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Введение

Дзета-потенциал — параметр, который может использоваться для определения долгосрочной 
стабильности суспензий и эмульсий и изучения поверхностной морфологии и адсорбции на частицах и 
других поверхностях в контакте с жидкостью. Дзета-потенциал не является непосредственно измеряе­
мой величиной. Его можно определить, используя соответствующие теоретические модели, из экспери­
ментально определенных параметров, таких как электрофоретическая подвижность. Цель настоящего 
стандарта состоит в описании электроакустичесих методов измерения электрофоретической подвиж­
ности и вычисления на этой основе дзета-потенциала.

IV
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М Е Ж Г О С У Д А Р С Т В Е Н Н Ы Й  С Т А Н Д А Р Т

Государственная система обеспечения единства измерений 

МЕТОДЫ ОПРЕДЕЛЕНИЯ ДЗЕТА-ПОТЕНЦИАЛА 

Ч а с т ь  3

Электроакустические и акустические методы

Slate system for ensuring the uniformity of measurements. Methods for zeta-potential determination.
Part 3. Electroacoustic and acoustic methods

Дата введения — 2017—03— 01

1 Область применения
Настоящий стандарт распространяется на электроакустические и акустические методы опреде­

ления дзета-потенциала 8 гетерогенных системах. Таких как дисперсные системы, эмульсии. Пористые 
тела с жидкой дисперсионной средой.

Метод реализуется при условии однородного распределения поверхностного заряда вдоль грани­
цы раздела.

Форма частиц или геометрия пор может быть любая. Важным параметром для количественного 
описания результата является соотношение радиуса кривизны поверхности и дебаевской длины экра­
нирования. Жидкость дисперсионной среды может быть как водной, так и неводной, с различными 
значениями электрической проводимости, диэлектрической проницаемости, различным химическим 
составом. Материал частиц может быть как проводящим электрический ток. так и непроводящим. Двой­
ные слои могут быть изолированными или перекрывающимися с различной толщиной перекрытия.

2 Термины, определения и обозначения
2.1 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:
2.1.1 двойной электрический слой; ДЭС (electric double layer): Пространственное распределе­

ние электрических зарядов, которое появляется на и в непосредственной близости от поверхности объ­
екта, когда он находится в контакте с жидкостью.

2.1.2 приближение Дебая-Хюккеля (Debye-Huckel approximation): Модель, предполагающая не­
большие электрические потенциалы в двойном электрическом слое.

2.1.3 длина Дебая * г \  нм (Debye length): Характерная длина двойного электрического слоя в 
растворе электролита.

2.1.4 коэффициент диффузии D (diffusion coefficient): Среднеквадратичное смещение частицы 
в единицу времени.

2.1.5 число Духина Du (Dukhin number): Безразмерное число, которое характеризует вклад по­
верхностной проводимости в электрокинетических и электроакустических явлениях, а также в прово­
димость и диэлектрическую проницаемость гетерогенных систем.

2.1.6 динамическая вязкость ц, Па • с (dynamic viscosity): Соотношение между приложенным на­
пряжением сдвига и скоростью сдвига жидкости.

П р и м е ч а н и я
1 В настоящем стандарте динамическую вязкость используют в качестве меры сопротивления жидкости, 

которое деформируется путем напряжения сдвига.
2 Динамическая вязхость определяет динамические свойства несжимаемой ньютоновской жидкости.

Издание официальное
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2.1.7 поверхностная плотность электрического заряда о. Кл/м2 (electric surface charge 
density): Заряд на границе раздела сред на единицу площади за счет специфической адсорбции ионов 
из объема жидкости или за счет диссоциации поверхностных соединений.

2.1.8 поверхностный потенциал \р*- В (electric surface potential): Разность потенциалов на по­
верхности и в объеме жидкости.

2.1.9 электрокинетический потенциал, дзета-потенциал, ^-потенциал. В (electrokinetic potential, 
zete-potential, ^-potential): Разность между электрическими потенциалами в плоскости скольжения и в 
объеме жидкости.

2.1.10 модель Гуи — Чепмена — Штерна (Gouy — Chapman — Stern model): Модель, описываю­
щая двойной электрический слой.

2.1.11 изоэлектрическая точка (isoelectric point): Условие состояния жидкой среды, описываемое 
обычно значением pH. которое соответствует нулевому дзета-потенциалу дисперсных частиц.

2.1.12 плоскость скольжения, плоскость сдвига (slipping plane): Абстрактная плоскость в непо­
средственной близости от границы раздела жидкость/твердое тело, где жидкость начинает скользить по 
отношению к поверхности под воздействием напряжения сдвига.

2.1.13 потенциал Штерна ч»*1, В (Stern potential): Электрический потенциал на внешней границе 
слоя специфически адсорбированных ионов.

2.1.14 электрофорез (electrophoresis): Движение заряженных коллоидных частиц или полиэлек­
тролитов. погруженных в жидкость, под действием внешнего электрического поля.

2.1.15 электрофоретическая подвижность и. м2/(В с) (electrophoretic mobility): Электрофорети­
ческая скорость в единицу напряженности электрического поля.

П р и м е ч а н и е  — Электрофоретическая подвижность положительная, если частицы перемещаются к бо­
лев низкому потенциалу (отрицательный электрод), и отрицательная в противоположном случав.

2.1.16 электрический ток колеблющейся дисперсной системы CVI, /су|, A (colloid vibration 
current): Переменный ток, генерируемый между двумя электродами, помещенными в дисперсную си­
стему, находящуюся под воздействием звукового поля.

