве­
личин и вычислить стандартную неопределенность оценки выходной величины на основе:

1) наилучших оценок входных величин;
2) стандартных неопределенностей оценок входных величин;
3) числа степеней свободы для стандартных неопределенностей оценок входных величин;
4) всех ненулевых ковариаций пар этих оценок.
Кроме того, полученная плотность распределения вероятностей выходной величины позволяет 

определить для выходной величины интервал охвата с заданной вероятностью.
Наилучшие оценки входных величин, их стандартные неопределенности, ковариации и числа 

степеней свободы представляют собой ту информацию, которая необходима для применения метода 
расчета неопределенности по GUM. Метод, устанавливаемый настоящим стандартом, основан на ис­
пользовании плотностей распределения вероятностей входных величин для последующего расчета 
плотности распределения вероятностей выходной величины.

В то время как для применения способа оценивания неопределенности по GUM существуют 
некоторые ограничения, трансформирование распределений всегда позволяет получить плотность 
распределения вероятностей выходной величины на основе распределений входных величин. 
Плотность распределения вероятностей выходной величины представляет собой выражение знания 
об этой величине, полученного на основе знаний о входных величинах в виде сопоставленных им 
распределений. После получения плотности распределения вероятностей выходной величины могут 
быть определены математическое ожидание, используемое в качестве оценки выходной величины, и 
стандартное отклонение, используемое в качестве стандартной неопределенности этой оценки. Кроме 
того, плотность распределения вероятностей может быть использована для получения интервала 
охвата для выходной величины, соответствующего заданной вероятности.

Использование плотностей распределения вероятностей в соответствии с настоящим стандартом 
в основном согласуется с принципами GUM. Плотность распределения вероятностей величины отражает 
состояние знаний об этой величине, т. е. она численно определяет степень доверия тем значениям, 
которые могут быть приписаны упомянутой величине на основе доступной информации. Информация 
обычно состоит из необработанных статистических данных, результатов измерения, научных выводов, 
профессиональных суждений.

Для построения плотности распределения вероятностей случайной переменной на основе на­
блюдений может быть применена теорема Байеса [27, 33]. Информация о систематических эффек­
тах может быть преобразована в соответствующую плотность распределения вероятностей на основе 
принципа максимума энтропии [51, 56].

V
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Трансформирование распределений имеет более широкую область применения, чем способ 
оценивания неопределенности по GUM. Метод трансформирования распределений использует более 
обширную информацию, чем та, что содержится в наилучших оценках и соответствующих стандартных 
неопределенностях (а также в числах степеней свободы и ковариациях).

Исторический обзор приведен в приложении А.

П р и м е ч а н и е  1 — В GUM рассматривается случай, когда линеаризация модели измерения непримени­
ма [ISO/IEC Guide 98-3:2008 (примечание к 5.1.2)]. Однако это рассмотрение ограничено использованием только 
основных нелинейных членов в ряде Тейлора для функции измерения, а также предположением о нормальности 
распределения входных величин.

П р и м е ч а н и е  2 — Строго говоря, в GUM f-распределение описывает не выходную величину У, а величину 
{Y-y)lu(y) [точнее, как указано в GUM, (у -  Y)/u{y)], где у — оценка У, и(у) — стандартная неопределенность оценки 
у [ISO/IEC Guide 98-3:2008 (G.3.1)]. Такое представление использовано и в настоящем стандарте.

П р и м е ч а н и е  3 — Плотность распределения вероятностей не следует понимать в смысле частотного 
описания вероятности.

П р и м е ч а н и е  4 — «Оценивание неопределенности нельзя рассматривать как типовую задачу, требую­
щую применения стандартных математических процедур. От пользователя требуется детальное знание природы 
измеряемой величины и процедуры измерения. Поэтому качество оценки неопределенности, приписанной резуль­
тату измерений, зависит в конечном счете от понимания, критического анализа и профессиональной добросовест­
ности всех лиц, принимающих участие в ее получении» [17].

0.2 Основные сведения о JCGM

В 1997 г. семью международными организациями, подготовившими в 1993 г. «Руководство по вы­
ражению неопределенности измерения» (GUM) и «Международный словарь по метрологии. Основ­
ные и общие понятия и связанные с ними термины» (VIM), был образован Объединенный комитет по 
руководствам в метрологии (JCGM), возглавляемый директором Международного Бюро Мер и Весов 
(МБМВ), который принял на себя ответственность за указанные документы от Технической консульта­
тивной группы по метрологии (ИСО/ТАГ 4).

Учредителями JCGM помимо МБМВ являются Международная электротехническая комиссия 
(МЭК), Международная федерация клинической химии и лабораторной медицины (МФКХ), Междуна­
родное сотрудничество по аккредитации лабораторий (ИЛАК), Международная организация по стандар­
тизации (ИСО), Международный союз теоретической и прикладной химии (ИЮПАК), Международный 
союз теоретической и прикладной физики (ИЮПАП) и Международная организация по законодатель­
ной метрологии (МОЗМ).

В рамках JCGM созданы две рабочие группы (РГ). Задачей РГ 1 «Выражение неопределенности 
измерения» являются содействие использованию Руководства (GUM), подготовка дополнений к Ру­
ководству и иных документов, способствующих его широкому применению. Задачей РГ 2, «Рабочей 
группы по Международному словарю основных и общих терминов в метрологии (VIM)», являются пере­
смотр VIM и содействие его применению. Более подробную информацию о деятельности JCGM можно 
найти на сайте www.bipm.org.

Дополнения к GUM, подобные тому, что положено в основу настоящего стандарта, имеют целью 
распространить руководство на те аспекты, которые в этом руководстве в полной мере не отражены. 
При этом, однако, разрабатываемые дополнения соответствуют, насколько это возможно, общей мето­
дологии, изложенной в GUM.

VI
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М Е Ж Г О С У Д А Р С Т В Е Н Н Ы Й  С Т А Н Д А Р Т

НЕОПРЕДЕЛЕННОСТЬ ИЗМЕРЕНИЯ 

Ч а с т ь  3
Руководство по выражению неопределенности измерения 

Д о п о л н е н и е  1

Трансформирование распределений с использованием метода Монте-Карло

Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement. 
Supplement 1. Propagation of distributions using a Monte-Carlo method

Дата введения — 2018—09—01

1 Область применения
В настоящем стандарте установлен численный метод, согласующийся с основными принципами 

GUM [ISO/IEC Guide 98-3:2008 (G.1.5)] и предназначенный для получения оценки неопределенности 
измерения. Этот метод может быть применен к любым моделям, имеющим единственную выходную ве­
личину, в которых входные величины характеризуются любыми заданными функциями распределения 
вероятностей [ISO/IEC Guide 98-3:2008 (G.1.4, G.5.3)].

Так же как GUM, настоящий стандарт посвящен вопросам определения выражения для неопре­
деленности измерения хорошо определенной физической величины, характеризуемой единственным 
значением [ISO/IEC Guide 98-3:2008 (1.2)].

В настоящем стандарте установлены также методы, применимые в ситуациях, когда условия при­
менения способа расчета неопределенности по GUM [ISO/IEC Guide 98-3:2008 (G.6.6)] не выполняются 
или информация об их выполнении отсутствует. Стандарт также может быть применен в ситуациях, 
когда возникают трудности при оценке неопределенности по GUM, например вследствие сложности 
модели. Методы изложены в виде, облегчающем их программирование для расчетов на компьютере.

Настоящий стандарт может быть использован для определения плотности распределения веро­
ятностей выходной величины, что позволяет получить:

a) оценку выходной величины;
b) стандартную неопределенность, ассоциированную с этой оценкой;
c) интервал охвата для выходной величины, соответствующий заданной вероятности охвата.
При заданных (i) модели, описывающей взаимосвязь входных величин с выходной величиной,

и (м) плотностях распределения вероятностей входных величин существует единственная плотность 
распределения вероятностей выходной величины. Как правило, последняя не может быть определена 
аналитически. Настоящий стандарт позволяет определить величины, указанные в перечислениях а),
Ь) и с) с приемлемой точностью, не используя приближений, которые нельзя оценить количественно.

Настоящий стандарт позволяет получить интервал охвата для заданной вероятности охвата, в 
том числе вероятностно симметричный и наименьший интервалы.

Настоящий стандарт применим к статистически независимым входным величинам с соответству­
ющими функциями плотности распределения вероятностей, а также к статистически зависимым слу­
чайным переменным, описанным совместной плотностью распределения.

Как правило, настоящий стандарт применяют в случаях, когда:
-вклад разных составляющих неопределенности может быть существенно неодинаков [ISO/IEC 

Guide 98-3:2008 (G.2.2)];
-трудно или неудобно находить частные производные от функции измерения, как того требует 

закон трансформирования неопределенностей;

Издание официальное

1
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- распределение выходной величины нельзя считать ни нормальным, ни масштабированным сме­
щенным t-распределением [ISO/IEC Guide 98-3:2008 (G.6.5)];

- оценка выходной величины и соответствующая стандартная неопределенность имеют приблизи­
тельно одинаковое значение [ISO/IEC Guide 98-3:2008 (G.2.1)];

- модель является достаточно сложной [ISO/IEC Guide 98-3:2008 (G.1.5)];
-плотности распределения вероятностей входных величин асимметричны [ISO/IEC Guide 

98-3:2008 (G.5.3)].
Прежде чем применять метод, установленный настоящим стандартом, рекомендуется проверить, 

позволяют ли условия измерительной задачи использовать способ оценивания неопределенности по 
GUM. Если условия позволяют, то основным методом расчета остается оценивание неопределенности 
способом, установленным в GUM.

Значение для неопределенности измерений, как правило, достаточно приводить с одной или дву­
мя значащими цифрами. Методы, установленные настоящим стандартом, позволяют получить оценки 
с указанной точностью.

Применение стандарта иллюстрировано подробными примерами.
Настоящий стандарт служит дополнением к GUM и должен быть использован вместе с ним. Он не 

исключает использования других методов расчета неопределенности, не противоречащих GUM.

П р и м е ч а н и е  1 — Настоящий стандарт неприменим к моделям, описываемым многозначными функци­
ями (например, в виде решения квадратного уравнения без указания, какой из корней должен быть выбран).

П р и м е ч а н и е  2 — В настоящем стандарте не рассмотрен случай, когда априорно известна плотность 
распределения вероятностей выходной величины, однако установленный в нем метод может быть модифицирован 
и для этой ситуации [16].

2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие документы:
ISO/IEC Guide 98-3:2008, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty 

in measurement (GUM:1995) (Неопределенность измерения. Часть 3. Руководство по выражению не­
определенности измерения (GUM:1995))

ISO/IEC Guide 99:2007, International vocabulary of metrology — Basic and general concepts and 
associated terms (VIM) (Международный словарь по метрологии. Основные и общие понятия и связан­
ные с ними термины (VIM))

3 Термины и определения
В настоящем стандарте применены термины по ISO/IEC Guide 98-3 и ISO/IEC Guide 99, некоторые 

из которых (при необходимости модифицированные) приведены в настоящем разделе.
Обозначения, использованные в настоящем стандарте, приведены в приложении G.
3.1 распределение (вероятностей) (probability distribution): Функция, устанавливающая вероят­

ность того, что случайная переменная принимает заданное значение или принадлежит к заданному 
множеству значений.

П р и м е ч а н и е  — Сумма вероятностей принятия случайной переменной всех возможных значений равна 1.

[Модифицировано по отношению к ISO 3534-1:1993, словарная статья 1.3, ISO/IEC Guide 
98-3:2008, словарная статья С.2.3]

П р и м е ч а н и е  1 — Распределение вероятностей называется одномерным, если оно описывает пове­
дение единственной (скалярной) случайной переменной, и многомерным, если оно описывает поведение вектора 
случайных переменных. Многомерное распределение вероятностей описывается также совместным распределе­
нием этих случайных переменных.

П р и м е ч а н и е  2 — Распределение вероятностей может быть представлено в виде функции распределе­
ния и плотности распределения вероятностей.

3.2 функция распределения (вероятностей) (distribution function): Функция, устанавливающая 
для каждого значения £, вероятность того, что случайная переменная X  меньше или равна

Gx(£) = Рг(Х< £).

[Модифицировано по отношению к ISO 3534-1:1993, словарная статья 1.4; ISO/IEC Guide 
98-3:2008, словарная статья С.2.4]
2



ГОСТ 34100.3.1—2017

3.3 плотность распределения (вероятностей) (probability density function): Первая производная, 
если она существует, функции распределения непрерывной случайной переменной

= d

П р и м е ч а н и е  — Qxfe) d^ называется «элементом вероятности»:
Qx^dt, = Pr(^ < X < I; + d^).

[Модифицировано по отношению к ISO 3534-1:1993, словарная статья 1.5; ISO/IEC Guide 98- 
3:2008, словарная статья С.2.5]

3.4 нормальное распределение (вероятностей) (normal distribution): Распределение вероят­
ностей непрерывной случайной переменной X  такое, что соответствующая плотность распределения 
вероятностей для -  оо < £ < + оо имеет вид:

З х (У  =
1

g-s/Zjt
exp 1 |Ч - д

2 V а )

П р и м е ч а н и е  — ц — математическое ожидание X, о — стандартное отклонение X.

[Модифицировано по отношению к ISO 3534-1:1993, словарная статья 1.37; Руководство ISO/IEC 
Guide 98-3:2008, словарная статья С.2.14]

П р и м е ч а н и е  — Нормальное распределение называют также распределением Гаусса.

3.5 ^-распределение (f-distribution): Распределение вероятностей непрерывной случайной пере­
менной X, плотность распределения вероятностей которой для -  оо < £ < + оо имеет вид

9х (5) =
r [(v  + 1)/2]
VicvГ( v/2)

2 ^
i + i -

-(v+1)/2

где v — число степеней свободы (положительное целое число);

r ( z )  = j f z_1e_fc/f — гамма-функция, z > 0.
о

3.6 математическое ожидание (expectation): Характеристика случайной переменной, которая 
для непрерывной случайной переменной X  с плотностью распределения вероятностей д ^ )  имеет вид

E ( X ) = ] i g x ( l ) d l .

П р и м е ч а н и е  1 — Не всякая случайная переменная имеет математическое ожидание. 
П р и м е ч а н и е  2 — Математическое ожидание случайной переменной Z = F(X) имеет вид:

E(Z) = E [ F ( X ) ] =  Е ф З х Й И -

3.7 дисперсия (variance): Характеристика случайной переменной, которая для непрерывной слу­
чайной переменной X  с плотностью распределения вероятностей д ^ )  имеет вид

V ( X ) = ] [ % - E ( X ) f g x ( ^ .

П р и м е ч а н и е  — Не всякая случайная переменная имеет дисперсию.

3.8 стандартное отклонение (standard deviation): Положительный квадратный корень из диспер­
сии, [V(X)]V2.

3.9 момент порядка г (moment of order г): Математическое ожидание r-й степени случайной пере­
менной

-foo

E ( x r)= JS 'g x ($ )r fS .

3
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П р и м е ч а н и е  1 — Центральным моментом порядка г является математическое ожидание случайной 
переменной Z = [X -  Е(Х)]Г.

П р и м е ч а н и е  2 — Математическое ожидание Е(Х) представляет собой момент первого порядка. Дис­
персия ЦХ) является центральным моментом второго порядка.

3.10 ковариация (covariance): Характеристика двух случайных переменных, которая в случае не­
прерывных случайных переменных Х 1 и Х2 с совместной плотностью распределения дх(£), где X  = (Х-р 
Х2)т, % =(^1, %2)т, имеет вид

C ov(X 1,X2)=  J j [ ^ - E ( X , ) ] [ S , 2 - E ( X 2) ]g x { k ) d ^ 2

П р и м е ч а н и е  — Не все пары случайных переменных имеют ковариацию.

3.11 матрица неопределенности (uncertainty matrix): Матрица размерности N * N, на главной 
диагонали которой расположены квадраты стандартных неопределенностей, соответствующих оцен­
кам-компонентам векторной величины размерности Л/, а остальные элементы представляют собой ко­
вариации для соответствующих оценок.

П р и м е ч а н и е  1 — Матрица неопределенности Ux размерности N * N, соответствующая вектору оценок 
х векторной величины X, имеет вид:

• u (xb xN )

u (xN ,X,) ■ u (xN,xN)

где u(xr X,) = и2(Ху) — дисперсия (квадрат стандартной неопределенности) оценки х
и(хг У]) — ковариация х, и х u(xh xj) = 0, если элементы X,- и Ху вектора X  некореллированны.

П р и м е ч а н и е  2 — Ковариации также можно трактовать как совместные неопределенности.
П р и м е ч а н и е  3 — Матрицу неопределенности также называют матрицей ковариаций или дисперсионно­

ковариационной матрицей.

3.12 интервал охвата1) (coverage interval): Интервал, построенный на основе имеющейся инфор­
мации и содержащий значение случайной переменной с заданной вероятностью.

П р и м е ч а н и е  1 — Интервал охвата иногда называют байесовским интервалом.
П р и м е ч а н и е  2 — В общем случае для заданной вероятности существует более одного интервала 

охвата.
П р и м е ч а н и е  3 — Интервал охвата не следует называть доверительным интервалом, чтобы избежать 

путаницы с термином, имеющим строгую статистическую интерпретацию [ISO/IEC Guide 98-3:2008 (6.2.2)].
П р и м е ч а н и е  4 — Данное определение отличается от определения, приведенного в ISO/IEC Guide 

99:2007, поскольку в настоящем стандарте не использован термин «истинное значение» по причинам, изложенным 
в GUM [ISO/IEC Guide 98-3:2008 (Е.5)].

3.13 вероятность охвата (coverage probability): Вероятность того, что значение случайной пере­
менной находится в границах интервала охвата.

П р и м е ч а н и е  — Вероятность охвата иногда называют уровнем доверия [Руководство ISO/IEC Guide 
98-3:2008 (6.2.2)].

3.14 длина интервала охвата (length of a coverage interval): Разность наибольшего и наименьше­
го значений интервала охвата.

3.15 вероятностно симметричный интервал охвата (probabilistically symmetric coverage interval): 
Интервал охвата, для которого вероятность того, что значение случайной переменной меньше наи­
меньшего значения (нижней границы) интервала охвата, равна вероятности того, что значение случай­
ной переменной больше наибольшего значения (верхней границы) интервала.

3.16 наименьший интервал охвата (shortest coverage interval): Интервал охвата, имеющий наи­
меньшую длину среди всех возможных интервалов охвата для данной случайной переменной с одина­
ковой вероятностью охвата.

3.17 трансформирование распределений (propagation of distributions): Метод, используемый 
для определения распределения выходной величины на основе распределения входных величин, от 
которых выходная величина зависит функционально.

П р и м е ч а н и е  — Метод может быть аналитическим или численным, точным или приближенным.

1) В отечественных нормативных документах интервал охвата иногда называют интервалом неопределенности.
4
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3.18 способ оценивания неопределенности по GUM (GUM uncertainty framework): Применение 
закона трансформирования неопределенностей и описание выходной величины с помощью нормаль­
ного распределения или масштабированного смещенного f-распределения, по которым может быть 
рассчитан соответствующий интервал охвата.

3.19 метод Монте-Карло (Monte-Carlo method): Метод трансформирования распределений на ос­
нове моделирования случайных выборок из этих распределений.

3.20 предел погрешности вычисления (numerical tolerance): Половина длины наименьшего ин­
тервала, содержащего все числа, отражающие результат вычислений, которые могут быть корректно 
представлены заданным числом значащих цифр.

Пример — При использовании в представлении результата вычисления двух значащих цифр запи­
си 1,8 соответствуют все числа более 1,75 и менее 1,85. Тогда предел погрешности вычисления будет 
равен (1,85 -  1,75)/2 = 0,05.

П р и м е ч а н и е  — Расчет предела погрешности вычисления — см. 7.9.2.

4 Соглашения и условные обозначения
В настоящем стандарте использованы следующие соглашения и условные обозначения.
4.1 Математическая модель измерения [ISO/IEC Guide 98-3:2008 (4.1)] одномерной (скалярной) 

величины может быть представлена в виде функции f\

у = т  (1)
где У — выходная скалярная величина, а X — вектор N входных величин (X.,, ..., X N)T. Каждая величина 
X, рассматривается в качестве случайной переменной, принимающей значения с математическим 
ожиданием хг У — случайная переменная, принимающая значения т|, с математическим ожиданием у.

П р и м е ч а н и е  1 — В настоящем стандарте один и тот же символ использован для физической величины 
и случайной переменной, которая эту величину представляет [см. ISO/IEC Guide 98-3:2008 (4.1.1, примечание 1)].

П р и м е ч а н и е  2 — Хотя многие модели измерений могут быть представлены формулой (1), более общим 
представлением является

/?(У,Х) = 0,

где X и У связаны между собой неявной функцией h. В любом случае для применения метода Монте-Карло доста­
точно, чтобы каждому допустимому X  было поставлено в соответствие значение У.

4.2 Настоящий стандарт отступает от обозначений, часто используемых для обозначения плот­
ностей распределения вероятностей и функций распределения [24]. В GUM одно и то же обозначение 
f  использовано как для функции измерения, так и для плотности распределения вероятностей, чем 
создается некоторая путаница. Поскольку в настоящем стандарте моделям уделено особое внимание, 
для плотности распределения вероятностей и функции распределения вместо обозначений f  и F ис­
пользованы соответственно g и 6. Используемые в обозначениях индексы соответствуют случайной 
переменной, о которой идет речь. Обозначение доставлено для описания функции измерения.

П р и м е ч а н и е  — Определения, приведенные в разделе 3, даны в соответствии с изложенным соглаше­
нием об обозначениях.

4.3 В настоящем стандарте плотности распределения вероятностей могут быть определены для 
скалярной X  или векторной X  случайных переменных. Для скалярной случайной переменной X  плот­
ность распределения вероятностей обозначена g^ ) ,  где £, — возможное значение X. Случайной пере­
менной X  соответствуют математическое ожидание Е(Х) и дисперсия ЦХ) (см. 3.6, 3.7).

4.4 Плотность распределения вероятностей векторной случайной переменной X  обозначают 
д*(£), гДе £ = (^1- •••. ^л/)Т — вектор возможных значений X. Вектор X  рассматривают как вектор случай­
ных переменных, которому соответствуют вектор математических ожиданий Е(Х) и ковариационная 
матрица V(X).

4.5 Плотность распределения вероятностей нескольких случайных переменных часто называют 
совместной, даже если все входные величины являются независимыми.

4.6 Если элементы X, вектора X  независимы, плотность распределения вероятностей X, обозна-

4.7 Плотность распределения вероятностей и функцию распределения для У обозначают g у(г|) и 
Gy(ri) соответственно.

5
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4.8 В настоящем стандарте случайную переменную обозначают прописной буквой, а ее матема­
тическое ожидание или оценку — соответствующей строчной буквой. Например, оценку величины У 
(оценку ее математического ожидания) обозначают буквой у. Такое обозначение часто неудобно в слу­
чае физических величин, для которых традиционно используют иные символы, например Г для темпе­
ратуры и t для времени. Поэтому в некоторых примерах (раздел 9) использованы другие обозначения. 
В этом случае случайная переменная обозначена своим общепринятым символом, а ее оценка (оценка 
ее математического ожидания) — тем же символом с «крышкой». Например, отклонение калибруемой 
концевой меры длины от номинального значения при 20 °С (см. 9.5) обозначено 5L, а его оценка — 5L.

П р и м е ч а н и е  — Символ с «крышкой» в литературе по математической статистике используют для обо­
значения оценки.

4.9 В настоящем стандарте термин «закон трансформирования неопределенностей» используют 
в смысле аппроксимации функции измерения рядом Тейлора первого порядка. Этот термин также мо­
жет быть применен при использовании разложения в ряд более высокого порядка.

4.10 Подстрочный индекс «с» для суммарной стандартной неопределенности [ISO/IEC Guide 
98-3:2008 (5.1.1)] в настоящем стандарте рассматривается как излишний. Стандартная неопределен­
ность оценки у выходной величины У может быть записана как и(у), хотя использование обозначения 
ис(у) остается допустимым, если это помогает заострить внимание на том, что имеется в виду суммар­
ная стандартная неопределенность. Определение «суммарная» в данном контексте также является 
излишним и может быть опущено, поскольку присутствие символа «у» в и(у) уже указывает на оценку, 
с которой ассоциирована данная стандартная неопределенность. Еще более неуместным становит­
ся использование нижнего индекса «с» и определения «суммарная», когда результаты одного или не­
скольких измерений и соответствующие оценки неопределенности являются исходными данными для 
получения оценки неопределенности последующей величины.

4.11 В настоящем стандарте использованы термины «интервал охвата» и «вероятность охвата». 
В GUM в качестве синонима «вероятности охвата» использован термин «уровень доверия» с пред­
упреждением, что это не то же самое, что «доверительная вероятность» [ISO/IEC Guide 98-3:2008 
(6.2.2)], поскольку последний термин имеет специальное определение в математической статистике. 
Так как в некоторых языках перевод с английского терминов «уровень доверия» и «доверительная ве­
роятность» совпадает, в настоящем стандарте термин «уровень доверия» не используется.

4.12 Для обозначения десятичной дроби используется запятая1).
4.13 Если не определено иначе, то числа представляют с заданным количеством значащих цифр.

Пример — Числа 0,060, 0,60, 6,0 и 60 представлены с точностью до двух значащих цифр. В этом 
случае запись с точностью только до одной значащей цифры: 0,06, 0,6 и 6 1 01 — будет некорректной.

4.14 Некоторые символы, использованные в настоящем стандарте, имеют более одного значения 
(см. приложение G). Однако их смысл понятен из контекста.

4.15 В настоящем стандарте использованы следующие сокращения:
CGPM — Генеральная конференция по мерам и весам;
IEEE — Институт инженеров электротехники и электроники;
JCGM — Объединенный комитет по руководствам в метрологии;
GUM — Руководство по выражению неопределенности измерения;
VIM — Международный словарь по метрологии. Основные и общие понятия и связанные с ними 

термины.

5 Общие принципы
5.1 Основные этапы оценки неопределенности

5.1.1 Основные этапы оценки неопределенности включают в себя формулировку измерительной 
задачи, трансформирование распределений и получение окончательного результата:

а) формулировка измерительной задачи включает в себя:
1) задание выходной величины У (измеряемой величины);
2) выявление входных величин Х = (X.,, ..., XN)J, от которых зависит выходная величина У;
3) составление модели измерения, определяющей взаимосвязь У с входными величинами X;

1) В оригинале на английском языке в данном подразделе указывается на использование в качестве деся­
тичного знака точки вместо запятой.
6
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4) приписывание распределений вероятностей (нормального, прямоугольного и т. д.) входным 
величинам X, (или совместного распределения вероятностей входным величинам, не явля­
ющимся независимыми) на основе имеющейся информации,

b ) трансформирование распределений предусматривает определение плотности распределения 
вероятностей выходной величины У на основе плотностей распределения вероятностей входных вели­
чин Xj и используемой модели измерения,

c) получение окончательного результата предполагает использование плотности распределения 
вероятностей выходной величины У для определения:

1) оценки математического ожидания величины У в виде оценки у;
2) оценки стандартного отклонения величины У в виде стандартной неопределенности и(у), 

ассоциированной с у  [ISO/IEC Guide 98-3:2008 (Е.3.2)];
3) интервала охвата для величины У, соответствующего заданной вероятности (вероятности 

охвата).

П р и м е ч а н и е  1 — В некоторых случаях оценка выходной величины в виде математического ожидания 
может оказаться неприемлемой [см. ISO/IEC Guide 98-3:2008 (4.1.4)].

П р и м е ч а н и е  2 — Некоторые величины, например подчиняющиеся распределению Коши, не имеют 
математического ожидания и стандартного отклонения. Однако интервал охвата для выходной величины всегда 
может быть построен.

5.1.2 При оценке неопределенности по GUM функции распределения входных величин в явном 
виде не используют. Однако в соответствии с ISO/IEC Guide 98-3:2008 (3.3.5) «...стандартную неопре­
деленность типа А рассчитывают по плотности распределения вероятностей..., полученной из рас­
пределения частот..., а стандартную неопределенность типа В — по предполагаемой плотности рас­
пределения вероятностей, отражающей степень уверенности в появлении того или иного события... 
Оба подхода используют общепринятые интерпретации понятия вероятности».

П р и м е ч а н и е  — Трактовка распределения вероятностей при определении оценки неопределенности 
типа В характерна для байесовского анализа [21,27]. В настоящее время продолжаются исследования [22] границ 
применимости формулы Уэлча-Саттертуэйта для расчета числа степеней свободы, приписываемых стандартной 
неопределенности.

5.1.3 Формулировку измерительной задачи осуществляет метрологе возможным участием специ­
алиста в той области знаний, в которой проводят измерение. В настоящем стандарте приведены реко­
мендации по выбору плотности распределения вероятностей [стадия 4) этапа а) в соответствии с 5.1.1] 
для некоторых общих случаев (см. 6.4). Этапы трансформирования распределений и получения окон­
чательных результатов [б) и в) в соответствии с 5.1.1], для которых приведены подробные указания, не 
требуют дополнительной метрологической информации и могут быть выполнены с любой допустимой 
точностью для поставленной задачи.

П р и м е ч а н и е  — Как только этап постановки задачи а) в соответствии с 5.1.1 выполнен, тем самым плот­
ность распределения вероятностей для выходной величины формально полностью определена. Однако вычис­
ление математического ожидания, стандартного отклонения и интервала охвата может потребовать применения 
численных методов, обладающих некоторой степенью приближения.

5.2 Трансформирование распределений

В настоящем стандарте рассматривается общий эффективный способ определения (численным 
методом) функции распределения случайной переменной У:

л
М л ) =  J g y (z )d z .

Этот способ основан на применении метода Монте-Карло для трансформирования распределе­
ний входных величин (см. 5.9).

П р и м е ч а н и е  — Формально плотность распределения вероятностей случайной переменной У можно 
представить в следующем виде [9]:

оо сю

0 у (л )=  |  9 x (5 )8 [ iW ( I L H i
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где 5[г| -  f(|)] — дельта функция Дирака, и применять численные методы вычисления N-кратного интеграла (по­
скольку в общем случае он не может быть взят аналитически). Однако такой способ численного вычисления плот­
ности распределения вероятностей Y неэффективен.

5.3 Получение окончательного результата

5.3.1 Оценка у  входной величины У представляет собой оценку математического ожидания E(Y). 
Стандартная неопределенность и(у) оценки у  представляет собой оценку стандартного отклонения У, 
т. е. положительный квадратный корень из дисперсии V(Y).

5.3.2 Интервал охвата для У может быть определен на основе Gy(ri). Если задать требуемую ве­
роятность охвата р и взять любое число а из интервала от нуля до (1 -  р), то границами 100р %-ного 
интервала охвата для У будут значения G y1(a) и G y1(p + а), т. е. квантили распределения Gy{ri) уров­
ней а и р + а соответственно.

