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Введение

Установленные в стандарте термины расположены в систематизированном порядке, отражаю­
щем систему понятий данной области знания.

Для каждого понятия установлен один стандартизованный термин.
Приведенные определения можно при необходимости изменить, вводя в них произвольные при­

знаки. раскрывая значения используемых в них терминов, указывая объекты, относящиеся к опреде­
ленному понятию. Изменения не должны нарушать объем и содержание понятий, определенных в дан­
ном стандарте.

В стандарте приведены иноязычные эквиваленты стандартизованных терминов на английском(еп) 
языке.

В стандарте приведен алфавитный указатель терминов на русском языке.
Стандартизованные термины набраны полужирным шрифтом, их краткие формы —  светлым, а 

синонимы —  курсивом.
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Н А Ц И О Н А Л Ь Н Ы Й  С Т А Н Д А Р Т  Р О С С И Й С К О Й  Ф Е Д Е Р А Ц И И

ЧИСЛЕННО Е МОДЕЛИРОВАНИЕ Ф ИЗИЧЕСКИХ ПРОЦЕССОВ  

Термины  и определения в области бессеточны х методов численного моделирования

Numerical modeling of physical processes. Terms and definitions for numerical meshless methods

Дата введения — 2018— 05—01

1 Область применения

Настоящий стандарт устанавливает термины и определения понятий в области бессеточных ме­
тодов численного моделирования.

Термины, установленные настоящим стандартом, обязательны для применения во всех видах 
документации и литературы (по данной научно-технической отрасли), входящих в сферу работ по стан­
дартизации и (или) использующих результаты этих работ.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ 2.052— 2015 Единая система конструкторской документации. Электронная модель изделия. 

Общие положения
ГОСТ Р ИСО/МЭК 12207— 2010 Информационная технология. Системная и программная инжене­

рия. Процессы жизненного цикла программных средств
ГОСТ Р 57193—2016 Системная и программная инженерия. Процессы жизненного цикла систем
Р 50.1.075— 2011 Разработка стандартов на термины и определения

П р и м е ч а н и е  —  При пользовании настоящим стандартом целесообразно проверить действие ссылочных 
стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по 
техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «На­
циональные стандарты#, который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесяч­
ного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, 
на который дана недатированная ссылка, то рекомендуется использовать дебйствующую версию этого стандарта 
с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана дати­
рованная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения 
(принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная 
ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется 
применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором 
дана ссылка на него, рекомендуется принять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

Издание официальное
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3.1 Общ ие термины

3.1.1 бессеточные численны е методы: Класс методов для решения 
физико-механических задач о движении материального континуума, в кото­
рых не применяется построение расчетных сеток, а моделирование проис­
ходит за счет исследования взаимодействий условных частиц, для которых 
определена интегральная или иная математическая процедура восстанов­
ления полей физических параметров континуума по текущему состоянию 
множества частиц.

3.1.2 вихревые числонныо методы: Подкласс бессеточных числен­
ных методов (3.1.1) для решения задач гидродинамики, основанный на непо­
средственном лагранжевом моделировании эволюции поля завихренности с 
использованием интегральной процедуры восстановления кинематических и 
динамических полей движущейся несжимаемой жидкости.

3.1.3 мезоскопические численны е методы: Подкласс бессеточных 
численных методов (3.1.1), основанный на промежуточном представлении о 
континууме как молекулярном веществе и сплошной среде.

3.1.4 численны е методы гидродинамики сглаженны х частиц: Под­
класс бессеточных численных методов (3.1.1) для моделирования движений 
сплошной среды на основе дискретного представления множеством условно 
материальных частиц с ядром сглаживания (3.4.1).

3.1.5 критерий Куранта-Ф ридрихса-Леви: Необходимое условие 
устойчивости явного численного решения некоторых дифференциальных 
уравнений в частных производных.

П р и м е ч а н и е  — В рамках бессеточных численных методов моделирова­
ния (3.1.1) имеет смысл необходимого ограничения на величину шага по времени.

3.2 Вихревы е численны е методы

3.2.1 ф ормула Био-Савара: Интегральное представление вектора со- 
леноидального поля скорости через его ротор в безграничном пространстве 
(приведено в приложении А) (1].

3.2.2 закон эволюции завихренности: Получается из уравнения На- 
вье-Стокса в результате применения оператора ротор (приведено в прило­
жении А [1].