2.1.17 потенциал колеблющейся дисперсной системы CVU, В (colloid vibration potential): Пере­
менное электрическое напряжение, возникающее между двумя электродами, помещенными в дисперс­
ную среду, находящуюся под воздействием звукового поля.

2.1.18 электрокинетичоская звуковая амплитуда ESA, ЛЕ8Д, Па (electrokinetic sonic amplitude): Ам­
плитуда. создаваемая с помощью переменного электрического поля с напряженностью Ев дисперсной среде.

2.1.19 электрический ток колебаний ионов IVI, A (ion vibration current): Переменный электриче­
ский ток. вызванный различными амплитудами смещения в звуковой волне за счет разницы эффектив­
ной массы или коэффициента трения между анионами и катионами.

2.1.20 электрический ток в колеблющемся потоке SVI, A (streaming vibration current): Электри­
ческий ток, возникающий при прохождении потока флюидов через пористое тело при распространении 
через него ультразвуковой волны.

П р и м е ч а н и е  — Аналогичный эффект гложет наблюдаться при непористой поверхности, когда звук от­
ражается под углом, отличным от 90".

2.2 Обозначения

В настоящем стандарте применены следующие обозначения:
а — радиус частицы, м;
с — концентрация электролита, моль/м3;
Cdl — емкость двойного слоя. Ф;
Cj — концентрация ионов /-го типа, моль/м3;
D, — коэффициент диффузии катионов. м2/с;
О.» г -  эффективный коэффициент диффузии электролита. м2/с:
Du — число Духина;
D_ — коэффициент диффузии анионов, м2/с;
в — элементарный электрический заряд. Кл;
F — постоянная Фарадея. Кл/моль. F  = 96485,33 Кл/моль;
К* — поверхностная проводимость. См;
кв — постоянная Больцмана. Дж/К. кв = 1.3806488 • 10"23 Дж/К:
Кт — проводимость дисперсионной среды. См/м;

2



ГОСТ 8.653.3—2016

Ks — проводимость дисперсной среды. См/м:
т  — параметр, характеризующий вклад электроосмотического потока в поверхностную прово­

димость;
Л/А — число Авогадро, моль'1. Л/А = 6,02214129 ■ 1023 моль'1;
R  — универсальная газовая постоянная. Дж/(моль • К). R  -  8.3144621 Дж/(моль • К); 
г — расстояние от центра частицы, м;
Т — абсолютная температура. К;
X  —  рассю нни е  o i пове р хно сж  ча с ж ц ы . м;
Z — акустический импеданс. Па • с/м3: 
zt  — валентности катионов и анионов;

—  aaj lew I нос i ь й  и айда ионов.
Ед — диэлектрическая постоянная. Ф/м, с0 = 8.854187817 ■ 10~12 Ф/м; 
t m — относительная диэлектрическая проницаемость среды; 
ьр — относительная диэлектрическая проницаемость частицы;
С — электрокинетический потенциал, дзета-потенциал. В;
ц — динамическая вязкость. Па • с;
к — обратная длина Дебая. ми ;
р — электрофоретическая подвижность, м2/В • с;
prf — динамическая электрофоретическая подвижность. м2/(В с);
рт  — плотность среды, кг/м3;
Рр —  плотность частиц, кг/м3:
ps — плотность дисперсной среды, кг/м3;
ст — поверхностная плотность заряда. Кл/м2;
ad — плотность электрического заряда диффузного слоя. Кл/м2:
Ф — объемная доля частиц:
4W r — критическая объемная доля частиц;

— потенциал Штерна. В;
Ч»(х) — электрический потенциал в двойном слое. В;
Q — коэффициент аэродинамического сопротивления; 
ш — частота вращения, сг1;
Mhd — критическая частота гидродинамической релаксации. С 1; 
u>MW — частота релаксации Максвелла — Вагнера, с” 1.

3 Теория: основные положения
Дзета-потенциал является расчетной величиной, получаемой в результате количественной 

обработки экспериментальных данных в рамках известных теоретических моделей. Существует 
множество различных теорий, которые действительны для определенных условий и для опреде­
ленной группы реальных дисперсных систем. Теории делятся на две группы: элементарные и мо­
дифицированные.

Элементарные теории для непроводящих твердых тел являются общими для всех электроки- 
нетических явлений [1]. В них рассматривается только один параметр двойного электрического слоя 
(ДЭС) — дзета-потенциал, определяемый из экспериментальных данных. Элементарные теории имеют 
границы применимости. Вне этих границ их применение приводит к существенной погрешности расчета 
значений дзета-потенциала.

В настоящем стандарте модифицированные теории рассмотрены в приложении Г. Теории содер­
жат дополнительные параметры ДЭС. например длину Дебая (см. приложение А), поверхностную про­
водимость. потенциал Штерна (2—4J.

4 Элементарные теории, приближение Смолуховского для электроакустики
4.1 Общие положения

В электроакустической теории используют термины, связанные с электрофоретической подвиж­
ностью д. В случае движения частиц, колеблющихся с высокой частотой, за электрофоретическую под­
вижность принимают динамическую электрофоретическую подвижность

3
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Уравнение Смолуховского имеет следующий вид

о )
П

где — относительная диэлектрическая проницаемость среды: 
с0 — диэлектрическая постоянная. Ф/м;
С — дзета-потенциал. В;
Л — динамическая вязкость, Па • с.
Взаимосвязь между динамической электрофоретической подвижностью urf и экспериментальными 

электроакустическими данными не так проста, как в случае электрокинетичесхих явлений. Электроаку­
стическая теория О'Брайана справедлива для концентрированных и разбавленных гетерогенных систем.

