
ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Н А Ц И О Н А Л Ь Н Ы Й
С Т А Н Д А Р Т

Р О С С И Й С К О Й
Ф Е Д Е Р А Ц И И

ГОСТ Р мэк
61131- 3—

2016

КОНТРОЛЛЕРЫ ПРОГРАММИРУЕМЫЕ
Ч а с т ь 3

Языки программирования

(IEC 61131-3:2013, ЮТ)

Издание официальное

11м м
Стандарта нфсри 201»

сертификат на пиломатериалы

https://meganorm.ru/list2/63269-0.htm

ГОСТ Р МЭК 61131-3—2016

Предисловие

1 ПОДГОТОВЛЕН Негосударственным образовательным частным учреждением «Новая Инженер­
ная Школа» (НОЧУ «НИШ») на основе перевода на русский язык англоязычной версии указанного в
пункте 4 стандарта, который выполнен Российской комиссией экспертов МЭК/ТК 65. и Федеральным
государственным унитарным предприятием «Всероссийский научно-исследовательский институт стан­
дартизации и сертификации в машиностроении» («ВНИИНМАШ»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 306 «Измерения и управление в про­
мышленных процессах»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому ре­
гулированию и метрологии от 13 мая 2016 г. № 313-ст

4 Настоящий стандарт идентичен международному стандарту МЭК 61131-3:2013 «Контроллеры
программируемые. Часть 3. Языки программирования (IEC 61131-3:2013. «Programmable controllers —
Part 3: Programming languages», IDT).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных между­
народных стандартов соответствующие им национальные стандарты, сведения о которых приведены в
дополнительном приложении ДА

5 В настоящем стандарте часть его содержания может быть объектом патентных прав

6 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8).
Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на
1 января текущего года) информационном указателе «Национальнью стандарты», а официальный
текст изменений и поправок — в ежемесячном информационном указателе «Национальные
стандарты». В случав пересмотра (замены) или отмены настоящего стандарта соответствующее
уведомление будет опубликовано в ближайшем выпуске ежемесячного информациотюго указателя
«Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются
также в информационной системе общего пользования — на официальном сайте Федерального
агентства по техническому регулированию и метрологии в сети Интернет (mvw.gost.ru)

© Стандартинформ. 2016

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и рас­
пространен в качестве официального издания без разрешения Федерального агентства по техническо­
му регулированию и метрологии

II

ГОСТ Р МЭК 61131-3—2016

Содержание

1 Область применения .. 1
2 Нормативные ссылки . .. 1
3 Термины и определения... 2
4 Структурные модели..6

4.1 Модель программного обеспечения..6
4.2 Модель взаимодействия.. 7
4.3 Модель программирования.. 8

5 Совместимость.. 10
5.1 Общие положения ..10
5.2 Таблицы свойств..10
5.3 Декларация соответствия разработчика..10

6 Общие элементы.. 12
6.1 Использование печатных символов.. 12
6.2 Прагма...13
6.3 Литералы — внешнее представление данных... 14
6.4 Типы данны х.. 19
6.5 Переменные..34
6.6 Программные компоненты (P O U)..44
6.7 Элементы последовательной функциональной схемы (SFC).. 144
6.8 Элементы конфигурации............................. 169
6.9 Пространства имен... 181

7 Текстовые языки ..189
7.1 Общие элементы.. 189
7.2 Перечень инструкций (IL).. 190
7.3 Структурированный текст (ST) .. 195

8 Графические языки ... 202
8.1 Общие элементы ... 202
8.2 Релейно-контактные схемы (язык LD)..208
8.3 Функциональные блоковые диаграммы (FB D)...213

Приложение А (обязательное) Формальная спецификация элементов я зы ка214
Приложение В (справочное) Перечень основных изменений и расширений третьего издания........ 225
Приложение ДА (справочное) Сведения о соответствии ссылочных международных

стандартов национальным стандартам Российской Федерации.................................226
Библиография... 227

III

ГОСТ Р МЭК 61131-3—2016

Н А Ц И О Н А Л Ь Н Ы Й С Т А Н Д А Р Т Р О С С И Й С К О Й Ф Е Д Е Р А Ц И И

КОНТРОЛЛЕРЫ ПРОГРАММИРУЕМЫЕ

Ч а с т ь 3

Языки программирования

Programmable controllers. Part 3. Programming languages

Дата введения — 2017—04—01

1 Область применения
Настоящий стандарт устанавливает синтаксис и семантику языков программирования программи­

руемых контроллеров, определенных в МЭК 61131 (часть 1).
Функции ввода программы, тестирования, мониторинга, операционной системы и т. п. определены

в МЭК 61131 (часть 1).
Настоящий стандарт устанавливает синтаксис и семантику унифицированного набора языков

программирования для программируемых контроллеров (PC). Данный набор состоит из двух текстовых
языков программирования, списка инструкций (IL) и структурированного текста (ST). и двух графиче­
ских языков, релейно-контактных схем (LD) и функциональных блоковых диаграмм (FBD).

Дополнительный набор графических и эквивалентных текстовых элементов, именуемый после­
довательная функциональная схема (SFC). определяется для структурирования внутренней организа­
ции программ и функциональных блоков программируемого контроллера. Определены также элементы
конфигурации, поддерживающие установку программ программируемого контроллера в системы про­
граммируемого контроллера. Кроме того, определены средства, облегчающие взаимодействие между
программируемыми контроллерами и другими компонентами автоматизированных систем.

2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для неда­

тированных ссылок применяют последнее издание ссылочного документа (включая изменения).
МЭК 61131-1 Программируемые контроллеры. Часть 1. Общие положения (IEC 61131-1. Progra­

mmable controllers — Part 1: General information)
МЭК 61131-5 Программируемые контроллеры. Часть 5. Взаимодействия (IEC 61131-5, Program­

mable controllers — Part 5: Communications)
ИСО/МЭК 10646:2012 Информационная технология. Универсальный набор символов (UCS) (ISO/

IEC 10646:2012. Information technology — Universal Coded Character Set (UCS)
ИСО/МЭК/1ЕЕЕ 60559 Информационная технология. Микропроцессорные системы. Арифметика

с плавающей точкой (ISO/IEC/IEEE 60559. Information technology — Microprocessor Systems — Floating-
Point arithmetic)

Издание официальное

1

ГОСТ Р МЭК 61131-3—2016

3 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1 абсолютное время (absolute time): Комбинация времени суток и даты.
3.2 путь доступа (access path). Связь символического имени с переменной для реализации от­

крытого взаимодействия.
3.3 действие (action): Логическая переменная или набор подлежащих выполнению операций вме­

сте со связанной управляющей конструкцией.
3.4 блок действий (action block): Элемент графического языка, который использует входную ло­

гическую переменную для определения значения выходной логической переменной или разрешающее
условие для действия в соответствии с предопределенной управляющей конструкцией.

3.5 __

агрегат (aggregate): Структурированная совокупность объектов данных, образующая тип дан­
ных.

[ИСТОЧНИК: ISO/AFNOR: 19891

3.6 __

массив (array): Агрегат, состоящий из объектов данных с идентичными атрибутами, на каждый
из объектов данных можно уникально ссылаться с помощью индекса.

[ИСТОЧНИК: ISO/AFNOR: 1989]

3.7 ___

присваивание (assignment): Механизм для придания значения переменной или агрегату.
(ИСТОЧНИК: ISO/AFNOR: 1989]

3.8 базовый тип (base type): Тип данных, тип функционального блока или класс, из которых на­
следуются или производятся дальнейшие типы.

3.9 число с основанием (based number): Число, представленное с конкретным основанием, от­
личным от 10.

3.10 двоично-десятичный код (binary coded decimal; BCD): Код десятичного числа, в котором
каждая цифра представлена ее двоичным значением.

3.11 бистабильный функциональный блок (bistable function block): Функциональный блок с дву­
мя устойчивыми состояниями, управляемый одним или более входами.

3.12 битовая строка (bit string): Элемент данных, состоящий из одного или более битов.
3.13 битово-строковый литерал (bit string literal): Литерал, который прямо представляет значе­

ние битовой строки типов данных BOOL, BYTE. WORD. DWORD или LWORD.
3.14 тело (body): Набор операций программного компонента.
3.15 вызов (call): Языковая конструкция, вызывающая выполнение функции, функционального

блока или метода.
3.16 строка символов (character string): Агрегат, состоящий из упорядоченной последователь­

ности символов.
3.17 символьно-строковый литерал (character string literal): Литерал, прямо представляющий

значение символа или строки символов типов данных CHAR, WCHAR. STRING или WSTRING.
3.18 класс (class): программный компонент, состоящий из:
- определения структуры данных;
- набора методов, выполняемых над структурой данных.
3.19 ___

комментарий (comment): Языковая конструкция для включения текста, не влияющего на вы­
полнение программы.

[ИСТОЧНИК: ISO/AFNOR: 1989]

3.20 конфигурация (configuration): Элемент языка, соответствующий системе программируемого
контроллера.

3.21 константа (constant): Элемент языка, указывающий на элемент данных с фиксированным
значением.
2

ГОСТ Р МЭК 61131-3—2016

3.22 функциональный блок счетчика (counter function block): Функциональный блок, который на­
капливает значение числа изменений, определяемых на одном или более указанных выходов.

3.23 ___

тип данных (data type): Набор значений вместе с набором допустимых операций.
[ИСТОЧНИК: ISO/AFNOR: 1989]

3.24 дата и время (date and time): Дата с годом и время суток, представленные как отдельный
элемент данных.

3.25 объявление (declaration): Механизм для определения элемента языка.
3.26 разделитель (delimiter): Символ или комбинация символов, используемая для разделения

элементов языка программирования.
3.27 производный класс (derived class): Класс, создаваемый наследованием из другого класса.

Примечание — Производный класс также называют расширенным классом или порожденным классом.

3.28 производный тип данных (derived data type): Тип данных, созданный с использованием
другого типа данных.

3.29 производный тип функционального блока (derived function block type): Тип функциональ­
ного блока, созданный наследованием из другого типа функционального блока.

3.30 прямое представление (direct representation): Средства представления переменной в про­
грамме программируемого контроллера, из которых может быть прямо определено физическое или
логическое расположение переменной.

3.31 двойное слово (double word): Элемент данных, содержащий 32 бита.
3.32 динамическое связывание (dynamic binding): Ситуация, в которой экземпляр вызова метода

возвращается во время выполнения в соответствии с фактическим типом экземпляра или интерфейса.
3.33 оценка (evaluation): Процесс установления значения выражения, функции, выходных пере­

менных сети или экземпляра функционального блока во время выполнения программы.
3.34 элемент управления выполнением (execution control element): Элемент языка, контролиру­

ющий поток выполнения программы.
3.35 задний фронт (falling edge): Часть временной диаграммы сигнала, где происходит переход

логической переменной из 1 в 0.
3.36 функция (function): Элемент языка, который во время выполнения обычно вырабатывает

результат в виде одного элемента данных и, возможно, дополнительные выходные переменные.
3.37 экземпляр функционального блока (function block instance): Экземпляр типа функциональ­

ного блока.
3.38 тип функционального блока (function block type): Элемент языка, состоящий из:
- определения структуры данных, разделенной на входные, выходные и внутренние переменные:

и
- набора операций или набора методов, выполняемых над элементами структуры данных при вы­

зове типа функционального блока.
3.39 функциональная блоковая диаграмма (function block diagram): Сеть, узлы которой являют­

ся экземплярами функциональных блоков, графически представленные функции или вызовы метода,
переменные, литералы и метки.

3.40 родовой тип данных (generic data type): Тип данных, представляющий более одного типа
данных.

3.41 глобальная поремонная (global variable): Переменная с глобальной областью действия.
3.42 иерархическая адресация (hierarchical addressing): Прямое представление элемента дан­

ных как члена физической или логической иерархии.

Пример — Точка в модуле, кот оры й хранится на стеллаже, который, в свою очередь, помещен в
стенд и т. д.

3.43 идентификатор (identifier): Комбинация букв, цифр и символов подчеркивания, которая на­
чинается с буквы или символа подчеркивания и которая именует элемент языка.

3.44 реализация (implementation): Версия программируемого логического контроллера (PLC) или
программного или отладочного инструмента, предоставленная разработчиком.

3.45 разработчик (Implementer): Изготовитель PLC или программного или отладочного инстру­
мента, предоставленного пользователю для разработки приложений PLC.

3

ГОСТ Р МЭК 61131-3—2016

3.46 наследование (inheritance): Создание нового класса, типа функционального блока или ин­
терфейса на основе существующего класса, типа функционального блока или интерфейса, соответ­
ственно.

3.47 начальное значение (initial value): Значение, присвоенное переменной при запуске системе.
3.48 входная и выходная поременная (in-out variable): Переменная, используемая для пере­

дачи значения программному компоненту и. дополнительно, для возврата значения из программного
компонента.

3.49 входная переменная (input variable): Переменная, используемая для передачи значения
программному компоненту, отличному от класса.

3.50 экземпляр (instance): Отдельная, именованная копия структуры данных, связанная с типом
функционального блока, классом или программным типом, которая сохраняет свои значения от одного
вызова соответствующей операции до другого.

3.51 имя экземпляра (instance name): Идентификатор, связанный с конкретным экземпляром.
3.52 создание экземпляра (instantiation): Создание экземпляра.
3.53 целое число (nteger). Целое число, которое может содержать положительные, нулевые или

отрицательные значения.
3.54 целый литерал (integer literal): Литерал, прямо представляющий целое значение.
3.55 интерфейс (interface): Элемент языка в контексте объектно-ориентированного программиро­

вания. содержащий набор прототипов метода.
3.56 ключевое слово (keyword): Лексическая единица, которая характеризует элемент языка.
3.57 метка (label): Конструкция языка, именующая инструкцию, сеть или группу сетей, включая

идентификатор.
3.58 элемент языка (language element): Любая единица, идентифицированная символом в левой

части порождающего правила в формальной спецификации.
3.59 ___

литорал (literal): Лексическая единица, которая прямо представляет значение.
(ИСТОЧНИК: ISO/AFNOR: 1989]

3.60 логическое расположение (logical location): Расположение иерархически адресуемой пере­
менной в схеме, которая может быть связана или может быть не связана с физической структурой
входных и выходных переменных и памятью программируемого контроллера.

3.61 длинное действительное число (long real): Действительное число, представленное в двой­
ном слове.

3.62 двойное слово (long word): 64-битовый элемент данных.
3.63 метод (method): Элемент языка, подобный функции, который может быть определен типом

функционального блока и имеет неявный доступ к статическим переменным экземпляра функциональ­
ного блока или экземпляра класса.

3.64 прототип метода (method prototype): Элемент языка, содержащий только сигнатуру метода.
3.65 именованный элемент (named element): Элемент структуры, именуемый своим связанным

идентификатором.
3.66 сеть (network): Совокупность узлов и соединяющих ветвей.
3.67 числовой литерал (numeric literal): Литерал, прямо представляющий численное значение, то

есть целый литерал или действительный литерал.
3.68 операция (operation): Элемент языка, который представляет элементарную функциональ­

ность. присущую программному компоненту или методу.
3.69 операнд (operand): Элемент языка, на котором выполняется операция.
3.70 оператор (operator): Символ, представляющий действие, выполняемое в операции.
3.71 переопределение (override): Ключевое слово override, использованное с методом или типом

функционального блока для метода с такой же сигнатурой, как метод базового класса или тип функци­
онального блока, использующие новое тело метода.

3.72 выходная переменная (output variable): Переменная, используемая для возврата значения
из программного компонента, отличного от класса.

3.73 параметр (parameter): Переменная, которая используется для предоставления значения
программному компоненту (как входной или входной-выходной параметр), или переменная, которая
используется для возврата значения из программного компонента (как выходной или входной-выход­
ной параметр).
4

ГОСТ Р МЭК 61131-3—2016

3.74 ссылка (reference): Определяемые пользователем данные, содержащие адрес размещения
переменной или экземпляра функционального блока заданного типа.

3.75 поток энергии (power flow): Символический поток электроэнергии в релейно-контактной схе­
ме. используемый для указания продвижения логического решающего алгоритма.

3.76 прагма (pragma): Конструкция языка для включения в программный компонент текста, кото­
рый может влиять на подготовку программы к выполнению.

3.77 программа (program): Разработка, написание и тестирование программ пользователя.
3.78 программный компонент (program organization unit): Функция, функциональный блок, класс

или программа.
3.79 действительный литерал (real literal): Литерал, прямо представляющий значения типа

REAL или LREAL.
3.80 ресурс (resource): Элемент языка, соответствующий «функции обработки сигналов» и ее

«человеко-машинному интерфейсу» и «функциям интерфейса с датчиками и исполнительными меха­
низмами», при наличии таковых.

3.81 результат (result): Значение, возвращаемое как результат выполнения программного компо­
нента.

3.82 возврат (return): Конструкция языка в программном компоненте, обозначающая конец по­
следовательности выполнения в компоненте.

3.83 передний фронт (rising edge): Часть временной диаграммы сигнала, где происходит переход
логической переменной из 0 в 1.

3.84 область видимости (scope): Набор программных компонент, в которых применяется объ­
явление или метка.

3.85 семантика (semantics): Отношения между символическими элементами языка программиро­
вания и их значениями, интерпретацией и использованием.

3.86 полуграфическое представление (semigraphic representation): Представление графической
информации с использованием ограниченного набора символов.

3.87 сигнатура (signature): Набор информации, однозначно определяющий идентичность интер­
фейса параметров МЕТОДА, состоящий из его имени и имен, типов и порядка всех его параметров (то
есть входных, выходных и входных-выходных переменных и типа результата).

3.88 одноэлементная переменная (single-element variable): Переменная, представляющая един­
ственный элемент данных.

3.89 статическая перемонная (static variable): Переменная, значение которой сохраняется от од­
ного вызова до другого.

3.90 шаг (step): Ситуация, в которой поведение программного компонента в отношении его вход­
ных и выходных переменных следует набору правил, определенных связанными действиями шага.

3.91 структурированный тип данных (structured data type). Агрегированный тип данных, кото­
рый был определен, используя определение STRUCT или FUNCTION_Bt_OCK.

3.92 индексирование (subscripting): Механизм для ссылки к элементу массива посредством ссыл­
ки на массив и одного или более выражений, которые, после их вычисления, определяют положение
элемента.

3.93 задача (task): Элемент контроля выполнения, обеспечивающий периодическое или управля­
емое выполнение группы связанных программных компонентов.

3.94 литерал дат и времени (time literal): Литерал, представляющий данные типов TIME, DATE.
TIME_OF_DAY или DATE_AND_TIME.

3.95 переход (transition): Условие, посредством которого управление переходит от одного или бо­
лее предшествующих шагов к одному или более последующих шагов по направленной связи.

3.96 целое число без знака (unsigned integer): Целое число, которое может содержать положи­
тельные и нулевые значения.

3.97 литерал целого числа без знака (unsigned integer literal): Целый литерал, не содержащий
спереди знака (+) или минус (-).

3.98 пользовательский тип данных (user-defined data type): Тип данных, определенный пользо­
вателем.

Пример — Перечисление, массив или структура.

3.99 переменная (variable): Объект программного обеспечения, который может принимать раз­
личные значения, в каждый момент времени только одно значение.

5

ГОСТ Р МЭК 61131-3—2016

4 Структурные модели

4.1 Модель программного обеспечения

Основные элементы языка программирования высокого уровня и их взаимосвязи приведены на
рисунке 1.

Данные элементы программируются на языках, определенных в настоящем стандарте, т. е. это —
программы и типы функциональных блоков, классы, функции и элементы конфигурации, а именно, ре­
сурсы. задачи, глобальные переменные, пути доступа и инициализации экземпляров, которые поддержи­
вают установку программ программируемых контроллеров в системы программируемых контроллеров.

Примечание 1 — Рисунок 1 предназначен только для иллюстрации. Графичвское представление не яв­
ляется нормативным.

Примечание 2 — В конфигурации с единственным ресурсом необязательно явно представлять ресурс.

Рисунок 1 — Модель программного обеспечения

Конфигурация является элементом языка, который соответствует системе программируемого кон­
троллера. как определено в МЭК 61131-1. Ресурс соответствует «функции обработки сигналов» и ее
«человеко-машинному интерфейсу» и «функциям интерфейса с датчиками и исполнительными меха­
низмами» (при наличии таковых), как определено в МЭК 61131-1.

Конфигурация содержит один или более ресурсов, каждый из которых содержит одну или более
программ, выполняемых под контролем нуля или более задач.

Программа может содержать нуль или более экземпляров функциональных блоков или других
элементов языка, как определено в настоящем стандарте.
6

ГОСТ Р МЭК 61131-3—2016

Задача способна вызывать (например, на периодической основе) выполнение набора программ и
экземпляров функциональных блоков.

Конфигурации и ресурсы могут запускаться и останавливаться через функции «интерфейс опера­
тора». «программирование, тестирование и мониторинг» или «операционная система», определенные
в МЭК 61131-1. Запуск конфигурации будет вызывать инициализацию ее глобальных переменных с
последующим запуском всех ресурсов конфигурации. Запуск ресурса будет вызывать инициализацию
всех переменных в ресурсе с последующей активацией всех задач в ресурсе. Останов ресурса будет
вызывать прекращение всех его задач, в то время как останов конфигурации будет вызывать останов
всех ее ресурсов.

Механизмы управления задачами определены в 6.8.2, а механизмы запуска и останова конфигу­
раций и ресурсов через функции взаимодействия определены в МЭК 61131-5.

Программы, ресурсы, глобальные переменные, пути доступа (и соответствующие привилегии до­
ступа) и конфигурации могут быть загружены или удалены «функцией взаимодействия», определенной
в МЭК 61131-1. Загрузка или удаление конфигурации или ресурса будет эквивалентно загрузке или
удалению всех элементов, которые там содержатся.

Пути доступа и их соответствующие привилегии доступа определяются в настоящем стандарте.
Отображение элементов языка на объекты взаимодействия определено в МЭК 61131-5.

4.2 Модель взаимодействия

Способы связи значений переменных с элементами программного обеспечения иллюстрируются
на рисунке 2.

С) еум ф С Ж пм иВ B row вЭ0ии(ДО*С~гамя

M O U M t Y M l t f M
т о ж л ы л

4 w i n e r a * * * L
ж к ю у•жI « ч а х

1 Е Ж . *

р я о о ы м »
W ^ M T t W W L

™ т
Ь) Ваямигууайствме через то й а л ы ^в паромт* ты а

б) пц^ сн здспио черев пути доступе

Примечание 1 — Рисунок 2 предназначен только для иллюстрации. Графическое представление не яв­
ляется нормативным.

Примечание 2 — В данном примере предполагается, что конфигурации С и D имеют один ресурс.

Примечание 3 — На рисунке 2 не показаны детали функционального блока взаимодействия.

Примечание 4 — Пути доступа могут быть объявлены в прямо представленных переменных, входных,
выходных или внутренних переменных программ или экземпляров функционального блока.

Примечание 5 — В МЭК 61131-5 определены средства, с помощью которых системы с PC и без PC могут
использовать пути доступа для чтения и записи переменных.

Рисунок 2 — Модель взаимодействия
7

ГОСТ Р МЭК 61131-3—2016

Как показано на рисунке 2а). значения переменных в программе могут связываться прямо, соеди­
нением выхода одного программного элемента ко входу другого. Данное соединение явно показывает­
ся в графических языках и неявно в тестовых языках.

Значения переменных могут передаваться между программами в одной конфигурации через гло­
бальные переменные, как переменная х. показанная на рисунке 2Ь). Такие переменные будут объяв­
ляться в конфигурации как GLOBAL, и в программах как EXTERNAL.

Как показано на рисунке 2с). значения переменных могут передаваться между различными ча­
стями программы, между программами в одной или различных конфигурациях или между программой
PC и системой без PC. используя функциональные блоки взаимосвязи, определенные в МЭК 61131-5.

Кроме того, системы с и PC и системы без PC могут передавать данные, которые делаются до­
ступными путями доступа, как показано на рисунке 2d), используя механизмы, определенные в МЭК
61131-5.

4.3 Модель программирования

На рисунке 3 показана сводка элементов языков программирования PLC. Комбинация этих эле­
ментов должна подчиняться следующим правилам:

1 Типы данных объявляются с использованием стандартных типов данных и любых ранее опре­
деленных типов данных.

2 Функции объявляются с использованием стандартных или определенных пользователем типов
данных, стандартных функций и любых ранее определенных функций.

Данные объявления должны использовать механизмы, определенные для языков IL, ST, LD или
FBD.

3 Типы функциональных блоков объявляются, используя стандартные и определенные пользова­
телем типы данных, функции, стандартные типы функциональных блоков и любые ранее определен­
ные типы функциональных блоков.

Данные объявления используют механизмы, определенные для языков IL. ST, LD или FBD. и мо­
гут включать в себя элементы последовательных функциональных схем (SFC).

Дополнительно, можно определять объектно-ориентированныо типы функциональных блоков или
классы, которые используют методы и интерфейсы.

4 Программа объявляется, используя стандартные или определенные пользователем типы дан­
ных, функции, функциональные блоки и классы.

Данные объявления используют механизмы, определенные в языках IL. ST. LD или FBD и могут в
себя включать элементы последовательных функциональных схем (SFC).

5 Программы могут собираться в конфигурации, используя элементы, то есть: глобальные пере­
менные. ресурсы, задачи и пути доступа.

Ссылка на «ранее определенные» типы данных, функции и функциональные блоки означает, что
после того как некоторый элемент был объявлен, его определение доступно (например, в «библиотеке»
ранее определенных элементов) для использования в дальнейших определениях.

Для программирования функций, типов функциональных блоков и методов может использоваться
язык программирования, отличный от языков, определенных в настоящем стандарте.

8

ГОСТ Р МЭК 61131-3—2016

Р ш м и у я ш ч и т т ш и ш С адани* Эгаимкты, m jm r v w m *
и ви П тотм м элемента папыюавтвпвм

Рисунок 3 — Сочетание элементов языка программируемых контроллеров, лист 1

где LD — язык релейно-контактных схем;
FBD — язык функционально-блоковых диаграмм;

IL — язык списка инструкций;
ST — язык структурированного текста;

Другие — другие языки программирования.

Примечание 1 — Числа от (1) до (5) в скобках относятся к соответствующим параграфам 1)—5) выше.

Примечание 2 — Типы данных используются во всех способах создания. Для четкости, соответствующие
связи опущены на данном рисунке.

Рисунок 3 — Сочетание элементов языка программируемых контроллеров, лист 2

9

ГОСТ Р МЭК 61131-3—2016

5 Совместимость

5.1 Общие положения

Средство программирования и отладки PLC (PADT), как определено в МЭК 61131-1, которое удов­
летворяет полностью или частично требованиям настоящего стандарта и должно:

a) обеспечивать подмножество свойств и предоставлять декларацию соответствия разработчика
как описано ниже;

b) не требовать включения альтернативных или дополнительных элементов языка для достиже­
ния какого-либо свойства;

c) предоставлять документ, определяющий все конкретные расширения разработчика. Сюда вхо­
дят любые принятые системой свойства, которые запрещены или точно не определены;

d) предоставлять документ, определяющий все специфические зависимости разработчика. В дан­
ный документ включают все зависимости реализации, явно определенные в настоящем стандарте, и
ограничивающие параметры, такие как максимальная длина, количество, размер и диапазон измене­
ний. которые на заданы явно;

e) предоставлять документ, который устанавливает все ошибки, обнаруживаемые и сообщаемые
при реализации. В данный документ включаю ошибки, установленные в настоящем стандарте, и ошиб­
ки, обнаруживаемые во время подготовки программы к выполнению и во время ее выполнения.

Примечание — В настоящем стандарте только частично установлены ошибки, случающиеся во время
выполнения программы, приведенной а МЭК 61131;

0 не использовать стандартные имена типов данных, функций или имен функциональных блоков,
установленных в настоящем стандарте для определенных в реализации свойств, функциональность
которых отличается от функциональности свойств, описанных в настоящем стандарте.

5.2 Таблицы свойств

Все таблицы настоящего стандарта, используемые для конкретной цели, представлены едино­
образно. В первой графе содержится «номер свойства», во второй графе дается «описание свойства»,
следующие графы могут содержать примеры или дополнительную информацию. В декларации соот­
ветствия разработчика используется следующая структура таблицы.

5.3 Декларация соответствия разработчика

Разработчик может определить любое согласующееся подмножество свойств, перечисляемых в
таблицах свойств и будет объявлять предоставляемое подмножество как «Декларацию соответствия
разработчика».

Декларация соответствия разработчика будет включена в документацию, сопровождающую си­
стему. или будет создаваться самой системой.

Формат декларации соответствия разработчика будет предоставлять следующую информацию
(пример декларации соответствия приведен на рисунке 4):

- общая информация, включающая наименование и адрес разработчика, наименование и версию
продукта и дату выпуска;

- номер соответствующей таблицы соответствия, номер свойства и используемый язык програм­
мирования для каждого реализованного свойства.

Заголовок и подзаголовок таблицы свойств, описание свойства, примеры, примечания разработ­
чика и другая информация являются необязательными.

Нереализованные таблицы и свойства могут быть опущены.

10

ГОСТ Р МЭК 61131-3—2016

МЭК 61131-3 «Языки программирования PLC»

Разработчик: Наименование компании, адрес и пр.

Продукт: Наименование продукта, версия и т. д. Тип контроллера и т. д.

Дата: 2012-05-01

Настоящий продукт удовлетворяет требованиям для следующих свойств: языка:

Номер
свой­
ства

Номер и заголовок таблицы/
Описание свойства

Соответствующим
образом реализовано

в языке (0)
Примечание
разработчика

LD FBD ST IL

Таблица 1 — Набор символов

1 ИСО/МЭК 10646:2012. Информационная технология —
Универсальный набор символов (UCS) V V

2а Символы нижнего регистра: а, Ь, с , ... V V Отсутствуют симво­
лы «В. й, а, 5»

2Ь Знак числа: # См. таблицу 5 V

2с Знак доллара $ См. таблицу 6 V

Таблица 2 — Идентификаторы

1 Буквы верхнего регистра и цифры IW215

2 Буквы верхнего и нижнего регистров, цифры и внутрен­
ние символы подчеркивания

3 Буквы верхнего и нижнего регистров, цифры и ведущие
или внутренние символы подчеркивания

Таблица 3 — Комментарии

1 Однострочный комментарий//...

2а Многострочный комментарий {* ... *)

2Ь Многострочный комментарий /*...*/

За Вложенный комментарий (*..('.. *) ..*)

ЗЬ Вложенный комментарий Г .. Г .. */.. V

Рисунок 4 — Декларация соответствия разработчика (пример)

Таблица 4 — Прагма

1 Прагма в фигурных скобках { . . . }

Таблица 5 — Числовые литералы

1 Целый литерал:-12

2 Действительный литерал: -12.0

3 Действительные литералы с экспонентой: -1.34Е-12

4 Двоичный литерал: 2#1111_1111

5 Восьмеричный литерал: 8#377

6 Шестнадцатеричный литерал: 16#FF

11

ГОСТ Р МЭК 61131-3—2016

7 Логический ноль и единица

8 Логические FALSE и TRUE

9 Типизированный литерал: INT#-123

Ит.д.

Рисунок 4

6 Общие элементы

6.1 Использование печатных символов

6.1.1 Набор символов
Набор символов текстовых языков и текстовых элементов графических языков приведен в табли­

це 1. Символы представлены по ИСО/МЭК 10646.

Таблица 1 — Набор символов

Номер Описание

1 ИСО/МЭК 10646

2а Символы нижнего регистра3*: а. Ь. с

2Ь Знак числа: # См. таблицу 5

2с Знак доллара: $ См. таблицу 6

а> Когда поддерживаются буквы нижнего регистра, регистр букв в элементах языка не учитывается
за исключением комментариев, как определено 6.1.5. строковых литералах 6.3.3, и переменных типов
STRING и WSTRING. как определено в 6.3.3.

6.1.2 Идентификаторы
Идентификатор — это строки букв, цифр и символов подчеркивания, начинающаяся с буквы или

символа подчеркивания.
Регистр букв не имеет значения в идентификаторах, например идентификаторы abed. ABCD и

aBCd будут интерпретироваться одинаково.
Символ подчеркивания является существенным в идентификаторах, например. A_BCD и AB_CD

будут интерпретироваться, как различные идентификаторы. Множественные ведущие или множе­
ственные внутренние символы подчеркивания не допустимы, например последовательности символов
_LIM_SW5 и L!M_SW5 не являются допустимыми идентификаторами. Завершающие символы подчер­
кивания не допустимы, например, последовательность символов LIM_SW5_ не является допустимым
идентификатором.

Во всех системах, которые поддерживают использование идентификаторов, по меньшей мере. 6
символов будет учитываться при определении уникальности идентификатора, например, во всех таких
системах. ABCDE1 будет интерпретироваться отличным от ABCDE2. Максимально допустимое число
символов, разрешенное в идентификаторе, определяется разработчиком.

Свойства и примеры идентификаторов приведены в таблице 2.

Таблица 2 — Идентификаторы

Номер Описание Пример

1 Буквы верхнего регистра и цифры IW215 IW215 IW215Z QX75 IDENT

2 Буквы верхнего и нижнего регистров, цифры и вну­
тренние символы подчеркивания

Все приведенные выше плюс:
LIM_SW_5 LimS\v5 abed ab_Cd

3 Буквы верхнего и нижнего регистров, цифры и веду­
щие или внутренние символы подчеркивания

Все приведенные выше плюс:
_MAIN_12V7

12

ГОСТ Р МЭК 61131-3—2016

6.1.3 Ключевые слова
Ключевые слова — это уникальные комбинации символов, используемых как отдельные синтак­

сические элементы. Ключевые слова не содержат внутренних пробелов. В ключевых словах регистр
символов не учитывается.

Например, ключевые слова FOR и for синтаксически эквивалентны. Они не должны использовать­
ся в любых других целях, например, как имена переменных или расширения.

6.1.4 Использование символов-разделителей
Пользователю разрешено вставлять один или более «символов-разделителей» в любом месте

текста программ программируемого контроллера, только не внутри ключевых слов, литералов, пере­
численных значений, идентификаторов, прямо представленных переменных или разделительных со­
четаний. например, для комментариев. «Символ-разделитель» определяется как символ SPACE с ко­
дированным числовым значением 32. а также как непечатаемые символы, такие как символ табуляции,
символ перевода строки и т. п., которым в МЭК/ИСО 10646 не придано закодированного значения.

6.1.5 Комментарии
Имеются различные виды комментариев, приведенные в таблице 3.
1 Однострочные комментарии начинаются с комбинации символов И и заканчиваются на следую­

щем символе перевода строки, новой строки, подачи (прогона) страницы или возврата каретки.
В однострочном комментарии специальные комбинации символов (* и *) или Г и 7 не имеют спе­

циального значения.
2 Многострочном комментарии разделяются вначале и в конце специальными комбинациями сим­

волов (* и *). соответственно.
Альтернативно, многострочный комментарий может предоставляться, используя специальные

комбинации символов Г и 7.
В многострочном комментарии специальная комбинация символов // не имеет специального зна­

чения.
Комментарии разрешены в любом месте программы, где разрешены пробелы, только не внутри

символьно-строковых литералов.
Комментарии не имеют никакого синтаксического и семантического значения ни в одном из язы­

ков. определенных в данном стандарте. Они трактуются как символы-разделители.
Вложенные комментарии используют соответствующие
- пары (*. *), например. (*... (* ВЛОЖЕННЫЙ КОММЕНТАРИЙ *)... *) или
- пары Г, ‘ /.например. Г ... Г ВЛОЖЕННЫЙ КОММЕНТАРИЙ */... 7.

Таблица 3 — Комментарии

Номер Описание Пример

1 Однострочный комментарий
и ...

Х:= 13; Ч комментарий для одной строки
II однострочный комментарий может начинаться
II с позиции первого символа

2а Многострочный комментарий с
С - *)

(* текст комментария ')

Комментарий в рамке на трех строках

2Ь Многострочный комментарий с
Г ... V Г комментарий на одной или более строк */

За Вложенный комментарий с
(* - С - ’) ■ *)

(• (• ВЛОЖЕННЫЙ КОММЕНТАРИЙ *) *)

ЗЬ Вложенный комментарий с
Г .. Г .. V .. •/ Г Г ВЛОЖЕННЫЙ КОММЕНТАРИЙ 7 7

6.2 Прагма

Как показано в таблице 4. прагмы ограничиваются в начале и в конце фигурными скобками { и }.
соответственно. Синтаксис и семантика конструкций конкретной прагмы определяются разработчиком.

13

ГОСТ Р МЭК 61131-3—2016

Комментарии разрешены в любом месте программы, где разрешены пробелы, только не внутри сим­
вольно-строковых литералов.

Таблица 4 — Прагма

Описание Пример

Прагма с фигурными скобками {ВЕРСИЯ 2.0}
{АВТОР JHC}
{х:= 256. у:= 384}

6.3 Литералы — внешнее представление данных

6.3.1 Общие положения
Внешние представления данных в различных языках программирования программируемых кон­

троллеров состоят из числовых литералов, символьно-строковых литералов и литералов дат и време­
ни.

Признана необходимость в обеспечении внешних представлений для двух различных типов дан­
ных. связанных со временем:

- данные о продолжительности времени при измерении и контроле событий:
- данные о времени суток, которые могут также включать в себя информацию о дате — для син­

хронизации начала и окончания событий в абсолютной временной шкале.
6.3.2 Числовые литералы и строковые литералы
Имеется два типа числовых литералов: целые литералы и действительные литералы. Числовой

литерал определяется как десятичное число или число с основанием. Максимальное количество цифр
для каждого вида числовых литералов должно быть достаточным для выражения всего диапазона зна­
чений с требуемой точностью для всех типов данных, которые представляются литералами в заданной
реализации.

Единичные символы подчеркивания «_», вставленные между цифрами числового литерала не яв­
ляются существенными. Никакое иное использование символов подчеркивания в числовых литералах
не разрешается.

Десятичные литералы представляются в обычной десятичной нотации. Действительные литера­
лы характеризуются наличием десятичной точки. Экспонента указывает на целую степень 10. на кото­
рую должно умножаться предшествующее число, чтобы достичь представленного значения. Десятич­
ные литералы и экспоненты литералов могут содержать предшествующий знак «♦» или «-».

Литералы могут также представляться с основаниями 2. 8 и 16. Основание указывается в деся­
тичной нотации. Для основания 16 используется расширенный набор цифр, состоящий из букв от А до
F, с оговоренным десятичным значением от 10 до 15. соответственно. Числа с основанием не содержат
ведущего знака «♦» или к-» . Они интерпретируются как битово-строковые литералы.

Числовые литералы, представляющие положительные целые значения, могут использоваться как
битово-строковые литералы.

Логические данные представляются числовыми литералами со значением (0) или один (1). или
ключевыми словами FALSE или TRUE, соответственно.

Свойства и примеры числовых литералов приведены в таблице 5.
Тип данных логических или числовых литералов может указываться добавлением префикса типа

к литералу, состоящего из имени элементарного типа данных и символа «#». Примеры приведены в
свойство 9 таблицы 5.

14

ГОСТ Р МЭК 61131-3—2016

Таблица 5 — Числовые литералы

Н о м е р О п и с а н и е П р и м е р О б ъ я с н е н и е

1 Целый литерал -12. 0. 123_4, +986

2 Действительный литерал 0.0. 0.4560.
3.14159_26

3 Действительные литералы
с экспонентой

-1.34Е-12. -1.34е-12
1.0Е+6, 1,0е+6
1.234Е6. 1.234е6

4 Двоичный литерал

2#1111_1111
2#1110_0000

Литерал с основанием 2 для представ­
ления:
десятичного числа 255
десятичного числа 224

5 Восьмеричные литералы

8#377
8#340

Литерал с основанием 8 для представ­
ления:
десятичного числа 255
десятичного числа 224

6 Шестнадцатеричный
литерал

16#FF или 16#Н
16#Е0 или 16#е0

Литерал с основанием 16 для представ­
ления:
десятичного числа 255
десятичного числа 224

7 Логический ноль и единица 0 или 1

8 Логические FALSE и TRUE FALSE TRUE

9 Типизированный литерал INT#-123 Представление INT десятичного значе­
ния -123

INT#16#7FFF Представление INT десятичного значе­
ния 32767

WORD#16#AFF Представление WORD шестнадцати­
ричного значения 0AFF

WORD# 1234 Представление WORD десятичного
значения 1234=16#4D2

UINT#16#89AF Представление UINT шестнадцатирич­
ного значения 89AF

CHAR#16#41 Представление CHAR символа А'

BOOL#0

BOOL#1

BOOL#FALSE

BOOLtfTRUE

Примечание 1 — Ключевые слова FALSE и TRUE соответствуют логическим значениям 0 и 1. соот­
ветственно.

Примечание 2 — Свойство 5 «Восьмеричные литералы» не рекомендуется и может не быть включе­
но в следующую редакцию настоящего стандарта.

15

ГОСТ Р МЭК 61131-3—2016

6.3.3 Символьно-строковые литералы
Символьно-строковые литералы содержат однобайтовые или двухбайтовые кодированные сим­

волы:
- символьно-строковый литерал однобайтовых символов является последовательностью нуля

или более символов, с предшествующим и завершающим символом одиночной кавычки ('). В строках
однобайтовых символов, трехсимвольная комбинация символа доллара ($) с двумя следующими шест­
надцатиричными символами интерпретируется как шестнадцатиричное представление восьмибитово­
го кода символа, как показано в свойстве 1 таблицы 6;

- символьно-строковый литерал двухбайтовых символов является последовательностью 0 или
более символов из набора символов ИСО/МЭК 10646. с предшествующим и завершающим символом
двойной кавычки («). В строках однобайтовых символов, трехсимвольная комбинация символа доллара
{$) с двумя следующими шестнадцатиричными символами интерпретируется как шестнадцатиричное
представление восьмибитового кода символа, как показано в свойстве 2 таблицы 6.

Примечание — Отношение стандартов ИСО/МЭК 10646 и Юникод:

Несмотря на то, что коды символов и формы кодирования стандартов Юникод и ИСО/МЭК 10646
синхронизированы, стандарт Юникод налагает дополнительные ограничения на реализации, чтобы га­
рантировать. что они трактуют символы одинаково во всех платформах и приложениях. В связи с этим,
данный стандарт предоставляет широкий набор спецификаций функциональных символов, данных
символов, алгоритмов и обширный справочный материал, который отсутствует в ИСО/МЭК 10646.

Двухсимвольные комбинации, начинающиеся с символа доллара интерпретируются, как показано
в таблице 7. когда они встречаются в строках символов.

Таблица 6 — Символьно-строковые литералы

Н о м е р О п и с а н и е П р и м е р

Односимвольные символы и строки символов с ‘ *

1а Пустая строка (длины ноль) •«

1Ь Строка длины 1 или символ CHAR, содержащий единственный символ А'

1с Строка длины один или символ CHAR, содержащий символ пробела • •

1d Строка длины один или символ CHAR, содержащий символ одиночной кавычки $

1е Строка длины один или символ CHAR, содержащий символ двойной кавычки V

1f Поддержка двухсимвольных комбинаций таблицы 7 SR$L'

ig Поддержка представления символа с знаком доллара '$' и двумя шестнадцатирич­
ными цифрами S0A'

Двухбайтовые символы или симаольные строки с в» (Примечание)

2а Пустая строка (длины ноль) «Я

2Ь Строка длины один или символ WCHAR, содержащий единственный символ «А»

2с Строка длины один или символ WCHAR. содержащий символ пробела в »

2d Строка длины один или символ WCHAR. содержащий символ одиночной кавычки « '»

2е Строка длины один или символ WCHAR. содержащий символ двойной кавычки в $ я »

2f Поддержка двухсимвольных комбинаций таблицы 7 #RL*

2h Поддержка представления символа с знаком доллара и четырьмя шестнадцати­
ричными цифрами «$ООС4»

Типизированные однобайтовые символы или строковый литерал с #

За Типизированная строка STRING#OK'

ЗЬ Типизированный символ CHAR#'X'

16

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы б

Н о м е р О п и с а н и е П р и м е р

Двухбайтовые типизированные строковые литералы с Н (NOTE)

4а Типизированные двухбайтовые строки (с использованием символа двойной кавыч­
ки) WSTRING#«OK»

4Ь Типизированный двухбайтовый символ (с использование символа двойной кавычки) WCHAR#«X»

4d Типизированный двухбайтовый символ (с использованием символа одиночной ка­
вычки) WCHAFWX

Примечание — Если конкретная реализация поддерживает свойство 4, но не поддерживает свойст­
во 2. Реализатор может определить синтаксис и семантику для использования символа двойной кавычки.

Таблица 7 — Двухсимвольные комбинации в символьных строках

Номер Описание Комбинации

1 Знак доллара $$

2 Единичная кавычка S'

3 Перевод строки $L или $l

4 Новая строка $N или Sn

5 Прогон (перевод) страницы SP или $р

6 Возврат каретки SR или Sr

7 Табуляция $Т или $t

8 Двойная кавычка $»

Примечание 1 — Символ новой строки предоставляет независимые от реализации средства опре­
деления конца строки данных. При печати эффект таков, что заканчивается текущая строка данных и печать
возобновляется в начале следующей строки.

Примечание 2 — Комбинация S' действительна только внутри строковых литералов с одиночными
кавычками.

Примечание 3 — Комбинация $» действительна только внутри строковых литералов с двойными ка­
вычками.

6.3.4 Литерал продолжительности времени
Данные продолжительности времени ограничиваются слева ключевым словом Т#. TIME# или

LTIME#. Представление данных о продолжительности времени в терминах дней, часов, минут, секунд
и долей секунды, или любой их комбинации поддерживается как показано в таблице 8. Наименьшая
единица времени может быть записана в нотации действительных чисел без экспоненты.

Единицы литералов продолжительности времени могут разделяться символами подчеркивания.
Разрешается «переполнение» самой большой единицы продолжительности времени, например

нотация T#25h_15m является допустимой.
Единицы времени {например, секунды, миллисекунды и т. д.) могут быть представлены буквами

верхнего или нижнего регистра.
Как показано в таблице 8. для продолжительности времени разрешены как положительные, так и

отрицательные значения.

17

ГОСТ Р МЭК 61131-3—2016

Таблица 8 — Литералы продолжительности времени

Н о м е р О п и с а н и е П р и м е р

Сокращения продолжительности времени

1а d День

1Ь h Час

1с m Минута

1d s Секунда

1е ms Миллисекунда

1f us (если символ p недоступен) Микросекунда

19 ns Наносекунда

Литералы продолжительности времени
без символов подчеркивания

2а короткий префикс
T#14ms T#-14msLT#14.7s T#14.7m
T#14.7h t#14.7d t#25h15m
lt#5d 14h12m18s3.5ms t#12h4m34ms230us400ns

2Ь длинный префикс TIME#14ms TIME#-14ms time#14.7s

Литералы продолжительности времени с
символами подчеркивания

За короткий префикс
t#25h_15m t#5d_14h_12m_18s_3.5ms
LTIME#5m_30s_500ms_100.1 us

ЗЬ длинный префикс
TIME#25h_15m
ltime#5d_14h_12m_18s_3.5ms
LTIME#34s_345ns

6.3.5 Литерал даты и времени суток
Ключевые слова префикса литералов для времени суток и даты приведены в таблице 9.

Таблица 9 — Литералы даты и времени суток

Номер Описание Пример

1a Литерал даты (длинный префикс) DATE#1984-06-25. date#2010-09-22

1b Литерал даты (короткий префикс) D#1984-06-25

2a Длинный литерал даты (длинный префикс) LDATE#2012-02-29

2b Длинный литерал даты (короткий префикс) LD# 1984-06-25

3a Литерал времени суток (длинный префикс) TIME_OF_DAY#15:36:55.36

3b Литерал времени суток (короткий префикс) TOD# 15:36:55.36

4a Длинный литерал времени суток (короткий
префикс) LTOD#15:36:55.36

4b
Длинный литерал времени суток (длинный
префикс) LTIME_OF_DAY#15:36:55.36

5a Литерал даты и времени (длинный префикс) DATE_AND_TIME#1984-06-25-15:36:55.360227400

5b Литерал даты и времени (короткий префикс) DT#1984-06-25-15:36:55.360_227_400

18

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 9

Н о м е р О п и с а н и е П р и м е р

6а Длинный литерал даты и времени (длинный
префикс) LDATE_AND_TIME#1984-06-25-15:36:55.360_227_400

6Ь Длинный литерал даты и времени (короткий
префикс) LDT# 1984-06-25-15:36:55.360_227_400

6.4 Типы данных

6.4.1 Общие положения
Тип данных — это классификация, которая определяет возможные значения для литералов и

переменных, операции, которые можно выполнять и способ хранения значений.
6.4.2 Элементарные типы данных (BOOL. INT, REAL. STRING и т. д.)
6.4.2.1 Спецификация элементарных типов данных
Настоящий стандарт устанавливает набор (предопределенных) элементарных типов данных.
Элементарные типы данных, ключевое слова для каждого типа данных, число битов на элемент

данных и диапазон значений для каждого элементарного типа данных приведены в таблице 10.

Таблица 10 — Элементарные типы данных

Н о м е р О п и с а н и е К л ю ч е в о е с л о в о
Н е я в н о е н а ч а л ь н о е

зн а ч е н и е
Д л и н а
(б и т } * ’

1 Логический BOOL 0. FALSE I е»
2 Короткое целое SINT 0 8C)
3 Целое INT 0 16c>

4 Двойное целое DINT 0 ~ 3 2 q ~

5 Длинное целое LINT 0

6 Короткое целое без знака USINT 0 8dl
7 Целое без знака UINT 0 16dl

8 Двойное целое без знака UDINT 0 32d'

9 Двойное целое без знака ULINT 0 64dl

10 Действительные числа REAL 0.0 32е)

11 Длинные целые LREAL 0.0 ~ 6 T 5" "

12а Продолжительность времени TIME T#0s “ y i

12Ь Продолжительность времени LTIME LTIME#0s 64mKq)
13а Дата (отдельно) DATE Примечание _ bt

13Ь Длинная дата (отдельно) LDATE LDATE#1970-01-01 64n>

14а Время суток (отдельно) TIME_OF_DAY или TOD TOD#00:00:00 _b>

14Ь Время суток (отдельно) LTIME OF DAY или
LTOD LTOD#00:00:00 64o)' q>

15а Дата и время суток DATE_AND_TIME или DT Примечание —b>

15Ь Дата и время суток LDATE_AND_TIME или
LDT LDT#1970-01-01 -00:00:00 64p)' q>

14а Время суток (отдельно) TIME_OF_DAY или TOD TOD#00:00:00 -b)

14Ь Время суток (отдельно) LTIME_OF_DAY или
LTOD LTOD#00:00:00 64o)' q>

19

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 10

Номер Описание Ключевое слово Неявное начальное
значение

Длина
(бит)*

15а Дата и время суток DATE_AND_TIME или ОТ Примечание —Ь)

15Ь Дата и время суток LDATE_AND_TIME и л и

LDT LDT#1970-01-01 -00:00:00 64Р,Ч>

16а Строка однобайтовых симво­
лов переменной длины STRING •' (пустая) 8i).0* КП)

16Ь Строка двухбайтовых симво­
лов переменной длины WSTRING •' (пустая) 9)- М- 0

17а Однобайтовый символ CHAR ■$00' 89).0

17Ь Двухбайтовый символ WCHAR «SOOOO* 169М>

18 Битовая строка длины 8 BYTE 16#00 gi).9>

19 Битовая строка длины 16 WORD 16#0000 16* 9>
20 Битовая строка дпины 32 OWORD 16#0000_0000 32i>.9>

21 Битовая строка длины 64 LWORD 16#0000_0000_0000_0000 64i>- 9>

Примечание — Определяется разработчиком, так как специальное стартовое значение отлично от
0001-01-01.

а> Значения в данной колонке интерпретируются как описано в подстрочных примечаниях к таблице.
ь> Диапазон значений и точность представления в данных типах данных определяются разработчиком.
с> Диапазон значений переменных данного типа данных от — (2м'1) до (2^ 1) -1.
d) Диапазон значений переменных данного типа данных от 0 до (2м) -1.

Диапазон значений переменных данного типа данных определяется в МЭК 60559 для основного фор­
мата с плавающей точкой одинарной точности. Результаты арифметических команд с ненормализованными
значениями, бесконечным значением и нечисловыми значениями определяются разработчиком.

^ Значение переменных данного типа данных определяется в МЭК 60559 для основного формата с плава­
ющей точкой двойной точности. Результаты арифметических команд с ненормализованными значениями, бес­
конечным значением и нечисловыми значениями определяются разработчиком.

9> Числовой диапазон значений не применяется к данному типу данных.
h) Возможные значения переменных этого типа данных: 0 и 1. соответствующие ключевым словам FALSE

и TRUE соответственно.
') Значение N указывает на число битов или символов для этого типа данных.
I) Значение N указывает на число битов в битовой строке для этого типа данных.
к| Допустимая переменных типов STRING и WSTRING определяется разработчиком.
') Типов CHAR. STRING. WCHAR и WSTRING используется кодировка по ИСО/МЭК 10646 (см. 6.3.3).
т > Тип данных LTIME является 64-битовым целым числом со знаком, значение задается в наносекундах.
п) Тип данных LDATE является 64-битовым целым числом со знаком, значение задается в наносекундах,

с начальной датой 1970-01-01.
Р> Тип данных LTOD является 64-битовым целым числом со знаком, значение задается в наносекундах,

начальное время с полуночи TOD#00:00:00.
Точность обновления значений данного формата времени определяется разработчиком; то есть значе­

ние указывается в наносекундах, но оно может обновляться через микросекунду или миллисекунду.

6.4.2.2 Элементарные строковые типы данных (STRING. WSTRING)
Максимальная поддерживаемая длина элементов типа STRING и WSTRING задается разработ­

чиком и определяет максимальную длину STRING и WSTRING. которая поддерживается средствами
программирования и отладки.

20

ГО СТ Р М ЭК 61131-3— 2016

Явная максимальная длина определяется максимальной длиной (которая не должна превышать
поддерживаемое максимальное значение, определенное разработчиком), приведенной в скобках в со­
ответствующем объявлении данных.

Доступ к отдельным символам строки в элементах данных CHAR или WCHAR осуществляется
указанием в квадратных скобках позиции символа в строке, начиная с позиции 1.

Ошибка возникает, если к строкам двухбайтовых символов осуществляется доступ с использо­
ванием однобайтовых символов или если к строкам однобайтовых символов осуществляется доступ с
использование двухбайтовых символов.

Пример 1 — Типы STRING. WSTRING и CHAR. WCHAR
a) Объявление

VAR
S tr in g l: STRING[10]:= 'ABCD';

String2: STRING[10]:=
aWStrings: ARRAY[0..1] OF WSTRING:= ["1234”, "5678”] ;
C h a ri: CHAR:
W Charl: WCHAR;

END_VAR
b) Использование т ипов STRING и CHAR

C h a ri:= S tr in g l[2] ; / / эквивалентно C h a r i:- ’B ’;
S tr ing l[3]:= C h a ri; / / приводит к S tr in g l:= 'ABBD'
S tr in g l[4]:- 'В '; / / приводит к S t r in g l^ 'ABBB'
S tr in g l[1]:- S tr in g l[4]; / / приводит к S tr in g l:= 'BBS S ’
String2:= String1[2]; (‘ приводит к S trin g l := 'B B S S ’
если бы ло выполнено неявное преобразование CHAR_TO_STRING")
c) Использование типов WSTRING и WCHAR

W Charl;= aW Strings[1][2]; / / эквивалентно W C harl: - ‘В ’;
aWStrings[1][3]:=WChar1; / / приводит к aW Strings[1]:= «5668»
aW Strings[1][4]:= «6л>; / / приводит к aW Strings[1]:= “ 5666”
WStrings[1][1]:= aWStrings[1][4); И приводит к S tr in g l:= "6666”
aWStrings(0]:= aW Strings[1][4]; (‘ приводит aW Strings[0]:= "6 ”;
если бы ло выполнено неявное преобразование WCHAR_TO_WSTRINGh)
d) Эквивалентные функции (см. 6.6.2.5.11)

C hari ;= S tr in g l [2];
эквивалентно
Char1:= STRING_TO_CHAR(Mid(IN: = S trin g l, L := 1. P:= 2));
a WS trings[1][3]:= W Charl;
эквивалентно
REPLACE(IN1 := aWStrings[1], IN2:= W Charl. L:= 1. P:=3);

e) Случаи ошибки
C h a ri:= S tr in g l[2] ; / / смешивание типов WCHAR,
STRING String 1 [2]:= String2;

/ / требует неявного преобразования STRING_TO_CHAR. которое не разрешено
П р и м е ч а н и е — Типы данны х для от дельных символов (CHAR и WCHAR) могут содержать

т олько один символ. Строки могут содержать несколько символов; поэт ому ст роки могут содержать
дополнит ельную информацию для управления, которая не нужна для от дельных символов.

Пример 2 — Если тип STR10 объявлен как

TYPE STR10: STRING[10]:= ABCDEF'; END_TYPE.
то максимальная длина STR10 равна 10 символам, начальное значение по умолчанию равно

'ABCDEF', и начальная длина элементов данных типа STR10 равна шести символам.

21

ГОСТ Р МЭК 61131-3—2016

6.4.3 Родовые типы данных
В дополнение к элементарным типам данных, приведенным в таблице 10. в спецификации вход­

ных и выходных переменных стандартных функций и функциональных блоков можно использовать
иерархию родовых типов данных, показанных на рисунке 5. Родовые типы данных определяются по
префиксу «ANY».

При использовании родовых типов данных следует соблюдать следующие правила:
1 Родовой тип прямо порожденного типа является таким же, как родовой тип элементарного типа,

из которого он порожден.
2 Порожденным типом типа-диапазона является ANYJNT.
Родовым типом всех других порожденных типов, приведенных в таблице 11, является ANY_

DERIVED.
Использование родовых типов данных в определенных пользователем программных компонентов

находится вне области действия настоящего стандарта.

Р о д о в ы е т и п ы д а н н ы х
Р о д о в ы е т и п ы

д а н н ы х
Г р у п п ы э л е м е н т а р н ы х т и п о в д а н н ы х

ANY 9)
ANY_DERIVED

ANY_ELEMENTARY

ANY_MAGNITUDE

ANYNUM

ANY_REAL h) REAL. LREAL

ANYJNT ANYJJNSIGNED USINT. UINT. UDINT. ULINT

ANY_SIGNED SINT. INT. DINT. LINT

ANY_DURATION TIME. LTIME

ANY_BIT BOOL. BYTE. WORD. DWORD. LWORD

ANYCHARS

ANY_STRING STRING. WSTRING

ANY_CHAR CHAR. WCHAR

ANY_DATE DATE_AND_TIME, LDT. DATE. TIME_OF_DAY. LTOD

Рисунок 5 — Иерархия родовых типов данных

6.4.4 Определенные пользователем типы данных
6.4.4.1 Объявление (TYPE)
6.4.4.1.1 Общие положения
Назначение определенных пользователем типов данных — это их использование в объявлении

других типов данных и в объявлениях переменных.
Определенный пользователем тип данных может использоваться везде, где может использовать­

ся базовый тип.
Определенные пользователем типы данных объявляются, используя текстовую конструкцию

TYPE...END_TYPE. Объявление типа состоит из следующих элементов:
- имя типа:
- символ двоеточия «.»;
- объявление собственно типа, как определено в следующих предложениях.

Пример — Объявление типа
TYPE

m yD ata type l: <объявление типа с необязательной инициализацией>;
ENDJTYPE
22

ГО СТ Р М ЭК 61131-3— 2016

6.4.4.1.2 Инициализация
Определенные пользователем типы данных могут быть инициализированы определенными поль­

зователем значениями. Такая инициализация имеет приоритет над неявным начальным значением.
Определенная пользователем инициализация следует за объявлением типа и начинается опера­

тором присваивания «:=». за которым следует начальное значение (значения).
Могут использоваться литералы (например. -123. 1.55. «аЬс») или константные выражения (на­

пример. 12*24). Используемые начальные значения должны иметь совместимый тип. то есть тот же
самый тип или тип. который может быть конвертирован, используя неявное преобразование типа.

Для инициализации типов данных следует применять правила, приведенные на рисунке 6.