5.3.3 Выбор a = (1 -  р)/2 позволяет определить вероятностно симметричный 100р %-ный интервал 
охвата, границами которого являются квантили уровней (1 -  р)/2 и (1 + р)/2.

П р и м е ч а н и е  — Если плотность распределения вероятностей для У симметрична относительно мате­
матического ожидания у, то полученный интервал будет совпадать с интервалом у ± Up, где расширенная неопре­
деленность Up [ISO/IEC Guide 98-3:2008 (2.3.5)] равна произведению стандартной неопределенности и(у) на ко­
эффициент охвата, соответствующий данной плотности распределения вероятностей. В общем случае плотность 
распределения вероятностей выходной величины не может быть выражена в аналитическом виде.

5.3.4 Если плотность распределения вероятностей асимметрична, то более подходящим мо­
жет быть выбор а, отличающейся от (1 -  р)12, например позволяющий получить наименьший 
100р %-ный интервал охвата. Если плотность распределения вероятностей унимодальна, то оно обла­
дает таким свойством, что наименьший интервал охвата будет включать в себя моду этого распределе­
ния. Данному интервалу будет соответствовать значение а, удовлетворяющее соотношению gfy[Gy1(a)] = 
= gy[G y1(p + а)]. В случае распределения общего вида значение а, соответствующее наименьшему 
100р %-ному интервалу охвата, должно быть таким, чтобы разность G y1(p + a) -  G y1 (а) была мини­
мальна.

5.3.5 Для симметричной плотности распределения вероятностей, например для нормального или 
масштабированного смещенного ^-распределения, используемых при оценивании неопределенности 
по GUM, вероятностно симметричный и наименьший 100р %-ный интервалы охвата совпадают между 
собой. Поэтому в способе оценивания неопределенности по GUM эти интервалы не различают.

5.3.6 На рисунке 1 показана функция распределения Gy(r|), соответствующая асимметричной 
плотности распределения вероятностей. Пунктирными вертикальными линиями показаны границы ве­
роятностно симметричного 95 %-ного интервала охвата, а пунктирными горизонтальными линиями — 
соответствующие значения вероятности -  0,025 и 0,975. Сплошными линиями показаны границы наи­
меньшего 95 %-ного интервала охвата и соответствующие значения вероятности, которые в данном 
случае равны 0,006 и 0,956. Длина этих двух интервалов охвата для данного примера составляет соот­
ветственно 1,76 и 1,69.
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Рисунок 1 — Функция распределения Gy(r|), вероятностно симметричный 
и наименьший 95 %-ные интервалы охвата

5.4 Способы трансформирования распределений

5.4.1 Трансформирование распределений осуществляют несколькими способами:
a) аналитическими методами, обеспечивающими определение плотности распределения вероят­

ностей для У за счет применения математических преобразований;
b) применением закона трансформирования неопределенностей, основанного на замене функции 

измерения ее аппроксимацией рядом Тейлора с членами первого порядка [ISO/IEC Guide 98-3:2008 
(5.1.2)];

c) применением того же закона трансформирования неопределенностей [см. перечисление Ь) 
выше], но с учетом членов разложения более высокого порядка [ISO/IEC Guide 98-3:2008 (примечание 
к 5.1.2)];

d) численными методами [ISO/IEC Guide 98-3:2008 (G.1.5)], в том числе с использованием метода 
Монте-Карло (см. 5.9).

П р и м е ч а н и е  1 — Аналитические методы превосходят все прочие с той точки зрения, что они не ис­
пользуют приближений. Однако они применимы только в простых случаях. Применение аналитических методов и 
примеры их использования приведены в [8,13]. Далее эти методы в настоящем стандарте рассматриваются только 
в примерах (см. раздел 9).

П р и м е ч а н и е  2 — Метод Монте-Карло в настоящем стандарте используется для получения распреде­
ления выходной величины, а не в качестве метода имитационного моделирования. При оценке неопределенности 
на этапе трансформирования распределений решаемая задача является детерминированной, поэтому в имитаци­
онном моделировании случайного процесса нет необходимости.

5.4.2 GUM допускает применение подходов к оценке неопределенности, отличных от того, что ис­
пользован в самом GUM [см. ISO/IEC Guide 98-3:2008 (G.1.5)]. Однако самым общим из этих подходов 
является тот, что установлен в настоящем стандарте и основан на трансформировании распределений. 
Для линейных и линеаризованных функций измерения и входных величин, подчиняющихся нормально­
му распределению, такой подход согласуется с подходом GUM. Однако в случаях, когда условия при­
менения подхода GUM не выполняются (см. 5.7 и 5.8), подход, установленный в настоящем стандарте, 
позволяет получить обоснованные заключения о неопределенности.

5.4.3 Трансформирование распределений требует выбора подходящего метода. Если можно про­
демонстрировать, что условия, необходимые для получения достоверных результатов в соответствии 
с GUM, выполнены, то может быть использован подход GUM. Если имеются основания полагать, что 
оценка неопределенности, полученная по GUM, окажется недостоверной, то должен быть применен 
другой подход. Может возникнуть ситуация, когда сложно оценить обоснованность применения спо­
соба оценивания неопределенности по GUM. Однако во всех трех вышеописанных случаях хороший
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результат может быть получен с использованием метода Монте-Карло. В первом случае метод Монте- 
Карло может быть проще в применении, например, вследствие трудностей вычисления коэффициен­
тов чувствительности [ISO/IEC Guide 98-3:2008 (5.1.3)]. Во втором случае метод Монте-Карло позволит 
получить достоверный результат, так как его применение не требует использования дополнительных 
предположений. В третьем случае метод Монте-Карло может быть применен как собственно для полу­
чения оценки неопределенности, так и для оценки качества результатов, полученных способом расчета 
неопределенности по GUM.

5.4.4 Трансформирование моделью измерений плотностей распределения вероятностей дх (^ ), 
/ = 1, ..., N входных величин X, для получения плотности распределения вероятностей д у(г|) выходной 
величины У, показано на рисунке 2 для трех независимых X, (Л/ = 3). Рисунок 2 можно сравнить с рисун­
ком 3, иллюстрирующим закон трансформирования неопределенностей. На рисунке 2 функции дх  [£,/), 
/ = 1, 2, 3, представляют собой плотности распределения вероятностей случайных переменных, под­
чиняющихся соответственно нормальному, треугольному и нормальному законам. Соответственно 
функция д у(г|) показана асимметричной, что обычно имеет место в случае нелинейных моделей или 
асимметрии функций дх (^).

3*зйз>

Рисунок 2 — Трансформирование распределений трех (Л/ = 3) независимых входных величин

5.4.5 На практике только в самых простых случаях преобразование распределений может быть 
выполнено без приближений. При оценке неопределенности по GUM применяется один метод прибли­
жения, в методе Монте-Карло — другой. Для небольшой, но важной подгруппы задач оценки неопре­
деленности в соответствии с GUM не требуется применения приближений (решение является точным). 
Метод Монте-Карло не позволяет получить точные результаты, но для широкого класса задач он будет 
более обоснованным, чем подход GUM.

5.5 Представление результатов

5.5.1 После выполнения трансформирования распределений должна быть отражена, как прави­
ло, следующая информация:

a) оценка у  выходной величины У;
b ) стандартная неопределенность и(у) оценки у;
c) заданная 100р %-ная (например, 95 %-ная) вероятность охвата;
d) границы выбранного 100р %-ного (например, 95 %-ного) интервала охвата для У;
e) другая значимая информация, такая как тип интервала охвата (вероятностно симметричный 

или наименьший).
5.5.2 Значения у, и(у) и границ 100р %-ного интервала охвата для У должны быть указаны с таким 

количеством значащих цифр, чтобы низший разряд записи значения этих величин совпадал с низшим 
разрядом, используемым для записи и(у) [ISO/IEC Guide 98-3:2008 (7.2.6)]. Обычно для представления 
и(у) достаточно одной или двух значащих цифр.

П р и м е ч а н и е  1 — Представляемое численное значение обычно получают путем округления числа, со­
держащего большее количество значащих цифр.

П р и м е ч а н и е  2 — Фактором, влияющим на выбор представления результатов одной или двумя зна­
чащими цифрами, является значащая цифра высшего разряда в значении и(у). Если это 1 или 2, то погрешность 
округления и{у) будет сопоставима с самим значением величины. Если же первая значащая цифра равна 9, то 
относительная погрешность округления будет меньше.

10
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П р и м е ч а н и е  3 — Если полученные результаты должны быть использованы в дальнейших вычислениях, 
следует определить, есть ли необходимость в сохранении большего числа значащих цифр.

Пример — Результаты для у, и(у) и границ интервала охвата в случае, когда интервал охвата 
асимметричен относительно у, а и(у) имеет две значащие цифры, приведены в виде: «у = 1,024 В; 
и(у) = 0,028 В; наименьший 95 %-ный интервал охвата: [0,983, 1,088] В».

Те же результаты в случае, когда и(у) выражен одной значащей цифрой, имеют вид: «у = 1,02 В, 
и (у) = 0,03 В, наименьший 95 %-ный интервал охвата: [0,98, 1,09] В».

5.6 Оценивание неопределенности по GUM

5.6.1 В GUM установлено общее руководство, распространяющееся на разные аспекты после­
довательного оценивания неопределенности в соответствии с 5.1.1, и установлен способ оценивания 
неопределенности для этапов трансформирования распределений и получения окончательных резуль­
татов измерения. Общая схема оценивания неопределенности, установленная GUM, принята многими 
организациями, нашла широкое практическое применение, используется в стандартах и руководствах, 
в которых рассматриваются вопросы оценки неопределенности измерения, и реализована в программ­
ных средствах.

5.6.2 Способ оценивания неопределенности по GUM включает в себя следующие этапы. Каждая 
входная величина X,-модели характеризуется математическим ожиданием и стандартным отклонением 
плотности распределения вероятностей, поставленной в соответствие этой величине [ISO/IEC Guide 
98-3:2008 (4.1.6)]. Оценку математического ожидания принимают в качестве наилучшей оценки х, вели­
чины X,, а оценку стандартного отклонения — в качестве стандартной неопределенности ^(х,) оценки хг 
На основе этих данных в соответствии с законом трансформирования неопределенностей 
[ISO/IEC Guide 98-3:2008 (5.1.2)] через разложение функции измерения в ряд Тейлора с сохранением 
членов первого или более высокого порядка малости получают

a) оценку у  выходной величины У,
b ) стандартную неопределенность и(у) оценки у.
Оценку у определяют как значение функции измерения в точке х,-. При определении интервала 

охвата для У используют предположение, что У подчиняется нормальному распределению или, если 
число степеней свободы, соответствующее и(у), конечно [ISO/IEC Guide 98-3:2008 (приложение G)], 
масштабированному смещенному /-распределению.

П р и м е ч а н и е  — В число характеристик входной величины может входить также число степеней свобо­
ды для u(Xj) [ISO/IEC Guide 98-3:2008 (4.2.6)], а также, при необходимости, попарные ковариации оценок входных 
величин [ISO/IEC Guide 98-3:2008 (5.2.5)].

5.6.3 Этапы трансформирования распределений и получения окончательных результатов по GUM 
[этапы Ь) и с) в 5.1.1] включают в себя следующие компьютерные расчеты [см. рисунок 3, иллюстрирую­
щий закон трансформирования неопределенностей для модели с тремя (Л/ = 3) независимыми входны­
ми величинами X  = (X.,, Х2, Х3)т, соответствующими оценками ху и стандартными неопределенностями 
этих оценок и(хj), /=  1 ,2 , 3; оценкой выходной величины У является у с соответствующей стандартной 
неопределенностью и(у)]:

x1(U(Xl) ------►

Х2 , и(х2) ------►

*3> °(*з)------►

У. и{у)

Рисунок 3 — Трансформирование неопределенностей для трех (N = 3) независимых входных величин

a) в соответствии с плотностью распределения вероятностей для входных величин Х=  (Х1,..., XN)J 
определяют оценки математического ожидания х =  (х.,, ..., xN)T и стандартного отклонения (стандартные 
неопределенности) и(х) = (и(х^), ..., u(xN))T. Если ^являю тся  статистически зависимыми (имеют нену­
левую ковариацию), то используют совместную плотность распределения X,

b) определяют число степеней свободы (бесконечное или конечное) для каждой u(x,);
c) для каждой пары зависимых величин X, и Xj на основе совместной плотности распределения X, 

и Xj определяют ковариацию (взаимную неопределенность) и{хг х )  для х, и х/;
d) определяют частные производные первого порядка от f(X) по X;
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e) вычисляют оценку у, подставляя в функцию измерения X  = х;
f) вычисляют коэффициенты чувствительности модели [ISO/IEC Guide 98-3:2008 (5.1.3)] через 

значения вычисленных частных производных в точке х;
д) вычисляют стандартную неопределенность и(у), объединяя и(х), u(Xj, xj) и коэффициенты чув­

ствительности модели [ISO/IEC Guide 98-3:2008, формулы (10), (13)];
h) вычисляют veff [число эффективных степеней свободы для и(у)] по формуле Уэлча-Саттертуэй- 

та [ISO/IEC Guide 98-3:2008, формула (G.2b)];
i) вычисляют расширенную неопределенность Up и соответствующий интервал охвата (для за­

данной вероятности охвата р) для Y (рассматриваемой в качестве случайной переменной) посредством 
выбора множителя для и(у) в виде квантиля распределения функции (У -  у)1и(у), предполагаемого 
стандартным нормальным распределением (для veff = °°) или /-распределением (для veff < °°).

5.7 Условия применимости способа оценивания по GUM в случае линейной модели

5.7.1 В случае линейных моделей (функция измерения линейна относительно X,) применение за­
кона трансформирования неопределенностей всегда корректно.

5.7.2 Интервал охвата может быть определен в соответствии с GUM при выполнении следующих 
условий:

a) применима формула Уэлча-Саттертуэйта для вычисления числа эффективных степеней свобо­
ды и(у) [ISO/IEC Guide 98-3:2008 (G.4.1)], если одной или нескольким и(х,) соответствует конечное число 
степеней свободы;

b ) если стандартной неопределенности оценки какой-либо входной величины X, соответствует 
конечное число степеней свободы, то эта оценка не зависит от оценок других входных величин;

c) плотность распределения вероятностей для У может быть аппроксимирована нормальным рас­
пределением или масштабированным смещенным /-распределением.

П р и м е ч а н и е  1 — Условие а) обеспечивает возможность описания У масштабированным смещенным 
/-распределением.

П р и м е ч а н и е  2 — Условие Ь) связано с тем, что GUM не рассматривает возможность оценивания не­
определенности в случае зависимых X,- с конечным числом степеней свободы.

П р и м е ч а н и е  3 — Условие с) заведомо выполняется, если каждая случайная переменная X, подчиняется 
нормальному распределению. Оно выполняется также в случае, когда выполнены условия центральной предель­
ной теоремы [ISO/IEC Guide 98-3:2008 (G.2)].

П р и м е ч а н и е  4 — Способ оценивания неопределенности по GUM не может быть применен, если вели­
чина X,-, вклад которой в и(у) является доминирующим, не подчиняется нормальному распределению.

5.8 Условия применимости способа оценивания неопределенности по GUM для
нелинейных моделей

5.8.1 Закон трансформирования неопределенностей может быть применен для нелинейных моде­
лей при выполнении следующих условий:

a) функция f  имеет непрерывную производную по компонентам X,- вектора X  в окрестностях оценок х ■,
b ) условие а) справедливо в отношении производных всех порядков, используемых в законе 

трансформирования неопределенностей;
c) величины Ху, входящие в значимые члены разложения функции f(X) в ряд Тейлора высших по­

рядков, независимы;
d) величины X,, входящие в члены разложения функции f(X) в ряд Тейлора высших порядков, под­

чиняются нормальному распределению;
e) члены высших порядков, не включенные в аппроксимацию f(X) рядом Тейлора, пренебрежимо 

малы.

П р и м е ч а н и е  1 — Условие а) необходимо для применения закона трансформирования неопределенно­
стей, основанного на аппроксимации f{X) рядом Тейлора первого порядка, когда нелинейность f(X) незначительна 
[ISO/IEC Guide 98-3:2008 (5.1.2)].

П р и м е ч а н и е  2 — Условие Ь) необходимо для применения закона трансформирования неопределенно­
стей, основанного на аппроксимации f(X) рядом Тейлора более высокого порядка [ISO/IEC Guide 98-3:2008 (5.1.2)]. 
Выражение для наиболее важных членов более высокого порядка, которые необходимо учесть, приведено в GUM 
[ISO/IEC Guide 98-3:2008 (примечание к 5.1.2)].

П р и м е ч а н и е  3 — Условие с) относится к рассматриваемому в GUM случаю, когда в разложении 
в ряд Тейлора учитываются члены высших порядков, определяемых независимыми X) [ISO/IEC Guide 98-3:2008 
(примечание к 5.1.2)]. Возможность учета членов высших порядков, определяемых зависимыми X,-, в GUM не 
рассматривается.
12
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П р и м е ч а н и е  4 — Условие d) представляет собой уточнение утверждения GUM [ISO/IEC Guide 98-3:2008 
(примечание к 5.1.2)] о том, что закон трансформирования неопределенностей, учитывающий члены высших по­
рядков, основан на предположении о симметричности плотностей распределения вероятностей для Ху [19, 27].

П р и м е ч а н и е  5 — Если требуемое для существенно нелинейной функции измерения аналитическое 
определение частных производных высших порядков представляет трудности или может привести к ошибкам, 
то допускается применение методов численного дифференцирования с использованием соответствующего про­
граммного обеспечения. Как вариант, частные производные могут быть аппроксимированы численно методом ко­
нечных разностей [5]. (В GUM приведена формула конечно-разностной аппроксимации для вычисления частных 
производных первого порядка [ISO/IEC Guide 98-3:2008 (примечание 2 к 5.1.3)].) Однако следует соблюдать осто­
рожность, оперируя конечными разностями для близких значений функции, поскольку погрешности округления чи­
сел при использовании арифметики с конечной точностью способны привести к значительным ошибкам в расчетах.

5.8.2 Интервал охвата может быть определен в соответствии с GUM, если выполнены условия а), 
Ь) и с), установленные в 5.7.2, а примечание 3 из 5.8.1 заменено на следующее: «Условие с) необходи­
мо для того, чтобы интервал охвата мог быть определен из распределений этих величин».

5.8.3 Если условия 5.8.1 или 5.8.2 выполнены (что справедливо для многих практических ситуа­
ций), то этого обычно достаточно для корректного применения способа оценивания неопределенности 
по GUM.

5.9 Метод Монте-Карло для этапов трансформирования распределений и получения
окончательных результатов

5.9.1 Метод Монте-Карло обеспечивает получение приближенного численного представления 
математического объекта G, которым может быть, в частности, функция распределения Gу(т|) для 
У [32, стр.75]. Основным принципом этого подхода являются получение повторных выборок из плотно­
стей распределения вероятностей для входных величин Ху и получение соответствующей выборки на 
выходе модели.

5.9.2 Поскольку Gy(r|) содержит в себе всю известную информацию об У, то на основе приближе­
ния G может быть получена аппроксимация любой характеристики У, такой как математическое ожида­
ние, дисперсия или интервал охвата. Качество полученных результатов улучшается по мере увеличе­
ния числа выборок.

5.9.3 Математическое ожидание и дисперсия (а также более высокие моменты распределения) 
могут быть определены непосредственно по выборке на выходе модели. Для определения интервала 
охвата необходимо предварительно эту выборку упорядочить.

5.9.4 Если уг г = 1, ..., М, представляют собой М значений на выходе модели, взятых независи­
мо из плотности распределения вероятностей для У, то приближенные значения математического ожи­
дания Е(У) и дисперсии V(Y) могут быть получены по этим выборочным значениям уг  В общем слу­
чае все моменты У [включая Е(У) и \/(У)] могут быть аппроксимированы их выборочными значениями. 
Если обозначить Му число значений выборки, не превышающих некоторого произвольно выбранного 
значения у0, то вероятность Рг(У < у0) можно приближенно определить равной Му /М. Таким образом, по 
выборке уг можно построить ступенчатую функцию, аппроксимирующую функцию распределения Gy(T|).

5.9.5 Каждое значение уг определяют на основе случайной выборки входных величин Х; из их рас­
пределений вероятностей и последующего преобразования этих входных величин моделью измерения. 
Приближение G, полученное методом Монте-Карло, представляет собой выборочные значения уп рас­
положенные в строго возрастающем порядке.

П р и м е ч а н и е  — Существует небольшая вероятность того, что найдутся элементы выборки уг, совпада­
ющие по значению. В этом случае построить строго возрастающую последовательность можно, внося в совпадаю­
щие элементы выборки малые случайные возмущения (см. 7.5.1).

5.9.6 Применение метода Монте-Карло для трансформирования распределений схематически по­
казано на рисунке 4 для случая заранее заданного значения М (случай, когда М не задается заранее, 
рассматривается в 7.9). Поэтапная процедура метода Монте-Карло включает в себя:

a) выбор числа испытаний М (см. 7.2);
b) формирование в каждом из М испытаний N-мерного вектора входных величин X, в соответствии 

с их законами распределения (см. 7.3);
c) получение для каждого такого вектора значения У на выходе модели измерения (см. 7.4);
d) расположение полученных М значений У в строго возрастающем порядке, обеспечивающее по­

строение приближения G (см. 7.5);
e) получение на основе G оценки у  для У и ее стандартной неопределенности и(у) (см. 7.6);
f) построение на основе G интервала охвата для У, соответствующего заданной вероятности ох­

вата р (см. 7.7).
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П р и м е ч а н и е  1 — Формирование выборки из распределений вероятностей рассматривается в 6.4 и в 
приложении С.

П р и м е ч а н и е  2 — Среднее арифметическое из М значений на выходе модели является случайной пере­
менной с математическим ожиданием Е(У) и дисперсией V(Y)IM. Таким образом, близость среднего арифметиче­
ского к£(У) пропорциональна Л4~1/2.

Рисунок 4 — Этапы трансформирования распределений и получения окончательных результатов оценивания
неопределенности методом Монте-Карло

П р и м е ч а н и е  3 — На этапе е) можно использовать М неупорядоченных реализаций У. Однако для 
определения интервала охвата на этапе f) значения выборки выходных значений модели необходимо упорядочить.

5.9.7 Эффективность метода Монте-Карло при определении у, и(у) и интервала охвата для У 
зависит от адекватного выбора числа испытаний М [этап а) в 5.9.6]. Рекомендации по определению 
достаточного значения М и по другим вопросам реализации метода Монте-Карло приведены в [7] (см. 
также 7.2 и 7.9).
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5.10 Условия применимости метода Монте-Карло

5.10.1 Применение метода Монте-Карло для трансформирования распределений с получением 
результатов оценивания неопределенности требует выполнения следующих условий:

a) функция измерения f — непрерывна по всем X, вектора X  в окрестности наилучших оценок х, 
входных величин Х-,

b ) функция распределения для У непрерывна и строго возрастающая;
c) плотность распределения вероятностей для У:
1) непрерывна на интервале, где ее значения строго положительны,
2) унимодальна (т. е. имеет единственный максимум),
3) равна нулю или монотонно возрастает слева от моды и монотонно убывает или равна нулю 

справа от моды;
d) Е(У) и V(Y) существуют;
e) выбранное значение М является достаточно большим.

П р и м е ч а н и е  1 — В отличие от требования а) непрерывности самой функции измерения никаких усло­
вий на производные этой функции не налагается.

П р и м е ч а н и е  2 — Условия а) и Ь) обеспечивают однозначность функции обратной функции распределе­
ния и, следовательно, позволяют определить интервал охвата. Если определение интервала охвата не требуется, 
то необходимым является только условие а).

П р и м е ч а н и е  3 — Условие с) необходимо только в случае определения наименьшего интервала охвата. 
Тогда условие с) обеспечивает единственность наименьшего интервала охвата, соответствующего заданной веро­
ятности охвата. Если мода является граничной точкой интервала, на котором плотность распределения вероят­
ностей отлична от нуля, то одно из двух условий перечисления 3) является лишним.

П р и м е ч а н и е  4 — Условие d) необходимо для обеспечения сходимости по вероятности оценок, полу­
ченных методом Монте-Карло, при увеличении М (см. 7.2).

П р и м е ч а н и е  5 — Условие е) необходимо для обеспечения достоверности результатов оценивания не­
определенности (см. 8.2).

5.10.2 Если условия, указанные в 5.10.1, выполнены, то результаты оценивания неопределенно­
сти с использованием метода Монте-Карло можно считать достоверными. Эти условия менее жесткие, 
чем те, выполнение которых необходимо для оценивания неопределенности по GUM (см. 5.7 и 5.8).

5.11 Сравнение способов оценивания неопределенности по GUM и методом Монте-Карло

5.11.1 Целью подраздела является сравнение принципов, лежащих в основе оценивания не­
определенности по GUM и методом Монте-Карло, используемого для преобразования распределений. 
В настоящем подразделе приведены некоторые обоснования использования метода Монте-Карло в 
условиях, когда обоснованность применения способа оценивания неопределенности по GUM остается 
неясной.

5.11.2 Для сравнения способа оценивания неопределенности по GUM с методом Монте-Карло 
полезно сделать обзор основных положений GUM, касающихся оценивания неопределенностей типа 
А и типа В. При определении оценки неопределенности типа A GUM позволяет получить наилучшую 
оценку величины и соответствующей стандартной неопределенности в виде среднего арифметического 
и выборочного стандартного отклонения, полученных на основе независимых наблюдений. При опре­
делении оценки неопределенности типа В используют априорные знания о величине для описания с ее 
помощью плотности распределения вероятностей, на основе которых определяют наилучшую оценку 
величины и соответствующую стандартную неопределенность. В соответствии с GUM оба типа оценок 
основаны на использовании распределений вероятностей [ISO/IEC Guide 98-3:2008 (3.3.4)] и общепри­
знанных интерпретаций вероятности [ISO/IEC Guide 98-3:2008 (3.3.5)]. В подходе GUM оценивание не­
определенности подразумевает трансформирование распределений вероятностей, поскольку входной 
и выходной величинам в нем ставятся в соответствие случайные переменные, обладающие своими 
распределениями вероятностей [ISO/IEC Guide 98-3:2008 (G.6.6)] (см. также 5.1.2).

5.11.3 В методе оценивания неопределенности по GUM плотность распределения вероятностей 
выходной величины в явном виде не определяют. Ссылки настоящего стандарта при рассмотрении 
подхода GUM на распределение выходной величины исходят из того, что существование такого рас­
пределения обусловлено смыслом процедуры оценивания.

5.11.4 Метод, устанавливаемый настоящим стандартом, в максимально возможной степени сов­
местим с GUM, особенно в отношении использования плотностей распределения вероятностей для 
описания всех входящих в модель измерения величин, но может отличаться от него в следующем:
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a) всем входным величинам X, в явном виде приписаны соответствующие плотности распределе­
ния вероятностей (а не стандартные неопределенности оценок этих величин) на основе имеющейся 
информации об этих величинах. Классификация оценок на оценки типов А и В не используется;

b ) вычисление коэффициентов чувствительности [ISO/IEC Guide 98-3:2008 (5.1.3)] не является 
неотъемлемой частью метода, и, следовательно, вычисление или численная аппроксимация частных 
производных функции измерения по X, не требуется. Тем не менее метод позволяет получить прибли­
женные значения коэффициентов чувствительности, которые, однако, не будут соответствовать коэф­
фициентам разложения функции измерения в ряд Тейлора первого порядка, а будут учитывать все 
члены высшего порядка этого разложения (см. приложение В);

c) численное представление функции распределения выходной величины У, полностью опреде­
ляемое видом модели измерения и плотностями распределения вероятностей для Х;-, не ограничивает­
ся нормальным распределением или масштабированным смещенным /-распределением;

d) поскольку плотность распределения вероятностей для У не является в общем случае симме­
тричной, интервал охвата для У также не всегда симметричен относительно ее оценки. Следовательно, 
для выбора интервала охвата, соответствующего заданной вероятности охвата, необходима дополни­
тельная информация.

5.11.5 Так как способ оценивания неопределенности по GUM оперирует только наилучшими оцен­
ками Xj и соответствующими стандартными неопределенностями (а также, при необходимости, кова­
риациями и числами степеней свободы), предоставляемая им информация о выходной величине У 
ограничена. По существу, он позволяет лишь получить оценку у для У и соответствующую стандартную 
неопределенность и(у), а также, в ряде случаев, оценку числа эффективных степеней свободы. Если 
функция измерения линейна по X, то оценки у и соответствующей неопределенности и(у) будут досто­
верны. Всю остальную информацию об У, в том числе интервалы охвата, получают на основе дополни­
тельных предположений о виде распределения У (оно является либо нормальным, либо масштабиро­
ванным смещенным /-распределением).

5.11.6 Метод Монте-Карло обладает следующими преимуществами:
a) сокращаются аналитические расчеты в случае более сложных или нелинейных моделей, осо­

бенно вследствие того, что не требуется определение частных производных первого или более высоких 
порядков, необходимых для оценки коэффициентов чувствительности в соответствии с законом транс­
формирования неопределенности;

b ) в общем случае улучшаются оценки У для нелинейных моделей [ISO/IEC Guide 98-3:2008 
(4.1.4)];

c) улучшаются оценки стандартной неопределенности оценки У для нелинейных моделей, осо­
бенно когда Xj приписано не гауссово (а, например, асимметричное) распределение, без необходимо­
сти определения производных высших порядков [ISO/IEC Guide 98-3:2008 (примечание к 5.1.2)];

d) существует возможность построения интервала охвата в соответствии с заданной вероятно­
стью охвата, когда плотность распределения вероятностей для У не может быть адекватно аппрок­
симирована нормальным распределением или масштабированным смещенным /-распределением, 
т. е. когда центральная предельная теорема неприменима [ISO/IEC Guide 98-3:2008 (G.2.1, G.6.6)]. 
Аппроксимация нормальным распределением или масштабированным смещенным /-распределением 
может быть неадекватной, когда (1) распределение, приписанное доминирующей входной величине Хг 
не является нормальным распределением или масштабированным смещенным /-распределением, (2) 
функция модели нелинейна, (3) ошибка аппроксимации, обусловленная используемой формулой Уэл- 
ча-Саттертуэйта для расчета числа эффективных степеней свободы, является существенной;

e) для определения интервала охвата не требуется использования коэффициента охвата [ISO/IEC 
Guide 98-3:2008 (2.3.6)].

6 Плотности распределения вероятностей входных величин
6.1 Общие положения
6.1.1 Настоящий раздел содержит рекомендации по выбору в некоторых типичных ситуациях 

плотностей распределения вероятностей для входных величин Х; на этапе формулировки задачи оце­
нивания неопределенности. Выбор плотности распределения вероятностей может быть основан на 
теореме Байеса [20] или на принципе максимума энтропии [8, 26, 51, 56].

П р и м е ч а н и е  — В некоторых случаях выбор приписываемой плотности распределения вероятностей 
может быть основан на иных соображениях. Но всегда должны быть зафиксированы основания, положенные в 
основу этого выбора.
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6.1.2 В общем случае входным величинам X  = (X.,, ..., XN)T соответствует совместная плотность 
распределения вероятностей д*{£) (см. 6.4.8.4, примечание 2).