Согласно теории О'Брайана [5], средняя динамическая электрофоретическая подвижность 
рассчитывается путем решения системы уравнений

2

1‘ ‘, = 'С"  ,  I * " " " '

где Aesa — электрокинетическая звуковая амплитуда. Па;
/cv , — электрический ток колеблющейся дисперсной системы. А;

А(со)— передаточная функция средства измерения, определяемая экспериментально;
F{Z)— функция акустических импедансов преобразователя и исследуемой дисперсной среды: 

рт  — плотность среды, кг/м3: 
рр — плотности частиц, кг/м3;
Ф— объемная доля частиц.

Согласно теории О'Брайана, полная функциональная зависимость ключевых параметров элек­
троакустики, таких как дзета-потенциал, размер частиц и частота, вводится с помощью динамической 
электрофоретической подвижности. Для всех рассмотренных случаев коэффициент пропорциональ­
ности между электроакустическим сигналом и динамической электрофоретической подвижностью не 
зависит от размера частиц и дзета-лотенциала. Эта особенность делает динамическую электрофоре­
тическую подвижность основным параметром электроакустической теории.

Существуют два варианта динамической теории электрофоретической подвижности.
Первый — в приближении Смолуховского. ДЭС тонкий, и можно пренебречь поверхностной про­

водимостью. Это выражено с помощью следующих двух условий.
Первое условие: ДЭС должен быть мал по сравнению с характерным размером гетерогенной си­

стемы (см. приложение А):

к а »  1, (3)

где к — обратная длина Дебая, м '1; 
а — радиус частицы, м.

Многие водные дисперсные системы удовлетворяют этому условию. Это условие не распростра­
няется на наночастицы в водных растворах с низкой ионной силой и на большинство органических 
жидкостей.

Второе условие заключается в незначительном вкладе поверхностной проводимости (см. прило­
жение Б):

Du «  1. (4)

Теория О'Брайана для динамической электрофоретической подвижности применима для разбав­
ленных систем с незначительным взаимодействием между частицами [5]. причем только для сфериче­
ских частиц, но без ограничений по размеру. Главным условием является то. что размер частиц должен 
быть мал ло сравнению с длиной волны звука. Она более ограничена по сравнению с теорией Смолу­
ховского для электрофореза, которая применима для любой формы частиц и концентраций.
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Второй вариант — теория О'Брайана в приближении Смолуховского для динамической электрофоре­
тической подвижности, которая почти аналогична теории Смолуховского для электрофореза, что достига­
ется за счет ограничения рассматриваемого диапазона частот. Если частота достаточно низка, динамиче­
ская электрофоретическая подвижность идентична статической электрофоретической подвижности р. 
Эта теория применима только для электрического тока колеблющейся коллоидной системы [6], [7]. 

Теория О'Брайана для динамической электрофоретической подвижности 
Теория О'Брайана справедлива только в разбавленных дисперсных системах. Динамическая 

электрофоретическая подвижность Ud определив юн следующим уравнением

^ = “ ^ G ( s)[14-F((o') ] ,  (5)
эп

где £т — относительная диэлектрическая проницаемость среды; 
е0 — диэлектрическая постоянная. Ф/м;
П — динамическая вязкость. Па • с;
£ — дзета-потенциал. В:

G(s) 1*(1+ /)s  ^
S “  1 + (1 + Л  *  + 1 (2 *  / 9){[3 + 2[(pp -  pm )/pm j j }  ’

F (ro ')
1 -ь y<a*[l -  (ep / em)]

2 +  ; co' [ 2  +  ( e (> /« ■ -„) ]
(7)

S2 -  a2° ^  

2П
(8)

to ' =
CO

(9)

где a — радиус частицы, м;
t p — относительная диэлектрическая проницаемость частицы;
Рр — плотность частицы, кг/м3; 
рт  — п л о т н о с т ь  среды, кг/м3;
со — частота вращения, с” 1; 

cuMW — частота релаксации Максвелла — Вагнера, с-1.
Частотная зависимость динамической электрофоретической подвижности определена дву­

мя факторами; s2 и о)' (J —  мнимая единица). Коэффициент G(s) отражает частотную зависимость, 
обусловленную инерционными эффектами взаимодействия, фактор F(u>') характеризует влияние по­
ляризации Максвелла — Вагнера ДЭС [8—10].

Для водных дисперсных сред коэффициент инерции G(s) играет более важную роль, чем коэф­
фициент поляризации ДЭС F(си'). Коэффициент инерции резко уменьшает величину динамической под­
вижности частиц большего размера на высоких частотах. Коэффициент инерции уменьшает амплитуду 
и скорость движения частиц по отношению к внешней движущей силе. Это вызывает фазовый сдвиг 
динамической электрофоретической подвижности. Максимальное значение фазового сдвига равно 45°.

При низкой частоте, когда коэффициенты G(s) и F(to') приблизительно равны соответствен­
но 1 и 0.5, ни один из них не является определяющим. Это означает, что при низкой частоте динами­
ческая электрофоретическая подвижность зависит только от тех факторов, которые принимаются во 
внимание в теории Смолуховского для электрофореза.