Р о д о п о й т и п д а н н ы х И м и ц и а л и э и р о о а н о л и т е р а л о м Р е з у л ь т а т

ANY_UNSIGNED Неотрицательный целый литерал или неотри­
цательное константное выражение Неотрицательное целое значение

ANY_SIGNED Целый литерал или константное выражение Целое значение

ANY_REAL Числовой литерал или константное выражение Числовое значение

ANY.BIT Целый литерал без знака или константное вы­
ражение без знака Целое значение без знака

ANY_STRING Битово-строковый литерал Строковое значение

ANY_DATE Литерал даты и времени суток Значение даты и времени суток

ANYJDURATION Литерал продолжительности времени Значение продолжительности
времени

Рисунок 6 — Инициализация литералами и константными выражениями (правила)

В таблице 11 определены свойства объявления типов данных и их инициализации, определенных
пользователем.

Таблица 11 — Объявление определенных пользователем типов данных и их инициализации

Номер Описание Примор Объяснение

1а Перечислимые типы TYPE
1Ь данных ANALOG_SIGNAL_RANGE:

(BIPOLARJOV.
UNIPOLAR_10V. UNIPOLAR_1_5V.
U NI POL AR_0_5 V, UNIPOLAR_4_20_MA.
U NI POLAR_0_20_MA)

:= UNIPOLAR_1_5V:
ENDJYPE

Инициализация

2а
2Ь

Типы данных с име­
нованными значени­
ями

TYPE

Colors: DWORD
(Red := 16#OOFFOOOO.
Green:= 16#OOOOFFOO.
Blue := 16#OOOOOOFF.
White:= Red OR Green OR Blue.
Black:= Red AND Green AND Blue)
:= Green:

END_TYPE

Инициализация

23

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 11

Н о м е р О п и с а н и е П р и м е р О б ъ я с н е н и е

За
З Ь

Тип — диапазоны TYPE

ANALOG_DATA: INT(-4095 .. 4095):= 0;

END_TYPE

4а
4Ь

Типы данных — мас­
сивы

TYPE ANALOG_16_INPUT_DATA;

ARRAY [1 ..16] OF ANALOG_DATA

:= [8{-4095). 8(4095)]:

END_TYPE

ANALOG_DATA
см. выше.

Инициализация

5а
5Ь

Типы функциональ­
ных блоков и классы
как элементы мас­
сива

TYPE
TONs: ARRAY[1 ..50] OF TON

:= [50(PT:=T#100ms)J:
END_TYPE

Инициализация функ­
ционального блока
TON как элемента
массива

6а
6Ь

Структурированный
тип данных

TYPE ANALOG_CHANNEL_CONFIGURATION:
STRUCT

RANGE: ANALOG_SIGNAL_RANGE:
MIN_SCALE: ANALOG_DATA:= -4095;
MAX_SCALE: ANALOG_DATA:=4095;

END_STRUCT;
end_type

см. выше
ANALOG_S IGN AL
RANGE

7а
7Ь

Типы функциональ­
ных блоков и классы
как элементы струк­
туры

TYPE
Cooler STRUCT

Temp: INT;
Cooling: TOF:= (PT:=T# 100ms);

END_TYPE

Функциональный
блок TOF как элемент
структуры

8а
8 Ь

Структурированный
тип данных с относи­
тельной адресацией
АТ

TYPE
Com1_data: STRUCT

head AT %B0: INT:
length AT %B2: USINT:= 26;
flagl AT %X3.0: BOOL;
end AT %B25: BYTE;

END_STRUCT;
END_TYPE

Явное расположение
без перекрытия

9а Структурированный
тип данных с относи­
тельной адресацией
АТ и OVERLAP

TYPE
Com2_data: STRUCT OVERLAP

head AT %B0: INT;
length AT %B2: USINT;
flag2 AT %X3.3: BOOL;
datal AT %B5: BYTE;
data2 AT %B5: REAL;
end AT %B19: BYTE;

END_STRUCT;
END_TYPE

Явное расположение с
перекрытием

24

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 11

Н о м е р О п и с а н и е П р и м е р О б ъ я с н е н и е

10a
10b

Прямо представ­
ленные элементы
структуры — частич­
но определенные,
используя «*»

ТУРЕ
HW_COMP: STRUCT;
IN AT % l\ BOOL:
OUT_VAR AT %Q*: WORD:= 200:
ITNL_VAR: REAL:= 123.0; II not located
END_STRUCT;

END_TYPE

Присваивает компо­
ненты структуры еще
не локализованным
входным и выходным
переменным, см. при­
мечание 2

11a
11b

Прямо производный
тип данных

TYPE
CNT: UINT:
FREQ: REAL:= 50.0;
ANALOG_CHANNEL_CONFIG:

ANALOG_CHANNEL_CONFIGURATION
:= (MIN_SCALE:= 0. MAX_SCALE:= 4000);

END_TYPE

Инициализация

Новая инициализация

12 Инициализация с
использованием кон­
стантных выражений

TYPE
Plx2: REAL:= 2 *3.1416;

END_TYPE

Использует констант­
ное выражение

Примечание 1 — Возможно объявление типа данных без инициализации (свойство «а») или с ини­
циализацией (свойство « Ь ») , Если поддерживается свойство «а», тип данных инициализируется с неявным на­
чальным значением. Если поддерживается свойство « Ь » , тип данных инициализируется с данным значением
или неявным начальным значением, если начальное значение не дано.

Примечание 2 — Переменные с прямо представленными элементами — частично определенными,
используя «*». не могут использоваться в секциях VARJNPUT или VAR_IN_OUT.

6.4.4.2 Перечислимый тип данных
6.4.4.2.1 Общие положения
Объявление перечислимого типа данных означает, что каждый элемент данных этого типа может

принимать только значения, указанные в соответствующем перечне идентификатора, как показано в
таблице 11.

Перечень перечисления определяет упорядоченное множество перечислимых значений, начиная
с первого идентификатора и оканчивая последним.

Различные перечислимые типы данных могут использовать одинаковые идентификаторы для
перечислимых значений. Максимально допустимое число перечислимых значений определяется раз­
работчиком.

Для обеспечения уникальной идентификации при использовании в конкретном контексте, пере­
числимые литералы могут уточняться префиксом, состоящим из имени ассоциированного типа данных
и символа номера «#». аналогично типизированным литералам. В перечне перечисления префиксы не
используются.

Происходит ошибка, если в перечислимом литерале недостаточно информации для однозначного
определения его значения (см. пример ниже).

Пример — Перечислимый тип данных
TYPE

Traffic J ig h t: (Red. Amber. Green):
Painting_colors: (Red, Yellow, Green. B lue):- Blue:

ENDJTYPE
VAR

My_Traffic_light: Traffic_light:= Red:

25

ГОСТ Р МЭК 61131-3—2016

END_VAR
IF Му_ T ra fficJ igh t = Traffic J ig h t*A m b e r THEN... / / OK

IF My_ Traffic J ig h t = Traffic JightU R ed THEN... I / OK
IF My_Traffic J ig h t = Am ber THEN... / / OK — идентификатор Am ber уникален
IF My JTraffic J ig h t = Red THEN... И ОШИБКА — идентификатор Red не являет ся уникальным

6А.4.2.2 Инициализация
Неявное начальное значение перечислимого типа данных — первый идентификатор в связанном

перечне перечисления.
Пользователь может инициализировать тип данных определенным пользователем значением из

перечня перечислимых значений данного типа. Такая инициализация имеет приоритет.
Как показано в таблице 11 для ANALOG_SIGNAL_RANGE. определенное пользователем началь­

ное значение перечислимого типа данных — это присвоенное значение UNIPOLAR_1_5V.
Определенное пользователем присваивание начального значения типа данных является свой­

ством в таблице 11.
6.4.4.3 Тип данных с именованными значениями
6.4.4.3.1 Общие положения
Связанным с перечислимым типом данных, где перечислимые идентификаторы не заданы поль­

зователем. является перечислимый тип данных с именованными значениями. Объявление определяет
тип данных и присваивает значения именованных переменных, как показано в таблице 11.

Объявление именованных значений не ограничивает диапазон значений переменных этого типа,
то есть переменной могут быть присвоены другие константы, или значение может определяться вы­
числением.

Для обеспечения уникальной идентификации при использовании в конкретном контексте, имено­
ванные значения могут уточняться префиксом, состоящим из имени ассоциированного типа данных и
символа номера «#». аналогично типизированным литералам.

В перечне объявления префиксы не используются. Происходит ошибка, если в перечислимом
литерале недостаточно информации для однозначного определения его значения (см. пример).

Пример — Тип данных с именованными значениями
TYPE

Traffic J ig h t: INT (Red:= 1. Am ber := 2. Green:= 3):= Green;
Painting_colors: INT (R ed:- 1, Yellow:= 2. Green:= 3. B lue:= 4):= Blue;

ENDJTYPE

VAR
MyJTraffic J ig h t : Traffic J ig h t;

END_VAR

M y_TrafficJight:= 27; / / Присваивание константы IF
M y_TrafficJ igh t = Am ber THEN ..Л Присваивание выражения

//Примечание — Это невозможно для перечислимых значений
Му_ T ra fficJ igh t:= Tra fficJ ightttR ed * 1;

IF My_ Traffic J ig h t = 123 THEN... / / OK

IF My_ Traffic J ig h t = Tra fficJ igh t*Am ber THEN... / / OK

IF My_ Traffic J ig h t = Traffic J igh tttR ed THEN... HO K

IF My_ Traffic J ig h t = Am ber THEN... H OK — идентификатор Am ber

уникален

IF My JTraffic J ig h t = Red THEN... И ОШИБКА — идентификатор

Red не являет ся уникальным

26

ГОСТ Р МЭК 61131-3—2016

6.4.4.3.2 Инициализация
Неявное значение для типа данных с именованными значениями — это первый элемент данных в

перечне перечисления. В приведенном выше примере для Trafficjight таким элементом является Red.
Пользователь может инициализировать тип данных определенным пользователем значением.

Инициализация не ограничивается именованными значениями — может использоваться любое значе­
ние из диапазона базового типа. Такая инициализация имеет приоритет.

В пример, определенным пользователем начальным значением перечислимого типа для Traffic_
light является Green.

Определенное пользователем присваивание начального значения типа данных является свой­
ством в таблице 11.

6.4.4.4 Тип-диапазон
6.4.4.4.1 Общие положения
Декларацией типа-диапазона определено, что значение любого элемента данных этого типа мо­

жет принимать значения между указанными верхними и нижними пределами (включительно), как по­
казано в таблице 11.

Пределы в типе-диапазоне должны быть литералами или константными выражениями.

Пример —

TYPE
ANALOG_DATA: INT(-4095.. 4095):= 0;

END_TYPE

6.4.4.4.2 Инициализация
Неявные начальные значения для типов данных с диапазоном — это первый (нижний) предел

диапазона.
Пользователь может инициализировать тип данных определенным пользователем значением из

диапазона. Такая инициализация имеет приоритет.
Например, как показано в примере, приведенном в таблице 11. неявное начальное значение эле­

ментов типа ANALOG_DATA равно -4095. в то время, как при явной инициализации, неявное начальное
значение равно нулю (как объявлено).

6.4.4.5 Типы данных — массивы
6.4.4.5.1 Общие положения
Объявление типа данных — массива определяет, что должно быть выделено достаточное количе­

ство памяти для каждого элемента этого типа, чтобы хранить все данные, которые могут быть индекси­
рованы указанным поддиапазоном (поддиапазонами) индексов, как показано в таблице 11.

Массив — это совокупность элементов данных одинакового типа. В качестве типа элемента мас­
сива могут использоваться элементарные и определенные пользователем типы данных, типы функци­
ональных блоков и классы. На данную совокупность элементов данных ссылаются с помощью одного
или более индексов, заключенных в квадратные скобки и разделенных запятыми. Если значение индек­
са выходит за пределы, указанные в объявлении массива, возникает ошибка.

Примечание — Для вычисляемых индексов такая ошибка может быть обнаружена только во время
выполнения.

Максимальное число индексов массива, максимальный размер массива и максимальный диапа­
зон значений индекса определяются разработчиком.

Пределы в диапазона индекса должны быть литералами или константными выражениями. Масси­
вы переменной длины определены в 6.5.3.

В языке ST индекс является выражением, производящим значение, соответствующее одному из
подтипов родового типа ANYJNT.

Форма индексов в языке IL и графических языках, определенных в разделе 8. ограничена одно­
элементными переменными или целыми литералами.

Пример —
а) Объявление массива

VAR т у ANAL OG_ 16: ARRAY [1..16] OF ANALOG_DАТА ;
:= [8(-4095), 8(4095)]; / / определенные пользователем начальные значения

END_VAR

27

ГОСТ Р МЭК 61131-3—2016

Ь) Использование переменных массива в язы ке S T может быт ь следующ им:
OUTARY[6.SYM]:= INARY[0] * INARY[7] — INARY[i] * %IW62.

6.4.4.5.2 Инициализация
Неявное начальное значение каждого элемента массива — это начальное значение, определен­

ное для типа данных элементов массива.
Пользователь может инициализировать тип массива значением, определенным пользователем.

Такая инициализация имеет приоритет.
Определенное пользователем начальное значение массива назначается в форме списка, в кото­

ром могут использоваться скобки для обозначения повторений.
Во время инициализации типов данных — массивов, самый правый индекс массива изменяется

быстрее остальных при наполнении массива из списка начальных значений.

Пример — Инициализация массива
A: ARRAY[0..5] OF INT:= [2(1, 2, 3)]

эквивалентно последовательности инициализации 1, 2, 3, 1, 2, 3.

Если число начальных значений, данных в перечне инициализации превышает число входов мас­
сива. лишние (самые правые начальные значения будут отброшены. Если число начальных значений
меньше, чем число входов массива, оставшиеся входы массива будут заполнены неявными начальны­
ми значениями для соответствующего типа данных. В любом случае, пользователь будет предупреж­
ден об этой ситуации во время подготовки программы для выполнения.

Определенное пользователем присваивание начального значения типа данных является свой­
ством в таблице 11.

6.4.4.6 Структурированный тип данных
6.4.4.6.1 Общие положения
Объявление структурированного типа данных (STRUCT) указывает, что этот тип данных содержит

совокупность подэлемемтов определенных типов, к которым можно осуществлять доступ под опреде­
ленным именем, как показано в таблице 11.

Элемент структурированного типа данных представляется двумя или более идентификаторами,
разделенными точкой «.».

Первый идентификатор представляет имя структурированного элемента, а последующие иден­
тификаторы представляют последовательность имен элементов для доступа к конкретному элементу
данных в структуре данных.

В качестве типа элемента структуры могут использоваться элементарные и определенные поль­
зователем типы данных, типы функциональных блоков и классы.

Например, элемент типа данных ANALOG_CHANNEL_CONFIGURATION. объявленный таблице 11.
будет содержать подэлемент RANGE типа ANALOG_SIGNAL_RANGE, подэлемент MIN_SCALE типа
ANALOG_DATA и подэлемент MAX_SCALE типа ANALOG_DATA.

Максимальное число элементов структуры, максимальное количество данных, которое может со­
держаться в структуре и максимальное число вложенных уровней адресации структурного элемента
определяются разработчиком.

Две структурированных переменных являются совместимыми по присваиванию, только если они
имеют одинаковый тип данных.

Пример — Объявление и использование ст руктурированного типа данных и структурированной
переменной.

а) Объявление ст руктурированного типа данных
TYPE

ANALOG_SIGNAL_RANGE: (BIPOLAR_10V,

UNIPOLAR_10V):
ANALOG_DATA: INT (-4095.. 4095);
ANALOG_CHANNEL_CONFIGURATION:

STRUCT
RANGE: ANALOG_SIGNAL_RANGE;
MIN_SCALE: ANALOG_DATA:
MAX_SCALE: ANALOG_DATA;

28

ГОСТ Р МЭК 61131-3—2016

END_STRUCT;
END_TYPE

b) Объявление структурированной переменной
VAR

MODULE_CONFIG:ANALOG_CHANNEL_CONFIGURATION;
MODULE_8_CONF: ARRAY[1..8] OF ANALOG_CHANNEL_CONFIGURATION;

END_VAR
c) Использование переменных массива в язы ке ST:

MODULE_CONFIG.MIN_SCALE:= -2047;

MODULE_8_CONF[5].RANGE:= BIPOLARJOV.

6 4.4.6.2 Инициализация
Неявные значения компонентов структуры даются их индивидуальными типами данных.
Пользователь может инициализировать компоненты структуры значениями, определенными

пользователем. Такая инициализация имеет приоритет.
Пользователь может также инициализировать ранее определенную структуру, используя пере­

чень присваиваний компонентам структуры. Данная инициализация имеет более высокий приоритет,
чем неявная инициализация и инициализация компонентов.

Пример — Инициализация структуры
a) Объявление с инициализацией ст руктурированного типа данных

TYPE
ANALOG_SIGNAL_RANGE:

(BIPOLAR_10V,
UNIPOLAR_10V):~ UNIPOLAR_10V;

ANALOG_DATA: INT (-4095 ..4095);
ANALOG_CHANNEL_CONFIGURATION;

STRUCT
RANGE: ANAL OG_SIGNA L_RA NGE;
MIN_SCALE: ANALOG_DATA:= -4095;
MAX_SCALE: ANALOG_DATA:= -4096;

END_STRUCT;
ANALOG_8BI_CONFIGURATION:

ARRAY 11..8] OF ANALOG_CHANNEL_CONFIGURATION
:= [8((RANGE:= BIPOLARJOV))];

END_TYPE
b) Объявление с инициализацией структурированной переменной

VAR
MODULE_CONFIG:ANALOG_CHANNEL_CONFIGURATION

:= (R AN G E BIP O LA R _10V . MIN_SCALE:= -1023);
MODULE_8_SMALL: ANALOG_8BI_CONFIGURATION

:= [8 ((MIN_SCALE:= -2047. MAX_SCALE:= 2048))];
END_VAR

6.4.4.7 Относительное положение элементов структурированных типов данных (АТ)
6.4.4.7.1 Общие положения
Положения (адреса) элементов структурированного типа могут быть определены относительно

начала структуры.
В этом случае, за именем компонента этой структуры следует ключевое слово АТ и относитель­

ный адрес.
Объявление может содержать разрывы в расположении памяти.
Относительный адрес состоит из символа процента «%». определителя битового или байтового

адреса. Байтовый адрес — это целый литерал без знака, обозначающий смещение в байтах. Битовый
адрес состоит из смещения в байтах, следующего символа точки «.» и смещения в битах, являющегося

29

ГОСТ Р МЭК 61131-3—2016

целым литералом без знака в диапазоне от 0 до 7. В относительном адресе не допускаются пробель­
ные символы.

Компоненты структуры не должны перекрываться в расположении памяти, за исключением ситу­
ации. когда в объявлении имеется ключевое слово OVERLAP.

Перекрытие строк находится вне области применения настоящего стандарта.

Примечание — Отсчет битового смещения начинается от самого правого би та с 0. Отсчет битового сме­
щения начинается от начала структуры с 0.

Пример — Относительные адреса и перекрытие в структуре

TYPE
Com1_data: STRUCT

head AT %B0: INT; И в положении 0
length AT %B2: USINT=26; //в положении 2
flagl AT%X3.0: BOOL; He положении 3.0
end A T VoB25:

END_STRUCT;

BYTE; // в положении 25, оставляя разрыв

Com2_data: STRUCT OVERLAP
head A T VoBO: INT; // в положении 0
length AT %B2: USINT; / / в положении 2
flag2 AT VoX3.3: BOOL; //в положении 3.3
datal AT %B5: BYTE; / / в положении 5, перекрывается
data2 AT %B5: REAL; И в положении от 5 до 8
end AT %B19: BYTE; U по адресу 19, оставляя разрыв

END_STRUCT;

Com_data: STRUCT OVERLAP// С1 и C2 перекрываются
C1 at VoBO: Com1_data:
C2 at VoBO: Com2_data:

EN OBSTRUCT;
END_TYPE

6.4.4.7.2 Инициализация
Структуры с перекрытием не могут явно инициализироваться.
6.4.4.8 Прямо представленные компоненты структуры — частично определенные с использова­

нием «*»
Символ звездочки «*» в таблице 11 может использоваться, чтобы обозначить еще не полностью

определенные адреса для прямо представленных компонентов структуры.

Пример — Присваивание компонентов структуры еще не локализованным входным и выходным
переменным.
TYPE

HW_COMP: STRUCT:
IN AT %T: BOOL;
VAL AT %/*; DWORD:
OUT AT %Q': BOOL; OUT_VAR AT %Q': WORD:
ITNL_VAR: REAL; //еще не локализован END_STRUCT;

ENDJTYPE

В случае, когда прямо представленный компонент структуры используется для назначения распо­
ложения в части объявлений программы, типа функционального блока или класса, на месте префикса
размера и целого со знаком может использоваться звездочка «*» для указания того, что прямое пред­
ставление еще не полностью определено.

30

ГОСТ Р МЭК 61131-3—2016

Использование этого свойства требует, чтобы положение структурированной переменной, объ­
явленной таким образом, было полностью определено внутри конструкции VAR_CONFIG...END_VAR
конфигурации для каждого экземпляра охватывающего типа.

Переменные такого типа не могут использоваться в секциях VAR JNPUT. VAR_!N_OUT и VAR_TEMP.
Ошибка возникает, если отсутствует какая-либо полная спецификация в конструкции VAR_

CONFIG...END_VAR для какой-либо неполной спецификации адреса, выраженной символом «*» в лю­
бом экземпляре программы или функционального блока, который содержит такие неполные специфи­
кации.

6.4.4.9 Прямо порожденный тип данных
6.4.4.9.1 Общие положения
Определенные пользователем типы данных могут быть прямо порождены из элементарного типа

данных или определенного пользователем типа данных.
Это может быть использовано для определения специфических для типа начальных значений.

Пример — Прямо порожденный тип данных
TYPE

mylnt1123: INT:= 123;
myNewArrayType: ANALOG_16_INPUT_DATA := [8(-1023), 8(1023)];
Com3_data: Com2_data:= (head.— 3. length—40);

END_TYPE
R1: REAL- 1.0;

R2: R1;

6 4.4.9.2 Инициализация
Неявное начальное значение равно начальному значению типа данных, из которого порожден но­

вый тип. Пользователь может инициализировать тип данных определенным пользователем значением.
Такая инициализация имеет приоритет.

Определенное пользователем начальное значение элементов структуры может быть объявлено в
перечне, заключенном в скобки и следующим за идентификатором типа данных. Элементы, начальное
значение которых не перечислено в перечне инициализации, имеют неявные начальные значения, объ­
явленные для них в объявлении оригинального типа данных.

Пример 1 — Использование определенных пользователем типов данных
С учетом объявлений ANALOG_16_INPUT_DATA в таблице 11 и объявления VAR INS: ANALOG_16_

INPUT_DATA; END_VAR переменные от INS(1] до INS[16] могут использоваться везде, где могут исполь­
зоваться переменные типа INT.

Пример 2
Аналогично, с учетом объявления Com_data в таблице 11 и. дополнительно, объявления VAR

telegram: Com_data; END_VAR переменная telegram.length может использоваться везде, где может ис­
пользоваться тип USINT.

Пример 3
Это правило может применяться рекурсивно:
С учетом объявления ANALOG_16_ INPUT_CONFIGURATION. ANALOG_CHANNEL_CONFIGURATION и

ANALOG_DATA в таблице 11 и объявления VAR CONF: ANALOG_16_INPUT_CONFIGURATION; END_VAR пе­
ременная CONF.CHANNEL[2].MIN_SCALE может использоваться везде, где может использоваться тип
INT.

6.4.4.10 Указатели
6.4.4.10.1 Объявление указателя
Указатель — это переменная, которая содержит только ссылку на переменную или на экземпляр

функционального блока. Указатель может иметь значение NULL, то есть он не ссылается ни на что.
Указатели объявляются для определенных типов данных, используя ключевое слово REF_TO и

ссылочный тип данных — тип данных, на который производится ссылка. Ссылочный тип данных уже
должен быть определен. Им может являться элементарный тип данных или определенный пользова­
телем тип данных.

Примечание — Указатели без привязки к типу данных выходят за пределы настоящего стандарта.
31

ГОСТ Р МЭК 61131-3—2016

Пример 1
TYPE

туАггауТуре:
myRefArrType:
my A rrOfRefType:

ENDJTYPE
VAR

myArrayl:
myRefArrl:
myArrOfRef:

END_VAR

ARRAY[0..999] OF INT;
REFJTO туАггауТуре; // определение указателя
ARRAY [0..12] OF myRefArrType; / / определение массива ссылок

туАггауТуре:
myRefArrType; / / определение указателя
myArrOfRefType: / / определение массива указателей

Ссылка должна ссылаться только на переменные указанного ссылочного типа данных. Указатели
на прямо порождаемые типы данных обрабатываются как псевдонимы указателей на базовый тип дан­
ных. Прямое порождение может применяться несколько раз.

Пример 2
TYPE

myArrTypel: ARRAY[0..999] OF INT;
myArrType2: myArrTypel;
myRefTypel: REFJTO myArrTypel;
myRefType2: REFJTO myArrType2;

ENDJTYPE
myRefTypel и myRefType2 могут ссылаться на переменные типа ARRAY[0..999] OF INT и производных
типов данных.

Ссылочный тил данных указателя может также являться типом функционального блока или клас­
сом. Указатель базового типа может также ссылаться на экземпляры, порожденные из этого типа дан­
ных.

Пример 3
CLASS F1... END_CLASS;
CLASS F2 EXTENDS F I ... END_CLASS;
TYPE

myRefFI: REF_TO FI;
myRefF2: REF_TO F2;

ENDJTYPE

Указатели типа myRefFI могут ссылаться на экземпляры классов F1. F2 и на производные от них
классы. Однако указатели типа myRefF2 не могут ссылаться на экземпляры класса F1, а могут ссылать­
ся только на экземпляры класса F2 и производные от него, так как класс F1 может не поддерживать
методы и переменные расширенного класса F2.

6.4.4.10.2 Инициализация указателей
Указатели могут инициализироваться значением NULL (неявно) или адресом уже объявленных

переменных, экземпляров функционального блока или класса.

Пример —
FUNCTION_BLOCK F1... END_FUNCTION_BLOCK:
VAR

mylnt: INT;
myRefint: REF_ TO INT:= REF(mylnt);
myFI: F I;
myRefFI; REF_TO F1:= REF(myF1);

ENDJ/AR

32

ГОСТ Р МЭК 61131-3—2016

6.4.4.10.3 Операции с указателями
Оператор REF() возвращает указатель на заданную переменную или экземпляр. Ссылочным ти­

пом данных возвращенного указателя является тип данных заданной переменной. Применение опе­
ратора REF() к временной переменной (например, переменным любой секции VAR_TEMP или любым
переменным внутри функций) не разрешается.

Указатель может быть присвоен другому указателю, если его ссылочный тип данных эквивалентен
базовому типу или является ссылочным типом данных присвоенного указателя.

Указатели могут присваиваться параметрам функций, функциональных блоков и методов в вы­
зове. если ссылочный тип данных параметра эквивалентен базовому типу или является базовым типом
ссылочного типа данных. Ссылки не могут использоваться как входные-выходные переменные.

Если указатель присвоен указателю такого же типа данных, то последний ссылается на ту же
самую переменную. В таком случае, прямо порожденный тип данных рассматривается также, как его
базовый тип.

Если указатель присваивается указателю на такой же тип функционального блока или базовый
тип функционального блока, то затем этот указатель указывает на тот же самый экземпляр, но является
все еще связанным со своим типом функционального блока, то есть может использовать только пере­
менные и методы своего ссылочного типа данных.

Разыме1ювание указателей осуществляется явно.
Указатель разыменовывается использованием предшествующего символа крышки «А».
Разыменованный указатель может использоваться так же. как прямо используется переменная.

Разыменованный указатель на NULL является ошибкой.

Примечание 1 — Возможные проверки указателей на NULL может производиться во время компиляции,
системой поддержки выполнения программы или прикладной программой.

Конструкция REF() и оператор разыменования «Л» используются в графических языках при опре­
делении операндов.

Примечание 2 — Арифметические операции с указателями не рекомендуются и не входят в задачу на­
стоящего стандарта.

Пример 1
TYPE

S1: STRUCT
SC1: INT;
SC2: REAL;
END_STRUCT;

A1: ARRAY[1..99] OF INT;
END_TYPE
VAR

myS1: S I;
myA1:A1;
myRefSh REF_TO S I.- REF(mySI);
myRefAl: REF_TOA1:= REF(myA1);
myReflnt: REF_TO INT:- REF(myA1[1J);

END_VAR
myRefS1*.SC1:= my Ref A1 Л[12]; // в данном случае, это эквивалентно S1.SC1:= A1[12J;
myReflnt.- REF(A1[11]);
S1.SC1:= myReflnt''; / / присваивает значение переменной АЦ11] элементу структуры S1.SC1

33

ГОСТ Р МЭК 61131-3—2016

Пример 2
Графическое представление операторов из примера 1

+• +
| MOVE |

------------- | ЕЛ ЕМ О |
myRefА1А[12] |IN ООТ| myRefS1A.SCI

+-----------------+

+-----------------♦
| MOVE |

------------ 1 EH ENO|-----------
REF(A1111J)--|IN OUT|--- myRefInt

+------------- +

♦-------------+
| MOVE |

-----------|EN ENO|
myRefIntA--|IN OUT|— SI.SCI

+------------- +

В таблице 12 приведены свойства операций с указателями.

Таблица 12 — Операции с указателями

Н о м е р О п и с а н и е П р и м е р

Объявление

1 II определение типа указателя TYPE
myRefType: REF_TO INT;

END_TYPE

Присваивание и сравнение

2а Присваивание указателя указателю <ухазатель>:= <указатель>
myRefType 1:= myRefType2;

2Ь Присваивание указателя параметру функции,
функционального блока или метода

myFB (a:= myRefSI);
Типы должны быть эквивалентными

2с Сравнение с NULL IF mylnt = NULL THEN ...

Создание ссылки

За REF(<nepeM6HHaa>)
Предоставляет типизированную ссылку на переменную

myRefA! := REF (A1);

ЗЬ ВЕР(<экземпляр функционального блока>)
Предоставляет типизированную ссылку на экземпляр
функционального блока или класса

myRefFB1:= REF{myFB1)

Разыменование

4 <указатепь>л
Предоставляет содержимое переменной или содержи­
мое экземпляра, на которые ссылается переменная ука­
зателя

mylnt:= туАЖе(л[12];

6.5 Переменные

6.5.1 Объявление и инициализация переменных
6.5.1.1 Общие положения
Переменные предоставляют средства идентификации объектов данных, содержание которых мо­

жет изменяться. Например, данные, связанные с входами, выходами или памятью программируемого
контроллера.

В отличие от литералов, которые являются внешним представлением данных, переменные могут
изменять свое значение с течением времени.
34

ГОСТ Р МЭК 61131-3—2016

6.5.1.2 Объявление
Переменные объявляются внутри одной из секций переменных.
Переменные можно объявлять, используя:
- элементарный тип данных: или
- предварительно определенный пользователем тип; или
- тип указателя: или
- прямо определенный пользователем тип.
Возможны следующие виды переменной:
- одноэлементная переменная, то есть переменная, тип которой либо:

- элементарный тип данных; или
- определенное пользователем перечисление или тип-диапазон, или
- определенный пользователем тип. происхождение которого, определяемое рекурсивно, про­

слеживается до элементарного типа, типа перечисления или типа-диапазона:
- многоэлементная переменная, то есть переменная, которая представляет массив ARRAY или

структуру STRUCT;
- указатель, то есть переменную, которая ссылается на другую переменную или экземпляр

функционального блока.
Объявление переменной состоит из следующих элементов:
- списка имен объявляемых переменных:
- символа двоеточия «:»;
- типа данных с необязательной инициализации, специфичной для различных видов переменных.

Пример —
TYPE

туТуре: ARRAY [1..9] OF INT;// предварительно определенный пользователем тип
ENDJTYPE
VAR

myVarl, myVarla: INT; // dee переменные, используя элементарный тип
myVar2: туТуре; И используя предварительно определенный пользователем тип
myVar3: ARRAY [1..8J OF REAL; И используя прямо определенный пользователем тип

END_VAR

6.5.1.3 Инициализация переменных
Неявным начальным значением переменной (переменных) являются:
1 Неявное начальное значение (значения) лежащих в основе элементарных типов данных, как

определено в таблице 10.
2 NULL, если переменная является указателем.
3 Определенное пользователем значение (значения) назначенного типа данных.
Это значение факультативно может быть определено использованием оператора присваивания

«:=» в определении типа TYPE, как показано в таблице 11.
4 Пользователем значение (значения) переменной.
Это значение факультативно может быть определено использованием оператора присваивания

«:=» в объявлении переменной VAR (см. таблицу 14).
Определенное пользователем значение может быть литералом (например. -123.1.55. «аЬс») или

константным выражением (например. 12’ 24).
Начальные значения не могут задаваться в объявлениях VAR_EXTERNAL.
Начальные значения могут также определяться с использованием определяемого экземпляром

свойства инициализации, предоставляемого конструкцией VAR_CONFIG...END_VAR. Определяемые
экземпляром начальные значения всегда замещают специфические для типа начальные значения.

35

ГОСТ Р МЭК 61131-3—2016

Таблица 13 — Определение переменных

Номер Описание Пример Объяснение

1 Переменная эле- VAR Распределяет бит памяти логине-
ментарнско типа МУВГГ: BOOL: ской переменной МУВГГ
данных OKAY: STRING[10J;

VALVE_POS AT %QW28: INT:
END_VAR

Распределяет память для хране­
ния строки с максимальной дли­
ной 10 символов

2 Переменная с опре- VAR Описание переменных с пользова-
деленным пользова­
телем типом данных

my VAR: myType: END_VAR тельским типом данных

3 Массив VAR
BITS: ARRAY10..7] OF BOOL;
TBT: ARRAY 11..2, 1..3] OF INT;
OUTAAT %QW6: ARRAY[0..9] OF INT;

END_VAR

4 Указатель VAR
myReflnt: REF_TO INT; END_VAR

Определение переменной, являю­
щейся указателем

Таблица 14 — Инициализация переменных

Номер Описание Пример Объяснение

1 Инициализация
переменной с эле­
ментарным типом
данных

VAR
MYBIT: BOOL := 1:
OKAY: STRING! 10] := OK";
VALVE_POS AT %QW28: INT:= 100:

END_VAR

Распределяет бит памяти логиче­
ской переменной MYBIT с началь­
ным значением от 1. Распределя­
ет память для хранения строки
с максимальной длиной десяти
символов
После инициализации строка
имеет длину 2 и содержит двух­
байтовую последовательность
символов «ОК» (десятичные 79
и 75. соответственно), в порядке,
подходящем для печати символь­
ной строки

2 Инициализация пе­
ременной с опреде­
ленным пользовате­
лем типом данных

TYPE
myType: ...

END_TYPE
VAR

my VAR: myType:= ...II инициализация
END_VAR

Объявление определенного поль­
зователем типа с инициализацией
и без инициализации
Описание с предварительной ини­
циализацией переменной с опре­
деленным пользователем типом
данных

3 Массив VAR
BITS: ARRAY[0..7] OF BOOL

:=|1.1.0,0.0.1,0.0];
TBT: ARRAY [1..2, 1..3] OF INT

:= [9.8,3(10),6]:
OUTARY AT %QW6: ARRAY(0..9] OF
INT := 110(1)]:

END_VAR

Распределяет 8 битов памяти для
хранения начальных значений
BITS[0]:= 1. BITS[1]:= 1....
BITS(6]:= 0. BITS[7]:= 0.
Распределяет целый массив TBT
размером 2*3 с начальными зна­
чениями
ТВТ(1.1]:= 9.
ТВТ[1.2]:= 8,
ТВТ(1.3]:= 10. ТВТ[2.1]:= 10.
ТВТ[2.2]:= 10. ТВТ[2.3]:= 6.

36

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 14

Н о м е р О п и с а н и е П р и м е р О б ъ я с н е н и е

4 Объявление и ини­
циализация кон­
стант

VAR CONSTANT
PI: REAL:= 3.141592:
PI2: REAL:= 2.0*PI;

END_VAR

Константа
Символическая константа PI

5 Инициализация с
использованием
константных выра­
жений

VAR
Plx2: REAL:= 2.0 *3.1416:

END_VAR

Использует константное выраже­
ние

6 Инициализация ука­
зателя

VAR
myReflnt: REF_TO INT

:= REF(mylNT);
END_VAR

Инициализирует переменную-ука­
затель myReflnt ссылкой на пере­
менную myINT.

6.5.2 Секции переменных
6.5.2.1 Общие положения
Каждая декларация программного компонента {POU), то есть функционального блока, функции

или программы и. дополнительно, метода, начинается частями от нуля или более объявлений, которые
определяют имена, типы (и. если необходимо, физическое или логическое расположение и инициали­
зацию) переменных, используемых в организационной единице.

Часть деклараций программного компонента POU может содержать различные секции VAR. в за­
висимости от вида программного компонента POU.

Переменные могут объявляться в различных текстовых конструкциях VAR ... END_VAR, включаю­
щих квалификаторы, такие как RETAIN или PUBLIC, при необходимости. Квалификаторы секций пере­
менных кратко приведены на рисунке 7.

Ключевое слово Использование переменной

Секции VAR: зависящие от типа программного компонента POU (функция, функциональный блок, про­
грамма) или метода

VAR
VARINPUT
VAR_OUTPUT
VAR_IN_OUT

VAR_EXTERNAL
VAR_GLOBAL
VARACCESS
VAR_TEMP

VAR_CONFIG
(END_VAR)

Внутренние no отношению к объекту (функция, функциональный и т. д.).
Предоставленные извне, не модифицируются внутри объекта.
Предоставляемых объектом для внешних объектов.
Предоставляются внешними объектами, могут модифицироваться внутри объ­
екта. предоставляться для внешнего объекта.
Предоставляемые конфигурацией через VAR_GLOBAL.
Объявление глобальной переменной.
Объявление пути доступа.
Временное хранилище для переменных в функциональных блоках, методах и
программах.
Специфическая для экземпляра инициализация и назначение расположения.
Заканчивает описанные выше секции VAR.

Рисунок 7 — Ключевые слова объявлений переменных (сводка), лист 1

Квалификаторы: могут следовать за описанными выше ключевыми словами
RETAIN Сохраняемые переменные.
N0N_RETA1N Несохраняемые переменные.

37

ГОСТ Р МЭК 61131-3—2016

PROTECTED

PUBLIC
PRIVATE
INTERNAL
CONSTANT3*

Доступ только изнутри собственного объекта и его производных объектов (не­
явно).
Разрешен доступ из всех объектов.
Доступ только из собственно объекта.
Доступ только внутри одного пространства имен.
Константа (неизменяемая переменная).

Примечание — Использование данных ключевых слов является свойством программного компонента и
элемента конфигурации, в котором они используются.

а* Экземпляры функциональных блоков не объявляются в секциях переменных с квалификатором CONSTANT.

Рисунок 7, лист 2

- VAR
Переменные, объявленные в секции VAR ... END_VAR сохраняются от одного вызова программы

или экземпляра функционального блока до другого.
В пределах функций, переменные, объявленные в этой секции, не сохраняются между вызовами

функций.
- VAR_TEMP
В пределах программных компонент, переменные могут объявляться только секции VAR_TEMP...

END_VAR.
Для функций и методов ключевые слова VAR и VAR_TEMP эквивалентны.
Данные переменные распределяются и инициализируются специфическими для типа неявными

значениями, и не сохраняются между вызовами.
- VARJNPUT, VAR_OUTPUT и VAR_IN_OUT
Переменные, объявленные в данных секциях, являются формальными параметрами функций,

типов функциональных блоков и методов.
- VAR_GLOBAL и VAR_EXTERNAL
Переменные, объявленные в секции VAR_GLOBAL, могут использоваться в других программных

компонентах, если они повторно объявлены там в секции VAR_EXTERNAL .
На рисунке 8 показано использование ключевых слов VAR_GLOBAL, VAR_EXTERNAL и CON­

STANT.

О б ъ я в л е н и е в э л е м е н т е ,
с о д е р ж а щ е м п е р е м е н н у ю

О б ъ я в л е н и е о э л е м е н т е , и с п о л ь з у ю щ е м
п е р е м е н н у ю

Р а з р е ш е н о ?

VAR_GLOBAL X VAR_EXTERNAL CONSTANT X Да

VAR_GLOBALX VAR_EXTERNAL X Да

VAR_GLOBAL CONSTANT X VAR_EXTERNAL CONSTANT X Да

VAR_GLOBAL CONSTANT X VAR_EXTERNAL X П/п

Примечание — Использование секции VAR_EXTERNAL в содержащемся элементе может приводить
к непредвиденному поведению. Например, когда значение внешней переменной изменяется другим содержа­
щимся элементом в одном и том же содержащемся элементе.

Рисунок 8 — Использование VAR_GLOBAL, VAR_EXTERNAL и CONSTANT (правила)

- VAR_ACCESS
Доступ к переменным, объявленным в секции VAR_ACCESS. может производиться с использова­

нием пути доступа, заданного в объявлении.
- v a r _c o n f ig
Конструкция VAR_CONFIG...END_VAR предоставляет средства для назначения специфического

для экземпляра размещения символически представленных переменных, используя символ «*» или
для присвоения специфических для экземпляра начальных значений символически представленным
переменным, или и для того и для другого.
38

ГОСТ Р МЭК 61131-3—2016

6.5.2.2 Область действия объявлений
Область действия (диапазон применимости) деклараций, содержащихся в разделе деклараций,

является локальной для программных компонент, в которых данный раздел деклараций содержится.
То есть объявленные переменные не будут доступны для других программных компонентов, за исклю­
чением явных параметров, передаваемых через переменные, которые объявлены как входы и выходы
этих компонент.

Исключением из данного правила являются переменные, объявленные как глобальные. Такие
переменные доступны для программных компонент только через объявление VAR_EXTERNAL. Тип
переменных, объявленных в блоке VAR_EXTERNAL. должен быть согласован с типом, объявленным в
блоке VAR_GLOBAL. связанных программ, конфигурации и ресурсе.

Ошибка возникает, если:
- какая-либо программная компонента пытается изменить значение поременной. которая была

объявлена с квалификатором CONSTANT или в секции VARJNPUT;
- переменная, объявленная как VAR_GLOBAL CONSTANT, в элементе конфигурации или про­

граммном компоненте («содержащем элементе») используется в объявлении VAR_EXTERNAL (без ква­
лификатора CONSTANT) любого элемента, содержащегося в пределах охватывающего элемента, как
показано ниже.

Максимальное число переменных, допустимых в блоке объявления переменных, определяется
разработчиком.

6.5.3 Переменные типа ARRAY переменной длины
Массивы переменной длины могут использоваться только как:
- входные, выходные или входные-выходные переменные функций и методов;
- входные-выходные переменные функциональных блоков.
Число размерностей массива и фактических и формальных параметров должны быть одинако­

выми. Они определяются, используя символ звездочки как спецификацию неопределенного диапазона
для границ индекса.

Массивы переменной длины предоставляют программам, функциям, функциональным блокам и
методам средства использовать массивы с различными диапазонами индекса.

Для работы с массивами переменной длины предоставляются следующие стандартные функции
(см. таблицу 15).

Таблица 15 — Переменные типа ARRAY переменной длины

Номер Описание Примеры

1 Декларация с использованием *
ARRAY [*. *___] OF тип данных

VAR_IN_OUT
A: ARRAY [’ . *] OF INT:

END_VAR;

Стандартные функции LOWER_BOUND и UPPER_BOUND

2а Графическое представление Получить нижнюю границу массива:
+----------------------- +
! LOWER BOUND !

A R R A Y -------- ! ARR ! ----- ANY IN T
A N Y _ IN T — ! D IM 1

---------------4

Получить верхнюю границу массива:
♦----------------------- +
! UPPER_BOUND !

A R R A Y ------ ! ARR ! ----- ANY IN T
A N Y _ IN T -----! D IM !

+----------------------- +

2Ь Текстовое представление Получить нижнюю границу 2-го измерения массива А:
low2:= LOWER_BOUND (А. 2);
Получить верхнюю границу 2-го измерения массива А
ир2:= UPPER_BOUND (А 2);

39

ГОСТ Р МЭК 61131-3—2016

Пример 1
А1: ARRAY [1.. 10] OF INT:= [10(1)];

А2: ARRAY[1..20. -2..2J OF INT:= [20(5(1])];
Ив соответствии с инициализацией массива, см. €.4.4.5.2

LOWER_BOUND (A1, 1) — 1
UPPER_B О UND (A1, 1) - 10
LOWER_BOUND (A2. 1) - 1
UPPER_BOUND (A2. 1) 20
LOWER_BOUND (A2. 2) - ■2
UPPER_BOUND (A2, 2) - 2
LOWER_BOUND (A2, 0) — ошибка
LOWER_BOUND (A2. 3) — ошибка

Пример 2 — Суммирование массивов
FUNCTION SUM: INT;
VAR_IN_OUT A: ARRAY Г] OF INT; END_VAR;
VAR i, sum2: DINT; END_VAR;

sum2:= 0;
FOR i~ LOWER_BOUND(A, 1) TO UPPER_BOUND(A,1)

sum2:= sum2 + A[i]; END_FOR;
SUM:= sum2; END_FUNCTION

//SUM (A1) -*10
H SUM (A2[2J) —5

Пример 3 — Умножение матриц
FUNCTION MATRIX_MUL
VARJNPUT

A: ARRAY C, *] OF INT;
B: ARRAY f , '] OF INT;

END_VAR;

VAR_OUTPUT C: ARRAY [’] OF INT; END_VAR;
VAR i,j, k, s: INT; END_VAR;

FOR /:= LOWER_BOUND(A, 1) TO UPPER_BOUND(A. 1)
FOR j ~ LOWER_BOUND(B, 2) TO UPPER_BOUND(B, 2)
s:= 0;

FOR k:= LOWER_BOUND(A,2) TO UPPER_BOUND(A, 2)
s:= s + A[i,k] * B[k,j];
END__FOR;

C[ij]:= s;
END_FOR;

END_FOR;
END_FUNC TION

40

ГОСТ Р МЭК 61131-3—2016

// Использование:
VAR

A: ARRAY [1..5, 1..3J OF INT;
В: ARRAY [1..3, 1..4J OF INT:
C: ARRAY [1..5, 1..4J OF INT:

END_VAR
MATRIX_MUL (А. В. C):

6.5.4 Константные переменные
Константные переменные — это переменные, определенные в секции переменных, которая со­

держит ключевое слово CONSTANT. Применяются правила, определенные для выражений.
Пример — Константные переменные

VAR CONSTANT
PI: REAL~ 3.141592;
TwoPi: REAL:- 2.0'Pi;

END_VAR

6.5.5 Прямо представленные переменные (%)
6.5.5.1 Общие положения
Прямое представление одноэлементной переменной обеспечивается специальным символом,

сформированных конкатенацией следующих элементов:
- знак процента «%»; и
- префиксы расположения I. Q или М; и
- префикс размера X (или никакого). В. W. D или L; и
- одно или более (см. ниже иерархическую адресацию) целых без знака, разделенных точками «.».

Пример —
XMW1.7.9
%Ю12.6
%QL20

Разработчик определяет соответствие между прямым представлением переменной и физическим
или логическим расположением адресуемой единицы в памяти на входе или на выходе.

Примечание — Использование прямо представленных переменных в телах функций, типов функцио­
нальных блоков, методов и типов программ ограничивает возможность многократного использования типов дан­
ных программных компонентов. Например, в системах программируемых контроллеров, где физические входы и
выходы используются для различных цепей.

Использование прямо представленных переменных разрешено в теле функций, функциональных
блоках, программах, методах и в конфигурациях и ресурсе.

В таблице 16 представлены свойства прямо представленных переменных.
Использование прямо представленных переменных в теле программных компонентов и методов

является не рекомендуемой функциональной возможностью.

Таблица 16 — Прямо представленные переменные

Номер Описание Пример Объяснение

Расположение (примечание 1)

1 Расположение на входе 1 %IW215 Входное слово 215

2 Расположение на выходе О %QB7 Выходной байт 7

3 Расположение в памяти м %MD48 Двойное слово по адресу памяти 48

Размер

4а Размер одного байта X %IX1 Тип входных данных BOOL

41

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 16

Номер Описание Пример Объяснение

4Ь Размер одного байта Отсутствует %11 Тип входных данных BOOL

5 Размер байта (8 битов) В %1В2 Тип входных данных BYTE

6 Размер слова (16 битов) W %IW3 Тип входных данных WORD

7 Размер двойного слова (32 бита) D %ID4 Тип входных данных DWORD

8 Размер длинного слова (64 бита) L %IL5 Тип входных данных LWORD

Адресация

9 Простая адресация %1Х1 %1В0 Один уровень

10 Иерархическая адресация с ис­
пользованием «.»

%QX7.5 %QX7.5
%MW1.7.9

Определенная разработчиком, напри­
мер: два уровня, диапазоны 0..7; три
уровня, диапазоны 1..16

11 Частично определенные переменные с исполь­
зованием «*» (примечание 2)

%M‘

Примечание 1 — Национальные организации по стандартизации могут публиковать таблицы пере­
водов этих префиксов.

Примечание 2 — Для использования символа звездочки «*» в этой таблице требуется наличие свой­
ства VAR_CONFIG и наоборот.

6 5.5.2 Прямо представленные переменные — иерархическая адресация
Когда простое прямое представление (одного уровня) расширяется дополнительными цифровы­

ми полями, разделенными точками, оно интерпретируется как иерархический физический или логи­
ческий адрес. Самое левое поле представляет верхний уровень иерархии, уровень понижается при
переходе вправо.

Пример — Иерархический адрес
%1W2.5.7.1

Например, данная переменная представляет первый «канал» (слово) седьмого «модуля» на пя­
том «стеллаже» второй «шины ввода/вывода» этой системы программируемого контроллера. Макси­
мальное число уровней иерархической адресации определяется разработчиком.

Использование иерархической адресации (для разрешения доступа программы из одной системы
программируемого контроллера к данным другого программируемого контроллера) считается расшире­
нием языка, специфическим для разработчика.

6.5.5.3 Объявление прямо представленных переменных (АТ)
Объявлению прямо представленных переменных в соответствии с таблицей 16 (например. %IW6)

может даваться символическое имя. используя ключевое слово АТ.
Переменным с определенными пользователем типами данных (например, массиву) может быть

назначен «абсолютный» адрес в памяти, используя АТ. Расположение переменной определяет началь­
ный адрес памяти и не требует размера, равного или превышающего размер данного прямого пред­
ставления (то есть допустимы пустая память и перекрытие).

Пример — Использование прямого представления

VAR Имя и тип для входа
INP_0 АТ УоЮ.О: BOOL;
АТ %1В12: REAL;
PA_VAR AT %IB200: PA_VALUE; Имя и определенный пользователем тип для разме­

щения входа, начиная с %1В200
OUTARY AT %QW6: ARRAY[0..9] OF INT; Массив из 10 целых для размещения в смежных вы-

END_VAR ходных адресах, начиная с %QW6

42

ГОСТ Р МЭК 61131-3—2016

Для всех видов переменных, определенных в таблице 13, явное (определенное пользователем)
расположение в памяти может быть объявлено, используя ключевое слово АТ в сочетании с прямо
представленными переменными (например. %MW10).

Если в одном или нескольких объявлениях это свойство не поддерживается, это должно быть
указано в декларации соответствия разработчика.

Примечание — Инициализация входов системы (например, %IW10) определяется Разработчиком.

6 5.5.4 Прямо представленные переменные — частично определенные с использованием «*»
Запись с символом звездочки «*» может использоваться в назначениях адреса внутри программ и

типов функциональных блоков для обозначения еще не полностью определенного расположения для
прямо представленных переменных.

Пример —
VAR

С2 AT %0‘: BYTE;
END_VAR

Назначает еще не расположенный выходной
байт переменной типа битовой строки С2. дли­
ной 1 байт.

В случае, когда прямо представленная переменная используется для назначения расположения
внутренней переменной в части объявления программы, типа функционального блока, на месте пре­
фикса размера и целого со знаком может использоваться звездочка «*» для указания того, что прямое
представление еще не полностью определено.

Переменные такого типа не могут использоваться в секциях VARJNPUT и VAR_IN_OUT.
Использование этого свойства требует, чтобы положение структурированной переменной, объ­

явленной таким образом, было полностью определено внутри конструкции VAR_CONFiG...END_VAR
конфигурации для каждого экземпляра содержащего типа.

Ошибка возникает, если отсутствует какая-либо полная спецификация в конструкции VAR_
CONFIG...END_VAR для какой-либо неполной спецификации адреса, выраженной символом «*» в лю­
бом экземпляре программы или функционального блока, который содержит такие неполные специфи­
кации.

6.5.6 Сохраняемые переменные (RETAIN. NON_RETAIN)
6.5.6.1 Общие положения
Когда элемент конфигурации (ресурс или конфигурация) «запускается», как «теплый рестарт»

или «холодный рестарт» в соответствии с МЭК 61131-1. каждая переменная, связанная с элементом
конфигурации и ее программами, имеет значение, зависящее от операции запуска элемента конфигу­
рации и объявления свойств переменной в части сохранения.

Свойства в части сохранения могут объявлять переменные, содержащиеся в секциях перемен­
ных VARJNPUT. VAR_OUTPUT и VAR функциональных блоков и программ, сохраняемыми или несо-
храняемыми. используя квалификаторы RETAIN or NON_RETAlN. представленные на рисунке 7. Ис­
пользование этих ключевых слов необязательно.

На рисунке 9 показан алгоритм назначения начальных значений переменным.

Рисунок 9 — Алгоритм назначения начального значения переменной (правила)
43

ГОСТ Р МЭК 61131-3—2016

1 Если тип рестарта — «теплый рестарт», как определено в МЭК 61131-1, то начальные значения
всех переменных в секции переменных с квалификатором RETAIN будут сохраненными значениями.
Данные значения — значения переменных в момент остановки ресурса или конфигурации.

2 Если тип рестарта — «теплый рестарт», то начальные значения всех переменных в секции пере­
менных с квалификатором NON_RETAIN инициализируются.

3 Если тип рестарта — «теплый рестарт», и квалификаторы RETAJN и NON_RETAIN не отсутству­
ют, то начальные значения определяются разработчиком.

4 Если тип рестарта — «холодный рестарт», начальные значения переменных в секции VAR с
квалификаторами RETAIN и NON_RETAIN инициализируются, как описано ниже.

6.5.6.2 Инициализация
Переменные инициализируются, используя определенные пользователем значения, специфиче­

ские для переменной.
Если никакого значения для инициализации переменной явно не определено, используется опре­

деленное пользователем начальное значение, специфическое для переменной. Если ничего не опреде­
лено, используется специфическое для типа неявное начальное значение, определенное в таблице 10.

Затем применяются следующие правила:
- переменные, которые представляют входы системы программируемого контроллера, как опре­

делено в МЭК 61131-1, инициализируются специфическим для разработчика способом;
- квалификаторы RETAIN и NON_RETAIN могут использоваться для переменных, объявленных

в статических секциях VAR, VAR JNPUT. VAR_OUTPUT и VAR_GLOBAL, но не в секции VAR_IN_OUT:
- разрешено использование квалификаторов RETAIN и NON_RETAIN в объявлениях экземпляров

функционального блока, класса и программы. Поэтому, все переменные образца обрабатываются как
RETAIN или NON_RETAIN. за исключением следующего:

- переменная явно объявлена, как RETAIN или NON_RETAIN в объявлении функционального
блока, класса или типа программы;

- переменная является типом функционального блока или классом. В этом случае применяется
декларация сохранения используемого типа функционального блока или класса.

Разрешено использование квалификаторов RETAIN и NON_RETAIN для экземпляров типов струк­
турированных данных. Поэтому, все элементы структуры, а также все элементы вложенных структур
обрабатываются как RETAIN или NON_RETAIN.

Пример —
VAR RETAIN

AT %QW5: WORD:= 16UFF00;
OUTARYAT %QW6: ARRAY[0..9J OF INT:= [10(1)];
BITS: ARRAY[0..7] OF BOOL:= [1,1,0,0,0,1,0,0];

END_VAR

VAR NONRETAIN
BITS: ARRAY[0..7] OF BOOL;
VALVE_POS AT %QW28: INT:= 100;

END_VAR

6.6 Программные компоненты (POU)

6.6.1 Общие свойства программных компонентов
6.6.1.1 Общие положения
Программными компонентами (POU), установленными в настоящем стандарте, являются функ­

ция. функциональный блок, класс и программа. Функциональные блоки и классы могут содержать ме­
тоды.

Для достижения модуляризации и структурирования программные компоненты состоят из четко
сформулированных частей программы. Программные компоненты имеют определенный интерфейс с
входами и выходами и может вызываться и выполняться много раз.

Примечание — Упомянутый выше параметрический интерфейс не совпадает с интерфейсом, опреде­
ленным в рамках объектно-ориентированного подхода.
44

ГОСТ Р МЭК 61131-3—2016

Программные компоненты и методы могут поставляться разработчиком или программироваться
пользователем.

Ранее объявленный программный компонент может использоваться в объявлении других про­
граммных компонентов, как показано на рисунке 3.

Рекурсивные выходы программных компонентов и методы определяются разработчиком.
Максимальное число программных компонентов, методов и экземпляров для данного ресурса

определяется разработчиком.
6.6.1.2 Присваивание и выражение
6.6.1.2.1 Общие положения
Языковые конструкции присваивания и выражения используются в текстовых и (частично) графи­

ческих языках.
6.6.1.2.2 Присваивание
Присваивание используется для записи значения литерала, константы или выражения (см. ниже)

другой переменной. Данная переменная может быть переменной любого вида, например, входной или
выходной переменной функции, метода, функционального бока и т. д.

Переменные одного типа всегда могут присваиваться. Дополнительно применяются следующие
правила:

- переменная или константа типа STRING или WSTRING может быть присвоена другой перемен­
ной типа STRING или WSTRING. соответственно. Если исходная строка длиннее, чем целевая строка,
результат определяется реализатором:

- переменная типа-диапазона может использоваться везде, где может использоваться перемен­
ная базового типа. Если значение типа-диапазона выходит за пределы указанных значений, возникает
ошибка;

- переменная производного типа может использоваться везде, где может использоваться пере­
менная ее базового типа.

Дополнительные правила для массивов могут быть определены разработчиком.
Для адаптации типа данных источника к типу данных адресата может использоваться неявное

или явное преобразование типа:
а) в текстовой форме (частично применимой и к графическим языкам) оператор присваивания

может быть следующим:
«:= » который означает, что значение выражения в правой стороне оператора записывается в

переменную в левой стороне оператора; или
« => » который означает, что значение в левой стороне оператора записывается в переменную

в правой стороне оператора.
Оператор «=>» используется только для списка параметров вызова функций, методов, функци­

ональных блоков ит .п .и только для передачи параметра VAR_OUTPUT назад вызывающему объекту.

Пример —
А:= В + С/2;
Func (in1:=A, out2 => х); A_struct1:= B_Struct1;

Примечание — Присваивание определенных пользователем типов данных (STUCTURE. ARRAY) рас­
сматривается в таблице 72;

Ь) в графической форме:
присваивание изображается как линия соединения от источника к адресату, в основном, слева

направо. Например, от выхода функционального блока к входу функционального блока, или от графи­
ческого «расположения» переменной (константы) к входу функции, или от выхода функции к графиче­
скому «расположению» переменной.

Стандартная функция MOVE является одним из графических представлений присваивания.
6.6.1.2.3 Выражение
Выражение — это языковая конструкция, которая состоит из определенной конфигурации опе­

рандов (таких как литералы, переменные, вызовы функций) и операторов, (таких как + . - , * , /) и которая
производит одно значение, которое может быть многозначным.

Для адаптации типов данных операции в выражении может использоваться неявное или явное
преобразование типа:

45

ГОСТ Р МЭК 61131-3—2016

a) в текстовой форме (а также частично в графических языках), выражение вычисляется в опре­
деленном порядке, зависящем от приоритетов, заложенных в языке.

Пример — ... В * С / 2 * SIN(x)

b) в графической форме, выражение показывается как сеть графических блоков (функциональных
блоков, функций и т. п.). связанных линиями.