6.1.3 Если X, независимы, то каждой величине X, может быть поставлена в соответствие плот­
ность распределения вероятностей gx fej)> вид которой выбирают, основываясь на анализе наблюдений 
(оценка неопределенности типа А) или научных суждениях с использованием (см. [50]) истории на­
блюдений, данных калибровки и экспертных оценок (оценка неопределенности типа В) [ISO/IEC Guide 
98-3:2008 (3.3.5)].

6.1.4 В случае, когда независимы только некоторые из X,-, индивидуальные плотности распределе­
ния вероятностей приписывают только этим входным величинам, а для остальных применяют совмест­
ную плотность распределения.

П р и м е ч а н и е  — В ряде случаев от всех или некоторых зависимостей между входными величинами мож­
но избавиться посредством их замены на другие переменные величины [ISO/IEC Guide 98-3:2008 (F.1.2.4, Н.1.2)]. 
Такая замена может упростить применение как закона трансформирования неопределенностей, так и закона 
трансформирования распределений. Более подробно этот вопрос с иллюстрацией примерами рассмотрен в [15].

6.1.5 Значимая информация для выбора плотности распределения вероятностей для X, приведе­
на в GUM [ISO/IEC Guide 98-3:2008 (4.3)].

6.1.6 В настоящем стандарте не приводятся подробные рекомендации по выбору плотностей рас­
пределения вероятностей, индивидуальных или совместных. Вид выбранной плотности распределения 
вероятностей в неявном виде включает в себя знания и практический опыт метролога, составляющего 
модель измерения, который в конечном счете несет ответственность за качество конечных результатов.

6.1.7 Справочным руководством по видам распределения вероятностей может служить [18].

6.2 Теорема Байеса

6.2.1 Если информация о некоторой входной величине X  содержится в серии наблюдений, рас­
сматриваемых как реализации независимых одинаково распределенных случайных переменных с за­
данной формой плотности распределения вероятностей, но с неизвестными математическим ожида­
нием и дисперсией, то приписываемая входной величине X  плотность распределения вероятностей 
может быть рассчитана по теореме Байеса. Расчет включает в себя два этапа. Сначала неизвестным 
математическому ожиданию и дисперсии приписывают неинформативное совместное распределение 
(априорное). Затем, используя теорему Байеса, совместную плотность распределения вероятностей 
уточняют на основе данных серии наблюдений, в результате чего получают совместную плотность рас­
пределения (апостериорную) для двух неизвестных параметров. После этого искомую апостериорную 
плотность распределения вероятностей неизвестного математического ожидания, которую рассматри­
вают как плотность распределения, приписываемую X, вычисляют интегрированием совместной плот­
ности распределения по области возможных значений неизвестной дисперсии (см. 6.4.9.2).

6.2.2 В соответствии с теоремой Байеса для уточнения плотности распределения вероятностей 
используют произведение априорной плотности распределения вероятностей на функцию правдоподо­
бия [20]. Функция правдоподобия в случае независимых наблюдений является произведением значений 
плотностей распределения вероятностей (например, гауссовых с неизвестным математическим ожида­
нием и дисперсией) для полученных наблюдений. Апостериорную плотность распределения вероят­
ностей получают интегрированием произведения априорной плотности распределения вероятностей и 
функции правдоподобия по всем возможным значениям дисперсии с последующей нормировкой.

П р и м е ч а н и е  1 — Иногда (например, как в 6.4.11) случайные переменные, для которых получены на­
блюдения, описываются плотностью распределения с единственным параметром распределения. В таких случаях 
математическому ожиданию этого распределения приписывают неинформативную априорную плотность распре­
деления вероятностей, а апостериорное распределение, понимаемое как распределение X, формируют непосред­
ственно в соответствии с теоремой Байеса без последующего интегрирования.

П р и м е ч а н и е  2 — Теорема Байеса может быть также применена для разных предположений о виде 
распределения наблюдаемых случайных переменных, например, когда их неизвестные математическое ожидание 
и стандартное отклонение полагают равными между собой.

6.3 Принцип максимума энтропии

6.3.1 При использовании принципа максимума энтропии, введенного Джейнсом [25], выбирают 
единственную плотность распределения вероятностей из всех возможных распределений с заданными 
свойствами, например заданными центральными моментами различного порядка или заданными ин-
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тервалами, на которых плотность распределения вероятностей не равна нулю. Этот метод особенно 
полезен для выбора плотности распределения вероятностей величин, для которых данные наблюде­
ний недоступны, или величин, которые невозможно измерить.

6.3.2 При применении принципа максимума энтропии в качестве плотности распределения веро­
ятностей gxfc), которая адекватно характеризует неполноту знания о величине X, выбирают такую, для 
которой функционал

s [s ]  = - j g x (5)ln9 x № K .

представляющий собой энтропию по Шеннону [48], достигает максимума при ограничениях, определя­
емых имеющейся информацией обХ.

6.4 Выбор плотности распределения в некоторых типичных условиях

6.4.1 Общие положения
Информация, приведенная в 6.4.2— 6.4.11, позволяет выбрать плотности распределения вероят­

ностей случайных переменных на основе различной имеющейся информации об этих величинах. Вид 
плотности распределения вероятностей д определяет:

a) формулы для математического ожидания и дисперсии X;
b ) способ получения выборки из д ^ ) .
Сведения, приведенные в 6.4.2— 6.4.11, и графическое представление распределений, к которым 

эти сведения относятся, собраны в таблице 1.

П р и м е ч а н и е  — Графики плотностей распределения вероятностей в таблице 1 даны без соблюдения 
масштаба. График многомерного нормального распределения не показан.

6.4.2 Равномерное (прямоугольное) распределение
6.4.2.1 Если единственной доступной информацией о величине X  являются нижняя а и верхняя Ь 

(а < Ь) границы возможных значений этой величины, то в соответствии с принципом максимума энтро­
пии X  следует описывать равномерным распределением R(a, b) на интервале [а, Ь].

6.4.2.2 Плотность распределения вероятностей для X  в этом случае имеет вид:

0 x f t )  =

0,
<1/(Ь-а),

0,

£< а , 
а < £ < Ь ,. 

£,> Ь.

6.4.2.3 Математическое ожидание и дисперсия X  имеют вид:

е ( х ) = £ | ^  v ( x ) ( ь - а)2
12 (2)

Т а б л и ц а  1 — Информация о случайной переменной и вид соответствующей плотности распределения вероятностей

И нф орм ация о величине Р аспределение вероятностей П ункт

Нижняя и верхняя границы: а, Ь Равномерное R(a, Ь) 6 .4 .2

Неточно известные нижняя и верхняя 
границы: a±d, b±  d

Криволинейно-трапецеидальное 
СТгар(а, Ь, d) А

6 .4 .3

Сумма двух равномерно распределенных 
величин с границами (а.,, Ь.,) и (а2, Ь2) 
соответственно

Трапецеидальное СТгар(а, Ь, Р); 
а = а-\ + а2, b = Ь-\ + Ь2, $ = |(Ь1 -  а.,) -  
-  (Ь2 -  а2)|/ (Ь -а ) Г

6 .4 .4
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Окончание таблицы 1

Информация о величине Распределение вероятностей Пункт

Сумма двух равномерно распределенных 
величин с границами (а^ Ь.,) и (а2, Ь2) и 
равной длиной носителя 
Ь1 -  а1 = Ь2 -  а2

Треугольное Т (а, Ь); а = а^+ а2, 
Ь = Ь1 + Ь2 A

6.4.5

Гармоническое колебание между нижней 
(а) и верхней (Ь) границами

Арксинусное (U-образное) U(a, Ь)

^ J

6.4.6

Наилучшая оценка х и ее стандартная 
неопределенность и(х)

Нормальное (гауссово) N(x, и2(х))

A
6.4.7

Наилучшая оценка х  векторной величины 
и соответствующая матрица неопреде­
ленности их

Многомерное нормальное (гауссово) 
N(x, Ux)

6.4.8

Выборка независимых наблюдений 
xv .... хп из нормального распределения с 
неизвестными математическим ожидани­
ем и дисперсией

^-распределение (Стьюдента); 
п

tn_i(x,s2ln)-, x = Z x j / n ,
i=1

/=1

A
6.4.Э.2

Наилучшая оценка х, расширенная не­
определенность Up, коэффициент ох­
вата кр, число эффективных степеней 
свободы veff

^-распределение (Стьюдента):
K Jx .  ( W 2 > A

6.4.Э.7

Наилучшая оценка х неотрицательной 
величины

Экспоненциальное Ex(1/x) 6.4.10

Число q подсчитанных объектов в выборке Гамма-распределение G(q +1,1)

/V
6.4.11

6.4.2.4 Для формирования выборки значений случайной переменной, подчиняющейся распреде­
лению R(a, b), необходимо случайные значения г, полученные из стандартного равномерного распре­
деления R(0, 1) (см. С.3.3), преобразовать следующим образом:

£ = а + ( Ь - а ) г .

6.4.3 Равномерное распределение с неточно известными границами
6.4.3.1 О величине X  может быть известно, что она находится в интервале с границами А и В, 

А < В, таком, что средняя точка интервала (А + В)12 фиксирована, а длина интервала (В -  А) точно не 
определена, но известно, что А лежит в интервале а ± d, а В — в интервале b ± d, где а, b и d заданы 
и при этом d > 0, (а + d) < (Ь -  d). Если никакой другой информации о X, А \л В нет, то в соответствии с 
принципом максимума энтропии случайная переменная X  может быть описана криволинейно-трапеце­
идальным распределением СТгар(а, Ь, d).
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6.4.3.2 Плотность распределения вероятностей для X  в этом случае имеет вид:

0, £,< a - d ,
In [(и/ + d)/ (x -  ^)] a - d < ^ < a  + d,

1п[(и/+ d)/(w -  с/)] a + d < b , < b - d ,  (3)

In [(и/ + d)f(^ -  х ) ] b - d < b , < b  + d,

0, %> b  + d ,

где х = (а + b)l2 и и/ = (Ь -  а)/2 являются соответственно средней точкой и полушириной интервала 
[a, b] [ISO/IEC Guide 98-3:2008 (примечание 2 к 4.3.9)]. Эта плотность распределения вероятностей по­
хожа на трапецеидальную, но боковые стороны трапеции не являются прямыми линиями.

Примечание  — Формула (3) может быть представлена в следующем виде, удобном для программирования:

max(|£, -  x\,w -  d ) ’ 

6А .3.3 Математическое ожидание и дисперсия X  имеют вид:

Эх (У  = — max

9^ ) = Ы

£ ( * )  —  , ^ ( х )
( Ь - а ) 2  ̂ d 2

12 + 1 Г ‘ (4)

П р и м е ч а н и е  1 — Дисперсия, полученная по формуле (4), всегда больше дисперсии соответствующего 
равномерного распределения, полученной по формуле (2), т. е. когда d = 0.

П р и м е ч а н и е  2 — В GUM информация об X, аналогичная приведенной в 6.4.3.1, используется для при­
писывания числа степеней свободы для стандартной неопределенности, связанной с наилучшей оценкой X  [ISO/ 
IEC Guide 98-3:2008 (G.4.2)].

6.4.3.4 Для получения выборочного значения £, из распределения CTrap(a, b, d) независимо выби­
рают два значения ^  и г2 из стандартного равномерного распределения R(0, 1) (см. С.3.3) и формируют 
величины as и Ь3:

as = (а -  d) + 2dr^, bs = (a  + b ) - a s 

и
£ = as +(bs - a s )r2 .

П р и м е ч а н и е  — as — выборочное значение из прямоугольного распределения с границами а ± d, a bs 
формируют таким образом, чтобы средняя точка между as и bs совпала с заданным значением х = (а + Ь)12.

Пример— В сертификате указано, что значение напряжения X  находится в интервале 10,0 В ±0,1 В. 
Какая-либо другая информация относительно X  в сертификате не приведена, однако можно предпо­
ложить, что значения границ интервала являются результатом корректного округления некоторого 
числового значения (см. 3.20). Поскольку значение 0,1, указанное в сертификате, могло быть получено в 
результате округления до одной значащей цифры любого числа из интервала (0,05; 0,15), то за интер­
вал неточного задания границ, в пределах которых находится X, можно принять интервал от 0,05 до 
0,15 В. С учетом сказанного положение интервала можно считать фиксированным, а его длину извест­
ной неточно. Наилучшей оценкой X будет х  = 10,0 В, и, используя выражение (4) для а = 9,9 В, b = 10,1 В и 
d = 0,05 В, можно получить значение соответствующей стандартной неопределенности и(х):

и2 м 0,22
12

0,052
9

0,0036.

Следовательно, и(х) = (0,0036)1/2 = 0,060 В, что сопоставимо с 0,2/л/Т2 =0,058 В в случае известных

точных границ, которые получаются заменой d на ноль. Использование точных границ в этом случае 
дает значение и(х) на 4 % меньше, чем в случае неточных границ. Значимость такого расхождения сле­
дует рассматривать в контексте измерительной задачи.

6.4.4 Трапецеидальное распределение
6.4.4.1 В GUM [ISO/IEC Guide 98-3:2008 (4.3.9)] рассмотрено применение симметричного трапе­

цеидального распределения. Если случайная переменная X  является суммой двух независимых слу-
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чайных переменных Х 1 и X ,, каждая из которых подчиняется равномерному распределению R(a/; Ь,) с 
нижней границей а, и верхней границей Ь,- (/' = 1,2), то X  подчиняется симметричному трапецеидальному 
распределению Тгар(а, Ь, (3) с нижней границей а, верхней границей b и параметром (3, равным отноше­
нию длины верхнего основания трапеции к длине ее нижнего основания. Параметры трапецеидального 
распределения связаны с параметрами равномерного распределения следующими соотношениями:

а = а1 + а2 , Ь = + Ь2 , (3 — / ^ 2 > (5)

где

Х-t =
| ( b i - a i ) - ( b 2 - a 2)| (6 -а )

^2 - , 0 ^  ^  А,2 . (6)2 ’  2
6.4.4.2 Плотность распределения вероятностей для X  (рисунок 5), полученная в результате сверт­

ки двух распределений [42, стр. 93], имеет вид:

0, ^ < х -А,2,

( ^ - х  + Х.2)Д>.2 -Я.?), х - Х 2 S | < х-X .,,

9 х ( ^ )  = У (А .- | +  А,2 ) ,  X  — А , - | < ^ < Х  +  А.-|,

(х +А.2 - ^ ) Д а.2 J, х +А.-| < ^ < х +Я,2,

(7)

0, ^ > х + А,2,

где х = (а + Ь)/2.

Примечание  — Формула (7) может быть представлена в следующем виде, удобном для программирования:

г л \
Эх(^) =

___1_
А.1 + А-2

■min
1

л
■max(?i2 - |£ -х |,0 ) ,  1

Рисунок 5 — Плотность трапецеидального распределения суммы X = Х1 + Х2 равномерно распределенных
случайных переменных Х1 и Х2

6.4.4.3 Математическое ожидание и дисперсия X  имеют вид:

= 1 + Р2).

6.4.4.4 Для получения выборочного значения £, из распределения Тгар(а, Ь, (3) независимо выби­
рают два значения ^  и г2 из стандартного равномерного распределения R(0, 1) (см. С.3.3) и формируют

S = a + ^ [ ( 1  + P)r1 + (1 -|3)г2] .

6.4.5 Треугольное распределение
6.4.5.1 Если величина X  является суммой двух независимых случайных переменных, каждая из 

которых подчиняется равномерному распределению (см. 6.4.4), и (Ь1 -  а.,) = (Ь2 -  а2), то из выражений
(5) и (6) следует, что А,1 = 0 и (3 = 0. Таким образом, трапецеидальное распределение Тгар(а, Ь, 0) пре­
вращается в симметричное треугольное распределение Г(а, Ь) на интервале [а, Ь\.

21



ГОСТ 34100.3.1—2017

6.4.5.2 Плотность распределения вероятностей для X  в этом случае имеет вид:

9 х Щ  =

0,
(5-а)/'
(ь -а /

о,

^<а,
а < % < х,

х < £, < Ь,

$>Ь,

(8 )

где х = (а + Ь)/2 ии / = 12 =(Ь -  а)/2.

Примечание  — Формула (8) может быть представлена в следующем виде, удобном для программирования:

9 х (У  = ■max 1 -H J i L,o

6.4.5.3 Математическое ожидание и дисперсия X  имеют вид:

\2
Е ( Х )  =

а + b
V ( X )  =

( b - a y

2 24
6.4.5.4 Для получения выборочного значения £, из распределения Г(а, Ь) независимо выбирают 

два значения г, и г2 из стандартного равномерного распределения R(0, 1) (см. С.3.3) и формируют

Ь -  а ̂= а + ' '( ' i+ 'iz )

6.4.6 Арксинусное (U-образное) распределение
6.4.6.1 Если известно, что величина X  изменяется по гармоническому закону между предельными 

значениями а и Ь, а < Ь, но в момент наблюдения фаза Ф процесса неизвестна, то в соответствии с 
принципом максимума энтропии для описания Ф следует использовать равномерное распределение 
R(0, 2л). Тогда распределение X, получаемое в результате преобразования:

w а + Ь  Ь - а . ^
X  = ------- + --------эшФ ,

2 2
где Ф подчиняется распределению R(0, 2л), будет арксинусным (U-образным) распределением U(a, b) [18].

6.4.6.2 Плотность распределения вероятностей для X  в этом случае имеет вид:

0 х (5 ) =

0, ^ < а,
Г 9 9 "| —1/2

(2/л) ( b - a f  - ( 2 ^ - а - Ь |  I , а < ^ < Ь,

0,  ̂> Ь.
П р и м е ч а н и е  — Посредством замены переменной

Х = а + (b -  a) Z

можно от распределения U(a, b) перейти к стандартному распределению 1/(0, 1) для величины Z:

9 z W  = | z(1 ' z)" 1,2/ ’t ' ° < Z < 1 '
[ 0, z < 0, z > 1.

(9)

Случайная переменная Z имеет математическое ожидание 1/2 и дисперсию 1/8. Распределение (9) называют 
арксинусным, так как соответствующая ему функция распределения имеет вид

1 1
Gz (z) = — arcsin(2z -1 ) + —. 

л 2
Это частный случай бета-распределения, когда оба параметра распределения равны одной второй.

6.4.6.3 Математическое ожидание и дисперсия X  имеют вид:

Е ( Х ) - ^ ± ,  V ( X ) J b - a)2
8
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6.4.6.4 Для формирования выборки значений случайной переменной, подчиняющейся распреде­
лению U(a, Ь), необходимо случайные значения г, полученные из стандартного равномерного распре­
деления R(0, 1) (см. С.3.3), преобразовать следующим образом:

а + Ь------ +
2

b -  а 
2

sin2^r.

6.4.7 Нормальное распределение (распределение Гаусса)
6.4.7.1 Если наилучшая оценка х и соответствующая стандартная неопределенность и(х) явля­

ются единственной доступной информацией о величине X, то в соответствии с принципом максимума 
энтропии случайную переменную X  следует описывать нормальным распределением N(x, и2(х)).

6.4.7.2 Плотность распределения вероятностей для X  имеет вид:

9х(Ъ) =
1

ехр
(  /к 

( $ - * )
2и2 (х)yj2nu(x)

6.4.7.3 Математическое ожидание и дисперсия X  имеют вид:

Е(Х) = х, Е(Х) = и2(х).

(10)

6.4.7.4 Для формирования выборки значений случайной переменной, подчиняющейся распреде­
лению N(x, и2(х)), необходимо случайные значения z, полученные из стандартного нормального рас­
пределения N(0, 1) (см. раздел С.4), преобразовать следующим образом:

^ = х + u(x)z.

6.4.8 Многомерное нормальное распределение
6.4.8.1 Ситуация, описанная в 6.4.7.1, может быть распространена на N-мерную случайную пере­

менную X  = (Х1..... Хд/)т Если единственной доступной информацией об X  является наилучшая оценка
х =  (х1(..., xN)T \л соответствующая невырожденная положительно определенная матрица неопределен­
ностей

tv2 (x i) iy (x i,x2) •• • u(xb xN)

ty(x2,Xi) u2 {x2) ••■ u (x2,xn )

U(x A,.Xi) u{xN,X2) ••■ u2 (xN) .

то случайная переменная X  может быть описана многомерным нормальным распределением N(x, Ux).
6.4.8.2 Совместная плотность распределения X  имеет вид

9 х  (5)
•[(2*7

■ехр
d e tl/.

6.4.8.3 Математическое ожидание и ковариационная матрица X  имеют вид:

(11)

Е(Х) = х, V(X) = Ux.

6.4.8.4 Для формирования выборки значений случайной переменной, подчиняющейся распреде­
лению N(x, Ux), независимо выбирают N значений zr / = 1,..., N, случайной переменной, имеющей стан­
дартное нормальное распределение N(0, 1) (см. раздел С.4) и формируют

£ = х + RTz,

где z = (z1, ..., zN)J, a R — верхняя треугольная матрица, полученная разложением Холецкого Ux = RJR 
(см. раздел С.5).

П р и м е ч а н и е  1 — Вместо разложения Холецкого Ux = RJR может быть использован любой другой способ 
факторизации матрицы неопределенностей.

П р и м е ч а н и е  2 — Из многомерных распределений в настоящем стандарте рассматривается только 
многомерное нормальное распределение, часто применяемое на практике. Процедура получения выборки из мно­
гомерного нормального распределения приведена выше (а также в разделе С.5). Если необходимо использовать 
многомерное распределение, отличное от нормального, то необходимо определить процедуру формирования вы­
борки из этого распределения.
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П р и м е ч а н и е  3 — В случае независимых случайных переменных плотность многомерного нормального 
распределения (11) превращается в произведение N плотностей одномерных нормальных распределений вероят­
ностей. В этом случае

и х

9 x ( W

= d iag [u2(x1),...,u2 (xN)

9 х ( У  = П 9 х ,№ /) ,
/=1

1 & - X i )
1 UA|J

y j 2 n u ( X i ) 2U2 ( X , ) J

6.4.9 {-распределение
6.4.9.1 Обычно {-распределение появляется в двух случаях: при оценке ряда наблюдений (см. 

6.4.9.2) и интерпретации данных, приводимых в сертификатах о калибровке (см. 6.4.9.7).
6.4.9.2 Если имеется серия из п независимых наблюдений х1..... хп случайной переменной, подчи­

няющейся нормальному распределению N(p0, о02) с неизвестным математическим ожиданием д0 и не­
известной дисперсией а02, и за входную величину X  принимают оценку математического ожидания д0, 
то, приписывая д0 и а02 совместное неинформативное априорное распределение и используя теорему 
Байеса, можно получить одномерное распределение для X, которым в данном случае будет масштаби­
рованное смещенное {-распределение tv(x,s2ln ) с v = п -  1 степенями свободы, где

_ 1
х

Л Л о

представляют собой соответственно выборочное среднее и выборочную дисперсию [20].
6.4.9.3 Плотность распределения вероятностей для X  имеет вид:

9х<Л) =
Г(л /2 ) 1

1, 1
/  С -Л

%- х
2'

[ (n -1 ) /2 ]^ 7 c (n -1 )s /V n л -1 U/>/л,

где r(z ) — гамма-функция:

(12)

r(z) = J {z_1e“fd{, z > 0 . 
о

6.4.9.4 Математическое ожидание и дисперсия X  имеют вид:

Е (Х ) = х ,
/ 7 - 3 / 7

где Е(Х) определено только для п > 2, a V(X) — только для п > 3. Таким образом, для л > 3 наилучшая 
оценка X  и соответствующая ей стандартная неопределенность имеют вид:

х = х , (13)

П р и м е ч а н и е  1 — В соответствии с GUM [ISO/IEC Guide 98-3:2008 (4.2)] стандартную неопределенность 
и(х), соответствующую среднему арифметическому п независимых наблюдений, следует вычислять по формуле
и(х)  = s/л/п , а не по формуле (13). В качестве меры достоверности и(х) использовано число степеней свободы 
v = п -  1. Кроме того, оценкам неопределенности типа В также предложено ставить в соответствие число степеней 
свободы, основанное на субъективном суждении о степени доверия к этой оценке [ISO/IEC Guide 98-3:2008 (G.4.2)] 
(см. также 6.4.3.3, примечание 2). Знание числа степеней свободы, соответствующих неопределенности u(Xj), не­
обходимо для определения числа эффективных степеней свободы veff, соответствующих неопределенности и(у), 
по формуле Уэлча-Саттертуэйта.

П р и м е ч а н и е  2 — В байесовской интерпретации вероятности, использованной в настоящем стандарте, 
такого понятия, как надежность оценки неопределенности, не существует. Соответственно, в настоящем стандарте 
число степеней свободы оценки неопределенности типа А не рассматривается как мера этой неопределенности, а 
понятие числа степеней свободы для оценки неопределенности типа В не используется.
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6.4.9.5 Для формирования выборки значений случайной переменной, подчиняющейся рас­
пределению fv(x, s2/n), выбирают значения t случайной переменной, подчиняющейся центральному 
f-распределению с v = п -1 степенями свободы [ISO/lEC Guide 98-3:2008 (раздел G.3)] (см. также раз­
дел С.6), и формируют

S = X  +  - = f .
VA?

6.4.9.6 Если вместо оценки стандартного отклонения s, вычисленной по одной выборке наблюде­
ний, используют объединенную оценку стандартного отклонения sp с vp степенями свободы, получен­
ную по Q сериям наблюдений:

л Q Q
SP2 = —  1 > Л 2 ' v p =  I v ; .

VP 7=1

то число степеней свободы v = п -1 для масштабированного смещенного f-распределения, приписан­
ного X, необходимо заменить числом степеней свободы vp для объединенной оценки стандартного от­
клонения sp. В результате формулу (12) необходимо заменить на

9хЙ )
г '> р + 1 ) / 2 ] 1 1 + 1

г .  _  f

г (Vp /2 )V ЯУ^ S p / ’ /n VP U p / ^ J

1-М )/2

а формулу (13) — на

1 п
*  = *  = - £ * /  , и(х) (v *  3).

6.4.9.7 Если источником информации о величине X  является сертификат о калибровке [ISO/IEC 
Guide 98-3:2008 (4.3.1)], в котором указаны наилучшая оценка х, расширенная неопределенность Up , 
коэффициент охвата кр и число эффективных степеней свободы veff, то величина X  может быть описа­
на масштабированным смещенным f-распределением fv(x, (Up/kp)2) с v = veff степенями свободы.

6.4.9.8 Если veff бесконечно или неопределенно (а при отсутствии соответствующей инфор­
мации его следует считать бесконечным), то X  может быть приписано нормальное распределение 
N(x, (Up/kp)2) (см. 6.4.7.1).

П р и м е ч а н и е  — Это нормальное распределение будет предельным случаем масштабированного сме­
щенного f-распределения fv(x, (Uplkp)2) при v, стремящемся к бесконечности.

6.4.10 Экспоненциальное распределение
6.4.10.1 Если единственной доступной информацией о неотрицательной величине X  является ее 

наилучшая оценка х > 0, то в соответствии с принципом максимума энтропии величина X  может быть 
описана экспоненциальным распределением £х(1/х).

6.4.10.2 Плотность распределения вероятностей для X  в этом случае имеет вид:

о m - I expK / x ) / x ’ ^ 2 0 '
9 х ( 5 , _ 1 о, 5<0 .

6.4.10.3 Математическое ожидание и дисперсия X  имеют вид:

Е(Х) = х, V(X) = х2.

6.4.10.4 Для формирования выборки значений случайной переменной, подчиняющейся распре­
делению Ех(1/х), выбирают значения г случайной переменной, подчиняющейся стандартному равно­
мерному распределению R(0, 1) (см. С.3.3), и формируют

% = - х  In г.

П р и м е ч а н и е  — Дополнительную информацию в отношении приписывания плотности распределения 
вероятностей неотрицательной величине можно найти в [14].

6.4.11 Гамма-распределение
6.4.11.1 Величина X  может представлять собой среднее число объектов, обладающих опреде­

ленным свойством (далее — объекты), в выборке фиксированного объема (например, среднее число
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частиц в образце воздуха, взятом из чистой комнаты, или среднее число фотонов, излученных источ­
ником за установленный промежуток времени). Если q — число объектов, подсчитываемых в выборке 
заданного объема, является случайной переменной с неизвестным математическим ожиданием, под­
чиняющейся распределению Пуассона, то в соответствии с теоремой Байеса (после приписывания 
математическому ожиданию априорного равномерного распределения на бесконечном интервале) рас­
пределение X  будет подчиняться гамма-распределению G(q + 1,1).

6.4.11.2 Плотность распределения вероятностей для X  в этом случае имеет вид:

Э х (у  = { ^ е х р В ) /< 7 ,  ^ 0  (14)
0, с, < 0

6.4.11.3 Математическое ожидание и дисперсия X  имеют вид:

E (X ) = q + 1, V (X ) = q + 1. (15)

6.4.11.4 Для формирования выборки значений случайной переменной, подчиняющейся распре­
делению G(q + 1, 1), независимо выбирают q + 1 значений rjt / = 1, ..., (q + 1), случайной переменной, 
подчиняющейся стандартному равномерному распределению R(0, 1) (см. С.3.3), и формируют (см. [18])

<7+1

5 — ш П о .
;=1

П р и м е ч а н и е  1 — Если подсчет осуществляют по нескольким выборкам (соответствующим одному и 
тому же распределению Пуассона), а д,- — число объектов, обнаруженных в /'-й выборке объема S,-, то распределе­
нием среднего количества объектов в выборке объема S = 2^S, будет G(а, р)с а  = 1 + ^ д ,-  и [3 = 1. Формулы

/ /
(14) и (15) в этом случае применяют для Я = 2^Qj ■

/
П р и м е ч а н и е  2 — Гамма-распределение является обобщением распределения хи-квадрат и использу­

ется для анализа информации, относящейся к дисперсиям.
П р и м е ч а н и е  3 — Специфическое гамма-распределение в 6.4.11.4 — это распределение Эрланга, 

представляющее собой распределение суммы (q + 1) случайных переменных, подчиняющихся экспоненциальному 
распределению с параметром 1 [18].

6.5 Распределения, получаемые по предшествующим расчетам неопределенности

Выполненные ранее вычисления неопределенности могут быть использованы для приписывания 
распределения выходной величине, которая в последующих расчетах неопределенности может высту­
пать в качестве входной величины. Такое распределение может иметь аналитическое представление, 
например в виде нормального распределения. Оно может также иметь вид аппроксимации функции 
распределения для величины, полученной, например, при предшествующем применении метода Мон­
те-Карло. Способы описания такой функции распределения приведены в 7.5.1 и разделе D.2.

7 Применение метода Монте-Карло
7.1 Общие положения

Данный раздел содержит сведения о применении метода Монте-Карло для трансформирования 
распределений (см. процедуру, описанную в 5.9.6 и графически изображенную на рисунке 4).