4.2 Приближение Смолуховского для динамической электрофоретической подвижности

Теория [6]. [7] справедлива для частиц любого размера, любой формы и любой концентрации, 
включая высококонцентрированные системы, наряду с ограничениями Смолуховского в некотором ча­
стотном диапазоне.
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Критическая частота гидродинамической релаксации определив! диапазон инерции чаыиц и 
влияние коэффициента G(s). Этот коэффициент становится незначительным, когда частота <и удовлет­
воряет условию

о  «  ым ( 10)

где ti — динамическая вязкость. Па • с; 
р т  —  п л о т н о с т ь  среды, кг/м3; 

а — радиус частицы, м.
Критическая частота электрической поляризации ДЭС o)h1w определяет диапазон частот, где ста­

новится незначительной функция Р(ш'):

ш «  wMW ( 11)

где Кт — проводимость дисперсионной среды. См/м;
ет — относительная диэлектрическая проницаемость среды; 
е0 — диэлектрическая постоянная. Ф/м.
Выражение для динамической электрофоретической подвижности в этом приближении было по­

лучено только для тока колеблющейся дисперсной системы и имеет вид

_ w ;  ( р р - р « К

11 М р* - р»)р, ’

где t m — относительная диэлектрическая Проницаемость среды; 
е0 — диэлектрическая постоянная. Ф/м;
»1 — динамическая вязкость, Па с;
£ — дзета-потенциал, В; 

рр — плотность частицы, кг/м3; 
рт  — плотность среды, кг/м3; 
ps — плотность дисперсной среды, кг/м3;
Ks — проводимость дисперсной среды. См/м;
Кт — проводимость дисперсионной среды, См/м.

( 12)

5 Модифицированные теории
Применение модифицированных теорий является более сложной задачей, потому что использу­

ются другие параметры ДЭС. С другой стороны, применение этих теорий позволяет более подробно 
описать электрические свойства поверхностей. Двумя наиболее важными параметрами являются дли­
на Дебая к ' 1 и число Духина Du [11]. Описание расчета числа Духина Du приведено в приложении Б. 
Описание расчета длины Дебая к '1 приведено в приложении В.

Существуют две аналитические теории электрофореза; упрощенная теория Духина — Семенихи- 
на (см. приложение Г) и теория О'Брайана (см. приложение Г).

Перекрытие ДЭС является еще одним фактором, который усложняет теоретическую интерпре­
тацию. Этот фактор становится важным для неполярных суспензий. В случае неполярных суспензий 
перекрытие ДЭС может проявиться даже при низких объемных долях частиц, как описано в А.4 при­
ложения А. Описание теории, в которой принимается во внимание этот фактор для электрофореза, 
приведено в Г.6 приложения Г.
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Приложение А 
(справочное)

Модели двойного электрического слоя

А.1 Основные положения
Двойной электрический слой (ДЭС) представляет собой пространственное распределение электрических 

зарядов, которое появляется в непосредственной близости от поверхности объекта, когда он находится в контакте 
с жидкостью. Этим объектом могут быть твердые частицы, пузырьки газа, капля жидкости и пористое тело. Данная 
структура состоит из двух параллельных слоев электрических зарядов. Один слой (положительный или отрица­
тельный) совпадает с поверхностью объекта и называется электрически заряженной поверхностью. Другой слой 
находится в окружающей частицу среде, которая экранирует первый слой. Этот слой называется диффузным, 
так как он образуется под действием электрической силы и теплового движения свободных ионов в окружающей 
частицу среде.

ДЭС играет очень важную роль в реальных системах. Например, молоко существует только потому, что 
капли жира покрыты ДЭС, что предотвращает их коагуляцию в масло. ДЭС существуют практически во всех гете­
рогенных системах на основе жидкости, например в крови, краске, чернилах, керамических суспензиях, цементных 
растворах и т. д.

Самая ранняя модель ДЭС принадлежит Гельмгольцу (12]. которая математически описывает ДЭС как про­
стой конденсатор, основанный на физической модели, в которой один слой ионов адсорбируется на поверхности с 
компенсацией противоположного заряда в растворе. Позже Гуи и Чепмен [13— 14] добились значительного улучше­
ния модели с помощью введения диффузной модели ДЭС, в которой электрический потенциал экспоненциально 
убывает при удалении от поверхности в объем жидкости. Модель Гуи — Чепмена не выполняется для многозаряд­
ных ДЭС. Для того чтобы решить эту проблему. Штерн [15] предложил ввести дополнительный слой, прилегающий 
к поверхности, который называется слоем Штерна. На сегодняшний день комбинированная модель Гуи — Чепме­
на — Штерна применяется наиболее часто.

В модели Гуи — Чепмена — Штерна существуют следующие приближения [11, 16— 18]:
- ионы рассматриваются как эффективные точечные заряды;
- единственные значимые взаимодействия в диффузном слое — кулоновские;
- диэлектрическая проницаемость остается постоянной на всей площади двойного электрического слоя;
- динамическая вязкость окружающей частицу жидкости постоянна вне плоскости скольжения.
Существуют более новые теоретические разработки, в которых критически рассматриваются указанные при­

ближения модели Гуи — Чепмена — Штерна.
Рисунок А.1 иллюстрирует межфазный ДЭС [11]. Причиной формирования устойчивого двойного слоя 

служит взаимодействие зарядоопределяющих ионов с поверхностью. Этот процесс приводит к накоплению по­
верхностного электрического заряда, создающего электростатическое поле, которое влияет на ионы в объеме 
жидкости. Эго электростатическое поле в сочетании с тепловым движением ионов экранирует поверхностный 
электрический заряд. Суммарный электрический заряд в экранирующем диффузном слое равен по величине 
суммарному поверхностному заряду, но имеет противоположный знак. В результате структура электрически 
нейтральна. Некоторые из противоположно заряженных ионов вблизи поверхности могут специфически ад­
сорбироваться и способствуют формированию слоя Штерна. Внешнюю часть экранирующего слоя обычно 
называют диффузным слоем.