6.6.1.2.4 Константное выражение
Константное выражение — это языковая конструкция, состоящая из определенной комбинации

операндов (таких как + , - , *) и производит одно значение, которое может быть многозначным.
6.6.1.3 Частичный доступ к переменным типа ANYJ5IT
Для переменных типа данных ANY_BIT (BYTE. WORD. DWORD, LWORD), частичный доступ к

биту, байту, слову и двойному слову переменной определен в таблице 17.
Для адресации части переменной используются символ «%» и префикс размера, определенный

как и для прямо представленных переменных в таблице 16 (X. В. W. D. L) используются в сочетании с
целым литералом (со значением от 0 до max) для адреса внутри переменной. Литерал 0 указывает на
самую младшую часть, max — на самую старшую часть. Префикс «%Х» может факультативно исполь­
зоваться при доступе к битам.

Пример — Частичный доступ к переменным ANY_BIT
VAR

Во: BOOL:
By: BYTE:
Wo: WORD:
Do: DWORD;
Lo: LWORD:

END_VAR;
Bo:= By.%X0; //бит 0 переменной By
Bo:= By. 7; / / бит 7 переменной By: %Х используется по умолчанию и может быть опущен.
Во:- Lo.63 // бит 63 переменной Lo;
Ву:= Wo.%B1;Нбайт 1 переменной Wo:
Ву:= Do.%B3; И байт 3 переменной Do.

Таблица 17 — Частичный доступ к переменным типа ANY_BIT

Но­
мер Описание Тип

данных Пример и синтаксис (примечание 2>

Тип данных — доступ к myVAR_12.%X1: yourVAR1.%W3;

1а BYTE — бит VB2.%X0 BOOL от <имя_переменной>.%ХО до <имя_перемвнной>.%Х7

1Ь WORD — бит VW3.%X15 BOOL от <имя_пвременной>.%ХО до <имя_пвременной>.%Х15

1с DWORD — бит BOOL от <имя лвременной>.%Х0 до <имя_пвременной>.%Х31

1d LWORD — бит BOOL от <имя_переменной>.%ХО до <имя_лвременной>.%Х63

2а WORD — байт VW4.%B0 BYTE от <имя_переменной>.%ВО до <имя_переменной>.%В1

2Ь DWORD — байт BYTE от <имя_переменной>.%ВО до <имя_переменной>.%ВЗ

2с LWORD — байт BYTE от <имя_переменной>.%ВО до <имя_переменной>.%В7

За DWORD — слово WORD от <HMH_nepeMeHHO .̂%W0 до <HMH_nepeMeHt^>.%W1

ЗЬ LWORD — слово WORD от <HMR_nepeMeHww>.%WO до симя^еременной^ШЗ

4 LWORD —двойное слово VL5.%D1 DWORD от <имя_переменной>.%00 до <имя_леременной>.%01

Префикс доступа к биту %Х может быть опущен в соответствии с таблицей 16, например. Ву1.%Х7 экви­
валентно Ву1.7.

Частичный доступ не должен использоваться с прямо представленными переменными, например, %1В10.

46

ГОСТ Р МЭК 61131-3—2016

6.6.1.4 Представление и правила вызова
6.6.1.4.1 Общие положения
Вызов используется для выполнения функции, экземпляра функционального блока или метода

функционального блока или класса. Как показано на рисунке 10. вызов может быть представлен в тек­
стовой или графической форме.

1 Там. где не заданы входные переменные стандартных функций, применяются неявные имена
IN 1. IN2.... в порядке сверху вниз. Если стандартная функция имеет один вход без имени, применяется
неявное имя IN.

2 Если какая-либо переменная VARJNJDUT какого-либо вызова в программном компоненте «не­
правильно отображается», возникает ошибка.

Переменная VAR_1N_0UT «отображена правильно», если:
- она графически соединена в левой части; или
- она присваивается оператором «:=» в текстовом вызове, переменной, объявленной (без ква­

лификатора CONSTANT) в блоке VARJN_OUT. VAR. VAR_TEMP. VAR_OUTPUT или VAR_ EXTERNAL
содержащего программного компонента или «правильно отображенной» в блоке VAR_!N_OUT другого
содержащегося вызова.

3 «Правильно отображенная» {как показано в правиле выше) переменная VAR_IN_OUT вызова
может

- графически соединяться в правой части; или
- присваиваться, используя оператор «:=» в текстовом операторе присваивания переменной,

объявленной в блоке VAR. VAR_OUTPUT или VAR_EXTERNAL содержащего программного компонента.
Если такое соединение будет приводить к неопределенному значения переменной, соединенной

таким образом, то возникает ошибка.
4 Имя экземпляра функционального блока может использоваться как вход, если оно объявлено

как VARJNPUT. или как VAR_IN_OUT.
Экземпляр может быть использован внутри вызванного объекта следующим образом:
- если он объявлен как VARJNPUT, переменные функционального блока могут только читаться;
- если он объявлен как VAR_IN_OUT, переменные функционального блока могут читаться и за­

писываться. и функциональный блок может вызываться.
6.6.1.4.2 Текстовые языки
Свойства текстового вызова определяются в таблице 20. Текстовый вызов состоит из имени вы­

зываемого объекта и последующего списка параметров.
В языке ST параметры разделяются запятыми, и этот перечень ограничивается слева и справа

скобками.
Перечень параметров вызова предоставляет фактические значения и может присваивать их соот­

ветствующим именам формальных параметров (если они имеются):
- Формальный вызов
Перечень параметров имеет форму набора операторов присваивания фактических значений

формальным параметрам (перечню формальных параметров), то есть:
a) присваивание значений входным и входным-выходным переменным, используя оператор «:=»:

и
b) присваивание значений выходным переменным, используя оператор «=>».
Перечень формальных параметров может быть полным или неполным. Каждая переменная, кото­

рой в перечне на назначено значение, имеет начальное значение, присвоенное в объявлении вызван­
ного объекта или неявное значение соответствующего типа данных.

Порядок параметров в перечне не имеет значения. Могут использоваться параметры управления
выполнением EN и ENO.

Пример 1
А:= LIMIT(EN:= COND. IN:= В, MN:= О. МХ:= 5, ENO => TEMPL); / / полный перечень параметров
A :- LIMIT(IN:= В, MX:- 5); И неполный перечень параметров

- Неформальный вызов
Перечень параметров содержит точно такое число параметров, и точно в том порядке и тех же

типов данных, как задано в определении функции, исключая параметры управления выполнением EN
и ENO.

47

ГОСТ Р МЭК 61131-3—2016

Пример 2
А:= LIMIT(8, 0. 5);

Данный вызов эквивалентен полному вызову в примере 1, но без параметров EN и ENO.

6.6.1.4.3 Графические языки
В графических языках вызов функций представляется в виде графических блоков в соответствии

со следующими правилами:
1 Все блоки — прямоугольные.
2 Размер и пропорции блока могут изменяться в зависимости от числа входов и другой, показы­

ваемой информации.
3 Направление обработки блока — слева направо (входные параметры в левой стороне и выход­

ные параметры — в правой).
4 Имя или символ вызываемого объекта, как описано ниже, расположено внутри блока.
5 Предусмотрено место для входных и выходных переменных, появляющихся на левой и правой

сторонах блока, соответственно.
6 Могут использоваться дополнительные входная EN и выходная ENO переменные. Если они при­

сутствуют. то показываются в самой верхней позиции слева и справа от блока, соответственно.
7 Результат функции показывается в верхней позиции с правой стороны блока, кроме случая,

когда присутствует выходной параметр ENO. В этом случае результат функции показывается в пози­
ции. следующей за выходным параметром ENO. Так как имя вызванного объекта само используется
для присваивания своего выходного значения, никаких имен выходных переменных не показывается в
правой стороне блока для результата функции.

8 Соединения параметров (включая результат функции) показываются линиями передачи сигна­
лов.

9 Отрицание логического сигнала показывается помещением светлого кружка вблизи от пересече­
ния входной и выходной линии с блоком. В наборе символов это может быть представлено буквой «О»
верхнего регистра, как показано в таблице 20. Отрицание выполняется за пределами программного
компонента.

10 Все входы и выходы (включая результат функции) графически представленных функций пред­
ставляются одной линией с соответствующей стороны блока, даже когда элемент данных является
многоэлементной переменной.

Результаты и выходы (VAR_OUTPUT) могут соединяться с переменной, используемой как входная
переменная к другим вызовам, или могут оставаться без соединения.

Графический пример (язык FBD) Текстовый пример (язык ST) Объяснение

а)
♦ - -------- - - +
| ADD |

В— - | | — А
С— I |
D - - - I |

- - - - - - -----+

A:= ADD(B.C.D); // функция или
A:= В + С + D; // операторы

Неформальный перечень параме­
тров
(В. С. D)

Ь)
+------------ +
| SHL |

В----- I IN | — А
С— IN I

+------------ +

A:= SHL(IN:= В. N:= C); Имена формальных параметров
IN. N

С)
+----------- - +
I SHL |

ENABLE— | EN EN0|0-N0_ERR
В— | IN | — A
C— IN |

+ --------------+

A:= SHL(
EN:= ENABLE.
IN:= B.
N := C.
NOT ENO => NO_ERR);

Имена формальных параметров
Использование входного параме­
тра EN и отрицания выходного па­
раметра ENO

48

ГОСТ Р МЭК 61131-3—2016

Г р а ф и ч е с к и й п р и м е р (я з ы к F B D) Т е кс т о в ы й п р и м е р (я з ы к S T) О б ъ я с н е н и е

<*) А:= INC(V:= X): Определенная пользователем
♦ ----------+ функция INC
I INC | Имена формальных параметров V
I I — А для

X - - I V ---------VI - - Х
♦------------ ♦

VARJN.OUT

Рисунок 10 — Формальное и неформальное представление вызова
(примеры), лист 1

В примере показывается графическое и текстовое представление вызова, включая вызов стан­
дартной функции (ADD) без определенных имен формальных параметров; вызов стандартной функ­
ции (SHL) с определенными именами формальных параметров; вызов этой же функции с использо­
ванием входного параметра EN и выходного параметра ENO с отрицанием; и вызов определенной
пользователем функции (INC) с определенными именами формальных параметров.

Рисунок 10

6.6.1.5 Управление выполнением (EN. ENO)
Как показано в таблице 18, дополнительная логическая входная переменная EN (Разрешить) и

дополнительная логическая выходная переменная ENO (Разрешить выход) могут предоставляться раз­
работчиком или пользователем в соответствии с объявлением.

VARJNPUT EN: BOOL:= 1; END_VAR

VAROUTPUT ENO; BOOL; END_VAR

Когда используются эти переменные, выполнение операций, определенных программным компо­
нентом. контролируется в соответствии со следующими правилами;

1 Если значение EN равно FALSE, то программный компонент не будет выполняться. Кроме того,
значение ENO будет установлено в FALSE. Разработчик подробно определяет поведение в этом слу­
чае, см. примеры ниже.

2 В противном случае, если значение EN равно TRUE, значение ENO устанавливается в TRUE, и
реализация программного компонента будет выполняться. Программный компонент может устанавли­
вать ENO в логическое значение в соответствии с результатами выполнения.

3 Если во время выполнения одного из программных компонентов возникает ошибка, выходная
переменная ENO этого программного компонента устанавливается в FALSE (0) системой программиро­
ванного контроллера.

4 Если выходная переменная ENO установлена FALSE (0), значения всех других выходных пере­
менных (VAR_OUTPUT, VAR_IN_OUT и результат функции) определяются разработчиком.

5 Входная переменная EN устанавливается в фактическое значение только во время вызова про­
граммного компонента.

6 Выходная переменная ENO передается только как во время вызова программного компонента.
7 Выходная переменная ENO устанавливается только внутри программного компонента.
8 Использование параметров EN или ENO в функции REF() для получения указателя на EN или

ENO является ошибкой.
В случав, когда EN равно FALSE, можно выполнять другие действия вместо нормального выпол­

нения программного компонента. Данные действия определяются разработчиком. См. примеры ниже.

Пример 1 — Внутренняя реализация
Входная переменная EN оценивается внутри программного компонента.
Если EN равно FALSE то ENO устанавливается в False, и программный компонент немедленно

завершает выполнение или выполняет подмножество операций в зависимости о т ситуации.

49

ГОСТ Р МЭК 61131-3—2016

Все заданные входные и входные-выходные параметры оцениваются и устанавливаются в эк­
земпляре программного компонента (за исключением функций). Проверяется достоверность входных-
выходных параметров.

Пример 2 — Внешняя реализация
Входная переменная EN оценивается вне программного компонента. Если EN равно False, то

только происходит установка EN0 в значение False, и программный компонент не вызывается.
Входные и входные-выходные параметры не оцениваются и не устанавливаются в экземпляре

программного компонента. Достоверность входных-выходных параметров не оценивается.
Входной параметр EN не устанавливается вне программного компонента отдельно от вызова.
На следующем рисунке и в примерах иллюстрируется использование программного компонента с

параметрами EN и ENO и без них:

mylnst
+--------+

cond | ffiyFB | X
-I I..... I EN ENO| <)

V l -- 1 А ВI v2
v 3 --------| C ---------------------------C | ---------

+-------------- +

Пример 3 — Внутренняя реализация
mylnst (EN:= cond, A:= v l. C~ v3, B=> v2. ENO=> X);
где тело экземпляра функционального блока mylnst начинает выполнение с параметрами
IF NOT EN THEN... / / выполняет подмножество операций

//в зависимости от ситуации
ENO:= 0; RETURN; ENDJF;
Пример 4 — Внешняя реализация
IF cond THEN mylnst (A:= v l, C:= v3. S=> v2, ENO-> X)
ELSE X:= 0; ENDJF;

В таблице 18 приведены свойства при вызове программного компонента с параметрами EN и ENO
и без них.

Таблица 18 — Управление выполнением графически с использованием EN и ENO

Н о м е р О п и с а н и е а> П р и м е р Ь|

1 Использование без EN и ENO Показано для функции в языках FBD и ST

+---------- +
А-----| + | ------С
в— - | I

+-----------+

С:= ADD(IN1:= A. IN2:= В):

2 Использование только EN
(без ENO)

Показано для функции в языках FBD и ST

+---------- +
ADD EN-------| EN |

А-----| + 1------С
В-----| I

+---------- ♦

С:= ADD(EN:= ADD_EN. IN1:= A, IN2:= В):

50

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 18

Н о м е р О п и с а н и е а> П р и м е р Ь|

3 Использование только ENO
(без EN)

Показано дпя функции в языках FBD и ST

+-----— ♦
| ENO! ---- ADD OK

А— I + 1-----С
В— 1 1

+---------- ♦

С:= ADD(IN1:= A. IN2:= В. ENO => ADD_OK);

4 Использование EN и ENO Показано для функции в языках FBD и ST

+-------------+ I
| ADD EN I + | ADD OK |
+-----| | ------ I EN ENO | ------(>------+
I I I 1
I A— - | 1— -C |
1 B - - - | | |

+................+ 1

C:= ADD(EN:= ADD_EN. IN1:= a. IN2:= IN2.
EN => ADD_OK):

а> Разработчик указывает в каком из языков поддерживается свойство, то есть в реализации может быть
запрещено использование EN и/мли ENO.

ь> Языки, выбранные для демонстрации свойств выше, даны только для примера.

6.6.1.6 Преобразование типов данных
Преобразование типов данных используется для настройки типов данных к использованию в вы­

ражениях. присваиваниях и назначении параметров.
Представление и интерпретация информации, хранящейся в переменной зависит от объявлен­

ного типа данных переменной. Имеется два случая, где используется преобразование типов данных.
- В присваивании значения переменной другой переменной с другим типом данных.
Это применимо к операторам присваивания «:=» и «=>» и присваивании переменным, объявлен­

ным как параметры, то входным и выходным переменным функций, функциональных блоков, методов
и программ. На рисунке 11 показаны правила преобразования исходного типа данных в целевой тип
данных;

Пример 1
А :- В; // Присваивание переменной
FB1 (х:= z, v => W); // Присваивание параметрам

- В выражении (см. 7.3.2 для языка ST), состоящем из операторов, таких как «+», и операндов,
таких как литералы и переменные такого же типа данных или других типов данных.

Пример 2
... SQRT(В + (С * 1.5)); // Выражение

- Явное преобразование типа данных выполняется использованием функции преобразования.
- Неявное преобразование типа данных имеет следующие правила применения:

1) должно сохранять значение и точность типов данных;
2) может применяться для типизированных функций;
3) может применяться к присваиваниям выражений переменным;

51

ГОСТ Р МЭК 61131-3—2016

Пример 3
myUDInt:- myUlntl * myUlnt2;
/* Умножение имеет результат типа UINT
который затем неявно преобразуется в тип UDINT при присваивании */

4) может применяться к присваиванию входного параметра;
5) может применяться к присваиванию входного параметра;
6) не применяется к присваиванию входного-выходного параметра;
7) может применяться так. что операнды и результаты операции или перегруженной функции

получает одинаковый тип данных;

Пример 4
myUDInt:= myUlntl * myUDInt2;
//myUlntl неявно конвертируется в тип данных UDINT, умножение имеет результат типа данных

UDINT

8) правила для нетипизированных литералов определяются разработчиком.

Примечание — Для предотвращения неопределенностей, пользователь может использовать типизиро­
ванные литералы.

Пример 5
IF myWord = NOT (0) THEN ...; // Неопределенное сравнение с 16MFFF, 19*0001, 16U00FF и т. д.
IF myWord = NOT (WORDUO) T H E N // Неопределенное сравнение c 16UFFFF

На рисунке 11 показаны два альтернативных «явных» и «неявных» преобразования исходного
типа данных к целевому типу данных.

52

ГОСТ Р МЭК 61131-3—2016

Исходный тип данных

Ц е л е в о й тип д а н н ы х

ц е л ы й б е з з н а ка б и то в ы х д а т а и в р е м я с и м в о л ь н ы й

. 1 Б I
L R E A L

R E A L

L IN T

O IN T

IN T

S IN T

U L IN T

U D IN T

U IN T

U S IN T

LW O R O

D W O R D

W O R D

B Y T E

B O O L

LT IM E

T IM E

L O T

О Т

LO A TE

D A TE

LT O D

T O D

W S T R IN G

S T R IN G (П р и м е ч а н и е)

W C H A R

C H A R (П р и м е ч а н и е) e e e e e

Рисунок 11 — Правила преобразования типов данных — явные и неявные (сводка)

53

ГОСТ Р МЭК 61131-3—2016

Обозначения:

— преобразование типа данных не требуется;

- — данным стандартом не определены явные или неявные преобразования типов данных.
Реализация может поддерживать дополнительные преобразования типов данных, специфичные для
разработчика:

i — неявное преобразование типов данных; однако дополнительно разрешено явное преобразование типов;

е — явное преобразование типов данных, применяемое пользователем (стандартные функции преобразова­
ния). могут использоваться для предотвращения потери данных, несоответствия диапазонов или воздей­
ствия возможных функциональных возможностей, реализованных разработчиком.

Примечание — Преобразование STRING в WSTRING и CHAR в WCHAR не являются неявными, во из­
бежание конфликтов с используемыми наборами символов.

Рисунок 11. лист 2

На рисунке 12 показаны преобразования типов данных, поддерживаемые неявным преобразова­
нием типов данных. Стрелки представляют возможные пути преобразования. Например, BOOL может
быть преобразована в BYTE. BYTE может быть преобразована в WORD и т. д.

Рисунок 12 — Поддерживаемые неявные преобразования типов

В следующих примерах показываются примеры преобразования типов данных.

54

ГОСТ Р МЭК 61131-3—2016

Пример 6 — Сравнение явных и неявных преобразований типов
1) Объявление типа

VAR
PartsRatePerHr: REAL;
PartsDone: INT;
HoursElapsed: REAL;
PartsPerShift: INT;
ShiftLength: SINT;

END_VAR
2) Использование в языке ST
a) Явное преобразование типа данных

PartsRatePerHr:= INT_TO_REAL(PartsDone) / HoursElapsed;
PartsPerShift := REAL_TO_INT(SINT_TO_REAL(ShiftLength) *PartsRatePerHr):

b) Явное преобразование перегруженного типа
PartsRatePerHr:= TO_REAL(PartsDone) / HoursElapsed; PartsPerShift := TO_INT(TO_REAL(ShiftLength) '
PartsRatePerHr);

c) Неявное преобразование типа данных
PartsRatePerHr:= PartsDone / HoursElapsed;
PartsPerShift := TO_INT(ShiftLength * PartsRatePerHr);

3) Использование в языке FBD
а) Явное преобразование типа данных

+------------------ + +--------------+
PartsDone - | INT_TO REAL |— | DIV_REAL I-

+.............. Г ♦ I I
I ■

HoursElapsed -------------- 1 J

+ -------- -------- — +
ShiftLength -| SINT_TO_REAL |-

♦------ - — - — ----4

--I REAL_TO_INT |-- PartsPerShift
I ” I
♦------------------ +

►-- 4

b) Явное преобразование перегруженного типа
+-----------

PartsDone -I TO_REAL
— + +---------- + +—

|-- | DIV_REAL |--- | *
...X 1 1 1

-+ +-------- 4-
|-- | TO_INT 1
1 1 1T “ ““ “““— + 1 1 1

I 1 1
1 1 1 | 4.-------- 4-
Iпоигумйрзео — — — — —---

+---------- + 1
1

1
1
1IT — ~ — — — — — —

ShiftLength -| TO_REAL
+-----------

1.................. 1--- + +—
1
1

- +

PartsPerShift

с) Неявное преобразование типов типизированными функциями

PartsDone

HoursElapsed

ShiftLength

+----------------- +
| DIV_REAL I - -
I I
I I
I I
+----------------- +

+-------------------+ +
| M 0L_R EAL | ------- |
I I I
I I +

+------------------+

TO TNT
+

4-

PartsPerShift

55

ГОСТ Р МЭК 61131-3—2016

6.6.1.7 Перегрузка
6.6.1.7.1 Общие положения
Говорят, что элемент языка перегруженный, когда он может оперировать с элементами входных

данных различных типов в пределах родового типа данных, например ANY_NUM. ANYJNT.
Следующие стандартные элементы языка, предоставляемые изготовителем, могут иметь родо­

вую перегрузку как специальное свойство:
- стандартные функции
Это — перегруженные стандартные функции (например. ADD, MUL) и перегруженные стандарт­

ные функции преобразования (например, TO_REAL. TOJNT):
- стандартные методы
Настоящий стандарт не определяет стандартные методы в пределах стандартных классов и ти­

пов функциональных блоков. Однако они могут быть предоставлены разработчиком;
- функциональные блоки
Настоящий стандарт но определяет стандартные функциональные блоки, за исключением неко­

торых простых блоков, таких как счетчики.
Однако они могут быть определены другими частями МЭК 61131. и могут предоставляться раз­

работчиком.
- стандартные классы
Настоящий стандарт не определяет стандартных классов. Однако они могут быть определены в

других частях МЭК 61131, и могут предоставляться разработчиком;
- операции
Это, например. «+» и «*» в языке ST; ADD, MUL в языке IL.
6.6.1.7.2 Преобразование типов данных
Когда система программированного контроллера поддерживает перегруженные элементы языка,

данный элемент языка применяется ко всем подходящим типам данных этого родового типа, которые
поддерживаются системой.

Подходящие типы данных для каждого элемента языка определены в соответствующих таблицах
свойств. Следующие примеры иллюстрируют детали;

Пример 1
Настоящий стандарт определяет для функции ADD родовой тип данных ANY_NUM для многих

входных переменных одного вида и одного выходного результата.
Разработчик определяет для этого родовой тип данных ANY_NUM для связанных элементарных

типов данных REAL и INT системы PLC.
Пример 2
Настоящий стандарт определяет функцию битового сдвига LEFT для родового типа данных

ANY_BIT для одной входной переменной и выходного результата и родового типа данных ANYJNT для
другой входной переменной.

Разработчик определяет следующие два родовых типа данных для системы PLC:
ANY_BIT представляет, например, элементарные типы данных BYTE и WORD;
ANYJNT представляет, например, элементарные типы данных INT и UNT.

Перегруженный элемент языка оперирует с определенными элементарными типами данных в со­
ответствии со следующими правилами:

- типы данных входных переменных и результата имеют одинаковый тип. это применимо к вход­
ным переменным и результату одинакового вида.

«Одинаковый вид» означает, что параметры, операнды и результат одинаково используются при
сложении и умножении.

Более сложные комбинации определяются разработчиком.
- если типы данных входных и выходных данных одинакового вида имеют разный тип, то преоб­

разование типов в элементе языка определяется разработчиком:
- неявное преобразование типов выражения и присваивания следует за последовательностью

вычисления выражения. См. примеры ниже;
- тип данных переменной для хранения результата перегруженной функции не влияет на тип дан­

ных результата функции или результата.

56

ГОСТ Р МЭК 61131-3—2016

Примечание — Пользователь может явно задать тип результата операции, используя типизированные
функции.

Пример 3
int3 := in ti + int2 (‘ Сложение выполняется как целочисленная операция ')
dint1:= in ti * int2; (‘ Сложение выполняется как целочисленная операция, когда результат преоб­

разуется в тип DINT и присваивается переменной d in tl ‘)
dint1:= dint2 + int3; (’ int3 преобразуется в тип DINT, сложение выполняется как сложение DINT *)

6.6.2 Функции
6.6.2.1 Общие положения
Функция — это программный компонент, который не сохраняет свое состояние, то есть входные

параметры, внутренние переменные, выходные параметры и результат.
Если не оговорено иное, к функциям применяются общие свойства программных компонентов.
Выполнение функции:
- обычно предоставляет временный результат, который может быть одним элементом, многоэле­

ментным массивом или структурой;
- возможно предоставляет выходные переменные, которые могут быть многоэлементными;
- может изменять значение входных-выходных переменных и переменных VAR_EXTERNAL.
Функция с результатом может вызываться в выражении или как оператор. Функция без результата

не должна вызываться внутри выражения.
6.6.2.2 Объявление функции
Объявление функции состоит из следующих элементов, как определено в таблице 19. Данные

свойства объявляются так же, как описано для функциональных блоков.
При объявления функции применяются следующие правила, заданные в таблице 19:
1 Объявление начинается с ключевого слова FUNCTION, за которым следует идентификатор,

указывающий имя функции.
2 Если функция предоставляет результат, то далее следует символ «:» и тип данных значения,

возвращаемого функцией. Если функция не предоставляет результата, двоеточие и тип данных опуска­
ются.

3 Конструкции с VAR JNPUT, VAR_OUTPUT и VAR_IN_OUT. если требуются, указывающие имена
и типы данных параметров функции.

4 Значения переменных, которые передаются функции через конструкцию VAR_EXTERNAL. могут
изменяться из функции.

5 Значения констант, которые передаются функции через конструкцию VAR_EXTERNAL
CONSTANT, не могут изменяться из функции.

6 Значения переменных, которые передаются функции через конструкцию VAR_EXTERNAL. могут
изменяться из функции.

7 Массивы переменной длины могут использоваться как VARJNPUT. VAR OUTPUT и VAR_IN_
OUT.

8 Входные-выходные и временные переменные могут инициализироваться.
9 Могут использоваться входная переменная EN и выходная переменная ENO как описано.
10 Если требуется, конструкция VAR...END_VAR. а также последовательность VAR_TEMP...END_

VAR используются для определения имен и типов внутренних временных переменных.
В отличие от функциональных блоков, переменные, объявленные в секции VAR. не сохраняются.
11 Если в определении переменных стандартной функции используются родовые типы данных

(например. ANYJNT), то правила использования фактических типов параметров таких функций явля­
ются частью определения функции.

12 Конструкции инициализации переменных могут использоваться для объявления начальных
значений входных параметров функции, внутренних и выходных переменных.

13 Ключевое слово END_FUNCTION завершает объявление.

57

ГОСТ Р МЭК 61131-3—2016

Таблица 19 — Объявление функции

Номер Описание Пример

1a Без результата
FUNCTION ... END_FUNCTION

FUNCTION myFC ... END.FUNCTION

1b
С результатом
FUNCTION <name>: <data type>

END .FUNCTION
FUNCTION myFC: INT ... END.FUNCTION

2a
Входные параметры
VAR.INPUT...END.VAR VARJNPUT IN:

2b
Выходные параметры
VAR.OUTPUT...END.VAR

VAR.OUTPUT OUT: BOOL: ET.OFF: TIME:
END.VAR

2c
Входные-выходные параметры
VAR.IN.OUT.. END.VAR VAR.IN.OUT A: INT: END.VAR

2d
Временные переменные
VAR.TEMP...END.VAR VAR.TEMP 1: INT: END.VAR

2e
Временные переменные
VAR... END.VAR

VAR B: REAL: END.VAR
Различие с функциональными блоками из-за

проблем совместимости в функциональных блоках
VAR являются статическими (сохраняются)!

21 Внешние переменные
VAR.EXTERNAL...END.VAR

VAR.EXTERNAL В: REAL; END.VAR
Соответствует следующему:
VAR.GLOBAL В: REAL...

2 g
Внешние константы
VAR.EXTERNAL

CONSTANT.. .END.VAR

VAR.EXTERNAL CONSTANT В: REAL; END.VAR
Соответствует следующему:
VAR.GLOBAL В: REAL

3a Инициализация входных параметров VARJNPUT MN: INT:= 0;

3b Инициализация выходных параметров VAR.OUTPUT RES: INT:= 1;

3c Инициализация временных переменных VAR 1: INT:= 1;

-
Входной параметр EN и выходной параметр

ENO Определено в таблице 18

Пример —

// Спецификация интерфейсов параметра
FUNCTION SIMPLE_FUN: REAL

VARJNPUT
A. В: REAL;

C: REAL- 1.0; END VAR
VAR_IN_OUT COUNT: INT;

END_VAR

И Спецификация интерфейсов параметра
FUNCTION

+----------------------- +
I SIMPLE.FUN |

REAL-------- | A |-------- REAL
REAL-------- | В |
REAL-------- |C |
IN T -----------| COUNT------- COUNT I -------- INT

+----------------------- +

58

ГОСТ Р МЭК 61131-3—2016

И Спецификация тела функции

+---- +
I A D D I + ------------+

C O U N T --| l COUNTPl — | COUNT
1— | | +------- +

+ + ♦-■—+
A---- 1 * | +— +
B----- | | -------1 / | -S IM P L E FUN

♦-----+ I I
CI I

♦-----+
END_FUNCT10N

а) Объявление и тело функции (языки ST и FBD) — (си. Примечание)

// Внешний интерфейс

И функция без результата, но есть выходная
переменная Sum

* ------------------------
| SPECIAL_FUN |

INT--- | Firstlndex Sum|---- INT
INT--- |Lastlndex |

+----------------------------------+

// Тело функции — графически не показано

FOR i:= Firstlndex TO Lastlndex DO Sum:=
Sum + DataArray[i];

END_FOR
ENDJFUNCTION

b) Объявление и тело функции (функция без результата — с выходом Var)

П р и м е ч а н и е — В примере а) входной переменной дано определенное неявное значение 1.0, что­
бы предотвратить ошибку «деление на ноль», если вход не указан при вызове функции, например, если
графический вход в функцию слева не соединен.

6.6.2.3 Вызов функции
Вызов функции может быть представлен в текстовой или графической форме.
Так как входные переменные, выходные переменные и результат функции не сохраняется, при­

сваивание входным параметрам, доступ к выходным переменным и результату происходит мгновенно
при вызове функции.

Если массив переменной длины используется как параметр, параметр должен быть соединен к
статической переменной.

Функция не содержит информацию о внутреннем состоянии, то есть она не сохраняет никакие
входные, внутренние (временные) и выходные элементы от одного вызова до другого:

- вызов функции с одинаковыми параметрами (VARJNPUT и VAR_IN_OUT) и одинаковыми значе­
ниями переменных VAR_EXTERNAL всегда будет изготавливать одинаковые значения выходных пере­
менных, входных-выходных переменных, внешних переменных и результат функции, если он имеется.

Примечание — Некоторые функции, обычно предоставляемые как системные функции от разработчкиа
могут производить различные значения, например, функции TIME(), RANDOM().

VAR_GLOBAL DataArray: ARRAY[0..100] OF INT;
END_VAR
FUNCTION SPECIAL_FUN
VARJNPUT

Firstlndex: INT;
Lastlndex: INT;

END_VAR
VAR_OUTPUT Sum:

INT;
ENDJ/AR
VARJEXTERNAL DataArray:

ARRAY[0..100] OF INT;
END_VAR

VAR I: INT; Sum: INT:= 0; ENDJ/AR

/ / Спецификация тела функции
VAR COUNTP1: INT; ENDJ/AR COUNTP1:=
ADDfCOUNT, 1);
COUNT := COUNTP1
SIMPLE_FUN:= A *S/C; // результат
END_FUNCTION

59

ГОСТ Р МЭК 61131-3—2016

Таблица 20 — Вызов функции

Номер Описание Пример

1a Полный формальный вызов (только текстовый)
Примечание 1 — Такой вызов используется,
если указание параметров EN и ENO в вызове яв­
ляется обязательным.

А:= LIMIT(EN: = COND.
IN:= В.
MN:= 0 .
МХ:= 5.
ENO => TEMPL);

1b Неполный формальный вызов (только текстовый)
Примечание 2 — Используется. если исполь­
зование параметров EN и ENO в вызове не явля­
ется обязательным.

А:= LIMIT(IN:= В.
МХ:= 5):

Примечание 3 — Переменная MN будет
иметь неявное значение 0 (ноль).

2 Неформальный вызов (только текстовый) (с фик­
сированным порядком параметров и полный)
Примечание 4 — Используется для вызова
стандартных функций без формальных имен.

А;= LIMIT(B. 0. 5);
Примечание 4 — Данный вызов эквивален­
тен вызову в примере 1 а. но без параметров EN
nENO.

3 Функция без результата функции FUNCTION myfun II нет объявления типа
VARJNPUT х: INT: END_VAR:
VAR_OUTPUT у: REAL; ENDVAR;
myFun(150. var); II Вызов

4 Графическое представление ♦ ---------— - +
I FUN |

a — | EN ENO | —
b — | IN I I — r e s u l t
C — | IN2 Q1|— ou t

I Q2I
+ ----------------- +

5 Использование логического входа с отрицанием и
логического выхода с отрицанием в графическом
представлении

+ ----------------- +
I FUN |

a -o lEN ENO|—
b — I I N I | — r e s u l t
C - - I I N 2 Q l l o - ou t

I Q2|
+ ----------------- +

Примечание 6 — Использование таких кон­
струкций запрещено для входных-выходных пе­
ременных.

6 Графическое использование VAR_IN_OUT + ------------------------------ +
I rayFCl |

а — | I n l O u t l l — d
b — I In o u t— I n o u t l — c

+ ------------------------------ +

Пример — Вызов функции
Вызов
VAR

X. Y. Z, Res1, Res2: REAL;
Еп1, V: BOOL;
END_VAR

Res f := DIV(ln1:= COS(X), In2:= SIN(Y), ENO => EN1);
Res2:= MUL(SIN(X), COS(Y));
Z :=ADD(EN:= EN1. IN1:= Res1. IN2:= Res2. ENO => V);
60

ГОСТ Р МЭК 61131-3—2016

+------+ +---------+ +------- +
+-I
I I| X.

COS 1-
1
-+
1

-IEN ENOI —
1 1

--1EN ENOt— V
1 1

1
1I X

1 wv 1 —
1 1 1 I 1 1

— 1 11 * ОТМ 1 _ 1 1.. 1
1 1 1 Л.Ш

Ы N 1 •
1I1 +

1
1
1I1 +*

♦-I 1 SIN 1-I -♦1 - 1EN ENOI -I I
1
1I1X- 1 1X — 1 1 __ 1 MT1T 1 — _ 11 WO— 1 “

i i1 I
— 1 COS I- 1 i — i i

I , * ----------+
+ --------------- 4.

а) Вызов стандартных функций с результатом и параметрами EN и ENO

Объявление

FUNCTION Му Junction Онет типа, нет результата
VARJNPUTIn1: REAL; END_VAR
VAR_OUTPUT Out1, Out2: REAL; END_VAR
VAR_TEMPTmp1: REAL; END_VAR //разрешено использование VAR JEMP
VARJEXTERNAL Ext: BOOL; ENDJ/AR

И Тело функции
ENDJUNCTION

Текстовый и графический вызов
My_Function (In1:= a, Outl => b; Out2 -> c);

+------------ ----+
I My_Function|

a — | Ini Outl I— b
| Out2|-- c
+---------------------+

// без результата
И с двумя выходными переменными

Ь) Объявление и вызов функции без результата, но с двумя выходными переменными
Текстовый и графический вызов
myFC1 (In1:= a, Inout:- b. Outl => Ттр1); / / использование временной переменной
d:= myFC2 (In1:= Ттр1, lnout:= b); И переменная b сохраняется в входной-выходной пере­

менной inout; Присваивание переменной
с:= Ь; //значение переменной b присвоено переменной с

* -----------------♦ +---------------- -+
I rayFCl I | myFC2 |

а — I I n i O u t l | ---------- 1 I n i | — d
b — | In o u t — In o u t | ---------- 1 In o u t— In o u t | — c

+--------------------- + I I

//результат
И присваивание переменной

с) Вызов функции с графическим представлением входных-выходных переменных

Текстовый и графический вызов
My Ftmetien f/яГ—а. Gtt*4 d}r И не разрешен в языке ST
My_Function (In1:= a. Outl => Ттр1. Out2 => Ттр2);
d:= Ттр1 + Ттр2;

61

ГОСТ Р МЭК 61131-3—2016

+----------------------- +
| M y _ F u n c tio n |

а — |Ш 1 O u t l |
I O u t2 |
+------------------------+

+------------------+
| + I— d
U n i I
I I n 2 |
+------------------+

d) Вызов функции без результата, но с выражением из выходных переменных

П р и м е ч а н и е 2 — Данные примеры представляют различные представления одной и той же
фукциональности. Не требуется поддерживать какое-либо автоматическое преобразование между
двумя формами представления.

6 6.2.4 Типизированные и перегруженные функции
Функция, которая нормально представляет перегруженный оператор, должна быть типизирован­

ной. Это можно сделать добавлением символа подчеркивания «_» с последующим требуемым типом,
как показано в таблице 21. Типизированная функции выполняется, используя тип данных для своих
входных и выходных переменных. Может применяться неявное или явное преобразование типов.

Перегруженная функция преобразования ТО_ххх или TRUNC_xxx с ххх . указывающим на типизи­
рованный элементарный выходной тип, может быть уточнена предшествующим требуемым элементар­
ным типом входных данных и следующим символом подчеркивания.

Таблица 21 — Типизированные и перегруженные функции

Номер Описание Пример

1а Перегруженная функция
ADD (ANY_Num to ANY_Num)

+---------------- +
| ADD I

ANY_NUM I - - ANY_NUM
ANY_NUM — I 1

ANYNUM — | |

1Ь Преобразование входных переменных
ANY_ELEMENT TOJNT ANY ELEMENTARY-----| TO INT | --------INT

+-------Г -------+

2а°' Типизированные функции:
ADDJNT

+--------------------------------4

| ADD INT >
INT — | ! — INT
INT — | l

INT — | 1
+ - ------------ -■+

2Ьа> Преобразование типов:
WORD_TO_INT

+--------------------+
WORD------ |WORD TO IN T !------INT

— -----------------

П рим ечание — Перегрузка нестандартных функций или типов функциональных блоков не входит в
задачу настоящего стандарта.

Если поддерживается свойство 2. разработчик предоставляет дополнительную таблицу, показываю-
щую. какие функции являются перегруженными и какие являются типизированными в реализации.

62

ГОСТ Р МЭК 61131-3—2016

Пример 1 — Типизированные и перегруженные функции

VAR +-----+
A: I N T ; А — | + |— С
В: INT; в — I |
С; INT; +---+

END VAR
С := А+В;

П р и м е ч а н и е 1 — Преобразование типов в показанном выше примере не требуется.

VAR
A : I N T ;
В : R E A L ;
С : R E A L ;

END VAR

VAR
A : I N T ;
B : I N T ;
C : R E A L ;

END VA R

+ — ------------ + + ------ ♦

A — | I N T TO_REAL| — | + |— C
+ ------♦ I I

В I I
+---•*•

C : - I N T _ T O _ R E A L (А) + В /

+--- + +------------------+•
A — | + I ------| I N T TO_REAL| - - C
в " I I +— -------♦

---- ♦

С:= INT_T0_REAL(A+B);

+------------+ +----- +
A -------| T O _ R E A L | | ADD | C

*•—~-------+ I I
В................................I I

♦ -----+
C : - T O _ R E A L (A) + B ;

+— ♦ +---- ------+
A ------| ADD I -| T 0 _ R E A L | - - C
В ------| I + ------------------ +

+---- +
C : « T 0 _ R E A L (A + B) ;

а) О б ъ я в л е н и е т и п а (я з ы к ST) b) И с п о л ь зо в а н и е (я з ы к и FB D и ST)

Пример 2 — Явное и неявное преобразование типов типизированными функциями

VAR +--------------- +
A: IN T; A—- | ADD INT | ---- C
В: IN T; В---- 1 |
С: INT; +--------------- +

END VAR
C :- ADD_INT(A, B) ;

П р и м е ч а н и е 2 — Преобразование типов в показанном выше примере

Явное преобразование типа данных

VAR
A : IN T ;

++111I1111111+

В : REAL; А - - | INT_TO_REAL| - - |
С : REAL; +----------------------+ 1

END VAR В----------------------------------|
+ ■

С:= ADD_REAL{ INT_TO_REAL(А

Неявное преобразование типа данных

VAR
A: IN T ;
B; REAL; д ----------------------------
C: REAL;

ENDVAR В ----------------------------

С := ADD REAL (А , В) ;

+-------------------+
| ADD_REAL | — С
I I
I I
♦-------------------+

63

ГОСТ Р МЭК 61131-3—2016

VAR
A: INT;
В: INT;
С: REAL;

END VAR

Явное преобразование типа данных

+-----------------+ +------------------- +
А — | ADD_INT |— |1NT_T0_REAL|— С

I I +.....................+
В — I I

+--------------I
С;- INT_TO_REAL(ADD_INT<A, В));

VAR
A; INT;
В: INT;
С; REAL;

END VAR

Неявное преобразование типа данных

+-------------------- +
А --| ADD_INT |-- С

I I
В — | I

С:= ADD_INT(А , В);
а) Объявление типов (язык ST) Ь) Использование (языки FBD и ST)

6.6.2.5 Стандартные функции
6.6.2.5.1 Общие положения
Стандартная функция, определенная в этом подпункте расширяемой, может иметь две или более

входных переменных, к которым может быть применена указанная операция. Например, расширяемое
сложение дает в качестве выхода сумму всех ее входов. Максимальное число входных переменных
расширяемой функции определяется разработчиком. Фактическое число входных переменных в фор­
мальном вызове расширяемой функции определяется именем формальной входной переменной с са­
мым большим индексом в последовательности имен переменной.

Пример 1 —
Оператор Х:= ADD (Y1, Y2, Y3);
эквивалентен оператору X:=ADD (IN1~ Y1, IN2:= Y2. IN3:= Y3);
Пример 2 —
Оператор /.= MUXJNT (К:=3. IN0:= 1. IN2:= 2 .1N4:= 3);
эквивалентен оператору /:= 0;

6 6.2.5.2 Функции преобразования типов данных
Как показано в таблице 22. функции преобразования типов *_ТО_*‘ . где «*» — тип входной пере­

менной IN. а «**» — тип выходной переменной OUT. например, INT_TO_REAL. Влияние преобразова­
ний типов на точность и типы ошибок, которые могут возникать во время выполнения операций преоб­
разования типов, определяется разработчиком.

Таблица 22 — Функция преобразования типов данных

Номер Описание Графическая форма Пример использования

1а Типизированное преоб­
разование 8ХОД_ТО_ВЫ-
ход

+ - - - - - -------- +
В ------1 * ТО • * 1-------А

+-------------- -- — +

(*) — Входной тип данных, например, INT
(*’) — Выходной тип данных, например. REAL

А:=
INT_TO_REAL(B);

64

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 22

Номер Описание Графическая форма Пример использования
1Ьа).Ь>.е> Перегруженное преоб­

разование ТО_выход
+------------------- +

В ---- I ТО * ’ 1----- А
+-------- Г---------+

— Входной тип данных, например. INT
(*') — Выходной тип данных, например. REAL

A:= TO_REAL(B);

2ас) «Старов» перегружен­
ное усечение данных
TRUNC

------------------- +
ANYREAL ---- | TRUNC | ----- ANY_INT

He рекомендуется

2ЬС> Типизированное
усечение данных
BXOfl_TRUNC_Bb!XOfl

+------------------ +
ANY_REAL - - - I*_TRUNC_** | ---- ANY_INT

+ - - --------------+

A:=
REAL_TRUNC_INT(B):

2<<> Перегруженное
усечение данных
TRUNC_Bbixcw

+-----------------+
ANY_REAL---- 1 TRUNC_** I -----ANY_INT

+------------------+

A:= TRUNC_INT(B);

за*) Типизированная
функция
вход_ВСО_ТО_выход

+--------------------+
• -----I» BCD TO * * | ------**

+--------------------+

A:=
WORD_BCD_TOJNT(B);

ЗЬ̂ > Перегруженная функция
ВСО_ТО_выход

+------------------- +
* ------ | BCD TO * * | ------* *

+-------- — - — - +

A:= BCD_TO_INT(B);

4а<*> Типизированная
функция
вход_ТО_ВСО_выход

+— ------------
* * ------ 1** TO BCD *1 ----- *

+ - ---- ------------¥

A:=
INT_TO_BCD_WORD(B);

4Ь̂) Перегруженная функция
ТО_ВСО_выход

* ------------------- +
* ------ 1 TO_BCD_* * | ------* *

+------------------- +

A:= TO_BCD_WORD(B):

Примечание — Примеры использования даны на языке ST.
а- Декларация соответствия на свойство 1 этой таблицы должна включать перечень поддерживаемых

специфических преобразований типов и описание эффектов выполнения каждого преобразования.
ь> Преобразования типа REAL или LREAL в тип SINT. INT. DINT или LINT производить, округлять в соот­

ветствии с МЭК 60559. согласно которому, если два ближайших целых значения одинаково близки, результатом
является ближайшее целое число, например:

REAL_TO_INT (1.6) эквивалентно 2:
REAL_TO_INT (-1.6) эквивалентно -2:
REAL_TO_INT (1.5) эквивалентно 2:
REALJTOJNT (-1.5) эквивалентно-2;
REAL_TO_INT (1.4) эквивалентно 1:
REAL_TOJNT (-1.4) эквивалентно -1;
REAL_TO_INT (2.5) эквивалентно 2:
REAL_TO_INT (-2.5) эквивалентно -2.
с* Функция TRUNC_* используется для усечения по направлению к нулю типов REAL или LREAL. выда­

вая один из целых типов, например:
TRUNCJNT (1.6) эквивалентно INT#1;
TRUNCJNT (-1.6) эквивалентно INT#-1;
TRUNC.SINT (1.4) эквивалентно SINT#1;
TRUNC_SINT (-1.4) эквивалентно SINT#-1.

65

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 22

d> Функции преобразования *_BCD_TO_" и **_TO_BCD_* выполняют преобразования между переменны-
ми типа BYTE. WORD. DWORD и LWORD и переменными типа USINT. UINT. UDINT и ULINT (представленными
«*» и «"». соответственно), когда соответствующие переменные типа битовой строки закодированы в формате
BCD. Например, знамением USINT_TO_BCD_BYTE(25) будет 2#0010_0101. а значением WORD_BCD_TO_UINT
(2#0011_0110_1001) будет 396.

е) Когда входом или выходом функции преобразования типов является тип STRING или WSTRING.
данные символьной строки соответствуют внешнему представлению соответствующих данных, как указано в
6.3.3. в наборе символов, определенном в 6.1.1.

6.6.2.5.3 Преобразование числовых типов данных
В преобразовании числовых типов данных используются следующие правила:
1 Тип данных источника расширяется до самого большого типа данных этой категории типов дан­

ных.
2 Затем результат преобразуется в самый большой тип данных категории типов данных, к которой

принадлежит целевой тип данных.
3 Затем этот результат преобразуется в целевой тип данных.
Если значение исходной переменной не вмещается в целевой тип данных, то есть диапазон зна­

чений слишком мал. то значение целевой переменной определяется разработчиком.

Примечание — Реализация функции преобразования может использовать более эффективную
процедуру.

Пример — Х:= REAL_TO_INT (70_000.4)
1 Значение (70J000.4) типа REAL преобразуется в значение (70_000.400_000..) типа LREAL.
2 Значение (70_000.4000_(Ю0..) типа LREAL преобразуется в значение (70 000) типа UNT. Здесь зна­

чение округлено до целого.
3 Значение (70_(Ю0) типа LINT преобразуется в значение типа INT. Здесь окончательное значе­

ние определяется разработчиком, поскольку максимальное значение, которое может хранить тип INT
равно 65536.

Затем результат записывается в переменную целевого типа данных. Теперь данная переменная
хранит то же значение, что и исходная переменная, если целевой тип данных в состоянии хранить это
значение.

При преобразовании чисел с плавающей точкой применяются нормальные правила округления,
то есть округление до ближайшего целого и. если результат неоднозначен, до ближайшего четного
целого.

Тип данных BOOL, используемый в качестве исходного типа данных, рассматривается как тип
данных целого без знака, который может хранить значения 0 и 1.

В таблице 23 описаны функции преобразования с деталями, вытекающими из применения опи­
санных выше правил.

Таблица 23 — Преобразование числовых типов данных

Номер Функция преобразования
типов данных Детали преобразования

1 LREAL _ТО_ REAL Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

2 LREAL _ТО_ LINT Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

3 LREAL _ТО_ DINT Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

4 LREAL _TO_ INT Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

66

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 23

Н о м е р
Ф у н к ц и я п р е о б р а зо в а н и я

ти п о в д а н н ы х
Д е т а л и п р е о б р а зо в а н и я

5 LREAL _TO_ SINT Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

6 LREAL _TO_ ULINT Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

7 LREAL _TO_ UDINT Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

8 LREAL _ T O _ UINT Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

9 LREAL _TO_ USINT Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

10 REAL _TO_ LREAL Преобразование, сохраняющее значение

11 REAL _TO_ LINT Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

12 REAL _ T O _ DINT Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

13 REAL _TO_ I NT Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

14 REAL _TO_ SINT Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

15 REAL _TO_ ULINT Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

16 REAL _TO_ UDINT Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

17 REAL _TO_ UINT Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

18 REAL _TO_ USINT Преобразование с округлением, ошибки дают результат, определяе­
мый разработчиком

19 LINT _TO_ LREAL Преобразование с потенциальной потерей точности

20 LINT _TO_ REAL Преобразование с потенциальной потерей точности

21 LINT _TO_ DINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

22 LINT _TO_ I NT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

23 LINT _TO_ SINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

24 LINT _TO_ ULINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

25 LINT _TO_ UDINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

26 LINT _TO_ UINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

27 LINT _TO_ USINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

67

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 23

Номер Функция преобразования
типов данных Детали преобрауооамия

28 DINT _to_ LREAL Преобразование, сохраняющее значение

29 DINT _TO_ REAL Преобразование с потенциальной потерей точности

30 DINT _TO_ LINT Преобразование, сохраняющее значение

31 DINT _TO_ I NT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

32 DINT _TO_ SINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

33 DINT _TO_ ULINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

34 DINT _TO_ UDINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

35 DINT _TO_ UINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

36 DINT _TO_ USINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

37 I NT _TO_ LREAL Преобразование, сохраняющее значение

38 I NT _TO_ REAL Преобразование, сохраняющее значение

39 I NT _TO_ LINT Преобразование, сохраняющее значение

40 I NT _TO_ DINT Преобразование, сохраняющее значение

41 I NT _TO_ SINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

42 I NT _TO_ ULINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

43 I NT _TO_ UDINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

44 I NT _TO_ UINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

45 I NT _TO_ USINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

46 SINT _TO_ LREAL Преобразование, сохраняющее значение

47 SINT _TO_ REAL Преобразование, сохраняющее значение

48 SINT _TO_ LINT Преобразование, сохраняющее значение

49 SINT _TO_ DINT Преобразование, сохраняющее значение

50 SINT _TO_ I NT Преобразование, сохраняющее значение

51 SINT _TO_ ULINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

52 SINT _TO_ UDINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

53 SINT _TO_ UINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

68

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 23

Номер Функция преобразования
типов данных Детали преобразования

54 SINT _TO_ USINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

55 ULINT _TO _ LREAL Преобразование с потенциальной потерей точности

56 ULINT _TO_ REAL Преобразование с потенциальной потерей точности

57 ULINT _TO_ LINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

58 ULINT _TO_ DINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

59 ULINT _TO_ I NT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

60 ULINT _TO_ SINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

61 ULINT _TO_ UDINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

62 ULINT _TO_ UINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

63 ULINT _TO_ USINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

64 UDINT _TO_ LREAL Преобразование, сохраняющее значение

65 UDINT _TO_ REAL Преобразование с потенциальной потерей точности

66 UDINT _TO_ LINT Преобразование, сохраняющее значение

67 UDINT _TO_ DINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

68 UDINT _TO_ I NT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

69 UDINT _TO_ SINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

70 UDINT _TO_ ULINT Преобразование, сохраняющее значение

71 UDINT _TO_ UINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

72 UDINT _TO_ USINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

73 UINT _TO_ LREAL Преобразование, сохраняющее значение

74 UINT _TO_ REAL Преобразование, сохраняющее значение

75 UINT _TO_ LINT Преобразование, сохраняющее значение

76 UINT _TO_ DINT Преобразование, сохраняющее значение

77 UINT _TO_ I NT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

78 UINT _TO_ SINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

79 UINT -TO- ULINT Преобразование, сохраняющее значение

69

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 23

Номер Функция преобразования
типов данных Детали преобразования

80 UINT _T O _ UDINT Преобразование, сохраняющее значение

81 UINT _ T O _ USINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

82 USINT _TO_ LREAL Преобразование, сохраняющее значение

83 USINT _TO_ REAL Преобразование, сохраняющее значение

84 USINT _TO_ LINT Преобразование, сохраняющее значение

85 USINT _TO_ DINT Преобразование, сохраняющее значение

86 USINT _TO_ I NT Преобразование, сохраняющее значение

87 USINT _TO_ SINT Ошибки диапазона значений дают результат, определяемый разра­
ботчиком

88 USINT _TO_ ULINT Преобразование, сохраняющее значение

89 USINT _TO_ UDINT Преобразование, сохраняющее значение

90 USINT _TO_ UINT Преобразование, сохраняющее значение

6.6.2.5.4 Преобразование типов битовых типов данных
При преобразовании этого типа данных используются следующие правила:
1 Преобразование типов данных осуществляется как передача двоичных данных.
2 Если исходный тип данных меньше, чем целевой тип данных, исходное значение хранится в

самых правых битах целевой переменной, а самые левые биты устанавливаются в ноль.
3 Если исходный тип данных меньше, чем целевой тип данных, только самые правые биты исход­

ной переменной сохраняются в целевом типе данных.

Пример

Источник.

Адресат.

Левый байт Правый байт

В таблице 24 описаны функции преобразования с деталями, вытекающими из применения опи­
санных выше правил.

Таблица 24 — Преобразование битовых типов данных

Но­
мер типов данных Детали преобразования

1 LWORD _то_ DWORD Двоичная передача самых правых байтов в адресат

2 LWORD _ТО_ WORD Двоичная передача самых правых байтов в адресат

3 LWORD _ТО_ BYTE Двоичная передача самых правых байтов в адресат

4 LWORD _то_ BOOL Двоичная передача самого правого бита в адресат

70

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 24

Но-
мер

Фунаиия преобразования
типов данных Детали преобразования

5 DWORD _TO_ LWORD Двоичная передача самых правых байтов в адресат, самые левые
байты устанавливаются в нуль

6 DWORD _TO_ WORD Двоичная передача самых правых байтов в адресат

7 DWORD _TO_ BYTE Двоичная передача самых правых байтов в адресат

8 DWORD _TO_ BOOL Двоичная передача самого правого бита в адресат

9 WORD _TO_ LWORD Двоичная передача самых правых байтов в адресат, самые левые
байты устанавливаются в нуль

10 WORD _TO_ DWORD Двоичная передача самых правых байтов в адресат, самые левые
байты устанавливаются в нуль

11 WORD _TO_ BYTE Двоичная передача самых правых байтов в адресат

12 WORD _TO_ BOOL Двоичная передача самого правого бита в адресат

13 BYTE _TO_ LWORD Двоичная передача самых правых байтов в адресат, самые левые
байты устанавливаются в нуль

14 BYTE _TO_ DWORD Двоичная передача самых правых байтов в адресат, самые левые
байты устанавливаются в нуль

15 BYTE _TO_ WORD Двоичная передача самых правых байтов в адресат, самые левые
байты устанавливаются в нуль

16 BYTE _TO_ BOOL Двоичная передача самого правого бита в адресат

17 BYTE _TO_ CHAR Передача двоичных данных

18 BOOL _TO_ LWORD Дает результат 16#0 или 16#1

19 BOOL _TO_ DWORD Дает результат 16#0 или 16#1

20 BOOL _TO_ WORD Дает результат 16#0 или 16#1

21 BOOL _TO_ BYTE Дает результат 16#0 или 16#1

22 CHAR _TO_ BYTE Передача двоичных данных

23 CHAR _TO_ WORD Двоичная передача самых правых байтов в адресат, самые левые
байты устанавливаются в нуль

24 CHAR _TO_ DWORD Двоичная передача самых правых байтов в адресат, самые левые
байты устанавливаются в нуль

25 CHAR _TO_ LWORD Двоичная передача самых правых байтов в адресат, самые левые
байты устанавливаются в нуль

26 WCHAR _TO_ WORD Передача двоичных данных

27 WCHAR _TO_ DWORD Двоичная передача самых правых байтов в адресат, самые левые
байты устанавливаются в нуль

28 WCHAR _TO_ LWORD Двоичная передача самых правых байтов в адресат, самые левые
байты устанавливаются в нуль

6.6.2.5.5 Преобразование битовых типов данных в числовые типы данных
При преобразовании этого типа данных используются следующие правила:
1 Преобразование типов данных осуществляется как передача двоичных данных.
2 Если исходный тип данных меньше, чем целевой тип данных, исходное значение хранится в

самых правых битах целевой переменной, а самые левые биты устанавливаются в моль.

71

ГОСТ Р МЭК 61131-3—2016

Пример 1
X: SINT:= 18; W: WORD; W:= SINT_TO_WORD(X); и W получает значение 16*0012.

3 Если исходный тип данных меньше, чем целевой тип данных, только самые правые байты ис­
ходной переменной сохраняются в целевом тиле данных.

Пример 2
W: WORD: = 16*1234; X: SINT; X :- W: и X получает значение 54 (=16*34).

В таблице 25 описаны функции преобразования с деталями, вытекающими из применения опи­
санных выше правил.