7.2 Число испытаний при применении метода Монте-Карло

7.2.1 Для применения метода Монте-Карло необходимо выбрать число испытаний М , т. е. число 
наблюдений выходных значений модели. Это число может быть выбрано заблаговременно (до про­
ведения испытаний), но тогда будет исключена возможность управления точностью результатов, полу­
ченных с помощью данного метода. Причиной этому служит то, что число испытаний, необходимое для 
получения результата вычисления с заданной точностью, зависит от формы плотности распределения 
вероятностей выходной величины и от заданного значения вероятности охвата. Кроме того, метод вы­
числения является стохастическим по своей природе, поскольку зависит от случайной выборки.
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П р и м е ч а н и е  — Как правило, выбор М = 106 позволяет построить 95 %-ный интервал охвата для вы­
ходной величины с точностью до одной или двух значащих цифр.

7.2.2 Рекомендуется выбирать значение М  достаточно большим (например, превышающим в 
104 раз) по сравнению с 1/(1 -  р). Тогда можно ожидать, что G обеспечит приемлемое дискретное пред­
ставление Gy(r)) вблизи границ 100р %-ного интервала охвата для У.

7.2.3 Поскольку нельзя заранее гарантировать, что выбранное значение М обеспечит достаточ­
ную точность приближения, можно использовать процедуру адаптивного выбора, уточняя значение М  

в процессе испытаний. Некоторые рекомендации по адаптивной процедуре выбора М  приведены в [2]. 
Адаптивная процедура, установленная в 7.9, позволяет оптимальным образом получить значение М , 

соответствующее заданной точности вычислений.

П р и м е ч а н и е  — Для сложной модели, например требующей получения решения методом конечных 
элементов, применение большого числа испытаний может оказаться невозможным. В этом случае рекомендуется 
представить плотность распределения вероятностей выходной величины ду(т]) в виде гауссовского приближения 
(как в GUM). Это позволяет использовать относительно небольшое число испытаний М, например 50 или 100, 
а полученные по результатам испытаний выборочное среднее и выборочное стандартное отклонение принять, со­
ответственно, за оценки у и и(у). Для описания У и построения интервала охвата используют плотность нормаль­
ного распределения ду(ц) = Л/(у, и2(у)). Хотя уменьшение числа испытаний неизбежно ухудшает свойства метода 
в части аппроксимации распределения выходной величины, оно все же позволяет учесть нелинейность модели 
измерения.

7.3 Выборка из распределения вероятностей

Для применения метода Монте-Карло формируют М  векторов хг г -  1,..., М  (см. 7.2) в соответствии 
с плотностями распределения вероятностей g x (%j) для N  входных величин X ,- или, если это необходи­
мо, из совместной (многомерной) плотности распределения д^(£). Рекомендации по формированию 
выборки для наиболее распространенных распределений (равномерного, нормального, многомерного 
нормального и /-распределения) приведены в приложении С (см. также 6.4). Однако возможно получе­
ние выборок, соответствующих и другим распределениям (см. раздел С.2). Некоторые распределения 
могут быть аппроксимированы распределениями, полученными в результате применения метода Мон­
те-Карло при предыдущих вычислениях неопределенности (см. 6.5, 7.5 и приложение D).

П р и м е ч а н и е  — Для достоверности результатов применения метода Монте-Карло необходимо, чтобы 
генераторы псевдослучайных чисел, используемые для формирования выборок из заданных распределений, об­
ладали соответствующими свойствами. В С.3.2 приведены некоторые критерии проверки сформированных вы­
борок на случайность.

7.4 Оценка выходной величины

7.4.1 Выходную величину определяют для каждой из М  выборок по N  значениям входных величин 
в каждой, полученных в соответствии с заданными плотностями распределения вероятностей. Если 
обозначить М  выборок через х^, х м, где r-й вектор состоит из случайных значений х1 г  ..., xNr  и 
каждое такое значение xjr  получено в соответствии с плотностью распределения вероятностей для 
входной величины Хг то выход модели можно представить в виде

yr = f{xr), г  = 1, ..., М.

7.4.2 Если X, являются зависимыми величинами, то в 7.4.1 необходимо использовать совместную 
плотность распределения.

П р и м е ч а н и е  — При использовании закона трансформирования неопределенностей, когда аналити­
ческие выражения производных функции измерения по входным величинам известны точно, значения выходной 
величины и этих производных получают в точке наилучших оценок входных величин. Если аналитические выраже­
ния для производных неизвестны и для их оценок используют приближение в виде конечных разностей, то полу­
чают значения только выходной величины. Согласно рекомендации GUM [ISO/IEC Guide 98-3:2008 (примечание 2 
к 5.1.3)] значения функции измерения берут в точках наилучших оценок входных величин, а также в точках, отсто­
ящих по обе стороны от этих наилучших оценок на расстоянии одной стандартной неопределенности (варьируя по 
очереди для каждой входной величины). В методе же Монте-Карло значения выходной величины получают при ва­
рьировании входных величин в окрестности их наилучших оценок, так что в отдельной выборке значение входной 
величины может отстоять от ее наилучшей оценки на несколько стандартных отклонений. Тот факт, что в методе 
Монте-Карло значения функции измерений получают в разных точках, может породить вопрос о свойствах вычис­
лительной процедуры, в частности о ее устойчивости и (в случае применения адаптивной процедуры) сходимости.
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При возникновении сомнений пользователю следует убедиться в том, что метод дает достоверные оценки выход­
ной величины для достаточно больших окрестностей наилучших оценок входных величин. Однако следует ожи­
дать, что вопросы устойчивости и сходимости численного метода могут стать критическими только в исключитель­
ных случаях.

7.5 Дискретное представление функции распределения выходной величины

7.5.1 Дискретное представление G функции распределения Gy(ri) выходной величины У может 
быть получено следующим образом:

a) значения выходной величины уг г -  1, М, полученные в соответствии с методом Монте-Кар­
ло, располагают в неубывающем порядке, обозначая их у ^ , г -  1, М;

b ) если среди значений у ^  есть совпадающие, то в них вносят минимальные случайные возму­
щения, чтобы полученная в результате последовательность у ^ , г -  1, ..., М была строго возрастающей 
[см. условие Ь) в 5.10.1];

c) полученная последовательность у ^ , г  = 1, ..., М, определяет G.

П р и м е ч а н и е  1 — Из возможных алгоритмов сортировки, применяемой на этапе а), рекомендуется вы­
бирать такой, в котором число операций пропорционально М In М [47]. В обычных алгоритмах сортировки число 
операций пропорционально М2, что необоснованно увеличивает время вычислений (см. 7.8).

П р и м е ч а н и е  2 — В перечислении а) использован термин «неубывающий», а не «возрастающий» вслед­
ствие возможного равенства между собой некоторых значений уг выходной величины.

П р и м е ч а н и е  3 — Внесение в совпадающие значения выходной величины только очень малых возму­
щений [см. перечисление Ь)] обеспечивает неизменность статистических свойств у^.

П р и м е ч а н и е  4 — Необходимость внесения малых возмущений на этапе Ь) в действительности мало­
вероятна из-за огромного множества различных чисел с плавающей запятой, появляющихся на выходе модели при 
подаче на ее вход данных с генератора случайных чисел. Тем не менее возможность внесения малых возмущений 
должна быть предусмотрена применяемыми программными средствами.

П р и м е ч а н и е  5 — Из построенного на этапе с) приближения G можно извлечь разнообразную допол­
нительную информацию. Так, помимо оценок математического ожидания и стандартного отклонения могут быть 
получены оценки коэффициентов асимметрии и эксцесса, а также другие статистики, например оценки моды или 
медианы.

П р и м е ч а н и е  6 — Если выходная величина У будет в дальнейшем рассматриваться как входная ве­
личина при оценивании неопределенности другого измерения, то выборку из ее распределения легко получить 
случайным (равновероятным) выбором значений и зу^ , г = 1, ..., М (см. 6.5).

7.5.2 Последовательность у ^  (или уг) может быть представлена в виде гистограммы (при соответ­
ствующем выборе ширины классов), представляющей собой распределение частот появления выход­
ной величины. После нормирования, обеспечивающего равенство площади под гистограммой единице, 
ее можно рассматривать как аппроксимацию плотности распределения вероятностей ду(г|). Вычисле­
ния характеристик распределения обычно проводят по приближению G, а не по построенной гистограм­
ме, поскольку разрешение последней зависит от выбора ширины классов. Тем не менее гистограмма 
может быть полезна с точки зрения понимания особенностей плотности распределения вероятностей 
выходной величины, например степени ее асимметрии (см. также примечание 1 к 7.8.3 в части исполь­
зования гистограммы при больших значениях М).

7.5.3 В ряде случаев требуется аппроксимация Gу(г\) непрерывной функцией. Этот вопрос рас­
сматривается в приложении D.

7.6 Оценка выходной величины и ее стандартной неопределенности

В качестве оценки у выходной величины У используют выборочное среднее

У =
л м

(16)

а в качестве оценки ее стандартной неопределенности и(у) — выборочное стандартное отклонение
и(у):

и2(у)
М

м
- 1 ( У г
'г=1

(17)

П р и м е ч а н и е  1 — Для численных вычислений следует использовать формулу (17), а не эквивалентную 
ей математически формулу
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и2(у)
м

М - 1

л м
I V 1 2 ~2

-п Ъ у г - г
КМ г=1

\

7

Это связано с тем, что очень часто в метрологии и(у) много меньше по модулю, чем у, и, как следствие, числа 
в последовательности уг в их десятичном представлении имеют много совпадающих цифр в старших разрядах. В 
этом случае погрешности округления в арифметике с конечной точностью (при вычитании близких по значению 
величин) могут привести к большим ошибкам в расчетах (доходящим даже до того, что выражение в круглых скоб­
ках станет отрицательным, т. е. средний квадрат будет меньше квадрата среднего). Результаты таких вычислений 
будут иметь неудовлетворительную точность (см. [4]).

Пр и ме ч а н и е 2  — В некоторых особых случаях, когда одной из входных величин приписано /-распределение 
с числом степеней свободы менее трех, математическое ожидание и стандартное отклонение У, соответствующие 
плотности распределения вероятностей ду(т|), могут не существовать. Как следствие, формулы (16) и (17) не спо­
собны обеспечить получение содержательных результатов. Однако интервал охвата для У (см. 7.7), построенный 
на основе G, будет сохранять свое содержательное значение.

П р и м е ч а н и е  3 — В общем случае у не будет согласовываться с оценкой выходной величины, полу­
ченной по наилучшим оценкам входных величин, так как для нелинейной функции измерения f(X) математическое 
ожидание £(У) = E[f(X)] Ф f[E(X)] (см. [ISO/IEC Guide 98-3:2008 (4.1.4)]). Независимо от линейности или нелинейно­
сти функции f(X) при М, стремящемся к бесконечности, устремится к E[f(X)], если последнее существует.

7.7 Интервал охвата для выходной величины

7.7.1 Интервал охвата для У может быть получен на основе дискретного приближения в д л я  Gy(T|) 
аналогично тому, как он был построен для Gy(r|) в 5.3.2.

7.7.2 Если рМ — целое число, то берут q = рМ, в противном случае в качестве q можно выбрать 
целую часть (рМ + 1/2). Тогда [y!ow, yhigh] является 100р %-ным интервалом охвата для У, где y !ow = у ^ , 
yhigh = у (г + для любого г из ряда г = 1, ..., (М -  q). Вероятностно симметричный 1ООр %-ный интервал 
охвата можно получить, выбрав г= (М -  q)l2, если (М -  q)l2 — целое число, или г -  Ы [(М -  q +1)/2] в про­
тивном случае. Для определения наименьшего 100р %-ного интервала охвата следует выбрать такое 
г*, чтобы для всех г, принадлежащих ряду г = 1, ..., (М -  q), выполнялось неравенство

У(г* + q ) - y ( r * ) ^ y ( r +  q )-y (r) .
П р и м е ч а н и е  — Поскольку численные значения, полученные в результате применения метода Монте- 

Карло, случайны по своей природе, то некоторые из построенных (M - q ) интервалов будут меньше, чем в среднем 
(при многократном применении метода), а некоторые — больше. Поэтому при выборе наименьшего 100р %-ного 
интервала охвата следует иметь в виду, что его длина будет, как правило, меньше, чем если бы он был рассчитан 
на основе Gy(T|), или, что то же самое, что вероятность охвата для построенного эмпирического наименьшего 
100р %-ного интервала охвата будет в действительности меньше, чем 100р. Однако для больших М этим отличием 
можно пренебречь.

Пример — С помощью генератора псевдослучайных чисел для равномерного распределения в ин­
тервале [0,1] были получены 105 псевдослучайных значений, и по этой выборке вышеописанным спо­
собом был построен наименьший 95 %-ный интервал охвата. Всего эта процедура была повторена 
1000 раз. Средняя вероятность охвата составила 94,92 %, а выборочное стандартное отклонение ве­
роятности охвата по 1000 реализациям процедуры составило 0,06 %.

7.8 Время вычислений

7.8.1 Большая часть времени вычислений по методу Монте-Карло расходуется на выполнение 
следующих трех этапов:

a) генерирование М случайных значений в соответствии с заданной плотностью распределения 
вероятностей для каждой входной величины X, (или совместной плотности распределения для X);

b ) определение М соответствующих значений на выходе модели;
c) расположение М значений выходной величины в неубывающем порядке.
7.8.2 Время, необходимое на выполнение этих трех этапов, прямо пропорционально М для этапов 

а) и Ь) и M\n М для этапа с) (при использовании эффективного алгоритма сортировки [47]).
7.8.3 В случае простой модели и независимых входных величин время, необходимое для вы­

полнения этапа с), будет преобладающим, а общее время вычислений на персональном компьютере 
с тактовой частотой процесса в несколько гигагерц при М = 106 составит несколько секунд. Если же 
процедура сортировки не является затратной по времени, то, обозначив Т, время вычисления одного 
псевдослучайного значения в соответствии с заданной плотностью распределения вероятностей для
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входных величин, а Г2 — время вычисления одного значения выходной величины, получим прибли­
женную оценку общего времени вычислений в виде М(Т1 + Г2). Для сложной модели преобладающим 
будет слагаемое МТ2.

П р и м е ч а н и е  1 — Если модель проста, а М — очень большое число, например 108 или 109, то время 
сортировки может быть значительно больше времени вычисления значения на выходе модели. В таком случае 
предпочтительным может быть оценивание неопределенности не по экспериментальной функции распределения, 
а по гистограмме, построенной для ряда уг

П р и м е ч а н и е  2 — Ориентировочно оценку времени вычислений методом Монте-Карло можно выполнить 
на примере, задав модель измерения в виде суммы пяти членов:

У = cos Х1 + sin Х2 + ctg Х3 + ехр(Х4) + Х^/3.

Каждой входной величине X, приписано нормальное распределение. Число испытаний метода выбрано рав­
ным М = 106. Относительное время выполнения операций:

a) генерирования 5М случайных чисел;
b) вычисления М значений на выходе модели;
c) сортировки М значений выходной величины, —

составляет соответственно 20 %, 20 % и 60 % общего времени вычислений, равного приблизительно нескольким 
секундам при выполнении расчетов на персональном компьютере с тактовой частотой в несколько гигагерц.

7.9 Адаптивная процедура реализации метода Монте-Карло

7.9.1 Общие положения
Суть адаптивной процедуры состоит в последовательном увеличении числа испытаний до тех 

пор, пока полученные числовые оценки статистических характеристик не станут установившимися. 
Численный результат считается установившимся, если соответствующее ему удвоенное стандартное 
отклонение станет меньше заданной точности вычисления стандартной неопределенности и(у) (см. 
7.9.2).

7.9.2 Точность вычисления числовых значений
Если обозначить через ndig число существенных значащих цифр в числовом представлении вели­

чины z, то предел погрешности вычисления 8 значения z определяют следующим образом:
a) представляют значение z в виде с • 1(/, где с — целое число, состоящее из ndig значащих цифр, 

( — целое число;
b )  определяют 8 по формуле

S = j 1 0 f . (18)

Пример 1 — Оценка выходной величины для эталона массы номиналом 100 г [ISO/IEC Guide 98- 
3:2008 (7.2.2)] составляет у  = 100,02147 г. Стандартная неопределенность и(у) = 0,00035 г, причем обе 
значащие цифры рассматриваются как существенные. Таким образом, ndig= 2, и и(у) может быть пред­

ставлена в виде 35 10~5 г. Следовательно, с = 35 и (  = -5. Таким образом, 8 = ^10~5 = 0,000005 г.

Пример 2 — Условия те же, что и в примере 1, за исключением того, что только одна значащая 
цифра в и(у) является существенной; ndig = 1 и и(у) = 0,0004 г = 4 10~4 г. Это дает с= 4 и ( -  -4. Следова­

тельно, 8 = -1 0  4 = 0,00005 г.
2

Пример 3 — При измерениях температуры и(у) = 2 К. Тогда ndig = 1, и(у) = 2 10° К, что дает с = 2 и

1 -0 . Таким образом, 8 = —10° , К = 0,5 К.
2

7.9.3 Назначение адаптивной процедуры
В результате применения адаптивной процедуры, приведенной в 7.9.4, должны быть определены:
a) оценка у  величины У;
b ) стандартная неопределенность и(у)\
c) границы yjow и yhigh интервала охвата для У, соответствующего заданной вероятности охвата.
При этом числовые значения каждой из вышеуказанных четырех величин должны в среднем удов­

летворять заданной точности вычисления.

П р и м е ч а н и е  1 — То, что выполнение требования к точности вычислений может быть гарантировано 
не безусловно, а только в среднем, обусловлено природой случайности, на которой основан метод Монте-Карло.
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П р и м е ч а н и е  2 — С увеличением числа испытаний скорость сходимости оценок у и и(у) обычно гораздо 
выше, чем оценок ylow и yhigh.

П р и м е ч а н и е  3 — Как правило, чем больше вероятность охвата, тем большее число испытаний требу­
ется для определения у,0№ и yhigh с заданной точностью вычисления.

7.9.4 Процедура
Практическая реализация адаптивной процедуры метода Монте-Карло с последовательным уве­

личением числа испытаний состоит в следующем:
a) задают ndig;
b) задают М = max(J, 104), где J — наименьшее целое, больше или равное 100/(1 -  р);
c) задают h = 1 (счетчик итераций метода Монте-Карло);
d) выполняют М испытаний методом Монте-Карло (см. 7.3 и 7.4);
e) используют М полученных на выходе модели значений y 1 t..., ум для вычислений в соответствии

( h\
с 7.5— 7.7 очередной, /7-й оценки у^  величины Y, ее стандартной неопределенности и[У^], левой у ^

( h \
и правой y[,jgh границ 100р %-ного интервала охвата;

f) если h = 1, то увеличивают счетчик h на единицу и выполняют этап d);
g) вычисляют выборочное стандартное отклонение sy среднего значения полученных в результате 

итераций оц ен ок)/1), ..., уМ  по формуле:

h) аналогичным образом вычисляют выборочное стандартное отклонение для средних значений

i) используют все hM значений выходной величины для вычисления и(у)\
j) определяют предел погрешности вычисления 5 для и(у) (см.7.9.2);
k) если хотя бы одно из значений 2s.., 2s..(.Al 2s.. , 2s.. превышает 5, то увеличивают значение

У ‘Л / /  У low /high
счетчика h на единицу и возвращаются к этапу d);

l) если возврата к этапу d) не произошло и значения всех вычисляемых оценок можно считать 
установившимися, то на основе полученных hM значений выходной величины в соответствии с 7.5— 7.7 
вычисляют у, и(у) и 100р %-ный интервал охвата.

П р и м е ч а н и е  1 — Обычно на этапе а) задают ndig = 1 или ndig = 2.
П р и м е ч а н и е  2 — На этапе Ь) выбор М произволен, но должен основываться на практических 

соображениях.
П р и м е ч а н и е  3 — На этапе д) у можно рассматривать как реализацию случайной переменной со стан­

дартным отклонением sy.
П р и м е ч а н и е  4 — Стандартные отклонения, полученные в соответствии с д) и h), имеют тенденцию к 

уменьшению по закону /7-1/2 (см. 5.9.6, примечание 2).
П р и м е ч а н и е  5 — В тех случаях, когда определять интервал охвата не требуется, проверку точности 

вычислений на этапе к) достаточно выполнять только для 2sy и 2sû y
П р и м е ч а н и е  6 — Множитель 2, используемый на этапе к), основан на представлении выборочных сред­

них в виде случайных переменных, подчиняющихся нормальному распределению, и соответствует вероятности 
охвата, приблизительно равной 95 %.

П р и м е ч а н и е  7 — Альтернативный неадаптивный подход для построения 95 %-ного вероятностно 
симметричного интервала охвата, основанный на использовании статистик биноминального распределения [10], 
состоит в следующем. Выбирают М = 105 или М = 10е. Формируют интервал [у^, у^ ], где для М = 105 г = 2420, 
s = 97581, а для М= 106 г= 24747, s = 975254. Этот интервал будет 95 %-ным толерантным интервалом для уровня 
доверия 0,99 (см. [ISO/IEC Guide 98-3:2008 (С.2.30)], [55]), т. е. вероятность охвата составит не менее 95 % в 99 %, 
как минимум, случаев применения метода Монте-Карло. Средняя вероятность охвата для такого интервала будет 
равна (s -  г)/(М +1), что превышает 95 % на величину, уменьшающуюся с ростом М. Так, для М = 105 средняя ве­
роятность охвата будет 95,16 %, а для М = 106 — 95,05 %. (Возможен и другой выбор значений г и s, и при этом не 
обязательно, чтобы их сумма составляла (М + 1). Достаточно [10, раздел 2.6], чтобы разность (s -  г) удовлетворяла 
условию

оценок и(у), y |ow и yhigh;

j = S - r
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максимального значения, при котором неравенство еще выполняется.) Эти результаты могут быть распространены 
на другие значения вероятности охвата и другие значения М.

8 Проверка результатов
8.1 Проверка результатов оценивания неопределенности по GUM сравнением с методом
Монте-Карло

8.1.1 Способ оценивания неопределенности по GUM во многих случаях работает хорошо. 
Однако не всегда можно сразу определить, соблюдены ли все условия для его применения (см. 5.7 и 
5.8). Обычно гораздо проще оценить неопределенность с использованием метода Монте-Карло (при 
наличии соответствующего программного обеспечения), чем выяснить, выполнены ли все условия оце­
нивания по GUM [8]. При наличии сомнений в обоснованности применения способа оценивания по 
GUM полученные с его помощью результаты нуждаются в проверке, а поскольку диапазон условий, при 
которых может быть применен метод Монте-Карло, значительно шире, чем для метода по GUM, то для 
такой проверки рекомендуется сопоставить результаты оценивания по GUM с результатами оценива­
ния методом Монте-Карло. Если сравнение подтвердит обоснованность применения GUM, то способ 
оценивания неопределенности по GUM можно будет применять в будущем для схожих задач. В про­
тивном случае следует рассмотреть возможность замены на другой способ оценивания неопределен­
ности, включая тот же метод Монте-Карло.

8.1.2 При сравнении двух методов рекомендуется руководствоваться следующей двухэтапной 
процедурой:

a) применить способ оценивания неопределенности по GUM (возможно с учетом членов высшего 
порядка разложения функции измерения в ряд Тейлора в законе трансформирования неопределен­
ностей) (см. 5.6) для определения 100р %-ного интервала охвата у  ± Up, где р — заданная вероятность 
охвата;

b ) применить адаптивную процедуру Монте-Карло (см. 7.9.4) для получения стандартной неопре­
деленности и(у) и границ y !ow и yhigh заданного 100р %-ного интервала охвата для выходной величины 
(вероятностно симметричного или наименьшего) (см. также 8.2).

8.1.3 Процедура сравнения позволяет определить, согласуются ли интервалы охвата, полученные 
в соответствии со способом оценивания неопределенности по GUM и методом Монте-Карло, в преде­
лах заданной точности вычислений. Точность вычислений для границ интервалов охвата определяют 
через точность выражения стандартной неопределенности и(у) числом существенных значащих цифр 
в ее десятичном представлении (ср. с 7.9.2). Для этого:

a) определяют предел погрешности вычисления 8 для и(у), как указано в 7.9.2;
b ) сравнивают интервалы охвата, полученные в соответствии со способом оценивания неопреде­

ленности по GUM и методом Монте-Карло, чтобы определить, получено ли в значениях границ интер­
вала охвата, вычисленных по GUM, необходимое число верных значащих цифр. При этом определяют:

т. е. абсолютные значения разности соответствующих границ двух интервалов охвата. Если как d|0W, так 
и dhigh не превышают 8, то способ оценивания неопределенности по GUM в этом случае можно считать 
применимым.

П р и м е ч а н и е  — Результат сравнения будет зависеть от того, какой вероятности охвата соответствуют 
сравниваемые интервалы. Поэтому проверку выполняют только для конкретной заданной вероятности охвата р.

8.2 Применение метода Монте-Карло при проведении проверки

Для выполнения проверки по 8.1 метод Монте-Карло должен быть реализован для достаточно 
большого числа испытаний М (см. 7.2). Если обозначить через ndig число существенных значащих цифр 
в десятичном представлении и(у) при проверке применимости способа оценивания по GUM, а через

^low IУ Up yiow l> 

^high “ IУ + Up — yhigh l>

(19)

(20)
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8 — допустимую погрешность вычисления и(у) (см. 7.9.2), то для получения в целях проверки результа­
тов методом Монте-Карло рекомендуется использовать его адаптивный вариант (см. 7.9.4) до достиже­
ния погрешности вычисления 8/5 [т. е. в 7.9.4 на этапе к) 8 следует заменить на 8/5].

П р и м е ч а н и е  — В среднем уменьшение погрешности вычисления до 8/5 требует повышения числа ис­
пытаний М в 25 раз. Выполнение операций с векторами столь большой размерности может представлять собой 
серьезную проблему для ряда компьютеров. В этом случае для вычисления статистических оценок рекомендуется 
использовать приближение ду{ц) гистограммой для ряда уг При этом частота попаданий в соответствующий класс 
гистограммы уточняется в ходе итераций (см. 7.8.3, примечание 1).

9 Примеры

9.1 Иллюстрация положений настоящего стандарта

9.1.1 Приведенные в настоящем разделе примеры иллюстрируют различные вопросы примене­
ния положений настоящего стандарта, включая использование способа оценивания неопределенности 
по GUM с учетом и без учета членов разложения функции измерения в ряд Тейлора высших порядков 
и сопоставление полученных с его помощью результатов с результатами:

a) метода Монте-Карло с использованием заданного числа испытаний М;
b ) адаптивной процедуры метода Монте-Карло (см. 7.9.4), в которой необходимое значение М 

определяется в ходе итераций;
c) сочетающими перечисленное в а) и Ь).
9.1.2 Некоторые из примеров посвящены вопросу, подтверждают ли результаты, указанные в 9.1.1, 

перечисление Ь), результаты оценивания неопределенности по GUM. Для целей сравнения результатов 
используется соответствующим образом выбранный предел погрешности вычисления 8 (см. 7.9.2) для 
оценки и(у). Результаты с использованием адаптивной процедуры метода Монте-Карло получены для 
погрешности вычисления 8/5 (см. 8.2). В некоторых случаях результаты сравниваются с решениями, 
полученными аналитически.

9.1.3 Как правило, результаты представлены в виде, установленном в 5.5. Однако для облегчения 
сравнения результатов, полученных разными методами, часто используется более рекомендованных 
одной или двух значащих цифр.

9.1.4 В качестве генератора псевдослучайных чисел из равномерного распределения (см. С.З) 
использован вихрь Мерсенна [34]. Этот генератор прошел всестороннюю проверку статистических 
свойств получаемой выборки из равномерного распределения [30] и реализован в пакете MATLAB1) 
[36], который использован для получения результатов в примерах настоящего раздела.

9.1.5 Первый пример (см. 9.2) представляет собой аддитивную модель. Он демонстрирует сов­
падение результатов, полученных с применением метода Монте-Карло, с теми, что получены спосо­
бом оценивания неопределенности по GUM в случае выполнения условий применимости последнего 
(см. 5.7). Эта модель рассмотрена для различных плотностей распределения вероятностей для вход­
ных величин, что позволяет показать некоторые отклонения результатов в ситуациях, когда выполнены 
не все условия применимости способа оценивания неопределенности по GUM.

9.1.6 Второй пример (см. 9.3) представляет собой задачу калибровки при измерении массы. Он 
показывает, что способ оценивания неопределенности по GUM дает достоверные результаты для дан­
ного примера только в том случае, когда учтены вклады членов разложения функции измерения в ряд 
Тейлора высших порядков.

9.1.7 Третий пример (см. 9.4) относится к области электрических измерений. Он показывает, что 
плотность распределения вероятностей для выходной величины может быть существенно асиммет­
ричной, и, таким образом, способ оценивания неопределенности по GUM может дать недостоверные 
результаты даже при учете членов разложения функции измерения в ряд Тейлора высших порядков. 
Рассмотрены случаи как независимых, так и зависимых входных величин.

9.1.8 Четвертый пример (см. 9.5) — это пример калибровки концевой меры длины, взятый из GUM 
[ISO/IEC Guide 98-3:2008 (раздел Н.1)]. Даны пояснения относительно используемых в примере входных

1) MATLAB является коммерческим продуктом, удобным для числовых расчетов, требуемых в примерах на­
стоящего стандарта. Информация об используемом средстве приведена только для удобства пользователей на­
стоящего стандарта. Ее не следует рассматривать как рекомендацию использовать именно этот коммерческий 
продукт в практических вычислениях.
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величин модели и плотностей распределения вероятностей для этих величин, а также приведено срав­
нение результатов, получаемых по GUM, с полученными с использованием метода Монте-Карло. Ре­
зультаты получены как для приближения, использованного в GUM, так и без использования этого при­
ближения для данной измерительной задачи.

9.2 Аддитивная модель

9.2.1 Постановка задачи
В настоящем примере рассмотрена аддитивная модель

У = Х 1 + Х2 + Х3 + Х4, (21)

представляющая собой частный случай общей линейной модели, рассмотренной в GUM, для трех раз­
личных сочетаний плотностей распределения вероятностей дх (%) Для входных величин Хг рассматри­
ваемых как независимые. Входные величины X, и, следовательно, выходная величина У безразмерны. 
В первом сочетании каждая из gx (Z,j) является плотностью стандартного нормального распределения 
(каждая входная величина X, имеет нулевое математическое ожидание и единичное стандартное от­
клонение). Во втором сочетании все дх (4,) являются плотностями равномерного распределения с ну­
левым математическим ожиданием и единичным стандартным отклонением. Третий набор идентичен 
второму, за исключением того, что для плотности распределения вероятностей дх  (£4) стандартное 
отклонение равно 10.

П р и м е ч а н и е  — Более подробная информация об аддитивных моделях, подобных описываемым форму­
лой (21), где входные величины распределены либо по нормальному, либо по равномерному закону, либо частью 
по нормальному, а частью по равномерному закону, приведена в [13].