Диффузный слой или по крайней мере его часть может перемещаться под действием касательного напряже­
ния. Вводится понятие плоскости скольжения, которая разделяет окружающую частицу среду на подвижную часть 
и часть, связанную с поверхностью. Электрический потенциал в этой плоскости называется электрокинетическим, 
или дзета-потенциалом.

Электрический потенциал на внешней границе слоя Штерна называют потенциалом Штерна Разность 
потенциалов между жидкостью (флюидом) и поверхностью называется потенциалом поверхности у 5.

Экспериментально показано, что плоскость скольжения расположена очень близко к внешней плоскости 
Гельмгольца, определяющей потенциал Штерна. Слой между этой плоскостью и границей раздела обычно назы­
вают «неподвижным слоем». Обе плоскости являются условными. Это означает, что величина дзета-потенциала С 
меньше или равна потенциалу Штерна цг .̂

Основные модели геометрического представления ДЭС приведены в А.2—А.4.
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1

4 5 6

1 —  слой Ш терна; 2 — область заряженных частиц; 3  — заряж енны й диф ф узны й слой. 
4 — плоскость Ш терна. 5 — плоскость скольжения; в —  длина Дебая

Рисунок А.1 — Структурная схема двойного электрического слоя 
согласно модели Гуи — Чепмена — Штерна

А.2 Плоские поверхности

Толщина ДЭС характеризуется так называемой длиной Дебая к" 1 и определяется по формуле

= F21 : (А.1)

где F  — постоянная Фарадея. Кл/моль;
с, — молярная концентрация vro вида ионов, моль/м3; 
z. — максимальная валентность /но вида ионов; 

ет — относительная диэлектрическая проницаемость жидкости; 
z0 — диэлектрическая постоянная. Ф/м;
R — универсальная газовая постоянная, Дж/(моль • К);
Т — абсолютная температура. К.

Если количество анионов равно количеству катионов в электролите (симметричный электролит), то суще­
ствует простая зависимость между плотностью электрического заряда в диффузном слое а° и потенциалом Штер­
на Vй. а именно

о *  =  - j8 z mzacRT  s i n h ^ - ,  (А.2)

где Ет  — относительная диэлектрическая проницаемость жидкости; 
ес — диэлектрическая постоянная. Ф/м; 
с — концентрация электролита, моль/м3:
R — универсальная газовая постоянная. Дж/(моль - К);
Т — абсолютная температура. К;
F —  постоянная Фарадея. Кл/моль:

\\i° — потенциал Штерна. В.
Если диффузный слой рассматривается у поверхности, формула А.2 может быть использована для связи 

поверхностного заряда с поверхностным потенциалом.
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В некоторых случаях используется понятие дифференциальной емкости ДЭС С^. Для плоской поверхности 
и симметричного электролита дифференциальная емкость ДЭС Са  определяется по формуле

da

dy
EmC0KCOSh F ya

2RT
(A.3)

где i m — относительная диэлектрическая проницаемость жидкости:
£0 — диэлектрическая постоянная. Ф/м; 
к  — обратная длина Дебая, м '1;
F  — постоянная Фарадея. Кл/моль:

—  потенциал Штерна, В:
R — универсальная газовая постоянная. Дж/(моль • К);
Г — абсолютная температура. К.
Для симметричного электролита электрический потенциал 41 на расстоянии х  от плоской поверхности в ДЭС 

определяется по формуле

ехр(-ю г) =
l a n h j r f  у  (х ) ;  ЛИТ | 

la n h (r f  y d М Я Т )
(А.4)

где z  — валентность иона;
F  — постоянная Фарадея. Кл'моль;

Ч*(х) — электрический потенциал в двойном слое. В;
— потенциал Штерна. В:

R — универсальная газовая постоянная. Дао(моль • К);
Т — абсолютная температура. К.

Соотношение между плотностью электрического заряда и потенциала диффузного слоя для асимметрично­
го электролита определяется по формуле

ст* = - ( s g n v rf).J2emE0c R r[v r4 е х р ( - г ^ ) + у _  e x p (-z _ i( r* )-v t -v _  JV* .  (А.5)

где у 0 — потенциал Штерна. В;
ет — относительная диэлектрическая проницаемость жидкости:
£и — диэлектрическая постоянная. Ф/м; 
с — концентрация электролита, моль/м3:
R — универсальная газовая постоянная. Дж/(мопь • К);
Г — абсолютная температура. К:

vt  — количество катионов и анионов, произведенных при диссоциации одной молекулы электролита, моль;
— безразмерный потенциал, определяемый по формуле

V* F V* 
FIT '

(А.6)

А.З Изолированный сферический двойной электрический слой
Для плоского ДЭС существует только один геометрический параметр, а именно длина Дебая к " 1. В случав 

сферического ДЭС существует дополнительный геометрический параметр —  радиус частицы а. Произведение 
двух параметров к  а является безразмерной величиной, которая играет важную роль в области дисперсных систем. 
В зависимости от значения к а существуют две асимптотические модели ДЭС.

Модель тонкого ДЭС соответствует дисперсным системам, в которых размеры ДЭС намного меньше радиуса 
частицы:

ка »  1. (А.7)

Подавляющее большинство водных дисперсных систем удовлетворяют этому условию, за исключением на­
ночастиц с размерами меньше 100 нм в условиях низкой ионной силы раствора. Если предположить, что ионная 
сила превышает 10_3 моль/л, что соответствует большинству природных водных систем, условие ка »  1 выполня­
ется практически для всех частиц, имеющих размер больше 100 нм.