3.2.3 вихревой элемент: Заданное финитное распределение завих­
ренности. локализованное в окрестности точки пространства. Суперпозиция 
множества вихревых элементов служит для аппроксимации поля завихрен­
ности.

3.2.4 циркуляция вихревого элемента (напряженность вихревого 
эпемвнта): Интеграл от поля завихренности элемента по пространству (при­
ведено в приложении А).

3.2.5 индуцируемая вихревы м элементом скорость: Поле скорости, 
вычисленное по формуле Био-Савара (3.2.1) для заданного вихревого эле­
мента (3.2 .3) (приведено в приложении А).

3.2.6 точечны й вихрь (линейный вихрь): Разновидность вихревого 
элемента (3.2.3) в плоскопараллельных течениях —  сингулярно сосредото­
ченное в точке распределение завихренности (соответственно в трехмерном 
пространстве —  прямолинейная бесконечная вихревая нить) [8].

3.2.7 вихревая частица: Вихревой элемент (3.2.3) с осесимметричным 
или сферически симметричным распределением завихренности относитель­
но точки локализации (приведено в приложении А) [7].

3.2.8 ф ункция обрезания частицы: Определяет структуру распре­
деления завихренности в вихревой частице (3.2.7) (приведено в приложе­
нии А).

3.2.9 размер ядра частицы : Зависящий от размерности пространства 
коэффициент в формуле распределения завихренности в вихревой части­
це (3.2.8) (приведено в приложении А).

2
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en cutoff function 

en core size



ГОСТ Р 57700.6— 2017

3.2.10 ядро скорости частицы: Определяется по интегральной фор­
муле через функцию обрезания частицы (3.2.8) и служит для вычисления 
составляющей поля скорости жидкости, индуцированной вихревой части­
цей (3.2 .7) (приведено в приложении А).

3.2.11 точечны й вортон: Сингулярное распределение завихренности 
в трехмерном пространстве, сосредоточенное в точке локализации (приве­
дено в приложении А) [2].

3.2.12 вихревой отрезок: Прямолинейный отрезок вихревой линии, 
индуцирующий поле скорости в соответствии с модифицированной форму­
лой Био-Савара (приведено в приложении А) [3].

3.2.13 вихревая рамка: Замкнутая вихревая линия, состоящая из не­
скольких (обычно из четырех) вихревых отрезков (3.2.9) [3].

3.2.14 вихревой домен: Определенный для двумерных (плоскопа­
раллельных и осесимметричных) течений вихревой элемент (3.2.3), форма 
и ширина которого не являются фиксированными, а вычисляются с учетом 
локального распределения соседних доменов и близости поверхности обте­
каемых тел. Перемещение вихревого домена относительно жидкости проис­
ходит с диффузионной скоростью (3.2.15) (4]. (5].

3.2.15 диф ф узионная скорость: Вектор, характеризующий перенос 
завихренности в вязкой жидкости (приведено в приложении А).

3.2.16 радиус дискретности: Характеризует размер области вокруг 
сингулярного вихревого элемента (3.2.3). внутри которой постулируется ли­
нейное распределение азимутальной скорости, убывающее до нуля в цен­
тре области [8].

3.2.17 ромешинг: Специальная процедура [7] перераспределения сум­
марной завихренности в лаграижевых частицах с использованием вспомога­
тельной декартовой сетки.

3.2.18 метод дискретны х вихрей (МДВ): Бессеточный вихревой чис­
ленный метод (3.1.2) моделирования двумерных и трехмерных течений 
идеальной (невязкой) несжимаемой жидкости. Основан на представлении 
вихревого поля набором вихревых элементов (3.2.3). которые перемещают­
ся со скоростью жидкости («вморожены» в жидкость). Для моделирования 
плоскопараллельных течений обычно используются точечные вихри (3.2.6) 
с заданным радиусом дискретности (3.2.16). В случае трехмерных точений 
используются вихревые рамки (3.2.13) и другие элементы, в частности то­
чечные вортоны (3.2.11) (8).

3.2.19 метод случайны х блужданий: Бессеточный вихревой числен­
ный метод (3.1.2) моделирования плоскопараллельных течений несжимае­
мой вязкой жидкости. Отличается от метода дискретных вихрей (3.2.18) тем. 
что на каждом шаге по времени к перемещению вихревого элемента (3.2.3) 
со скоростью жидкости добавляется случайное смещение, имитирующее 
диффузию завихренности [9].