Таблица 25 — Преобразование битовых и числовых типов данных

Но­
мер

Функция преобразования
типов данных Детали преобразования

1 LWORD _TO_ LREAL Передача двоичных данных

2 DWORD _TO_ REAL Передача двоичных данных

3 LWORD _TO_ LINT Передача двоичных данных

4 LWORD _TO_ DINT Двоичная передача самых правых байтов в адресат

5 LWORD _TO_ I NT Двоичная передача самых правых байтов в адресат

6 LWORD _TO_ SINT Двоичная передача самого правого байта в адресат

7 LWORD _TO_ ULINT Передача двоичных данных

8 LWORD _TO_ UDINT Двоичная передача самых правых байтов в адресат

9 LWORD _TO_ UINT Двоичная передача самых правых байтов в адресат

10 LWORD _TO_ USINT Двоичная передача самого правого байта в адресат

11 DWORD _TO_ LINT Двоичная передача в самые правые байты адресата

12 DWORD _TO_ DINT Передача двоичных данных

13 DWORD _TO_ INT Двоичная передача самых правых байтов в адресат

14 DWORD _TO_ SINT Двоичная передача самого правого байта в адресат

15 DWORD _TO_ ULINT Двоичная передача в самые правые байты адресата

16 DWORD _TO_ UDINT Передача двоичных данных

17 DWORD _TO_ UINT Двоичная передача самых правых байтов в адресат

18 DWORD _TO_ USINT Двоичная передача самого правого байта в адресат

19 WORD _TO_ LINT Двоичная передача в самые правые байты адресата

20 WORD _TO_ DINT Двоичная передача в самые правые байты адресата

21 WORD _TO_ INT Передача двоичных данных

22 WORD _TO_ SINT Двоичная передача самого правого байта в адресат

23 WORD _TO_ ULINT Двоичная передача в самые правые байты адресата

24 WORD _TO_ UDINT Двоичная передача в самые правые байты адресата

25 WORD _TO_ UINT Передача двоичных данных

26 WORD _TO_ USINT Двоичная передача самого правого байта в адресат

27 BYTE _TO_ LINT Двоичная передача в самые правые байты адресата

28 BYTE _TO_ DINT Двоичная передача в самые правые байты адресата

72

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 25

Но­
мер

Функция преобразования
типов данных Детали преобрауооамия

29 BYTE _TO_ INT Двоичная передача в самые правые байт адресата

30 BYTE _TO_ SINT Передача двоичных данных

31 BYTE _TO_ ULINT Двоичная передача в самые правые байты адресата

32 BYTE _TO_ UDINT Двоичная передача в самые правые байты адресата

33 BYTE _TO_ UINT Двоичная передача в самые правые байты адресата

34 BYTE _TO_ USINT Передача двоичных данных

35 BOOL _TO_ LINT Дает результат 0 или 1

36 BOOL _TO_ DINT Дает результат 0 или 1

37 BOOL _TO_ INT Дает результат 0 или 1

38 BOOL _TO_ SINT Дает результат 0 или 1

39 BOOL _TO_ ULINT Дает результат 0 или 1

40 BOOL _TO_ UDINT Дает результат 0 или 1

41 BOOL _TO_ UINT Дает результат 0 или 1

42 BOOL _TO_ USINT Дает результат 0 или 1

43 LREAL _TO_ LWORD Передача двоичных данных

44 REAL _TO_ DWORD Передача двоичных данных

45 LINT _TO_ LWORD Передача двоичных данных

46 LINT _TO_ DWORD Двоичная передача самых правых байтов в адресат

47 LINT _TO_ WORD Двоичная передача самых правых байтов в адресат

48 LINT _TO_ BYTE Двоичная передача самого правого байта в адресат

49 DINT _TO_ LWORD Двоичная передача в самые правые байты адресата, остальные
байты = 0

50 DINT _TO_ DWORD Передача двоичных данных

51 DINT _TO_ WORD Двоичная передача самых правых байтов в адресат

52 DINT _TO_ BYTE Двоичная передача самого правого байта в адресат

53 INT _TO_ LWORD Двоичная передача в самые правые байты адресата, остальные
байты = 0

54 INT _TO_ DWORD Двоичная передача в самые правые байты адресата, остальные
байты = 0

55 INT _TO_ WORD Передача двоичных данных

56 INT _TO_ BYTE Двоичная передача самого правого байта в адресат

57 SINT _TO_ LWORD Двоичная передача в самые правые байты адресата, остальные
бейты = 0

58 SINT _TO_ DWORD Двоичная передача в самые правые байты адресата, остальные
байты = 0

59 SINT _TO_ WORD Передача двоичных данных

60 SINT _TO_ BYTE Передача двоичных данных

73

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 25

Н о ­
м е р

Ф у н к ц и я п р е о б р а зо в а н и я
ти п о в д а н н ы х

Д е т а л и п р е о б р а зо в а н и я

61 ULINT _TO_ LWORD Передача двоичных данных

6 2 ULINT _TO_ DWORD Двоичная передача самых правых байтов в адресат

63 ULINT _TO_ WORD Двоичная передача самых правых байтов в адресат

64 ULINT _TO_ BYTE Двоичная передача самого правого байта в адресат

65 UDINT _TO_ LWORD Двоичная передача в самые правые байты адресата, остальные
байты = 0

6 6 UDINT _TO_ DWORD Передача двоичных данных

67 UDINT _TO_ WORD Двоичная передача самых правых байтов в адресат

68 UDINT _TO_ BYTE Двоичная передача самого правого байта в адресат

69 UINT -TO_ LWORD Двоичная передача в самые правые байты адресата, остальные
байты = 0

70 UINT _TO_ DWORD Двоичная передача в самые правые байты адресата, остальные
байты = 0

71 UINT _TO_ WORD Передача двоичных данных

72 UINT _TO_ BYTE Двоичная передача самого правого байта в адресат

73 USINT _TO_ LWORD Двоичная передача в самые правые байты адресата, остальные
байты = 0

74 USINT _TO_ DWORD Двоичная передача в самые правые байты адресата, остальные
байты = 0

75 USINT _TO_ WORD Передача двоичных данных

76 USINT _TO_ BYTE Передача двоичных данных

6.6.2.5.6 Преобразование типов данных даты и времени
В таблице 26 показывается преобразование типов данных даты и времени.

Таблица 26 — Преобразование типов данных даты и времени

Но-
мор

Функция преобразования
типов данных Детали преобразования

1 LTIME _TO_ TIME Ошибки диапазона значений дают результат, определяемый раз­
работчиком. и может происходить потеря точности

2 TIME _TO_ LTIME Ошибки диапазона значений дают результат, определяемый раз­
работчиком. и может происходить потеря точности

3 LDT _ТО_ DT Ошибки диапазона значений дают результат, определяемый раз­
работчиком. и может происходить потеря точности

4 LDT _ТО_ DATE Преобразует только содержащуюся дату, ошибки диапазона зна­
чений дают результат, определяемый разработчиком

5 LDT _ТО_ LTOD Преобразует только содержащееся время суток

6 LDT _ТО_ TOD Преобразует только содержащееся время суток, может происхо­
дить потеря точности

7 DT _то_ LDT Ошибки диапазона значений дают результат, определяемый раз­
работчиком, и может происходить потеря точности

74

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 26И Функция преобразования
типов данных Детали преобразования

8 DT _то_ DATE Преобразует только содержащуюся дату, ошибки диапазона зна­
чений дают результат, определяемый разработчиком

9 DT _то_ LTOD Преобразует только содержащееся время суток, ошибки диапа­
зона значений дают результат, определяемый разработчиком

10 DT _то_ TOD Преобразует только содержащееся время суток, ошибки диапа­
зона значений дают результат, определяемый разработчиком

11 LTOD _то_ ТОО Преобразование, сохраняющее значение

12 TOD _то_ LTOD Ошибки диапазона значений дают результат, определяемый раз­
работчиком. и может происходить потеря точности

6.6.2.5.7 Преобразование символьных типов данных
В таблице 27 показывается преобразование символьных типов данных.

Таблица 27 — Преобразование символьных типов данных

Но
мер

Функция преобразования
типов данных Детали преобразования

1 WSTRING _TO_ STRING
Преобразуются только символы, поддерживаемые разработчи­
ком в типе данных STRING, преобразование остальных симво­
лов определяется разработчиком

2 WSTRING _to_ WCHAR Передается первый символ строки, если строка пустая, целевая
переменная имеет неопределенное значение

3 STRING _to_ WSTRING
Преобразует символы строки как определено разработчиком в
соответствующие символы набора символов ИСО/МЭК 10646
(UTF-16)

4 STRING _to_ CHAR Передается первый символ строки, если строка пустая, целевая
переменная имеет неопределенное значению

5 WCHAR _TO_ WSTRING Дает строку с фактической длиной в один символ

6 WCHAR _TO_ CHAR
Преобразуются только символы, поддерживаемые разработчи­
ком в типе данных CHAR, преобразование остальных символов
определяется разработчиком

7 CHAR _TO_ STRING Дает строку с фактической длиной в один символ

8 CHAR _TO_ WCHAR Преобразует символ как определено разработчиком в соответ­
ствующий символ набора символов UTF-16

6.6.2.5.8 Числовые и арифметические функции
Стандартное графическое представление, имена функций, типы входных и выходных перемен­

ных и описания функций одной числовой переменной определяются в таблице 28. Данные функции
перегружаются на определенных родовых типах данных и могут быть типизированными. В таких функ­
циях вход и выход имеют одинаковый тип.

Стандартное графическое представление, имена и символы функций и описания арифметиче­
ских функций двух и более переменных показываются в таблице 29. Данные функции перегружаются
на всех определенных числовых типах данных, и могут быть типизированными.

Точность числовых функций выражается в терминах одной или более зависимостей, определяе­
мых разработчиком.

Ошибка возникает, если результат вычисления одной из таких функций превышает диапазон зна­
чений. указанных для типа данных выхода функции, или если предпринимается попытка деления на
ноль.

75

ГОСТ Р МЭК 61131-3—2016

Таблица 28 — Числовые и арифметические функции

Н о ­
м ер

О п и с а н и е
(и м я ф у н кц и и)

Тип в х о д н о й /
в ы х о д н о й

п е р е м е н н о й
О б ъ я с н е н и е

Графическая форма
-г--—--- ----+

• — I • * I— *
------------ +

(•) — Тип входной.'выходной переменной
(•*) — Имя функции

Пример использования в языке ST
А:= SIN(B):
(язык ST)

Общие функции

1 ABS(x) ANYJnIUM Абсолютная величина

2 SQRT(x) ANY_REAL Квадратный корень

Логарифмические функции

3 LN(x) ANY_REAL Натуральный логарифм

4 LOG(x) ANY_REAL Десятичный логарифм

5 ЕХР(х) ANY_REAL Экспонента

Тригонометрические функции

6 SIN(x) ANY_REAL Синус от входного значения в радианах

7 COS(x) ANY_REAL Косинус от входного значения в радианах

8 TAN(x) ANY_REAL Тангенс от входного значения в радианах

9 ASIN(x) ANY_REAL Главное значение арксинуса

10 ACOS(x) ANY_REAL Главное значение арккосинуса

11 ATAN(x) ANY_REAL Главное значение арктангенса

12 ATAN2(yx)

---------f
| ATAN2 |

ANY_REAL--|Y |— ANY_REAL
ANY_REAL--|X |

+------------ +

ANY_REAL Угол между положительным направле­
нием оси х плоскости и точкой, задан­
ной координатами (х. у). Значение угла
является положительным для углов
против часовой стрелки (верхняя полу­
плоскость. у > 0). и отрицательным для
углов по часовой стрелке (нижняя полу­
плоскость. у < 0).

Таблица 29 — Арифметические функции

Но.
мер Описание Название Символ

(оператор) Объяснение

Графическая форма Пример использования в языке

+--------- +
ANY_NUM — | * * * I - - ANY_N0M
ANY_NUM — | |

ANY_NUM — | |
+ --------- +

{***) — Название или символ

как вызов функции:
А:= ADD(B. С. D):
или
как оператор (символ)
А:= В + С + D:

76

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 29

Но*
мор Описание Название Символ

(оператор) Объяснение

Расширяемые арифметические функ­
ции

1с> Сложение ADD + OUT:= IN1 + IN2 +... + INn

2 Умножение MUL ■ OUT:= IN1 * IN2 * INn

Нерасширяемые арифметические
функции

зс> Вычитание SUB - OUT:= IN1 * IN2 *... * INn

4d) Деление DIV / OUT:= IN1 / IN2

5в) Остаток по модулю MOD OUT:= IN1 modulo IN2

6'» Экспонента EXPT •• OUT:= IN1IN2

7я) Пересылка MOVE := OUT:= IN

Примечание 1 — Непустые значения в графе «Символ» могут использоваться как операторы в тек­
стовых языках.

Примечание 2 — Запись IN1. 1N2.....INn ссылается на входные переменные в нисходящем порядке;
OUT ссыпается на выходную переменную.

Примечание 3 — Примеры использования и объявления даны на языке ST.

а> Когда представление функции поддерживается именем, это отмечается суффиксом «п» в декларации
соответствия.

Например, «1п» представляет запись «ADD».
Ь) Когда представление функции поддерживается символом, это отмечается суффиксом «s» в декларации

соответствия. Например. «1$» представляет запись «+».
с| Входные и выходные переменные для этих функций имеют тип ANY_MAGNITUDE.
d) Результатом деления целых чисел является целое число того же типа с усечением значения по направ­

лению к нулю, например. 7/3 = 2 и (-7^3 = -2.
&1 Для этой функции. IN1 и IN2 имеют родовой тип ANYJNT. Результат выполнения этой функции MOD

эквивалентен вычислению следующих операторов языка ST:
IF (IN2 = 0)

THEN OUT:=0:
ELSE OUT:=IN1 - (IN^N2)*IN2;

ENDJF
f| Для функции EXPT. IN1 имеет тип ANY_REAL. a IN2 — тип ANY_NUM. Тип выходной переменной — та­

кой же. как тип переменной IN1.
Я) функция MOVE имеет ровно одну входную переменную (IN) типа ANY и одну входную переменную

(OUT) типа ANY.

6 6.2.5.9 Битовые строки и поразрядные логические функции
Стандартное графическое представление, имена функций и описания функций сдвига для одной

переменной типа битовой строки определяются в таблице 30. Данные функции перегружаются для ти­
пов битовой строки и могут быть типизированы.

Стандартное графическое представление, имена функций и символов и описания поразрядных
логических функций определяются в таблице 31. Данные функции являются расширяемыми (за исклю­
чением функции NOT), перегружаются для всех типов битовых строк, и могут быть типизированными.

77

ГОСТ Р МЭК 61131-3—2016

Таблица 30 — Функции битового сдвига

Но­
мер Описание Название Объяснение

Графическая форма Пример использования а

+----
I * * • I

ANY BIT — | IN | — ANY BIT
ANY_INT — |N |

+------ +

А:= SHL(IN:=B. N:=5);
(язык ST)

('**) — Имя функции

1 Сдвиг влево SHL OUT:= IN. сдвинутому влево на N бит. биты справа
заполняются нулями

2 Сдвиг вправо SHR OUT:= IN. сдвинутому вправо на N бит. биты слева
заполняются нулями

3 Циклический сдвиг влево ROL OUT:= IN. циклически сдвинутому влево на N бит

4 Циклический сдвиг вправо ROR OUT:= IN. циклически сдвинутому вправо на N бит

Примечание 1 — Запись OUT ссылается на результат функции.

Пример —
IN:= 2U0001_1001 of type BYTE. N = 3
SHL(IN. 3) = 2*1100_1000
SHR(IN. 3) = 2U0000_0011
ROL(IN. 3) = 2#1100_1000
ROR(IN. 3) = 2#0010_0011

Примечание 2 — IN типа BOOL (один бит) не имеет смысла.

а> Если входная переменная N меньше нуля, возникает ошибка.

Таблица 31 — Поразрядные логические функции

Номер Описание Название Символ Объяснение
(см. примечание 3)

Графическая форма
---- ♦

ANY_BIT — | * * * I — ANY_BIT
ANY BIT — | |

— I I
: — I I

ANY_BIT — | |
+--------+

(**•) — Название или символ

Примеры использования
(см. примечание 5)
А:= AND(B, С. D);
или
А:= В & С & D:

1 И AND &
(см. приме­

чание 1)

OUT:= IN1 & IN2 &... & INn

2 Или OR >= 1
(см. приме­

чание 2)

OUT:= IN1 OR IN2 OR... OR INn

3 Исключающее или XOR = 2к+1

(см. приме­
чание 2)

OUT:= IN1 XOR IN2 XOR... XOR INn

4 Отрицание NOT OUT:= NOT IN1 (см. примечание 4)

78

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 31

Примечание 1 — Данный символ подходит для использования в качестве оператора в текстовых язы­
ках. как показано в таблицах 68 и 71.

Примечание 2 — Данный символ не подходит для использования в качестве оператора в текстовых
языках.

Примечание 3 — Запись IN1, IN2.....INn ссылается на входные переменные в нисходящем порядке;
OUT ссылается на выходную переменную.

Примечание 4 — Графическое отрицание сигналов типа BOOL также может быть осуществлено.

Примечание 5 — Примеры использования и объявления даны на языке ST.

а> Когда представление функции поддерживается именем, это отмечается суффиксом «п» в декларации
соответствия. Например. «1п» представляет запись «AND».

Ь) Когда представление функции поддерживается символом, это отмечается суффиксом «5» в декларации
соответствия. Например. «1в» представляет запись «&».

6.6.2.5.10 Функции выбора и сравнения
Функции выбора и сравнения перегружены для всех типов данных. Стандартное графическое

представление, имена функций и символов и описания функций сравнения показываются в таблице 32.
Стандартное графическое представление, имена функций и символов и описания функций срав­

нения показываются в таблице 33. Все функции сравнения {за исключением функции NE) являются
расширяемыми.

Сравнение битовых строк выполняется поразрядно от самого левого бита к самому правому.
Предполагается, что более короткие битовые строки заполнены слева нулями при сравнении с более
длинными битовыми строками, то есть сравнение переменных типа битовой строки будет иметь такой
же результат, как сравнение целых чисел без знака.

Таблица 32 — Функции выбора0*

Но­
мер Описание Имя Графическая форма Обьясксмие.'Пример

1 Пересылка3'•
01 (присваива­
ние)

MOVE
+---------------+
| MOVE |

ANY -~ | | - ANY
+---------------+

OUT:= IN

2 Двоичный
выбор0*

SEL +-------------+
I SEL |

BOOL — |G | - ANY
ANY — I IN0 |
ANY — | I N I |

+-------------+

OUT:= INO if G = 0
OUT:= IN1 if G = 1
Пример 1 —
A:= SEL (G 0.

IN0:= X,
IN1:= 5);

3 Расширяемая
функция мак­
симума

МАХ +-----------+
I MAX I

ANY ELEMENTARY - - | | - ANY ELEMENTARY
: — I I

ANY_ELEMENTARY — | |
■t------------+

OUT:=
MAX(IN1. IN2.....INn);
Пример 2 —
A:= MAX(B. C . D);

4 Расширяемая
функция ми­
нимума

MIN +---- - - - - +
I MIN |

ANY ELEMENTARY — | | - ANY ELEMENTARY
: — I I

ANY_ELKMRNTARY — | |

OUT:=
MIN (IN1.IN2....
Nn)
Пример 3 —
A-MIN(B, C. D);

79

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 32

Н о ­
м ер

О п и с а н и е И м я Г р а ф и ч е с ка я ф о р м а О б ь я с н с н и с .'П р и м е р

5 Ограничитель LIMIT
+ ------------------+
I L I M I T |

A N Y E L E M E N T A R Y — |M N | - A N Y E L E M E N T A R Y
A N Y E L E M E N T A R Y — I I N |
A H Y _ E L E M E N T A R Y - - | M X |

+ ------------------+

OUT:= MIN (MAX(IN.
MN),MX);
Пример 4 —
A:= UMIT(IN:= B.

MN:= 0,
MX:= 5);

6 Расширенный
мультиплек­
сор Ы -<=)•“ >• ®»

MUX

♦ --------------- —♦
I M U X |

A H Y _ E L E M E N T A R Y — | K | - A N Y _ E L E M E N T A R Y
A N Y _ E L E M E N T A R Y — | |
A N Y _ R L E M E N T A R Y — | |

a. b. c:
Выбирает одну из N

входных переменных
в зависимости от вход­
ной переменной К

Пример 5 —
A . - MUX(0. В. С. D);
имеет такой же эф­
фект как
А - В ;

Примечание 1 — Запись IN1. IN2.....INn ссылается на входные переменные в нисходящем порядке;
OUT ссыпается на выходную переменную.

Примечание 2 — Примеры использования и объявления даны на языке ST.

а) Функция MOVE имеет ровно одну входную переменную IN типа ANY и одну входную переменную OUT
типа ANY.

ь:' Неименованные входные переменные функции MUX имеют неявные имена INO. IN1....INn-1 в нисхо­
дящем порядке, где п из общего числа входных переменных. Данные имена могут (но необязательно) быть по­
казаны в графическом представлении.

с > Функция MUX может быть типизирована в форме MUX * * * , где * — тип входной переменной К и * * —

тип других входных переменных и выхода.

Ф Разработчику разрешается (но необязательно) поддерживать выбор среди переменных определенных
пользователем типов данных, чтобы подтвердить соответствие этому свойству.

в) Если фактическое значение входной переменной К функции MUX находится вне диапазона {0 ... п-1).
возникает ошибка.

Таблица 33 — Функции сравнения

Но­
мер Описание Имя*1 Символ61 Объяснение

(расширяемая 2 или большее число операндов)

Графическая форма Пример использования

♦— —*
ANY ELEMENTARY — I *** |— BOOL

: - - I I
ANY_ELEMEN7ARY — | I

»------- -
(*’*) Имя или символ

А:= GT(B. С. D); II Имя функции
или
А:= (В>С) & (OD): И Символ

1 Убывающая последовательность GT > OUT:=
(IN1>IN2)& (IN2>IN3) &.. & (INn-1 > INn)

2 Монотонная последовательность GE >= OUT:=
(IN1>=IN2)&(IN2>=IN3)&.. & (INn-1 >= INn)

80

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 33

Но­
мер Описание Имя3' Символ6' Объяснение

(расширяемая: 2 или большее кисло операндов)

3 Equality EQ = OUT;=
(IN1=IN2)&(IN2=IN3) &.. & (INn-1 = INn)

4 Монотонная последовательность LE <= OUT:=
(IN1<=IN2)&(IN2<=IN3)&.. & (INn-1 <= INn)

5 Increasing sequence LT < OUT:=
(IN1<IN2)& (IN2<IN3) &.. & (INn-1 < INn)

6 Inequality NE <> OUT;= (IN1<>IN2) (нерасширяемая)

Прим еч ание 1 — Запись IN1, IN2.....INn ссылается на входные переменные в нисходящем порядке;
OUT ссылается на выходную переменную.

Прим еч ание 2 — Все символы, показанные в данной таблице, могут использоваться как операторы
в текстовых языках.

Примечание 3 — Примеры использования и объявления даны на языке ST.

Примечание 4 — Стандартные функции сравнения могут также определяться зависящими от языка,
например, на языке релейно-контактных схем.

а> Когда представление функции поддерживается именем, это отмечается суффиксом ап» в декларации
соответствия. Например. «1п» представляет запись «GT».

Ь) Когда представление функции поддерживается символом, это отмечается суффиксом «s» в декларации
соответствия. Например. «1s» представляет запись «>».

К строкам символов применяется таблица 33. Вместо однобайтовой строки может использоваться
переменная типа CHAR или WCHAR. соответственно.

При сравнении двух строк разной длины более короткая строка рассматривается расширенной
справа символами с нулевым значением до длины более длинной строки. Сравнение осуществляется
слева направо на базе числовых значений кодов символа в наборе символов.

Пример — Строка символов ‘Z’ больше строки символов 'AZ' (‘Z’ > 'А’) и строка символов ‘AZ’ боль­
ше чем строка 'АВС ('А' = 'А' и 'Z' > 'В').

Стандартное графическое представление, имена и символы функций и описания дополнительных
функций сравнения строк символов показываются в таблице 34. При выполнении данных операций.
позиции символов в строке считаются пронумерованными 1. 2..... L. начиная с самого левого символа.
где L — длина строки.

Ошибка возникает, если.
- фактическое значение какой-либо входной переменной типа ANYJNT в таблице 34 меньше

нуля;
- вычисление функции приводит к попытке (1) получить доступ к несуществующей позиции в стро­

ке. или (2) получить строку длиннее определенной разработчиком максимальной длины строки;
- аргументы типа данных STRING или CHAR и аргументы типа данных WSTRING или WCHAR

смешаны в одной функции.

Таблица 34 — Строковые фунхции

H o -
м ер

О п и с а н и е Г р а ф и ч е с ка я ф о р м а П р и м е р

1 Длина
строки

+ ----------------------------+

ANY_STRING-- | LEN | — ANY_INT
+----------------- +

Длина строки
А:= LEN(ASTRING’);
... эквивалентно А:= 7;

81

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 34
Но­
м е р

О п и с а н и е Г р а ф и ч е с ка я ф о р м а П р и м е р

2 Левая
подстрока

+ ----------------------- +
ANY_STRING— | LEN | — ANY_INT

+ ----------------------- +

L самых левых символов из IN
А= LEFT(IN:-ASTR'. L:=3);
эквивалентно A:= ‘AST',

3 Правая
подстрока

+ -----------------------+
I RIGHT |

ANY STRING— | IN | — ANY STRING
ANY_INT — |L |

+ -----------------------+

L самых правых символов из IN
А:= LEFT(IN:-ASTR'. L:=3);
эквивалентно A:= STR':

4 Средняя
подстрока

+ - -------------------- +
| MID |

ANY STRING--| IN |- - ANY STRING
ANY_INT - - |L |
ANY_INT — |P |

+ -----------------------+

L символов из IN. начиная с Р-й по­
зиции символа
А:= MID(IN:='ASTR\ L:=2. Р:=2):
эквивалентно А:= ST;

5 Расши­
ряемая
конкате­
нация

•f------------------------+
| CONCAT |

ANY CHARS— | | - - ANY STRING
: — I I

ANY_CHARS— | |
+ ----------------------- +

Расширяемая конкатенация
А= CONCAT('AB'.'CDVE'):
эквивалентно А:= ABCDE',

6 Вставить + — ---------------- +
| INSERT |

ANY STRING--1 IN I |— ANY STRING
ANY~CHARS - - |1N2 I
ANY~INT----------- |P |

+ --------------------- +.

Вставить строку IN2 в строку IN1 по­
сле Р-й позиции символа
А= INSERT(IN1:='ABC'.
IN2:= XY\ Р=2);
эквивалентно А:= ABXYC';

7 Удалить + --------------------- +
| DELETE I

ANY STRING--|IN |- - ANY STRING
ANY_INT — |Ь I
ANY_XNT — |P I

+ ---------------------

Удалить L символов из строки IN.
начиная с Р-й позиции символа
А:= DELETE(IN:=ABXYC\
L:=2. Р:=3);
эквивалентно А:= АВС';

8 Заменить *■--------------------- +
| REPLACE |

ANY^STRING— | IN I j— ANY_STRING
ANY CHARS — |I N2 |
ANY INT — |L |
ANY_INT — IP |

♦ --------------------- +

Заменить L символов строки IN1
строкой IN2. начиная в Р-й позиции
символа
А= REPLACE(IN1:=ABCDE\
IN2:='X\ L;=2. Р:=3):
эквивалентно А;= АВХЕ-;

9 Найти + ------------------— +
I FIND |

ANY_STRING— | IN I | — ANY_INT
ANY_CHARS — | IN2 |

+ -----------------------+

Найти позицию символа в начала
первого вхождения строки IN2 в
строку IN1. Если вхождения строки
IN2 не обнаружены, то OUT:= 0.
А:= FIND(IN1: - АВСВС. IN2;= BC');
... эквивалентно А:= 2;

Примечание 1 — Примеры в этой таблице даются на языке ST.

Прим еч ание 2 — Все входные переменные функции CONCAT имеют тип ANY_CHARS. то есть могут
быть также типа CHAR или типа WCHAR.

Примечание 3 — Входная переменная IN2 функций INSERT. REPLACE. FIND имеет тип ANY_CHARS,
то есть гложет также иметь тип CHAR или WCHAR.

82

ГОСТ Р МЭК 61131-3—2016

6.6.2.5.11 Функции даты и продолжительности времени
В функциях сравнения и выбора разрешено также использование входных и выходных перемен­

ных. имеющих типы данных времени и продолжительности времени, показанные в таблице 35.
Возникает ошибка, если результат вычисления одной из этих функций превышает определенный

разработчиком диапазон значений выходного типа данных.

Таблица 35 — Числовые функции типов данных времени и продолжительности времени

Но
мер

О п и с а н и е
(и м я ф у н кц и и)

Символ IN1 tN 2 OUT

1а ADD + TIME. LTIME TIME. LTIME TIME. LTIME

1Ь ADD_TIME TIME TIME TIME

1с ADD_LTIME ♦ LTIME LTIME LTIME

2а ADD ♦ TOD. LTOD LTIME TOD. LTOD

2Ь ADD_TOD_TIME ♦ TOD TIME TOD

2с ADD_LTOD_LTIME LTOD LTIME LTOD

За ADD ♦ DT. LDT TIME. LTIME DT. LDT

ЗЬ ADD_DT_TIME DT TIME DT

Зс ADD_LDT_LTIME ♦ LDT LTIME LDT

4а SUB - TIME. LTIME TIME. LTIME TIME. LTIME

4Ь SUB_TIME - TIME TIME TIME

4с SUB_LTIME - LTIME LTIME LTIME

5а SUB - DATE DATE TIME

5Ь SUB_DATE_DATE - DATE DATE TIME

5с SUB_LDATE_LDATE - LDATE LDATE LTIME

6а SUB - TOD. LTOD TIME. LTIME TOD. LTOD

6Ь SUB_TOO_TIME - TOD TIME TOD

6с SUB_LTOD_LTIME - LTOD LTIME LTOD

7а SUB - TOD. LTOD TOD. LTOD TIME, LTIME

7Ь SUB_TOD_TOD - TOD TOD TIME

7с SUB_TOD_TOD - LTOD LTOD LTIME

8а SUB - DT. LDT TIME. LTIME DT. LDT

8Ъ SUB_DT_TIME - DT TIME DT

8с SUB_LDT_LTIME - LDT LTIME LDT

9а SUB - DT. LDT DT. LDT TIME. LTIME

9Ь SUB_DT_DT - DT DT TIME

9с SUB_LDT_LDT - LDT LDT LTIME

10а MUL • TIME. LTIME ANY_NUM TIME. LTIME

10Ь MULT1ME • TIME ANYJNUM TIME

Юс MUL_LTIME • LTIME ANY_NUM LTIME

11а DIV / TIME. LTIME ANYNUM TIME. LTIME

83

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 35

Н о ­
м ер

О п и с а н и е
(и м я ф у н кц и и)

С и м в о л IN1 IN 2 O U T

11Ь DIV_TIME 1 TIME ANY_NUM TIME

11с DIV.LTIME / LTIME ANYNUM LTIME

Примечание — Данные стандартные функции поддерживают перегрузку, но только в пределах обоих
наборов типов данных (TIME. DT, DATE. TOD) и (LTIME. LDT. DATE. LTOD).

Пример —
Операторы языка ST
Х:= DTH1986-04-28-08:40:00;
Y:~ DT_TO_TOD(X);
W:= DT_TO_DATE(X):
имеют такой же результат, как и операторы с «извлеченными» данными.

Х:= DTU1986-04-28-08:40:00;
Y:= TIME_OF_DAYU08:40:00;
W:= DATEU1986-04-28:

Функции конкатенации и расщепления данных, показанные в таблице 36. определены и для об­
работки данных даты и времени. Дополнительно определена функция получения дня недели.

Возникает ошибка, если результат вычисления одной из этих функций превышает определенный
разработчиком диапазон значений выходного типа данных.

Таблица 36 — Дополнительные CONCAT и SPLIT функции для типов данных даты и времени

Ho-
мер О п и с а н и е Графическая форма Пример

Конкатенация типов данных даты и времени

1a CONCAT_DATE
_TOD +---------------------------------+

I CONCAT DATE TOD |
DATE — | DATE | - -DT

TOD - - |TOD |
+ ---------------------------------+■

Соединить дату и время
VAR

myD: DATE;
ENDJ/AR
myD:= CONCAT_DATE_T OD

(D#2010-03-12. TOD# 12:30:00);

1b CONCAT_DATE
_LTOD +------------------------- +

| CONCAT_DATE_LTOD|
DATE — | DATE | - -LDT
LTOD — |LTOD |

♦------------------------------- +

Соединить дату и время суток
VAR

myD: DATE;
END_VAR
myD:= CONCAT_DATE_LT OD

(D#2010-03-12.
T OD#12:30:12.1223452);

2 CONCAT_DATE
| CONCAT DATE |

ANY_INT — |YEAR | — DATE
ANY_INT --IMONTH
ANY_INT — |DAY |

+------------------------+

Соединить дату и время суток
VAR

myD: DATE:
ENDJ/AR
myD:= CONCAT_DATE (2010.3.12):

84

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 36

Н о ­
м ер

О п и с а н и е Г р а ф и ч е с ка я ф о р м а П р и м е р

За CONCAT TOD +------------------------ +
| CONCATJTOD

A N Y _ IN T — | HOUR | — TOD
A N Y ~ IN T — | M IN U TE
a n y “ i n t — | SECOND
a n y “ i n t — i m i l l i s e c o n d

+ ---------------------------

Соединить время суток
VAR

myTOD: TOD:
END_VAR
myTD:= CONCAT_TOD (16.33,12.0):

3b CONCAT LTOD +------------------------ +
| CONCAT_LTOD

A N Y _ IN T - - |HOUR | — LTOD
A N Y _ IN T - - |M IN U T E
A N Y _ IN T — | SECOND
A N Y _ IN T — IM IL L IS E C O N D

+ ----------------------------

Соединить время суток
VAR

myTOD: LTOD:
END_VAR
myTD:= CONCAT_TOD (16.33,12.0):

4a CONCAT DT +-----------------------
| C O N C AT_D T

A N Y _ IN T - - |Y E A R
A N Y _ IN T — | MONTH
A N Y _ IN T — |D A Y
A N Y _ IN T — |H O U R
A N Y _ IN T — | M IN U T E
A N Y _ IN T - - |SEC O N D
A N Y _ IN T — IM IL L IS E C O N D

+ ----------------------------

- - D T

Соединить время суток
VAR

myDT: DT;
Day: USINT;

END.VAR
Day := 17; myDT:= CONCAT_DT
(2010.3,Day. 12.33.12.0):

4b CONCAT LDT +------------------------ ♦
| C O N C AT_LD T

A N Y _ IN T — I YEAR | — LD T
A N Y _ IN T — |MONTH
A N Y _ IN T - - |D A Y
A N Y _ IN T — |HOUR
A N Y _ IN T - - |M IN U T E
A N Y _ IN T — |SECOND
A N Y _ IN T - - IM IL L IS E C O N D

+ ----------------------------

Соединить время суток
VAR

myDT: LDT;
Day: USINT;

END_VAR
Day := 17;
myDT:= CONCAT_LOT
(2010.3.Day.12.33.12.0);

Расщепление типов даты и времени

SPLIT DATE +------------------------+
| S P L IT _ D A T E |

D ATE— | IN YEAR | — A N Y _ IN T
| M O N TH |— A N Y ~ IN T
| DAY I — A N Y _ IN T
+---------------------- - +

См. примечание 2

Расщепить дату
VAR

myD: DATE:= DATE#2010-03-10;
myYear: UINT:
myMonth,
myDay: USINT:

END_VAR
SPLIT_DATE
(myD, myYear. myMonth. myDay);

85

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 36

Но-
мер Описание Графическая форма Пример

6а SPLIT_TOD + -------------------------------+ Расщепить время суток
| S P L IT TOD | VAR myTOD: TOD:= TOD# 14:12:03;

TOD— I I N H O U R I— A N Y _ IN T myHour. myMin. mySec: USINT;
| M IN U T E |— A N Y _ IN T
I S E C O N D |— A N Y _ IN T

myMilliSec: UINT;
END_VAR

| M IL L IS E C O N D |— ANY IN T
+ -------------------------------+ SPLIT_TOD(myTOD. myHour.

См. примечание 2 myMin. mySec. myMilliSec);

6Ь SPLIT LTOD -1________________________________L Расщепить время суток
VAR myTOD: LTOD;=TOD#14;12;03;

T T
I S P LT T _LT O D |

LTO D — | IN HOUR | - - ANY IN T myHour.
| M IN U T E |— A N Y _ IN T
| SECOND | — ANY IN T

myMin. mySec: USINT;

| M IL L IS E C O N D |— ANY IN T myMilliSec. UINT:
+ ------------------------------+ END_VAR

См. примечание 2 SPLIT_TOD(myTOD. myHour.
myMin. mySec. myMilliSec);

7а SPLIT_DT + --------------------------------+ Расщепить дату
I S P L IT _ D T | VAR myOT: DT

D T - - | I N Y E A R |— A N Y _ IN T := DT#2010-03-10-14:12:03:00;
M O N T H |— ANY IN T

| D A Y |— ANY IN T
myYear. myMilliSec: UINT;

| H O U R |- - ANY IN T myMonth, myDay, myHour.
| M IN U T E |— ANY IN T myMin.
| S E C O N D |— AN Y IN T mySec. USINT;
| M IL L IS E C O N D | — A N Y _ IN T
A—. _ _ ^ M _L

END_VAR
SPLIT_DT(myDT. myYear. myMonth.

См. примечание 2 myDay.
myHour. myMin. mySec. myMilliSec);

7Ь SPLITJ.DT + ---+ Расщепить дату
| S P L IT L D T | VAR myDT: LDT

L D T — | I N YEAR | - - A N Y _ IN T := DT#2010-03-10-14:12:03:00;
I M O N T H |— ANY IN T
| D A Y |- - A N Y _ IN T
| H O U R |— ANY IN T

myYear. myMilliSec: UINT; UINT;
myMonth. myDay. myHour. myMin,

I M IN U T E | — ANY IN T mySec: USINT;
| SECOND | — ANY IN T END_VAR
| M IL L IS E C O N D |— A N Y _ IN T
J. i.

SPLIT_DT(myDT. myYear. myMonth.
I T myDay,

См. примечание 2 myHour. myMin. mySec. myMilliSec);

Получить день недели

8 DAY OF WEEK Получить день недели:
| DAY OF WEEK | VAR myD: DATE:= DATE#2010-03-

D A TE — | I N *“ | - ANY IN T 10; myOoW: USINT;
+ — —-----------------------------------+ END_VAR

См. примечание 2 myOoW: = DAY_OF_WEEK(myD);

Функция DAY_OF_WEEK возвращает 0 для воскресенья. 1 для понедельника...........6 для субботы

86

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 36

Примечание 1 — Тип данных входной переменной YEAR должен быть, по меньшей мере. 16-битоеым
типом для поддержки допустимого значения года.

Примечание 2 — Типы данных для типов данных выходных переменных ANYJNT определяет
разработчик.

Примечание 3 — Разработчик может определять дополнительные входные и выходные переменные
в соответствии с поддерживаемой точностью, например, микросекунды и наносекунды.

6.6.2.5.12 Функции преобразования порядка следования байтов
Функции преобразования порядка следования байтов преобразуют этот порядок при обмене ин­

формацией с определенным разработчиком PLC.
Порядок следования байтов определяет упорядочение байтов в длинных типах данных и пере­

менных.
Значения данных в порядке big endian (от старшего к младшему) помещаются в байтах памяти,

начиная с левого байта и оканчивая правым.
Значения данных в порядке little endian (от младшего к старшему) помещаются в байтах памяти,

начиная с правого байта и оканчивая левым.
Независимо от порядка следования байтов, битовое смещение 0 адресует самый правый бит типа

данных.
Использование частичного доступа с маленькими числам возвращает нижнюю часть значения не­

зависимо от указанного порядка следования байтов.

Пример 1 — Порядок следования байтов
TYPE D: DWORD:= 1641234_5678; END_TYPE;
Расположение в памяти
для порядка big endian: 16412. 16434. 16456, 16# 78
для порядка little endian: 16478. 16456. 16434, 16412.

Пример 2 — Порядок следования байтов
TYPE L: ULINT:= 1641234_5678_9ABC_DEF0: END_TYPE:
Расположение в памяти
для порядка big endian: 16412. 16434.16456. 16478. 1649А. 164ВС. 164DE. 164F0
для порядка little endian: 164F0. 164DE. 164ВС. 1649А. 16478. 16456. 16434. 16412

В качестве входных и выходных переменных функций преобразования порядка следования бай­
тов поддерживаются следующие типы данных:

- ANYJNT с размером больше или равным 16 бит.
- ANY_BIT с размером больше или равным 16 бит.
- ANY REAL;
- WCHAR.
- TIME;
- массивы этих типов данных;
- структуры, содержащие компоненты этих типов данных.
Другие типы не преобразуются, но могут содержаться в структурах, подлежащих преобразованию.

Функции преобразования порядка следования байтов показаны в таблице 37.

87

ГОСТ Р МЭК 61131-3—2016

Таблица 37 — Функции преобразования порядка следования байтов

Н о м е р О п и с а н и е Г р а ф и ч е с к а я ф о р м а Т е кс т о в а я ф о р м а

1 TO_BIG_ENDIAN +------------------------------+
| T O _ B IG _ E N D IA N |

A N Y - - I I N “ | —A N Y
+----------------------- -—♦

Преобразование в формат дан­
ных big endian
А:= TO_BIG_ENDIAN(B);

2 TO_UTTLE_
ENDIAN

♦—------ -------------------- *
I.TO L I T T L E E N D IA N |

A N Y - - | IN “ . | - - A N Y
+----------- _____------

Преобразование в формат дан­
ных little endian
В:= TO_UTTLE_ENDIAN(A);

3 BIG_ENDIAN_TO +—-------------------------- -
» F R O M _ B IG _ E N D IА Н I

A N Y — «3N ~ ~ | — A N Y
+------------------------------*

Преобразование из формата дан­
ных Ыд endian
А:= FROM_BIG_ENDIAN(B):

4 LITTLE_ENDIAN_
TO

♦------------------------------+
l FRO M L I T T L E E N D IA N 1

A N Y — I2N ’ I — A N Y
♦------------------------------+

Преобразование из формата дан­
ных little endian
А:= FROM_LITTLE_ENDIAN(B):

Тилы данных на входной и выходной стороне должны иметь одинаковый тип данных.
Примечание — В случав, если переменная уже находится в требуемом формате, функция не изме­

няет представления данных.

6.6.2.5.13 Функции перечислимых типов данных
Функции выбора и сравнения, перечисленные в таблице 38 могут применяться к входным пере­

менным. имеющим перечислимый тип данных.

Таблица 38 — Функции перечислимых типов данных

Но­
мер

Описание/
имя функции С и м в о л Номер свойства »х» в таблице «у*

1 SEL Свойство 2, таблица 32

2 MUX Свойство 6. таблица 32
За) EQ = Свойство 3. таблица 33
4а) NE О Свойство 6. таблица 33

Примечание — К данной таблице применяются положения примечаний 1 и 2 таблицы 33.

Примечание — К данной таблице применяются положения подстрочных примечаний а) и Ь)
таблицы 33.

6.6.2.5.14 Функции подтверждения
Функции подтверждения проверяют, содержит ли заданный входной параметр допустимое значе­

ние.
Для типов данных REAL и LREAL определена перегруженная функция IS_VALID. Функции под­

тверждения возвращает результат FALSE, если действительное число не является числом (NaN) или
равно бесконечности (+lnf. -Inf).

Разработчик может поддерживать дополнительные типы данных посредством функции подтверж­
дения IS_VALID. Результат таких расширений определяется разработчиком.

Перегруженная функция IS_VALID_BCD определена для типов данных BYTE. WORD. DWORD и
LWORD. Функции подтверждения возвращает результат FALSE, если значение не удовлетворяет опре­
делению BCD.

Перечень свойств функций подтверждения приведен в таблице 39.

88

ГОСТ Р МЭК 61131-3—2016

Таблица 39 — Функции подтверждения

Но­
мер Функция Графическая форма Пример

1 IS.VALID +-------------------- +
| IS VALID |

ANY_REAL— | IN I--BOOL
+------------------------- +

Подтверждение значения типа REAL
VAR R: REAL: END_VAR
IF IS_VALID(R) THEN ...

2 IS_VALID_
BCD +------------------------- +

| IS_VALID_BC D |
-ANY_BIT-- | IN "* ~ | — BOOL

+------------------------- +

Тест подтверждения слова BCD
VAR W: WORD: END_VAR
IF IS_VALID_BCD(W) THEN ...

6.6.3 Функциональные блоки
6.6.3.1 Общие положения
Функциональный блок — это программный компонент, который представляет хорошо определен­

ную часть программы для обеспечения модульности и структуризации.
Концепция функционального блока реализуется типом функционального блока и экземпляром

функционального блока:
- тип функционального блока состоит из следующих частей:

- определение структуры данных, разделенной на входные, выходные и внутренние перемен­
ные:

- набор операций, выполняемых с элементами структуры данных при вызове экземпляра типа
функционального блока;

- экземпляр функционального блока:
- это многократное, именованное применение (экземпляры) типа функционального блока;
- каждый экземпляр имеет связанный идентификатор (имя экземпляра), и структуру данных,

содержащую статические входные, выходные и внутренние переменные.
Статические переменные сохраняют свое значение от одного выполнения экземпляра функци­

онального блока до следующего. Поэтому, вызов экземпляра функционального блока с одинаковыми
входными параметрами не всегда выдает одинаковые выходные значения.

Если не оговорено иное, к функциональным блокам применяются общие свойства программных
компонентов;

- объектно-ориентированный функциональный блок.
Функциональный блок может быть расширен набором объектно-ориентированных свойств.
Объектно-ориентированный функциональный блок является также расширенным множеством

классов.
6.6.3.2 Объявление типа функционального блока
Тип функционального блока объявляется таким же образом, как и функции.
Свойства объявления типа функционального блока определены в таблице 40:
1) ключевое слово FUNCTION_BLOCK. за которым следует имя объявляемого функционального

блока:
2) множество операций, составляющее тело функционального блока.
3) завершающее ключевое слово END_FUNCTION_BLOCK после тела функционального блока;
4) конструкции VARJNPUT. VAR_OUTPUT и VAR_IN_OUT. при необходимости, определяющие

имена и типы переменных:
5) значения переменных, которые объявляются через конструкцию VAR_EXTERNAL. могут изме­

няться из функционального блока:
6) значения констант, которые объявляются через конструкцию VAR_EXTERNAL CONSTANT и не

могут изменяться из функционального блока;
7) массивы переменной длины могут использоваться как VAR_IN_OUT;
8) выходные и статические переменные могут инициализироваться;
9) переменные EN и ENO объявляются так же. как и входные и выходные переменные. Имеются

специфические свойства функциональных блоков (отличные от свойств функций):

89

ГОСТ Р МЭК 61131-3—2016

10) конструкция VAR...END_VAR и также конструкция VAR_TEMP...END_VAR, при необходимости,
определяющие имена и типы внутренних переменных функциональных блоков. В отличие от функций,
переменные, объявленные в секции VAR. являются статическими;

11) переменные секции УАР(статические) могут быть объявлены как PUBLIC или PRIVATE. По
умолчанию используется спецификатор доступ PRIVATE. Переменные PUBLIC могут использоваться
вне функционального блока, используя такой же синтаксис, как при доступе к выходным переменным
функционального блока;

12) для входных, выходных и внутренних переменных функционального блока могут использо­
ваться квалификаторы RETAIN или NON_RETAIN. как показано в таблице 40;

13) в текстовых объявлениях квалификаторы R_EDGE и F_EDGE используются для обозначения
функции детектирования фронта сигнала логических входных переменных. Это приводит к неявному
объявлению в данном функциональном блоке функционального блока типа R_TRIG или F_TRIG, соот­
ветственно. для выполнения обнаружения требуемого фронта. Пример такой конструкции приведен в
таблице 40,

14) в графических объявлениях для детектирования задних и передних фронтов сигнала приме­
няется конструкция, показанная в таблице. При использовании набора символов в графических объ­
явлениях. символы «>» и «<» показываются на границе функционального блока;

15) в объявлении внутренних переменных функционального блока может использоваться символ
«*». как определено в таблице 16;

16) если в объявлениях типов стандартных входных и выходных переменных функционального
блока используются родовые типы данных, то правила определения фактических типов выходных па­
раметров таких типов функциональных блоков являются частью определения типа функционального
блока;

17) экземпляры других функциональных блоков, классов, объектно-ориентированных функцио­
нальных блоков могут объявляться во всех секциях переменных, за исключением секции VAR_TEMP;

18) экземпляр функционального блока, объявленный внутри типа функционального блока, не дол­
жен иметь, во избежание неопределенностей, такое же имя. как функция из той же области имен.

Таблица 40 — Объявление типа функционального блока

Номер Описание Пример

1 Объявление типа функционального блока
FUNCTION_BLOCK ...
END_FUNCTION_BLOCK

FUNCTION_BLOCK myFB ...
END_FUNCT10N_BLOCK

2а Объявление входных переменных
VARJNPUT ...END_VAR

VARJNPUT IN: BOOL; T1: TIME:
END_VAR

2Ь Объявление входных переменных
VAR_OUTPUT ... END_VAR

VAR_OUTPUT OUT: BOOL; ET_OFF: TIME:
END_VAR

2с Объявление входных-выходных переменных
VAR_IN_OUT... END_VAR

VAR_IN_OUT A: INT; END_VAR

2d Объявление временных переменных
VARTEMP ... ENDVAR

VAR_TEMP I: INT; END_VAR2e

Объявление статических переменных
VAR ... END_VAR

VAR B: REAL; END_VAR

21 Объявление внешних переменных
VAR_EXTERNAL... ENDVAR

VAR_EXTERNAL B: REAL: END_VAR
Соответствует следующему:
VAR.GLOBAL В :REAL

90

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 40

Номер Описание Пример

2д Объявление внешних переменных
VAR_EXTERNAL CONSTANT ... END_VAR

VAR_EXTERNAL CONSTANT В: REAL;
END_VAR

Соответствует следующему:
VAR_GLOBAL В: REAL

За Инициализация входных параметров VARJNPUT MN: INT:= 0;

ЗЬ Инициализация выходных параметров VAR_OUTPUT RES: INT:= 1;

Зс Инициализация статических переменных VAR B; REAL:= 12.1:

3d Инициализация временных переменных VARJTEMP 1: INT:= 1;

— Входной параметр EN и выходной параметр
ENO

Определено в таблице 18

4а Объявление квалификатора RETAIN для вход­
ных переменных

VARJNPUT RETAIN X; REAL; END_VAR

4Ь Объявление квалификатора RETAIN для вы­
ходных переменных

REAL; END_VAR

4с Объявление квалификатора RETAIN для вы­
ходных переменных

VARJNPUT NON_RETAJN X: REAL:
END_VAR

4d Объявление квалификатора NON_RETAIN для
выходных переменных

VAR_OUTPUT NON_RETAIN X: REAL: END_VAR

4е Объявление квалификатора NON_RETAIN для
статических переменных

VAR RETAIN X: REAL:
END_VAR

4f Объявление квалификатора NON_RETAIN для
статических переменных

VAR NON_RETAIN X: REAL;
END_VAR

5а Объявление квалификатора RETAIN для ло­
кальных экземпляров функционального блока

VAR RETAIN TMR1: TON:
END_VAR

5Ь Объявление квалификатора NON_RETA!N
для локальных экземпляров функционального
блока

VAR NON_RETAIN TMR1: TON;
END_VAR

6а Текстовое объявление.
- входных переменных переднего фронта

FUNCTION_BLOCK AND_EOGE VARJNPUT
X: BOOL R_EDGE:

Y: BOOL F_EDGE;
END_VAR
VAR_OUTPUT Z: BOOL: END_VAR
Z:= X AND Y; (’пример на языке ST

*) END_FUNCTION_BLOCK

6Ь - входных переменных заднего фронта (тек­
стовое)

См. выше

91

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 40

Номер Описание Пример

7a Графическое объявление:
- входных переменных переднего фронта {>) FUNCTION_BLOCK

{* Внешний интерфейс *)

+ ------------------- +
| AND EDGE |

BOOL— >Х Z | — BOOL
I I1 1

BOOL— <У |
■ I1 1
+------------------- +

(* тело функционального блока *)

+ ----------- +

1 & 1
х — 1 1— z
Y - - I |

+ ----------- +
END_FUNCT10N_BLOCK

7b Графическое объявление:
- входных переменных заднего фронта (<)

См. выше

Примечание — Свойства 1—3 этой таблицы эквивалентны функциям, см. таблицу 19.

Ниже приведены примеры объявления типа FB.
Пример 1 — Объявление типа функционального блока

FUNCnON_BLOCK DEBOUNCE
(' “ Внешний интерфейс '**)
VARJNPUT

IN: BOOL: (‘ Неявно = 0 •)
DBTIME: TIME- t»10ms; (’ Неявно = t»10ms •)

END_VAR

VAR_OUTPUT
OUT: BOOL; (' Неявно = 0 •)
ET_OFF: TIME; (' Неявно = tttOs *)

END_VAR

VAR DB_ON: TON; (" Внутренние переменные “)
DB_OFF: TON; (“ и экземпляры FB ")
DBJFF: SR;

END_VAR

(*** Тело функционального блока ***)
DB_ON (IN:= IN, PT.-DB_TIME);
DB_OFF(IN. - NOTIN, PT:= DB_TIME);
DB_FF (S ir* DB_ON.Q. R:= DB_OFF.Q);
OUT:= DB_FF.Q1;
ET_OFF:= DB_OFF.ET;

END_FUNCT!ON_BLOCK

92

ГОСТ Р МЭК 61131-3—2016

а) Текстовое объявление (язык ST)
FUNCTION_BLOCK

(‘ Интерфейс внешних параметров ')

+■-------------------------- +
| DEB0UNCE |

B00L--1 IN OUT |-- BOOL
TIME--|DB_TIME ET_OFF|----TIME

+— --------------- ------ +

(‘ Тело типа функционального блока ‘)

IN --------+ -------
I +'

+— |-
DB TIME— +

DB_ONЛ---------------------1. DB_FF

I TON | 1 SR |
1 IN Ql- - 1 S i QI----------OUT
1 РТ ЕТ |
А _ _ _ _ J.

♦ -

1
- !R 1

1 j .▼ " — f

DB_OFF
1
1
1

+ ----------— + 1
I TON | 1

—0| IN Q|— +
— |PT ET |-------------ET_OFF

♦ — - — +

END_FUNCTION_BLOCK

b) Гpафическое объявление (язык FBD)

Пример ниже показывает объявление и графическое использование входных переменных в функ­
циональном блоке, как задано в таблице 40.

Пример 2 -

+ _________ + FUNCTION_BLOCK ACCUM
д с с и м | VARJN_OUTA: INT; END_VAR

IN T ___ | д _______ д | j NT VARJNPUTX: INT; END_VAR

IN T ------ |X | A ~A *X ;
+ --------------- + END_FUNC TION_BL OCK

+ ------ +
A— | + | — A
X— | |

+ ------ +

а) Го афическое и текстовое объявление типа функционального блока и функции

АСС1
+----------------+
| ACCUM |

АСС-----------------------| А ------------А | ------ АСС
+ — + I I

Х1— I * I ---- IX I
Х 2 -------- | | + ----------------- +

VAR
АСС: INT;
X I: INT;
Х2: INT;

END_VAR

+ ------+
Это объявление предположительное:
эффект выполнения:
АСС:= ACC+XVX2;

Ь) Допустимое использование экземпляра функционального блока и функции

93

ГОСТ Р МЭК 61131-3—2016

А С С 1
+-----------+
I A C C U M I

. I K . _____. 1 1 . ____

+ - - - + i i
1 * 1 — IX i X 3
l l + --------- X 4
+ — +

А С С 2
+----------- +
I ACCO M I

--------------------- (А ------------- А | — ЛСС

♦ ™ + I I
'» * I — IX I
' I I * -V
+---- +

Объявления как в примере Ь) предпола­
гаются для

АСС. Х1, Х2. ХЗ и Х4;

эффект выполнения следующий:

АСС - АСС*Х1 "Х2+ХЗ'Х4:

с) Допустимое использование экземпляра функционального блока

ХЗ-

X I -
Х2-

АСС1
♦ — ------- +
| ACCOM |

------- I А----- А |-- Х4
+-------- + I I
I * I — IX |
| , +--------------+
+----- +

VAR
Х1: INT;
Х2: INT;
ХЗ: INT:
Х4: INT;

END_VAR

Объявление предположительное: эф­
фект выполнения:
Х З - X3+XVX2;
Х 4 - ХЗ;

d) Допустимое использование экземпляра функционального блока

НЕДОПУСТИМО!
Соединение к входной-выходной пере­
менной А не является переменной или
именем функционального блока (см. пре­
дыдущий текст)

е) Неразрешенное использование экземпляра FB

Следующий пример показывает функциональный блок AND_EDGE. используемый в таблице 40.

Пример 3 — Объявление типа функционального блока AND_EDGE
Объявление функционального блока ANDJEDGE на примере выше в таблице 40 эквивалентно сле­

дующему объявлению:
FUNCnON_BLOCK AND_EDGE

VARJNPUT
X: BOOL:
Y: BOOL:

ENDJVAR
VAR

X_TRIG: R_TRIG;
Y_TRIG: F_TRIG;

END_VAR VAR_
OUTPUT

Z: BOOL:
ENDJVAR

94

ГОСТ Р МЭК 61131-3—2016

X_TRIG(CLK:= X);
Y_TRIG(CLK:~ Y);
Z:= X_TRIG.Q AND Y_TRIG.Q;

END_FUNCTION_BLOCK

Определение функциональных блоков обнаружения фронта R_TRIG и F_TRIG см. в таблице 44.
6.6.3.3 Объявление экземпляра функционального блока
Экземпляр функционального блока объявляется таким же образом, как и описанные структурные

переменные.
Когда объявляется экземпляр функционального блока, начальные значения входных, выходных и

общих переменных могут объявляться в перечне, заключенном в скобки, с последующим оператором
присваивания, который следует за идентификатором типа функционального блока, как показано в та­
блице 41.

Элементы, для которых начальные значения не перечислены в описанном выше перечне инициа­
лизации. получают неявное начальное значение, объявленное для этих элементов в объявлении типа
функционального блока.

Таблица 41 — Объявление экземпляра функционального блока

Но­
мер Описание Пример

1 Объявление экземпляра функционального
блока

VAR
FB_insiance_1, FB_instance_2: my FB_Type:
T1. T2. ТЗ: TON;

END_VAR

2 Объявление экземпляра FB с инициализа­
цией его переменных

VAR
TempLoop: PID:=(PropBand:= 2.5.
Integrals T#5s);

END_VAR
Распределяет начальные значения входным и выходным
переменным экземпляра функционального блока

6.6.3.4 Вызов функционального блока
6.6.3.4.1 Общие положения
Вызов экземпляра функционального блока может быть представлен в текстовой или графической

форме.
Свойства вызова функционального блока (включая формальный и неформальный вызовы) по­

хожи на свойства вызова функций со следующими расширениями:
1) текстуальный вызов функционального блока состоит из имени экземпляра с последующим пе­

речнем параметров;
2) в графическом представлении имя экземпляра функционального блока располагается над бло­

ком;
3) входные переменные и выходные переменные экземпляра функционального блока сохраня­

ются и могут быть представлены как элементы структурированных типов данных. В связи с этим, при­
сваивание входных переменных и доступ к выходным переменным могут осуществляться разными спо­
собами:

a) немедленно во время вызова функционального блока (типовой способ); или
b) отдельно от вызова. Такие отдельные присваивания становятся эффективными во время сле­

дующего вызова функционального блока;
c) меприсвоенные или несоединенные входные переменные функционального блока сохраняют

свои инициализированные значения от последнего предыдущего вызова при наличии такового.
Возможна ситуация, когда не указано фактического параметра для входной-выходной переменной

экземпляра функционального блока, используемой в качестве входной переменной другого экземпляра
другого функционального блока. Однако экземпляру функционального блока будет предоставлено до­
пустимое значение. Это может быть: значение, полученное инициализацией; сохраненное значение

95

ГОСТ Р МЭК 61131-3—2016

предшествующего вызова: значение, ранее использовавшееся в функциональном блоке: значение,
полученное методом. Если допустимое значение не будет получено, возникает ошибка времени вы­
полнения.

К вызову функционального блока применяются следующие правила:
4) Если экземпляр функционального блока вызывается с входным параметром EN=0. разработчик

определяет установлены ли в экземпляре входные и входные-выходные переменные.
5) Имя экземпляра функционального блока может использоваться в качестве входного параметра

экземпляра функционального блока, если оно объявлено как входная переменная в секции VARJNPUT
или как входная-выходная переменная экземпляра функционального блока в секции VAR_IN_OUT.

6) Выходные значения экземпляра другого функционального блока, чье имя передается в функци­
ональный блок через конструкцию VARJNPUT, VAR_IN_OUT или VAR_EXTERNAL могут использовать­
ся для доступа, но не могут изменяться из функционального блока.

7) Функциональный блок, имя экземпляра которого передается в функциональный блок через кон­
струкцию VARJN_OUT или VAR_EXTERNAL. может вызываться из функционального блока.

8) Через конструкцию VAR_IN_OUT в функциональный блок могут передаваться только перемен­
ные или имена экземпляров функциональных блоков.

Это делается для предотвращения непреднамеренных изменений таких выходных переменных.
Тем не менее, «каскадное» использование конструкций VARJN_OUT разрешено.

Свойства вызова функционального блока приведены в следующей таблице 42.

Таблица 42 — Вызов функционального блока

Н о ­
м ер

О п и с а н и е П р и м е р

1 Полный формальный вызов (только тексто- YourCTU(EN:= not В,
вый) CU:= г.