Модель ДЭС больших размеров соответствует системам, где ДЭС намного больше радиуса частиц;

ка «  1 . (А.8)

9
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Условию (А.8) удовлетворяют многие водные нанодисперсные системы, имеющие низкую ионную силу, и 
подавляющее число дисперсных систем в углеводородных средах, также имеющих низкую ионную силу. Эти два 
асимптотических случая позволяют представить примерно структуру ДЭС вокруг сферических частиц. Изображе­
ния моделей ДЭС показаны на рисунке А_2:

- к -1 — длина Дебая.
- 2а — диаметр частицы.

а) б)

Рисунок А.2 — Изображение моделей тонкого ДЭС (а) и ДЭС больших размеров (б)

Основное аналитическое решение существует только для низких значений потенциала (приближение Де­
бая — Хюккеля)

ОТ
v rf «  — . (А.9)

где R  — универсальная газовая постоянная. Дж/(иоль К):
Ч»01 —  потенциал Штерна. В:

Г — абсолютная температура. К;
F  — постоянная Фарадея. Кл/моль.

В этом случае выражение для электрического потенциала v (0  в сферическом ДЭС на расстоянии гот центра 
частицы

у ( г )  = ч»с?[^ )в х р [- к : ( / - - а ) ] .  (А. 10)

где v/d — потенциал Штерна. В; 
а — радиус частицы, м: 
г  — расстояние от центра частицы, м; 
к  —  обратная длина Дебая, м-1.
Тогда соотношение между плотностью электрического заряда в диффузном слое и потенциалом Штерна

(А-11)

где гт — относительная диэлектрическая проницаемость жидкости; 
Fy — диэлектрическая постоянная. Ф/м; 
к —  обратная длина Дебая, м-1; 

i / '  — потенциал Штерна. В: 
а —  радиус частицы, м.

10
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Приближение Дебая — Хюккеля справедливо для любого значения кз. но охватывает только изолированные 
двойные слои.

Плотность электрического заряда в диффузном слое для значений кв > 2 выражается формулой [19]. [21]:

2Fez
2 sin h i^ -

к 2

4 la n h ( / v °  м )  

ка (А. 12)

т
eQ — 
F —

с — 
а — 
z  —

относительная диэлектрическая проницаемость жидкости:
диэлектрическая постоянная. Ф/м:
постоянная Фарадея. Кл/моль;
обратная длина Дебая, м
нормированное значение потенциала, В:
концентрация электролита, моль/м3:
радиус частицы, м:
валентность ионов.

А.4 Перекрытие двойны х слоев

Приближение Дебая — Хюккеля не учитывает вероятность перекрытия двойных слоев в концентриро­
ванных дисперсных системах, то есть с высокой объемной долей частиц. Оценка значения критической объ­
емной доли частиц при котором длина Дебая равна кратчайшему расстоянию между частицами, выра­
жается формулой [7]

^over
0.52

[1 * (1 /ка )]5
(А.1Э)

где к — обратная длина Дебая, м '1: 
а — радиус частицы, м.

Эта зависимость показана на рисунке А.З.

4 W

Рисунок А.З — Зависимость критической объемной доли частиц от параметра ка

Для к  а »  1 (тонких ДЭС) ДЭС рассматривается как изолированный объект, вплоть до объемных долей ча­
стиц, равных 0,4. Модель изолированного ДЭС является некорректной для малого ка (ДЭС больших размеров), так 
как перекрытие ДЭС в таком случае происходит даже в очень разбавленных суспензиях.

В том случае, когда ДЭС сильно перекрываются, они теряют свою первоначальную экспоненциальную диф­
фузную структуру, область наложения становится все более и более однородной. Можно представить, что заря­
женные частицы просто экранируют с однородным облаком противоположно заряженных ионов. Эта модель носит 
название «гомогенной» [22].

11
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Эта модель описывает упрощенную связь между плотностью электрического заряда диффузного слоя а°  и 
дзета-потенциалом £ сферических частиц в дисперсных системах, особенно для монадисперсных систем:

&3 = - RT '**£ а к2 sinh— . (А.14)
3  F  <р m RT '

где R  — универсальная газовая постоянная. Дж/(моль - К):
Г  —  абсолютная температура. К;
F  — постоянная Фарадея, Кл/моль;
Ф — обьемная доля частиц;

t:m —  относительная диэлектрическая проницаемость жидкости; 
а —  радиус частицы, м; 
к  —  обратная длина Дебая, м-1;
£ — дзета-потенциал. В.

Формула (А.14) отражает различие между «тонкими ДЭС» и «перекрывающимися ДЭС». В случае модели 
«тонкого ДЭС» как поверхностный заряд, так и дзета-потенциал являются поверхностными свойствами, независи­
мо от обьемной доли частиц. В случае «перекрывающихся ДЭС» поверхностный заряд является истинным пара­
метром свойства поверхности. Электрокинетический потенциал гложет привести к ошибочным выводам, поскольку 
он зависит еще и от обьемной доли, а не просто от поверхностного заряда. Таким образом, при работе с концен­
трированными дисперсными системами с ДЭС больших размеров должны быть представлены оба параметра — 
и дзета-потенциал, и поверхностный заряд.