3.2.20 мотод расш иряю щ ихся ядер: Бессеточный вихревой числен­
ный метод (3.1 .2) моделирования плоскопараллельных течений вязкой не­
сжимаемой жидкости. Вихревое поле моделируется вихревыми частица­
ми (3.2.7), ширина ядра которых искусственно увеличивается со временем 
по заданному закону [10].

3.2.21 метод перераспределения интенсивности частиц: Бессеточ­
ный вихревой численный метод (3.1.2) моделирования двумерных течений 
вязкой несжимаемой жидкости. Эффект вязкости моделируется путем ча­
стичной передачи суммарной завихренности от одной частицы другим. Для 
осуществления такого перераспределения используется процедура реме- 
шинг (3.2.17) [11].

3.2.22 мотод диф ф узионной скорости: Бессеточный вихревой чис­
ленный метод (3.1.2) моделирования плоскопараллельных течений вязкой 
несжимаемой жидкости. Поле завихренности представляется вихревыми

en velocity kernel

en point vorton

en vortex segment

en vortex frame 

en vortex domain

en diffusion velocity 

en discrete radius

en remeshing

en method of discrete 
vortices

en random walk method

en core spreading method

en particle strength ex­
change

en diffusion velocity 
method
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частицами (3.2.7) с фиксированной формой и шириной ядер, которые пере­
мещаются со скоростью, равной сумме скорости жидкости и диффузионной 
скорости (3.2.15) [22].

3.2.23 метод вязких вихревы х домонов (МВВД): Бессеточный вихре­
вой численный метод (3.1.2) моделирования нестационарных плоскопарал­
лельных или осесимметричных незакрученных течений вязкой несжимаемой 
жидкости постоянной плотности. Поле завихренности представляется вих­
ревыми доменами (3.2.14), перемещающимися в поле течения скоростью, 
равной сумме конвективной скорости жидкости и диффузионной скоро­
сти (3.2.15) [4]. (5). [12].

3.3 М езоскопические численны е методы

3.3.1 кинетическое уравнение Больцмана: Уравнение, описывающее 
статистическое распределение частиц в материальном континууме.

3.3.2 ф ункция распределения: Функция, характеризующая распреде­
ление случайной скалярной или векторной величины.

3.3.3 решетка: Математический объект, состоящий из узла (3.3.3) с ука­
занной совокупностью разрешенных векторов направлений перемещения 
частиц.

3.3.4 узел: Точка в пространстве, в которой происходит вычисление 
параметров решеточной жидкости (3.3.13).

3.3 .5  расчетная область: Часть пространства, содержащая
узлы (3.3.4).

3.3.6 решеточная скорость: Один из разрешенных векторов в 
узле (3.3.4), определяющий направление перемещения условных единиц по 
решетке (3.3.3).

П р и м е ч а н и е  — Решеточная скорость не равна физической скорости ма­
териальных частиц среды.

3.3.7 метод реш еток Больцмана: Бессеточный мезоскопический чис­
ленный метод (3.1.3) решения задач гидродинамики теплообмена в рамках 
кинетических уравнений Больцмана (3.3.1).

3.3.8 взаимодействие частиц в узлах рошетки: Составная часть алго­
ритма реализации мезоскопических методов, заключающаяся в вычислении 
значений функции распределения (3.3.2) частиц в расчетной области (3.3.5) 
в результате действия оператора столкновений (3.3.9).

3.3.9 оператор столкновений (интеграл столкновений): Выражение, 
составляющее правую часть кинетического уравнения Больцмана (3.3.1). 
которое определяет скорость изменения функции распределения (3.3.2) ча­
стиц.

3.3.10 этап переноса частиц по решетке: Составная часть алгоритма 
реализации мезоскопических методов, определяющая перенос частиц из те­
кущего в соседние узлы (3.3.4).

3.3.11 безразмерное время релаксации: Параметр, определяющий 
коэффициент диффузии решеточной жидкости (3.3.13) и устойчивость вы­
числительной процедуры.

3.3.12 граничное условие «отражение»: Тип граничного условия, ха­
рактеризующего взаимодействие жидкости с твердой стенкой.

3.3.13 условие Зу-Хе: Тип граничного условия, позволяющий задать 
скорость потока на твердой стенке через функции распределения (3.3.2).