9.2.2 Нормально распределенные входные величины
9.2.2.1 Каждой входной величине X, приписано стандартное нормальное распределение. Наилуч­

шими оценками X, являются х, = 0, / = 1,2, 3, 4 с соответствующими стандартными неопределенностями 
ц(х,) = 1.

9.2.2.2 Полученные результаты [с тремя значащими цифрами для облегчения их сопоставления 
(см. 9.1.3)] приведены в первых пяти столбцах таблицы 2.

П р и м е ч а н и е  — Поскольку в данном случае, так же как и в других случаях, рассматриваемых в на­
стоящем примере, известно, что плотность распределения вероятностей для У симметрична, то рассматривается 
вероятностно симметричный (95 %-ный) интервал охвата.

9.2.2.3 В соответствии с законом трансформирования неопределенностей [ISO/IEC Guide 98- 
3:2008 (5.1.2)] наилучшей оценкой У будет у  = 0,0 с соответствующей стандартной неопределенностью 
и(у) = 2,0 при оставлении в результате оценивания для и(у) двух значащих цифр (8 = 0,05) (см. 5.5). 
Вероятностно симметричный 95 %-ный интервал охвата для У, основанный на коэффициенте охвата 
1,96, будет [-3,9, 3,9].

9.2.2.4 Применение метода Монте-Карло (раздел 7) с числом испытаний М = 105 дает у  = 0,0; 
и(у) = 2,0 и вероятностно симметричный интервал охвата [-3,9, 3,9]. Два последующих применения 
метода Монте-Карло для М = 106 дали результаты, согласующиеся с полученным ранее в рамках уста­
новленной точности вычислений. Эти два применения (с различными случайными выборками из тех же 
распределений) понадобились, чтобы продемонстрировать вариации получаемых результатов. Четвер­
тое и пятое значения М (1,23-106 и 1,02-106) представляют собой числа испытаний, полученные в ре­
зультате двух применений адаптивной процедуры Монте-Карло (см. 7.9) для погрешности вычисления 
8/5 (см. 8.2).

9.2.2.5 Плотность распределения вероятностей для У, полученная аналитически, представляет 
собой плотность нормального распределения с математическим ожиданием, равным нулю, и стандарт­
ным отклонением,равным двум.

9.2.2.6 На рисунке 6 показана плотность распределения вероятностей для У (гауссова), полу­
ченная способом оценивания неопределенности по GUM. На рисунке показана также одна из аппрок­
симаций (гистограмма) для М = 106 значений выходной величины У дискретным приближением G (см. 
7.5) для данной плотности распределения, полученная методом Монте-Карло. Границы вероятностно 
симметричного 95 %-ного интервала охвата, полученные обоими методами, показаны вертикальными 
линиями. Нормальная плотность распределения и ее аппроксимация визуально неразличимы, так же 
как и границы соответствующих интервалов охвата. Для данного примера такое согласие является ожи­
даемым, т.к. соблюдаются все условия применимости способа оценивания неопределенности по GUM 
(см. 5.7) и задано достаточно большое значение М.
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Рисунок 6 — Приближения плотности распределения вероятностей для У при нормальном распределении вход­
ных величин, полученные способом оценивания по GUM и методом Монте-Карло

9.2.2.7 В столбцах 6— 8 таблицы 2 приведены результаты применения процедур проверки по 8.1 и 
8.2. В соответствии с 7.9.2 ndig = 2, поскольку и(у) определяют с двумя значащими цифрами. Таким об­
разом, и(у) = 2,0 = 20* 10~1, с = 20 и / = -1 . Следовательно, в соответствии с 7.9.2 предел погрешности 
вычисления составляет

8 = —-10-1 = 0 ,05 .
2

Т а б л и ц а  2 — Применение к модели (21) в случае нормального распределения Х(, (а) в соответствии со схемой 
оценки неопределенности по GUM (GUF), (b) методом Монте-Карло и (с) аналитическим методом (9.2.2.2, 9.2.2.7, 
9.2.3.4)

Метод М У и(у)
Вероятностно сим­

метричный 95 %-ный 
интервал охвата

l̂ow ^high

Достоверность 
результатов по 
GUM (5 = 0,05) 
подтверждена?

GUM — 0,00 2,00 [-3,92, 3,92] — — —
Монте-Карло 105 0,00 2,00 [-3,94, 3,92] — — —
Монте-Карло 10е 0,00 2,00 [-3,92, 3,92] — — —
Монте-Карло, адаптивный 1,23-10® 0,00 2,00 [-3,92, 3,93] 0,00 0,01 Да
Монте-Карло, адаптивный 1,02-106 0,00 2,00 [-3,92, 3,92] 0,00 0,00 Да
Аналитический — 0,00 2,00 [-3,92, 3,92] — — —

В таблице 2 приведены также абсолютные значения разности верхних и нижних границ интерва­
лов охвата, полученных способом оценивания по GUM и с помощью адаптивной процедуры метода 
Монте-Карло, cf|OW и dhigh соответственно [см. формулы (19) и (20)]. Показано, что проверкой с помощью 
адаптивной процедуры подтверждена достоверность результатов, полученных способом оценивания 
по GUM для 8 = 0,05.

9.2.2.8 На рисунке 7 показана зависимость длины (yhigh -  y|OW) 95 %-ного интервала охвата (см. 
7.7) от значения функции вероятности (определенной по G) в точке его левой границы. Как и следовало 
ожидать для симметричной плотности распределения вероятностей, интервал имеет наименьшую дли­
ну, если он симметричен относительно математического ожидания.
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9.2.2.9 В 9.4 дан пример асимметричной плотности распределения вероятностей, для которой 
наименьший интервал охвата существенно отличается от вероятностно симметричного.

X — значение функции вероятности для левой границы интервала охвата, У — длина интервала охвата

Рисунок 7 — Длина 95 %-ного интервала охвата в зависимости от значения функции вероятности для его левой 
границы в дискретном представлении G, полученном методом Монте-Карло для модели, описываемой

формулой (21)

9.2.3 Входные величины, описываемые равномерными распределениями с одинаковым 
носителем

9.2.3.1 Каждой входной величине X, приписано равномерное распределение с нулевым матема­
тическим ожиданием и единичным стандартным отклонением (в отличие от 9.2.2.1, где входным вели­
чинам приписано нормальное распределение). Наилучшими оценками X, являются Xj= 0, /=  1,2, 3, 4, с 
соответствующими стандартными неопределенностями u(Xj) = 1.

9.2.3.2 Аналогично 9.2.2.3— 9.2.2.5 получены результаты, представленные в таблице 3. Аналити­
ческое решение для границ вероятностно симметричного 95 %-ного интервала охвата, а именно

±2>/з \2  - ( 3  / 5)1/4J ~ ±3,88 , было получено в соответствии с приложением Е.

9.2.3.3 Рисунок 8, построенный для данного случая, аналогичен рисунку 6, но в отличие от рисун­
ка 6 можно заметить небольшие различия между аппроксимациями плотности распределения вероят­
ностей. Способ оценивания неопределенности по GUM дает одну и ту же плотность распределения 
вероятностей для У и в случае нормального, и в случае равномерного распределения X,, поскольку и 
в том, и в другом случае и математические ожидания, и стандартные отклонения равны между собой. 
Плотность распределения вероятностей для У, полученная методом Монте-Карло, меньше плотности 
распределения вероятностей, полученной по GUM, в окрестности математического ожидания и в мень­
шей степени в области «хвостов» распределения и, наоборот, несколько выше в промежуточных обла­
стях на «склонах» распределения. Границы полученных интервалов охвата снова почти неразличимы 
визуально, но в числовых значениях, приведенных в таблице 3, можно увидеть небольшие различия.

Т а б л и ц а  3 — То же, что и в таблице 2, для равномерных плотностей распределения вероятностей для X,- с 
одинаковыми математическими ожиданиями и стандартными отклонениями

Метод М У и{у)
Вероятностно сим­

метричный 95 %-ный 
интервал охвата

l̂ow ĥigh

Достоверность 
результатов по 
GUM (5 = 0,05) 
подтверждена?

GUM — 0,00 2,00 [-3,92, 3,92] — — —

Монте-Карло ю 5 0,00 2,01 [-3,90, 3,89] — — —
Монте-Карло 106 0,00 2,00 [-3,89, 3,88] — — —
Монте-Карло 106 0,00 2,00 [-3,88, 3,88] — — —
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Окончание таблицы 3

Метод М У и(у)
Вероятностно сим­

метричный 95 %-ный 
интервал охвата

l̂ow ^high

Достоверность 
результатов по 
GUM (5 = 0,05) 
подтверждена?

Монте-Карло, адаптив­
ный

1,02-106 0,00 2,00 [-3 ,88 , 3,89] 0,04 0,03 Да

Монте-Карло, адаптив­
ный

0,86* 106 0,00 2,00 [-3 ,87 , 3,87] 0,05 0,05 Нет

Аналитический — 0,00 2,00 [-3 ,88 , 3,88] — — —

9.2.3.4 Вероятностно симметричный 95 %-ный интервал охвата, определенный по GUM, в данном 
случае несколько превышает интервал, полученный аналитическим расчетом. Как и в случае нормаль­
но распределенных входных величин, применена процедура проверки (таблица 3, столбцы 6— 8). Как 
и ранее, ndig = 2, и(у) = 2,0 = 20-10 "1, с = 20, / = -1 и 5 = 0,05. Разности между границами c/!ow и ofhigh в 
данном случае больше, чем для нормально распределенных величин (таблица 2). Первая проверка с 
помощью адаптивной процедуры метода Монте-Карло показала, что результаты, полученные способом 
оценивания неопределенности по GUM, являются достоверными. Однако вторая проверка этот вывод 
не подтвердила, хотя полученные в ходе проверок значения c/!ow и c/high близки к пределу погрешности 
вычисления 5 = 0,05 (несоответствие заявленной точности вычислений можно обнаружить, если ис­
пользовать большее число значащих цифр, чем показано в таблице 3). Различия в результатах двух 
проверок методом Монте-Карло объясняются стохастической природой этого метода.

X — величина (безразмерная), Y — плотность распределения вероятностей

Рисунок 8 — То же, что и на рисунке 6, но для равномерно распределенных входных величин с одинаковыми 
математическими ожиданиями и одинаковыми стандартными неопределенностями

9.2.4 Входные величины, описываемые равномерными распределениями с различными 
параметрами

9.2.4.1 В таблице 4 представлены результаты для примера, аналогичного рассмотренному в 9.2.3, 
но когда стандартное отклонение для Х4 равно десяти.

9.2.4.2 Число испытаний М, полученное при реализации адаптивной процедуры метода Монте- 
Карло (0,03-106 и 0,08-106), намного меньше, чем в двух предыдущих случаях для данного примера. 
Основная причина состоит в том, что в данном случае предел погрешности вычисления 8 = 0,5, полу­
ченный, как и ранее, из условия представления и(у) двумя значащими цифрами, в десять раз больше 
ее значения в двух предыдущих случаях. Если бы использовалось предыдущее значение 8 = 0,05, то 
значения М были бы примерно в 100 раз больше указанных в таблице 4.
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Т а б л и ц а  4 — То же, что и в таблице 3, в случае, когда четвертая входная величина имеет стандартное откло­
нение, равное десяти, и нет аналитического решения

Метод М У и(у)
Вероятностно сим­

метричный 95 %-ный 
интервал охвата

=г
*

(О ZT

Достоверность 
результатов по 

GUM (6 = 0,05) под­
тверждена?

GUM — 0,0 10,1 [-19,9, 19,9] — — —
Монте-Карло 105 0,0 10,2 [-17,0, 17,0] — — —
Монте-Карло 106 0,0 10,2 [-17,0, 17,0] — — —
Монте-Карло 106 0,0 10,1 [-17,0, 17,0] — — —
Монте-Карло, адап­
тивный

0,03-106 0,1 10,2 [-17,1, 17,1] 2,8 2,8 Нет

Монте-Карло, адап­
тивный

0,08 -106 0,0 10,1 [-17,0, 17,0] 2,9 2,9 Нет

9.2.4.3 На рисунке 9 показаны две аппроксимации плотности распределения вероятностей для У. 
Видно, что они сильно различаются между собой. Доминирующая роль распределения для Х4 очевид­
на — плотность распределения вероятностей для У похожа на плотность распределения вероятностей 
для Х4, но имеет более покатые «склоны», что обусловлено влиянием плотностей распределения ве­
роятностей других входных величин Хг / = 1,2, 3.

9.2.4.4 На рисунке 9 показаны также границы вероятностно симметричного 95 %-ного интервала 
охвата для У, полученного на основе аппроксимаций. Внутренняя пара вертикальных линий (сплошные 
линии) показывает границы вероятностно симметричного 95 %-ного интервала охвата, определенного 
методом Монте-Карло. Внешняя пара (пунктирные линии) получена на основе оценивания неопреде­
ленности по GUM с коэффициентом охвата к = 1,96.

9.2.4.5 Вероятностно симметричный 95 %-ный интервал охвата, определенный способом оцени­
вания неопределенности по GUM, в этом случае существенно больше полученного с использованием 
метода Монте-Карло. Как и ранее, применена процедура проверки (таблица 4, столбцы 6— 8). В данном 
случае ndig = 2, и(у) = 1,0-101 = 10-10°, с = 10, / = 0 и 8 = 0,5. Проведенная дважды проверка с помощью 
адаптивного метода Монте-Карло показала, что результаты оценивания неопределенности по GUM яв­
ляются недостоверными. Однако результаты проверки были бы положительными при условии сохране­
ния одной значащей цифры в десятичном представлении и(у), т. е. когда ndig =1 и 6 = 5. В этом случае 
все интервалы охвата, полученные разными способами, имели бы один и тот же вид: [-2 -101, 2-101] 
(см. 4.13).

П р и м е ч а н и е  — Условия центральной предельной теоремы [ISO/IEC Guide 98-3:2008 (G.6.5)] в этом 
случае выполняются не в полной мере из-за доминирующего влияния равномерного распределения для Х4 (см. 
5.7.2), что должно было исключить возможность применения способа оценивания неопределенности по GUM. В 
настоящем пункте результаты применения данного способа приведены для сопоставления, поскольку на практике 
пользователи зачастую пренебрегают выполнением условий центральной предельной теоремы и полагают выход­
ную величину У подчиняющейся нормальному закону (особенно когда пользуются собственными программными 
средствами расчета неопределенности — см. 9.4.2.5, примечание 3).
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X — величина (безразмерная), Y — плотность распределения вероятностей

Рисунок 9 — То же, что и на рисунке 8, за исключением того, что стандартное распределение четвертой входной
величины равно 10

9.3 Калибровка массы

9.3.1 Постановка задачи
9.3.1.1 Рассмотрена калибровка гири W с массовой плотностью pw сравнением с эталоном R той 

же номинальной массы с массовой плотностью pR путем взвешивания на весах в воздухе с массовой 
плотностью ра [39]. Поскольку pw и pR в общем случае различны, необходимо учитывать действие вы­
талкивающей силы. С учетом закона Архимеда модель измерения имеет следующий вид:

mw ( 1~ p a /p w ) = (mR + 5A77R) ( l - p a/p R), (22)

где /T7W — масса гири;
mR — масса эталона;
8mR — масса малого дополнительного груза с плотностью pR, добавленного к эталону R, чтобы 

уравновесить его с гирей W.
9.3.1.2 Обычно при калибровке масс используют понятие условной массы. Условная масса 

mw с — эт0 масса воображаемой гири с массовой плотностью р0 = 8000 кг/м3, которая при взвешивании 
в воздухе с плотностью воздуха ра0 = 1,2 кг/м3 уравновесит гирю W. Таким образом,

m w  0  ' Pac/Pw) = m W, с(1 ~  Рас/Ро)-

9.3.1.3 В обозначениях условных масс rnw с, mR с и 8/77r с формула (22) принимает вид

/77W,c(1 _ Pa/Pw)(1 _ Pao/Pw) = (mR,c + 5mR,c )( l -  pa/p R)(1 -  pa0/p R) 1. (23)

Формулу (23) можно представить в приближенном виде, пригодном для большинства практиче­
ских ситуаций:

% , c = K c + § m R,c)  ̂+ (Ра Раб)
1

Pw

j J

Pr у

Если обозначить через 8 т  = (mw с -  mnom) отклонение условной массы гири mw с от номинальной 
массы гири mnom = 100 3, то модель измерения для данного примера будет иметь вид:

?>m = (mR c +bmRc) 1 + (ра “ Раб)
1

Pw PR
- m r (24)

П р и м е ч а н и е  — Применение закона трансформирования неопределенности к «точной» модели, задава­
емой формулой (23), затруднительно из-за сложного вида частных производных. К «точной» модели проще приме­
нить метод Монте-Карло, поскольку в этом случае необходимо только сформировать выходные значения модели.
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9.3.1.4 Единственная доступная информация относительно эталона R заключается в том, что mR с 
и 5/77R c — это, соответственно, наилучшие оценки массы эталона и ее стандартной неопределенности. 
В соответствии с 6.4.7.1 каждой из этих величин приписывают нормальное распределение с наилуч­
шими оценками в качестве математического ожидания соответствующих величин и их стандартными 
неопределенностями в качестве стандартных отклонений. Единственная доступная информация о ра, 
pw и pR — это нижняя и верхняя границы возможных значений для каждой из этих величин. Соответ­
ственно (см.6.4.2.1), каждой из этих величин приписывают равномерное распределение в пределах гра­
ниц возможных значений. В таблице 5 представлены входные величины и приписанные им плотности 
распределения вероятностей. В этой таблице нормальное распределение Л/(щ а2) задано математиче­
ским ожиданием д и стандартным отклонением о, а равномерное распределение R(a, Ь) с границами 
интервала а и b (а < Ь)) — математическим ожиданием (а + Ь)12 и половиной длины интервала (Ь -  а)/2.

П р и м е ч а н и е  — Для величины ра0 в модели, задаваемой формулой (24), установлено значение 1,2 кг/м3 
без соответствующей неопределенности.

Т а б л и ц а  5 — Входные величины X, с соответствующими плотностями распределения вероятностей для модели 
калибровки массы

Распреде­
ление

Параметры

Математическое 
ожидание д

Стандартное 
отклонение о

Математическое 
ожидание 

х = (а + Ь)/2

Половина длины 
носителя 
(Ь -  з)/2

mR,c Л/ф, а 2) 100 000,000 мг 0,050 мг

S m R.C Л/ф, о 2) 1,234 мг 0,020 мг

Ра R(a, b) 1,20 кг/м3 0,10 кг/м3

Pw R{a, b) 8-103 кг/м3 1-103 кг/м3

Pr R{a, b) 8,00-103 кг/м3 0,05-103 кг/м3

9.3.2 Трансформирование распределений и получение результатов
9.3.2.1 Способ оценивания неопределенности по GUM и адаптивная процедура метода Монте- 

Карло (см. 7.9) были использованы для получения оценки 6т величины 6т, ее стандартной неопреде­
ленности и наименьшего 95 %-ного интервала охвата для 5 т . Полученные результаты приведены в 
таблице 6.

Т а б л и ц а  6 — Результаты вычислений для калибровки массы

Метод 8/77, МГ и(дт),
мг

Наименьший 
95 %-ный интервал 

охвата, мг
l̂OW’
МГ

ĥigh’
МГ

Достоверность 
результатов по GUM 
(8 = 0,005) подтверж­

дена?

GUM, с использованием 
членов 1-го порядка

1,2340 0,0539 [1,1285, 1,3395] 0,0451 0,0430 Нет

Монте-Карло 1,2341 0,0754 [1,0834, 1,3825]
GUM, с использованием 
членов более выского по­
рядка

1,2340 0,0750 [1,0870, 1,3810] 0,0036 0,0015 Да

9.3.2.2 Для достижения погрешности вычисления 6/5 (см. 8.2) с 6, соответствующей одной зна­
чащей цифре в и(Ьт), было выполнено 0,72-106 испытаний в соответствии с адаптивной процедурой 
метода Монте-Карло (см. 9.3.2.6).

9.3.2.3 На рисунке 10 показана аппроксимация плотностей распределения вероятностей для 6т, 
полученных применением способа оценивания неопределенности по GUM с использованием членов 
первого порядка в представлении функции измерения рядом Тейлора и методом Монте-Карло. Непре­
рывная кривая соответствует плотности нормального распределения с параметрами, определенными 
способом оценивания неопределенности по GUM. Внутренняя пара (пунктирных) вертикальных линий 
показывает наименьший 95 %-ный интервал для 5 т , построенный на основе этой плотности распреде-
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ления вероятностей. Гистограмма представляет собой аппроксимацию плотности распределения ве­
роятностей, построенную методом Монте-Карло. Внешняя пара (непрерывных) вертикальных линий 
показывает наименьший 95 %-ный интервал охвата для 5т, построенный на основе дискретного пред­
ставления функции распределения в соответствии с 7.5.

л
X — отклонение Ът условной массы гири от ее номинального значения, мг; Y — плотность распределения вероятностей, м г"'

Рисунок 10 — Аппроксимации плотности распределения вероятностей для выходной величины 5т, полученные 
с использованием способа оценивания неопределенности по GUM с учетом членов первого порядка и методом

Монте-Карло

9.3.2.4 Результаты показывают, что, хотя способ оценивания неопределенности по GUM (с учетом 
членов первого порядка) и метод Монте-Карло дают очень близкие оценки Ьт, значения соответству­
ющих стандартных неопределенностей заметно различаются. Значение (0,0754 мг) для и($т), полу­
ченное методом Монте-Карло, на 40 % больше значения (0,0539 мг) для той же величины, полученного 
способом оценивания неопределенности по GUM (с учетом членов первого порядка). Т. е. оценка, по­
лученная по GUM, в данном случае будет излишне оптимистичной. В то же время хорошо согласуются 
между собой оценка и(дт), полученная с использованием метода Монте-Карло, и значение (0,0750 мг), 
полученное способом оценивания неопределенности по GUM с учетом членов более высокого порядка 
в разложении функции измерения в ряд Тейлора.

9.3.2.5 В таблице 7 приведены частные производные первого порядка функции измерения [фор­
мула (24)] по входным величинам и коэффициенты чувствительности, т. е. значения этих производных в 
точках наилучших оценок входных величин. Эти данные показывают, что для рассматриваемого приме­
ра при применении способа оценивания неопределенности по GUM с учетом членов первого порядка 
разложения может быть использована аддитивная модель

8m = mR c+8m R c - m nom.

Метод Монте-Карло такой аппроксимации не требует.

Т а б л и ц а  7 — Коэффициенты чувствительности для модели измерения [формула (24)] в примере калибровки 
массы

*/ Частная производная Коэффициент чувствительности

mR,c 1 + (Ра ~ PaoX^Pw “  1̂ Pr) 1

5mR,c 1 + (Ра "  PaoX^/Pw “  ^ P r ) 1

Ра (mRc + 5mRc)(1/pw-1/pR) 0

Pw - ( m R c  + 8m R c)(Pa-paoXPw 0

PR (mR.c + SmR,c><Pa "  Рао№| 0
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9.3.2.6 В трех правых столбцах таблицы 6 приведены результаты проверки (см. 8.1 и 8.2) при 
сохранении одной значащей цифры в и(Ьт), т.е. ndig = 1. Следовательно, и(6т) = 0,08 = 8-10-2, тогда 
(см. 7.9.2) с = 8 и / = -2 . Таким образом, 5 =1 / 2 -  10~2 = 0,005. Значения c/)ow и cfhjgh показывают разности 
в оценках соответственно для нижней и верхней границы интервала охвата [см. формулы (19) и (20), 
где вместо у  нужно подставить 5т]. В последнем столбце таблицы 6 приведены итоги проверки досто­
верности результатов, полученные при условии сохранения одной значащей цифры в представлении 
iv(Sm). Если в представлении функции измерения рядом Тейлора учтены только члены первого порядка, 
то применение способа оценивания неопределенности по GUM дает недостоверные результаты. Если 
учтены члены более высокого порядка [ISO/IEC Guide 98-3:2008 (примечание к 5.1.2)], то применение 
способа оценивания неопределенности по GUM обосновано. Следовательно, в данном примере нели­
нейность модели такова, что учета только членов первого порядка в разложении функции измерения 
недостаточно.

9.4 Определение коэффициента рассогласования для калибровки измерителя мощности
СВЧ-сигнала методом сравнения

9.4.1 Постановка задачи
9.4.1.1 При калибровке сравнением калибруемый и эталонный измерители мощности поочеред­

но помещают в поле стабильного генератора СВЧ-сигнала. Поглощаемая измерителями мощность в 
общем случае будет разной ввиду несовпадения их комплексных коэффициентов отражения по на­
пряжению. Отношение У мощности Рм, поглощенной калибруемым измерителем, к мощности Ps , по­
глощенной эталонным измерителем, имеет вид [43]:

рм Ч г м|2 |4-rsrG|2
Ps 1 lrs |2 |1- г мге|2

где Г е — коэффициент отражения по напряжению генератора сигнала;
Гм — коэффициент отражения по напряжению калибруемого измерителя;
Г5 — коэффициент отражения по напряжению эталонного измерителя.

Отношение, определенное формулой (25), называют коэффициентом рассогласования, знание 
которого необходимо для проведения калибровки методом сравнения [1,28].

9.4.1.2 В настоящем примере рассматривается случай отсутствия отражения эталонным измери­
телем и генератором сигнала, т. е. когда Г5 = Г е = 0, и значения измеряемой величины определяются 
действительной Х 1 и мнимой Х2 частями величины Г м = Х 1 + уХ2, где у2 = -1 . Поскольку |ГМ|2 = Х -f + Х22, 
формула (2 5 )принимает вид

У = 1 - Х 12 - Х 22 . (26)

9.4.1.3 На основе измерений получены наилучшие оценки х1 и х2 величин Х 1 и Х2 и соответству­
ющие им стандартные неопределенности и(х^) и и(х2). Зачастую Х 1 и Х2 не являются независимыми. 
Ковариация u(x1f х2), связанная с оценками х1 и х2, может быть представлена в виде и(х^, х2) = фс,, х2) 
i/(x1)t/(x2), где г -  г(х.|, х2) — коэффициент корреляции [ISO/IEC Guide 98-3:2008 (5.2.2)].

П р и м е ч а н и е  — На практике инженер-электрик может затрудняться в числовом определении ковариа­
ции. В таких случаях оценивание неопределенности может быть повторено в испытаниях с различными численны­
ми значениями коэффициента корреляции, чтобы изучить его влияние. В данном примере проведены вычисления 
с коэффициентом корреляции, равным нулю и 0,9 (см. 9.4.1.7).

9.4.1.4 В соответствии с 6.4.8.1 вектору величин X  = (X.,, Х2)т приписана двумерная плотность нор­
мального распределения с математическим ожиданием и ковариационной матрицей соответственно,

ги

и2(х,)

(x i)o (x 2)

ru (x i)u (x 2)

u2 ( x2)
(27)

9.4.1.5 Так как величины Х 1 и Х2, входящие в формулу (26), на практике малы по сравнению с 
единицей, соответствующее значение У будет близко к единице. Поэтому в качестве модели измерения 
можно принять

5У= 1 _ y  = X 12 + X22. (28)

В соответствии с физическим смыслом 0 < У < 1 и, следовательно, 0 < 5У < 1.
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9.4.1.6 Оценка 8у величины 8Y, ее стандартная неопределенность и(Ьу) и интервал охвата для 
8Y должны быть получены для различных х -j, х2, и(х^), и(х2) и фо,, х2). Все эти величины безразмерны.

9.4.1.7 Рассматриваются шесть случаев, в каждом из которых х2 = 0, и(х^) = и(х2) = 0,005. В первых 
трех случаях х1 принимает значения х1 = 0, х1 = 0,010 и х1 = 0,050 при фс,, х2) = 0. Остальные три слу­
чая соответствуют тем же значениям х.,, но при ф ^ , х2) = 0,9. Различные значения х1 (сопоставимые с 
наблюдаемыми на практике) использованы с целью исследовать, до какой степени могут различаться 
результаты оценивания неопределенности, полученные разными методами.

9.4.1.8 В случаях, когда фс,, х2) = 0, ковариационная матрица [см. формулу (27)] становится диа­
гональной: diag[ty2(x1), и2(х2)\, а соответствующее совместное распределение Х 1 и Х2 превращается в 
произведение двух одномерных нормальных распределений Хг / = 1, 2, с математическим ожиданием 
х, и стандартным отклонением u(xj).

9.4.2 Трансформирование распределений и получение результатов при нулевой 
ковариации между входными величинами

9.4.2.1 Общие положения
9.4.2.1.1 Оценивание неопределенности основано на трансформировании распределений, реа­

лизованном:
a) аналитически (в целях сравнения);
b ) с использованием способа оценивания неопределенности по GUM;
c) с использованием метода Монте-Карло.

П р и м е ч а н и е  — Все указанные методы не обеспечивают получение такого распределения вероятностей 
для 8у, чтобы, как это диктуют физические соображения, вероятность значений 8у, превышающих единицу, была 
равна нулю. Однако для достаточно малых неопределенностей и(х^) и и{х2), как в данном примере, можно указан­
ным физическим ограничением пренебречь и аппроксимировать плотность распределения вероятностей для 8у 
более простой функцией, определенной на множестве всех неотрицательных значений 8у. Более строгий результат 
[не зависящий от условия малости значений и(х^) и и(х2)\ мог бы быть получен в рамках байесовского подхода [51], 
учитывающего априорную информацию об измеряемой величине, однако его рассмотрение выходит за рамки на­
стоящего стандарта (см. раздел 1, примечание 2).

9.4.2.1.2 Оценки 8у и и(Ьу) могут быть получены аналитически как математическое ожидание и 
стандартное отклонение плотности распределения вероятностей для 8Y (см. раздел F.1). В свою оче­
редь, плотность распределения вероятностей для 8Y может быть получена аналитически и использова­
на для определения границ наименьшего 95 %-ного интервала охвата в случае, когда х1 = 0 (см. раздел 
F.2).

9.4.2.1.3 Способ оценивания неопределенности по GUM с использованием членов первого поряд­
ка и членов более высокого порядка разложения в ряд Тейлора применен для каждой из трех оценок 
х1 при ф<\|, х2) = 0 (см. раздел F.3). Оценка 8у выходной величины 8Y каждый раз была получена по 
формуле [ISO/IEC Guide 98-3:2008 (4.1.4)]

8у = х 2 + х |.

9.4.2.1.4 Метод Монте-Карло был применен в каждом из случаев с числом испытаний М =  106.
9.4.2.2 Оценка входной величины х1 = 0
9.4.2.2.1 Для случая, когда оценка входной величины х1 = 0, при применении закона трансформи­

рования неопределенностей необходимо учитывать члены высших порядков, поскольку частные произ­
водные 8Y по Х 1 и Х2 в точке Х 1 = х ^  Х2 = х2 при х1 = х2 = 0 равны нулю. Следовательно, если в законе 
трансформирования неопределенностей учитывать только члены разложения первого порядка, то по­
лучаемая оценка стандартной неопределенности для выходной величины будет некорректной (равной 
нулю).