Используется, если указание параметров EN
и ENO в вызове является обязательным

PV:= d ,
ENO=> next.
Q = > out,
CV = > c2);

2 Неполный формальный вызов (только тексто- YourCTU (0 = > out
вый) CV = > c2);

Переменные EN. CU. PV будут иметь значение послед­
него вызов или начальное значение, если FB не вызы­
вался раньше

3 Графический вызов Y ou rC T U
+ -------------------------+

| CTU |
В — | EN ENO | — n e x t
г — | CU Q | — o u t

c l — | PV C V | - - c2
+ -------------------------+

4 Графический вызов с отрицаниями логиче- Y o u rC T U
ских входных и выходных переменных

+ --------------------------+

I CTU |

В - 0 | EN E N O | — n e x t
r — | CU Q | 0 - o u t

c l — | PV C V | — c 2
+ ------------------------- +

Использование этих конструкций запрещено для вхад-
ных-выходных переменных

96

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 42

Н о ­
мер О п и с а н и е Пример

5а Графический вызов с использованием кон­
струкции VAR_IN_OUT

5Ь Графический вызов с присваиванием пере­
менной из конструкции VAR_IN_OUT

6а Текстовый вызов с отдельным присваиванием
входной переменной
FB_lnstance.lnput:= х;

YourTon.lN:= г.
YourTon.PT:= t ;
YourTon(not Q = > out):

6Ь Графический вызов с отдельным присваива­
нием входной переменной

+ ---------------------+

г — — | MOVE | - -Y o u rC T U .C U
+ ---------------------+

+ ---------------------+

c - - | MOVE | — Y o u rC T U . PV
+ ---------------------+

Y ourC TU
+ ------------------------ +

| CTU |
1 — | EN E N O |— n e x t

- - I C U Q | 0 - O u t
— |P V C V | —

+ ------------------------ +

7 Чтение выходной переменной после вызова
FB (текстовая форма)
х:= FBJnstance.Output:

8а Выходная переменная, присвоенная в вызове
FB (текстовая форма)

—

8Ь Выходная переменная, присвоенная в вызове
FB с отрицанием (текстовая форма)

—

9а Текстовый вызов с именем экземпляра функ­
ционального блока как входной переменной

VARJNPUT I TMR: TON; END_VAR
EXPIRED: = l_TMR.Q:

В данном и следующих примерах предполагается, что
переменные EXPIRED и A_VAR были объявлены с ти­
пом BOOL

9Ь Графический вызов с именем экземпляра
функционального блока как входной пере­
менной

См. а)

10а Текстовый вызов с именем экземпляра функ­
ционального блока как переменной из VAR_
IN_OUT

VAR_IN_OUT IO_TMR: TOF; END_VAR
IO_TMR (IN:=A_VAR. PT:= T#10S);
EXPIRED:= IO_TMR.Q:

10Ь Графический вызов с именем экземпляра
функционального блока как переменной из
VARJN.OUT

—

11а Текстовый вызов с именем экземпляра функ­
ционального блока как внешней переменной

VAR_EXTERNAL EX_TMR: TOF; END_VAR
EX_TMR(IN:= A_VAR. PT:= T#10S);
EXPIRED- EX_TMR.Q;

97

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 42

Но­
мер Описание Пример

11Ь Графический вызов с именем экземпляра
функционального блока как внешней пере­
менной

—

Пример — Вызов функционального блока с

YourC TU
+ _________+ YourCTU (EN:= not b,

| CTU | C U : = r '

В - 0 | EN ENO | — PV:=c,
Г — ICU Q | 0 -O U t not 0 => out);
C — | PV CV| —

+ ---------------+

а) Вызов FB с немедленным присваиванием входных переменных (типичное использование)

+------------+
Г — | MOVE | — Y o u rC T U .C U

+------------+
+ ------------+

С — | MOVE | — Y o u rC T U . PV
+ ------------+

YourCTU.CU:- r;
YourCTU.PV:= V;

YourCTU(not Q => out):

Y ou rC T U
+ ---------------+
I CTU |

— IEN ENO| —
— ICU Q | 0 - o u t
- - |P V C V| —

+ --------------- +

b) Вызов FB с отдельным присваиванием входной переменной

VAR a. b, г, out: BOOL:
YourCTU: CTU: END_VAR

YourCTU (EN := NOT (a <> b),
CU := r,
NOT Q => out);

с) Вызов FB с немедленным доступом к выходной переменной (типовое использование)

В вызове также разрешено использование отрицания

VourCTO +------ +
♦ ------------------+ I СТО f

а — | NE |--------О I EN ENOI —
Ь - - | | Г — ICO Ql 0 - O U t

♦ -+ - - | PV CVI —

FF7 5
+-----------+
I SR |

blnl-- |S 1 Q l |----bOut3
Ы п2---- |R |

+-----------+

VAR FF75: SR; END_VAR (* Объявление ‘) FF75(S1:=
Ып1, (‘ вызов %)

R:= bln2):
bOut3:= FF75.Q1;

d) Вызов FB с текстовым отдельным присваиванием выходной переменной (после вызова)

98

ГОСТ Р МЭК 61131-3—2016

TONS(12]

Ы п 1

+ -------------- +
| TON |

- - I I N Q I - -
T#10ms — | PT ET| —

b l n l

+ -------------- +

TO Ns[i]
+ -------------- +
| TON |

— | IN Q l —
T#20ms — |PT ET| —

+ --------------+

VAR
TONs: array [0..100] OF TON:
i: INT;

END_VAR

TON[12](IN:= Ып1, PT:- TUIOms);

TON[i](IN:= Ып1, PT:= T»20ms);

в) Вызов FB. используя массив экземпляров
TYPE

Cooler: STRUCT

myCooler.Cooling
+ - — ------- +
| TOF |

blnl — | IN Q | —
T# 30s — |PT ET| —

+------------- +

Temp.Temp: INT:
Cooling: TOF;

END_STRUCT;
END_TYPE
VAR

myCooler: Cooler;
END_VAR

myCooler. Cooling(IN:= Ып1, Р Т - T#30s);

f) Вызов FB с использованием экземпляра как элемента структуры

6.6.3.4.2 Использование входных и выходных параметров
На рисунках 13 и 14 приведена сводка правил использования входных и выходных параметров

функционального блока в контексте вызова этого функционального блока. Присваивание входных и
входных-выходных параметров становится эффективным при следующем вызове FB.

99

ГОСТ Р МЭК 61131-3—2016

FUNCTION_BLOCK FB_TYPE:
VARJNPUT In: REAL: END_VAR
VAR_OUTPUT Out: REAL; END_VAR
VAR_IN_OUT ln_out: REAL: END_VAR
VAR M: REAL; END_VAR
END_FUNCTION-BLOCK
VAR FB_INST: FB_TYPE; А. В. C: REAL: END_VAR

Использование а) Внутри функцио­
нального блока b) Outside function block

1 Чтение входной пере­
менной

М:= In; A— In Не разрешено
(см. примечания 1 и 2)

2 Присваивание вход­
ной переменной

1._* f .in.— IV*.
Не разрешено
(см. примечание 1)

// Вызов с немедленным присваиванием параметра
FB_INST(ln:= А);
И Отдельное присваивание (см. примечание 4)
FB_INST.In:= А;

3 Чтение выходной пе­
ременной

М:= Out; // Вызов с немедленным присваиванием параметра
FB_INST(Out => В);
И Отдельное присваивание
В:= FBJNST.Out;

4 Присваивание выход­
ной переменной

Out:= М; FB_INST.Out:~ В:Не разрешено
(см. примечание 1)

5 Чтение входной-вы-
ходной переменной

М:= ln_out; FB_INST(ln_out~^ С): Не разрешено

6 Присваивание вход-
ной-выходной перемен­
ной

ln_out:= М;
(см. примечание 3)

// Вызов с немедленным присваиванием параметра
CD IMCT/I., ~ .t— r i . CQ IK'CTlf, П|,|— Г-

He разрешено

Примечание 1 — Использования, перечисленные в данной таблице с пометкой «Не разрешено», мо­
гут приводить к непредсказуемым побочным эффектам, определяемым разработчиком.

Примечание 2 — Чтение и запись (присваивание) входных и выходных параметров и внутренних
переменных функционального блока могут выполняться «функцией взаимодействия», «функцией интерфейса
оператора» или «функциями программирования, тестирования и мониторинга», определенными в МЭК 61131-1.

Примечание 3 — Изменение в функциональном блоке переменной, объявленной в секции VAR_IN_
OUT. разрешено.

Рисунок 13 — Использование входных и выходных параметров функционального блока (правила)

Использование входных и выходных параметров, определенных правилами на рисунке 13, иллю­
стрируется на рисунке 14.

100

ГОСТ Р МЭК 61131-3—2016

FB-INST

-*------ Разрешено!
■ К Не разрешено'

М е т ки 1а. 11»,... с о о т в е т с тв у ю т п р а в и л а м и з р и с у н ка 13.

Рисунок 14 — Использование входных и выходных параметров функционального блока
(иллюстрация правил)

Следующие примеры демонстрируют графическое использование имен функциональных блоков
в качестве параметров и внешних переменных.

Примеры — Графическое использование имен функциональных блоков в качестве параметров и
внешних переменных.

FUNCTION_BLOCK
(' Внешний интерфейс *)

+-----------------------------+
| IN S ID E _ A |

TON----- | I_TM R E X P IR E D | BOOL
+-----------------------------+

(‘ Тело функционального блока ’)

+------------- +
| MOVE |

I_ T M R .Q ------ | | EXP IR ED
+ ------------- +

END_FUNCT10N_BLOCK

FUNCTION_BLOCK
(’ Внешний интерфейс *)

+------------------------------ +
| EXAMPLE_A |

BOOL------ | GO DONE | ------ BOOL
+------------------------------ +

(’ Тело функционального блока *)

101

ГОСТ Р МЭК 61131-3—2016

E_TMR

+---------- +
| TON |

GO------ | IN Q |
t# 1 0 0 m s ------ |P T E T |

+ -----------+

I_ B L K
+-------------------------------+
| IN S ID E _ A |

E_TMR------ | I_ T M R E X P IR E D |-
+ ------------------------------- +

END_FUNCTION_BLOCK

а) Имя функционального блока как входная переменная (см. примечание)
FUNCTION_BLOCK
(* Внешний интерфейс *)

+-----------------------------+
| IN S ID E _B |

TON----- | I_TM R----------- I_ T M R |-----TON
BOOL— | TMR_GO EXPIRED | -----BOOL

+-----------------------------+

(‘ Тело функционального блока ')

I_T M R
+----------+
| TON |

TMR_GO------ | IN Q | -------EXPIRED
|P T E T|
+ ---------- +

END_FUNCTION_BLOCK
FUNCTION_BLOCK
(‘ Внешний интерфейс ‘)

+ ------------------------------ +
| EXAMPLE_B |

BOOL----- | GO DONE | ------BOOL
+------------------------------+

(‘ Тело функционального блока ')

E_TMR
+---------- +
| TON |
I IN Q |

t# 1 0 0 m s ------ |P T E T |
+ ---------- +

I_ B L K
+---------------------------------- +
| IN S ID E _ B |

E_TMR------ | I_ T M R -------------I_ T M R |
G 0------------ | TMR_GO E X P IR E D | -

+ -----------------------------------+

END_FUNCTION_BLOCK

b) Имя функционального блока как входная-выходная переменная

-DONE

--D O N E

102

ГОСТ Р МЭК 61131-3—2016

FUNCTION_BLOCK
(‘ Внешний интерфейс *)

+----------------------- +
| INSIDE_C |

BOOL--|TMR_GO EXPIRED|--
+------------------------+

VAR_EXTERNAL X_TMR: TON; ENDJZAR
(‘ Тело функционального блока ’)

X _ T M R
+ --------- +
| TO N |

T M R _G O -------| I N Q | -------- E X P IR E D
|P T E T |
♦ ----- +

END_FUNCTION_BLOCK
PROGRAM
(‘ Внешний интерфейс *)

+---------------------------- +
I EXAMPLE_C |

BOOL----- | GO DONE | ------BOOL
+---------------------------- +

VAR_GLOBAL X_TMR: TON; END_VAR
(‘ Тело программы ')

I_BLK
+ -------------------------------- +
l IN S ID E _ C |

GO------|TMR_GO E X P IR E D |-----------DONE
+ -------------------------------- +

END_PRObtGRAM

с) Имя функционального блока как внешняя переменная

П р и м е ч а н и е — l_TMR здесь не представлена графически, так как это будет предполагать вы­
зов l_TMR внутри INSIDE_A, что запрещено правилами 3) и 4) на рисунке 13.

6.6.3.5 Стандартные функциональные блоки
6.6.3.5.1 Общие положения
Определения стандартных функциональных блоков, общие для всех языков программирования

PLC, приведены ниже. Пользователь может предоставлять дополнительные стандартные функцио­
нальные блоки.

Там. где в данном разделе показываются стандартные функциональные блоки, могут быть также
написаны эквивалентные текстовые объявления, как для примера в таблице 44.

Стандартные функциональные блоки могут быть перегружены и могут иметь расширяемые вход­
ные и выходные переменные. Определение таких типов функциональных блоков описывает все огра­
ничения на число и типы данных таких входных и выходных переменных. Использование таких возмож­
ностей нестандартных функциональных блоков не входит в задачу данного стандарта

6.6.3.5.2 Бистабильные элементы
Графическая форма и тело функционального блока стандартных бистабильных элементов по­

казаны в таблице 43.
103

ГОСТ Р МЭК 61131-3—2016

Таблица 43 — Стандартные функциональные блоки с двумя устойчивыми состояниями3*

Но­
мер Олисание/граф плеская форма Тело функциональною блока

1а Бистабильный функциональный блок (доминан­
та включения): SR (S1.R.Q1)

+ ----------+
I SR |

BOOL----- |S 1 Q1 | -------BOOL
BOOL----- | R |

+---------- +

+ ---------- +
S I ----------------------------- | >= 1 | — Q1

+ — + 1 1
R -------- 0 | & | ---------1 |
Q l1 1 1 1

+ — + + -----------+

1Ь Бистабильный функциональный блок (доминан­
та включения) с длинными именами входных па­
раметров: SR (SET1, RESET. Q1)

+ ------------------ +
I SR |

BOOL------ | SET1 Q 1 1 -------BOOL
BOOL------ | RESET |

+ ------------------ +

+---------+
SET1 ----------------------- 1 >=1 | — Q l

+ - — + | |
RESET -01 & | ------- 1 |
Q l ------- 1 1 1 1

+-----+ + - - ----- +

2а Бистабильный функциональный блока (доми­
нанта выключения): RS (S. R1. Q1)

+ -----------+
I RS |

BOOL------ |S Q1 | -------BOOL
BOOL------ | R l |

+ -----------+

+----- +
R1 ----------------------------0 | & Q1

+--------- + 1 1
s --------- 1 > = i | -------- 1 |
Q l 1 1 1 1

+--------- + +— +

2Ь Бистабильный функциональный блок (доминан­
та выключения) с длинными именами входных
параметров:
RS (SET. RESET1.Q1)

+ ------------------+
I RS |

BOOL------ | SET Q11-------BOOL
BOOL------ | R l |

+ ------------------+

+— +
R E S E T l --------------------------- 0| & I - - Ql

++ 1 1
S E T ------- | >=1 | -------- | |
Ql ------- 1 | +------ +

+--------- +

°* Начальным состоянием выходной переменной Q1 является нормальное неявное значение 0 для
логических переменных.

6.6.3.5.3 Определение фронта (R_TRIG и F_TRIG)
Графическое представление стандартного функционального блока обнаружения переднего и зад­

него фронта сигнала представлено в таблице 44. Поведение этих блоков эквивалентно определениям,
данных в данной таблице. Данное поведение соответствует следующим правилам:

1 Выходная переменная Q функционального блока R_TRIG остается в значении BOOL#1 от од­
ного вычисления вычислениями функционального блока до другого, отслеживая переход 0 к 1 входной
переменной CLK, и возвращается в 0 при следующем выполнении.

Выходная переменная Q функционального блока F_TRIG остается в значении BOOL#1 от одного
вычисления вычислениями функционального блока до другого, отслеживая переход 1 к 0 входной пере­
менной CLK. и возвращается в 0 при следующем выполнении.
104

ГОСТ Р МЭК 61131-3—2016

Таблица 44 — Стандартный функциональный блок обнаружения фронта

Но­
мер Описанио/графическая форма Определение (на языке ST)

1 Детектор переднего фронта: R_TRIG(CLK. Q)

+ --------------+
| R_TRIG |

BOOL — | CLK Q | — BOOL
+ ----------------- +

FUNCTION_BLOCK R_TRIG
VARJNPUT CLK: BOOL: END_VAR
VAR_OUTPUT Q: BOOL; END_VAR
VAR M: BOOL: END_VAR

Q:= CLK AND NOT M;
M:= CLK:

END_FUNCTION_BLOCK

2 Детектор заднего фронта. F_TRIG(CLK, Q)

+ ----------------- +
| F T R I G |

BOOL — | C L K Q | — BOOL
+ ----------------- +

FUNCTION_BLOCK F_TRIG
VARJNPUT CLK: BOOL: END_VAR
VAR_OUTPUT Q: BOOL: END_VAR
VAR M: BOOL: END_VAR

Q:= NOT CLK AND NOT M;
M:= NOT CLK;

END_FUNCTION_BLOCK

Примечание — Когда входная переменная CLK экземпляра типа R_TRIG соединяется со значением
BOOL#1, его выходная переменная Q сохраняет значение BOOL#1 после первого выполнения, следующего за
«холодным рестартом». Выходная переменная О сохраняет значение BOOL#0 после всех следующих выполне­
ний. Это же применимо к экземпляру F_TRIG . входная переменная CLK которого отсоединяется или соединя­
ется к значению FALSE.

6.6.3.5.4 Счетчики
Графическое представление стандартных функциональных блоков счетчика с типами связанных

входных и выходных переменных представлено в таблице 45. Функционирование этих функциональных
блоков определяется в телах соответствующих функциональных блоков.

Таблица 45 — Стандартные функциональные блоки счетчиков

Номер Описаиие/графичссхая форма Тело функционального блока (язык ST)

Возрастающий счетчик

1a CTU_INT(CU. R. PV. Q. CV) or CTU{..)

+----------+
I CTU I

BOOL----- >CU Q I ------BOOL

VARJNPUT CU: BOOL R_EDGE:...
Л Фронт вычисляется внутри, используя тип данных
R_EDGE V

BOOL----- | R |
IN T ----- | PV C V I------ IN T

T T

а также: IF R

+ ------------------------ +
l CTU_INT |

BOOL----- >CU ~ Q | ------BOOL
BOOL----- t R |

IN T ----- | PV C V I------ IN T

THEN CV:= 0:
ELSIF CU AND (CV < PVmax)

THEN
CV:= CV+1:

ENDJF:
т ----- ---- —-T Q;= (CV >= PV);

105

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 45

Номер Описание/графическая форма Тело фуии|иаиально(о блока (язык ST)

1Ь CTU_DINT PV. CV: DINT см. 1a

1с CTUJJNT PV. CV: LINT см. 1a

1d CTU_UDINT PV. CV: UDINT cm. 1a

1е CTU_ULINT(CD. LD. PV. CV) PV. CV: ULINT cm. 1a

Убывающие счетчики

2а CTD_INT(CD. LD. PV. Q. CV) or CTD

+---------+ VARJNPUT CU: BOOL R_EDGE;...
| CTD | И Фронт вычисляется внутри типом данных R_EDGE

В COL----- >CD Q |-----BOOL
BOOL----- 1 LD |
I NT-----|PV CV|------1 NT

+— - — +

а также: IF LD

+---------------------+ THEN CV:= PV;

| CTD INT | ELSIF CD AND (CV > PVmin)
BOOL----->CD Q |-----BOOL THEN CV:= CV-1:
BOOL----- 1 LD | END IF;
INT-----1 PV CV|— INT

+---------------------+
Q:= (CV <= 0);

2Ь CTD_DINT PV. CV: DINT Cm. 2a

2с CTD_LINT PV. CV: LINT

2d CTD.UDINT PV. CV: UDINT Cm. 2a

2е CTDJJLINT PV. CV: UDINT Cm. 2a

Реверсивные счетчики

За CTUD_INT(CD. LD. PV. O. CV) or CTUD{..)

+-------------------- + VARJNPUT CU. CD: BOOL R_EDGE;...

I CTUD | II Фронт вычисляется внутри типом данных R_EDGE
BOOL----->CU QU | ----- BOOL IF R
BOOL----->CD CD | -----BOOL THEN CV:= 0;
BOOL-----1 R |
BOOL-----1 LD |
INT-----1 PV CV|------INT

+-------------------- +

ELSIF LD
THEN CV:= PV;
ELSE

IF NOT (CU AND CD) THEN
а также: IF CU AND (CV < PVmax)

+-------------------- + THEN CV:= CV+1;

| CTUD INT | ELSIF CD AND (CV > PVmin)
BOOL----->CU QU |-----BOOL
BOOL----->CD QD | ----- BOOL

THEN CV:= CV-1;
END IF;

BOOL-----1R I
BOOL-----1 LD |
INT-----| PV CV|------INT

+-------------------- +

END_IF;
ENDJF;
QU:= (CV >= PV);
QD:= (CV <= 0);

106

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 45

Н о м е р О п и с а и н е /гр а ф и ч с с к а я ф о р м а Т е л о ф у н к ц и о н а л ь н о ю б л о ка (я зы к S T)

ЗЬ CTUD_DINT PV. CV: DINT См. За

Зс CTUDJJNT PV. CV: LINT См. За

3d CTUD_UDINT PV. CV: UDINT См. За

Зе CTUD_ULINT PV. CV: ULINT См. За

Примечание —Числовые значения переменных предела PVmin и PVmax определяются разработчиком.

6.6.3.5.5 Таймеры
Графическая форма стандартных функциональных блоков таймера показана в таблице 46. Функ­

ционирование этих функциональных блоков определено на временной диаграмме, приведенной на ри­
сунке 15.

Стандартные функциональные блоки счетчика могут быть перегружены типами данных TIME или
LTIME, или базовый тип данных для стандартного таймера может быть определен как TIME или LTIME.

Таблица 46 — Стандартные функциональные блоки таймера

Н о ­
м ер

О п и с а н и е С и м в о л Графическая форма

1а Импульсный таймер, перегру­
женный

ТР *** эквива­
лентно: ТР

+ -----------------------+

1 * * * 1
BOOL------| IN Q | -----------BOOL
TIM E --------- | РТ ET |-----------TIME

+ -----------------------+

1Ь Импульсный таймер с типом данных TIME ТР_Т1МЕ

1с Импульсный таймер с типом данных LTIME TPJ.TIME

2а Таймер с задержкой включе­
ния. перегруженный

TON TON
РТ см. примечание

2Ь Таймер с задержкой включения с типом дан­
ных TIME

TONTIME

2с Таймер с задержкой включения с типом дан­
ных LTIME

TON_LTIME IN: Input (Start)

2d3' Таймер с задержкой включе­
ния. перегруженный

(графиче­
ская форма)

Т—0 РТ: Установленное время

За Таймер с задержкой отключе­
ния. перегруженный

TOF TOF Q: Выходная переменная

ЗЬ Таймер с задержкой отключения с типом дан­
ных TIME

TOF_T1ME ET: Истекшее время

Зс Таймер с задержкой отключения с типом дан­
ных LTIME

TOF_LTIME

3dS’ Таймер с задержкой отключе­
ния. перегруженный

(графиче­
ская форма)

0—T

Примечание — Воздействие изменения значения входной переменной РТ во время работы таймера,
например, установка РТ в t#0s при возобновлении функционирования экземпляра ТР определяется параме­
тром. задаваемым разработчиком.

а> В текстовых языках свойства 2Ь и ЗЬ не используются.

На рисунке 15 показана временная диаграмм стандартных функциональных блоков таймера.

107

ГОСТ Р МЭК 61131-3—2016

IN
+ ---------
I

— +
I

+ + ++
II II

+ ---------
1

_ 4

— +
1

to tl t2 t3 t4
X . _ 4

t5

Q I I
— +

I I
--- + +-

1 1
-+ +-•

to tO+PT t 2 t2+PT t 4 t4+PT

PT

ET

+------f
I / I

/ I
/ I

+-----♦
I

0 -

/ 1 / 1 / 1

t o
T — m

t l t 2 t4 t 5

-

а) Импульсный отсчет времени (PT)

X 4 __X 4 4

IN |
— +

t o

1
I......

X T X

1 1 1 1
X... . aT "

t l
_ 4

t2 t 3 t 4

x . . ■

t 5
4

Q 1
T

1
-I. _

T

1 1
4 _т

tO+PT
T

t l t 4 + PT
T ”""“

t 5

DT X.._ 4. x..-,Xг 1

: /
ET: /
: /

: /
П-4.

T

1
1
1
1

+ /

/1 /
/ 1 /

/ 1 /

T •

X....a

t o t l t 2 t 3 t 4
▼

t 5

4 _

b) Времени с задержкой включения (TON)

T"

IN | 1
• -X ж

1 1 1

t o
4..

t l t 2 t 3 t4

.X x..........

t 5

t o
+— +

t l+ P T t2

I
+— -

t5+PT

PT

ET

+----- +
/ 1 +

/ 1 /1
/ 1 / 1 /

/ 1
X X . .

/ 1
.X X

/
T I
t l

"T T "
t3 t5

с) Р а сче т в р е м е н и с з а д е р ж к о й о тк л ю ч е н и я (Т О Г)

Рисунок 15 — Стандартные функциональные блока таймера — временные диаграммы (правила)
108

ГОСТ Р МЭК 61131-3—2016

6.6.3.5.6 Функциональные блоки взаимодействия
Стандартные функциональные блоки взаимодействия для программируемых контроллеров опре­

делены в МЭК 61131-5. Данные функциональные блоки предоставляют функциональность взаимодей­
ствия, такую как средства проверки устройств, сбор данных опроса, запрограммированный сбор дан­
ных, управление параметрами, управление с взаимоблокировкой, запрограммированное аварийное
оповещение, управление и защита соединений.

6.6.4 Программы
В МЭК 61131-1 программа определяется как «логический набор всех элементов и конструкций

языка программирования, необходимый для запланированной обработки сигналов, требуемой для
управления оборудованием или процессом системой P LO .

Объявление и использование программ идентично объявлению и использованию функциональ­
ных блоков с дополнительными свойствами, показанными в таблице 47. и со следующими отличиями:

^ограничивающими ключевыми словами для программы являются PROGRAM. ,.END_PROGRAM;
2) программа содержит конструкцию VAR_ACCESS...END_VAR. которые предоставляют средства

определения именованных переменных, к которым может осуществляться доступ некоторыми служба­
ми связи, указанными в МЭК 61131-5. Путь доступа связывает каждую такую переменную с входными,
выходными или внутренними переменными программы;

3) программы могут устанавливаться только в ресурсах, в то время как функциональные блоки
могут устанавливаться в программах или других функциональных блоках;

4) программа может содержать назначение своего расположения в объявлениях своих глобаль­
ных и внутренних переменных. Назначение расположения с частично определенным прямым представ­
лением может использоваться только в объявлениях внутренних переменных программы:

5) объектно-ориентированные свойства программ не входят в задачу настоящего стандарта.

Таблица 47 — Объявление программы

Н о м е р О п и с а н и е П р и м е р

1
Объявление программы
PROGRAM ... END_PROGRAM PROGRAM myPrg ... END_PROGRAM

2а Объявление входных переменных
VARJNPUT... END_VAR

VARJNPUT IN: BOOL; T1: TIME: ENDJ/AR

2Ь Объявление выходных переменных
VAR_OUTPUT... END_VAR

VAROUTPUT OUT: BOOL: ETOFF: TIME; ENDJ/AR

2с
Объявление входных-еыходных переменных
VAR_IN_OUT... END_VAR VAR_IN_OUT A: INT; END_VAR

2d Объявление временных переменных
VARJTEMP ... ENDJ/AR

VAR_TEMP 1: INT; ENDJ/AR

2е Определение статических переменных
VAR ... ENDJ/AR

VAR B: REAL. ENDJ/AR

21 Объявление внешних переменных
END_VAR

VAR_EXTERNAL B: REAL: ENDJ/AR
Соответствует следующему:
VAR_GLOBAL В: REAL

2д
Объявление внешних переменных
VAR_EXTERNAL CONSTANT ... ENDJ/AR

VAR_EXTERNAL CONSTANT B: REAL: ENDJ/AR
Соответствует следующему:
VAR_GLOBAL В: REAL

За Инициализация входных параметров VARJNPUT MN: INT:= 0;

ЗЬ Инициализация выходных параметров VAR_OUTPUT RES: INT:= 1;

Зс Инициализация статических переменных VAR B:REAL:= 12.1:

3d Инициализация временных переменных VAR_TEMP 1: INT:= 1;

109

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 47

Номер Описание Пример

4а Объявление квалификатора RETAIN для вход­
ных переменных VARJNRJT RETAIN X: REAL; END_VAR

4Ь Объявление квалификатора RETAIN для вы­
ходных переменных VAR_OUTPUT RETAIN X; REAL; ENDVAR

4с Объявление квалификатора NON_RETAIN для
входных переменных VARJNPUT NON_RETAIN X; REAL; END_VAR

4d Объявление квалификатора NON_RETAIN для
выходных переменных VAR_OUTPUT NON_RETAIN X; REAL; ENDVAR

4е Объявление квалификатора NON_RETAIN для
статических переменных REAL; END_VAR

4f Объявление квалификатора NON_RETAIN для
статических переменных VAR NON_RETAIN X; REAL; END_VAR

5а Объявление квалификатора RETAIN для ло­
кальных экземпляров функционального блока VAR RETAIN TMR1: TON; END_VAR

5Ь Объявление квалификатора NON_RETAIN для
локальных экземпляров FB VAR NON RETAIN TMR1; TON; ENDVAR

6а
Текстовое объявление
- входных переменных переднего фронта

PROGRAM AND_EDGE
VARJNPUT X; BOOL R_EDGE;

Y; BOOL F_EDGE;
END_VAR
VAR_OUTPUT Z; BOOL: END_VAR

Z:~ X AND Y; (* Пример на языке ST *)
END_PROGRAM

6Ь
Текстовое объявление
- входных переменных заднего фронта (тек­
стовое)

См. выше

7а
Графическое объявление
- входных переменных переднего фронта (>)

ПРОГРАММА
(* Внешний интерфейс “)

+ ------------------------- +
| AND_EDGE |

B O O L — >X Z | - - B O O L

I I
BO O L--< Y |

I I
+ ------------------------- +

(* тело функционального блока *)

+ ------------ +

I & I
X— | | — Z
Y — | |

+ ------------ +

END_PROGRAM

110

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 47

Номер Описание Пример

7Ь
Графическое объявление
- входных переменных заднего фронта {<) См. выше

8а Объявление VAR_GLOBAL...END_VAR в про­
грамме PROGRAM VAR_GLOBAL z l: BYTE: END_VAR

8Ь VAR_GLOBAL CONSTANT объявления в объ­
явлениях типов программы ПРОГРАМ-МЫ VAR_GLOBAL CONSTANT z2: BYTE; END_VAR

9 Объявление VAR_ACCESS...END_VAR в про­
грамме PROGRAM

VAR_ACCESS
ABLE: STATION_1.%IX1.1: BOOL READ_ONLY;
BAKER: STATION_1.P1.x2: UINT READ_WRITE;

END_VAR

Прим еч ание — Свойства от 2а до 7Ь эквивалентны соответствующим свойствам таблицы 40 для
функциональных блоков.

6.6.5 Классы
6.6.5.1 Общие положения
Элемент языка класс поддерживает объектно-ориентированную парадигму и характеризуется

следующими принципами:
- определение структуры данных, разделенной на общие и внутренние переменные;
- выполняемые над элементами структуры данных;
- классы, состоящие из методов (алгоритмов) и структур данных;
- интерфейс с прототипами метода и реализация интерфейсов;
- наследование интерфейсов и классов.
Инстанцирование классов.
Примечание термины «класс» и «объект», используемые в языках С#. C++, Java. UML и т.д., со­

ответствуют терминам «тип» и «экземпляр» языков программирования PLC из данного стандарта. Это
показано ниже.

Языки программирования ИТ: С#. C++. Java, UML Языки PLC из стандарта

Class (= тип класса) Тур (тип функционального блока или класса)

Object (= экземпляр класса) Instance (экземпляр функционального блока
или класса)

Наследование интерфейса и классов с использованием механизмов реализации и расширения
показано на рисунке 16. Это определено в 6.6.5.

Рисунок 16 — Обзор наследования и реализации интерфейса

111

ГОСТ Р МЭК 61131-3—2016

Класс — это программный компонент, разработанный для объектно-ориентированного програм­
мирования. По существу, класс содержит переменные и методы. Класс должен инстанцироваться до
того, как его методы смогут вызываться и как можно осуществлять доступ к его переменным.

6.6.5.2 Объявление класса
Свойства объявления класса определены в таблице 48:
1) ключевое слово CLASS с последующим идентификатором, указывающим имя определяемого

класса;
2) завершающее ключевое слово END_CLASS:
3) значения переменных, которые объявлены через конструкцию VAR_EXTERNAL. могут изме­

няться из класса:
4) Значения констант, которые объявлены через конструкцию VAR_EXTERNAL CONSTANT, не мо­

гут изменяться из класса:
5) конструкция VAR„.END_VAR, при необходимости, указывающая имена и типы переменных

класса:
6) переменные могут быть инициализированы:
7) переменные секции VAR (статические) могут быть объявлены как PUBLIC (общие). К общим

переменным можно получать доступ извне класса, используя такой же синтаксис, как для доступа к вы­
ходным переменным функционального блока;

8) для внутренних переменных класса могут использоваться квалификаторы RETAIN и NON_
RETAIN;

9) для объявления внутренних переменных класса может использоваться символ «*», как опреде­
лено в таблице 16;

10) переменные могут быть общими PUBLIC, индивидуальными PRIVATE, внутренними INTERNAL
или защищенными PROTECTED. По умолчанию используется спецификатор доступа PROTECTED;

11) класс может поддерживать наследование других классов для расширения базового класса;
12) класс может реализовывать один или более интерфейсов:
13) экземпляры других функциональных блоков, классы и блоки объектно-ориентированных функ­

ций могут быть объявлены в секциях переменных VAR и VAR_EXTERNAL;
14) экземпляр класса, объявленный внутри класса, не обязан использовать то же имя. как функ­

ция (той же области видимости) для предотвращения неопределенностей.
Класс имеет следующие различия от функционального блока:
- ключевые слова FUNCTION_BLOCK и END_FUNCTION_BLOCK заменены ключевыми словами

CLASS и END_CLASS. соответственно.
- переменные объявляются только в секции VAR. Не разрешены секции VARJNPUT. VAR_

OUTPUT, VAR_IN_OUT и VAR_TEMP. У класса нет тела:
- класс может определять только методы;
- вызов экземпляра класса невозможен. Могут вызываться только методы класса.
Реализация классов предоставляет по существу согласующееся подмножество свойств, опреде­

ленных в таблице 48.

Таблица 48 — Класс

Н о м е р
О п и с а н и е

К л ю ч с о о е с л о в о
О б ъ я с н е н и е

1 CLASS ... END_CLASS Определение класса

1а Спецификатор FINAL Класс не может использоваться в базовом классе

Основанные на функциональном блоке

2а Определение переменных
VAR ... END_VAR

VAR В: REAL; ENDVAR

2Ь Инициализация переменных VAR В: REAL:= 12.1: END_VAR

За Квалификатор RETAIN для внутренних пе­
ременных VAR RETAIN X: REAL; END_VAR

112

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 48

Н о м е р
О п и с а н и е

К л ю ч е в о е сл о во
О б ъ я с н е н и е

ЗЬ Квалификатор RETAIN для внутренних пе­
ременных VAR NON_RETAIN X: REAL END_VAR

4а Объявления VAR_EXTERNAL внутри объяв­
лений типа класса См. эквивалентный пример в таблице 40

4Ь Объявления VAR_EXTERNAL CONSTANT в
объявлениях типа класса См. эквивалентный пример в таблице 40

Методы и спецификаторы

5 METHOD.. .END_METHOD Определение метода

5а Спецификатор PUBLIC Метод может вызываться откуда угодно

5Ь Спецификатор PRIVATE Метод может вызываться только внутри определяю­
щего программного компонента

5с Спецификатор INTERNAL Метод может вызываться из одного пространства имен

5d Спецификатор PROTECTED Метод может вызываться только из определяющего
программного компонента и его наследников (неявно)

5е Спецификатор FINAL Метод не может быть перегружен

Наследование - данные свойства — такие же как в таблице 53 свойств
наследования

6 EXTENDS
Класс является наследником класса
Примечание — Наследование функциональных
блоков отсутствует

7 OVERRIDE Метод переопределяет базовый метод — см. динами­
ческое связывание имен

8 ABSTRACT
Абстрактный класс — по меньшей мере, один метод
является абстрактным
Абстрактный метод — шаблон метода

Ссылка на доступ

9а THIS Ссылка на собственные методы

9Ь SUPER Ссылка на метод базового класса

Спецификаторы доступа переменной

10а Спецификатор PUBLIC Доступ к переменной возможен из любого места

10Ь Спецификатор PRIVATE Доступ к переменной осуществляется только внутри
определяющего программного компонента

Юс Спецификатор INTERNAL Доступ к переменной осуществляется только внутри
одного пространства имен

10d Спецификатор PROTECTED
Доступ к переменной осуществляется только из опре­
деляющего программного компонента и его наследни­
ков (неявно)

Полиморфизм

11а с секцией переменных VAR_IN_OUT Переменным из секции VAR_IN_OUT может быть при­
своен экземпляр производного класса

11Ь со ссылкой Ссылке на (базовый) класс может быть присвоен
адрес экземпляра производного класса

113

ГОСТ Р МЭК 61131-3—2016

Пример ниже иллюстрирует свойства объявления класса и его использование.

Пример — Определение класса
Class CCounter

VAR
mJCurrentValue: INT; (’ Default = 0 *)
m_bCountUp: BOOL:=TRUE;

END_VAR
VAR PUBLIC

mJUpperLimit: INT:=*10000:
mJLowerLimit INT:=-10000:

ENDJVAR
METHOD Count (‘ Только тело *)

IF (m_bCountUp AND m_iCurrentValue<mJUpperUmit) THEN
mJCurrentValue:= m_iCurrentValue+1;

ENDJF;
IF (NOT m_bCountUp AND mJCurrentValue>mJLowerLimit) THEN

mJCurrentValue:- mJCurrentValue-1;
ENDJF;

END_METHOD

METHOD SetDirection
VARJNPUT

bCountUp: BOOL;
ENDJVAR

m_bCountUp:=bCountUp;
END_METHOD
END_CLASS

6.6.5.3 Декларация экземпляра класса
Экземпляр класса объявляется подобно определению структурной переменной.
Когда объявляется экземпляр класса, начальные значения общих переменных могут присваи­

ваться в перечне инициализации, заключенном в скобки, с последующим оператором присваивания,
который следует за идентификатором класса, как показано в таблице 49.

Элементы, которым не присвоено значение в перечне инициализации, получают начальные зна­
чения из объявления класса.

Таблица 49 — Декларация экземпляра класса

Н о ­
м ер

О п и с а н и е П р и м е р

1 Объявление экземпляра класса с неявной ини­
циализацией

VAR
MyCounlerl: CCounter;

END_VAR

2 Декларация экземпляра класса с инициализа­
цией его общих переменных

VAR
MyCounter2: CCounter:=
(mJUpperLimit;=20000:

mJLowerLimit:=-20000);
END_VAR

114

ГОСТ Р МЭК 61131-3—2016

6.6.5.4 Методы класса
6.6.5.4.1 Общие положения
Применительно к задачам языков программируемых контроллеров, концепция методов, хорошо

известных в объектно-ориентированном программировании, принимается как набор факультативных
элементов языка, используемых при определении класса.

Методы могут применяться для определения операций с данными экземпляров класса.
6.6.5.4.2 Сигнатура
В целях данного стандарта, термин сигнатура определен в раздело 3 как набор информации,

однозначно определяющий идентичность параметров МЕТОДА.
Сигнатура включает:
- имя метода,
- тип результата;
- имена переменных, типы данных и порядок всех параметров.то есть входных, выходных и вход-

ных-выходных переменных.
Локальные переменные не являются частью сигнатуры. Переменные, объявленные в секции

VAR_EXTERNAL и постоянные переменные не существенны для сигнатуры.
Спецификаторы доступа, такие как PUBLIC или PRIVATE не существенны для сигнатуры.
6.6.5.4.3 Объявление и выполнение метода
Класс может иметь набор методов.
Объявление метода должно подчиняться следующим правилам:
1 Методы объявляются в области действия класса.
2 Метод может объявляться на любом из языков, указанных в этом стандарте.
3 В текстовом объявлении методы перечисляются после объявления переменных класса.
4 Метод может объявлять свои собственные VARJNPUT. внутренние временные переменные

VAR и VAR_TEMP, VAR_OUTPUT. VAR_IN_OUT и результат метода.
Ключевые слова VAR_TEMP и VAR имеют то же самое значение и оба являются разрешенными

для внутренних переменных.
(Ключевое слово VAR используется в функциях).
5 Объявление метода содержит один из следующих спецификаторов доступа. PUBLIC, PRIVATE,

INTERNAL или PROTECTED. Если спецификатор доступа на задан, метод будет PROTECTED по умол­
чанию.

6 Объявление метода может содержать дополнительные ключевые слова OVERRIDE или
ABSTRACT.

Примечание 1 — Перегрузка методов не входит в задачу настоящего стандарта.

Объявление метода должно подчиняться следующим правилам:
7 Во время выполнения метод может читать свои входные переменные и вычисляет выходные

переменные и результат, используя временные переменные.
8 Результат метода присваивается его имени.
9 Все переменные метода и его результат являются временными (как переменные функции), то

есть переменные не сохраняются от одного вычисления метода до другого.
Поэтому, вычисление выходных переменных метода возможно только в непосредственном кон­

тексте вызова метода.
10 Имена переменных каждого метода класса должны быть различными (уникальными). Имена

локальных переменных различных методов могут быть одинаковыми.
11 Все методы класса имеют доступ для чтения/записи к статическим и внешним переменным,

объявленным в классе.
12 Все переменные и результаты могут быть многозначными, например, массив или структура.

Как это объявлено для функций, результат метода может использоваться как операнд в выражении.
13 Во время выполнения метод может использовать другие методы, определенные в этом классе.

Методы экземпляра данного класса вызываются, используя ключевое слово THIS.
Следующий пример иллюстрирует упрощенное объявление класса с двумя методами и вызов

метода.

115

ГОСТ Р МЭК 61131-3—2016

Пример 1

Объект (экземпляр)

- (ВХОД!

Алгоритм м_1

Имя метода_2
(пврем.)|1рэ̂ ль?ат;

-Лвходы)
: исходы) -

Алгоритм м_2

П р и м е ч а н и е 2 —
Алгоритм методов
имеет доступ к их соб­
ственным данным и к
данным класса.

(Временные параметры
заключены в скобки)

Определение класса (типа) с методами:
CLASS пате

VAR vars; END_VAR
VAR_EXTERNAL externals;
END_VAR

METHOD name 1
VARJNPUT inputs;

END_VAR
VAR_OUTPUT outputs;

END_VAR
END_METHOD

METHOD nam e j
VARJNPUT inputs:

ENDJVAR
VAR_OUTPUT outputs;

END_VAR
END_METHOD END_CLASS

ClassX.name 1 —
A_ intr.l outml — V

Ri
П р и м е ч а н и е 3 —
Данное графическое
представление метода
служит только для
иллюстрации

Вызов метода:
a) Использование результата (результат
является необязательным)
R1:= l.method1(inm1:= A. outm l => Y);
b) Использование вызова (результат не
объявлен)
l.method1(inm1:= A. outm l => Y);
Присваивание переменным метода за
пределами метода
Ипт4 Af // Не разрешено:
Чтение выходных переменных метода за
пределами метода
У.~ I . o u l m t ; / / Не разрешено

Пример 2
Класс COUNTER с двумя методами для прямого счета метод UP5 показывает, как вызвать метод

из собственного класса.
CLASS COUNTER

VAR
CV: UINT; / / Текущее значение счетчика
Max: UINT:= 1000;

END_VAR

METHOD PUBLIC UP: UINT
VARJNPUT INC: UINT; ENDJ/AR
VAR_OUTPUT QU: BOOL: ENDJ/AR

IF CV <= Max - INC

/ Метод прямого счета, используя inc
// Приращение
// Обнаружение верхнего предела

116

ГОСТ Р МЭК 61131-3—2016

THEN CV:= CV + INC; И/ Увеличение текущего значения
QU:= FALSE;

ELSE QU:= TRUE; //Достигнут верхний предел
ENDJF
UP:- CV;

END_METHOD // Результат метода

METHOD PUBLIC UP5: UINT
VAR_OUTPUT QU: BOOL; END_VAR

UP5:= THIS.UP(INC:= 5, QU => QU);
END_METHOD

END_CLASS

6.6.5.4.4 Представление вызова метода
Методы могут вызываться в текстовых языках (таблица 50) и в графических языках.
В представлениях всех языков имеется два разных случая вызова метода:
a) внутренний вызов метода из экземпляра собственного класса Имя метода предваряется ключе­

вым словом «THIS». Данный вызов может выдаваться другим методом:
b) внешний вызов метода экземпляра другого класса. Имени метода предшествует имя экземпля­

ра и «.*.
Этот вызов может выдаваться методом или телом функционального блока, где объявлен экзем­

пляр класса.

Примечание — Используются следующие синтаксисы:
- синтаксис А() используется для вызова глобальной функции А;
- синтаксис THIS.А() используется для вызова метода из собственного экземпляра класса;
- синтаксис THIS.А() используется для вызова метода А из другого экземпляра класса.

6 6.5.4.5 Текстовое представление вызова
Метод с результатом вызывается как операнд выражения. Метод без результата не должен вы­

зываться внутри выражения.
Метод может вызываться формально или неформально.
Внешний вызов метода дополнительно требует имени экземпляра внешнего класса.

Пример 1 — ... class_instance_name.method_name(parameters).

Внутренний вызов метода требует использования THIS вместо имени экземпляра.

Пример 2 — ... THIS.method_name (parameters).

Таблица 50 — Текстовый вызов методов — Формальный и неформальный перечень параметров

Но­
мер Описание Пример

1а Полный формальный вызов (только текстовый) А:= COUNTER.UP(EN:= TRUE. INC:= В.
Используется, если указание параметров EN и
ENO в вызове является обязательным

START:= 1. ENO=> %MX1. QU => С);

1Ь Неполный формальный вызов (только тексто­
вый)

A:= COUNTER.UP(INC:= B. QU => C);

Используется, если указание параметров EN и
ENO в вызове не является обязательным

Переменная START будет иметь неявное значение 0
(ноль)

2 Неформальный вызов (только текстовый) (с
фиксированным порядком параметров и пол­
ный)

А;= COUNTER.UP(B, 1.С);
Данный т вызов эквивалентен вызову в примере 1а,
но без параметров EN и ENO

// Count up by 5
//Достигнут верхний предел
// Вызов внутреннего метода

117

ГОСТ Р МЭК 61131-3—2016

6.6.5.4.6 Графическое представление
Графическое представление вызова метода подобно представлению функции или функциональ­

ного блока. Это — прямоугольный блок с входами слева и выходами справа от блока.
Вызовы метода могут поддерживать параметры EN и ENO. как определено в таблице 18.
- внутренний вызов показывает имя класса и имя метода, разделенные точками внутри блока.
Ключевое слово THIS размещают над блоком;
- внешний вызов показывает имя класса и имя метода, разделенные точкой внутри блока
Над блоком размещают имя экземпляра класса.
6.6.5.4.7 Ошибка
Использование выхода метода независимо от вызова метода рассматривается как ошибка. См.

пример ниже.

Пример — Внутренний и внешний вызов метода
VAR

СТ: COUNTER:
иМГГ: BOOL;
VALUE: UINT;

END_VAR

1) В структурированном тексте (язык ST).
a) Внутренний вызов метода:
VALUE- THIS.UP (INC:= 5. QU => LIMIT);
b) Внешний вызов модуля:
VALUE- CT.UP (INC- 5. QU => LIMIT):

2) На функциональных блоковых диаграммах Вызван в классе другого метода
(язык FBD)

Ключевое слово THIS обязательно
а) Внутренний вызов метода: Метод иР возвращает результат

Оп

5

THIS

COUNTER.UP
— INC

-i

QU

— VALUE

— LIMIT

Графическое представление служит только для ил­
люстрации

Переменая On разрешает вызов метода

СТ — экземпляр класса, объявленный в другом классе
или функциональном блоке

Вызывается методом или в теле функционального
блока

Ь) Внешний вызов модуля: Метод UP возвращает результат
Графическое представление служит только для ил­
люстрации

-- VALUE
Переменная On разрешает вызов метода:

-- LIMIT

O n -- COUNTER.UP

5 -- INC
QU

3) Ошибка Использование выхода метода без графического или текстового вызова

С Т .U P VALUE

I--------1 I..........-(>-
I

V A L U E :- GT > U P ;

Данная оценка выхода метода не возможна, так
как метод не сохраняет выходы от одного испол­
нения до другого.

118

ГОСТ Р МЭК 61131-3—2016

6.6.5.5 Наследование класса {EXTENDS, SUPER. OVERRIDE, FINAL)
6.6.5.5.1 Общие положения
Применительно к языкам программирования PLC, концепция наследования, определенная в объ­

ектно-ориентированном программировании применяется как способ создания новых элементов.
Наследование классов показано на рисунке 17. На базе существующего класса может быть по­

рожден один или более классов. Данный процесс может повторяться многократно.

Примечание — «Множественное наследование» не поддерживается.

Порожденный (дочерний) класс обычно расширяет базовый (родительский) класс дополнитель­
ными методами.

Термин «базовый» класс означает всех «предков», то есть родительский класс и его родительские
классы и т. д.

Наследование классов с использованием EXTENDS

Рисунок 17 — Наследование классов (иллюстрация)

6.6.5.5.2 Ключевое слово EXTENDS для классов
Класс может порождаться из уже существующего класса (базового класса), используя ключевое

слово EXTENDS.

Пример — CLASS Х1 EXTENDS X;

Применяются следующие правила:
1 Порожденный класс без всяких объявлений наследует все классы (если таковые имеются) из

базового класса со следующими исключениями:
- не наследуются методы PRIVATE;
- за пределами пространства имен не наследуются методы INTERNAL.

2 Порожденный класс наследует все переменные (если таковые имеются) из базового класса.
3 Порожденный класс наследует только из базового класса. Множественное наследование в дан­

ном стандарте не поддерживается.

Примечание — Класс может реализовывать (используя ключевое слово IMPLEMENTS) один или более
интерфейсов.

4 Порожденный класс может расширять базовый класс, то есть может иметь собственные методы
и переменные в дополнение к унаследованным методам и переменным базового класса, и таким об­
разом создавать новую функциональность.

5 Класс, используемый в качестве базового класса, сам может быть порожденным классом. Тогда
он переносит в порожденный класс также методы и переменные, которые он унаследовал.

Это может повторяться несколько раз.
6 Если определение базового класса изменяется, все порожденные классы (и их потомки) также

соответственно изменяют свою функциональность.

119

ГОСТ Р МЭК 61131-3—2016

6.6.5.5.3 OVERRIDE метод
Порожденный класс может переопределять (заменять) один или более унаследованных методов

своими собственными реализациями метода (методов). При переопределении базовых методов при­
меняются следующие правила:

1 Метод, переопределяющий унаследованный метод, имеет такую же сигнатуру (имя метода и
переменные) в пределах области действия класса.

2 Метод, переопределяющий унаследованный класс, должен иметь следующие свойства:
- ключевое слово OVERRIDE следует за ключевым словом METHOD;
- порожденный класс имеет доступ к базовым методам, которые определены как PUBLIC or

PROTECTED или NTERNAL в том же пространстве имен;
- новый метод будет иметь те же спецификаторы доступа. Но спецификатор FINAL может быть

использован для переопределенного метода.

Пример — METHOD OVERRIDE mb.

6.6.5.5.4 FINAL для классов и методов
Метод со спецификатором FINAL не будет переопределяться. Класс со спецификатором FINAL не

может быть базовым классом.

Пример 1 — METHOD FINAL mb

Пример 2 — CLASS FINAL el.

6.6.5.5.5 Ошибки при использовании ключевых слов (EXTENDS. SUPER. OVERRIDE. FINAL)
Следующие ситуации рассматриваются как ошибка:
1 Порожденный класс определяет переменную с именем переменной (определенной или унас­

ледованной). уже содержащейся в базовом классе. Данное правило не применяется к переменным,
объявленным как PRIVATE.

2 Порожденный класс определяет метод с именем, уже содержащемся в базовом классе.
3 Порожденный класс порождается из его собственного базового класса (прямо или косвенно), то

есть рекурсия не разрешена.
Класс определяет метод с ключевым словом OVERRIDE, который не переопределяет метод ба­

зового класса.
Пример — Наследование и переопределение
Класс, расширяющий класс LIGHTROOM.

CLASS LIGHTROOM
VAR LIGHT: BOOL; ENDJ/AR

METHOD PUBLIC DAYTIME
LIGHT:* FALSE;

END_METHOD

METHOD PUBLIC NIGHTTIME
LIGHT:* TRUE;

END_METHOD

END_CLASS
CLASS UGHT2ROOM EXTENDS LIGHTROOM

VAR LIGHT2: BOOL: END_VAR II Second light

METHOD PUBLIC OVERRIDE DAYTIME
LIGHT :* FALSE; II Доступ к переменным родительского класса
LIGHT :* FALSE; И конкретная реализация END_METHOD

METHOD PUBLIC OVERRIDE NIGHTTIME
LIGHT := TRUE; I IДоступ к переменным родительского класса

120

ГОСТ Р МЭК 61131-3—2016

LIGHT ;= TRUE; // конкретная реализация
END_METHOD

END_CLASS

6.6.5.6 Динамическое связывание имен (OVERRIDE)
Связывание имен — это ассоциация имени метода с именем реализации. Привязка имени (на­

пример. компилятором) до выполнения программы называется статической или «ранней» привязкой.
Привязка, выполняемая во время выполнения программы, называется динамической или «поздней»
привязкой.

В случае вызова внутреннего метода, свойство переопределения с ключевым словом OVERRIDE
приводит к различию между статической и динамической формой связывания имен:

- статическое связывание: ассоциирует имя метода с реализацией метода класса с вызовом вну­
треннего метода, или содержит метод, выполняющий вызов внутреннего метода;

- динамическое связывание: ассоциирует имя метода с реализацией метода фактического типа
экземпляра класса.

Пример 1 — Динамическое связывание имен
Переопределение с воздействием на связывание
// Объявление
CLASS CIRCLE

METHOD PUBLIC PI: LREAL И Метод дает менее точное определение
PI Pl:= 3.1415;

END_METHOD

METHOD PUBLIC CF: LREAL //Метод вычисляет длину окружности
VARJNPUT DIAMETER: LREAL; END_VAR
CF:- THIS.PIQ * DIAMETER; // Внутренний вызов метода:

END_METHOD / / используя динамические связывания PI
END_CLASS

CLASS CIRCLE 2 EXTENDS CIRCLE // Класс с методом, переопределяющим PI

METHOD PUBLIC OVERRIDE PI: LREAL И Метод выдает более точное значение PI
Pl:= 3.1415926535897;

END_METHOD
END_CLASS

PROGRAM TEST VAR
CIR1: CIRCLE; / / Экземпляр CIRCLE
CIR2: CIRCLE2; / / Экземпляр CIRCLE2
CUMF1: LREAL;
CUMF2: LREAL;
DYNAMIC: BOOL;

END VAR

CUMF1.-CIR1.CF(1.0);
CUMF2:- CIR2.CF(1.0);
DYNAMIC:= CUMF1 <> CUMF2;

//Вызов метода CIR1
И Вызов метода CIR2
//Динамическое связывание приводит к значению True

END PROGRAM

121

ГОСТ Р МЭК 61131-3—2016

В данном примере класс CIRCLE содержит внутренний вызов своего метода PI с низкой точно­
стью для вычисления длины окружности (CF).

Порожденный класс CIRCLE2 переопределяет этот метод более точным определением PI.
Вызов метода Pl() ссылается либо на CIRCLE.PI, либо на CIRCLE2.PI. в соответствии с типом

экземпляра, в котором выполнялся вызов метода CF. Здесь значение CUMF2 точнее значения CUMF1.

Пример 2 — Графическая иллюстрация приведенного выше текстового примера (упрощенная)

Объявление
С СI R 1)

CLASS CIRCLE

METHOD PUBLIC PI

И 3 ^ 4 1 5 , -
\

METHOD PUBLIC* СГ
V7iR INPUT D ia m e te r

CF- : - T H I S .P I () * D l a n e t e r ;

Г РАСШИРЯЕТ
(CIR2I

CLASS CIRCLE2 EXTENDS CIRCLE

METHOD Р ф Ы С OVERRIDE PI
\

PI 3 .1 4 4 5 9 2 6 5 3 5 8 9 7 ;
\ ♦ --------"

METHOD P0BLIc \ f / / i n h e r i t e d
VAR INPUT D ia m e te r

CF := T H I S . P I O ‘ D i a m e t e r ;

PROGRAM TEST
VAR
C IR1:C IRCLE;
C IR2 :C IRC L E 2;

CUMF1 C I R l . С Г (1 . 0) ;
/ / COMF1 - 3 . 1 4 1 5

C0MF2 C I R 2 . C F (1 . 0) ;
/ / CUMF2 - 3 .1 4 1 5 9 2 6 5 3 5 8 9 7

6.6.5.7 Вызов метода собственного или базового класса (THIS. SUPER)
6.6.5.7.1 Общие положения
Для доступа к методу, определенному внутри или вне собственного класса, используются ключе­

вые слова THIS и SUPER.
6.6.5.7.2 THIS
THIS обеспечивает ссылку на экземпляр собственного класса.
С ключевым словом THIS метод экземпляра собственного класса может быть вызван любым дру­

гим методом экземпляра этого класса.
THIS может быть передан переменной типа INTERFACE.
Ключевое слово THIS не может использоваться с другим экземпляром, например, выражение

mylnstance. THIS не разрешено.

Пример — Использование ключевого слова THIS
Для удобства данные примеры копируются из приведенных выше примеров.

INTERFACE ROOM
METHOD DAYTIME END_METHOD //Вызывается в дневное время METHOD NIGHTTIME END_METHOD

// Вызывается в ночное время
ENDJNTERFACE
FUNCTION_BLOCK ROOMjCTRL И

VARJNPUT
RM: ROOM; / / Интерфейс ROOM как типа входной переменной

END_VAR
122

ГОСТ Р МЭК 61131-3—2016

VARJEXTERNAL
Actual_TOD: TOD; //Глобальное определение времени

END_VAR

IF (RM = NULL) И ВАЖНО: проверить законность ссылки!
THEN RETURN;
ENDJF;

IF Actual_TOD >= TODU20:15 OR Actual_TOD <= TODM.OO
THEN RM.NIGHTTIMEQ; И вызов метода из RM
ELSE RM.DAYTIMEO;
ENDJF;

END_FUNCTION_BLOCK

//Применяет ключевое слово THIS для назначения собственного экземпляра

CLASS DARKROOM IMPLEMENTS ROOM// См. объявление ROOM ebtiueVAR_EXTERNAL
Ext_Room_Ctrl: ROOM_CTRL; H См. объявление ROOM_CTRL выше END VAR

METHOD PUBLIC DAYTIME; END_METHOD METHOD PUBLIC NIGHTTIME; END_METHOD

METHOD PUBLIC EXTJ
Ext_Room_Ctrl(RM:= THIS); //Вызвать Ext_Room_Ctrl с собственным экземпляром
END_METHOD
END_CLASS

6.6.5.7.3 Ключевое слово SUPER
Ключевое слово SUPER обеспечивает доступ к методам реализации базового класса.
С ключевым словом SUPER можно вызвать метод, который действителен в экземпляре базового

(родительского) класса. Таким образом, имеет место статическое связывание.
Ключевое слово SUPER не может использоваться с экземплярами других программных элемен­

тов. например, выражение my- Room.SUPER.DAYTIMEQ не разрешено.
Ключевое слово SUPER не может использоваться для доступа к старшим предкам порожденных

методов, например, выражение SUPER.SUPER.aMethod не разрешено.