3.3.14 решеточная жидкость: Среда, передвигающаяся с решеточной 
скоростью (3.1.4), вязкость которой определяется безразмерным временем 
релаксации (3.3.11).

3.3.15 решеточная схема: Форма обозначения решетки (3.3.3). имею­
щая вид DxQy, где х —  размерность пространства D. у —количество векто­
ров решеточных скоростей (3.3.6) Q.

en viscous vortex do­
mains method —  W D  
method

en Boltzmann equation, ki­
netic Boltzmann equation 
en distribution function
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en lattice Boltzmann 
method
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en streaming process

en relaxation time

en bounce-back

en Zou-He boundary 
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3.3.16 модель ЛБГК: Частный случай (вариант) метода решеток Боль­
цмана (3.3.7), описывает движение вязкой нетеплопроводной жидкости, ис­
пользуя в качестве оператора столкновений (3.3.9) аппроксимацию Батнага- 
ра-Гросса-Крука.

3.3.17 многоскоростная модель: Частный случай (вариант) метода 
решеток Больцмана (3.3.7). описывает движение вязкой теплопроводной 
жидкости с учетом вязкой диссипации.

3.3.18 модель с двумя ф ункциями распределения: Частный случай 
(вариант) метода решеток Больцмана (3.3.7). описывает движение вязкой те ­
плопроводной жидкости без учета вязкой диссипации.

3.4 Гидродинамика сглаженны х частиц

3.4.1 ядро  сглаживания (функция сглаживания): Весовая функция за­
данного веда, позволяющая строить непрерывные распределения параме­
тров сплошной среды по дискретному множеству условных единиц.

3.4.2 радиус сглаживания: Расстояние, на которое распространяется 
действие ядра сглаживания (3.4.1).

3.4.3 аппроксимация частицами: Представление расчетной области 
в виде дискретного множества частиц со свойствами среды.

3.4.4 аппроксимация ядром сглаживания: Приближенное представ­
ление функций и их производных через функцию ядра сглаживания (3.4.2) и 
ее производные (приведено в приложении А).

3.4.5 зеркальные частицы: Фиктивные частицы (3.4.9). реализующие 
граничное условие прилипания в гидродинамике сглаженных частиц (3.1.4), 
согласно которому для каждой приграничной частицы (находящейся на рассто­
янии от стенки меньшем, чем область сглаживания) создается новая частица 
с той же плотностью и давлением, но с противоположным вектором скорости.

3.4.6 отражаю щ ие частицы: Фиктивные частицы (3.4.9). реализующие 
граничное условие прилипания для метода гидродинамики сглаженных ча­
стиц (3.1.4). при котором элементы границы воздействуют на частицы жид­
кости по аналогии с центральными физическими силами между молекулами.

3.4.7 динамические частицы: Фиктивные частицы (3.4.9), реализу­
ющие граничное условие прилипания в методе гидродинамики сглаженных 
частиц (3.1.4), при котором условные частицы используют те же уравнения 
неразрывности и состояния, как частицы жидкости, но их положение остается 
неизменным (наиболее экономичный способ реализации граничного условия).

3.4.8 расчетные частицы: Участвующие в воспроизведении состоя­
ния континуума взаимодействующие между собой частицы внутри расчет­
ной области (обладают набором свойств, например плотность, скорость, 
температура, определенных конкретной постановкой задачи).

3.4.9 ф иктивны е частицы: Находясь, как правило, вне пределов рас­
четной области, позволяют воспроизводить дополнительное воздействие на 
расчетные частицы (3.4.8) (например, обеспечивая выполнение граничных 
условий или действие внешних сил).

3.5 Другие бессеточные методы

3.5.1 метод вязких дипольны х дом енов (МВДЦ): Бессеточный чис­
ленный метод (3.1.1) моделирования нестандартных пространственных 
течений вязкой несжимаемой жидкости постоянной плотности на основе 
расчета эволюции вспомогательного поля диполей, представляемого дис­
кретным множеством взаимодействующих дипольных доменов (3.5.2) [20].

3.5.2 дипольны й домен: Локализованное вблизи точки в простран­
ственной области течения жидкости специальное распределение плотности 
точечных вихревых диполей (3.5.3), характеризуемое формой и размером 
ядра домена (приведено в приложении А) [20].
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3.5.3 точечны й вихревой диполь: Сингулярное распределение за­
вихренности. асимптотически образованное полем вихревого кольца беско­
нечно малого радиуса с циркуляцией обратно пропорциональной квадрату 
радиуса (приведено в приложении А) [18].