12
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Приложение Б 
(справочное)

Поверхностная проводимость

Б.1 Основные положения
Поверхностной проводимостью называется избыточная электрическая проводимость, которая имеет место в 

дисперсных системах в связи с наличием двойного электрического слоя. Избыточные заряды в них двигаются под 
действием электрических полей, приложенных по касательной к поверхности. Это явление определяется термином 
«поверхностная проводимость Кр». которая аналогична объемной удельной проводимости Кт. Поверхностная про­
водимость КР является избыточной величиной, описываемой как поверхностная концентрация определенного типа.

Движение зарядов диффузного слоя, расположенных за пределами плоскости сдвига, приводит к появле­
нию поверхностной проводимости, называемой «бикерманоеская поверхностная проводимость» [23]. Кроме того, 
данная проводимость может возникнуть и за счет проводимости неподвижного слоя. Она может включать в себя 
составляющие, обусловленные, с одной стороны, специфической адсорбцией заряда, а с другой — частью заряда 
диффузного слоя, который может находиться за плоскостью скольжения.

Предполагается, что заряд на твердой поверхности неподвижный.

Б.2 Расчет числа Духина
В данном разделе рассмотрены системы, где размер двойного слоя мал по сравнению с радиусом частиц, 

то есть кв  »  1. Проводимость в диффузной части двойного слоя за пределами плоскости сдвига складывается из 
двух составляющих [23): проводимости, вызванной движением зарядов по отношению к жидкости, и проводимости, 
вызванной за счет электроосмотического потока жидкости за пределы плоскости сдвига, что приводит к дополни­
тельной подвижности зарядов и, следовательно, к дополнительному вкладу в КР. Для расчета К "  можно исполь­
зовать уравнение Бикермана, в котором КР выражена как функция параметров электролита и двойного слоя. Для 
симметричного электролита использовано выражение

Кя =
2o3N .z2e

О. exp (Б.1)

где е — элементарный электрический заряд. Кл:
Л/д — число Авогадро. моль'1; 

г  — валентность иона; 
с — концентрация электролита, моль/м3;

/tg — постоянная Больцмана. Дж/К;
Т — абсолютная температура. К;

D , — коэффициент диффузии катионов, м*/с:
D — коэффициент диффузии анионов. м2/с;

£ — дзета-потенциал. В;
£ — вычисляется по формуле £ = — - .

Л т
Параметры т± отражают относительный вклад электроосмоса в поверхностную проводимость:

»
* е )  по.

(Б.2)

где к — обратная длина Дебая, м '1;
Т — абсолютная температура. К; 
в  — элементарный электрический заряд. Кл;

Ет  — относительная диэлектрическая проницаемость жидкости; 
е0 — диэлектрическая постоянная. Ф/м;
D± — коэффициент диффузии катионов и анионов. м2/с: 

д — динамическая вязкость. Па • с.
Мера относительной величины поверхностной проводимости выражается безразмерным числом Духина Du, 

которое связывает поверхностную и обьемную проводимости соотношением

(Б.З)
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где Кп — поэерхностная проводимость. См:
Кт — проводимость дисперсионной среды, См/м; 

а — локальный радиус кривизны поверхности, м.
Для бикврмановской проводимости Du можно записать в явном виде. Для симметричного электролита коэф­

фициенты диффузии катионов и анионов одинаковы, поэтому т, = т = т. и тогда

где к  — обратная длина Дебая, м ' 1;
Т — абсолютная температура. К; 
е — элементарный электрический заряд. Кл; 

zm — относительная диэлектрическая проницаемость жидкости; 
е0 — диэлектрическая постоянная, Ф/м:

° е(Т — коэффициент диффузии электролита. м2/с; 
г| — динамическая вязкость. Па - с.

Формула (Б.4) для числа Духина отражает лишь поверхностную проводимость в диффузном слое за преде­
лами плоскости сдвига.

Поверхностная проводимость в неподвижном слое увеличивает число Духина. Эго обстоятельство требует 
прямого измерения проводимости, потому что не существует в явном виде уравнения, которое включало бы в себя 
число Духина и параметры двойного слоя. По теории Максвелла —  Вагнера — О'Конски (8— 10]. проводимость 
дисперсных сред с непроводящими сферическими частицами Ks рассчитывают по формуле

(Б-4)

где к  — обратная длина Дебая, м"1; 
а — радиус частицы, м; 
z  — валентность иона; 

m — выражена формулой

К , 1 Du - <p(t - 2Du)
(Б-5)

К ^  1 ♦ Du  ♦ 0.5v (1 • 20и) '

где ф — обьемная доля частиц; 
Du — число Духина.
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Приложение В 
(справочное)

Длина Дебая

Этот параметр является оценкой толщины ДЭС в соответствии с приложением А. Он важен для понимания 
агрегативной устойчивости и взаимодействия частиц и используется для оценки среднего расстояния между при­
ближающимися друг к другу частицами в жидкости перед тем. как электростатическое взаимодействие между ними 
становится существенным.

Длина Дебая определяется расчетным методом или экспериментально. Расчет длины Дебая производится 
по формуле (А.1) при известных концентрации образца и валентности всех видов ионов.

Экспериментальный метод определения длины Дебая, основанный на измерении проводимости, был пред­
ложен Духиным и Гетцем. Расчет производится по следующей формуле [7]

где гт —  относительная диэлектрическая проницаемость жидкости; 
е0 — диэлектрическая постоянная. Ф/м;

—  эффективный коэффициент диффузии электролита;
Кт — проводимость дисперсной среды. См/м.