Пример — Использование ключевого слова SUPER и полиморфизм
LIGHT2ROOM с использованием SUPER как альтернативная реализация приведенного выше при­

мера. Для удобства сюда скопированы некоторые предыдущие примеры.

INTERFACE ROOM
METHOD DAYTIME END_METHOD И Вызывается в дневное время
METHOD NIGHTTIME END_METHOD И Вызывается в ночное время

ENDJNTERFACE

CLASS LIGHTROOM IMPLEMENTS ROOM

VAR LIGHT: BOOL; ENDJ/AR

METHOD PUBLIC DAYTIME
LIGHT- FALSE;

END_METHOD
METHOD PUBLIC NIGHTTIME

123

ГОСТ Р МЭК 61131-3—2016

LIGHT- TRUE;
END_METHOD
END_CLASS

FUNCTION_BLOCK ROOM_CTRL
VARJNPUT

RM: ROOM; // Интерфейс ROOM как тип переменной
END_VAR

VAR_EXTERNAL
Actual_TOD: TOD; // Гповальное определение времени

END_VAR

IF (RM = NULL) // ВАЖНО: проверить действительность ссылки!
THEN RETURN:
ENDJF;
IF Actual_TOD >= TOD*20:15 OR

Actual_TOD <= TOD«06:00
THEN RM.NIGHTTIMEO; // Вызвать метод RM (динамическое связывание с

//либо LIGHTROOM.NIGHTTIME
И либо LIGHT2ROOM.NIGHTTIME)

ELSE RM.DAYTIMEO;
ENDJF;

END_FUNCTION_BLOCK

//Применяет ключевое слово SUPER для вызова метода базового класса
CLASS LIGHT2ROOM EXTENDS UGHTROOM // си. выше
VAR LIGHT2: BOOL: END_VAR / /логическая переменная light

METHOD PUBLIC OVERRIDE DAYTIME
SUPER.DAYTIMEO; // Вызов метода в LIGHTROOM
LIGHT2 = TRUE;

END_METHOD

METHOD PUBLIC OVERRIDE NIGHTTIME
SUPER.NIGHTTIMEf) И Вызов метода в LIGHTROOM
UGHT2:= FALSE;

END_METHOD
END_CLASS

// Использование полиморфизма и динамическое связывание
PROGRAM С VAR

Му Room 1: LIGHTROOM; И См. выше
MyRoom2: LIGHT2ROOM; // См. выше
My_Room_Ctrl: ROOM_CTRL; // См. выше

END_VAR

My_Room_Ctrl(RM:= MyRooml); // Вызовы в My_Room_Ctrl вызывают методы LIGHTROOM
My_Room_Ctrl(RM:= MyRoom2); // Вызовы в My_Room_Ctrl вызывают методы LIGHT2ROOM

END_PROGRAM

124

ГОСТ Р МЭК 61131-3—2016

6.6.5.8 Абстрактный класс и абстрактный метод
6.6.5.8.1 Общие положения
Модификатор ABSTRACT может использоваться с классами или отдельными методами. Разра­

ботчик определяет реализацию этих свойств в соответствии с таблицей 48.
6.6.5.8.2 Абстрактный класс
Использование модификатора ABSTRACT в объявлении класса указывает, что класс предназна­

чается для использования в качестве базового типа для других классов.

Пример — CLASS ABSTRACT А1

Абстрактный класс имеет следующие свойства:
- абстрактный класс не может инстанцироваться;
- абстрактный класс содержит, по меньшей мере, один абстрактный метод.
Класс (неабстрактный), порожденный из абстрактного класса включает фактические реализации

всех унаследованных абстрактных методов.
Абстрактный класс может использоваться как тип входных и входных-выходных параметров.
6.6.5.8.3 Абстрактный метод
Все методы абстрактного класса, отмеченные модификатором ABSTRACT, будут реализовы­

ваться классами, порожденными из абстрактного класса, если сам порожденный класс не отмечен как
ABSTRACT.

Методы класса, унаследованные из интерфейса, получают ключевое слово ABSTRACT, если они
еще не реализованы.

Ключевое слово ABSTRACT не используется в сочетании с ключевым словом OVERRIDE. Ключе­
вое слово ABSTRACT может использоваться только с методами абстрактного класса.

Пример — METHOD PUBLIC ABSTRACT М1.

6.6.5.9 Спецификаторы доступа (PROTECTED. PUBLIC. PRIVATE. INTERNAL) к методу
Для каждого метода должно быть определено, откуда он может вызываться. Доступность метода

определяется с использованием следующих спецификаторов доступа, следующие за ключевым сло­
вом METHOD.

- PROTECTED
Если реализовано наследование, применим спецификатор доступа PROTECTED. Он указывает,

что метод доступен только внутри класса и из всех порожденных классов.
PROTECTED является умолчанием и может быть опущен.

Примечание — Если наследование не поддерживается, спецификатор доступа PROTECTED действует
так же. как PRIVATE.

- PUBLIC
Спецификатор доступа PUBLIC указывает, что метод доступен из любого места, где может ис­

пользоваться класс.
- PRIVATE
Спецификатор доступа PRIVATE указывает, что метод доступен только внутри самого класса.
INTERNAL
Если пространство имен реализовано, то может использоваться спецификатор доступа INTERNAL.

Он указывает для методов, что они доступны только в пределах ПРОСТРАНСТВА ИМЕН, в котором
класс объявлен.

Неявно доступ к прототипам методов всегда общий (PUBLIC), поэтому для прототипов методов не
используется спецификатор доступа.

Все неправильные использования спецификаторов доступа считаются ошибкой.

Пример — Спецификаторы доступа для методов.

Иллюстрация доступности (вызова) методов, определенных в классе С:
а) спецификаторы доступа: PUBLIC. PRIVATE, INTERNAL. PROTECTED

- PUBLIC Метод М1 доступен посредством вызова М1 из класса В (а также класса С);
- PRIVATE Метод М2 доступен посредством вызова М2 только из класса С;
- INTERNAL Метод М3 доступен посредством вызова М3 из ПРОСТРАНСТВА ИМЕН А (а так­

же класса В и класса С);

125

ГОСТ Р МЭК 61131-3—2016

- PROTECTED Метод М4 доступен посредством вызова М4 из класса порожденный_С (а также
класса С);

Ь) вызовы методов изнутри и извне.
- метод М2 вызывается из класса С — с ключевым словом THIS;
- методы М1, М3 и М4 класса С вызываются из класса С — с ключевым словом SUPER для

метода М4.

6.6.5.10 Спецификаторы доступа к переменной (PROTECTED. PUBLIC. PRIVATE. INTERNAL)
Для секции VAR спецификатор доступа определяет, откуда разрешен доступ к переменным этой

секции. Доступность переменных определяется с использованием одного из следующих спецификато­
ров доступа, располагающихся вслед за ключевым словом VAR.

Примечание — Спецификаторы доступа могут комбинироваться с другими спецификаторами, такими
как RETAIN или CONSTANT в любом порядке.

- PROTECTED
Если наследование реализовано, то спецификатор доступа PROTECTED является применимым.

Для переменных он указывает, что они достижимы только изнутри класса и изнутри всех порожденных
классов. Спецификатор доступа PROTECTED применяется по умолчанию, и может быть опущен.

Если наследование реализовано, но не используется, спецификатор PROTECTED имеет такой же
эффект как спецификатор PRIVATE.

- PUBLIC
Спецификатор доступа PUBLIC для переменных указывает, что они доступны в любом месте, где

может использоваться класс.
- PRIVATE
Спецификатор доступа PRIVATE для переменных указывает, что доступ к ним может осущест­

вляться только из самого класса.
Если наследование не реализовано, спецификатор доступа PRIVATE используется по умолчанию

и может быть опущен.
- INTERNAL
Если реализовано пространство имен, спецификатор доступа INTERNAL является применимым.

Он указывает, что переменные доступны только из ПРОСТРАНСТВА ИМЕН, в котором объявлен класс.
Все неправильные использования спецификаторов доступа считаются ошибкой.
6.6.6 Интерфейс
6.6.6.1 Общие положения
В объектно-ориентированном программировании концепция интерфейса вводится для обеспече­

ния отделения спецификации интерфейса от его реализации как класса. Это позволяет использовать
различные реализации общей спецификации интерфейса.

126

ГОСТ Р МЭК 61131-3—2016

Определение интерфейса начинается с ключевого слова INTERFACE с последующим именем
интерфейса и оканчивается ключевым словом ENDJNTERFACE (см. таблицу 51).

Интерфейс может содержать набор (неявно общих) прототипов методов.
6.6.6.2 Использование интерфейса
Спецификация интерфейса может использоваться двумя способами:
a) в объявлении класса
Она определяет, какие методы реализует класс, например, для повторного использования спе­

цификации интерфейса, как показано на рисунке 18;
b) как тип переменной
Переменные, тип которых — интерфейс, являются ссылками на экземпляры классов и им может

присваиваться значение до использования. Интерфейсы не используются как входные-выходные пере­
менные.

Таблица 51 — Интерфейс

Номер Описание
Ключевое слово Объяснение

1 INTERFACE ... ENDJNTERFACE Определение интерфейса

Методы и спецификаторы

2 METHOD...END JHETHOD Определение метода

Наследование

3 EXTENDS Интерфейс наследует из интерфейса

Использование интерфейса

4а IMPLEMENTS интерфейс Реализует интерфейс как объявление класса

4Ь IMPLEMENTS множественные ин­
терфейсы

Реализует более одного интерфейса в объявлении класса

4с Интерфейс как тип переменной Ссылка на реализацию (экземпляр функционального блока) ин­
терфейса

6.6.6.3 Прототип метода
Прототип метода — это сокращенное объявление метода для использования с интерфейсом. Он

содержит имя метода, переменные VARJNPUT. VAR_OUTPUT and VAR_IN_OUT и результат метода.
Определение прототипа метода не содержит никакого алгоритма (кода) и временных переменных, то
есть он еще не включает реализации.

Доступ к прототипам метода всегда PUBLIC; поэтому спецификатор доступа не используется в
прототипе метода.

Ниже приведена иллюстрация интерфейса INTERFACE general_drive. включающая:
a) прототипы метода (без алгоритма);
b) класс drive_A и класс drive_B: IMPLEMENTS INTERFACE general_drive.
Данные классы имеют методы с разными алгоритмами.

127

ГОСТ Р МЭК 61131-3—2016

Рисунок 18 — Интерфейс с порожденными классами (иллюстрация)

6 6.6.4 Использование интерфейса в объявлении класса (IMPLEMENTS)
6.6.6.4.1 Общие положения
Класс может реализовывать один или более ИНТЕРФЕЙСОВ с использованием ключевоего слова

IMPLEMENTS.

Пример — CLASS В IMPLEMENTS А1, А2;

Класс реализует алгоритмы всех методов, указанных прототипами метода, которые содержатся в
спецификациях ИНТЕРФЕЙСА.

Класс, который не реализует все прототипы метода, будет отмечен как ABSTRACT и не может
быть инстанцирован.

Примечание — Реализация прототипа метода может иметь дополнительные временные переменные в
методе.

6.6.6.4.2 Ошибки
Следующие ситуации рассматриваются как ошибка:
1 Если класс не реализует все методы, определенные в базовом (родительском) интерфейсе, и

класс инстанцирован.
2 Если класс реализует метод с таким же именем, которое определено в интерфейсе, но с другой

сигнатурой.
3 Если класс реализует метод с таким же именем, которое определено в интерфейсе, но не со

спецификатором доступа PUBLIC или INTERNAL.
6.6.6.4.3 Пример
Приведенный ниже пример иллюстрирует объявление интерфейса в классе и использование по­

средством внешнего вызова метода

128

ГОСТ Р МЭК 61131-3—2016

Пример — Класс реализует интерфейс.
И Объявление

INTERFACE ROOM
METHOD DATTIME END_METHOD И Вызывается в дневное время
METHOD NIGHTTIME END_METHOD И Вызывается в ночное время

ENDJNTERFACE

CLASS LIGHTROOM IMPLEMENTS ROOM
VAR LIGHT: BOOL: END_VAR

METHOD PUBLIC DAYTIME
LIGHT:* FALSE:

END_METHOD

METHOD PUBLIC NIGHTTIME
LIGHT- TRUE;
END_METHOD

END_CLASS

II Использование (посредством внешнего вызова метода)

PROGRAM А
VAR MyRoom: LIGHTROOM; END_VAR;/I Инстанцирование класса
VAR_EXTERNAL Actual_TOD: TOD; END_VAR:// определение глобального времени
IF Actual_TOD >= TODU20:15 ORActual_TOD <= TOD»6:00

THEN MyRoom.NIGHTTIMEQ;
ELSE MyRoom.DAYTIMEf);

ENDJF;
END_PROGRAM

6.6.6.5 Использование интерфейса как типа переменной
6.6.6.5.1 Общие положения
Интерфейс может использоваться как тип переменной. Затем данная переменная становится ука­

зателем на экземпляр класса, реализующего интерфейс. Переменной должна быть назначена ссылка
на экземпляр класса до того, как она может использоваться. Данное правило применяется во всех слу­
чаях, где может использоваться переменная.

Переменной типа INTERFACE могут быть назначены следующие значения.
1) экземпляр класса, реализующего интерфейс;
2) экземпляр класса, порожденного (посредством EXTENDS) из класса, реализующего интерфейс;
3) другая переменная того же порожденного типа INTERFACE;
4) специальное значение NULL, указывающее на недопустимую ссылку. Данное значение также

является начальным переменной, если она не инициализирована иным образом.
Переменная типа INTERFACE может сравниваться на равенство с другой переменной того же

типа. Результат имеет значение TRUE, если переменные ссылаются на один и тот же экземпляр или
если значения обоих переменных равны NULL.

6.6.6.5.2 Ошибка
Значение переменной типа интерфейс должно быть присвоено до ее использования, и должна

быть проведена проверка, что оно указывает на действительный экземпляр класса. В противном слу­
чае возникает ошибка времени выполнения.

Примечание — Для предотвращения ошибки времени выполнения, инструментальные программные
средства должны предоставить неявный «пустой» метод. Другой способ состоит в предварительной проверке того,
что назначен действительный экземпляр класса.

1 2 9

ГОСТ Р МЭК 61131-3—2016

6.6.6.5.3 Пример
В примерах 1 и 2 показаны объявление и использование интерфейсов как типа переменной.

Пример 1 — Тип функционального блока с вызовом методов интерфейса
// Объявление

INTERFACE ROOM
METHOD DAYTIME END_METHOD И вызывается в дневное время
METHOD NIGHTTIME END_METHOD И вызывается в ночное время

ENDJNTERFACE

CLASS LIGHTROOM IMPLEMENTS ROOM
VAR LIGHT: BOOL: END_VAR

METHOD PUBLIC DAYTIME
LIGHT- FALSE;

END_METHOD

METHOD PUBLIC NIGHTTIME
LIGHT— TRUE;

END_METHOD
END_CLASS

FUNCTlON_BLOCK ROOM_CTRL
VARJNPUT RM: ROOM; END_VAR // Интерфейс ROOM как тип (входной) переменной
VARJEXTERNAL
Actual_TOD: TOD; ENDJ/AR И Определение глобального времени

IF (RM = NULL) //Важно: тест на действительную ссылку!
THEN RETURN;
ENDJF;
IF Actual_TOD >= TOD#20:15 OR

Actual_TOD <= TOD#06:00
THEN RM.NIGHTTIMEQ; И Вызов метода RM ELSE RM.
DAYTIMEQ;
ENDJF;

END^FUNCTION_BLOCK

И Использование

PROGRAM В
VAR

My_Room:
My_Room_Ctrl

ENDVAR

И Инстанцирование
UGHTROOM; U Cm. LIGHTROOM IMPLEMENTS ROOM
ROOM_CTRL; //C m. ROOM_CTRL выше

My_Room_Ctrl(RM:= My_Room);
И Вызов FB с передачей экземпляра класса в качестве
входной переменной

END_PROGRAM

130

ГОСТ Р МЭК 61131-3—2016

В данном примере функциональный блок объявляет переменную типа интерфейс как параметр.
Вызов экземпляра функционального блока передает экземпляр (указатель) класса, реализующего ин­
терфейс. этой переменной. Затем метод, вызванный в классе, использует методы переданного экзем­
пляра класса. Таким образом, можно передавать экземпляры различных классов, реализующих интер­
фейс.

Объявление:
Интерфейс ROOM с двумя методами и класс LIGHTROOM, реализующий интерфейс.
Функциональный блок ROOM_CTRL с входной переменной RM. которая имеет тип интерфейса

ROOM. Функциональный блок ROOM_CTRL вызывает методы переданного класса, которые реализуют
интерфейс.

Использование:
Программа В инстанцирует класс My_Room и функциональный блок My_Room_Ctrl и вызывает

функциональный блок My_Room_Ctri с передачей класса My_Room входной переменной RM типа ин­
терфейс ROOM.

Пример 2 — Иллюстрация отношений из примера 1

Объявление:

ыятя> вагам

а г в и т ш я

ч
ч

И м п ■■
■)1Мт¥ З Д Е » вВ м м я 1«Б

№ ралпуш мпрф|1а

\
CTVn

ИагЕгманмк
Ь) I N m V ^ R O O M а в т о т р в ш м ш Л RM

\ (Т т Ф Б]
Т В f e ^ j C X J I X i

и т ш в а г а м v x a id P U T Ч

Ш : P D C K r

1г щ о яхдятхшя . . . я а . С А Т Т Ш Б . . .

■

. . . И И .Н Х О Н Т Е Н И . . .

■

131

ГОСТ Р МЭК 61131-3—2016

Примечание — Функциональный блок не имеет реализованных методов, но вызывает методы передан­
ного класса!

б.б.б.б Наследование интерфейса (EXTENDS)
6.6.6.6.1 Общие положения
Применительно к языкам программирования PLC концепция наследования и реализации, опре­

деленная в объектно-ориентированном программировании применяется как способ создания новых
элементов, как показано на рисунке 19 а), Ь), с) ниже.

a) Наследование интерфейса
Порожденный (дочерний) интерфейс расширяет (EXTENDS) базовый (родительский) интерфейс,

который уже был определен, или
b) Реализация класса
Порожденный класс реализует (IMPLEMENTS) один или более интерфейсов, которые уже были

определены, или
c) Наследование класса
Порожденный класс расширяет (EXTENDS) базовый класс, который уже был определен.

Иллюстрация иерархии наследования:
a) наследование интерфейса с использованием ключевого слова EXTENDS;
b) реализация интерфейса, используя ключевое слово IMPLEMENTS;
c) класса, используя ключевые слова EXTENDS и OVERRIDE.

Рисунок 19 — Наследование интерфейса и класса

132

ГОСТ Р МЭК 61131-3—2016

Наследование интерфейса, как показано на рисунке 19 а) является первым из трех уровней на-
следование/реализация. На основе базового интерфейса можно породить один или более интерфей­
сов.

Интерфейс может быть порожден из одного или более существующих интерфейсов (базовых ин­
терфейсов). используя ключевое слово EXTENDS.

Пример — Интерфейс А1 расширяет интерфейс А.

Применяются следующие правила:
1 Порожденный (дочерний) интерфейс наследует без дополнительных объявлений все прототипы

методов из его базового (родительского) интерфейса.
2 Порожденный интерфейс может наследовать из произвольного числа базовых интерфейсов.
3 Порожденный интерфейс может расширять множество прототипов методов, то есть он может

иметь прототипы метода дополнительные к прототипам метода своего базового интерфейса и. таким
образом, создавать новую функциональность.

4 Интерфейс, используемый как базовый интерфейс, может сам являться порожденным интер­
фейсом. Когда он передается своим порожденным интерфейсам, наследуются также прототипы мето­
да.

Данный процесс может повторяться многократно.
5 Если базовый интерфейс изменяет свое определение, все порожденные интерфейсы (и их по­

томки) также имеют эту измененную функциональность.
6.6.6.6.2 Ошибка
Следующие ситуации будут рассматриваться как ошибка:
1) интерфейс определяет дополнительный прототип метода (в соответствии с правилом 3) с таким

же именем прототипа метода, как и один из его базовых интерфейсов:
2) интерфейс является своим собственным базовым интерфейсом, явно или неявно, то есть ре­

курсия не разрешена.

Пример — Свойство OVERRIDE, как определено в 6.6.5.5 для классов, не применимо для интерфей­
сов.

6.6.67 Попытка присваивания
6.6.67.1 Общие положения
Попытка присваивания используется для проверки того, реализует ли экземпляр данный интер­

фейс (см. таблицу 52). Это применимо для классов и функциональных блоков.
Если экземпляр, на который дана ссылка, принадлежит классу или типу функционального блока,

реализующего интерфейс, то результат является действительной ссылкой на данный экземпляр. В про­
тивном случав, результатом является NULL.

Синтаксис попытки присваивания может также использоваться для безопасных преобразований
ссылок интерфейсов в ссылки на классы (или типов функциональных блоков), или ссылки на базовый
тип в ссылку на порожденный тип (нисходящее преобразование типа).

Результат попытки присваивания подтверждается отличием от значения NULL перед использова­
нием.

6.6.6.67.2 Текстовое представление
В перечне инструкций (язык IL). оператор «ST» (Сохранить) используется как показано в следую­

щем примере.
Пример 1
LD interface2 II в языке IL
ST? interface1

В структурированном тексте (язык ST). оператор «?=» используется как показано в следующем
примере.

Пример 2
interfacel ?- interface2; И в языке ST

6.6.6.67.3 Графическое представление
В графических языках используется следующая конструкция:

133

ГОСТ Р МЭК 61131-3—2016

Пример 1

+------------------------------+
inter£ace2 -- | ?= |-- interfacel

+ ------------------------------ +

Пример 2 — Попытка присваивания с ссылками интерфейса
Успешная и неудачная попытка присваивания с ссылками интерфейса

/ / Объявление

CLASS С IMPLEMENTS ITF1, ITF2
END_CLASS

// Использование

PROGRAM А
VAR

inst: С;
interfl: ITF1;
interf2: ITF2;
interf3: ITF3;

END_VAR

interfl := inst;
interf2 ?= interfl;

interf3 ?- interfl;
END_PROGRAM

Пример 3 -
// Объявление

CLASS dBase IMPLEMENTS ITF1. ITF2
END_CLASS

CLASS CIDerived EXTENDS dBase
END_CLASS

/ / Использование

PROGRAM A
VAR

instbase: dBase;
instderived: CIDerived;
rinstBasel, pinstBase2: REF TO dBase;
rinstDerivedl, rinstDerived2: REF_TO CIDerived;
rinstDerived3, rinstDerived4: REF_TO CIDerived;
interfl: ITF1;
interf2: ITF2;
intern: ITF3;

END_VAR

//теперь intern содержит действительную ссылку
U interf2 будет содержать действительную ссылку
//равную interf2~ inst;
Hinterf3 будет равно NULL

Попытка присваивания с указателями интерфейса

134

ГОСТ Р МЭК 61131-3—2016

rinstBase1:= REF(instBase);
rinstBase2:= REF(instDerived);
rinstDerivedl ?- rinstBasel;
rinstDerived2 ?- rinstBase2:

/ / rinstbasel ссылается на базовый класс
// rinstbase2 ссылается на порожденный класс
//rinstDerivedl — NULL
// rinstDerived2 будет содержать действительную
// ссылку на instDerived

interfl := instbase; // interfl является ссылкой на базовый класс
interf2:~ instderived; И interf2 является ссылкой на порожденный класс
rinstDerived3 7- interfl; / / rinstDerived3 = NULL
rinstDerived4 ?-interf2; // rinstDerived4 будет содержать действительную

//ссылку на instDerived
END PROGRAM

Результат попытки присваивания подтверждается отличием от значения NULL перед использова­
нием.

Таблица 52 — Попытка присваивания

Номер Описание Пример

1 Попытка присваивания интерфейсов, используя «?=» См. выше

2 Попытка присваивания интерфейсов, используя «?=» См. выше

6.6.7 Объектно-ориентированные свойства функциональных блоков
6.6.7.1 Общие положения
Концепция функциональных блоков МЭК 61131-3 расширена для поддержки объектно-ориентиро­

ванной парадигмы в том объеме, как она определена для классов:
- в функциональных блоках дополнительно используются методы;
- функциональными блоками дополнительно реализуются интерфейсы.
- поддерживается наследование функциональных блоков.
В объектно-ориентированных функциональных блоках поддерживаются все свойства, определен­

ные в таблице 40.

Кроме того, разработчик объектно-ориентированных функциональных блоков предоставляет вну­
тренне согласованное подмножество свойств объектно-ориентированных функциональных блоков,
определенное в таблице 53.

Таблица 53 — Объектно-ориентированный функциональный блок

Но
мер

Описание
Ключевое слово Объяснение

1 Объектно-ориентированный
функциональный блок

Объектно-ориентированное расширение концепции функциональных
блоков

1а Спецификатор FINAL Функциональный блок не может использоваться как базовый функцио­
нальный блок

Методы и спецификаторы

5 METHOD ...END_METHOD Определение метода

5а Спецификатор PUBLIC Метод может вызываться откуда угодно

5Ь Спецификатор PRIVATE Метод может вызываться только внутри определяющего программного
компонента

5с Спецификатор INTERNAL Метод может вызываться из одного и того же пространства имен

5d Спецификатор PROTECTED Метод может вызываться только из определяющего программного ком­
понента и его наследников (неявно)

135

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 53

Но­
мер

Описание
Ключевое слово Объяснение

5е Спецификатор FINAL Метод не может быть перетружен

Использование интерфейса

6а IMPLEMENTS интерфейс Реализует интерфейс в объявлении функционального блока

6Ь IMPLEMENTS множествен­
ные интерфейсы

Реализует более одного интерфейса в обьявлении функционального
блока

6с Интерфейс как тип перемен­
ной

Поддержка ссылок на реализации (экземпляры функциональных бло­
ков) интерфейса

Наследование

7а EXTENDS Функциональный блок наследует из базового функционального блока

7Ь EXTENDS Функциональный блох наследует из базового функционального блока

8 OVERRIDE Метод переопределяет базовый метод — см. динамическое связывание
имен

Э ABSTRACT Абстрактный функциональный блок — по меньшей мере, один метод яв­
ляется абстрактным
Абстрактный метод — это шаблон метода

Ссылка на доступ

10а THIS Ссылка на собственные методы

10Ь Ключевое слово SUPER Ссылка доступа на метод в базовом функциональном блоке

Юс SUPER() Ссылка доступа на тело в базовом функциональном блоке

Спецификаторы доступа
переменной

11а Спецификатор PUBLIC Доступ к переменной возможен из любого места

11Ь Спецификатор PRIVATE Доступ к переменной осуществляется только внутри определяющего
программного компонента

11с Спецификатор INTERNAL Доступ к переменной осуществляется только внутри одного и того же
пространства имен

11d Спецификатор PROTECTED Доступ к переменной осуществляется только из определяющего про­
граммного компонента и его наследников (неявно)

Полиморфизм

12а с секцией переменных VAR_
IN_OUT
с одинаковой сигнатурой

Секции VAR_IN_OUT базового типа FB может присваиваться экземпляр
порожденного типа FB без дополнительных переменных VAR IN_OUT,
VARJNPUT и VAR_OUTPUT

12Ь с секцией переменных VAR_
IN_OUT
с совместимой сигнатурой

Секции VAR_IN_OUT базового типа FB может присваиваться экземпляр
порожденного типа FB без дополнительных переменных VAR_IN_OUT

12с со ссылкой
с одинаковой сигнатурой

Ссылке (базового) типа FB может присваиваться адрес экземпляра по­
рожденного типа FB без дополнительных переменных VAR_IN_OUT,
VARJNPUT и VAR_OUTPUT

12d со ссылкой
с совместимой сигнатурой

Ссыпке (базового) типа FB может присваиваться адрес экземпляра по­
рожденного типа FB без дополнительных переменных VAR_IN_OUT

136

ГОСТ Р МЭК 61131-3—2016

6.67.2 Методы для функциональных блоков
6.6.7.2.1 Общие положения
Концепция методов принимается как набор факультативных элементов языка, используемых в

определении типа функционального блока.
Методы могут применяться для определения операций с данными экземпляров функционального

блока.
6.67.2.2 Варианты функциональных блоков
Функциональный блок может иметь тело функционального блока и дополнительно набор методов.

Так как тело FB и/или методы могут быть опущены, существует три варианта функционального блока.
Это показано в примере на рисунках 20 а), 20 Ь). 20 с).

a) Функциональный блок, имеющий только тело
Данный функциональный блок известен из МЭК 61131-3.
В данном случая у функционального блока нет реализованных методов. Элементы функциональ­

ного блока (входные переменные, выходные переменные и т. п.) и вызовы функционального блока по­
казаны на примере на рисунке 20 а).

b) Функциональный блок телом FB и методами
Методы поддерживают доступ к их собственным локально определенным переменным, а также к

переменным, определенным в секциях VARJNPUT, VAR_OUTPUT и VAR объявления функционального
блока.

c) Функциональные блоки, имеющие только методы
В данном случае, функциональный блок имеет реализованное пустое тело функционального бло­

ка. Элементы функционального блока и вызов методов показан на рисунке 20 Ь).
В данном случае, функциональный блок может также быть объявлен как класс.

137

ГОСТ Р МЭК 61131-3—2016

И птж трац и ! в п а м тп я и шшот ф рю лотльнога О пои о т т о к иГили мапурвш.
В грииаратж аи поавмывавпсл pn p w w u i н м р ц ш м н гришанавния и чтвниа вхцсиьк и выходных
m yn M iiiiin r

■) Ф ун нр я , и ш ю ш в м тл ы в) м Д ш м фунщ а пналънопИ
- Вжадша. вшпднма napawai in m яаяю тсв стжтичааовм и д оступ» « н а функционального Опо»ш
-тш ж в н п и и с я и от вызове « 6 .

Пример Фъ

1 * 1 * 5

т т . [ч « * ь : масскк

<гярам>
А в е ш н и

А п о р т
т т в Ф Б

I
т

А - l n l a n t i -г
В - in o u t — in o u t

д то 1раф м м ам
грвдигявгвн*» ивтода
гр н кд о гв) T H U D для
швтюограцж.

Временные параметры
привдроны н скобках.

Z (i a l : - I , in c u t : - В, c o t l - > Т) г

П р ю и ш к в тр н и х парамшных и м к
I - l d l I - А/
i i L u u u ti в > / / Иэ разрешено. ТЪльсо при выюоЫ

Ч т ш вы ж и т * переметив явно:
x s - z .o u t l; / / Разреш аю !О пм чавпжотЬ).

4 Фумарю нвш н и й С ан * мива н рД т а 1ЬВо пагод {гевсть пустев-голв)Д и 1дв пагода:
- ПВТЦВИ. М В Д М , — ДН1И ■ ПГД1В1В П ф 111№ 1 И р я р ш т т НВТВДВ И Я И П Н paiW IIM M W (и
- но д о с т)п м м м а м -тильсо при iu m b b I

ош пгш

У
Продолсанив 0G

с*рвм.:

(вадННМИаН.)

а п с р и т ивтода_1

HBTOflJ

1-евь) И**»:

ЕВ .method

A - lsm l uulfflll

-H I

-Т

Это грйфичОСяйв
л р я п п ш ш а м ивтода
фНКПКТСЛ тпгы о для
ШПЮОГрВЦМ!

В р ам ам м гярамвгры
npw Boai Bi в стбгхх.

алгоритм u ero q a j

в) ИУвВ<1В1 ф п ая 1 в Л функционал ь ш Л е та л о й я мвттууии: ваш ими 4 м а)

X I : - I .M t h a d l (lo a d : - a , a u ta l - > X);
ала? испопьэовмю результат н я *о в т а ь н о

I.m e th o d l (I n m l A, cn tm l -> T j)

Гр и ш и на! вм вхадюис параиа i ма га метода мама:
I 1тш1 > - в» и Но развешено. Только п и казовв!

Чтение вьавпньв п а р О Д ты х мвтрда Юане:
т>— iT oo tH Lt //.Ц |р а ц и ш а н о . Только гри илпаа<

Рисунок 20 — Функциональный блок с необязательным телом и методами (иллюстрация)

6.6.7.2.3 Объявление и выполнение метода
Функциональный блок может иметь набор методов, приведенных на рисунке 20 с).
Объявление метода подчиняется правилам метода класса, а также дополнительно следующим

правилам:
1 Методы объявляются в области действия типа функционального блока.
2 В текстовом объявлении методы перечисляются между частью объявлений функционального

блока и телом функционального блока.

138

ГОСТ Р МЭК 61131-3—2016

Выполненные методы подчиняются правилам для методов класса и дополнительно следующим
правилам:

3 Все методы имеют доступ для чтения-записи к статическим переменным, объявленным в функ­
циональном блоке: Входные переменные (кроме тех. которые имеют тип данных BOOL R_EDGE или
BOOL F_EDGE). входные, статические и внешние переменные.

4 Метод не имеет доступа к временным переменным VAR_TEMP и входным-выходным перемен­
ным VAR_IN_OUT функционального блока.

5 Переменные метода недоступны в теле (алгоритме) функционального блока.
6.67.2.4 Представление вызова метода
Методы могут вызываться так же, как определено для классов в текстовых и графических языках.
6.67.2.5 Спецификаторы доступа (PROTECTED, PUBLIC. PRIVATE. INTERNAL) к методу
Для каждого метода должно быть определено, откуда он может вызываться.
6.67.2.6 Спецификаторы доступа к переменным (PROTECTED. PUBLIC. PRIVATE. INTERNAL)
Для секции VAR должно быть определено, откуда разрешен доступ к переменным этой секции.
Доступ к входным и выходным переменным неявно является общим (PUBLIC), поэтому в секциях

входных и выходных переменных отсутствует спецификатор доступа. Входные-выходные переменные
могут использоваться только в теле функционального блока и в операторе вызова. Доступ к перемен­
ным секции VAR_EXTERNAL всегда неявно является защищенным (PROTECTED); поэтому объявление
этих переменных не использует спецификатора доступа.

6.67.2.7 Наследование функционального блока (EXTENDS, SUPER. OVERRIDE, FINAL)
6.67.2.8 Общие положения
Наследование функционального блока похоже на наследование классов. На основе существую­

щего класса или типа функционального блока можно породить один или более функциональных бло­
ков. Данный процесс может повторяться многократно.

6.67.2.9 SUPER() в теле порожденного функционального блока
Порожденные функциональные блоки и их базовый функциональный блок могут иметь тело функ­

ционального блока. Тело функционального блока не наследуется автоматически из базового функци­
онального блока. По умолчанию, оно пустое. Затем его можно вызвать, используя функцию SUPER().

В этом случае, применяются приведенные выше правила для EXTENDS функционального блока
и. дополнительно, следующие правила:

1 Тело (если имеется) порожденного функционального блока будет вычисляться при вызове функ­
ционального блока.

2 Для того чтобы дополнительно выполнить тело базового функционального блока (если оно име­
ется) в порожденном функциональном блоке, используется вызов SUPER(). Вызов SUPERQ не имеет
параметров.

Вызов SUPER() осуществляется только один раз в теле функционального блока и не используется
в цикле.

3 Имена переменных в базовом и порожденном функциональных блоках должны быть уникаль­
ными.

4 Вызов функционального блока связывается динамически.
a) Тип порожденного функционального блока может использоваться везде, где может использо­

ваться тип базового функционального блока.
b) Тип порожденного функционального блока может использоваться везде, где может использо­

ваться тип базового функционального блока.
5 SUPERQ может вызываться в теле функционального блока, но не в методе функционального

блока.
На рисунке 21 показаны примеры использования SUPERQ:

139

ГОСТ Р МЭК 61131-3—2016

БАЗОВЫЙ FB

VARJNPUT
a:VAR О

UTPUT х: INT; INT;
{* тело:*) х :»
а+1;
NIGHTTIME

Включение тела с вызовом SUPER()

{Тип FB) N 4 (Тип FB)

ПОРОЖДЕННЫЙ FB 1 '
РАСШИРЯЕТ БАЗОВЫЙ FB

' >
4 ПОРОЖДЕННЫЙ FB 1
РАСШИРЯЕТ БАЗОВЫЙ FB

VAR INPUT a: INT;
VAR INPUT b:INT.
VAR OUTPUT х: INT;

VAR INPUT Ь: INT;

SUPER0;
(•включает здесь тело
БАЗОВОГО FB*) х :=

x ^ a + 1;
x3*x+b;

З*х+Ь

Включение тела с вызовом SUPER()

{Тип FB) / " * \ (Тип FB)

FB ПОРОЖДЕННЫЙ 2 ' 4 FB ПОРОЖДЕННЫЙ 2
ВКЛЮЧАЕТ ВКЛЮЧАЕТ

VAR_IN_OUT c: INT; VARJNPUT a: INT;
VAR INPUT b: INT;
VAR IN OUT c: INT;
VARlOUTPUTx: INT;

SUPERO; ('включает
здесь тело из
DERIVEDJ •)

a a + 1;
x :■ 3*x*b;

с:=х/с; c :* x/c;

Рисунок 21 — Наследование тела функционального блока с SUPER() (пример)

6.6.7.2.10 OVERRIDE (переопределение метода)
Тип порожденного функционального блока может переопределять (заменять) один или более

унаследованных методов собственной реализацией метода.
6.6.7.2.11 FINAL для функционального блока и методов
Метод со спецификатором FINAL не может быть переопределен.
Функциональный блок со спецификатором FINAL не может быть базовым функциональным бло­

ком.
6.6.7.3 Динамическое связывание имен (OVERRIDE)
Связывание имен — это ассоциация имени метода или имени функционального блока с реали­

зацией метода или функционального блока. Оно используется как определено в 6.6.5.6 для методов и
функциональных блоков.

140

ГОСТ Р МЭК 61131-3—2016

6.67.4 Вызов метода из собственного и базового FB (THIS, SUPER) и полиморфизм
Для доступа к методу, определенному внутри и снаружи функционального блока используются

ключевые слова THIS и SUPER.
6.67.5 Абстрактный функциональный блок и абстрактный метод
Модификатор ABSTRACT может также использоваться с функциональными блоками. Реализация

этих свойств определяется разработчиком.
6.67.6 Спецификаторы доступа (PROTECTED. PUBLIC, PRIVATE, INTERNAL) к методу
Для каждого метода определяется, откуда разрешен вызов метода, как это определено для клас­

сов.
6.6.77 Спецификаторы доступа к переменной (PROTECTED, PUBLIC, PRIVATE, INTERNAL)
Для секции VAR определяется, откуда разрешен доступ к переменным секции, как определено это

для классов.
Доступ к входным и выходным переменным неявно определен как общий (PUBLIC), поэтому спе­

цификатор доступа в секциях входных и выходных переменных не используется. Выходные перемен­
ные неявно доступны только для чтения. Входные-выходные переменные могут использоваться только
в теле функционального блока и в операторе вызова. Доступ к переменным секции VAR_EXTERNAL
всегда неявно является защищенным (PROTECTED); поэтому объявление данных переменных не ис­
пользует спецификатора доступа.

6.6.8 Полиморфизм
6.6.8.1 Общие положения
Существует четыре случая, где проявляется полиморфизм, они показаны в 6.6.8.2.6.6.8.3. 6.6.8.4

и 6.6.8.5.
6.6.8.2 Полиморфизм в интерфейсе
Так как интерфейс нельзя инстанцировать, только порожденные типы могут присваиваться ссыл­

ке на интерфейс. Таким образом, любой вызов метода через ссылку на интерфейс представляет собой
динамическое связывание.

6.6.8.3 Полиморфизм в секции VAR_IN_OUT
Входным-выходным переменным типа может присваиваться тип порожденного функционального

блока, если тип порожденного функционального блока не имеет дополнительных входных-выходных
переменных. Разработчик определяет, может ли присваиваться экземпляр типа порожденного функци­
онального блока с дополнительными входными-выходными переменными.

Таким образом, вызов функционального блока и вызов методов функционального блока через
экземпляр секции VAR_IN_OUT является случаем динамического связывания.

Пример 1 — Динамическое связывание вызовов функционального блока

141

ГОСТ Р МЭК 61131-3—2016

VAR
B A S E A : B A S E ;
D E R IV E D _ 2 _ A : D E R IV E D _ 2 ;
SN D_VAR ;

(ТИП ФБ) B A S S А -

КОСВЕННЫЙ FB

V A R I H O U T B A S E X :
B A S E ;

B A S E 1

1 2 3 -

3ASE
a x

КОСВЕННЫЙ 1

КОСВЕННЫЙ FB

V A R _ IK _ 0 U T B :
B A S E ;

B A S E 1

BASE
* " ” 123- a x U

I \ динамически связаны
; \ D E R IV E D 1 А Ч
l

\ Ч' ч

\

\

\
\

-> x :■ i+l //x b !24

КОСВЕННЫЙ 2

КОСВЕННЫЙ FB

V A R _ IJ J _ 0 0 T B A S E _ 1 :
B A S S ;

B A S E 1

1 2 3 - a

B A S E

x :■ a + 1 ;
x :- 3*x*b;

Г HE разрешено!

\
КОСВЕННЫЙ 3

D £ R I V £ D _ 2 _ A -

КОСВЕННЫЙ FB

V A R _ IN _ O U T B A S E _ 1 :
B A S E ;

B A S E _ 1

B A S E

Х2Э- a x -

-» ошибка

Если порожденный блок добавил входные-выходные переменные, то динамическое связывание
вызова функционального блока должно приводить к INDIRECT_3 в вычислении неназначенной вход-
ной-выходной переменной с и вызывать ошибку периода выполнения. Следовательно, присваивание
экземпляра порожденных функциональных блоков является ошибкой.

Пример 2
CLASS LIGHTROOM

VAR LIGHT: BOOL: END_VAR
METHOD PUBLIC SET_DAYTIME
VARJNPUT: DAYTIME: BOOL: END_VAR

LIGHT.-NOT(DAYTIME);
END_METHOD

END_CLASS
142

ГОСТ Р МЭК 61131-3—2016

CLASS LIGHT2ROOM EXTENDS UGHTROOM
VAR LIGHT2: BOOL: END_VAR // Вторая переменная light
METHOD PUBLIC OVERRIDE SET_DAYTIME
VARJNPUT: DAYTIME: BOOL: END_VAR

SUPERSETJDAYTIME(DAYTIME); И Вызов LIGHTROOMSET_DAYTIME LIGHT2:= NOT(DAYTIME):
END_METHOD

END_CLASS

FUNCTION_BLOCK ROOM_CTRL
VARJNjOUTRM: UGHTROOM: ENDJVAR
VAR_EXTERNAL Actual_TOD: TOD: END_VAR // Определение глобального времени

ИВ этом случае функциональный блок для вызова динамически связан
И RM может ссылаться на порожденный класс!
RMSET DAYTIME(DAYTIME: = (Actual_TOD <= TODK20.15) AND

(Actual_TOD >= TODK6:00)):
END_FUNCTION_BLOCK

И Использование полиморфизма и динамического связывания со ссылкой

PROGRAM D
VAR

MyRooml: UGHTROOM;
MyRoom2: LIGHT2ROOM;
My_Room_Ctrl: ROOM CTRL;

END_VAR

My_Room_Ctrl(RM:= MyRooml);
My_Room_Ctrl(RM:= MyRoom2);

END_PROGRAM:

6.6.8.4 Полиморфизм со ссылкой
Пример производного типа может быть назначен для ссылки на базовый класс.
Переменная, имеющая тип. может быть назначена как ссылка на производный тип функциональ­

ного блока, если производный тип функционального блока не имеет дополнительных входных-выход-
ных переменных. Разработчик определяет, будет ли назначаться ссылка на производный тип функцио­
нального блока с дополнительными входными-выходными переменными.

Таким образом, вызов функционального блока и вызов методов функционального блока посред­
ством разыменования ссылки представляют собой случаи динамического связывания.

Пример 1 — Альтернативная реализация примера lightroom
FUNCTION_BLOCK LIGHTROOM
VAR UGHT: BOOL; END VAR
VARJNPUT: DAYTIME: BOOL; ENDJVAR
LIGHT- NOT(DAYTIME);
END_FUNCTION_BLOCK

FUNCTION_BLOCK LIGHT2ROOM EXTENDS LIGHTROOM
VAR UGHT2: BOOL; END_VAR //Дополнительное освещение

SUPERQ: / / Вызов LIGHTROOM
LIGHT2.- NOT(DAYTIME):
END_FUNCTION_BLOCK

143

ГОСТ Р МЭК 61131-3—2016

FUNCTlON_BLOCK ROOMCTRL
VARJNPUT RM: REFJTO LIGHTROOM; END_VAR
VAR_EXTERNAL Actual_TOD: TOD; END_VAR // Определение глобального времени

II в этом случае, функциональный блок для вызова динамически связанного
/ / RM может относиться к производному типу функционального блока!

IF RM о NULL THEN
RM\DAYTIME:= (Actual_TOD <= TODU20.15) AND (Actual_TOD >= TODU6.00));

ENDJF
END_FUNCTION_BLOCK

И Использование полиморфизма и динамического связывания со ссылкой
PROGRAM D
VAR

MyRooml: LIGHTROOM; И см. выше
MyRoom2: LIGHT2ROOM; // см. выше
My_Room_Ctrl: ROOM_CTRL; II см. выше

END VAR

My_Room_Ctrl(RM: - REFfMyRoom 1));
My_Room_Ctrl(RM:~ REF(MyRoom2));
END_PROGRAM;

6.6.8.5 Полиморфизм c THIS
Во время выполнения программы THIS может содержать ссылку на текущий тип функционального

блока или на все его производные типы функциональных блоков. Таким образом, любой вызов метода
функционального блока с использованием THIS — это случай динамического связывания.

Примечание — При особых обстоятельствах, например, если тип или метод функционального блока
обьявлен как FINAL, или отсутствуют производные типы функциональных блоков, то ссылка или THIS могут быть
полностью определены в период компиляции. В данном случав нет необходимости в динамическом связывании.

6.7 Элементы последовательной функциональной схемы (SFC)

6.7.1 Общие положения
Подраздел 6.7 определяет элементы последовательной функциональной схемы (SFC) для ис­

пользования в структурировании внутренней организации программного компонента программируе­
мого контроллера, записанные в одном из языков, определенных в настоящем стандарте, для цели
выполнения функций последовательного управления. Определения в подразделе 6.7 приведены из
МЭК 60848 с изменениями, необходимыми для того, чтобы преобразовать представления из докумен­
тального стандарта в набор элементов реализации управления для программного компонента програм­
мируемого контроллера.

Элементы SFC обеспечивают средства разбиения программного компонента программируемого
контроллера на набор шагов и переходов, соединенных между собой направленными связями. С каж­
дым шагом связан набор действий, а с каждым переходом связано условие перехода.

Поскольку элементы SFC нуждаются в сохранении информации о состоянии, программные ком­
поненты, которые могут быть структурированы с использованием таких элементов, представляют со­
бой функциональные блоки и программы.

Если какая-либо часть программного компонента разбивается на элементы SFC. то программный
компонент в целом также подвергается разбиению. Если разбиение SFC для программного компонента
не предусмотрено, то программный блок в целом рассматривается как одиночное действие, которое
исполняется под управлением вызывающего объекта.

144

ГОСТ Р МЭК 61131-3—2016

6.7.2 Шаги
Шаг представляет ситуацию, в которой поведение программного компонента относительно его

входов и выходов следует набору правил, определяемых связанными действиями шага. Шаг может
быть активным или неактивным. В любой заданный момент состояние программного компонента опре­
деляется набором активных шагов и значений их внутренних и внешних переменных.

Как показано в таблице 54 шаг графически представляется блоком, содержащим имя шага в фор­
ме идентификатора или текстуально с помощью конструкции STEP...END_STEP. Направленная в шаг
связь (связи) графически представляется вертикальной линией, присоединенной к верху шага. Направ­
ленная из шага связь (связи) графически представляется вертикальной линией, присоединенной к низу
шага. Как альтернатива, направленные связи представляются в текстовом виде с помощью конструк­
ции TRANSITION... END_TRANSITION.

Флаг шага (активное или неактивное состояние шага) представляется логическим значением
элемента логической структуры ***.Х, где *** — имя шага, как показано в таблице 54. Эта логическая
переменная имеет значение 1. когда соответствующий шаг активен, и значение 0. когда он неактивен.
Состояние этой переменной доступно для графического соединения в правой части шага, как показано
в таблице 54.

Аналогично, истекшее время ***. Т с момента начала шага представляется структурным элемен­
том типа TIME, как показано в таблице 54. Когда шаг деактивирован, значение истекшего времени шага
остается на том значении, которое оно имело, когда шаг был деактивирован. Когда шаг активирован,
значение истекшего времени шага сбрасывается в t#0s.

Область действия имен шага, флагов шага и времен шага является локальной для программного
компонента, в котором появляются шаги.

Начальное состояние программного компонента представлено начальными значениями его вну­
тренних и выходных переменных, и его набором начальных шагов, т. е. шагов, которые первоначально
активны. Каждая сеть SFC. или ее текстовый эквивалент, имеет ровно один начальный шаг.

Начальный шаг графически изображается с двойными линиями для границ. Когда для графи­
ческого представления используется набор символов, установленный в 6.1.1. начальный шаг должен
быть изображен так. как показано в таблице 54.

Для инициализации системы начальное истекшее время по умолчанию для шагов — t#0s. а на­
чальное состояние по умолчанию равно BOOL#0 для обычных шагов и В001_#1 для начальных шагов.
Однако когда экземпляр функционального блока или программы объявляется как сохраняемый для
экземпляра, состояния и истекшие времена (если поддерживаются) всех шагов, содержащихся в про­
грамме или функциональном блоко, должны рассматриваться как сохраняемые для инициализации
системы.

Максимальное число шагов на SFC и точность истекшего времени шага зависят от реализации.
Ошибка возникает, если.
1) сеть SFC содержит не единственный начальный шаг;
2) программа пользователя предпринимает попытки присвоить значение непосредственно состо­

янию шага или времени шага.

Таблица 54 — Шаг SFC

Номер Описание Представление

1а Шаг — графическая форма с направленными
связями

I
+ -------- +
| * * * |
+ ---------- +

I
1Ь Начальный шаг — графическая форма с на­

правленной связью I
+ - — — — +
I I * * * I I
I I I I

I
145

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 54

Номер Описание Представление

2а Шаг — текстовая форма без направленных
связей

STEP *•*:
(* Тело шага *) END_STEP

2Ь Начальный шаг — текстовая форма без на­
правленных связей

INITIAL_STEP ***:
(* Тело шага *) END_STEP

Заа> Флаг шага — общая форма ***.Х = BOOl#1
когда **' активно, в противном случав BOOL>3

*” .Х

ЗЬ=> Флаг шага — непосредственное присоедине­
ние логической переменной***.Х к правой сто­
роне шага

I
+ -----------+
| * * * | --------
+ -----------+

I
4») Истекшее время шага — общая форма

**\Т = переменная типа TIME
•**.т

Примечание 1 — Верхняя направленная связь к начальному шагу не представлена, если у нее нет
предшественников.

Примечание 2 — = имя шага.

а> Если свойство За. ЗЬ или 4 поддерживается, то возникает ошибка, если программа пользователя пыта­
ется изменить связанную переменную. Например, если S4 — имя шага, тогда следующие утверждения будут
ошибками в языке ST. определенном в подразделе 7.3:

S4.X:= 1:(* ошибка *)
S4.T:= l#100ms; {* ошибка *)

6.7.3 Переходы
Переход представляет условие, в соответствии с которым управление переходит от одного или

большего числа шагов, предшествующих переходу, к одному или большему числу последующих шагов
вдоль соответствующей направленной связи. Переход представляется горизонтальной линией поперек
вертикальной направленной связи.

Направление эволюции, в соответствии в направленными связями. — от низа предшествующего
шага (шагов) к верху последующего шага (шагов).

Каждый переход должен иметь связанное условие перехода, которое представляет собой резуль­
тат оценки одиночного логического выражения. Условие перехода, которое всегда истинно, должно
быть представлено символом 1 или ключевым словом TRUE.

Условие перехода может быть связано с переходом с помощью одного из следующих средств, как
показано в таблице 55:

a) помещение соответствующего логического выражения на языке ST физически или логически
рядом с вертикальной направленной связью;

b) посредством сети релейно-контактных схем на языке LD физически или логически рядом с вер­
тикальной направленной связью;

c) посредством сети на языке FBD. определенном в 8.3, физически или логически рядом с верти­
кальной направленной связью;

d) посредством сети LD или FBD. выходы которой пересекают вертикальную направленную связь
через соединитель;

e) за счет конструкции TRANSITION...END_TRANSITION с использованием языка ST. Конструкция
должна включать;

- ключевые слова TRANSITION FROM с последующим именем предшествующего шага (или.
если имеется более одного предшественника, с перечнем предшествующих шагов в скобках);

- ключевое слово ТО, за которым следует имя следующего шага (или, если имеется более од­
ного преемника, перечень имен следующих шагов в скобках);

146

ГОСТ Р МЭК 61131-3—2016

- оператор присваивания «:=», за которым следует логическое выражение в языке ST, опреде­
ляющее условие перехода;

- ключевое слово завершения END_TRANSITION;
0 с помощью конструкции TRANSITION...END_TRANSITION с использованием языка IL. Она долж­

на включать;
- ключевые слова TRANSITION FROM, за которыми следует имя предшествующего шага (или.

если имеется более одного предшественника, перечень имен предшествующих шагов в скобках), за
которым следует двоеточие «:»,

- ключевое слово ТО. за которым следует имя шага последующего шага (или, если имеется бо­
лее одного преемника, перечень последующих шагов в скобках);

- начиная с новой строки, перечень инструкций на языке IL. результат оценки которых опреде­
ляет условие перехода;

- ключевое слово завершения END_TRANSIT!ON на отдельной строке;
д) использованием имени перехода в форме идентификатора справа от направленной связи.

Данный идентификатор должен относиться к конструкции TRANSITION.,.END_TRANSITION. опреде­
ляющей один из следующих объектов, оценка которых приведет к присваиванию логического значения
переменной, обозначенной именем перехода:

- на языке LD или FBD;
- перечень инструкций на языке IL;
- присваивание логического выражения на языке ST.

Область действия имени перехода должна быть локальной для программного модуля, в котором
расположен переход.

Ошибка возникает, если во время оценки условия перехода появляется какой-либо побочный эф­
фект (например, назначение значения переменной, кроме имени перехода).

Максимальное число переходов на SFC и на шаг определяется разработчиком.

Таблица 55 — Переход SFC и условие перехода

Н о м е р О п и с а н и е П р и м е р

I 8' Условие перехода на языке ST, располо­
женное физически или логически рядом
с переходом

I
+ ------------------+

IS7EP7|

+ ------------------+

I
+ b v a r l & b v a r 2
I

♦ -----------------+

IS7EP8|

4 ------------------4

I

2 ». Условие перехода на языке LD. располо­
женное физически или логически рядом с
переходом

I4-------- 4
ISTEP7|

+ ------------------+

I
+ b v a r l & b v a r2
I4-------- 4

I STEPS I
4 -----------------+

I

147

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 55

Номер Описание Пример

за> Условие перехода на языке FBD. располо­
женное физически или логически рядом с
переходом

I
+---------+
| STEP7|

+ -------------+ +--------- +
I & I I

bvarl -----1 |----------+
bvar2-- 1 | |

+-------------+ +--------- ♦
ISTEP8I
+---------+

I

4“ > Использование соединителя I
+--------- +
| STEP7|
+ --------- +

I
>TRANX>------------------------- +

I

| STEP8|
+ - - - — +

I

5а> Условие перехода на языке LD | bvarl bvar2
+-----| |--------- | |-------->TRANX>
I

6а» Условие перехода на языке FBD +------------ +
I & I

bvarl -----| |-->TRANX>
bvar2 -----1 |

+------------ +

7Ь> Текстовый эквивалент свойства 1
на языке ST

STEP STEP7: END_STEP
TRANSITION FROM STEP7 TO STEP8

:= bvarl & bvar2 ;
end_transitio n

STEP STEP8: END_STEP

8Ь' Текстовый эквивалент свойства 1
на языке IL

STEP STEP7: END_STEP
TRANSITION FROM STEP7 TO STEP 8:

LD bvarl
AND bvar2

END_TRANSITION
STEP STEP8: END_STEP

148

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 55

Номер Описание Пример
9я' Использование имени перехода

I♦----+
ISTEP7|
♦ ----+

1+ TRAN7 TO STEP8
1

1 STEPS|
♦------- +
1

10») Условие перехода на языке LD TRANSITION TRAN78 FROM STEP7 ТО STEP8:
1 1
| bvarl bvar2 TRAN78 |
♦ - — I 1.....1 1...... () " - +
1 1
END_TRANSITION

11»> Условие перехода на языке FBD
TRANSITION TRAN78 FROM STEP7 TO STEP8:

+-------+
1 & 1

b v arl-- | I — TRAN78
b v ar2-- 1 |

+-------+
END_TRANSITION

12**> Условие перехода на языке IL TRANSITION TRAN78 FROM STEP7 TO STEP8:
LD bvarl
AND bvar2

END_TRANSITION

13ь> Условие перехода на языке ST TRANSITION TRAN78 FROM STEP7 TO STEP8
:= bvarl & bvar2 :

END_TRANSITION

а) Если свойство 1 таблицы 54 поддерживается, то поддерживается одно или более свойств 1. 2, 3. 4. 5,
6.9, 10 или 11 настоящей таблицы.

ь' Если свойство 2 таблицы 54 поддерживается, то поддерживается одно или более свойств 7, 8. 12 или
13 настоящей таблицы.

6.7.4 Действия
6.7.4.1 Общие положения
Действие может быть логической переменной, совокупностью команд на языке IL. совокупностью

операторов на языке ST. совокупностью цепей на языке LD, совокупностью сетей на языке FBD или
организованной последовательной функциональной схемой (SFC).

Действие описывается посредством одного или большего числа механизмов, определенных в
6.7.4.1 и связывается с шагами с помощью тел текстовых шагов или графических блоков действий.
Управление действиями выражается классификаторами действий.

Ошибка возникает, если значение логической переменной, используемое как имя действия, из­
меняется любым способом, кроме как имя одного или более действий в одной и той же SFC.

Реализация программируемого контроллера, который поддерживает элементы SFC, должна обе­
спечивать один или более механизмов, определяемых в таблице 56. для объявления действий. Об­
ласть видимости объявления действия является локальной для программного компонента, содержа­
щего описание.

149

ГОСТ Р МЭК 61131-3—2016

6.7.4.2 Объявление
С каждым шагом должно быть связано нулевое или большее число действий. Шаг, содержащий

нуль связанных действий, должен рассматриваться как имеющий функцию WAIT, то есть ожидающий,
когда последующее условие перехода станет истинным.

Таблица 56 — Объявление действий SFC

Номер Описание*1 Ь| Пример

1 Любая логическая переменная, описан­
ная в блоке VAR или VAR_OUTPUT или
их графические эквиваленты могут быть
действием

2I Графическое описание на языке LD
I ACTION_4 |
4--- +
| | bvar l bvar2 S8.X bOutl | |
I +— I II I ------- I I ---------О ----- + 1
I I I I
1 1 +............♦ 1 1
| +------ 1БК ENOI bva г 2 | |
1 I С— I ЬТ I -----------------18)— + 1
1 1 D- - | | | |
1 1 *♦ 1 1

2s Включение элементов SFC в действие
| OPEN_VALVE_l

1 1 . . . 1

| i l VALVEIREAD* | ; 1
I iMaaaaaMBfiaBaaB&4
1 i '
1 + STEPS.X |
1 1 J
I +----------------------------+ +---- +------------------ - |
1 1 VALVE l̂^OPENIMG | - - | N 1 VALVE_1_FW D1 1

| + --------- - - - ------------- + + ---- + ----------------------------- -r |

1 1 . . . I
+--

2f Графическое описание на языке FBD
1 ACTION_4 |
+------------------------------------- ------------------------------+
1 +---- ♦ |
| b v a r l - - | & I |
I bvar2— | | — bOutl
I s e . x ---------------1 | |
| f ---- 4 FF28 1
| 4 - - - - T |
1 1 SR I I
| +----------4 | Q l | - bOut2 |
I C— | LT | — |S1 | |
| D— | | 4------ 4 |
| +----------+ |

3s Текстовое описание на языке ST ACTION ACTION_4:
bOutl:= bvarl & bvar2 & S8.X;
FF28(S1:= (C<D)):
bOut2:= FF28.Q;

END_ACTION

150

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 56

Номер Описание'11 ь| Пример

3i Текстовое описание на языке IL ACTION ACTION_4: LD S8.X
AND bvarl
AND bvar2
ST bOutf
LD C
LT D
S1 FF28
LD FF28.Q
ST bOut2

END_ACTION

Примечание — Флаг шага S8.X использован в этих примерах для получения желаемого результата
такого, как в случав, когда S8 деактивирован. ЬОи12:= 0.