3.5.4 метод вязких вихретепловы х дом енов (МВВТД): Бессеточный 
численный метод (3.1.1). являющийся обобщением метода ВВД (3.2.23) для 
учета теплопроводности жидкости. Поле завихренности представляется 
вихревыми доменами (3.2.14). а поле температуры —  тепловыми домена­
ми (3.5.5) [21].

3.5.5 тепловой домен: Локализованное в окрестности точки распре­
деление температуры. Суперпозиция множества тепловых доменов служит 
для аппроксимации поля температуры. Форма и ширина ядра теплового до­
мена не являются фиксированными, а вычисляются с учетом локального 
распределения соседних тепловых доменов и близости поверхности обтека­
емого тела. Перемещение теплового домена относительно жидкости проис­
ходит с термодиффузионной скоростью (3.5.6) [21].

3.5.6 термодиф ф узионная скорость: Вектор, характеризующий пе­
ренос завихренности в вязкой жидкости (приведено в приложении А) [6]. [21].

3.5.7 метод Монте-Карло: Бессеточный численный метод (3.1.1) мо­
делирования эволюции материального континуума различной физической 
природы, основанный на получении большого числа численных реализаций 
случайных взаимодействий.
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А лф авитны й указатель терминов на русском языке
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домен тепловой 3.5.5
жидкость решеточная 3.3.14
закон эволюции завихренности 3.2.2
интеграл столкновений 3.3.9
линейный вихрь 3.2.6
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А лф авитны й указатель эквивалентов терминов на английском языке

Bio-Savarl law 3.2.1
Boltzmann equation 3.3.1
bounce-back 3.3.12
calculated particles 3.4.8
circulation 3.2.4
oolBsion integral 3.3.9
collision operator 3.3.9
collision process 3.3.8
computational domain 3.3.5
core size 3.2.9
core spreading method 3.2.20
Courant-Friedrichs-Lewy condition 3.1.5
cutoff function 3.2.8
diffusion velocity 3.2.15
diffusion velocity method 3.2.22
dipole domain 3.5.2
discrete radius 3.2.16
distribution function 3.3.2
double-distribution-function lattice Boltzmann model 3.3.18
dynamic particles 3.4.7
ghost particles 3.4.5
heat domain 3.5.5
kernel approximation 3.4.4
kinetic Boltzmann equation 3.3.1
lattice 3.3.3
lattice Boltzmann fluid 3.3.14
lattice Boltzmann method 3.3.7
lattice scheme 3.3.15
lattice velocity 3.3.6
LBGK model 3.3.16
meshless methods 3.1.1
mesoscopic methods 3.1.3
method of discrete vortices 3.2.18
Monte Carlo method 3.5.7
multi-speed lattice Boltzmann model 3.3.17
node 3.3.4
particle approximation 3.4.3
particle strength exchange 3.2.21
point vortex 3.2.6
point vortex dipole 3.5.3
point vorton 3.2.11
random walk method 3.2.19
relaxation time 3.3.11
remeshing 3.2.17
repulsive particles 3.4.6
smoothed particle hydrodynamics 3.1.4
smoothing function 3.4.1
smoothing kernel 3.4.1
smoothing length 3.4.2
streaming process 3.3.10
strength 3.2.4
thermodiffusicn velocity 3.5.6
VDD method 3.5.1, 3.5.4
velocity field induced by the vortex 3.2.5
velocity kernel 3.2.10
virtual particles 3.4.9
viscous dipole domains method 3.5.1, 3.5.4
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Приложение А 
(справочное)

Пояснение терминов, используемы х в стандарте

А.1 Формула Био-Савара (3.2.1) [1]

Щ  =  - L  J Q (r) x J ^ L -d x d y d z j  = {x.y .z}. (А.1)
*  ( Д - г )

где V — вектор поля скорости жидкости:
^  — радиус-вектор точки наблюдения;
Я  = rotV — вектор завихренности поля скорости: 
г— радиус-вектор в пространстве движения жидкости: 
x .y .z  — декартовы координаты.

А.2 Закон эволюции завихренности (3.2.2) (1]

* г = < Ц | ? * я ) . и ^ а  <А-2>

где U = rotV — вектор завихренности поля скорости V:
I —  время;
V  —  оператор Гамильтона:
V — коэффициент кинематической вязкости жидкости;
е’х, ву. вх — единичные векторы по осям х. у. z  соответственно.