П р и м е ч а н и е  — Аналогичная трудность возникает и при оценке х1 не равной, но достаточно близкой к
нулю.

9.4.2.2.2 Fla рисунке 11 показана плотность распределения вероятностей для 8Y, полученная на 
основе трансформирования распределений:

a) аналитически (экспоненциально убывающая кривая для 8Y > 0 и ноль для 8Y < 0);
b ) с использованием способа оценивания неопределенности по GUM с учетом членов более вы­

сокого порядка для того, чтобы охарактеризовать выходную величину нормальной плотностью распре­
деления (колоколообразная кривая);

c) с использованием метода Монте-Карло (гистограмма).
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9.4.2.2.3 Из рисунка 11 видно, что использование способа оценивания неопределенности по GUM 
с учетом членов более высокого порядка для описания выходной величины нормальным распределе­
нием дает плотность распределения вероятностей, которая существенно отличается от полученной 
аналитическим решением. Аналитическое решение представляет собой частный случай распределе­
ния хи-квадрат (распределение суммы квадратов двух случайных переменных, каждая из которых под­
чиняется стандартному нормальному распределению) (см. раздел F.2).

X — отклонение 5Y коэффициента рассогласования от единицы (умноженное на 106), Y — плотность распределения
вероятностей (умноженная на 103)

Рисунок 11 — Результаты оценивания для модели коэффициента рассогласования, применяемого при калибров­
ке измерителей мощности СВЧ-сигнала, в случае х1 = х2 = 0, и(х^) = и(х2) = 0,005, r(x.,, х2) = 0

9.4.2.2.4 Так как все частные производные функции измерения [формула (28)] порядка выше двух 
равны нулю, полученное решение, по существу, соответствует учету всех членов ряда Тейлора, т.е. пол­
ному учету нелинейности рассматриваемой модели. Следовательно, полученное нормальное распре­
деление является наилучшим приближением из всех возможных, определяемых по GUM для описания 
свойств выходной величины.

9.4.2.2.5 Можно сделать вывод, что причина расхождения результатов применения аналитиче­
ского метода и способа оценивания неопределенности по GUM в том, что в последнем случае для 
описания выходной величины использовано нормальное распределение, которое, однако, не может 
адекватно аппроксимировать аналитическое решение для данной конкретной задачи.

9.4.2.2.6 Из рисунка 11 видно также, что плотность распределения, полученная методом Монте- 
Карло, полностью согласуется с аналитическим решением.

9.4.2.2.7 Оценки 5у математического ожидания 8Y получены:
a) аналитически;
b ) с использованием способа оценивания неопределенности по GUM;
c) с применением метода Монте-Карло.
Значения оценок приведены в столбцах 2—4 строки, соответствующей х1 = 0,000, таблица 8. 

В столбцах 5— 8 приведены соответствующие значения и(Ьу), полученные по GUM с учетом только чле­
нов первого порядка разложения (G.,) и с учетом членов более высокого порядка (G2).

Т а б л и ц а  8 — Оценки коэффициента рассогласования, полученные для входных величин с нулевой ковариаци­
ей аналитически (А), способом оценивания неопределенности по GUM с членами первого порядка (G.,) и членами 
более высокого порядка (G2), методом Монте-Карло (М)

Х 1
8у/10_6 и(5у)/10-6 Наименьший 95 %-ный интервал охвата для 8Y/10-6

А G м А G1 G2 м А G1 G2 М

0,000 50 0 50 50 0 50 50 [0, 150] [0, 0] [-9 8 , 98] [0, 150]

0,010 150 100 150 112 100 112 112 — [-9 6 , 296] [-119 , 319] [0, 367]

0,050 2550 2500 2551 502 500 502 502 — [1520,3480] [1515,3485] [1590,3543]
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9.4.2.2.8 Оценка 8у = 0, получаемая при подстановке оценок входных величин в функцию изме­
рения, является некорректной. Правильный (полученный аналитически) вид плотности распределения 
вероятностей g8y(r|) показывает, что д8У{д) = 0 для всех 8у < 0. Таким образом, оценка 8у = 0 лежит на 
границе области значений, где функция д8У(г\) отлична от нуля. Оценка, полученная методом Монте- 
Карло, согласуется с аналитическим решением. Закон трансформирования неопределенностей с уче­
том членов разложения первого порядка дает уже упомянутое неверное, нулевое значение для и(Ьу). 
Значение и(Ьу) = 50-10-6 , полученное с использованием закона трансформирования неопределенно­
стей, при учете членов более высокого порядка согласуется со значением, полученным аналитически 
и методом Монте-Карло.

П р и м е ч а н и е  — Оценки для и(8у), полученные в результате нескольких повторных применений метода 
Монте-Карло, дают некоторый разброс в окрестности значения 50-10-6. После повторений метода Монте-Карло 
еще несколько раз, но уже с большим значением числа испытаний М, результаты вновь находились в окрестности 
50-10-6, но уже с меньшим разбросом. Такое уменьшение разброса является ожидаемым и наблюдается для раз­
ных вычислений, использующих метод Монте-Карло. Чтобы увидеть реальные изменения численных результатов 
применения метода, необходимо использовать для их представления большее число значащих цифр.

9.4.2.2.9 На рисунке 11 показаны наименьшие 95 %-ные интервалы охвата для соответствующих 
аппроксимаций функции распределения 8У. Интервал, обозначенный пунктирными вертикальными ли­
ниями и полученный на основе способа оценивания неопределенности по GUM, некорректен — он 
симметричен относительно 8Y = 0 и, таким образом, допускает 50 %-ную вероятность существования 
отрицательных значений 8Y, не имеющих физического смысла. Непрерывные вертикальные линии ука­
зывают границы наименьшего 95 %-ного интервала охвата, полученные на основе аналитического ре­
шения, как описано в F.2. Границы наименьшего 95 %-ного интервала, определенные с использованием 
метода Монте-Карло, от них на рисунке 11 неотличимы.

9.4.2.2.10 Границы наименьших интервалов охвата, соответствующие оценкам стандартной не­
определенности, приведенным в столбцах 5— 8 строки, соответствующей х1 = 0,000, указаны в столб­
цах 9— 12 таблицы 8.

9.4.2.2.11 На рисунке 12 показана зависимость длины (yhigh -  y!ow) 95 %-ного интервала охвата 
(см. 7.7) от вероятности его левой границы, определенной по аппроксимации плотности распределе­
ния вероятностей, полученной методом Монте-Карло и показанной на рисунке 11. В данном примере 
95 %-ный интервал охвата, расположенный симметрично относительно математического ожидания, не 
является наименьшим 95 %-ным интервалом охвата. Наименьший 95 %-ный интервал охвата очень 
сильно отличается и от вероятностно симметричного 95 %-ного интервала охвата. Если для последнего 
площади под плотностью распределения вероятностей слева от y!ow и справа от yhigh равны и состав­
ляют 0,025 (или 2,5 %), то для наименьшего 95 %-ного интервала охвата эти значения будут равны 
соответственно 0 и 0,05 (или 0 % и 5 %). Этот рисунок можно сравнить с рисунком 7 для аддитивной 
модели (см. 9.2), в которой плотность распределения вероятностей для Y симметрична относительно 
математического ожидания.

9.4.2.3 Оценка входной величины х1 = 0,010
9.4.2.3.1 На рисунке 13 показаны плотности распределения вероятностей, полученные способом 

оценивания неопределенности по GUM с использованием членов разложения только первого порядка 
и с использованием членов разложения более высокого порядка, а также методом Монте-Карло для 
случая оценки входной величины х1 = 0,010 и коэффициента корреляции г(х1; х2) = 0.

9.4.2.3.2 Плотность распределения вероятностей, полученная методом Монте-Карло, имеет не­
большой левый склон, несмотря на то, что она обрезана в нуле, наименьшем возможном значении 8Y. 
По сравнению с результатами для х 1 = 0 она более близка по форме к плотностям нормального рас­
пределения, полученным с применением способа оценивания неопределенности по GUM. Плотности 
нормального распределения, в свою очередь, достаточно близки друг к другу, имеют математическое 
ожидание величины 8Y, равное 1,0*10"4, и стандартные отклонения 1,0-10-4 и 1,1-10“4 соответственно.

9.4.2.3.3 На рисунке 13 показаны границы наименьших 95 %-ных интервалов охвата, полученных 
с использованием вышеуказанных трех методов. Сплошные вертикальные линии показывают границы 
интервала, полученного методом Монте-Карло, пунктирные вертикальные линии — интервала, полу­
ченного на основе способа оценивания неопределенности по GUM с учетом членов разложения только 
первого порядка, а штрих-пунктирные вертикальные линии — интервала, полученного на основе того 
же способа по GUM, но с учетом членов разложения более высокого порядка. Интервалы, полученные 
на основе способа оценивания неопределенности по GUM, несколько смещены влево по сравнению 
с интервалом, полученным методом Монте-Карло. Как и в предыдущем случае, они включают в себя
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физически невозможные значения SY. Интервал, полученный методом Монте-Карло, имеет левую гра­
ницу в нуле, наименьшем из возможных значений, и смещен относительно интервалов, полученных по 
GUM, приблизительно на 70 % стандартной неопределенности.

X — значение функции вероятности для левой границы интервала охвата, Y — длина интервала охвата (умноженная на 106)

Рисунок 12 — Длина 95 %-ного интервала охвата в зависимости от значения функции вероятности для левой грани­
цы интервала охвата, построенного с использованием метода Монте-Карло для модели, описываемой формулой (28)

X — отклонение SY коэффициента рассогласования от единицы (умноженное на 106), Y — плотность распределения
вероятностей (умноженная на 103)

Рисунок 13 — То же, что и на рисунке 11, но для х1 = 0,010 и с двумя кривыми, полученными способом оценивания 
по GUM (высокий пик — учтены только члены 1-го порядка; низкий пик — учтены члены более высокого порядка)

9.4.2.3.4 Соответствующие значения границ интервалов приведены в предпоследней строке та­
блицы 8.

9.4.2.4 Оценка входной величины х1 = 0,050
9.4.2.4.1 Рисунок 14 аналогичен рисунку 13, но отражает результаты, полученные для х1 = 0,050. 

На рисунке 14 плотности распределения вероятностей, полученные в соответствии с обоими вари­
антами способа оценивания неопределенности по GUM, визуально почти неотличимы друг от друга. 
Кроме того, они намного ближе к аппроксимации плотности распределения вероятностей, полученной 
методом Монте-Карло. Последняя имеет незначительную асимметрию, особенно заметную на хвостах 
распределения. Интервалы охвата, полученные в соответствии с двумя вариантами способа оцени­
вания неопределенности по GUM, визуально также почти неразличимы, но все еще смещены относи­
тельно интервалов, построенных методом Монте-Карло. Смещение составляет приблизительно 10 %
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стандартной неопределенности. Интервалы, полученные на основе оценки неопределенности по GUM, 
теперь не являются физически некорректными.

9.4.2.4.2 Соответствующие значения границ интервалов приведены в последней строке таблицы 8.
9.4.2.5 Анализ результатов
По мере удаления х1 от нуля результаты, полученные на основе способа оценивания неопреде­

ленности по GUM с учетом членов разложения первого порядка и членов более высокого порядка, все 
более приближаются к результатам, полученным на основе метода Монте-Карло.

П р и м е ч а н и е  1 — Случай х1 = х2 = 0 не относится к предельным, «экзотическим» ситуациям, но, наобо­
рот, представляет наибольший интерес для инженера-электрика, поскольку он соответствует отсутствию рассогла­
сования между калибруемым измерителем мощности и эталоном.

X — отклонение 6Y коэффициента рассогласования от единицы (умноженное на 106), Y — плотность распределения
вероятностей (умноженная на 104)

Рисунок 14 — То же, что и на рисунке 13, но для х1 = 0,050

П р и м е ч а н и е  2 — Поскольку модель симметрична относительно Х1 и Х2, те же самые результаты были 
бы получены при варьировании значения х2, а не х^

П р и м е ч а н и е  3 — Одной из причин, почему способ оценивания неопределенности по GUM с учетом 
только членов разложения первого порядка используется на практике, является легкодоступность соответствую­
щих программных средств. Причем в некоторых ситуациях результаты, получаемые в рамках такого подхода, не 
вызывают вопросов. Для случая же, когда х1 = х2 = 0 (рисунок 11), опасность применения такого подхода очевидна, 
поскольку он дает нулевую оценку стандартной неопределенности iv(8y) и, следовательно, нулевой интервал охва­
та для 8Y при любой заданной вероятности охвата. В случае х1 Ф 0 (или х2 Ф 0) и iv(5y), и длина интервала охвата 
для ЪУ отличны от нуля, т. е. полученный результат не является заведомо абсурдным, и о его возможной некоррект­
ности трудно судить, не имея априорной информации о реальных возможных значениях указанных величин. Таким 
образом, опасность применения программных средств, реализующих способ оценивания неопределенности по 
GUM, состоит в том, что при малых значениях х1 и х2 полученные с их помощью результаты, будучи недостоверны­
ми, могут быть тем не менее непредумышленно приняты за достоверные.

9.4.3 Трансформирование распределений и получение результатов при ненулевой 
ковариации между входными величинами

9.4.3.1 Общие положения
9.4.3.1.1 Описанные выше методы (см. 9.4.2) были применены для случая, когда X, коррелирован­

ны и г(х1, х2) = 0,9. Однако использованный способ оценивания неопределенности по GUM учитывал 
только члены разложения функции измерения в ряд Тейлора первого порядка. Это связано с тем, что, 
в отличие от случая, когда X,- некоррелированны, при наличии ковариаций способ оценивания неопре­
деленности по GUM с учетом членов более высокого порядка не применяют ввиду отсутствия в GUM 
соответствующих формул (см. 5.8). Все остальные вопросы вычислений аналогичны 9.4.2.

9.4.3.1.2 Оценку и(Ьу) по GUM с учетом членов разложения первого порядка определяют в соот­
ветствии с F.3.2. Применение для данного примера формулы (F.7) позволяет получить выражение для 
и2(Ьу) при х2 = 0 в виде
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и2(8у) = 4 х12и2(х1).

Следовательно, и(8у) не зависит от r(xv  х2), и способ оценивания неопределенности по GUM с 
учетом членов разложения первого порядка даст те же результаты, что и в 9.4.2. В частности, как и в 
9.4.2.2.1, для случая х 1 = 0 вновь будет получен тот же некорректный результат: и(8у) = 0.

9.4.3.1.3 Метод Монте-Карло основан на формировании случайных элементов вектора X  выбор­
кой из двумерного нормального распределения с заданным математическим ожиданием и ковариаци­
онной матрицей [см. формулу (27)]. Использована процедура в соответствии с разделом С.5.

П р и м е ч а н и е  — Не принимая во внимание необходимость формирования случайной выборки из много­
мерного распределения, реализация метода Монте-Карло для случая коррелированных входных величин будет не 
намного сложнее, чем для некоррелированных.

9.4.3.2 Оценки входных величин х1 = 0, х1 = 0,010, х1 = 0,050.
9.4.3.2.1 Полученные результаты приведены в таблице 9. Результаты, полученные на основе ме­

тода Монте-Карло, показывают, что, хотя 8у не зависит от корреляции между X,-, оценка и(8у) от нее 
зависит, причем в большей степени для малых х ^  Соответственно, зависят и границы 95 %-ных интер­
валов охвата.

Т а б л и ц а  9 — Оценки коэффициента рассогласования, полученные для входных величин с ненулевой кова­
риацией [г(х1, х2) = 0,9] аналитически (А), способом оценивания неопределенности по GUM (G) и методом Монте- 
Карло (М)

*1
5у/10_6 и(8у)/10-6

Наименьший 95 %-ный интервал охвата 
для 5у/10-6

А G м А G М А G М

0,000 50 0 50 67 0 67 — [0, 0] [0,185]

0,010 150 100 150 121 100 121 — [-9 6 , 296] [13,398]

0,050 2550 2500 2551 505 500 504 — [1520, 3480] [1628, 3555]

9.4.3.2.2 На рисунках 15 и 16 показаны плотности распределения вероятностей, полученные на 
основе способа оценивания неопределенности по GUM с учетом членов разложения первого порядка 
(колоколообразные кривые) и методом Монте-Карло (гистограммы) для случаев х1 = 0,010 и х1 = 0,050, 
соответственно. Границы наименьших 95 %-ных интервалов охвата показаны штриховыми вертикаль­
ными линиями для способа оценивания неопределенности по GUM и сплошными вертикальными ли­
ниями для метода Монте-Карло.

П р и м е ч а н и е  — Строго говоря, условия, при которых 8Y могла бы быть описана нормальным распре­
делением, не выполняются при применении для данных случаев способа оценивания неопределенности по GUM 
(см. 5.8) [ISO/IEC Guide 98-3:2008 (G.6.6)]. Однако ввиду частого использования этого способа на практике полу­
ченные с его помощью плотности распределения вероятностей и границы 95 %-ного интервала охвата показаны 
на рисунках 15 и 16.

9.4.3.3 Анализ результатов
В случае х 1 = 0,010 (рисунок 15) корреляция заметно повлияла на результаты, полученные мето­

дом Монте-Карло (ср. с рисунком 13). Изменилась сама форма аппроксимирующей плотности распре­
деления вероятностей, и, кроме того, соответствующий интервал охвата уже не имеет левосторонней 
границы в нуле. В случае х1 = 0,050 (рисунок 16) разница в результатах для случаев некоррелирован­
ных и коррелированных входных величин (ср. с рисунком 14) менее заметна.
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X — отклонение 8Y коэффициента рассогласования от единицы (умноженное на 106),
Y — плотность распределения вероятностей (умноженная на 103)

Рисунок 15 — Результаты оценивания для модели коэффициента рассогласования, применяемого при калибров­
ке измерителей мощности СВЧ-сигнала, в случае х1 = 0,010, х2 = 0, и(х: ) = и(х2) = 0,005, фс,, х2) = 0,9

X — отклонение 8Y коэффициента рассогласования от единицы (умноженное на 106),
Y — плотность распределения вероятностей (умноженная на 104)

Рисунок 16 — То же, что и на рисунке 15, но для х1 = 0,050

9.5 Калибровка концевой меры длины

9.5.1 Постановка задачи: модель измерения
9.5.1.1 Длину концевой меры номиналом 50 мм определяют ее сопоставлением с известным эта­

лоном того же номинала. Непосредственный результат сопоставления длин двух концевых мер пред­
ставляет собой разность &.

сУ = L(1 + ос0) -  Ls(1 + a s0s), (29)

где L — измеряемая величина, т. е. длина калибруемой концевой меры при 20 °С;
Ls — длина эталона при 20 °С, приведенная в сертификате о калибровке;
а и a s — коэффициенты теплового расширения соответственно калибруемой концевой меры дли­

ны и эталона;
0 и 0S — отклонения температуры соответственно калибруемой концевой меры и эталона от нор­

мальной температуры 20 °С.

П р и м е ч а н и е  1 — В GUM рассматривается та же измерительная задача (раздел Н.1).
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П р и м е ч а н и е  2 — Для длины концевой меры в настоящем подразделе применено обозначение L вместо 
обозначения /, использованного в GUM.

9.5.1.2 В соответствии с формулой (29) выходная величина L может быть определена как

Lc ( l  +  OCoGq ) +  dL = _b_v-------ь_ь/-----  (30)
1 + a0 v '

а в качестве приближения формулы (30), применимого в большинстве практических ситуаций, может 
быть использована формула

L -  Lg + d + Lg(ag0g — a0). (31)

Если разность температур калибруемой концевой меры и эталона обозначить как 50 = 0 -  0S, а 
разность их коэффициентов теплового расширения как 5a = а -  a s , то формулы (30) и (31) принимают 
вид соответственно

Ls [1 + as (9 ~ 59)] +  ̂ .
1 + (a s + Sa)0 ’ 1 '

L = Ls + d -  Ls (05a -  a 0 ) . (33)

9.5.1.3 Оценку разности d длин калибруемой концевой меры и эталона определяют как выбороч­
ное среднее по пяти наблюдениям, полученным независимо с использованием калиброванного компа­
ратора. Разность d можно представить в виде:

d = D + d1 + d2, (34)

где D — случайная переменная, для которой получено выборочное среднее по пяти наблюдениям; 
d1 и с/2 — величины, описывающие, соответственно, случайные и систематические эффекты, связан­

ные с использованием компаратора.
9.5.1.4 Величина 0, представляющая собой отклонение температуры калибруемой концевой меры 

длины от 20 °С, может быть представлена в виде:

0 -  0q + А, (35)

где 0О — среднее отклонение температуры концевой меры длины от 20 °С;
А — величина, описывающая циклические колебания отклонения температуры от 0О.

9.5.1.5 Подставляя формулы (34) и (35) в формулы (32) и (33) и введя обозначение 5L для откло­
нения L от номинальной длины Lnom = 50 мм концевой меры, можно записать

SL =
Lg |̂ 1 + ag (0q + A — 50)J + D + ф + d2 

1 + (ag + 5a)(0o + a )
(36)

или
5L = Lg + D + c/i + d2 -  Ls [5a(0o + A) + a s50] -  Lnom. (37)

Эти зависимости могут быть рассмотрены как модели измерительной задачи.
9.5.1.6 Выходной величиной для моделей (36) и (37) является 5L, а входными величинами — Ls, 

D, d.,, d2, a s , 0O, A, 5a и 50. Эта модель отличается от приведенной в GUM (раздел Н.1) тем, что в GUM 
модели, описываемые формулами (34) и (35) настоящего стандарта, рассматриваются как подмодели 
моделей, описываемых формулами (32) и (33), т. е. в GUM вначале оценивание неопределенности 
выполнено для подмоделей, соответствующих формулам (34) и (35), после чего полученные оценки 
неопределенности для d и 0 были использованы для описания этих входных величин в моделях, со­
ответствующих формулам (32) и (33). В настоящем примере, где для получения оценок используется 
метод Монте-Карло, такое двухэтапное оценивание не применяется.

9.5.2 Постановка задачи: приписывание плотностей распределения вероятностей 
входным величинам

9.5.2.1 Общие положения
В последующих подпунктах приведена информация о каждой входной величине моделей, соот­

ветствующих формулам (36) и (37). Используемая информация основана на описании, приведенном в 
GUM, и каждый раз дается ссылка на соответствующий структурный элемент GUM, откуда эта инфор­
мация взята. Кроме того, показано, каким образом указанная информация используется при выборе 
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распределения входных величин. Все сведения, связанные с приписыванием распределений входным 
величинам моделей измерений, собраны в таблицу 10.

Т а б л и ц а  10 — Плотности распределения вероятностей для входных величин для моделей концевых мер длины 
(36) и (37) на основе доступной информации (9.5.2.1). (Основная информация о плотностях распределения вероят­
ностей приведена в таблице 1)

Величина
Плотность рас- 

пределения

Параметры распределения

Ц о V а ь d

L S /у(Щ ° 2) 50000623 нм 25 нм 18

D /у(Щ ° 2) 215 нм 6 нм 24

ф /у(Щ ° 2) 0 нм 4 нм 5

d2 /у(Щ ° 2) 0 нм 7 нм 8

a s R{a, Ь) 9,5-10'6 °С‘1 13,5-10'6 °С'1

ео Л/(|1, а2) I о о о 0,2 °С

А U{a, Ь) I о сл о О о сл о О

5а СТгар(а, b, d) -1,0-10'6 °С'1 1,0-10'6 °С'1 0,1-10-6 °С-1

50 СТгар(а, b, d) -0,050 °С 0,050 °С 0,025 °С

9.5.2.2 Длина Ls эталона
9.5.2.2.1 Исходная информация
В сертификате о калибровке для эталона указана оценка его длины при 20 °С Ls = 50,000623 мм 

[ISO/IEC Guide 98-3:2008 (Н.1.5)] и расширенная неопределенность этой оценки Up = 0,075 мкм для 
коэффициента охвата кр = 3 [ISO/IEC Guide 98-3:2008 (Н.1.3.1)]. В сертификате указано, что число эф­
фективных степеней свободы для суммарной стандартной неопределенности, на основе которой была 
получена упомянутая расширенная неопределенность, veff[u(Ls)] = 18 [ISO/IEC Guide 98-3:2008 (Н.1.6)].

9.5.2.2.2 Выбор распределения
Величине Ls было приписано масштабированное смещенное /-распределение /у(щ о2) (см. 6.4.9.7) 

со значениями параметров

и р 75 ^
и. = 50000623 нм, о = ---- = —  = 25 нм, v = 18.

кр 3

9.5.2.3 Средняя разность длин D
9.5.2.3.1 Исходная информация
Выборочное среднее D по пяти наблюдениям разности длин калибруемой концевой меры длины 

и эталона составляет 215 нм [ISO/IEC Guide 98-3:2008 (Н.1.5)]. Объединенное стандартное отклонение, 
характеризующее разность L и Ц ,  определено по 25 независимым наблюдениям разности длин двух 
эталонных концевых мер длины и составляет 13 нм [ISO/IEC Guide 98-3:2008 (Н.1.3.2)].

9.5.2.3.2 Выбор распределения
Величине D было приписано масштабированное смещенное /-распределение /у(д, а2) (см. 6.4.9.2 

и 6.4.9.6) со значениями параметров

и. = 215 нм, а = —;= = 6 нм, v = 24.
s

9.5.2.4 Случайное влияние d1 компаратора
9.5.2.4.1 Исходная информация
Согласно сертификату о калибровке компаратора, используемого для сравнения L и Ls , неопре­

деленность, связанная со случайными эффектами и оцененная по шести независимым наблюдениям, 
составляет 0,01 мкм для вероятности охвата 95 % [ISO/IEC Guide 98-3:2008 (Н.1.3.2)].

9.5.2.4.2 Выбор распределения
Величине с/1 было приписано масштабированное смещенное /-распределение /у(д, о2) (см. 6.4.9.7) 

со значениями параметров
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(i = 0 нм,
U 0,95 а = — 3—
к 0,95

10
2,57

= 4 нм, v = 5.

Значение к0 95 получено по GUM (таблица G.2) для v = 5 степеней свободы и р = 0,95.
9.5.2.5 Систематическое влияние с/2 компаратора
9.5.2.5.1 Исходная информация
В сертификате указана неопределенность компаратора, связанная со систематическими эффек­

тами. Она составила 0,02 мкм «на уровне трех сигма» [ISO/IEC Guide 98-3:2008 (Н. 1.3.2)]. Возможную 
неточность в заявленном значении неопределенности можно принять равной 25 %, и, таким образом, 
число эффективных степеней свободы составит veff[u(c/2)] = 8 [ISO/IEC Guide 98-3:2008 (Н.1.6)].

9.5.2.5.2 Выбор распределения
Величине с/2 было приписано масштабированное смещенное /-распределение fv(p, а2) (см. 6.4.9.7) 

со значениями параметров

UP 20ц = 0 нм, о = —  = —  = 7 нм, v = 8. 
кр 3

9.5.2.6 Коэффициент температурного расширения a s
9.5.2.6.1 Исходная информация
Оценка коэффициента температурного расширения эталона указана в виде a s = 11,5-10-6 °С-1 

с возможными значениями этой величины в интервале ± 2-10 '6 °С‘1 и равномерным распределением 
[ISO/IEC Guide 98-3:2008 (Н.1.3.3)].

9.5.2.6.2 Выбор распределения
Величине a s было приписано равномерное распределение R(a, b) (см. 6.4.2) с границами

а = 9,5 10"6 “С-1, Ь = 13,5-10"6 °С“ 1.

П р и м е ч а н и е  — Из-за отсутствия информации о достоверности границ распределения выбрано равно­
мерное распределение с точно известными границами. Информация о границах распределения могла быть опу­
щена в описании примера, рассмотренного в GUM, по той причине, что соответствующий данной входной величине 
коэффициент чувствительности был принят равным нулю, и, таким образом, данная величина не могла оказать 
влияния на результат оценивания неопределенности по GUM с учетом только членов разложения первого порядка.

9.5.2.7 Среднее отклонение температуры 0О
9.5.2.7.1 Исходная информация
Температура измерительного стола указана равной (19,9 ± 0,5) °С. Указано также, что оценка 

среднего отклонения температуры 0О = -  0,1 °С имеетлнеопределенность, связанную с неопределен­
ностью средней температуры измерительного стола, ц(0о) = 0,2 °С [ISO/IEC Guide 98-3:2008 (Н.1.3.4)].

9.5.2.7.2 Выбор распределения
Величине 0О было приписано нормальное распределение Л/(ц, о2) (см. 6.4.7) со значениями пара­

метров
[х = -0 ,1  °С, a = -0 ,1  °С.

П р и м е ч а н и е  — Нормальное распределение выбрано из-за отсутствия информации об источнике оценки 
неопределенности для 0О (см. также примечание к 9.5.2.6.2).

9.5.2.8 Влияние циклических колебаний температуры А
9.5.2.8.1 Исходная информация
Температура измерительного стола указана равной (19,9 ± 0,5) °С. Указано также, что максималь­

ный сдвиг температуры А = 0,5 °С представляет собой амплитуду почти гармонических изменений тем­
пературы в изолированной термодинамической системе. Гармонические колебания температуры во 
времени соответствуют U-образному (арксинусному) распределению значений температуры [ISO/IEC 
Guide 98-3:2008 (Н.1.3.4)].

9.5.2.8.2 Выбор распределения
Величине А было приписано U-образное распределение U(a, Ь) (см. 6.4.6) с границами

а = -0 ,5  °С, Ь = 0,5 °С .

П р и м е ч а н и е  — Из-за отсутствия информации о достоверности границ выбрано U-образное распре­
деление с точно известными границами. Такая информация могла быть в GUM опущена по той же причине, что 
указана в примечании к 9.5.2.6.2.
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9.5.2.9 Разность коэффициентов расширения 8а
9.5.2.9.1 Исходная информация
Оценки границ изменчивости 8а составляют ± 1 • 10 '6 °С '1 с равной вероятностью принятия величи­

ной 8а любого значения внутри этих границ [ISO/IEC Guide 98-3:2008 (Н.1.3.5)]. Возможную неточность 
в заявленном значении границ принимают за 10 %, что дает veff[u(£a)] = 50 [ISO/IEC Guide 98-3:2008 
(Н.1.6)].

9.5.2.9.2 Выбор распределения
Величине 8а приписано равномерное распределение с неточно заданными границами (см. 6.4.3) 

с параметрами распределения

а = -1 ,0 -10-6 °С ~\ b = 1,0-Ю -6 ° C ~ \d =  0,1-10“ 6 °С-1.

Основой для выбора значения параметра d послужила информация о возможной неточности гра­
ниц распределения в 10 %.

9.5.2.10 Разность температур 80
9.5.2.10.1 Исходная информация
Эталон и калибруемая концевая мера в среднем имеют одну и ту же температуру, однако раз­

ность их температур 80 может с одинаковой вероятностью лежать в любой точке интервала от -  0,05 °С 
до 0,05 °С [ISO/IEC Guide 98-3:2008 (Н. 1.3.6)]. Возможную неточность этой разности оценивают в 50 %, 
что дает veff[u(80)] = 2 [ISO/IEC Guide 98-3:2008 (Н.1.6)].