Основной вклад в суммарную неопределенность при расчете к -1 вносит неизвестный эффективный коэффи­
циент диффузии Этот параметр варьируется в ограниченном диапазоне. Например, коэффициенты диффузии 
большинства ионов в водных растворах схожи и имеют значения, которые при комнатной температуре находятся 
в диапазоне от 0.6 - 10~ч до 2 ■ 10 у м*/с. При этом неопределенность составляет несколько десятков процентов.

В случае неводных систем используется теория Фуосса (24) для связи коэффициента диффузии и электри­
ческой проницаемости жидкости.

(В.1)
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Приложение Г 
(справочное)

Модифицированная электроакустическая теория

Г.1 Основные положения
Электроакустические методы определения дзета-потенциала применяются для концентрированных дис­

персных систем. При этом учитываются гидродинамические и электродинамические взаимодействия между части­
цами. Для неконцентрированных дисперсных систем применяется теория О'Брайана, которая определяет связь 
между измеряемым электроакустическим сигналом и динамической электрофоретической подвижностью.

Тем не менее существует только одна элементарная электроакустическая теория, связывающая электрофо­
ретическую подвижность с дзета-потенциалом, применяемая для концентрированных сред. — это электроакусти­
ческая теория О'Брайана в приближении Смолуховского (см. 4.2). Она имеет ограниченный диапазон применения.

Г.2 Расширенная электроакустическая теория для звуковой амплитуды
После того как была предложена (25] первая версия злектрокинетической теории звуковой амплитуды в 

предположении изолированных тонких ДЭС. начали проводиться исследования, экспериментально подтверждаю­
щие теорию [26— 27].

Г.З Расширенная электроакустическая теория для тока колеблющейся дисперсной системы

В предположении изолированных тонких ДЭС в этой теории [б—7] применяется ячеечная модель для опи­
сания гидродинамического и электродинамического взаимодействий частиц. В ней учитываются поверхностная 
проводимость и поляризация ДЭС Максвелла — Ватера.

Г.4 Расширенная электроакустическая теория для перекрывающ ихся ДЭС. коллоидных и
неполярных дисперсных систем
Эта теория [22] учитывает перекрывающиеся ДЭС. которые образуются в концентрированных нанодисперс- 

ных системах в связи с малым размером частиц и в неполярных дисперсных системах в связи с ДЭС больших 
размеров.

Данная теория предполагает, что диффузные части двойного слоя отдельных частиц однородно распростра­
няются в межчастичном пространстве. Дисперсная система может быть смоделирована как система заряженных 
частиц, движущихся в однородном облаке противоположно заряженных ионов. Такая теория называется гомоген­
ным приближением.

Данная аналитическая модель описана формулой (Г.1) для динамической электрофоретической подвижности

2аа Рда
Зт»а р ,  * / * * ( ! •  ф ) ( о  / У ) Р , Р „  '

(Г.1)

где о — поверхностная плотность заряда, Кл/м2:
9пф^ .

7 2а* ’
а — радиус частицы, м;
П — динамическая вязкость. Па • с;
£2 — коэффициент аэродинамического сопротивления, введенный в соответствии с законом Стокса F = 6-r|a£2v 

и отражающий гидродинамическое взаимодействие частиц: 
рр —  плотность частицы, кг/м3; 
ps — плотность дисперсной среды, кг/м3; 
рт  —  п л о т н о с т ь  среды, кг/м3;

«р — обьемная доля частиц; 
ш — частота вращения. с“ 1.

Это приближение дает возможность прямого измерения электрокинетического заряда в нанодисоерсных и 
неполярных дисперсных системах без использования длины Дебая.
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Приложение Д 
(справочное)

Равновесное разбавление и другие модификации образца

Сравнение различных методов определения дзета-потенциала осложняется тем фактом, что дзета-потенци­
ал зависит не только от свойств частиц, но также от химического равновесия между поверхностью частиц и жидко­
стью. Любое изменение химического и ионного состава жидкости влияет на это равновесие и. следовательно, на 
величину дзета-потенциала.

Это создает проблему для методов, которые требуют сильного разбавления образца. Подготовку образца 
должны проводить таким методом, чтобы дзета-потенциал исходной системы и разбавленной пробы не изменялся.

При разбавлении не только поверхности частиц должны оставаться идентичными в исходном и разбавлен­
ном растворе, но и жидкости. Это условие сложно выполняется, если в процессе используется как разбавление, 
так и стабилизация поверхностно-активного вещества в образце.

При приготовлении образца следует применять так называемый способ равновесного разбавления, в ко­
тором использована та же самая жидкость, что и в исходной системе, в качестве разбавителя. После разбавле­
ния единственным параметром, который изменяется, является концентрация частиц. Проболодготовка на основе 
равновесного разбавления позволяет сохранить значения дзета-потенциала в исходном и разбавленном растворе.

Существуют два подхода к подготовке жидкости, используемой для разбавления. Первый подход заключает­
ся в извлечении жидкости после осаждения частиц путем седиментации или центрифугирования и подходит для 
субмикронных частиц с достаточно высокой концентрацией и менее применим для наночастиц. Другой подход 
связан с применением диализа и больше подходит для нано- и биодислерных систем. Использование диализных 
мембран связано с тем, что они пропускают ионы и молехулы и не пропускают дисперсные частицы (6].

В некоторых случаях может возникнуть необходимость приготовления более концентрированных проб. Это 
может быть достигнуто путем первоначального отделения частиц от жидкости и повторного диспергирования их в 
той же жидкости, но при более высокой объемной доле частиц.
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