А.З Циркуляция вихревого элемента (домена) Г; (3.2.4)

Г, = в2 j  il[r)dxdy  —  в ллосколараллельных течениях; (А.З)
*

Г; = в, j  il\r)dxdr —  в осесимметричных незакрученных течениях.
*,

где ё/  — единичный вектор, перпендикулярный плоскости течения:
Sj —площадь вихревого домена;
И  — ненулевая компонента вектора завихренности Й  = rot\? поля скорости V: 
г'— векторная координата;

—  единичный азимутальный вектор.
А.4 Скорость, индуцируемая вихревым элементом в трехмерном пространстве (3.2.5)

Vi{R) =  ̂ - j n [ r - r , ) x - ^ — -̂T dxdydz.r = {x.y.z), (А.4)
( * - ' )

где V— вектор поля скорости жидкости:
Д — радиус-вектор точки наблюдения;
Я  = rotV—  вектор завихренности: 
г— радиус-вектор в пространстве движения жидкости; 
г) — векторная координата вихревого элемента; 
x .y .z  — декартовы координаты.

А.5 Распределение завихренности точечный вихрь (3.2.6) в ллосколараллельных течениях определено вы­
ражением [8)

il(Fr) = Tt& (R ) .R  = R - r p (А.5)

где Г. — циркуляция вихревого элемента;
б2 — дельта-функция Дирака в двумерном пространстве;
&  — радиус-вектор точки наблюдения;
^ — векторная координата локализации завихренности. Точечный вихрь (3.2.6) соответствует перпендикуляр­

ной плоскости течения прямолинейной вихревой нити с циркуляцией Г(. Скорость жидкости, индуцируемая 
точечным вихрем (3.2.6). определяется формулой

т =
П х (Д - /у )  

2 я (Д -Г | )2
(А.6)
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А.6 Вихревая частица (3.2.7) — осесимметричное или сферически симметричное распределение завихрен­
ности относительно точки локализации ^

« 7 = ® .  (А.7)

где R  — радиус-вектор точки наблюдения:
— скалярная величина, называемая размером ядра частицы (3.2.9);

Г, — циркуляция вихревого элемента; 
к  —  размерность пространства;

— гладкая, нормированная, быстро убывающая или равная нулю лриЯ' > 1 функция обрезания части­
цы (3.2.8)

2k 'r. l< ;{ r) r ' ‘ -'ld r  = ‘l. 
о

Скорость, индуцируемая частицей, равна

(А.8)

f P F ) s / « W e ‘-,d& Я ' = Я  (А.9)

г \  0 Е
где /(Я) — именуется ядро скорости (3.2.10).

А.7 Распределение завихренности точечный вортон (3.2.11) определено в трехмерном пространстве сингу­
лярным выражением [2]

Q(/7) = г; 83(Я). R- = R  -  £  (А. 10)

где Г; — циркуляция вихревого элемента;
б3 — дельта-функция Дирака в трехмерном пространстве;
R — радиус-вектор точки наблюдения:
f  — векторная координата точки локализации завихренности. Скорость, индуцируемая точечным ворто- 

ном (3.2.11). определяется формулой (2)

V ,(R ) =
Г, x ( R - r j )  

4 п (Я -г ,)3
(А-11)

А.8 Скорость, индуцируемая вихревым отрезком г2 -  г\ (3.2.12), определяется формулой [3)

V (R ) =
4х

da, г' = г̂ ос + Г2<1 -  а). (А. 12)

где Г —  циркуляция вихревого отрезка;
R — радиус-вектор точки наблюдения.

А.9 Диффузионная скорость (3.2.15) — векторная величина [4]. [22] вычисляемая как
V шх

Va = — VT2 — в плоскопараллельных течениях;

• V •< хвг
Va = VQ — ~  — в осесимметричных незакрученных течениях. (А.13)

где = roiV — вектор завихренности поля скорости V: 
v — коэффициент кинематической вязкости жидкости;
V — оператор Гамильтона;
вг — радиальный единичный вектор;
г — радиальная координата.

Это позволяет записать закон эволюции завихренности (3.2.15) в дивергентной форме
V )
— = - ? ( ш ) .  0 = V + V d (А.14)

и интерпретировать диффузионную скорость (3.2.5) как скорость переноса завихренности относительно жидко­
сти [4). [5]. (22].