9.5.2.10.2 Выбор распределения
Величине 80 приписано равномерное распределение с неточно заданными границами (см. 6.4.3) 

с параметрами распределения

а = -0,050 °С, Ь = 0,050 °С, d = 0,025 °С.

Основой для выбора значения параметра d послужила информация о возможной неточности гра­
ниц распределения в 50 %.

9.5.3 Трансформирование распределений и получение результатов
9.5.3.1 Способ оценивания неопределенности по GUM
Применение способа оценивания неопределенности по GUM основано на:
- использовании членов первого порядка в аппроксимации функции измерения [формула (36) или 

(37)] рядом Тейлора;
- вычислении неопределенности на основе закона трансформирования неопределенностей 

с использованием формулы Уэлча-Саттертуэйта для оценки числа эффективных степеней свободы 
(с округлением в сторону уменьшения);

- использовании для выходной величины масштабированного смещенного /-распределения с чис­
лом степеней свободы, полученным по формуле Уэлча-Саттертуэйта.

9.5.3.2 Метод Монте-Карло
Применение метода Монте-Карло включает в себя:
-формирование выборок из равномерного распределения (см. 6.4.2.4 и С.3.3), нормального рас­

пределения (см. 6.4.7.4 и раздел С.4), /-распределения (см. 6.4.9.5 и С.6), U-образного распределения 
(см. 6.4.6.4) и равномерного распределения с неточно заданными границами (см. 6.4.3.4);

- использование адаптивной процедуры метода Монте-Карло (см. 7.9) с погрешностью вычисле­
ния (8 = 0,5), соответствующей числу ndig = 2 значащих цифр в представлении стандартной неопреде­
ленности.

9.5.4 Результаты
9.5.4.1 В таблице 11 приведены результаты, полученные для модели, описанной формулой (37), с 

использованием информации, приведенной в таблице 10. На рисунке 17 показаны плотности распреде­
ления вероятностей для 8L, полученные на основе применения способа оценивания неопределенности 
по GUM (сплошная кривая) и метода Монте-Карло (гистограмма). Распределение, полученное оцени­
ванием неопределенности по GUM, представляет собой /-распределение с v = 16 степенями свободы. 
Границы наименьших 99 %-ных интервалов охвата для SL для двух методов оценивания показаны в 
виде вертикальных линий и визуально неразличимы.

9.5.4.2 В адаптивной процедуре метода Монте-Карло было выполнено 1,26-106 испытаний. Были 
проведены также вычисления для вероятности охвата 95 %, при которых было сделано 0,53-106 ис­
пытаний.
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Т а б л и ц а  11 — Результаты, полученные для модели, описываемой формулой (37), с использованием информа­
ции, приведенной в таблице 10

Метод 8/_, нм и(Щ, нм Наименьший 99 %-ный интервал охвата для SL, нм

GUM 838 32 [746, 931]

Монте-Карло 838 36 [745, 932]

9.5.4.3 Результаты, полученные для нелинейной модели [формула (36)], идентичны результатам 
таблицы 11 для заданного числа значащих цифр.

9.5.4.4 В полученных результатах существуют умеренные различия. В случае применения метода 
Монте-Карло и(Ы) на 4 нм больше, чем при использовании способа оценивания неопределенности по 
GUM, а длина 99 %-ного интервала охвата для 5L больше на 1 нм. Эти результаты равно справедливы 
как для нелинейной, так и для аппроксимированной моделей. Важны ли эти различия, зависит от того, 
каким образом предполагается использовать полученные результаты.

X — отклонение длины калибруемой концевой меры длины от номинала, нм, Y — плотность распределения вероятностей, нм"1

Рисунок 17 — Распределение 8L, полученное способом оценивания неопределенности по GUM (колоколообраз­
ная кривая) и методом Монте-Карло (гистограмма) для модели по формуле (37) с данными таблицы 10
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Приложение А 
(справочное)

Историческая справка
А.1 GUM представляет собой документ, охватывающий многие вопросы, в той или иной степени связанные 

с оценкой неопределенности. Несмотря на то что в нем отсутствуют явные ссылки на метод Монте-Карло, ис­
пользование этого метода изначально предполагалось при разработке GUM. Проект GUM (первое издание) от 
июня 1992 г., выпущенный ISO/TAG 4/WG 3, констатирует [G.1.5]:

«Если зависимость между У и входными величинами нелинейна или если известные значения параметров 
вероятностных характеристик X, (математического ожидания, дисперсии, моментов более высокого порядка) сами 
являются оценками, характеризующимися соответствующими распределениями, а представление зависимости в 
виде ряда Тейлора с членами первого порядка не является допустимым приближением, тогда распределение для 
У не может быть выражено в виде свертки. В этом случае, как правило, необходимо использовать более сложные 
вычисления с применением численного метода (такого, как метод Монте-Карло)».

А.2 В опубликованной версии GUM этот подраздел был заменен на следующий:
«Если функциональная зависимость между У и входными величинами нелинейна и представление этой за­

висимости рядом Тейлора первого порядка не является допустимым приближением (см. 5.1.2 и 5.1.5), тогда рас­
пределение У не может быть получено через свертку распределений входных величин. В таких случаях необходи­
мо использовать другие аналитические или численные методы расчета».

А.З В настоящем стандарте внесенная формулировка «другие аналитические или численные методы» рас­
сматривается как возможность использовать все подходящие методы оценивания неопределенности в дополнение 
к установленному в самом GUM. Это согласуется с позицией Национального Института стандартов и технологий 
США (НИСТ) [50]:

«[6.6] Позиция НИСТ предусматривает следующие исключения из упомянутого правила (см. приложение С):
«Очевидно, что любой обоснованный статистический метод, применение которого технически оправдано в 

существующих условиях, может быть использован для определения эквивалента и,-, ис или U. Кроме того, между­
народные, национальные или договорные соглашения, в которых НИСТ принимает участие, могут потребовать от­
ступления от общих правил НИСТ. В обоих случаях все выполненные действия по оцениванию неопределенности 
и их обоснование должны быть документированы».
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Приложение В 
(справочное)

Коэффициенты чувствительности и бюджет неопределенности
В.1 Ни сам закон трансформирования распределений, ни его реализация с использованием метода Монте- 

Карло не предполагают получения значений коэффициентов чувствительности [ISO/IEC Guide 98-3:2008 (5.1.3)]. 
Однако, зафиксировав все входные величины, кроме одной, в точке их наилучшей оценки, можно использовать 
метод Монте-Карло для получения плотности распределения вероятностей для выходной величины модели с 
единственной входной величиной в качестве независимой переменной [8]. Отношение стандартного отклонения 
значений на выходе модели (см. 7.6) к стандартной неопределенности для наилучшей оценки входной величины 
может быть принято за коэффициент чувствительности. Это отношение соответствует тому, которое было бы полу­
чено при использовании представления функции измерения рядом Тейлора с членами разложения всех высших 
порядков. Данный подход можно рассматривать как обобщение приближенной формулы с частными производны­
ми в GUM [ISO/IEC Guide 98-3:2008 (примечание 2 к 5.1.3)]. В общем случае и коэффициенты чувствительности, 
и вклады каждой входной величины в неопределенность оценки выходной величины будут отличаться от тех, что 
получены по GUM.

В.2 В практике многих измерений принято указывать перечень составляющих неопределенности и,(у) = 
= |с,|и(х;), /=  1, ..., Л/, где Cj — /'-й коэффициент чувствительности, а и(х;) — стандартная неопределенность, соот­
ветствующая оценке х( /'-й входной величины, вносящей вклад в и(у). Обычно такой перечень представляют в виде 
таблицы, называемой бюджетом неопределенности. Ее составление может быть полезно для идентификации чле­
нов, вносящих доминирующий вклад в неопределенность и(у) оценки выходной величины. Однако в случаях, когда 
вместо трансформирования неопределенностей более обоснованно использовать трансформирование распреде­
лений, бюджет неопределенности следует рассматривать как некоторый вспомогательный инструмент.
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Приложение С 
(справочное)

Формирование выборок из распределений вероятностей

С.1 Общие положения

С.1.1 В настоящем приложении приведены рекомендации по формированию выборки в соответствии с за­
данной функцией распределения вероятностей. Формирование такой выборки представляет собой ключевой мо­
мент при трансформировании распределений с использованием метода Монте-Карло. В качестве источников ин­
формации можно использовать [37] (сборник таблиц математических функций) и [38] (библиотека соответствующих 
программ).

С.1.2 Генератор псевдослучайных чисел для любого распределения, в том числе, для рассмотренных в 6.4 
(см. таблицу 1), может теоретически быть получен на основе заданной функции распределения и генератора вы­
борки для равномерного распределения (см. С.2). Генератор для равномерного распределения рассматривается 
в С.3.3. Для некоторых распределений, таких как нормальное распределение или ^-распределение, более эффек­
тивным будет использование генераторов, специально разработанных именно для этих распределений (например, 
рассматриваемых в настоящем приложении). Общие рекомендации по формированию выборки в соответствии с 
заданным законом распределения приведены в 6.4.

П р и м е ч а н и е  — Настоящий стандарт не ограничивает возможности использования генераторов, от­
личных от описанных в данном приложении. Однако перед их использованием необходимо убедиться в том, что 
генерируемые ими последовательности обладают достаточно хорошими статистическими свойствами. Средства 
тестирования генератора псевдослучайных чисел для равномерного распределения указаны в С.3.2.

С.2 Распределения общего вида

Выборка для любой строго возрастающей одномерной непрерывной функции распределения G^S,) может 
быть получена посредством выборки из равномерного распределения. Для этого:

a) выбирают случайное число р из равномерного распределения R(0, 1);
b) определяют удовлетворяющее условию G ^ )  = р.

П р и м е ч а н и е  1 — Требуемая на этапе Ь) обратная функция S - Gx 1 (р) может быть найдена аналитиче­
ски или определена численными методами.

Пример — Входной величине X приписано экспоненциальное распределение с математическим 
ожиданием х  > 0, определяемое плотностью распределения вероятностей gy(Q = ехр(-Ь/х)/х в области 
§ > 0 и ЯхФ  = 0 в области 2; < 0 (см. 6.4.10). Полученная интегрированием плотности распределения ве­
роятностей функция распределения имеет вид G ^ t) = 1 -  ехр(-£/х) в области £ > 0 и GyftJ = 0 в области 
£ < 0. Аналитическое решение дает £ = -  х  1п(1 -  р). Этот результат может быть несколько упрощен. 
Поскольку для случайной переменной Q, подчиняющейся равномерному распределению R(0, 1), случай­
ная переменная (1 -  Q) также будет подчиняться равномерному распределению, то можно записать 
обратную функцию в виде £ = -  х  In р.

П р и м е ч а н и е  2 — Численно значение £ обычно определяют как точку пересечения с нулем функции 
Gxfc) ~ Р- Для определения £, может быть использован алгоритм поиска отрезка, на концах которого функция имеет 
разные знаки, такой, например, как метод деления отрезка пополам или, что более эффективно, комбинации ли­
нейной интерполяции и метода деления отрезка пополам [11].

П р и м е ч а н и е  3 — При использовании генератора случайных чисел из равномерного распределения для 
получения выборки псевдослучайных чисел из другого распределения следует помнить, что выпадение значения 
р = 0 или р = 1 может привести к сбою генератора. Примером может служить экспоненциальное распределение (см. 
6.4.10). Его плотность распределения [формула (9)] для указанных значений р не определена. Генератор, описан­
ный в С.3.3, ошибок подобного рода не дает.

С.З Равномерное распределение

С.3.1 Общие положения
С.3.1.1 Генератор для равномерного распределения является основой для получения псевдослучайных чи­

сел из любого распределения (см. разделы С.2, С.4 и С.6) при наличии соответствующего алгоритма или формулы. 
При этом качество получаемой выборки из произвольного распределения зависит от качества работы генератора 
для равномерного распределения и свойств используемого алгоритма преобразования. Таким образом, только 
генератор, способный воспроизводить выборку из равномерного распределения с хорошими свойствами вместе с 
хорошим алгоритмом, обеспечивает генерирование псевдослучайных чисел, хорошо согласующихся с заданным 
распределением.

С.3.1.2 Отсюда вытекает важность тестирования генератора псевдослучайных чисел для равномерного рас­
пределения [31]. Если пользователь не уверен в качестве работы генератора, то его не следует использовать до 
тех пор, пока соответствующее тестирование не будет проведено. В противном случае не исключено получение
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ошибочных результатов. Рекомендуется использовать средства тестирования согласно [30]. В С.3.3 приведена 
процедура генерирования псевдослучайных чисел для равномерного распределения, которая успешно прошла 
указанное тестирование и проста в применении.

С.3.1.3 Параметры процедуры генерирования псевдослучайных чисел, соответствующих равномерному рас­
пределению R(0, 1), — входной, выходной, а также являющийся одновременно входным и выходным, — опреде­
лены в таблице С.1.

П р и м е ч а н и е  1 — При задании одного и того же начального числа результатом может быть генериро­
вание одной и той же последовательности случайных чисел. Этот факт является важным элементом регресси­
онного тестирования, используемого для определения согласованности результатов, полученных программным 
средством, с результатами предыдущих версий.

П р и м е ч а н и е  2 — Некоторые генераторы псевдослучайных чисел при каждом обращении выдают одно 
случайное, а некоторые — последовательность значений.

Т а б л и ц а  С.1 — Процедура генерирования псевдослучайных чисел для стандартного равномерного распреде­
ления

Входной параметр

q — число значений в генерируемой последовательности
Входной/выходной параметр

t — вектор-столбец, элементы которого могут изменяться в ходе выполнения процедуры. Пользователю обычно 
нет необходимости знать, как изменяются значения этого параметра, но он помогает контролировать выполнение 
процедуры генерирования случайных чисел. Эти параметры могут быть реализованы как глобальные переменные 
и не входить явно в формальные параметры процедуры. Один или несколько элементов f определяют начальное 
число, используемое при следующем обращении к процедуре

Выходной параметр

z — вектор-столбец q значений, составляющих выборку из R(0, 1)

С.3.1.4 Псевдослучайное число х выборки из R{a, b) определяют преобразованием х = а + (Ь -  a)z, где z — 
элемент выборки из R(0, 1).

С.3.2 Проверка качества случайной выборки
С.3.2.1 Каждый генератор псевдослучайных чисел должен:
a) обладать хорошими статистическими свойствами,
b) предусматривать возможность реализации на любом языке программирования,
c) давать одни и те же результаты для одного и того же начального числа на любом компьютере.
Желательно также, чтобы он был компактным, т. е. простым при реализации. Одним из таких генераторов,

близко приближающихся к удовлетворению перечисленных требований, является генератор Вихманна-Хилла [52, 
53]. Он использовался во многих приложениях, включая вычисление неопределенности. Однако длина его цикла 
(количество генерируемых псевдослучайных чисел до их повторения) составляет 231, что сегодня считается для 
некоторых задач недостаточным. Более того, при его тестировании не по всем критериям были получены поло­
жительные результаты [35]. Наконец, этот генератор был разработан для 16-разрядных компьютеров, тогда как 
сегодня повсеместно используются 32-разрядные и 64-разрядные компьютеры.

П р и м е ч а н и е  — Период последовательности значений, полученных с помощью генератора псевдослу­
чайных чисел, — это количество последовательных псевдослучайных чисел до их повторения.

С.3.2.2 Для комплексной проверки статистических свойств генератор тестируют пакетом программ TestUOl 
[30]. Этот программный продукт весьма детализирован и включает в себя большое количество статистических те­
стов, в том числе расширенный пакет краш-тестирования BigCrush. Некоторые генераторы, успешно выдержавшие 
это тестирование, приведены в списке, составленном Вихманном и Хиллом [54]. В их число входит и усовершен­
ствованный генератор Вихманна-Хилла (см. С.3.3), обладающий следующими свойствами [54]:

a) его просто реализовать на любом языке программирования, он не зависит от побитовых операций, ис­
пользуемых в некоторых генераторах;

b) структура генератора (количество информации, сохраняемой генератором между запросами) невелика и 
легка в обращении (сравни с параметром t в таблице С.1);

c) он позволяет легко получить несколько последовательностей, необходимых для высокопараллельных 
приложений, что, вероятно, будет особенностью вычислений неопределенности в будущем;

d) существуют варианты генератора для 32-разрядных и 64-разрядных компьютеров.
С.3.3 Процедура генерирования выборки псевдослучайных чисел из равномерного распределения
С.3.3.1 Как и его предшественник, улучшенный генератор Вихманна-Хилла представляет собой комбинацию 

конгруэнтных генераторов. Новый генератор сочетает в себе четыре таких генератора, тогда как предыдущая вер­
сия сочетала три. Новый генератор имеет период 2121, приемлемый для любого возможного применения.
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С.3.3.2 В таблице С.2 приведено описание улучшенного генератора Вихманна-Хилла для получения псев­
дослучайных чисел из R(0, 1) для 32-разрядного компьютера.

С.3.3.3 Для 64-разрядных компьютеров шаг а) вычисления, включая (i) и (ii), в таблице С.2 должен быть за­
менен более простым шагом:

«а) Для j  = 1..... 4 вычисляют /у = (ау * /y)modofy».

С.4 Нормальное распределение

Процедура, описанная в таблице С.З, обеспечивает выбор случайных значений из стандартного нормаль­
ного распределения N(0, 1) с использованием преобразования Бокса-Мюллера [3]. Случайное значение х из нор­
мального распределения N(p, а2) вычисляют по формуле х = р + oz, где z — случайное значение из N(0, 1).

С.5 Многомерное нормальное распределение

С.5.1 Из всех многомерных распределений наибольший интерес представляет совместное нормальное рас­
пределение N(|ji, V), где j i — вектор математического ожидания размерности п * 1, а V— ковариационная матрица 
размерности п * п.

С.5.2 Значения случайной переменной из N(^, V) [45, 49] могут быть получены путем использования проце­
дуры, описанной в таблице С.4.

Т а б л и ц а  С.2 — Улучшенный генератор Вихманна-Хилла для псевдослучайных чисел из равномерного распре­
деления на интервале (0,1) для 32-разрядного компьютера

Входной параметр

Нет

Входные/выходные параметры

/2. /3, Д — целочисленные параметры, которые требуются в качестве входных величин и изменяются в 
процессе выполнения процедуры. Перед первым обращением к процедуре им присваивают значения от 1 до 
2 147 483 647. Между обращениями значения параметров остаются неизменными. Пользователю обычно нет 
необходимости знать, как изменяются значения этих параметров, используемых в процедуре генерирования 
псевдослучайных чисел. Данные параметры могут быть реализованы как глобальные переменные и не входить 
явно в формальные параметры процедуры.

Константы

а, Ъ, с, d — четырехмерные векторы с целочисленными координатами, т. е. а = (а.,, а2, а3, а4)т и т.д., такие, что: 
ат = (11600, 47003, 23000, 33000),
Ьт = (185127, 45688, 93368, 65075),
ст = (10379, 10479, 19423, 8123),
с/Т = 2147483123 х (1, 1, 1, 1) + (456, 420, 300, 0).
Между обращениями значения констант остаются неизменными.

Выходной параметр

г— псевдослучайное число из R(0, 1).

Алгоритм вычисления

a) Для j  = 1, ..., 4:
i) Вычисляют /у = ау * (/у m od b y) -  Су * [ijfdj[,
ii) Если /у < 0, то заменяют /у на /у + dj.

4
b) Вычисляют w = ^  /у/ d j  .

У=1
c) Вычисляют г= и/ -  [и/].

П р и м е ч а н и е  — [и/] означает наибольшее целое, не превосходящее w. Запись /у modby означает остаток 
от деления /у на by.
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Т а б л и ц а  С.З — Генератор псевдослучайных чисел Бокса-Мюллера

Входной параметр

Нет

Выходной параметр

zv z2 — два случайных значения, полученных независимо из стандартного нормального распределения

Алгоритм вычисления

a) Независимо генерируют случайные числа г, и г2 из R{0, 1);
b) z1 = у1-2\пг-\ cos2кг2 и z2 = yj-2\nr^ sin27tr2 .

П р и м е ч а н и е  1 — Если У — положительно определенная матрица (т. е. все ее собственные значения 
строго положительны), то множитель Холецкого R единственен [23, страница 204].

П р и м е ч а н и е  2 — Если У не является положительно определенной матрицей, то из-за возможных 
ошибок округления или других причин R может не существовать. Более того, в случаях, когда одно или несколько 
собственных значений У хотя и положительны, но очень малы, программная реализация алгоритма факторизации 
Холецкого может оказаться неспособной сформировать матрицу R из-за ошибок округления в арифметике с пла­
вающей запятой. В любой из этих ситуаций рекомендуется вносить в У малые возмущения таким образом, чтобы 
множитель R для «возмущенной» матрицы Убыл хорошо определен.

Т а б л и ц а  С.4 — Генератор случайных чисел из многомерного нормального распределения

Входной параметр

п — размерность многомерного нормального распределения 
j i — вектор математических ожиданий размерности п * 1 
У — ковариационная матрица размерности п * п
q — число генерируемых векторов, состоящих из псевдослучайных чисел

Выходной параметр

X  — матрица размерности п * q, у'-й столбец которой — генерированный случайный вектор из многомерного 
нормального распределения

Алгоритм вычисления

a) Для матрицы У формируют множитель Холецкого R, т. е. верхнюю треугольную матрицу, удовлетворяющую 
условию У = RTR (для генерирования q векторов факторизацию матрицы У необходимо выполнить только один 
раз).
b) Генерируют массив Z размерности п * q чисел из стандартного нормального распределения.
c) Вычисляют X  = jjl7t + RTZ,
где 1 — вектор-столбец, состоящий из единиц и имеющий размерность q * 1.

Простая процедура внесения возмущений описана в [49, страница 322] и реализована в генераторе 
MULTNORM [45].

П р и м е ч а н и е  3 — Если У положительно полуопределенная матрица, тогда ее можно представить в виде 
У = QAQT, где Q — ортогональная матрица, А— диагональная матрица. Тогда матрица A 1/2QT может быть исполь­
зована вместо R для формирования выборки из N(0, У) даже в случае матрицы У неполного ранга.

С.5.3 На рисунке С.1 показано 200 точек, полученных с использованием генератора MULTNORM [45] из 
N(|i, У), где

2,0 1,9"
1,9 2,0 '

Это совместное распределение двух положительно коррелированных величин. Подобные генераторы опи­
саны в других источниках [12].

С.5.4 На рисунке С.1 точки образуют вытянутый наклонный эллипс. Если недиагональные элементы ма­
трицы У заменить нулевыми значениями, то эти точки образуют круг. Если бы элементы главной диагонали были 
неравны между собой, а недиагональные элементы были равны нулю, то точки образовали бы эллипс с главными 
осями, параллельными осям графика. Если бы элементы главной диагонали были отрицательными числами (т. е. 
величины имели отрицательную корреляцию), то главная ось эллипса имела бы не положительный (как на рисунке 
С.1), а отрицательный наклон.
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Рисунок С.1 — Выборка значений из двумерного нормального распределения с положительной корреляцией 

С.6 /-распределение

Процедура, описанная в таблице С.5, представляет метод [29], [44, страница 63] генерирования выборки из 
/-распределения с v степенями свободы.

Т а б л и ц а  С.5 — Генератор псевдослучайных чисел для /-распределения

Входной параметр

v — число степеней свободы
Выходной параметр

/ — выборка из /-распределения с v степенями свободы

Алгоритм вычисления

a) Независимо генерируют случайные числа г2 из равномерного распределения R(0, 1).
b) Если г.| < 1/2, то вычисляют / = 1/(4л, -  1) и v = г2/Z2; в противном случае вычисляют / = 4г, -  3 и v = г2.
c) Если v < 1 -  |/|/2 или v < (1 + f2/v)-(v+1)/2, то принимают / в качестве выборочного значения из /-распределения; 
в противном случае повторяют процедуру с шага а).

П р и м е ч а н и е  — Чтобы стандартное отклонение /-распределения с v степенями свободы было конечным, 
значение v должно быть больше двух.
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Приложение D 
(справочное)

Непрерывная аппроксимация функции распределения выходной величины

D.1 В некоторых случаях предпочтительнее работать не с дискретным представлением G, а с непрерывной 
аппроксимацией Gу(д) функции распределения для выходной величины У (см. 7.5).

П р и м е ч а н и е  — Преимущества работы с непрерывной аппроксимацией состоят, например, в том, что:
a) выборка из заданного распределения может быть выполнена без необходимости округления, как в случае 

дискретного представления;
b) для определения наименьшего интервала охвата могут быть использованы численные методы, требую­

щие для своей работы непрерывности функции распределения.

D.2 Чтобы сформировать Gy(ri), используют дискретное представление G = {у^, г  -  1, .. ., М) для Gy(T|) в со­
ответствии с 7.5.1 после замены совпадающих значений модели для у ^  [как того требует этап Ь) в 7.5.1] в соот­
ветствии со следующей процедурой:

a) значениям у ^  приписывают равномерно отстоящие друг от друга значения вероятностей р г = (г -  М2)1М,
г= 1.....М  [8], которые представляют собой средние точки интервалов шириной ММ, покрывающих диапазон из­
менения вероятности от нуля до единицы;

b) формируют Gy(r|) в виде непрерывной строго возрастающей кусочно-линейной функции, последовательно 
соединяющей М  точек [у^, р г], г=  1 , . . . ,  М\

- , , г - 1/2 ц ~ у (г)
6 У'(я) = —J 7 - + — 7----------------Г ■ Пг) ^  Л £ У(г+1) • 1.....М. (D.1)м м(У(г+1Г уи)

П р и м е ч а н и е  — Формула (D.1) может быть использована как основа формирования выборки из<5у(т|) 
для последующей оценки неопределенности (см. раздел С.2 в части формирования выборки на основе функции, 
обратной к функции распределения). Некоторые библиотеки и пакеты программ предоставляют средства такой 
кусочно-линейной интерполяции. ПосколькуGy(ri) кусочно-линейна, то такой же вид имеет и обратная функция, что 
позволяет использовать для ее построения те же программные средства.

D.3 На рисунке D.1 показан график Gy(r|), построенный на основе 50 выборочных значений из нормального 
распределения для Ус плотностью распределения вероятностей ду(г|), математическим ожиданием, равным трем, 
и стандартным отклонением, равным единице.

Рисунок D.1 — Аппроксимация Gy(Ti) функции распределения Gy(ri)

D.4 На основе приближения Gy(r|), задаваемого формулой (D.1), может быть построено приближение 
ду(т|) = G'y(r|) для плотности распределения вероятностей выходной величины, представляющее собой кусочно­
постоянную функцию с разрывами в точках ц = у ^ .....ущ. Математическое ожидание у и стандартное отклонение
и(у) величины Y, описываемой плотностью распределения вероятностей ду(т|), рассматриваются соответственно 
как оценка У и ее стандартная неопределенность и имеют вид:
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(D.2)

(D.3)

где двойной штрих справа от символа суммирования показывает, что первый и последний члены суммы необходи­
мо брать с коэффициентом 1/2.

П р и м е ч а н и е  — Для достаточно больших значений М (например, 105 и более) у и и(у), полученные с 
использованием формул (D.2) и (D.3), в общем случае с практической точки зрения неотличимы от оценок, полу­
ченных по формулам (16) и (17) соответственно.

D.5 Если а — любое значение между нулем и (1 -  р), где р — требуемая вероятность охвата (например, 0,95), 
то границы 100р %-ного интервала охвата могут быть получены на основе Gy(r|) с помощью обратной линейной 
интерполяции. Чтобы определить нижнюю границу y!ow такую, что а = Gy(y|OW), необходимо найти индекс г, для 
которого точки [у(г), рг] и [У(Г+ Рг+ -|] будут удовлетворять условию:

D.6 Значение а = 0,025 дает интервал охвата, ограниченный квантилями уровней 0,025 и 0,975. Этот выбор 
обеспечивает вероятностно симметричный 95 %-ный интервал охвата для У.

D.7 Наименьший интервал охвата может в общем случае быть получен на основе Gy(r|) путем определения 
а, для которого Н(а) = Gy1(p + а) -  Gy1 (а) будет принимать минимальное значение. Прямой численный способ 
определения минимума — вычисление значений Н(а) для большой по объему выборки {а^} равномерно распре­
деленных значений а в интервале от нуля до (1 -  р) и выбор значения а,- из этой выборки, которому соответствует 
минимальное значение Н{ак}.

D.8 Вычисление интервала охвата становится проще, если рМ — целое число. Тогда значение а, для ко­
торого Н(а) минимально, равно г*1М, где г* — значение индекса г, для которого длина интервала [У(Г + рщ -  у^] 
минимальна среди всех г= 1.....(1 -  р)1М.

pr < a < p r+ v

Тогда посредством обратной линейной интерполяции получаем:

Аналогично, верхнюю границу yhjgh, для которой (р + а) = Gy(yhigh), вычисляют по формуле:

где индекс s такой, что точки [у^ , ps] и [y(S +-\у Ps + -\] удовлетворяют условию

ps<p + a < p s + 1.
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Приложение Е 
(справочное)

Интервал охвата для свертки четырех прямоугольных распределений
Е.1 В 9.2.3.2 проведено аналитическое решение в виде

±2>/з |̂ 2 — (3 / 5)1/4 J = ±3,88, (Е.1)

представляющее собой границы вероятностно симметричного 95 %-ного интервала охвата для выходной вели­
чины У, определяемой через модель в виде аддитивной функции четырех входных величин, каждой из которых 
приписано одно и то же равномерное распределение с математическим ожиданием, равным нулю, и стандартным 
отклонением, равным единице. В настоящем приложении приведено обоснование этого результата.

Е.2 Плотность равномерного распределения R(a, b) (см. 6.4.2) для случайной переменной р равна постоян­
ному значению (Ь -  а)-1 на отрезке а < р < Ь и нулю вне этого отрезка. Распределение суммы п независимых случай­
ных переменных представляет собой свертку их распределений и, если все случайные переменные подчиняются 
распределению R(0, 1), имеет вид би-сплайна Вп(р) порядка п [т. е. суммы степенных функций с показателями 
степени до (л -  1) включительно] с узлами в точках 0,..., п [46]. Точное выражение для Вп(р) [6]:

в> ) = ^ £ с? и г( р - о г 1.

п! ,где С' = —т-----—, z, = max(z, 0).
д п г \(п -г )\ + к ’

В частности, на интервале 0 < р < 1 свертка четырех прямоугольных распределений будет иметь вид

в4(р) = | р 3 , 0 < р < 1

(на интервалах между другими узлами искомое распределение также будет иметь вид кубических полиномов, но 
другой формы), следовательно,

\В 4 (p)dp = —  Р4 24 к

-и
—  » 0,0417, 
24

(см. также [6]).
Е.З Левая граница y!ow вероятностно симметричного 95 %-ного интервала охвата заведомо лежит между 

нулем и единицей, поскольку для данной вероятности охвата площадь, лежащая под кривой плотности распреде­
ления вероятностей на интервале слева от y!ow, равна 0,025, но

0,025 J_ JL
40 < 24 '

Эту площадь можно записать в виде

У  lOW А А

]  e4 (p)dp = — ylow4 = — ■
0

таким образом, y[ow = (3/5)1/4.
С учетом симметрии распределения для правой границы интервала охвата получаем

^high = 4 —(3/5)1/4 .