а> Если свойство 1 таблицы 54 поддерживается, то должно поддерживаться одно или более свойств в на­
стоящей таблице, или свойство 4 таблицы 57.

Ь) Если свойство 2 таблицы 54 поддерживается, то должно поддерживаться одно или более свойств 1. 3s
или 3< из настоящей таблицы.

6.7.4.3 Связь с шагами
Реализация программируемого контроллера, который поддерживает элементы SFC. предостав­

ляет один или более механизмов, определяемых в таблице 57. для связи действий с шагами. Макси­
мальное число блоков действий на шаг определяется реализацией.

Таблица 57 — Связь шатУдействие

Номер Описание Пример

1 Блок действия, расположенный физи­
чески или логачвски рядом и с шагом I

+•------ + +---------+— ----------------------+
I S8 I — I L I ACTION 1 IDN1I
+------ + 11 # 10s | | |

♦ DN1
1

2 Сцепленные блоки действия, распо­
ложенные физически или логически
рядом с шагом +-------+ +---------+--------------------------------------- +----- +

1 S8 | - - | L 1 ACTION 1 |DN1|
+-------+ | t # 10s I 1 1

| ♦---------+--------------------------------------- +----- +
+DN1 | P I ACTION_2 | |
| +---------+--------------------------------------- +----- +
I | N | ACTION_3 | |
| +_-------+--------------------------------------- +----- +

3 Текстовое тело шага STEP S8:
ACTION_1(L.t#10s.DN1);
ACTION_2(P);
ACTION_3(N):

END_STEP

151

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 57

Номер Описание Пример
4а) Поле «d» блока действия +-------- +--- +----- +

-------1 N | ACTION_4 | | ------
+---------+---------------------- ----------------- ♦----- +
| b O u t l b v a r l & bvar2 t S8 .X ; |
| FF28 (S l j - (C<D)) ; |
I bOut2 := FF28.Q/ |
♦---------* --- +----- +

а) Когда используется свойство 4. то соответствующее имя действия не может быть использовано в любом
другом блоке действия.

67.4.4 Блоки действий
Как показано в таблице 58. блок действия — это графический элемент для сочетания логической

переменной с одним из классификаторов действий для получения разрешающего условия в соответ­
ствии с правилами для связанного действия.

Блок действия предоставляет сродства опционального задания логических «индикаторных» пере­
менных, указанных полем «с» в таблице 58. которые могут быть установлены заданным действием для
индикации его завершения, ожидания, условий ошибки и т. д. Если поле «с» отсутствует, а поле «Ь»
определяет, что действие должно быть логической переменной, то эта переменная интерпретируется
как переменная «с», при необходимости. Если поле «с» не определено, а поле «Ь» не определяет логи­
ческую переменную, то значение «индикаторной» переменной всегда считается равным FALSE.

Когда блоки действий сцеплены графически, как показано в таблице 57. такие конкатенации могут
иметь несколько «индикаторных» переменных, но имеют только одну общую логическую входную пере­
менную. которая одновременно действует на все сцепленные блоки.

Использование «индикаторной» переменной не рекомендуется.
Помимо того, что блок действия связан с шагом, он может использоваться как графический эле­

мент в языках LD или FBD.

Таблица 58 — Блок действия

Номер Описание Графическая форма/примср

1a> «а»: Классификатор в соответствии с
67.4.5

+---------+■----------------------------+--------- +
I " а ” | " b " | " с " | —
+---------+----------------------------+--------- +
1 " d " 1
1 1
+---+

2 аЬ»: Имя действия

3b> «с»: Логические «индикаторные» пе­
ременные (не рекомендуется)

«d»: Действие использует:

4i язык IL

4s язык ST

4I язык LD

41 язык FBD

51 Использование блоков действий в
языке LD | S8 .X Ы п 1 +-----+----------- +----- + OKI I

+ __| | ------- | | -------- | N | ДСТ1 | DN11 — {) — +
I +----- +----------- +------+ 1

152

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 58

Номер Описание Графическая форма'пример

5f Использование блоков действий
в языке FBD +-----+ +----- +----------- +--------- +

S8 .X - — | & | ------- 1 N | АСТ1 | DN1 | ------OKI
Ы п 1 ----- | | +------+----------- +----------+

+-----+

a' Попе «а» может быть пропущено, когда классификатор равен «N».
Ь) Попе «с» может быть пропущено, когда индикаторная переменная не используется.

6.7.4.5 Классификаторы действий
Классификатор действия связан с каждой связью шага/действия или с каждым событием блока

действий. Значение этого классификатора должно быть одним из значений, перечисленных в таблице
59. Кроме того, классификаторы L. D, SD. DS и SL должны иметь связанную продолжительность вре­
мени типа TIME.

Таблица 59 — Классификаторы действий

Номер Описание Классификатор

1 Не сохраняется (нулевой классификатор) Отсутствует

2 Не сохраненяется N

3 Сброс переопределения R

4 Установка(Сохранено) S

5 Ограничено по времени L

6 Отложено D

7 Импульс Р

8 Сохранено и отложено по времени SD

9 Отложено и сохранено DS

10 Сохранено и ограничено по времени SL

11 Импульс (передний фронт) Р1

12 Импульс (задний фронт) Р0

6.7.4.6 Управление действием
Управление действиями функционально эквивалентно применению следующих правил:
а) С каждым действием был связан функциональный эквивалент экземпляра функционального

блока ACTION_CONTROL. определенного на рисунках 22 и 23. Если действие объявлено как логиче­
ская переменная, то выход Q этого блока представляет собой состояние этой логической переменной.
Если действие объявлено как совокупность операторов или сетей, то эта совокупность должна выпол­
няться непрерывно, пока выход А (активации) функционального блока ACTION_CONTROL поддержи­
вается равным BOOL#1. В этом случае состояние выхода Q (называемое «флагом действия») доступно
в пределах действия чтением доступной только для чтения логической переменной, которая имеет
форму ссылки на выход Q экземпляра функционального блока, имя экземпляра которого совпадает с
именем соответствующего действия, например. ACTION 1.0.

Разработчик может выбрать более простую реализацию, как показано на рисунке 23 Ь). В этом
случае, если действие объявлено как совокупность операторов или сетей, то эта совокупность долж­
на исполняться непрерывно, пока выход О функционального блока ACTION_ CONTROL поддерживает
значение BOOL#1. В любом случае разработчик определяет, какое из свойств таблицы 60 поддержи­
вается.

153

ГОСТ Р МЭК 61131-3—2016

Примечание 1 — Условие Q=FALSE обычно используется действием для определения того, что оно вы­
полняется получением конечного результата во время его текущей активации.

Примечание 2 — Значение Q равно FALSE во время выполнения действий, вызванных классификато­
рами РОи Р1.

Примечание 3 — Значение А равно TRUE только для одного выполнения действия, вызванного класси­
фикатором Р1 или Р0. Для всех других классификаторов А должно быть истинным для одного дополнительного
выполнения после заднего фронта Q.

Примечание 4 — Доступ к функциональному эквиваленту выходов Q или А функционального блока
ACTION_CONTROL снаружи относительно связанного действия определяется разработчиком;

b) Логический вход в блок ACTION_CONTROL для действия должен быть заявлен как связанный
с шагом или с блоком действия, если соответствующий классификатор эквивалентен имени входа (N.
R. S. L. D. Р, Р0. Р1. SD. DS или SL). Связь заявляется, как активная, если связанный шаг является ак­
тивным. или если вход связанного блока действия имеет значение В001_#1. Активные связи действия
эквивалентны набору активных связей всех входов с его функциональным блоком ACTION_CONTROL.

Логический вход в блок ACTION_CONTROL должен иметь значение BOOL#1. если он имеет, по
меньшей мере, одну активную связь, и значение BOOL#0 в противном случае;

c) Значением входа Т в блок ACTION_CONTROL является доля продолжительности связанного
со временем классификатора (L. D. SD. DS или SL) активной связи. Если такая связь не существует,
значением входа Т должно быть t#0s;

d) Ошибка возникает, если выполняется одно или более из следующих условий;
- более одной активной связи действия имеет квалификатор времени (L. D, SD. DS или SL);
- вход SD в блок ACTION_CONTROL имеет значение BOOL#1. когда выход Q1 его блока SL_FF

имеет значение В001_#1;
- вход SL в блок ACTION_CONTROL имеет значение BOOL#1. когда выход Q1 его блока SD_FF

имеет значение BOOL#1;
e) Не требуется реализации собственно блока ACTION_CONTROL. а требуется только, чтобы

управление действиями было эквивалентно предшествующим правилам. Как показано на рисунке 24.
необходимо реализовывать только те части управления действием, которые соответствуют конкретно­
му действию. В частности, следует отметить, что простой функции MOVE (:=) и функции логического OR
достаточно для управления действиями логической переменной, если связи последней имеют только
классификаторы «N».

На рисунках 22 и 23 приведена сводка интерфейса параметров и тело функционального блока
ACTION_CONTROL. На рисунке 24 приведен пример управления действием.

| A C TIO N CONTROL | A C T IO N CONTROL
BOOL | N Q l — -BO O L BOOL IN
BOOL------| R A | — -BO O L BOOL------ IR
BOOL------| S I BOOL------ IS
BOOL------| L I BOOL------ IL
BOOL— - I D I B O O L- — ID
BOOL------I P I BOOL------ IP
BOOL------| P I I BOOL------ P I
BOOL------| P0 I BOOL------ P0
BOOL------| SD I BOOL------ SD
BOOL— IDS I BO O L- — IDS
BOOL------I SL I BOOL------ IS L
T IM E ------|T

+ -----------------
I T IM E ------ IT

— BOOL

а) С л о ги к о й « за в е р ш а ю щ е го
с ка н и р о в а н и и »

Ь) Б ез л о ги ки « за в е р ш а ю щ е го
с к а н и р о в а н и я *

Примечание — Данные интерфейсы невидимы для пользователя.

Рисунок 22 — Функциональный блок ACTION_CONTROL — Внешний интерфейс (сводка)

154

ГОСТ Р МЭК 61131-3—2016

R—♦
S _ F F

+------*
I R S |

• I S Q l | -

■ I Rl I
+ —

1
1
1

L _ ? M R
+ - - — - +
1 T O N I

1
1

_ А

- 0 1 1
• f - — -f

п f
------- 1 Р Т |

и
+ —

T M R

| T O N I
U N Q l -

P T R I G
4---— - — +
| R _ T R IG |

■ ICLK Q|-

- |P T
+----

S D -

D S -

S L -

> - l

+---4
—-O! & I - - -Q
-+ I I

•I I
4---- +

P l -
| R T R I G I

• IC L K Q |
+------- 4

P 0 -

— U N Q l ------- + ♦ ----------- - +
— | Р Т | + ---------------------♦ 1 > - l 1

♦ -------------+ | Г T R I G | Q - - - I 1
0 ------- I C L K Q | — ----------------- , 1

1 1
1

* --------------------- + 1
1
1

1 F _ T R I G | 1 1
I

+ --------------------- +
1
+ -----------

1
- +

-------A

а) Тело с логикой «завершающего сканирования»

Рисунок 23 — Тело функционального блока ACTIONCONTROL
(обзор)

155

ГОСТ Р МЭК 61131-3—2016

R— +

SD-

DS-

SL-

S_FF
+------- +
I RS |

■ I S Q1 1 -

IR1 I
+ - — -+ + -— +

4 I-
1I

1
L_TMR

1
----+01+

-----н

1
1 | TON |

о *
----- |РТ 1

-г и
+—

+ —

+
| TON |
U N Q|-
PT

SD_FF
+-------+
I RS |

— |S Q i | -
----- IR1 I

+ -------+

P _ T R IG
+ — ---------------------+

| R _ T R IG |
‘ IC L K Q | -
+----------------+

DS_TKR
+ --------+
| TON |

■| IN Q|-
■IPT |
+ ---------+

SD_TKR
+-------- +
I TON |

■UN Q |
■IPT |
+-------- +

S L _ F F
♦ — - - +
I RS |

■ IS Q l | -
■IR1 I
+------- +■

+-----------------------
I SL TMR + -

+--------- + 1
| | TON | 1
+------- | I N Q | - — +

DS_FF
+--------+
I RS I

---------------I S Q 1 1 ------------

+---- I R l |
| + -------- +

+

+-----+
■I & I —
)l I
+-----+

P i-

+--------------- +
| R_TRIG |

■I CLK Q |-
+--------------- +

■I PT
+----

P0-

+--------------- +
| F_TRIG |

- I CLK Q |-
+--------------- +

> - l

+------+
---- О | & I ----- Q
■+ I I

I — I I
+----- +

b) Тело без логики «завершающего сканирования»

Примечание 1 — Экземпляры таких типов функционального блока не видимы для пользователя.

Примечание 2 — Внешние интерфейсы таких типов функционального блока приведены выше.

156
Рисунок 23

ГОСТ Р МЭК 61131-3—2016

I
+-------- + +------- +--------------------- +-------------------------------- +
I S22 | ------ | N | HV_BREAKER | HV_BRKR_CLOSED |
♦ ---------- + + - - - + — ------------------------f ------------------ +

I I S | START INDICATOR |
| +------- ♦ -- +
+ HV_BRKR_CLOSED
I

♦ — - - - ♦ ♦ -------------------------------
I S23 | ----- | SL I RUNOP_MONITOR |
+------- + | t#lm| ~ |

I +------- +------------------------------ +
| | D | STARTWAIT |
I I t l l s l |
, +------- ♦— ----------------------- +
+ START_WAIT
I

+---------- + +--------- +-----------------------------------+---------------------------------- +
I S24 | ---- | N | ADVANCE_STARTER | STARTER_ADVANCED |

♦ -------- +----------------------------------- +---------------------------------- ♦
I I L | START MONITOR |
I I t # 3 0 s I " I
| +----------+--- +
+ STARTER_ADVANCED
I

+---------- + +--------- +----------------------------------- +------------ ----------- ----------- +
| S26 | ---- | N | RETRACT_STARTER | STARTERRETRACTED |
+---------- + +--------- +---------------- ----------------- +--------------------------------------+

+ STAR TER RETRACTED

+-------- + +--------- +-------------------------------- +
I S 2 7 | ----------- | R | S T A R T _ IN D IC A T O R I
+-------- + + --------- +-------------------------------- +

| | R | RUNOP_M ONITOR |
| + -------------- + ---+

а) Представление SFC

Рисунок 24 — Управление действием (пример)

157

ГОСТ Р МЭК 61131-3—2016

S 2 2 .X -- H V BR E A KE R

S 2 4 . X --ADVANCE_STARTER

S 2 6 .X --RETRACT STARTER

START_INDICAT0R_S_FF
+------ +
I RS 1

S22.X--------------------- IS Ql|----------------START_INDICATOR
S27.X--------------------- 1 Rl |

+-------+

START_WAIT_D_TMR
+---------+■
I TON |

S23.X---------------------- 1 IN Q|---------------------- START_WAIT
t#ls----------------------- |PT |

+---------+

RUNUP_MONITOR_SL_FF
♦------ +
| RS | +---- +

S23.X-----|S Q11 — +--- | & | — RUNUP_MONITOR
S 2 7 .X ------1 R l | | RUNUP_KONITOR_SIi_TMR + - - 0 | |

+------ + | +---------- + | 4-+
I | TON | |
+ -------------------U N Q | -------------------+

t * l m -- 1 PT |
f --------♦

S2 4 . X

CI303

+----- +
+ --- | & | ST ART_MON I TOR
| S T A R T _K O N IT O R L TMR + ------ 0 | |
I +-----------+ I + - — +
I | TON | |
+---------------UN Q l +
........................I PT |

+--------- +

b) Функциональный эквивалент

Примечание — В данном примере не показана полная сеть SFC и ее соответствующие объявления.

Рисунок 24

Два возможных свойства управления действием приведены в таблице 60.

Таблица 60 — Свойства управлением действием

Номер Описание Ссылка

1 С завершающим сканированием в соответствии с рисунком 22 а) и рисунком 23 а)

2 Без завершающего сканирования в соответствии с рисунком 22 Ь) и рисунком 23 Ь)

Данные свойства являются взаимно исключающими, т. е. в заданной реализации SFC будет поддержи­
ваться только одно из них.

158

ГОСТ Р МЭК 61131-3—2016

6.7.5 Правила эволюции
Начальная ситуация сети SFC характеризуется начальным шагом, который находится в активном

состоянии при инициализации программы или функционального блока, содержащего сеть.
Эволюции активных состояний шагов должны происходить вдоль направленных связей, когда они

вызваны очисткой одного или большего числа переходов.
Переход разрешен, когда все предшествующие шаги, присоединенные к соответствующему сим­

волу перехода направленными связями, являются активными. Пересечение перехода происходит, ког­
да переход разрешен и когда соответствующее условие перехода является истинным.

Очистка перехода вызывает деактивацию (или «сброс») всех непосредственно предшествующих
шагов, соединенных с соответствующим символом перехода направленными связями, с последующей
активацией всех непосредственно последующих шагов.

Изменение шаг/переход и переход/шаг всегда должно поддерживаться в соединениях элементов
SFC, то есть:

- два шага никогда не должны быть связаны непосредственно: они всегда должны разделяться
переходом;

- два перехода никогда не должны быть связаны непосредственно, они всегда должны разделять­
ся шагом.

Когда очистка перехода приводит к активации нескольких шагов одновременно, то последова­
тельности, к которым принадлежат такие шаги, называются параллельными последовательностями.
После их параллельной активации, эволюция таких последовательностей становится независимой.
Чтобы подчеркнуть особый характер таких конструкций, дивергенция и конвергенция параллельных
последовательностей обозначается двойной горизонтальной линией.

Ошибка возникнет, если имеется возможность того, что неприоритетные переходы в разветвлении
выбора, как показано в свойстве 2а таблицы 61, одновременно являются истинными. Пользователь
может предпринять меры предосторожности, чтобы избежать этой ошибки, как показано в свойствах 2Ь
и 2с таблицы 61.

Синтаксис и семантика разрешенных комбинаций шагов и переходов определены в таблице 61.
Время очистки перехода теоретически может считаться пренебрежительно малым, но оно никогда

не будет равно нулю. На практике время очистки будет обусловлено реализацией программируемого
контроллера. По той же причине длительность активности шага никогда не может рассматриваться
равной нулю.

Несколько переходов, которые могут быть очищены параллельно, должны очищаться параллель­
но. в пределах временных ограничений реализации конкретного программируемого контроллера и
ограничений по приоритету, определенных в таблице 61.

Испытание условия (условий) перехода преемника активного шага не выполняться до тех пор.
пока влияния активации шага не распространятся по программному компоненту, в которой описывается
шаг.

Рисунок 25 демонстрирует применение данных правил. На этом рисунке активное состояние шага
указано присутствием звездочки «*» в соответствующем блоке. Это примечание используется только
для иллюстрации, и не является обязательным свойством языка.

Применение правил, приведенных в этом подразделе, не может предотвратить формулировку
«небезопасных» SFC. таких как приведенная на рисунке 26 а), которая может продемонстрировать
неконтролируемое распространение маркеров. Аналогично, применение этих правил не может предот­
вратить формулировку «недосягаемых» SFCs, таких как приведенная на рисунке 26 Ь). которая может
проявлять «замкнутое» поведение. Система программируемого контроллера рассматривает наличие
таких условий как ошибку.

Максимально допустимая ширина конструкций «дивергенции» и «конвергенции» в таблице 61
определяется разработчиком.

159

ГОСТ Р МЭК 61131-3—2016

Таблица 61 — Эволюция последовательности (графическая форма)

Н о м е р О п и с а н и е О б ъ я с н е н и е П р и м е р

1 Простая последова­
тельность

Изменение шаг — переход по­
вторяется последовательно I

+-------+
I S3 I
+-------+

I
+ с
I

+-------+
I S4 |
+-------+

I

Эволюция от шага S3 к шагу S4 происхо­
дит. если и только если шаг S3 находится в
активном состоянии, а условие перехода с
равно TRUE

2а Дивергенция по­
следовательности с
приоритетом слева
направо

Выбор между несколькими по­
следовательностями представ­
лен как несколько символов
перехода под горизонтальной
линией, поскольку имеются раз­
личные возможные эволюции.
Звездочка обозначает приоритет
оценок перехода слева направо

I
+------ +
I S5 |
♦------ +

I

1 1
* е + f
1 1

* ------ + «■-------*
1 S6 | 1 S8 |
+------ + +-------+

1 1
Эволюция происходит от S5 к S6. если S5
активен, а условие перехода «е» равно
TRUE (независимо от значения «1»). или
от S5 до S8. только если S5 активен, и и1»
равно TRUE, а «в» равно FALSE

2Ь Дивергенция после­
довательности с ну­
мерованными вет­
вями

Звездочка «*». за которой сле­
дуют нумерованные ветви, ука­
зывает на определяемый поль­
зователем приоритет оценки
перехода, причем ветвь с наи­
меньшим номером имеет наи­
высший приоритет

1
* ------ +
| S5 1
4---- -♦

1
+-------- * ---------+- , . .
12 |1
* е + f
1 1

+------ ♦ +------ 4
1 S6 | I S8 1
4------ ♦ 4--------

1 1

Эволюция происходит от S5 к S8. если S5
активен, а условие перехода «1» равно
TRUE (независимо от значения «е»), или
or S5 к S6. только если S5 активен и ее»
равно TRUE, а «Ь равно FALSE

160

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 61

Н о м е р О п и с а н и е О б ъ я с н е н и е П р и м е р

2с Дивергенция после­
довательности со
взаимным исключе­
нием

Присоединение («+») ветви ука­
зывает. что пользователь бу­
дет гарантировать, что условия
перехода являются взаимно ис­
ключающими

I
+— — +
I S5 |
+-------+

I
+---------+—

I
+ е
I

1
♦NOT
I| 1

▼ Т

1 S6 1
+—

▼ т
1 S8 |
+-------+

I

Эволюция происходит от S5 к S6. если S5
активен, а условие перехода — это TRUE,
или от S5 к S8. только если S5 активен, и
«е» равно FALSE, a «f» равно TRUE

Конвергенция по­
следовательности

Завершение выбора последо­
вательности представлено как
несколько символов перехода
над горизонтальной линией, по­
скольку здесь имеются пути вы­
бора. которые должны быть за­
вершены

I I
+------ +
1 S7 |

♦—
1 S9 I

1
+ h
1
+--------+--

1
+ j
1

I
+--------+
I S 1 0 |
+ - - ---- f

I
Эволюция происходит от S7 к S10. если
S7 активен, а условие перехода «Ь» равно
TRUE, или от S9 к S10. если S9 — активен,
a «j» равно TRUE

4а Параллельная ди­
вергенция после
одиночного перехо­
да

Двойной горизонтальной линии
синхронизации может предше­
ствовать условие одиночного
перехода

I
+--------- +
I S 1 1 |

+ - - ----- +
I
+ ь
I

I
+ - -------+
I S12 |
+---------+

I

»•-+-. . .
I

+--------- +
I S14 |
+--------- +

I

Эволюция происходит от S11 к S12. S14.
если S11 активен, а условие перехода «Ь».
связанное с обычным переходом, равно
TRUE

После параллельной активации S12. S14 и
т. д. эволюция каждой последовательности
продолжается независимо

161

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 61

Н о м е р О п и с а н и е О б ъ я с н е н и е П р и м е р

4Ь Параллельная ди­
вергенция после
конверсии

Двойной горизонтальной пинии
синхронизации гложет предше­
ствовать конвергенция выбора
последовательности

+-----
| S2
+-----

-+
I

+ Т2

+ -
I
+=
I

I S3

I
+------- +
I S5 |
+------- +

I
+ Тб
I

— +

ававав^ввавава-f

I I
-+ +-------- + +--------+

I I S6 | | S7 |
-+ +---------+ +-------- +

Эволюция происходит к шагам S3. S6 и S7.
если S2 активен, а переход Т2 равен TRUE
или S5 активен, а переход Тб равен TRUE

4с Параллельная кон­
вергенция перед од­
ним переходом

За двойными линиями парал­
лельной конвергенции может
следовать одиночный переход

I
+---------♦
I S13 |
+---------+

I

I
+---------+
I S15 I
+---------+

I
-f = s = s = -f = = = = s<fa • • •

+ d

S16

Эволюция происходит от S13. S15.... к S16
только в случае, если все приведенные
выше шаги, присоединенные к двойной го­
ризонтальной линии, активны, а условие
перехода «(!#, связанное с общим перехо­
дом равно TRUE

162

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 61

Н о м е р О п и с а н и е О б ъ я с н е н и е П р и м е р

Ад Параллельная кон­
вергенция перед вы­
бором последова­
тельности

За двойными линиями парал­
лельной конвергенции может
следовать дивергенция выбора
последовательности

I I I

н
—

 +
I

1
1

СЛ

1
1

СЛ

1
1

1
ь

—
 + + ---------+

1 S4 |
Х а а а в Х

+ ---------+
1 S3 I

1
+ = = = = !
1

1
= = = + = = = = =

1
: = = +

1
+ ----------
1

------ + ------------
I

— +
11

+ Т 2

1

1
+ Т 5

1
Х в ш н н Х

1
+ Т б

1
1

1 S6 1
X . — X

1 S7 1
Х - - - - Х

1
1
1

1
+ Т 4
1

1
+ Т 7
1

1
1
1
11

+ ----------
1

+ ---------+

1 1

I S8 |

I
+ та
I

Эволюция происходит от S5, S4 и S3 к
одному из шагов S6. S7 или S8. только в
случае, если все приведенные выше шаги,
присоединенные к двойной горизонтальной
линии, активны, а условие перехода Т2. Т5
или Тб равно TRUE, соответственно

163

ГОСТ Р МЭК 61131-3—2016

Продолжение таблицы 61

Номер Описание Объяснение Пример

5а. Ь. с Пропуск последова­
тельности

«Пропуск последовательно­
сти» — это особый случай вы­
бора последовательности,
(свойство 2). в которой одна или
более ветвей не содержат ша­
гов. Свойства 5а. 5Ь и 5с соот­
ветствуют опциям, заданным в
свойствах 2а. 2Ъ представления
заданным свойствами 2а. 2Ь и
2с. соответственно

I
+ --------- +
I S30 I
+--------- +

I
+------- * --------+
I I
+ а + d
I I

+--------- + |
I S31 I I
+--------- + I

I I
+ ь |
I I

+--------- + I
I S32 | |
+--------- + |

I I
+ с |
I I
+ ------- + --------+

I
+--------- +
I S33 I
+--------- +

I

(показано свойство 5а)

Эволюция происходит от S30 к S33. если
«а» равно FALSE, a «d» — это TRUE, равно
TRUE, то есть последовательность (S31.
S32) будет пропущена

164

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 61

Н омер О писание Объяснение П ример

6а. Ь. с Цикл Поспелова- «Цикл последовательности» — I
тепьносги это особый случай выбора по- 1

следовательности (свойство 2). 1 S30 |в которой одна или большее 4 - - - — +
число ветвей возвращается к 1
предшествующему шагу. Свой- + а
ства 6а. 6Ь и 6с относятся к оп- 1
циям представления, заданным ♦------
в свойствах 2а, 2Ь и 2с соответ- I 1
ственно 1

1 S31 | 1
♦--------+

1 111
♦ ь
1

1
1
11

+--------+
1
1

1 S32 | 1
+----

I
1
11* ---- -

I

1
-+ 1

1 11
♦ С
1

1 1
4- d 1
1 11

+-------- +
1 1
+---- +

1 S33 |

1

(показано свойство 6а)

Эволюция происходит от S32 к S31. если
«с» равно FALSE, а «d» равно TRUE.
т. е. последовательность (S31. S32) должна
быть повторена

7 Стрелки направив- Если это необходимо для я с-
ния ности, символ «<» набора сим- I

волов, определенного в 6.1 .1. ♦--------4
может использоваться для того. I s30 i
чтобы указывать лоток управ- ♦--------+

I
ления справа налево, а символ 1

4> я

«>». чтобы представлять поток 1
управления слева направо 4 -- —
Если используется данное свой- 1

♦---------+
1
I

ство, соответствующий символ
1 S31 |

1
|

должен быть расположен между +■---------+ 1
двумя символами «-». то есть в 1 1
последовательности символов + ь 1
«-<-» или «->-». как показано в 1 1
соответствующем примере +---------+ 1

1 S32 I 1
♦---------+

I
1
I1

*_______
I

1
-+ 1
| 11

+ С
1

1 1
+ d |
■ I1

♦ ---------4-
1 1
4 - > - 4

1 S33 1
♦---------+

I

165

ГОСТ Р МЭК 61131-3—2016

I I I I
+ -------------------------+

| S T E P 1 0 |

+■-----------------------

| S TE P 9
- +

1

+ -------------------------+

| S T E P 1 3 |

+ -------------------------+

IS T E P 2 2 |

I I 1 1 * 1J______ -1- 1 * 1
Х _ _ _ _ _ _ 1

I
х V

1 1 1

т Л

I
+ -------------------------+

1

+ X

| S T E P 1 1 |

1 1
1

+-----------+ I I
I +-----------+ +------------+

ISTEP15I ISTEP16I
I I I I

+ - - -

I

+ -----------

1

а) Переход не разрешен (см. примечание 2)

1 1 1
X

1 1
А _ _ — —т т

|STEP10| |STEP9|

Т Т

| STEP13|

Т Т

| STEP22|

1 * 1 1 * 1 1 * 1 1 * 1
X — — — — — — Xт т

1
4. V

1

Т “ “ “ ■

1

“ Т

1

т Л

1 1
Vт т

ISTEP11I
1 I

Т

1

А

1 1
+ - --------------------- +

1

1
X —

1
Xт т

ISTEP15I
т т

ISTEP16I
1

+ ---------------
1

----------+

1

+ ------------

1

------------+

Ь) Переход разрешен, но не очищен (X = 0)

166

ГОСТ Р МЭК 61131-3—2016

I
+-----------+
I S T E P 1 0 |
I I
+---------- +

I
+ X
I

I S T E P 1 1 1
I * I
+-----------+

I

I I I
+-------- + +----------- + +----------- +
IS T E P 9 I IS T E P 1 3 | i S T E P 2 2 I
I I I I I I
+---------♦ ♦ ------------+ — +

1 1 _ I

I
+ X
I

« « » + « — +—•ш+шттж
I

+-----------+
I+-----------+

| S T E P 1 5 | | S T E P 1 6 |
I * I I * I
+-----------+ +----------- +

с) Переход очищен (X = 1)

Рисунок 25 — Эволюция SFC (правила), лист 1

Примечание 1 — На данном рисунке активное состояние шага обозначено звездочкой «*» в соответству­
ющем блоке. Данное примечание используется только для иллюстрации и не является обязательным свойством
языка.

Примечание 2 — В случае а) значение логической переменной X может быть как TRUE, так и FALSE.

Рисунок 25

167

ГОСТ Р МЭК 61131-3—2016

I
+=====+
1 1 А | |

1
+ t l
1

1
4- .X

1
ХаааааХг

1 в
I

1

т т

1 С 1

I
“Т

1
1
I

1
*

1
а 1 I
1

1

1

1
+ t2
1

Х...Х

1
+ t3
1

ХаааХ1

1
X" т

1 D |
ХаааХ

1 Е |
ХаааХ1

I
ш т ш + ш .

I

I ""Т

1 1
1
I

1
+ t4
1

Ха _аХ

1
+ t5
1

ХаааХ

I F |
Ха ааХ

1 G |
ХаааХ

1
+ t6
1

Твв"Т

1
+ t7
1

а) Ошибка SFC: «небезопасная)» SFC

Рисунок 26 — Ошибки SFC (пример)

168

ГОСТ Р МЭК 61131-3—2016

+

+

I
+-------- +
I В |
+---- +

------+
I

+=====+
I I А | |

I
+
I

t l

:==+==='
I
+ t4
I

+-----+
I F I
+----- +

I
+-----
I C
+-----

I
*
I
+ t2 + t3
I I

+------ + +----- +
I D | I E |
+------ + +----- +

I I
I
I
+ t5

+----- +
I G I
+----- +

I
:+==========+===
I
+ t 6
I

b) Ошибка SFC: «недостижимая SFC»

Рисунок 26

6.8 Элементы конфигурации

6.8.1 Общие положения
Конфигурация состоит из ресурсов, задач (которые определены внутри ресурсов), глобальных

переменных, путей доступа и специфичных инициализаций экземпляра. Каждый из этих элементов
подробно определен в подразделе 6.8.

Графический пример простой конфигурации приведен на рисунке 27. Скелетные описания для со­
ответствующих функциональных блоков и программ приведены на рисунке 27 Ь). Объявление примера
на рисунке 27 приведено на рисунке 28.

169

ГОСТ Р МЭК 61131-3—2016

КОНФИГУРАЦИЯ ЯЧЕЙКА_1
РЕСУРС СТАНЦИЯ_1 РЕСУРС СТАНЦИЯ_2

| BAKER| |S1_COUNT| |ABLE| | CHARLIE DOG| |GAMMA| |ALPHA|

| OMEGA l |THETA|

а) Графическое представление

FUNCTION_BLOCK A
VAR_OUTPUT

y1: UINT:
y2: BYTE:

END_VAR
END_FUNCTION_BLOCK

FUNCTION_BLOCK C
VAROUTPUT

c l: BOOL;
END_VAR
VAR

C2 AT %Q‘ : BYTE;
C3: INT:

END_VAR
END FUNCTION BLOCK

FUNCTIONBLOCK В
VAR_INPUT

Ы: UINT;
b2: BYTE:

END_VAR
END_FUNCTION_BLOCK

FUNCTION_BLOCK D
VAR_INPUT

d1: BOOL:
END.VAR
VAR_OUTPUT

y2: INT;
END_VAR

END FUNCTION_BLOCK

Рисунок 27 — Конфигурация (пример), лист 1

170

ГОСТ Р МЭК 61131-3—2016

PROGRAM F
VARJNPUT

х1: BOOL;
х2; UINT;

END_VAR
VAR_OUTPUT

у1: BYTE.
END_VAR
VAR

COUNT; INT;
TIME1: TON;

END_VAR
END_PROGRAM

PROGRAM G
VAR_OUTPUT

out1; UINT;
END_VAR
VAR_EXTERNAL

z1: BYTE;
END_VAR
VAR

FB1: A;
FB2: B;

END_VAR
FB1 (...);

out1;= FB1.y1;
z1:= FB1.y2;
FB2(b1:= FB1.y1. b2:= FB1.y2);

END_PROGRAM

PROGRAM H
VAR_OUTPUT

HOUT1: INT;
END_VAR
VAR

FB1: C;
FB2; D;

END_VAR
FB1(...);
fb2(...);
HOUT1:= FB2.y2,

END_PROGRAM

b) Объявления скелетного функционального блока и программы

Рисунок 27, лист 2

В таблице 62 перечислены свойства языка для объявления конфигураций, ресурсов, глобальных
переменных, путей доступа и специфических инициализаций экземпляра.

- Задачи
Рисунок 27 представляет примеры свойств TASK, соответствующих конфигурации экземпляра,

приведенной на рисунке 27 а) и поддерживающих описания, приведенные на рисунке 27 Ь).
171

ГОСТ Р МЭК 61131-3—2016

- Ресурсы
Классификатор ON в конструкции RESOURCE...ON.,.END_RESOURCE используется, чтобы ука­

зать тип «функции обработки информации» и ее функций «интерфейса человек-машина» и «интер­
фейса датчика и привода», на основе которых реализуется ресурс и его связанные программы и за­
дачи. Разработчик обеспечивает библиотеку ресурсов таких элементов, как показанные на рисунке 3.
С каждым элементом этой библиотеки связан идентификатор (имя типа ресурса) для использования в
объявлении ресурса.

Примечание 1 — Конструкция RESOURCE...ON...END_RESOURCE в конфигурации с одним ресурсом
не требуется.

- Глобальные пороменныо
Область действия секции VAR_GLOBAL ограничивается конфигурацией или ресурсом, в котором

она описана, за исключением того, что путь доступа может быть объявлен для глобальной переменной
в ресурсе с использованием свойства 10d из таблицы 62.

- Пути доступа
Конструкция VAR_ACCESS...END_VAR предоставляет средства задания имен переменных, кото­

рые можно использовать для дистанционного доступа некоторыми сервисами связи, определяемыми в
МЭК 61131-5. Путь доступа связывает каждое такое имя переменной с глобальной переменной, прямо
представленной переменной или любой входной, выходной или внутренней переменной программы
или функционального блока.

Связь должна сопровождаться определением имени переменной с полной иерархической конкате­
нацией имен экземпляра, начиная с имени ресурса (если имеется), за которым следует имя экземпляра
программы (если имеется), за которым следует имя (имена) экземпляра (экземпляров) функциональ­
ного блока (если имеотся). Имя переменной связывается в конце цепочки. Все имена в конкатенации
должны быть разделены точками. Если такая переменная — это многоэлементная переменная (струк­
тура или массив), то путь доступа также может быть задан для элемента переменной.

Не должно быть возможно определить пути доступа к переменным, объявленным в секциях VAR_
TEMP. VAR_EXTERNAL или VAR_IN_OUT.

Направление пути доступа задается как READ_WRITE или READ_ONLY, указывая, что сервисы
связи могут как считывать, так и изменять значение переменной в первом случае, или только считы­
вать, но не изменять значение во втором случае. Если направление не задано, то направление по
умолчанию — READ_ONLY.

Доступ к переменным, объявленным как CONSTANT, и к входам функционального блока, которые
внешне соединены с другими переменными. — READ_ONLY.

Примечание 2 — Эффект использования доступа READ_WRITE для выходных переменных функцио­
нального блока определяется разработчиком.

- Конфигурации
Конструкция VAR_CONFIG...END_VAR предоставляет средства для присваивания конкретных

расположений, зависящих от экземпляра, символически представленным переменным, которые назна­
чены для соответствующей цели, с использованием отметки звездочки «*». или чтобы присваивания на­
чальных значений, специфических для экземпляра, символически представленным переменным, или
и для того и для другого.

Присваивание должно сопровождаться определением имени объекта для расположения или ини­
циализации с полной иерархической конкатенацией имен экземпляров, начиная с имени ресурса (если
имеется), за которым следует имя экземпляра программы (если имеется), за которым следует имя
(имена) экземпляра (экземпляров) функционального блока (если имеется). Имя переменной для рас­
положения или инициализации присоединяется в конце цепочки, за которой следует имя компонента
структуры (если переменная структурирована). Все имена в конкатенации должны быть разделены
точками. Присваивание расположения или присваивание начального значения следуют синтаксису и
семантике.

Специфические для экземпляра начальные значения, предоставляемые конструкцией VAR_
CONFIG...END_VAR. всегда имеют приоритет над специфическими для типа начальными значениями.
Нельзя определять специфические для экземпляра инициализации для переменных, которые опреде­
лены в объявлениях VAR_TEMP, VAR_EXTERNAL. VAR CONSTANT или VAR_IN_OUT.

172

ГОСТ Р МЭК 61131-3—2016

Таблица 62 — Конфигурация и объявление ресурса

Номер Описание

1 CONFIGURATION..,END_CONFIGURATION

2 VAR_GLOBAL...END_VAR внутри CONFIGURATION

3 RESOURCE...ON...END_RESOURCE

4 VAR_GLOBAL...END_VAR внутри RESOURCE

5а Периодическая TASK

5Ь Непериодическая TASK

6а WITH для PROGRAM со связанными задачами TASK

6Ь WITH для FUNCTION_BLOCK со связанными задачами TASK

6с PROGRAM без связанных задач TASK

7 Прямо представленные переменные в VAR_GLOBAL

8а Соединение прямо представленных переменных со входами PROGRAM

8Ь Соединение переменных GLOBAL со входами PROGRAM

9а Соединение выходов PROGRAM с прямо представленными переменными

9Ь Соединение выходов PROGRAM с переменными GLOBAL

10а VAR_ACCESS...END_VAR

10Ь Пути доступа к прямо представленным переменным

Юс Пути доступа к входам PROGRAM

10d Пути доступа к переменным GLOBAL в RESOURCES

10е Пути доступа к переменным GLOBAL в CONFIGURATIONS

10f Пути доступа к выходам PROGRAM

Юд Пути доступа к внутренним переменным PROGRAM

10h Пути доступа к входам функционального блока

10i Пути доступа к выходам функционального блока

11a VAR_CONFIG...END_VAR к переменным

Даннов свойство поддерживается, если поддерживается свойство «частичное определение» с симво­
лом «*» в таблице 16

11b VAR_CONFIG...END_VAR для компонент структур

12a VAR GLOBAL CONSTANT в RESOURCE

12b VAR_GLOBAL CONSTANT в CONFIGURATION

13a VAR EXTERNAL в RESOURCE

13b VAR_EXTERNAL CONSTANT в RESOURCE

На следующем рисунке приведено объявление примера на рисунке 27.

173

ГОСТ Р МЭК 61131-3—2016

Код программы использует свойство
таблицы 62

CONFIGURATION CELL_1 1
VARJ3LOBAL w: UINT; END.VAR 2
RESOURCE STATION_1 ON PROCESSOR_TYPE_1 3

VAR_GLOBAL z l: BYTE; END_VAR 4 4
TASK SLOW_1 (INTERVAL;3 t#20ms. PRIORITY:= 2); 5a
TASK FAST_1 (INTERVALS t#10ms, PRIORITY:= 1); 5a
PROGRAM P1 WITH S LO W J: 6a

F(x1;= %IX1.1); 8a
PROGRAM P2; G(OUT1 => w. 9b

FB1 WITH SLOW_1. 6b
FB2 WITH FAST_1); 6b

END_RESOURCE 3
RESOURCE STAT10N_2 ON PROCESSOR_TYPE_2 3

VAR_GLOBAL z 2 ; BOOL; 4
AT %QW5; IN T ; 7

END_VAR 4
TASK PER_2(INTERVAL:= t#50ms. PRIORITY;= 2); 5a
TASK INT_2(SINGLE;= z2. PRIORITY;= 1); 5b
PROGRAM P1 WITH PER_2: 6a

F(x1:= z2. x2;= w); 8b
PROGRAM P4 WITH INT_2: 6a

H(HOUT1 => %QW5. 9a
FB1 WITH PER_2>; 6b

END_RESOURCE 3

Рисунок 28 — Описание CONFIGURATION и RESOURCE (пример), лист 1

VAR_ACCESS 10a
ABLE : STATION_1.%IX1.1 : BOOL READ_ONLY; 10b
BAKER ; STATION_1.P1.x2 ; UINT READ_WRITE; 10c
CHARLIE : STATION_1.z1 : BYTE. 10d
DOG ; w ; UINT READ_ONLY; 10e
ALPHA ; STATION_2.P1.y1 : BYTE READ_ONLY; 10f
BETA; STATION_2.P4.HOUT 1 : INT READ_ONLY; lOf
GAMMA ; STATION_2.z2 : BOOL READ_WRITE; 10d
S1_COUNT : STATION_1.P1.COUNT ; INT; 10g
THETA: STATION_2.P4.FB2.d1 ; BOOL READ_WRITE; 10h
ZETA ; STATION_2.P4.FB1.c1 ; BOOL READ_ONLY; lOi
OMEGA; STATION_2.P4.FB1.C3 ; INT READ_WRITE; 10k

END_VAR 10a
VAR_CONFIG 11

STATION_1.P1 .COUNT; INT:= 1;
STATION_2.P1 .COUNT; INT:= 100;
STATION_1 ,P1 TIME1: TON:= (PT:= T#2.5s);
STATION_2.P1 .TIME1 : TON;= (PT;= T#4.5s);
STATION_2.P4.FB1.C2 AT %QB25: BYTE;

END_VAR
END_CONFlGURAT!ON 1

174

ГОСТ Р МЭК 61131-3—2016

Примечание 1 — Графическое и полуграфичесхов представление таких свойств допускается, но не вхо­
дит в задачу настоящего стандарта.

Примечание 2 — Ошибка, если тип данных, объявленный в операторе VAR_ACCESS отличается от типа
данных, объявленного для переменной в другом месте, например, если переменная BAKER объявлена как WORD
в приведенных выше примерах.

Рисунок 28. лист 2

6.8.2 Задачи
Для целей настоящего стандарта задача определяется как элемент управления выполнением, ко­

торый способен вызывать, как на периодической основе, так и при появлении переднего фронта задан­
ной логической переменной, выполнение набора программных компонентов, которые могут включать
программы и функциональные блоки, экземпляры которых заданы в объявлении программ.

Максимальное число задач на ресурс и допустимый интервал между задачами определяются раз­
работчиком.

Задачи и их связь с программными компонентами может быть представлена графически или тек­
стуально с использованием конструкции WITH как показано в таблице 63. в виде части ресурсов внутри
конфигураций. Задача неявно разрешается или блокируется связанным с ней ресурсом в соответствии
с механизмами. Управление программными компонентами при разрешенных задачах подчиняется сле­
дующим правилам:

a) Связанные программные компоненты должны быть спланированы для выполнения при каждом
переднем фронте на входного параметра SINGLE задачи;

b) Если входной параметр INTERVAL — ненулевой, то связанные программные компоненты на­
значаются для периодического выполнения через заданный интервал времени, пока входной параметр
SINGLE остается нулевым (0). Если входной параметр INTERVAL равен нулю {значение по умолчанию),
периодическое выполнение связанных программных компонентов происходить не будет;

c) Входной параметр PRIORITY задачи устанавливает приоритет планирования связанных про­
граммных модулей, где нуль (0) имеет наивысший приоритет, а более низкие приоритеты имеют по­
следовательно большие цифровые значения. Как показано в таблице 63. приоритет программного
компонента (т. е. приоритет связанной с ним задачи) может использоваться для планирования с при­
оритетами или без приоритетов;

- в планировании без приоритетов вычислительные возможности становятся доступными на ре­
сурсе. когда завершается выполнение программного компонента или функции операционной системы.
Когда вычислительные возможности доступны, программный компонент с наивысшим плановым при­
оритетом начинает выполнение. Если в ожидании имеется более одного программного компонента с
наивысшим плановым приоритетом, то будет выполняться программный компонент с наибольшим вре­
менем ожидания и наивысшим плановым приоритетом;

- в планировании с приоритетом, когда программный компонент назначен, он прерывает выполне­
ние программного компонента с более низким приоритетом на том же ресурсе, то есть выполнение ком­
понента с более низким приоритетом может быть задержано до завершения выполнения компонента с
более высоким приоритетом. Программный компонент не прерывает выполнение другого компонента
с таким же или более высоким приоритетом. В зависимости от плановых приоритетов, программный
компонент может не начать выполнение в спланированный момент. Однако в примерах, приведенных в
таблице 63. все программные компоненты завершают работу в срок, то есть они заканчивают выполне­
ние до того, как будут спланированы для повторного выполнения. Разработчик предоставляет инфор­
мацию. позволяющую пользователю определить, должны ли выдерживаться все сроки выполнения в
предлагаемой конфигурации;

d) Программа без связанной задачи будет иметь самый низкий приоритет в системе. Любая такая
программа должна быть спланирована для выполнения после «пуска» ее ресурса и должна быть пере­
планирована для выполнения, как только ее выполнение заканчивается:

e) Когда экземпляр функционального блока связан с задачей, его выполнение должно происхо­
дить под исключительным управлением задачи, независимо от правил оценки программного компонен­
та. в котором объявлен связанный с задачей функциональный блок;

0 Экземпляр функционального блока, который не прямо связан с задачей, будет следовать обыч­
ным правилам для порядка оценки элементов языка для программного компонента (который сам может
находиться под управлением задачи), в котором объявлен экземпляр функционального блока.

175

ГОСТ Р МЭК 61131-3—2016

Примечание 1 — Экземпляры класса не могут иметь связанной задачи.

Примечание 2 — Методы функционального блока или класса выполняются в программном компоненте,
который они вызывают:

д) Выполнение функциональных блоков внутри программы должно быть синхронизировано, чтобы
обеспечить достижение параллельности доступа к данным в соответствии со следующими правилами:

- если функциональный блок получает более одного входного параметра от другого функцио­
нального блока, то когда первый FB выполняется, все входные параметра последнего должны пред­
ставлять результаты той же оценки:

- если один или более функциональных блоков получает входные параметры от одного и того
же функционального блока, и если все «целевые» блоки явно или неявно связаны с одной и той же
задачей, тогда все входы на все такие «целевые» блоки во время их оценки будут представлять резуль­
таты одной и той же оценки «исходного» блока.

Необходимо обеспечить меры для сохранения выходных параметров функций или функциональ­
ных блоков, которые явно связаны с задачей, или которые используются как входные параметры в
программные компоненты, имеющие явные связи с задачей, как необходимые для удовлетворения
приведенных выше правил.

Ошибка возникает, если задача не может быть спланирована или удовлетворить заданному сроку
ее выполнения вследствие чрезмерных требований к ресурсу или других конфликтов планирования
задачи.

Таблица 63 — Задача

Номер Описание Примеры

1а Текстовое объявление пе­
риодической задачи TASK

(свойство 5а таблицы 62)

1Ь Текстовое объявление не­
периодической задачи
TASK

(свойство 5Ь таблицы 62)

Графическое представле­
ние TASK (общая форма)

TASKNAME
+---------------- *
I TASK |

BOOL-----| SINGLE |
TIME-----|INTERVAL |
UINT— | PRIORITY |

2а Графическое представле­
ние периодической TASK (с
INTERVAL)

SLOW_l FAST_1
+--------------- ♦ +--------------- +
1 TASK I | TASK |

— 1 SINGLE | -----1SINGLE |
t *20aa— (INTERVAL 1 t * I0ms— - | INTERVAL |

2— |PRIORITY I 1---- |PRIORITY |
♦ — ----------- * +--------------- ♦

2Ь Графическое представле­
ние непериодической TASK
(с SINGLE)

INT_2
+---------------- +■
| TASK |

Z2-- ISINGLE |
- - I INTERVAL |

1-- IPRIORITY |
+---------------- ♦

За Текстовая связь
с PROGRAMS

(свойство 6a таблицы 62)

ЗЪ Текстовая связь с функцио­
нальными блоками

(свойство 6b таблицы 62)

176

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 63

Н о м е р О п и с а н и е П р и м е р ы

4а Графическое представле­
ние с PROGRAM RE SOURCE S T A T I 0 N _ 2

P I Р4
+ -----------------+ + ----------------- ♦
| F | I H I

I I I I
I I ‘ 1
* -----------------+ ♦ ----------------- ♦
I P E R _ 2 | | I N T _ 2 f

+ -----------------+ ♦ ----------------- *

E H D _ R E S O U R C E

4Ь Графическая связь с функ­
циональными блоками вну­
три PROGRAMS

P2
* — - — --- --------------- ------------- --— ----------------------— ------------ ♦

I G |
1 |

l FBI FB2 I
> + --------------- ♦ + --------------- + |

I A I 1 В | I

I I I I 1
I I I I 1

1 + --------------- ♦ + --------------- + |

I S L O W 1 | |F A S T 1 | |
+ --------------- + + --------------- + |

E N D _ R E S O U R C E

5а Планирование без приори­
тетов

См. рисунок 28

5Ъ Планирование с приорите­
тами

См. рисунок 28

Примечание 1 — Подробности объявлений RESOURCE и PROGRAM не показаны.

Примечание 2 — Обозначение X@Y указывает, что программный компонент X спланирован или
выполняется с приоритетом Y.

Следующие примеры показывают планирование без приоритетов и с приоритетами, определяе­
мое в таблице 63 свойствами 5а и 5Ь.

Пример 1 — Планирование без приоритетов и с приоритетами

1 Планирование без приоритетов

- Ресурс STATIONM как сконфигурирован на рисунке 28
- Времена исполнения: Р1 = 2 мс; Р2 = 8 мс
- P2.FB1 = P2.FB2 = 2 мс (см. примечание 1)
- STATION_1 запускается при t = О

177

ГОСТ Р МЭК 61131-3—2016

Планирование (повторяется каждые 40 мс)

t (M C) Выполнение Ожидание

0 P2.FB2@1 Р1@2. P2.FB1@2. Р2

2 Р1@2 P2.FB1@2. Р2

4 P2.FB1@2 Р2

6 Р2 —

10 Р2 P2.FB2@1

14 P2.FB2@1 Р2

16 Р2 (перезапуск Р2)

20 Р2 P2.FB2@1. Р1@2. P2.FB1@2

24 P2.FB2@1 Р1@2. P2.FB1@2. Р2

26 Р1@2 P2.FB1@2. Р2

28 P2.FB1@2 Р2

30 P2.FB2@1 Р2

32 Р2 —

40 P2.FB2@1 Р1@2. P2.FB1@2. Р2

- Ресурс STATION_2 как сконфигурирован на рисунке 28
- Времена исполнения: Р1 = 30 мс. Р4 = 5 мс. P4.FB1 = 10 мс
- INT_2 срабатывает при t = 25. 50. 90.... мс
- STATION_2 запускается при t= 0

План

t(M C) Исполнение Ожидание

0 Р1@2 P4.FB1@2

25 Р1@2 P4.FB1@2. Р4@1

30 Р4@1 P4.FB1@2

35 P4.FB1@2 —

50 Р4@1 P I@2. P4.FB1@2

55 Р1@2 P4.FB1@2

85 P4.FB1@2 —

90 P4.FB1@2 P4@1

95 Р4@1 —

100 Р1@2 P4.FB1@2

2 Планирование с приоритетами См. таблицу 63. 5Ь

- Ресурс STATIONM как сконфигурирован на рисунке 28
- Времена исполнения: Р1 = 2 мс; Р2 = 8 мс: P2.FB1 = P2.FB2 = 2 мс
- STATION_2 запускается при t= 0

178

ГОСТ Р МЭК 61131-3—2016

План

t(MC) Исполнение Ожидание

0 P2.FB2@1 Р1@2. P2.FB1@2. Р2

2 Р1@2 P2.FB1@2. Р2

4 P2.FB1@2 Р2

6 Р2 —

10 P2.FB2@1 Р2

12 Р2 —

16 Р2 (перезапуск Р2)

20 P2.FB2@1 Р1@2. P2.FB1@2. Р2

- Ресурс STATION_2 как сконфигурирован на рисунке 28
- Времена исполнения: Р1 = 30 мс. Р4 = 5 мс. P4.FB1 = 10 мс
- INT_2 срабатывает при t = 25. 50. 90.... мс
- STATION_2 запускается при 1 = 0

План

t(MC) Исполнение Ожидание

0 Р1@2 P4.FB1@2

25 Р4@1 Р1@2. P4.FB1@2

30 Р1@2 P4.FB1@2

35 P4.FB1@2 —

50 Р4@1 Р1@2. P4.FB1@2

55 Р1@2 P4.FB1@2

85 P4.FB1@2 —

90 Р4@1 P4.FB1@2

95 P4.FB1@2 —

100 Р1@2 P4.FB1@2

Примечание 1 — Времена выполнения P2.FB1 и P2.FB2не включены во время выполнения Р2.

Примечание 2 — Время выполнения P4.FB1 не включено во время выполнения Р4.

Пример 2 — Связи задачи с экземплярами функционального блока
RESOURCE R1
PROGRAM X

179

ГОСТ Р МЭК 61131-3—2016

У1 Y2

» У
. a I« | _ _ 1 У
r A

(B
V* 1
01 — — IB

islowli
♦— - — ¥

-+
Iс|-DI-

llastll
♦— —*
УЗ

+------ *
I у I

— |А с; —
+ - - |В DI ----

I fa s t i i
+------- ч-

ENDJPROGRAM

а) Функциональные блоки с явными связями задачи

f a s t i s l o w l
T ” T

I TASK | I TASK |
t # 10n s — - | INTERVAL | t#20ms-----I INTERVAL |

1 — - I PRIORITY | 2-----1 PRIORITY |
т “ T

P1
PROGRAM X

У1 У2
♦ --------
1 У 1 У 1

---- IA C -------------- ----- IA Cl —
— IB D♦- ----- IB 01 —

♦-------- | 4 — - - f
1 fast i I
+----—*■ . |

1
УЗ

1
1 1 r 1

- - - 1 - -.A C| —-+~»В DI —

END_PROGRAM
slowl

Ь) Функциональные блоки с неявными связями задачи
RESOURCE R1

fasti
+-------------------- +
| TA S K |

t#10ms--|INTERVAL |
1--I PRIORITY |

+-------------------- +.

slowl
+-------------------- +
| TASK I

t#20ms--|INTERVAL |
2--| PRIORITY |

+-------------------- +

P1
PROGRAM X

180

ГОСТ Р МЭК 61131-3—2016

Y 1
♦--------4
I * I

— I л С I —
— I в 0| —

+------- +
I f a s t i I

+ ------------+

Y 2

1 Y I
■ |Л C l —
■ IB D | -------
~Т -Г
I s i o w l |

Y 3

Y 1
♦ | — | А С | -------

+ - - I8 0| —-
4------------+
|siowl I
+— -— +

END_PROGRAM

с) Явные связи задачи эквивалентны Ь)

П р и м е ч а н и е 3 — Графические представления в этих примерах являются только иллюстра­
тивными. но не нормативными.

6.9 Пространства имен

6.9.1 Общие положения
Для целей функционирования языков программирования программируемого контроллера про­

странство имен — это элемент языка, объединяющий другие элементы языка в общий объект.
Одно и то же имя элемента языка, объявленное внутри пространства имен, может также исполь­

зоваться внутри других пространств имен.
Пространства имен и типы, не имеющие охватывающего пространства имен, являются членами

глобального пространства имен. Глобальное пространство имен включает имена, описанные в гло­
бальной области видимости. Все стандартные функции и функциональные блоки являются элементами
глобального пространства имен.

Пространства имен могут быть вложенными.
Пространства имен и типы, объявленные внутри пространства имен, являются членами этого про­

странства имен. Члены пространства имен находятся в локальной области видимости пространства
имен.

С пространствами имен может быть реализована концепция библиотеки наряду с концепцией
модулей. Пространства имен можно использовать, чтобы избежать неоднозначностей идентификатора.
Типовое приложение пространства имен находится в контексте средств объектно-ориентированного
программирования.

6.9.2 Объявление
Описание пространства имен начинается с ключевого слова NAMESPACE, за которым опциональ­

но следует спецификатор доступа INTERNAL, имя пространства имен и окончания с ключевым словом
END_NAMESPACE. Пространство имен содержит набор элементов языка, за каждым из которых опци­
онально следует следующий спецификатор доступа:

- INTERNAL для доступа только внутри собственно пространства имен.
Спецификатор доступа может быть применен к описанию следующих элементов языка:
- определяемых пользователем типов данных — с использованием ключевого слова TYPE:
- функций;
- программ.
- типов функциональных блоков и их переменных и методов;
- классов и их переменных и методов;
- интерфейсов;
- пространств имен.
Если спецификатор доступа не задан, элементы языка пространства имен доступны извне про­

странства имен. т.в. пространство имен является общедоступным по умолчанию.
Примеры 1 и 2 показывают объявление пространства имен и объявление вложенного простран­

ства имен.
1 81

ГОСТ Р МЭК 61131-3—2016

Пример 1 — Объявление пространства имен
NAMESPACE Timers

FUNCTION INTERNAL TimeTicks DWORD
/ / ...объявление и операции здесь
END_FUNCTION
//другие элементы пространства имен без спецификатора являются PUBLIC по умолчанию
TYPE по умолчанию

LOCAL_TIME: STRUCT
TIMEZONE: STRING [40];
DST: BOOL; //Декретное время
TOD: TOD;
END_STRUCT;

END_TYPE;

FUNCTION_BLOCK TON
H... объявление и операции
END_FUNCTION_BLOCK

FUNCTION_BLOCK TOF
/ I ... объявление и операции
END_FUNCTION_BLOCK
END_NAMESPACE (‘ Timers')

Пример 2 — Объявление вложенного пространства имен
NAMESPACE Standard //Пространство имен = PUBLIC по умолчанию

NAMESPACE Timers //Пространство имен= PUBLIC по умолчанию
FUNCTION INTERNAL TimeTicds DWORD
И ...объявление и операции здесь
END_FUNCT/ON

//другие элементы пространства имен без спецификатора являются PUBLIC за счет
TYPE по умолчанию
LOCALJTIME:
STRUCT TIMEZONE: STRING [40];
DST: BOOL; //Декретное время
TOD: TOD;
END_STRUCT;
END_TYPE;

FUNCTION_BLOCK TON // определяет реализацию TON с новым именем
И... объявление и операции здесь
END_FUNCT10N_BLOCK

FUNCTION_BLOCK TOF / / определяет реализацию TOF с новым именем
И... объявление и операции здесь END_FUNCTION_BLOCK

CLASS А
ETHOD INTERNAL Ml

182

ГОСТ Р МЭК 61131-3—2016

END_METHOD
METHOD PUBLIC М2 / /PUBLIC задано здесь для замены PROTECTED по умолчанию

END_METHOD
END_CLASS
CLASS INTERNAL В
METHOD INTERNAL M1

END_METHOD
METHOD PUBLIC М2

END_METHOD
END_CLASS

END_NAMESPACE (‘ Таймеры') NAMESPACE счетчики
FUNCTION_BLOCK CUP
//... объявление и операции здесь
END_FUNCTION_BLOCK

FUNCTION_BLOCK CDOWN
/ / ... объявление и операции здесь
END_FUNCTION_BLOCK
END_NAMESPACE ('Timers')

ENDJ4AMESPACE ('Стандарт')

Доступность элементов пространства имен, методов и переменных функциональных блоков вну­
три и извне пространства имен зависит от спецификаторов доступа переменной или метода вместе со
спецификатором пространства имен при объявлении пространства имен и элементов языка.