А. 10 Аппроксимация ядром сглаживания (3.4.4)
- для функции

12
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A (;) = £ m A |v ( | ; - r / |,/i)
) 11

- для производной функции

<Ч)=Хт/ ^ и'(|'-4 й)-
»де А(г') —значение произвольной функции А в точке с радиус-вектором Л 

гг>1 — масса й частицы;
Aj — значение функции А для /-й частицы; 
р, — плотность у-й частицы;
W — ядро сглаживания (3.4.1); 
г— векторная координата /-й частицы: 
h — область сглаживания (3.4.2).

А.11 Одна из разновидностей функции ядра сглаживания (3.4.1) согласно работе [15). [16]

Rs\

где W — ядро сглаживания;
[ г - rj — расстояние между двумя точками пространства: 
h — область сглаживания (3.4.2);
ad—  коэффициент, зависящий от размерности пространства:

I r - r / l
R = -— -— - — безразмерное расстояние между двумя точками. 

п
Свойства функций сглаживания [17):

JlfV(|r- г'|. h)dr’ = 1.

[г’ ■ Л Ц г- г*|. h)dr“ = г,

\(г  -  г') • Щ г -  г ’|. h)dr' = 0. (А.20)

А. 12 Точечный вихревой диполь (3.5.3) — сингулярное распределение завихренности, образованное из вих­
ревого кольца радиуса г с циркуляцией Г  = при стремлении г к нулю. Скорость, индуцируемая точечным
диполем, определяется формулой [19]. [20]

( А ' 2 , )

где R — радиус-вектор точки наблюдения; 
q— векторный дипольный момент;
е. —  единичный вектор, перпендикулярный плоскости вихревого кольца; 
г— вектор координат точечного диполя.

А. 13 Дипольный домен (3.5.2) — локализованное вблизи точки с векторной координатой г) пространственное 
распределение плотности диполей D{R -  rj) [21]

D[FT) = j r O £ [R ) ,  R ‘  = R -  ?. W  =  51, (A.22)

где f$ — координаты точки наблюдения;
q(R’) и г  — ферма и размер ядра дипольного домена.

А.14 Термодиффузионная скорость (3.5.6) — векторная функция [6]. [21]

(А. 17)

(А. 18) 

(А. 19)

(А. 15)

(А. 16)

(А.23)

где Т — температура:
а  — коэффициент температуропроводности;
V  — оператор Гамильтона.

Термодиффузионную скорость можно интерпретировать как скорость изменения температурного поля от­
носительно жидкости в процессе нестационарной теплопроводности за счет теплопроводности.

13
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А. 15 Реализация условия Зу-Хе (3.3.13) для решетчатой схемы D2Q9
Значения плотности и скорости жидкости вычисляются через функции распределения с помощью следую­

щих формул [13]:

(А.24)
, Р- 1

где /  — функции распределения; 
с. — решеточные скорости: 
ри — плотность жидкости: 
i?w — вектор скорости жидкости.

Из (А.24) можно вычислить неизвестные функции распределения на границе, для которой известны компо­
ненты скорости. Для решетки D2Q9 неизвестные функции распределения вычисляются по формулам:

6= / 4 +
2 Ршиу
3 с ' 4

1 Р«,“,
2 с

1 Р»иу 
6 с *

(А.25)

f  = f  -  ft ~^3 _ 1 Р»Цд + 1 
6 8 2 2 с 6 с *

где Оу — компонента скорости жидкости по оси у. их — компонента скорости жидкости по оси х; с — решеточная 
скорость звука.

А.16 Реализация граничного условия типа «отражение» (bounce back) (3.3.12) для решетки D2Q9. Значение 
неизвестной функции распределения на стенке на следующем шаге по времени определяется через известные 
функции на предыдущем шаге, взятые с противоположным знахом (пример — на рисунке А.1 [14]).

f2(xB. t + &,) = Гл(хв. 0. fs(xB. t + = -tyXfl. I). (A.26)

* + $ i)= ~Л(ж'в- *).
где (; — функции распределения:

хе —векторная координата точки на границе «стенка»: 
t — время:
8, — шаг по времени.

Рисунок А.1 — Решетка D2Q9 (иллюстрация функций распределения вблизи стенки)

Здесь символом «В» обозначена граница, на которую накладывается условие типа «отражение»; индек­
сы 1— 8 выделяют векторы, соответствующие функциям распределения f , ...... fa.

14
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