Таким образом, вероятностно симметричный 95 %-ный интервал охвата имеет вид:

[(3/5)1/4,4 -  (3/5)1М ]  = 2 ± [2 -  (3/5)1/4 j .
Распределение для каждой из входных величин с нулевым математическим ожиданием и единичным стан­

дартным отклонением имеет вид £?(-л/з,^з]. Это означает, что интервал охвата, полученный для свертки четырех

распределений R(0, 1), нужно сместить на две единицы влево и умножить его границы на 2у/з , что и даст формулу 
(Е.1).
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Приложение F 
(справочное)

Задача определения коэффициента рассогласования
В настоящем приложении рассматриваются некоторые детали задачи определения коэффициента рассо­

гласования при калибровке измерителя мощности (см. 9.4). В разделе F.1 получены математическое ожидание и 
стандартное отклонение 5Y(см. 9.4.2.1.2). В разделе F.2 аналитически получена плотность распределения вероят­
ностей для 8Y когда х1 = х2 = 0 и г(х1, х2) = 0 (см. 9.4.2.1.2). В разделе F.3 способ оценивания неопределенности по 
GUM применен для некоррелированных и коррелированных входных величин (см. 9.4.2.1.3 и 9.4.3.1.1).

F.1 Аналитическое решение для математического ожидания и стандартного отклонения
F.1.1 Дисперсия величины X может быть выражена через математические ожидания, как [42, стр. 124]:

1/(Х) = е (х 2) - [Е ( Х ) ]2 .

Таким образом,

е (х 2) = [Е (Х )]2 +У (Х ) = х2 +и2(х ) ,

где х — наилучшая оценка X, а и(х) — стандартная неопределенность этой оценки. Таким образом, для модели, 
описываемой формулой (28) [8Y = 1 -  Y = X f + Х |], имеет место

8 у = E(8Y) = х *  + х22 + и2 (х1) + и2(х2) .

Этот результат справедлив независимо от:
- функций распределения Х1 и Х2;
- наличия или отсутствия корреляции между Х1 и Х2.
F.1.2 Стандартная неопределенность для 8Y может быть получена на основе выражения

и2 (8у) = и2 (х,2) + и2 ( х 2 2 ) + 2и(х12,х22) ,

где для / = 1,2 u2(xf) = V(Xf) и и(х ,̂ х2) =Cov(X12, Х |). Тогда, применяя теорему Прайса для нормальных распреде­
лений [40, 41], можно получить

и2 (8у) = 4и2 (х-,)х2 +4и2 (х2)х | + 2ил (х^ + 2и4 (х2) + 4и2 (x1,x2) + 8t/(x1,x2)x1x2 . (F.1)

Если х2 = 0 и iv(x.,) = и(х2), то, заменяя и{х: , х2) на г(х1, х2) а2(х1) можно получить

и (8у) = 2и ) ̂ 2 + [l + г2 (хь х2)] и2 ).

F.1.3 Если Х1 и Х2 некоррелированны, т. е. u{xv х2) = 0, то формула (F.1) принимает вид

и2 (8у) = Ли2 (х^х? +4и2 (х2)х | +2ил (х^) + 2ил (х2) . (F.2)

Формула (F.2) может быть проверена применением формулы (10) из GUM [ISO/IEC Guide 98-3:2008 (5.1.2)] и 
непосредственно следующей за ней формулой из GUM [ISO/IEC Guide 98-3:2008 (примечание к 5.1.2)].

F.2 Аналитическое решение для случая нулевой оценки коэффициента отражения по напряжению 
при нулевой ковариации

F.2.1 Для случая х1 = х2 = 0, r(xv х2) = 0 и и(х.,) = и(х2) плотность распределения вероятностей ду(ц) для Y 
может быть получена аналитически. Такое решение полезно иметь для последующего расчета неопределенности 
калибровки измерителя мощности. В указанном предположении выходную величину можно представить в виде

u 2( x i )  u2( x 2

F.2.2 Член в квадратных скобках, который можно обозначить Z, представляет собой сумму квадратов двух не­
зависимых величин, каждая из которых подчиняется стандартному нормальному распределению. Следовательно, 
случайная переменная Z подчиняется распределению хи-квадрат с двумя степенями свободы [42, стр. 177], так что

8 Y = u2(x1)Z,

где Z имеет плотность распределения вероятностей

5Y = и2 (х.|)
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9z(z) = X22M  = e-^ /2.
F.2.3 Применение общей формулы для плотности распределения вероятностей функции случайной перемен­

ной [42, стр. 57—61] в случае дифференцируемой и строго возрастающей функции аргумента (в данном случае Z) 
с заданным распределением позволяет получить плотность распределения вероятностей для выходной величины 
5Y в виде

9sy (л) =
u2(xi) Х2 и2[х.V )

-ехр
2 и М  I 2и Ы

, П> 0 .

F.2.4 Это позволяет получить выражения для математического ожидания и дисперсии для 5Y:

6у = Е (6Y) = J г|дъу (n)dn = 2и2 ( х ^ . 
о

и2 (6у) = V  (5Y) = J (л -  6у)2 д5у (л)с1л = 4и4 (х^ • 
о

Таким образом, стандартное отклонение составляет 2и2(х1), что согласуется с результатами, приведенными
в F.1.

F.2.5 Интегрирование плотности распределения вероятностей дает функцию распределения следующего
вида:

е 8у(л) = 1-ехр
2u2(xi)

, д > 0 . (F.3)

F.2.6 Если 6уа — такое л в формуле (F.3), для которого G§y{л) = а для любого а, удовлетворяющего условию 
0 < а < 1 -  р, тогда

6уа = -2 u 2(x i)ln (1 -a ),

и 100р %-ный интервал охвата для 6Y (см. 7.7) имеет вид:

[ §У«- §Ур+а]  s [~2lj2 ( ^ )In (1 -  а ), -  2и2 (X!) In(1 -  р -  а ) ] . (F.4)

Длина этого интервала будет равна

H(a) = -2u2( x , ) ln [ l - T £ - j .

F.2.7 Наименьший 100р %-ный интервал охвата соответствует такому а, для которого Н{а) минимально (см. 
5.3.4). Так как /-/(a) — строго возрастающая функция а для 0 < а < 1 -  р, то Н(а) достигает минимума в точке а = 0. 
Таким образом, наименьший 100р %-ный интервал охвата для 5Y имеет вид:

[о, -2 и 2(х,)1п(1-р)].

Для и(х.,) = 0,005 наименьший 95 %-ный интервал охвата представляет собой [0; 0,0001498].
F.2.8 Вероятностно симметричный 95 %-ный интервал охвата для 5Y соответствует a = (1 -  р/2) (см. 5.3.3) и 

имеет вид

[-2 у2 (x-,)ln 0,975, -  2и2 (х-,) In 0,02б] = [0,0000013; 0,0001844].

Он на 20 % длиннее, чем наименьший 95 %-ный интервал охвата.

П р и м е ч а н и е  — Приведенный выше анализ демонстрирует аналитический вывод, применимый к не­
которым задачам подобного типа. В данном частном случае результаты могли бы быть получены быстрее, если 
принять во внимание факт, что д8у(т|) — строго убывающая функция, а наименьший интервал охвата всегда вклю­
чает в себя моду распределения.

F.3 Применение способа оценивания неопределенности по GUM к задаче определения 
коэффициента рассогласования
F.3.1 Некоррелированные входные величины
F.3.1.1 В задаче определения коэффициента рассогласования, рассмотренной в 9.4, в качестве модели из­

мерения использована следующая:
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5Y = f (X)  = f ( Xv X2) = X 2 + X22 ,

где величинам Хд и Х2 приписаны нормальные распределения с математическими ожиданиями х1 и х2 и 
дисперсиями и2(х1) и и2(х2) соответственно.

F.3.1.2 Применение GUM [ISO/IEC Guide 98-3:2008 (5.1.1)] дает

8у = х/  + х22

в качестве оценки 5У Частные производные от функции измерения по Х; для /'=1 ,2  имеют вид

— =2х , ,  i ! l =2.
ЭХ, ' эх,2

F.3.1.3 Следовательно, в соответствии с GUM [ISO/IEC Guide 98-3:2008 (5.1.2)] для стандартной неопреде­
ленности и(8у) справедливо выражение:

и2(Ьу) = ' V  ' 2
vaxi7

= 4x1V ( x1) + 4x2V ( x2), (F.5)

основанное на аппроксимации f(X) рядом Тейлора первого порядка. Если нелинейность f{X) значительна [ISO/IEC Guide 
98-3:2008 (примечание к 5.1.2)], то к формуле (F.5) следует добавить член

1 ’ d2f d2f '
— ----- +----- г-
2 ЭХ/ ax22J

u 2 ( x i ) u 2 ( x 2 ) -

В результате формула (F.5) принимает вид

и2 (6у) = 4u2 (х ^х 2 +4tv2 (х2)х2 +4u2(x1)u2 (х2) . (F.6)

F.3.1.4 Поскольку 8Y подчиняется нормальному распределению, 95 %-ный интервал охвата для 8Y имеет вид

8у ±2w(8y).

F.3.2 Коррелированные входные величины
F.3.2.1 Если входные величины коррелированны, то матрица неопределенностей для наилучших оценок 

входных величин определена формулой (27).
F.3.2.2 Применяя GUM [ISO/IEC Guide 98-3:2008 (5.2.2)], можно получить:

u2(5y) = (jy и2(х'КЙ " 2(*2 )+ 2 j y | r ( * i’* 2M * i M * 2 )
Х = Х

(F.7)

= 4x12t/2 (х1) + 4x22u2 (х2) + 8r (х1, х2) x1x2l/ ( )  и (х2).

67



ГОСТ 34100.3.1—2017

Приложение G 
(справочное)

Основные обозначения

А случайная переменная, представляющая собой нижнюю границу равномерного распределе­
ния с неточно заданными пределами

а нижняя граница области, в пределах которой находится случайная переменная

а центральная точка интервала, о котором известно, что в нем лежит нижняя граница А 
равномерного распределения с неточно заданными пределами

В случайная переменная, представляющая собой верхнюю границу равномерного распределе­
ния с неточно заданными пределами

b верхняя граница области, в пределах которой находится случайная переменная

b центральная точка интервала, о котором известно, что в нем лежит верхняя граница В 
равномерного распределения с неточно заданными пределами

CTrap(a, Ь, d) равномерное распределение с неточно заданными границами с параметрами а, Ь и d

Cov(X;, Xj) ковариация случайных переменных X, и X,

с целое десятичное число с ndjq знаками

ci /'-й коэффициент чувствительности, полученный как частная производная функции измерения 
fno /-й входной величине X,- в точке х  оценки вектора входных величин X

d половина длины интервалов, о которых известно, что в них лежат нижняя А и верхняя В 
границы равномерного распределения с неточно заданными пределами

dhigh абсолютная разность значений правосторонних границ интервалов охвата, полученных на ос­
нове способа оценивания неопределенности по GUM и по методу Монте-Карло

l̂ow абсолютная разность значений левосторонних границ интервалов охвата, полученных на ос­
нове способа оценивания неопределенности по GUM и по методу Монте-Карло

E(X) математическое ожидание случайной переменной X

E(X) вектор математического ожидания векторной случайной переменной X

E(X0 r-й момент случайной переменной X

Ex(X) экспоненциальное распределение с параметром X

f функция измерения, связывающая выходную величину модели У с входными величинами
*1 .....XN

G дискретное представление функции распределения Gy(T|) выходной величины У, полученное 
методом Монте-Карло

G(a, P) гамма-распределение с параметрами а и р

9 & ) плотность распределения вероятностей переменной Е, для входной величины X

9 Л ) совместная (многомерная) плотность распределения переменной § для входной величины X

9xfa) плотность распределения вероятностей переменной ^  для входной величины X,

Gy<Ti) функция распределения переменной д для выходной величины У

Gyft) непрерывная аппроксимация функции распределения Gy(T|) выходной величины У

SfyOl) плотность распределения вероятностей переменной д для выходной величины У

9у(Л) производная от<5у(д) по д, используемая для аппроксимации плотности распределения веро­
ятностей ду(д) выходной величины У

J наименьшее целое, большее или равное 100/(1 -  р)

ko коэффициент охвата, соответствующий вероятности охвата р

1 целое число в представлении с-10' числового значения, где с — целое десятичное число с ndig 
знаками

M число испытаний метода Монте-Карло

N число входных величин Х1г XN
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N(0,1) стандартное нормальное распределение

N(|i, о2) нормальное распределение с параметрами д и а2

N(|l, V) многомерное нормальное распределение с параметрами j i  и V

п число наблюдений

nd\Q количество значащих цифр числа, рассматриваемых как достоверные

Pr (z) вероятность события z

p вероятность охвата

q целая часть числа (рМ + 1/2)

я число объектов в выборке (объем выборки)

R верхняя треугольная матрица

R( 0, 1) стандартное равномерное распределение на интервале [0, 1]

R(a, b) равномерное распределение на интервале [а, Ь]

rixh Xj) коэффициент корреляции оценок ху и Xj входных величин X,- и Ху

s оценка стандартного отклонения по п наблюдениям x1 t хп

sp объединенная оценка стандартного отклонения по нескольким сериям наблюдений
T верхний индекс, обозначающий транспонирование матрицы

sz стандартное отклонение для среднего z значений z ^ \  ..., z ^  в адаптивной процедуре метода 
Монте-Карло, где z может обозначать оценку у выходной величины Y, стандартную неопре­
деленность и(у) оценки у, левостороннюю y|OW или правостороннюю yhigh границу интервала 
охвата для У

4a, b) треугольное распределение на интервале [а, Ь]

Trap{a, b, (3) трапецеидальное распределение на интервале [а, Ь] с параметром (3

К /-распределение с v степенями свободы

O2) масштабированное смещенное /-распределение с параметрами ц и а2 и v степенями свободы

U(0, 1) стандартное арксинусное (U-образное) распределение на интервале [0, 1]

U{a, b) арксинусное (U-образное) распределение на интервале [а, Ь]

u„ расширенная неопределенность, соответствующая вероятности охвата р

U, матрица неопределенности для вектора оценок х  векторной входной величины X

u(x) вектор [а(х.,)...... u{xN)]T стандартных неопределенностей для вектора оценок х векторной
входной величины X

U{Xj) стандартная неопределенность оценки х(- входной величины Ху

u(xh Xj) ковариация оценок ху и ху входных величин Ху и Ху

u(y) стандартная неопределенность оценки у выходной величины У

u(y) стандартная неопределенность у

ис(У) суммарная стандартная неопределенность оценки у выходной величины У

u,(y) /'-я составляющая стандартной неопределенности iv(y) оценки у выходной величины У
V ковариационная (дисперсионно-ковариационная) матрица

V(X) дисперсия случайной переменной X

V(X) ковариационная матрица векторной случайной переменной X

w половина длины интервала [a, b] (w= (Ь -  а)/2)

X входная величина, рассматриваемая как случайная переменная

X вектор (X,, ..., XN)J входных величин, рассматриваемых как случайные переменные, от 
которых зависит выходная величина У

* i /'-я входная величина, рассматриваемая как случайная переменная, от которой зависит вы­
ходная величина У
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X оценка (математическое ожидание) величины X
X векторная оценка (векторное математическое ожидание) (х.,, xN)J величины X

X среднее арифметическое п наблюдений х.,, хп

xi оценка (математическое ожидание) величины X,

xi /-е наблюдение в серии наблюдений

xi,r г-й элемент выборки случайных значений, полученных при реализации метода Монте-Карло, 
из плотности распределения вероятностей для величины X,

X r г-й вектор, содержащий элементы х1 г xNr полученные из N плотностей распределения 
вероятностей для входных величин Х^ ..., XN из совместной плотности распределения для 
величины X

Y (скалярная) выходная величина, рассматриваемая как случайная переменная

У оценка (математическое ожидание) величины У

У оценка величины У, полученная как выборочное среднее М значений выходной величины уг в 
результате реализации метода Монте-Карло или как математическое ожидание величины У, 
описываемой плотностью распределения вероятностей ду(т|)

■Khiqh правосторонняя граница интервала охвата для У

X\ow левосторонняя граница интервала охвата для У

Уг r-е значение функции измерения f(xr)

У(г) r-е значение функции измерения после расположения М значений уг в неубывающем порядке
z(h) /7-е значение величины z в адаптивной процедуре метода Монте-Карло, где z может обозначать 

оценку у выходной величины У, ее стандартную неопределенность и(у), левостороннюю (y|0W) 
или правостороннюю (yhjqh) границу интервала охвата для У

a значение вероятности

a параметр гамма-распределения

P параметр трапецеидального распределения, равный отношению длины верхнего основания 
трапеции к длине нижнего основания трапеции

P параметр гамма-распределения

T(z) гамма-функция переменной z

8 предел погрешности вычисления числового значения

8(z) дельта-функция Дирака переменной z

n переменная, описывающая возможные значения выходной величины У

половина длины верхнего основания трапеции трапецеидального распределения

половина длины нижнего основания трапеции трапецеидального распределения

н математическое ожидание случайной переменной

V число степеней свободы /-распределения или распределения хи-квадрат

v e ff число эффективных степеней свободы, соответствующих стандартной неопределенности и(у)

V P
число степеней свободы для объединенной оценки стандартного отклонения sp, полученной 
по нескольким сериям наблюдений

К переменная, описывающая возможные значения величины X

$ векторная величина ( ^ , ..., ^W)T, описывающая возможные реализации векторной входной ве­
личины X
переменная, описывающая возможные значения входной величины X,

о стандартное отклонение случайной переменной, характеризуемой распределением вероят­
ностей

о2 дисперсия (квадрат стандартного отклонения) случайной переменной

ф фаза гармонически изменяющейся величины

x l распределение хи-квадрат с v  степенями свободы
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Приложение ДА 
(справочное)

Сведения о соответствии ссылочных международных документов 
межгосударственным стандартам

Т а б л и ц а  ДА.1

Обозначение ссылочного междуна­
родного документа

Степень соот­
ветствия

Обозначение и наименование соответствующего 
межгосударственного стандарта

ISO/IEC Guide 98-3:2008 ЮТ ГОСТ 34100.3—2017 «Неопределенность измерения. 
Часть 3. Руководство по выражению неопределенности из­
мерения»

ISO/IEC Guide 99:2007 — *

* Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать 
перевод на русский язык данного международного документа.

П р и м е ч а н и е  — В настоящей таблице использовано следующее условное обозначение степени 
соответствия стандарта:

- ЮТ — идентичный стандарт.
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Приложение ДБ 
(справочное)

Дополнительные замечания к межгосударственным стандартам, вводящим международные 
руководства в области неопределенности измерения

ДБ.1 Общие замечания к серии межгосударственных стандартов ГОСТ 34100

ДБ.1.1 Серия межгосударственных стандартов ГОСТ 34100 вводит документы, разрабатываемые рабочей 
группой JCGM/WG 1 «Рабочая группа по выражению неопределенности измерения», входящей в состав объеди­
ненного комитета JCGM «Объединенный комитет по руководствам в метрологии» при Международном бюро мер и 
весов (см. «Предисловие к международному документу ISO/IEC Guide 98.1:2009» настоящего стандарта).

ДБ. 1.2 Документы, разрабатываемые JCGM/WG 1, устанавливают общий единообразный подход к оценке 
точности измерений через концепцию неопределенности измерений и включают в себя как методы вычисления 
неопределенности измерения в разных измерительных задачах, так и учет неопределенности измерения при при­
менении результатов измерения.

ДБ. 1.3 Концепция неопределенности измерения разработана для выражения качества результата измере­
ния взамен концепции погрешностей измерений с целью придания методической корректности используемым те­
оретико-вероятностным моделям.

В концепции погрешностей измерений результат измерения представляют в виде суммы истинного значе­
ния и погрешности, которая, в свою очередь, является суммой систематической и случайной составляющих. При 
этом для оценки точности измерения обычно используют один из двух способов: консервативный (оценка сверху) 
и теоретико-вероятностный. Выбор того или иного способа оценивания определяется конкретной измерительной 
задачей и дальнейшим использованием результата измерения. Каждый из этих подходов имеет ограничения в 
применении.

ДБ. 1.4 При консервативном способе оценивания границы суммарной погрешности определяются арифмети­
ческим суммированием границ ее составляющих. Главный недостаток консервативного способа — слишком широ­
кие границы суммарной погрешности, особенно в случае большого числа составляющих. Консервативный подход 
может найти применение в измерительных задачах, где необходимо обеспечить нахождение истинного значения 
измеряемой величины в установленных границах наверняка.

ДБ.1.5 При теоретико-вероятностном подходе для описания результата измерения используется случайная 
переменная, математическое ожидание которой совпадает с истинным значением измеряемой величины или сме­
щено относительно него на величину систематической погрешности. Это дает возможность в условиях ограничен­
ного числа повторных наблюдений измеряемой величины строить для нее точечные и интервальные оценки.

В теории погрешностей использована частотная интерпретация вероятности, наблюдения рассматриваются 
как выборка из заданной генеральной совокупности, оценки измеряемой величины и характеристик погрешности 
являются статистиками. В качестве интервальной оценки используется построенный на основе статистик довери­
тельный интервал, соответствующий заданной доверительной вероятности.

Главным ограничением использования частотного подхода является невозможность его корректного рас­
пространения на задачу оценивания систематических погрешностей. Подход, основанный на «рандомизации» си­
стематических погрешностей, применим лишь в отдельных случаях. В результате в рамках частотного подхода 
невозможно указать в общем виде правило построения доверительного интервала погрешности, особенно при на­
личии нескольких влияющих факторов, каждый из которых может описываться своей генеральной совокупностью 
и для которых могут быть получены свои выборки наблюдений. При отсутствии строгих математических методов 
метрологам часто приходилось обращаться к инженерным (эмпирическим) процедурам определения доверитель­
ных интервалов без оценки качества получаемых результатов1).

ДБ.1.6 Введение в метрологическую практику концепции неопределенности измерения «Руководством по 
выражению неопределенности измерения (GUM)», опубликованным в 1993 г. (см. «Предисловие к международ­
ному документу ISO/IEC Guide 98.1:2009» настоящего стандарта), явилось попыткой дать математически строгий 
единый подход к оценке составляющих неопределенности, обусловленных как случайными, так и систематиче­
скими факторами, при заданных условиях измерительной задачи. Однако GUM не смог в полной мере решить 
эту задачу, он появился как внутренне противоречивый документ, использующий одновременно частотную и бай­
есовскую концепции вероятности. Единая процедура вывода, наиболее корректно и последовательно описанная 
в JCGM 101:2008, основана на отказе от частотной интерпретации вероятности при оценке точности измерения 
в пользу субъективного представления о вероятности. Если в частотном подходе понятие случайной переменной 
использовано для описания результата/погрешности измерения, то в субъективном подходе случайная перемен­
ная использована для описания возможных значений измеряемой величины. При этом получение распределения 
вероятностей, ассоциированного с измеряемой величиной, осуществляется на основе:

1) Примером такой инженерной процедуры является способ оценивания доверительных границ погрешности 
в РМГ 43—2001 «Применение «Руководства по выражению неопределенности измерений».
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- составления для данной измерительной задачи модели измерений, связывающей измеряемую величину 
(выходную величину) со всеми значимыми влияющими величинами (входными величинами модели);

- приписывания входным величинам распределений вероятностей (в общем случае, совместных), исходя из 
имеющейся информации об этих величинах и их наблюдений (при наличии);

- преобразования совместного распределения входных величин в распределение выходной величины со­
гласно правилам преобразования случайных переменных.

В отличие от теории погрешностей (на основе частотного подхода) концепция неопределенности (на основе 
субъективной вероятности) не имеет принципиальных ограничений в получении окончательного результата из­
мерения в виде функции распределения, ассоциированной с измеряемой величиной, что позволяет вычислить 
интервал вероятности (охвата) для любой заданной вероятности. Однако во многих измерительных задачах ана­
литическое решение задачи преобразования плотностей вероятностей невозможно. В этом случае точное реше­
ние (в пределах точности вычислений) всегда может быть получено числовым методом Монте-Карло (см. JCGM 
101:2008).

ДБ. 1.7 При наличии выборки наблюдений одной или нескольких входных величин (например, показываемой 
величины — см. JCGM 104:2009, пункт 3.2) входное распределение для этой величины получают применением 
теоремы Байеса. Поэтому переход от концепции погрешностей к концепции неопределенности может рассматри­
ваться как переход от частотного (объективного) подхода в интерпретации вероятностей к байесовскому (субъек­
тивному).

П р и м е ч а н и е  — Существует широкий круг измерительных задач, в которых получают только одно на­
блюдение для входной величины. Однако и в этом случае возможно формальное применение теоремы Байеса, 
поэтому концепцию неопределенности измерения можно связывать с байесовским подходом без потери общности.

ДБ.1.8 Важными характеристиками результатов измерений в обоих подходах являются интервальные оцен­
ки, которые, однако, имеют разное содержание. В частотном подходе это доверительный интервал, неявно пред­
полагающий возможность проведения неограниченной серии измерений и гарантирующий накрытие истинного 
значения измеряемой величины в заданной доле р таких измерений. В байесовском подходе это интервал охвата, 
содержащий с вероятностью q значение измеряемой величины.

П р и м е ч а н и е  1 — Часто, задавая р = q, пытаются провести количественное сопоставление получаемого 
доверительного интервала с интервалом охвата. Однако необходимо иметь в виду, что подобные попытки некор­
ректны ввиду сопоставления разных величин.

П р и м е ч а н и е  2 — Встречающееся в литературе утверждение, что оба подхода дают одинаковые ин­
тервальные оценки, несмотря на их разную интерпретацию, в общем случае неверно. Равенство оценок имеет 
место только в отдельных измерительных задачах, хотя к ним, например, относится часто встречающийся случай, 
когда можно обоснованно предположить наличие одной доминирующей влияющей величины, распределенной по 
нормальному закону. Для данной задачи, действительно, доверительный интервал (наименьший) совпадет с ин­
тервалом охвата (наименьшим), поскольку центральная статистика, используемая для построения доверительного 
интервала, подчиняется тому же ^-распределению, которое после операций сдвига и масштабирования дает апо­
стериорное распределение для измеряемой величины (при условии задания неинформативных априорных рас­
пределений для математического ожидания и дисперсии нормального распределения) в байесовском подходе.

ДБ. 1.9 Разница между частотным и байесовским подходами наглядно проявляется в том, насколько в рам­
ках данного подхода легко получить ту или иную характеристику результата измерения. Частотный подход ос­
нован на получении оптимальных точечных оценок (статистик), по которым потом можно построить (не всегда) 
доверительный интервал. Распределение случайной погрешности, характеризующей качество измерений, может 
быть получено только в отдельных частных случаях. В байесовском подходе ситуация противоположная. В первую 
очередь, получают распределение вероятностей случайной величины, ассоциированной с измеряемой величиной. 
На его основе всегда есть возможность построить интервал охвата. Точечную оценку получают из распределения 
вероятностей после принятия каких-либо дополнительных допущений.

П р и м е ч а н и е  — В зависимости от целей измерений точечной оценкой могут служить разные параметры 
полученного распределения для измеряемой величины, такие как математическое ожидание, медиана или мода.

ДБ. 1.10 Достоинством байесовского подхода, а значит и концепции неопределенности измерений, является 
наличие формализованной процедуры учета априорной информации разного рода (в том числе, о возможных или 
наиболее вероятных значениях измеряемой величины) при получении результата измерений.

Сопоставление концепций погрешности и неопределенности измерения проиллюстрировано на рисунке
ДБ.1.

ДБ. 1.11 В рамках байесовского подхода решением измерительной задачи в общем случае является распре­
деление, ассоциированное с измеряемой величиной, которое, в общем случае, индивидуально для каждой изме­
рительной задачи и в наиболее полном виде описывает всю собранную при решении данной задачи информацию.

В целях сокращения объема передаваемых данных и удобства их хранения в документах, разрабатываемых 
JCGM/WG 1, основным способом представления результата измерения принят интервал охвата (или область охва­
та в случае многомерной измеряемой величины). При этом, однако, следует помнить, что за областью охвата всег-
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да стоит распределение соответствующей случайной переменной и, главное, во многих практических приложениях 
результатов проведенного измерения необходимо знать не интервал охвата, а распределение, из которого оно 
получено. Поэтому, как правило, желательно сохранять результат измерения в виде распределения вероятностей 
случайной переменной, ассоциированной с измеряемой величиной.

Выборка + 
дополнительная 

информация

Ь) Байесовский подход

П р и м е ч а н и е  — Вопросительные знаки на схеме частотного подхода показывают, что получение оценки 
данной характеристики затруднено или невозможно. Если особенности измерительной задачи позволяют получить 
распределение погрешности, то доверительный интервал может быть рассчитан. Обратное утверждение, вообще 
говоря, неверно.

Рисунок ДБ. 1 — Обобщенная схема получения результата измерения в рамках частотного
и байесовского подходов

ДБ.2 Дополнительные замечания к настоящему стандарту
ДБ.2.1 Настоящий стандарт является введением международного документа JCGM 101:2008, который, фор­

мально являясь дополнением к JCGM 100:2008 (GUM), в действительности наиболее полно и последовательно 
вводит концепцию неопределенности измерений для самых разнообразных измерительных задач. В этом отноше­
нии метод, установленный JCGM 100:2008 (GUM), можно считать распространением концепции неопределенности 
измерений на частный случай линейных моделей, выходная величина которых подчиняется нормальному закону 
(или ^-распределению).

Настоящий стандарт устанавливает метод, позволяющий получить наиболее общую характеристику каче­
ства метода измерений — распределение вероятностей случайной величины, ассоциированной с измеряемой ве­
личиной, — для любых измерительных задач, где измеряемая величина — скаляр.

ДБ.2.2 Документ сохраняет преемственность GUM, однако, поскольку он появился 15 лет спустя, в нем уч­
тена критика GUM. Концепция неопределенности измерения изложена строго, последовательно на основе субъ­
ективной интерпретации вероятности. Ряд понятий, введенных GUM (например, оценивание неопределенности по 
типу А и В, эффективное число степеней свободы) и не являющихся принципиально необходимыми для изложения 
концепции неопределенности, не рассматриваются в настоящем стандарте. В нем, однако, оставлены такие по­
нятия, как стандартная и расширенная неопределенности, также не являющиеся необходимыми элементами кон­
цепции неопределенности измерения. Эти понятия оставлены в целях преемственности изложения с GUM и сопо­
ставления результатов измерений неопределенности по GUM и полученных с применением метода Монте-Карло.
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