Правила доступности суммированы на рисунке 29.

С п е ц и ф и ка то р
п р о с т р а н с т в а и м е н

О б щ е д о с т у п н о (n o у м о л ч а н и ю ,
с п е ц и ф и к а т о р о тс у т с т в у е т)

IN T E R N A L

С п е ц и ф и ка то р
д о с т у п а R э л е м е н ту
я з ы ка , п е р е м е н н о й

и л и м е то д у

Д о с т у п и з в н е
п р о с т р а н с тв а

и м е н

Д о с т у п и з н у т р и
п р о с т р а н с тв а

и м е н , н о и з в н е
п р о гр а м м н о го

ко м п о н е н т а

Д о с т у п и з в н е п р о с т р а н с тв а и м е н Д о с т у п и зн у тр и
п р о с т р а н с тв а

и м е н , н о и звне
п р о гр а м м н о го

ко м п о н е н т а

В с е п р о с т р а н с тв а
и м е н кр о м е

п р е д ка

П р е д о к
п р о с т р а н с тв а и м е н

PRIVATE Нет Нет Нет Нет Нет

PROTECTED Нет Нет Нет Нет Нет

INTERNAL Нет Да Нет Нет Да

PUBLIC Да Да Нет Да Да

Рисунок 29 — Доступность с использованием пространств имен (правила)

В случае иерархических пространств имен, внешнее пространство имен может дополнительно
ограничивать доступ; оно может не разрешать дополнительный доступ к объектам, которые уже явля­
ются внутренними для внутреннего пространства имен.

183

ГОСТ Р МЭК 61131-3—2016

Пример 3 — Вложенные пространства имен и спецификаторы доступа
NAMESPACE pN1

NAMESPACE pN11
FUNCTION pF1... END_FUNCTION
FUNCTION INTERNAL IF2... END_FUNCTION
FUNCTION_BLOCK pFB1
VAR PUBLIC pVarl: REAL:... ENDJ/AR

VAR INTERNAL iVar2: REAL ... END_VAR

// доступно отовсюду
И доступно в pN11
// доступно отовсюду
И доступно отовсюду
//доступно в pN 11

END_FUNCT!ON_BLOCK
FUNCTION_BLOCK INTERNAL IFB2 И доступно в pN11
VAR PUBLIC pVar3: REAL:... END_VAR И доступно в pN11
VAR INTERNAL iVarA: REAL ... ENDJVAR И доступно в pN11

END_FUNCT!ON_BLOCK
CLASS pC1
VAR PUBLIC pVar5: REAL:... ENDJVAR
VAR INTERNAL iVarf: REAL ... ENDJVAR
METHOD pM1... END_METHOD
METHOD INTERNAL IM2 ... END_METHOD
END_CLASS
CLASS INTERNAL iC2
VAR PUBLIC pVar7: REAL:... ENDJ/AR
VAR INTERNAL \Var8: REAL ... ENDJVAR
ETHOD pM3... END_METHOD
METHOD INTERNAL IM4 ... END_METHOD
END_CLASS

END_NAMESPACE
NAMESPACE INTERNAL iN12

FUNCTION pF1... END_FUNCTION
FUNCTION INTERNAL IF2... END_FUNCTION
FUNCTION BLOCK pFB1

VAR PUBLIC pVarl: REAL:... ENDJ/AR
VAR INTERNAL iVar2: REAL ... END_VAR

END_FUNCTION_BLOCK

FUNCTION_BLOCK INTERNAL IFB2
VAR PUBLIC pVar3: REAL:... ENDJ/AR
VAR INTERNAL IVar4: REAL ... ENDJ/AR

END_FUNCTION_BLOCK
CLASS pC1

VAR PUBLIC pVar5: REAL:... ENDJVAR
VAR INTERNAL iVar6: REAL ... ENDJVAR
METHOD pM1... END_METHOD
METHOD INTERNAL IM2... END_METHOD

// доступно отовсюду
//доступно в pN 11
/ / доступно отовсюду
И доступно в pN11

И доступно в pN11
И доступно в pN11
// доступно в pN11
//доступно в pN 11

// доступно в pN11
// доступно в iN12
И доступно в pN1
// доступно в pN1
И доступно в iN12

//доступно в iN12
//доступно в iN12
//доступно в iN12

// доступно в pNI
//доступно в iN12
И доступно в pN1
//доступно в iN12

1 8 4

END_CLASS
CLASS INTERNAL iC2

ГОСТ Р МЭК 61131-3—2016

VAR PUBLIC pVar7: REAL:... END_VAR
VAR INTERNAL IVar8: REAL ... ENDJ/AR
METHOD pM3... END_METHOD
METHOD INTERNAL iM4... END_METHOD

END_CLASS
END_NAME SPA CE

END_NAMESPACE

// доступно в in iN12
// доступно в in iN12
// доступно в iN12
// доступно в iN12

В таблице 64 показаны свойства, определенные для пространства имен.

Таблица 64 — Пространство имен

Нои ер Описание Пример

1а Общее пространство имен (без
спецификатора доступа)

NAMESPACE name
declaration(s)
declaration(s)

END_NAMESPACE
Все содержащиеся элементы доступны в соответствии со своими
спецификаторами доступа

1Ь Внутреннее пространство имен
(со спецификатором INTERNAL)

NAMESPACE INTERNAL name
declaration(s)
declaration(s)

END_NAMESPACE
Все содержащиеся элементы без какого-либо спецификатора или
со спецификатором доступа PUBLIC доступны в пространстве
имен на уровень выше

2 Вложенные пространства имен См. пример 2

3 Спецификатор доступа к пере­
менной INTERNAL

CLASS С1
VAR INTERNAL mylnternalVar: INT: END_VAR
VAR PUBLIC myPublicVar: INT: END_VAR

END_CLASS

4 Спецификатор доступа к методу
INTERNAL

CLASS C2
METHOD INTERNAL mylnternalMethod: INT:... END_METHOD
METHOD PUBLIC myPublicMethod: INT:... END_METHOD

END_CLASS

5 Элемент языка со спецификато­
ром доступа INTERNAL:
Типы данных, определяемые
пользователем
- с использованием ключевого
слова TYPE
Функции
Типы функциональных блоков
Классы
Интерфейсы

CLASS INTERNAL
METHOD INTERNAL mylnternalMethod: INT;... END_METHOD
METHOD PUBLIC myPublicMethod: INT:... END_METHOD

END_CLASS

CLASS
METHOD INTERNAL mylnternalMethod: INT;... END_METHOD
METHOD PUBLIC myPublicMethod: INT:... END_METHOD

END_CLASS

Именем пространства имен может быть простой идентификатор или полностью уточненное имя,
состоящее из последовательности идентификаторов пространства имен, разделенных точками («.»).
Последняя форма допускает объявление вложенного пространства имен без объявлений лексически

185

ГОСТ Р МЭК 61131-3—2016

вложенных нескольких пространств имен. Она также поддерживает расширение существующего про­
странства имен с дополнительными элементами языка за счет дополнительного объявления.

Лексически вложенные пространства имен, описываемые несколькими объявлениями про­
странств имен с ключевым словом NAMESPACE, текстуально вложены, как показано в первом из трех
свойств в таблице 65. Все три свойства вносят элементы языка в одно и то же пространство имен
Standard.Timers.HighResolution. Второе свойство показывает расширение того же пространства имен,
объявленного полностью уточненным именем. Третье свойство смешивает объявление пространства
имен с полностью уточненным именем и лексически вложенными ключевыми словами NAMESPACE
для добавления дополнительного программного компонента к пространству имен.

В таблице 65 показаны свойства, определенные для опций объявления вложенного пространства
имен.

Таблица 65 — Варианты объявления вложенного пространства имен

Номер Описание Пример

1 Объявление лексически вло­
женного пространства имен
Эквивалентно свойству 2 в та­
блице 64

NAMESPACE Standard
NAMESPACE Timers

AMESPACE HighResolution
FUNCTION PUBLIC TimeTick; DWORD
//...объявление и операции
END_FUNCTION

END_NAMESPACE (‘HighResolution*)
END_NAMESPACE (•Tlmeгs■)

END_NAMESPACE (‘Standard')

2 Объявление пространства
имен полностью уточненным
именем

NAMESPACE Standard.Timers.HighResolution
FUNCTION PUBLIC TimeResolution: DWORD

// ...объявление и операции
END_FUNCTION

END_NAMESPACE (‘Standard.Timers.HighResolution-)

3 Смешанные лексически вло­
женное пространство имен и
пространство имен, вложенное
использованием полностью
уточненного имени

NAMESPACE Standard.Timers
NAMESPACE HighResolution

FUNCTION PUBLIC TimeLimit: DWORD
II ...объявление и операции
END_FUNCTION

END_NAMESPACE ('HighResolution’)
END_NAMESPACE <'Standard.T.mers‘)

Примечание — Несколько объявлений пространства имен с одним и тем же полностью уточнен­
ным именем осуществляет вложение в одно и то же пространство имен. В примерах этой таблицы функции
TimeTick, TimeResolution и TimeLimit являются членами одного и того же пространства имен Standard.
Timers.HighResolution даже если они определены в отдельных объявлениях пространства имен; напри­
мер. в различных файлах программы Structured Text.

6.9.3 Использование
Элементы пространства имен могут быть доступны извне относительно пространства имен ис­

пользованием предшествующего имени пространства имен и последующей точки «.». В этом нет не­
обходимости изнутри пространства имен, но допустимо.

К элементам языка, объявляемым со спецификатором доступа INTERNAL, не может быть доступа
извне относительно пространства имен, за исключением собственного пространства имен.

Доступ к элементам во вложенных пространствах имен возможен с использованием наименова­
ния всех родительских пространств имен, как показано в примере.

Пример — Использование Timer TON из пространства имен Standard. Timers
FUNCTIONJBLOCK Uses_Timer
VAR
186

ГОСТ Р МЭК 61131-3—2016

Топ1: Standard.Timers.TON;
(‘ запускает таймер передним фронтом, сбрасывает таймер задним фронтом‘)
Топ2: PUBUC.TON; (' использует стандартный таймер ‘)

bTest: BOOL;
END_VAR

Ton1(ln:= bTest. PT:- t»5s);
END_FUNCTION_BLOCK

6.9.4 Директива USING пространства имен
Директива USING может задаваться вслед за именем пространства имен, программным компо­

нентом. именем и объявлением результата функции или метода. Если директива USING используется
внутри функционального блока, класса или структуры, она следует непосредственно за именем типа.

Если директива USING используется внутри функции или метода, она непосредственно следует
за объявлением типа результата функции или метода.

Директива USING начинается с ключевого слова USING, за которым следует одно или несколько
полностью уточненных имен пространств имен, как показано в таблице 64. свойство 2. Это разрешает
использование элементов языка, содержащихся в заданных пространствах имен, непосредственно в
окружающем пространстве имен соответствующего программного компонента. Окружающее простран­
ство имен также может являться глобальным пространством имен.

В пределах объявления членов в пространстве имен, которое содержит директиву пространства
имен USING, на типы, содержащиеся в заданном пространстве имен, можно ссылаться прямо. В приве­
денном ниже примере в пределах объявления членов пространства имен Infeed, члены типа Standard.
Timers прямо доступны, и. поэтому, функциональный блок Uses_Timer может объявлять переменную
экземпляра функционального блока TON без квалификации.

В примерах 1 и 2 ниже показано использование директивы пространства имен USING.

Пример 1 — Директива пространства имен USING
NAMESPACE Counters

FUNCTION_BLOCK CUP
I I ... объявление и операции
END_FUNCTION_BLOCK

END_NA ME SPA CE (‘Standard. Co unters ‘)

NAMESPACE Standard. Timers
FUNCTION BLOCK TON
И... объявление и операции
END_FUNCTION_BLOCK

END_NAMESPACE (‘Standard.Timers‘)

NAMESPACE Infeed
FUNCTION_BLOCK Uses_Std

USING Standard.Timers;

VAR
Toni: TON;
(’ запускает таймер с передним фронтом, сбрасывает таймер с задним фронтом‘)
Cnt1: Counters.CUP;
bTest: BOOL:

END_VAR
Ton1(ln:= bTest. PT:= tH5s);

END_FUNCT!ON_BLOCK
END_NAMESPACE

187

ГОСТ Р МЭК 61131-3—2016

Директива пространства имен USING делает доступными типы, содержащиеся в заданном про­
странстве имен, но специально не делает доступными типы, содержащиеся во вложенных простран­
ствах имен. Директива пространства имен USING делает доступными типы, содержащиеся в Standard,
но не типы пространств имен, вложенные в Standard. Таким образом, ссылка на Timers.TON в объяв­
лении Uses_Timer приводит к ошибке компиляции, поскольку в области видимости отсутствуют члены
с именем Standard.

П р и м е р 2 — Н е д о п у с т и м ы й и м п о р т в л о ж е н н ы х п р о с т р а н с т в им ен
NAMESPACE Standard. Timers

FUNCTION_BLOCK TON
/ / ... объявление и операции
END_FUNCTION_BLOCK

ENDJ4AMESPACE (’Standard. Timers’)
NAMESPACE Infeed

USING Standard;
USING Standard.Counters;
FUNCTION_BLOCK Uses_Timer
VAR
Ten4f Tmtere.TQN? В Ш Я ? Вложенные пространства имен не импортируются.
(‘ запускает таймер с передним фронтом, сбрасывает таймер с задним фронтом’)
bTest: BOOL:
END_VAR
Ton1(ln:= bTest, PT:= t»5s);
END_FUNCTION_BLOCK

END_NAMESPACE f Standard.Timers.HighResolution')
Для доступа к элементам языка пространства имен в глобальном пространстве имен должны ис­

пользоваться ключевое слово USING и идентификаторы пространства имен.
В таблице 66 показаны свойства, определяемые для директивы пространства имен USING.

Таблица 66 — Директива пространства имен USING

Номер Описание Пример

1 USING в глобальном простран­
стве имен

USING Standard.Timers;
FUNCTION PUBLIC TimeTick: DWORD

VAR
Toni: TON:

END_VAR II ...объявление и операции
END_FUNCTION

2 USING в другом пространстве
имен

NAMESPACE Standard.Timers.HighResolution
USING Counters;

FUNCTION PUBLIC TimeResolutton: DWORD
II ...объявление и операции
END_FUNCTION

END_NAMESPACE {'Standard.Timers.HighResolution')

188

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 66

Номер Описание Пример

3 USING в программных компонен- FUNCTION_BLOCK Uses_Std
тах: USING Standard.Timers. Counters;
- функции VAR
- тилы функционального блока Toni: TON;

- классы {■ запускает таймер с передним фронтом, сбрасывает тай­
мер с задним фронтом')

- методы СШ1: CUP:
- интерфейсы West: BOOL;

END_VAR
Ton1(ln:= West, PT:= t#5s);
END_FUNCTION_BLOCK

FUNCTION myFun: INT
USING Ubl, Lib2.
USING Ub3;

VAR
.... END_FUNCTION

7 Текстовые языки
7.1 Общие элементы

Текстовые языки, определяемые в настоящем стандарте, это IL (перечень инструкций) и ST (струк­
турированный текст). Последовательная функциональная схема (SFC) может использоваться совмест­
но с любым из этих языков.

В подразделе 7.2 определяется семантика языка IL. синтаксис которого приведен в приложении А.
В подразделе 7.3 определяется семантика языка ST. синтаксис которого задан.

Текстовые элементы, указанные в разделе б являются общими для текстовых языков (IL и ST),
определяемых в разделе 7. В частности, приведенные ниже элементы структурирования программы на
рисунке 30 являются общими для текстовых языков:

TYPE
VAR
VARJNPUT
VAR_OUTPUT
VARJN.OUT
VAR_EXTERNAL .
VAR_TEMP
VAR_ACCESS
VAR_GLOBAL
VAR_CONFIG
FUNCTION
FUNCTION_BLOCK.
PROGRAM
METHOD
STEP
TRANSITION
ACTION
NAMESPACE

..END_TYPE
,.END_VAR
..END_VAR
,.END_VAR
..END_VAR
..END_VAR
..END_VAR
,.END_VAR
..END_VAR
..END_VAR
..END_FUNCTION
..END_FUNCTION BLOCK
,.END_PROGRAM
,.END_METHOD
,.END_STEP
..END_TRANSITION
,.END_ACTlON
..END NAMESPACE

Рисунок 30 — Общие текстовые элементы (обзор)
189

ГОСТ Р МЭК 61131-3—2016

7.2 Перечень инструкций (IL)

7.2.1 Общие положения
Этот язык устарел как язык типа ассемблера. Поэтому он не рекомендуется и не будет использо­

ваться в следующей редакции настоящего стандарта.
7.2.2 Инструкции
Перечень инструкций состоит из последовательности инструкций. Каждая инструкция начинается

на новой строке и содержит оператор с необязательными модификаторами, и. если необходимо для
конкретной операции, один или большее число операндов, разделенных запятыми. Операнды могут
быть любыми представлениями данных литералов, перечислимыми значениями и переменными.

Инструкции может предшествовать метка идентификации, за которой следует двоеточие «:».
Между командами могут вставляться пустые строки.

Пример — Поля списка инструкций

МЕТКА ОПЕРАТОР ОПЕРАНД КОММЕНТАРИЙ

START: LD %1Х1 С Кнопка ')

ANDN %МХ5 (• Не запрещено')

ST %QX2 (’ Вентилятор включен')

7.2.3 Операторы, модификаторы и операнды
7.2.3.1 Общие положения
Стандартные операторы с их разрешенными модификаторами и операндами должны быть таки­

ми. как показано в таблице 68.
7.2.3.2 «Текущий результат»
Если иное не оговорено в таблице 68. семантика операторов должна быть следующей:
results result OP operand.
To есть значение вычисляемого выражения заменяется его текущим значением, действующим на

оператор в соответствии с операндом.

Пример 1 — Инструкция AND %1Х1 интерпретируется как result:= result AND %IX1.

Операторы сравнения интерпретируются с текущим результатом слева от сравнения и операндом
справа с логическим результатом.

Пример 2 — Инструкция GT %IW10 имеет логический результат 1, если текущее значение больше,
чем значение Input Word 10, и логический результат в противном случае.

7.2.3.3 Модификатор
Модификатор «N» указывает поразрядное логическое отрицание (дополнение до единицы) опе­

ранда.

Пример 1 — Инструкция ANDN %1Х2 интерпретируется как result:= result AND NOT %IX2.

Ошибка возникает, если текущий результат и операнд имеют разный тип данных или если резуль­
тат числовой операции превышает область значений для его типа данных.

Левый скобочный модификатор «(» указывает, что вычисление оператора должно быть отложено
до появления правого скобочного оператора «)». В таблице 67 показаны две эквивалентные формы по­
следовательности инструкций со скобками. Оба свойства в таблице 67 интерпретируются как

result:* result AND (%IX1 OR %IX2)

Операнд должен быть литералом, как определено в 6.3. перечислимым значением или перемен­
ной.

Функция REF() и оператор разыменования «А» используются в определении операндов, а в табли­
це 67 показано выражение в скобках.

190

ГОСТ Р МЭК 61131-3—2016

Таблица 67 — Выражение в скобках для языка IL

Н о м е р О п и с а н и е П р и м е р

1 Выражение в скобках начинается с оператора в явном виде: AND(
LD %IX1 (NOTE)
OR %1Х2

)
2 Выражение в скобках (краткая форма) AND(%IX1

OR% IX2
)

П рим ечание — В свойстве 1 оператор LD может быть изменен или операция LD может быть за­
менена вызовом другой операции или функции, соответственно.

Модификатор «С» указывает, что связанная инструкция выполняется, только если значение те­
кущего вычисленного результата равно логической 1 (или логическому 0. если оператор объединен с
модификатором «N»). В таблице 68 показаны операторы списка инструкций.

Таблица 68 — Операторы языка IL

Н о м е р
О п и с а н и е

о п е р а то р а 3*
М о д и ф и к а то р

(с м . п р и м е ч а н и е)
О б ъ я с н е н и е

1 LD N Установить текущий результат, равный операнду

2 ST N Сохранить текущий результат по адресу операнда

3 Se)-Re) Установить операнд в 1. если текущий результат равен логической 1
Сбросить операнд в 0. если текущий результат равен логической 1

4 AND N.(Логическое И

5 & N.< Логическое И

6 OR N.(Логическое ИЛИ

7 XOR N,(Логическое исключающее ИЛИ

8 NOT*! Логическое отрицание (дополнение до единицы)

9 ADD < Сложение

10 SUB (Вычитание

11 MUL (Умножение

12 DIV < Деление

13 MOD (Деление по модулю

14 GT < Сравнение: >

15 GE (Сравнение: >=

16 EQ (Сравнение: =

17 NE (Сравнение: <>

18 LE (Сравнение: <=

19 LT (Сравнение:<

20 JMF*> C.N Переход к метке

21 CALC> C. N Вызов функционального блока (см. таблицу 69)

191

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 68

Н о м е р
О п и с а н и е

о п е р а то р а **
М о д и ф и к а то р

(см. примечание) О б ъ я с н е н и е

22 RET») С. N Возврат из вызванной функции, функционального блока или программы

23) Вычислить отложенную операцию

24 ST? Попытка присваивания. Сохранить с проверкой

Для объяснения модификаторов и оценки выражений см. предшествующий текст.
а> Если иное не указано, эти операторы должны быть перегружены или типизированы.
Ь) Операнд инструкции ЛИР должен быть меткой инструкции, к которой должно переходить выполнение.

Когда инструкция JMP содержится в конструкции ACTION... END_ACTION. операнд должен быть меткой внутри
той же самой конструкции.

с| Операнд этой инструкции должен быть именем экземпляра вызываемого функционального блока.
Ф Результатом этой операции должно быть побитовое логическое отрицание (дополнение до единицы)

текущего результата.
Ф Типом операнда этой инструкции должен быть BOOL.
fl Эта инструкция не имеет операнда.

7.2.4 Функции и функциональные блоки
7.2.4.1 Общие положения
Общие правила и свойства вызова функции и вызова функционального блока также применимы и

в IL. Свойства для вызова функциональных блоков и функций определены в таблице 69.
7.2.4.2 Функция
Функции вызываются путем помещения имени функции в поле оператора. Параметры задаются

вместе в одном поле операнда или же каждый параметр — в поле операнда строка за строкой.
В случае неформального вызова первый параметр функции не обязательно должен содержаться

в параметре, однако текущий результат используется как первый параметр функции. Дополнительные
параметры (начиная со второго), при необходимости, задаются в поле операнда, разделенные запяты­
ми. в порядке их объявления.

Функции могут иметь результат. Как показано в свойствах 3 таблицы 69. при успешном выполне­
нии инструкции RET или после достижения конца программного компонента, программный компонент
предоставляет результат как «текущий результат».

Если вызвана функция, которая не имеет результата, то «текущий результат» является неопреде­
ленным.

7.2.4.3 Функциональный блок
Функциональный блок вызывается размещением ключевого слова CAL в поле оператора, а имени

экземпляра функционального блока — в поле операнда. Параметры задаются вместе или же каждый
параметр помещается в поле операнда.

Функциональные блоки вызываются при определенных условиях или безусловно оператором EN.
Все назначения параметров, определяемые в перечне параметров вызова условного функцио­

нального блока, выполняются только вместе с вызовом, если условие является истинным.
Если вызван экземпляр функционального блока, то «текущий результат» является неопределен­

ным.
7.2.4.4 Методы
Методы вызываются помещением имени экземпляра функционального блока, за которым следует

одиночный период «.» и имя метода, в поле оператора. Параметры задаются вместе в одном поле опе­
ранда или же каждый параметр — в поле операнда строка за строкой.

В случае неформального вызова первый параметр метода не обязательно должен содержаться в
параметре, однако текущий результат используется как первый параметр функции.

Дополнительные параметры (начиная со второго), при необходимости, задаются в поле операнда,
разделенные запятыми, в порядке их объявления.

Методы могут иметь результат. Как показано в свойствах 4 таблицы 69. при успешном исполнении
инструкции RET или при достижении конца программного компонента, программный компонент предо­
ставляет результат как «текущий результат».

192

ГОСТ Р МЭК 61131-3—2016

Если вызван метод, который не имеет результата, то «текущий результат» является неопределен­
ным. В таблице 69 приведены альтернативные вызовы языка IL.

Таблица 69 — Вызовы для языка IL

How ер Описание Пример (см.примечание)

1а Вызов функционального блока с перечнем
неформальных параметров

CAL С10(%1Х10. FALSE. A. OUT. В)
CAL СMD_TMR(%IX5, T#300ms. OUT. ELAPSED)

1Ь Вызов функционального блока с перечнем
формальных параметров

CAL C10(/.' FB имя экземпляра
CU := %IX10.
R := FALSE. PV := A.
Q => OUT.
CV => B)

CAL CMD_TMR(
IN := %IX5.
PT := T#300ms,
Q => OUT.
ET => ELAPSED.
ENO => ERR)

2 Вызов функционального блока с загрузкой/
сохранением стандартных входных пара­
метров

LD A
ADD D5
ST C10.PV
LD %IX10
ST C10.CU
CAL C10 // FB имя экземпляра
LD C10.CV II текущий результат

За Вызов функции с перечнем формальных
параметров

LIMIT(И Имя функции
EN := COND.
IN := В.
MN := 1,
MX := 5,
ENO => TEMPL
)

ST A II Новый текущий результат

ЗЬ Вызов функции с перечнем неформальных
параметров

LD 1 //установить текущий результат
LIMIT В. 5 //и использовать его как IN
ST А II Новый текущий результат

4а Вызов метода с перечнем формальных па­
раметров

FBJNST.M1 (II Имя метода
EN := COND.
IN := В.
MN := 1.
MX .= 5,
ENO => TEMPL
)

ST A II Новый текущий результат

193

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 69

Н о и ер О п и с а н и е П р и м е р (с м п р и м е ч а н и е)

4Ь Вызов метода с перечнем неформальных
параметров

LD 1 //установить текущий результат
FBJNST.M1 В. 5 II и использовать его как
IN ST А // новый текущий результат

П рим ечание — В приведенных выше примерах предполагается обьявление

VAR
СЮ : CTU;
CMD_TMR: TON:
А. В : INT;
ELAPSED: TIME:
OUT. ERR. TEMPL. COND: BOOL:

END VAR

Стандартные входные операторы стандартных функциональных блоков, определенные в таблице
70. могут использоваться в сочетании со свойством 2 (загрузка/сохранение) в таблице 69. Данный вы­
зов эквивалентен CAL с перечнем параметров, который содержит только одну переменную с именем
входного оператора.

Параметры, которые не предоставляются, берутся из последнего присваивания или, если они не
предоставлены, из инициализации. Это свойство поддерживает проблемную ситуацию, где события
являются предсказуемыми, и поэтому только одна переменная может быть изменена от одного вызова
к следующему.

Пример 1
Вместе с объявлением
VAR СЮ: CTU; END_VAR
в последовательности команд
LD 15
PV СЮ
дает такой же результат, что и
CAL C10(PV:=15)

Пропущенные входы R и CU имеют значения, присвоенные им раньше. Поскольку вход CU детек­
тирует передний фронт, данным вызовом будет установлено только значение входа PV; отсчет не
может произойти, поскольку непредоставленный параметр не может измениться. В отличие от это­
го результаты последовательности

LD %!Х10
CU СЮ
в отсчете при максимуме в каждом втором вызове зависят от скорости изменения входа %1ХЮ.

Каждый вызов использует ранее установленные значения для PV и R.
Пример 2
С бистабильными функциональными блоками, с получением декларации
VAR FORWARD: SR: END_VAR
это приводит к неявно условному поведению. Последовательность
LD FALSE
S1 FORWARD
не изменяет состояние бистабильного FORWARD. Следующая последовательность
LD TRUE
R FORWARD
сбрасывает бистабильное состояние.

194

ГОСТ Р МЭК 61131-3—2016

Таблица 70 — Стандартные операторы функционального блока для языка IL

Н о м е р Ф у н к ц и о н а л ь н ы й б л ок В ход м ой о п е р а ю р В ы х о д н о й о п е р а то р

1 SR S1.R Q

2 RS S. R1 Q

3 F/R_TRIG CLK Q

4 CTU CU. R. PV CV. Q. также RESET

5 CTD CD. PV CV. О

6 CTUD CU. CD. R. PV CV. QU. QD. также RESET

7 ТР IN. PT CV.O

8 TON IN. PT CV. О

9 TOF IN. PT CV.O

П рим ечание — LD (загрузка) не является необходимой как входной оператор стандартного функ­
ционального блока, поскольку функциональные возможности LD включены в PV.

Параметры, которые не предоставляются, берутся из последнего присваивания или. если они
не предоставлены, то из инициализации. Данное свойство поддерживает проблемную ситуацию, где
события являются предсказуемыми, и поэтому только одна переменная может изменяться от одного
вызова к следующему.

7.3 Структурированный текст (ST)

7.3.1 Общие положения
Текстовый язык программирования "Structured Text. ST"' предоставляется из языка программиро­

вания Паскаль для использования в настоящем стандарте.
7.3.2 Выражения
В языке ST конец текстовой строки должен интерпретироваться так же. как символ пробела (SP).
Выражение — это конструкция, которая при вычислении дает значение, соответствующее одному

из типов данных. Максимально допустимая длина выражений определяется разработчиком.
Выражения состоят из операторов и операндов. Операнд должен быть литералом, перечисли­

мым значением, переменной, вызовом функции с результатом, вызовом метода с результатом, вызовом
экземпляра функционального блока с результатом или другим выражением.

Операторы языка ST обобщены в таблице 71.
Разработчик определяет явные и неявные преобразования типа.
При вычислении выражения применяются следующие правила:
1 Операторы применяют операнды в последовательности, определяемой приоритетом операто­

ров. приведенным в таблице 71. Оператор с иаивьюшим приоритетом в выражении применяется пер­
вым, за ним следует оператор со следующим более низким приоритетом и т. д. до завершения вычис­
ления.

Пример 1
Если А, В, С и D типа INT со значениями 1,2, 3 и 4, соответственно, тогда
A*B-C'ABS(D)
вычисляется до -9, а
(A*B-C)‘ABS(D)
вычисляется до 0.

2 Операторы равного приоритета должны применяться как записанные в выражении слева на­
право.

Пример 2
А*В*С вычисляется как (А*В)*С.

3 Когда оператор имеет два операнда, первым вычисляется крайний слева операнд.

195

ГОСТ Р МЭК 61131-3—2016

Пример 3
В выражении
SIN(A)‘COS(B) выражение SIN(A) вычисляется вначале, за ним следует COS(B), затем следует вы­

числение произведения.

4 Логические выражения вычисляются только до степени, необходимой для определения резуль­
тирующего значения, включая возможные побочные эффекты. Степень, до которой оценивается логи­
ческое выражение определяется разработчиком.

Пример 4
Для выражения(А>В)&(С<В) достаточно, если
А<=В, чтобы оценить только (А>В), чтобы решить, что значение выражения равно FALSE.

5 Функции и методы вызываются как элементы выражения, включающие имя функции или мето­
да. за которыми следует перечень параметров в скобках.

6 Когда оператор в выражении представлен как одна из перегруженных функций, преобразование
операндов и результаты следуют правилу и приведенным ниже примерам.

Приведенные ниже условия при выполнении операторов рассматриваются как ошибки:
a) сделана попытка деления на нуль;
b) операнды не относятся к корректному типу данных для операции;
c) результат числовой операции превышает диапазон значений для ее типа данных.

Таблица 71 — Операторы языка ST

Н о -
м е р

О п и с а н и е

О п е р а ц и я * 1
С и м в о л П р и м е р П р и о р и те т

1 Скобки (выражение) (А+В/С), (А+ВуС. А/(В+С) 11 (Самый
высокий)

2 Вычисление результата функ­
ции и метода
- если результат объявлен

Идентификатор
(перечень параметров)

LN(A). MAX(X.Y).
myclass.my_method(x)

10

3 Разыменование д RA 9

4 Отрицание - -A.-A 8

5 Унарный плюс + +B.+ B 8

5 Дополнение NOT NOT C 8

7 Ь>Возведение в степень •• A"B. В " В 7

8 Умножить * A’ B. A ' В 6

9 Разделить / A /B .A /B /D 6

10 Модуль MOD A MOD В 6

11 Добавить + A+B. A + В + C 5

12 Вычесть - A -B .A -B -C 5

13 Сравнение л V А II V
 II A<B A < В < C 4

14 Равенство = A=B.A=B& B=C 4

15 Неравенство О A o B .A o B 4

16а Логическое И & A&B.A&B.A&B&C 3

16Ь Логическое И AND AANDB 3

17 Логическое исключающее ИЛИ XOR A XOR В 2

18 Логическое ИЛИ OR AORB 1 (Низший)

196

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 71

а> Те же правила применимы к операндам этих операторов как к входам соответствующих стандартных
функций.

Ь'' Результат вычисления выражения А"В должен быть таким же. как результат вычисления функции
ЕХРТ(А. В).

7.3.3 Операторы
7.3.3.1 Общие положения
Операторы языка ST обобщены в таблице 72. Максимально допустимая длина операторов уста­

навливается разработчиком.

Таблица 72 — Операторы языка ST

Номер Описание Примеры

1 Присваивание
переменная := выражение:

1а Переменная и выражение простого типа данных A:= B; CV:= CV+1: C:= SIN(X);

1Ь Переменные и выражение простого типа данных
с неявным преобразованием типа в соответствии
с рисунком 11

A_Reai:= BJnt;

1с Переменная и выражение типа данных, опреде­
ляемого пользователем

A_Struct1:= B_Struct1:
C_Array1 ~D_Array1;

1d Экземпляры типа функционального блока A_lnstance1:= BJnstancel;

Вызов функции

2аь> FCT(17):

2Ьь>
2сЬ|

Вызов функционального блока и использование
выходной переменной функционального блока

CMD_TMR(IN:= bln1. PT:= T#300ms);
A:= CMD_TMR.Q;
FB_INST.M1{17);

3 ВОЗВРАТ RETURN;

Выбор

4 IF ...
THEN ...

ELSIF...
THEN...

ELSE ...ENDJF

D:= B*B — 4.0‘A‘C;
IF D < 0.0
THEN NROOTS:= 0:

ELSIF D = 0.0
THEN

NROOTS:= 1;
X I:= - Bi'(2.0’A):

ELSE
NROOTS:= 2;
X1:= (- В + SQRT{D)y(2.0*A);
X2:= (- В - SORT(D))/(2.0‘A):

ENDJF;

197

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 72

Номер Описание Примеры

5 CASE... OF

ELSE ...
END_CASE

TW:= WORD_BCD_TO_INT(THUMBWHEEL);
TW_ERROR:= 0;
CASE TW OF

1.5: DISPLAY:» OVEN_TEMP;
2: DISPLAY:» MOTOR_SPEED;
3: DISPLAY:» GROSS - TARE:
4.6..10: DISPLAY:» STATUS(TW - 4):
ELSE DISPLAY :=0:

TW_ERROR:= 1:
END_CASE:
QW100:» INT_TO_BCD(DISPLAY);

Итерация

6 FOR ...TO ...BY ...DO

END.FOR

J:= 101:
FOR l:= 1 TO 100 BY 2 DO

IF WORDS[l] = KEY' THEN
J:=l:
EXIT:

ENDJF:
END_FOR;

7 WHILE ... DO

END_WHILE

J:= 1:
WHILE J <= 100 & WORDS[J) <> 'KEY' DO

J:= J+2;
END.WHILE:

8 REPEAT ...
UNTIL...

END_REPEAT

J:= -1;
REPEAT

J:= J+2:
UNTIL J = 101 OR WORDS[JJ = КЕГ

END_REPEAT:

9а> J:= 1:
WHILE (J <= 100 AND WORDS[J] <> KEY) DO
..IF (J MOD 3 = 0) THEN

CONTINUE:
ENDJF;

(* если j =1,2,4.5,7,8.... тогда этот оператор*):

END_WHILE:

ю а| Выход из итерации EXIT; (см. также в свойстве 6)

11 Пустой оператор :

а> Если оператор EXIT или CONTINUE (свойство 9 или 11) поддерживается, то он должен поддерживать­
ся для всех операторов итерации (FOR. WHILE. REPEAT), которые поддерживаются в реализации.

ь> Если функция, тип функционального блока или метод дает результат, а вызов отсутствует в выражении
присваивания, то результат отменяется.

198

ГОСТ Р МЭК 61131-3—2016

7.3.3.2 Присваивание (Сравнение, результат, вызов)
7.3.3.2.1 Общие положения
Оператор присваивания заменяет текущее значение единственной или многоэлементной пере­

менной на результат оценки выражения. Оператор присваивания включает ссылку на переменную на
левой стороне, за которой следует оператор присваивания «:=», за которым следует выражение, кото­
рое должно быть вычислено.

Например.оператор
А := В:
используется для замены одиночного значения данных переменной А на текущее значение пере­

менной В. если оба типа INT или переменная В может быть неявно преобразована в тип INT.
Если А и В — многоэлементные переменные, типы данных А и В должны быть одинаковыми. В

этом случае элементы переменной А получают значения элементов переменной В.
Например, если А и В имеют типы ANALOG_CHANNEL_CONFIGURATION. то значения всех эле­

ментов структурированной переменной А должны быть заменены текущими значениями соответству­
ющих элементов переменной В.

7.3.3.2.2 Сравнение
Сравнение возвращает его результат как логическое значение. Сравнение должно включать ссыл­

ку на переменную на левой стороне, за которой следует оператор присваивания, за которым следует
ссылка на переменную на правой стороне. Переменные могут быть одноэлементными или многоэле­
ментными переменными.

Сравнение
А = В
должно использоваться для сравнения значения данных переменной А с значением переменной

В. если обе относятся к одному типу данных или одна из переменных может быть неявно прообразова­
на в тип данных другой переменной.

Если А и В — многоэлементные переменные, то типы данных А и В должны быть одинаковыми. В
этом случае элементы переменной А сравниваются со значениями элементов переменной В.

7.3.3.2.3 Результат
Присваивание также используется, чтобы присвоить результат функции типу функционального

блока или методу. Если результат определен для этого программного компонента, выполняется, по
крайней мере, одно присваивание к имени этого программного компонента. Возвращаемое значение
должно быть результатом самого последнего выполнения такого присваивания. Ошибкой является воз­
врат вычисления с переменной ENO значения TRUE, если только не было выполнено, по крайней мере,
одно такое присваивание.

7.3.3.2.4
Функция, метод и операторы управления функционального блока включают механизмы для вызо­

ва этого программного компонента и для возврата управления вызывающему объекту до физического
завершения программного компонента.

- FUNCTION
Функция вызывается оператором, включающим имя функции, за которым следует перечень пара­

метров в скобках, как показано в таблице 72.
Для вызовов функции применяются правила и свойства, определенные в 6.6.1.7 FUNCTION_

BLOCK.
Функциональные блоки вызываются оператором, включающим имя экземпляра функционального

блока, которым следует перечень параметров в скобках, как показано в таблице 72.
- METHOD
Методы вызываются оператором, включающим имя экземпляра, за которым следует «.» и имя

метода, и перечень параметров в скобках.
- RETURN
Оператор RETURN обеспечивает ранний выход из функции, функционального блока или програм­

мы (например, как результат оценки оператора IF).
7.3.3.3 Операторы выбора (IF. CASE)
7.3.3.3.1 Общие положения
Операторы выбора включают операторы IF и CASE. Оператор выбора выбирает один (или группу)

составляющих его операторов для выполнения на основе указанного условия. Примеры операторов
выбора приведены в таблице 72.

199

ГОСТ Р МЭК 61131-3—2016

7.3.3.3.2 IF
Оператор IF указывает, что группа операторов выполняется, только если связанное логическое

выражение при вычислении принимает значение 1 (TRUE). Если условие является ложным, то или опе­
ратор не выполняется, или выполняется группа операторов следующая за ключевым словом ELSE (или
ключевым словом ELSIF. если связанное логическое условие является истинным).

7.3.3.3.3 CASE
Оператор CASE включает выражение, которое вычисляет переменную простого типа данных («се­

лектор»). и перечень групп операторов, причем каждая группа маркируется одним или большим числом
литералов, перечислимых значений или поддиапазонов, в зависимости от того, что применимо. Типы
данных таких маркеров должны соответствовать типу данных переменной селектора, т.е. переменная
селектора должна быть сравнимой с маркерами.

Это указывает на то. что выполняется первая группа операторов, один из диапазонов которых
содержит вычисленное значение селектора. Если значение селектора находится вне диапазона для
любого из случаев, то выполняется последовательность операторов, следующая за ключевым словом
ELSE (если она имеется в операторе CASE). В противном случае ни одна из последовательностей опе­
раторов не выполняется.

Максимально допустимое число выборов в операторах CASE определяется разработчиком.
7.3.3.4 Операторы итерации (WHILE. REPEAT. EXIT. CONTINUE. FOR)
7.3.3.4.1 Общие положения
Операторы итерации указывают, что группа связанных операторов должна выполняться повторно.
Операторы WHILE и REPEAT не должны использоваться для достижения межпроцессной син­

хронизации. например, как «цикл ожидания» с внешне определяемым условием завершения. Для этой
цели должны использоваться элементы SFC.

Ошибка возникает, если оператор WHILE или REPEAT используется в алгоритме, для которого
удовлетворение условия завершения цикла или выполнение оператора EXIT не может быть гаранти­
ровано.

Оператор FOR используется, когда число итераций может быть определено заранее: в противном
случае используются конструкции WHILE или REPEAT.

7.3.3.4.2 FOR
Оператор FOR указывает, что последовательность операторов выполняется повторно, до ключе­

вого слова END_FOR. в то время как последовательность значений присваивается переменной управ­
ления циклом FOR. Переменная управления, начальное значение и конечное значение должны быть
выражениями одного и того же целого типа (например. SINT. INT или DINT) и не должны изменяться ни
в каком из повторяющихся операторов.

Оператор FOR приращивает переменную управления вверх или вниз от начального до конечного
значения в приращениях, определяемых значением выражения. Если конструкция BY пропускается, то
значение приращения по умолчанию приравнивается к 1.

Пример —
Цикл FOR, задаваемый выражением
FOR /:= 3 ТО 1 STEP-1 DO
завершается, когда значение переменной достигает 0.

Тест на условие завершения выполняется в начале каждой итерации, так что последовательность
операторов не выполняется, если значение переменной управления превышает конечное значение,
то есть значение переменной управления больше, или. соответственно, меньше конечного значения,
если значение инкремента положительное, или. соответственно, отрицательное. Значение переменной
управления после завершения цикла FOR определяется разработчиком.

Итерация завершается, когда значение переменной управления находится вне диапазона, задан­
ного конструкцией ТО.

Следующий пример использования оператора FOR приведен в свойстве 6 таблицы 72. В этом
примере цикл FOR используется, чтобы определить индекс J первого появления (если это имеет место)
строки «KEY» в нечетных элементах массива строк WORDS с диапазоном значений индексов (1..100).
Если появление не обнаружено. J будет иметь значение 101.

7.3.3.4.3 WHILE
Оператор WHILE вызывает выполнение последовательности операторов до ключевого слова

END_WHILE. Операторы выполняются повторно до тех пор. пока связанное логическое выражение
200

ГОСТ Р МЭК 61131-3—2016

станет ложным. Если выражение изначально ложное, то группа операторов вообще не выполняется.
Например, пример FOR...END_FOR может быть переписан с использованием конструкции

WHILE.,.END_WHILE. приведенной в таблице 72.
7.3.3.4.4 REPEAT
Оператор REPEAT вызывает последовательность операторов до ключевого слова UNTIL для вы­

полнения повторно (и, по крайней море, однократно), пока связанное логическое условие является
истинным.

Например, пример WHILE...END_WHILE может быть переписан с использованием конструкции
WHILE.,.END_WHILE. приведенной в таблице 72.

7.3.3.4.5 CONTINUE
Оператор CONTINUE используется для перехода через оставшиеся операторы цикла итерации, в

котором CONTINUE размещается после последнего оператора цикла непосредственно перед термина­
тором цикла (END_FOR. END_WHILE или END_REPEAT).

Пример —
После выполнения операторов, значение переменной, если значение логической переменной

FLAG=0 и SUM-9. если FLAG-1.
SUM:= 0;
FOR / .- 1 ТО 3 DO

FOR J:= 1 ТО 2 DO
SUM:= SUM + 1;
IF FLAG THEN

CONTINUE;
ENDJF;
SUM- SUM + 1;
END_FOR:

SUM. - SUM + 1;
END_FOR;

7.3.3.4.6 EXIT
Оператор EXIT используется для завершения итераций до удовлетворения условия завершения.
Когда оператор EXIT размещается внутри вложенных итеративных конструкций, выход происхо­

дит от внутреннего цикла, в котором размещен EXIT, то есть управление переходит к следующему
оператору после терминатора первого цикла (END_FOR. END_WHILE или END_REPEAT), за которым
следует оператор EXIT.

Пример —
После выполнения операторов, значение переменной SUM=15, если значение логической перемен­

ной FLAG- 0 и SUM=6. если FLAG=1.
SUM:= 0;
FOR /:= 1 ТО 3 DO

FOR J - 1 TO 2 DO
SUM:= SUM + f;
IF FLAG THEN

EXIT;
ENDJF;
SUM- SUM + 1;

END_FOR;
SUM- SUM + 1;

END_FOR

201

ГОСТ Р МЭК 61131-3—2016

8 Графические языки

8.1 Общие эломенты

8.1.1 Общие положения
Графические языки, определенные в настоящем стандарте, это LD (релейно-контактные схемы)

и FBD (функциональные блоковые диаграммы). Элементы последовательной функциональной схемы
(SFC) могут использоваться совместно с любым из этих языков.

Элементы применяются к обоим графическим языкам настоящего стандарта, то есть к LD и FB и к
графическому представлению элементов последовательной функциональной схемы (SFC).

8.1.2 Представление переменных и экземпляров
В графических языках все поддерживаемые типы данных должны быть доступны как в операндах

или так и в параметрах.
В графических языках должны поддерживаться все объявления экземпляров.
Использование выражения как параметров или как индекса массива не входит в задачу настоя­

щего стандарта.

Пример —
TYPE

SType: STRUCT Объявления типа
х. BOOL;
a: INT;
t: TON; END_STRUCT;

END_TYPE;

VAR Объявления переменной
x. BOOL;
i: INT;
Xs: ARRAY[1..10] OF BOOL;
S: SType;
Ss: ARRAY [0..3] OF SType;
t: TON;
Ts: ARRAY[0..20] OF TON;

END_VAR

а) Объявления переменной и типа

202

ГОСТ Р МЭК 61131-3—2016

Использует операнд:

т ” т как элементарную переменную
X | myFct |
| |------I IN |

+ ---------------------- +

+ -----------------------+
Xs[3] | myFct |
-I I---- U N |

+ -----------------------+

как элемент массива с постоянным индексом

+---------- +
Xs[i] | myFct |

------------- | | -------------- U N |
+ ------------------+

как элемент массива с переменным индексом

+ ------------------ +
S.X | myFct |

-------------| | --------- U N I
+ -----------------------+

как элемент структуры

SS[3] . X
+ ----------------------- +
I myFct |
U N |
+ -----------------------+

как элемент структурированного массива

b) Представление операндов

Экземпляр, используемый как параметр:

+ __________ у как нормальный экземпляр

t.Q | myFct2 |
— I I------laTON |

+ ----------------------+

Ts [10] .Q
— I I -------

Ts [i] .Q

+ ---------------------- +
I myFct2 |
IaTON |
+--------+
+ ------------------+
| myFct2 |
|aTON |
+--------+
+ ------------------ +

S . t | m y F c t 2 |
"I I..... laTON |

+ -----------------------+

+ ------------------ +
S s [2] . t | m y F c t 2 |
— I I..... laTON |

+ ------------------ +

как элемент массива с постоянным индексом

как элемент массива с переменным индексом

как элемент структуры

как элемент структурированного массива

203

ГОСТ Р МЭК 61131-3—2016

с) Представление экземпляра как параметра

t
+-----

X | TON 1
I------| IN Q 1

I PT ET|
+----- --+

Ts [12]
+----- --+

X | TON 1
I------1 IN Ql

| PT ET |
+----- --+

Ts [i]
+----- ■ — +

X | TON 1
I------I IN Ql

| PT ET |
+----- • — +

S . t
+----- --+

X | TON 1
I------| IN Ql

I PT ET |
+----- . — +

ss[i] .t
+----- .— +

X I TON 1
I------I IN Ql

| PT ET |
+----- --+

Экземпляр как:

простой экземпляр

элемент массива с постоянным индексом

как элемент массива с переменным индексом

элемент структуры

элемент структурированного массива

d) Представление вызова экземпляра

8.1.3 Представление линий и блоков
Использование букв, полуграфических и графических, для представления графических элемен­

тов определяется разработчиком и не является нормативным требованием.
Графические элементы языка, определенные в настоящем разделе 8. изображаются с элемента­

ми строки с использованием символов из набора символов. Примеры приведены ниже.
Линии можно расширить за счет использования соединителя. Сохранение данных или связь с

элементами данных не должны быть связаны с использованием соединителей; однако, чтобы избежать
неоднозначности, ошибка возникает, если идентификатор, используемый как метка соединителя, со­
впадает с именем другого именованного элемента внутри одного и того же программного компонента.

Любые ограничения на топологию сети в конкретной реализации должны быть выражены как
определяемые разработчиком.

204

ГОСТ Р МЭК 61131-3—2016

Пример — Графические элементы

Горизонтальные линии -----

Вертикальные линии |
I
I

Горизонтальнов/вертикальное соединение (узел) — +

Пересечение линий без соединения (узла нет)
-------1

I
Соединенные и несоединенные углы (узлы) |

I

i I

I
Блоки с соединительными линиями +-------------- +

----1 I
I I---

----1 I
+---------------+

I

Соединители и продолжение
----------------- >отто>
> 0 Т Т 0 > ----------------------

8.1.4 Направление потока в сетях
Сеть определяется как максимальный набор взаимосвязанных графических элементов, исключая

левые и правые шины в случае сетей в языке LD. Должны быть приняты меры, чтобы связать с каждой
сетью или группой сетей в графическом языке сетевые метки, ограниченные справа двоеточием «:».
Данная метка должна иметь форму идентификатора или десятичного целого без знака. Область види­
мости сети и ее метка должны быть локальными для программного компонента, в котором расположена
сеть.

Графические языки используются для представления потока концептуальной величины через
одну или большее число сетей, представляющих план управления, то есть:

- «Поток энергии»,
аналогичный потоку электрической энергии в электромеханической релейной системе обычно ис­

пользуется в релейно-контактных схемах.
Поток энергии в языке LD должен проходить слева направо.
- «Поток сигналов»,
аналогичен потоку сигналов между элементами системы обработки сигналов, типично используе­

мому в функциональных блоковых диаграммах.
Поток сигналов в языке FBD должен проходить с выходной (правой) стороны функции или функ­

ционального блока ко входной (левой) стороне функции или функционального блока (блоков), соеди­
ненных таким образом.

- «Поток деятельности»,
аналогичен потоку управления между элементами организации или между шагами электромеха­

нического секвенсора, типично используемого в последовательных функциональных схемах.
Поток деятельности между элементами SCF должен проходить от низа шага через соответствую­

щий переход к верху соответствующего последующего шага (шагов).

205

ГОСТ Р МЭК 61131-3—2016

8.1.5 Вычисление сетей
8.1.5.1 Общие положения
Порядок, в котором вычисляются сети и их элементы, не обязательно такой же. что и порядок, в

котором они помечаются или выводятся на экран. Аналогично, нет необходимости, чтобы все сети вы­
числялись до того, как может быть повторено вычисление заданной сети.

Однако, когда тело программного компонента состоит из одной или нескольких сетей, результаты
вычисления сети внутри указанного тела должны быть функционально эквивалентны соблюдению сле­
дующих правил:

a) Ни один элемент сети не вычисляется, пока не вычислены состояния всех его входов.
b) Вычисление элемента сети не является окончательным, пока не вычислены состояния всех его

выходов.
c) Вычисление сети не завершено, пока не вычислены состояния выходов всех ее элементов,

даже если сеть содержит один из элементов управления выполнением.
d) Порядок вычисления сети должен соответствовать положениям для языка LD и для языка FBD.
8.1.5.2 Обратная связь
Считается, что в сети имеется обратная связь, если выход функции или функционального блока

используется как вход в функцию или функциональный блок, который предшествует ему в сети: а свя­
занная переменная называется переменной обратной связи.

Например в приведенном ниже примере логическая переменная RUN является переменной об­
ратной связи. Переменная обратной связи может также являться выходным элементом структуры дан­
ных функционального блока.

Обратные связи можно использовать в описываемых графических языках, в соответствии со сле­
дующими правилами:

a) Заданные в явном виде циклы, такие как приведенный в примере ниже а), могут появляться
только в языке FBD.

b) Пользователь должен иметь возможность использовать определяемые разработчиком сред­
ства для определения порядка выполнения элементов в явном виде, например, путем выбора пере­
менных обратной связи для формирования заданного в неявном виде цикла, как показано в приведен­
ном ниже примере Ь).

c) Переменные обратной связи должны инициализировав одним из механизмов. Начальное зна­
чение используется во время первого вычисления сети. Ошибка возникает, если переменная обратной
связи не инициализирована.

d) После того, как элемент с переменной обратной связи вычислен как выход, новое значение
переменной обратной связи используется до следующего вычисления элемента.

Пример — Обратная связь

+ ------+
EN A B LE------ | & | -----------RUN------ +

+-------1 I I
+ - — + I + - ~ + I

START 1 ------ | > = 1 | ------- + |
S T A R T 2------1 | |

+ — I I I
I + — + I
+ --- +

а) Цикл, заданный в явном виде

206

ГОСТ Р МЭК 61131-3—2016

+--- +
ENABLE---- | & |---- RUN

+ ----------I I
+ ----------- + | + -------- +

START1--- I >=1 |---+
START2------- 1 |

RUN-----------------| |
+--- +

b) Цикл, заданный в явном виде

| START1 ENABLE
+----- I I ------- +----- I I -
| START2 |
+ -------I I --------- +
| RUN |
+ ------- I I --------- +
I

с) Эквивалент в языке LD

8.1.6 Элементы управления выполнением
Передача управления программой в языках LD и FBD представляется графическими элементами,

приведенными в таблице 73.
Переходы показываются логической сигнальной линией, завершающейся двойной пунктирной

линией со стрелкой. Сигнальная линия для условия перехода должна начинаться у логической пе­
ременной. у логического выхода функции или функционального блока, или на линии потока энергии
релейно-контактных схем. Передача управления программой назначенной сетевой происходит, когда
логическое значение сигнальной линии равно (TRUE); поэтому безусловный переход — это особый
случай условного перехода.

Целью перехода должна быть сетевая метка внутри тела программного компонента или тела ме­
тода. внутри которого происходит переход. Если переход происходит внутри конструкции ACTION...
END_ACTION, то цель перехода должна находиться внутри той же конструкции.

Условные возвраты от функций и функциональных блоков реализуются с использованием кон­
струкции RETURN, как показано в таблице 73. Выполнение программы передается назад к вызываю­
щему объекту, когда логический вход равен 1 (TRUE), и продолжается обычным способом, когда логи­
ческий вход равен 0 (FALSE). Безусловные возвраты обеспечиваются физическим окончанием функции
или функционального блока, или элементом RETURN, соединенным с левой шиной в языке LD. как
показано в таблице 73.

RUN |
------ ()— +

Таблица 73 — Элементы управления графического выполнения

Номер Описание Объяснение

Безусловный переход

1а язык FBD 1 ---------> > LABEL А

1Ь язык LD 1
* ---------» L A B E L A
1

207

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 73

Номер Описание Объяснение
Условный переход

2а язык FBD Пример:
Условие перехода, цель перехода

X--- >>LABEtB
+---+

bvarO---| & |--- » N E X T
bvar50— | |

+---♦
NEXT:

+---+
bvar5---| >»11--- bOutO
bvar60— | I

+---+

2Ь язык LD Пример:
Условие перехода, цель перехода

I х
+ -| |--- »LABELB
I
I
| bvarO bvar50
+-- I I-----1 1---»NEtXT
1
1
NEXT:
1 bvarb bOutO *
+--- 1 |----+------ <) — +
I bvar6 0 | I+--- 1 |----+ ,
1 1

Условный возврат

За язык LD 1 x
+ — | |---<RETURN>
1

ЗЬ язык FBD X---< RET URN >

Безусловный возврат

4 язык LD 1
+---<RETURN>
1

8.2 Ролейно-комтактны© схемы (язык LD)

8.2.1 Общие положения
Подраздел 8.2 определяет язык LD для программирования релейно-контактных схем программи­

руемых контроллеров.
Программа LD разрешает программируемому контроллеру тестировать и изменять данные с по­

мощью стандартизированных графических символов. Данные символы размещаются в сетях спосо­
бом. соответствующим «звену» релейно-контактных логических схем. Сети языка LD связаны слова и
справа с помощью шин питания.

Использование букв, полуграфических и графических, для представления графических элемен­
тов определяется разработчиком и не является нормативным требованием.

208

ГОСТ Р М ЭК 61131-3— 2016

8.2.2 Шины питания
Как показано в таблице 74. сеть языка LD ограничивается слева вертикальной линией, известной

как левая шина питания, а справа — вертикальной линией известной как правая шина питания. Правая
шина питания может задаваться в явном виде или подразумеваться.

8.2.3 Элементы и состояния связей
Как показано в таблице 74. элементы каналов могут быть горизонтальными или вертикальными.

Состояние элемента связи обозначается «ON» или «OFF», в соответствии с литеральными логически­
ми значениями 1 или 0. соответственно. Термин состояние связи является синонимом термина поток
энергии.

Состояние левой шины считается равным ON во все моменты времени. Для правой шины состо­
яние не определено.

Элемент горизонтальной связи указывается горизонтальной линией. Элемент горизонтальной
связи передает состояние элемента непосредственно слева от него элементу непосредственно справа
от него.

Элемент вертикальной связи включает вертикальную линию, пересекающуюся с одним или
более элементами горизонтальной связи на каждой из сторон. Состояние вертикальной связи
представляет состояния включающего OR состояний ON горизонтальных связей на своей левой
стороне, то есть состояние вертикальной связи равно:

- OFF. если состояние всех присоединенных к ней слева горизонтальных связей равно:
- ON. если состояние одной или более присоединенных к ней слева горизонтальных связей равно.
Состояние вертикальной связи копируется на все присоединенные к ней справа горизонтальные

связи. Состояние вертикальной связи не копируется на какие-либо присоединенные к ней слева гори­
зонтальные связи.

Таблица 74 — Шины питания и элементы связи

Н о м е р О п и с а н и е С и м во л

1 Левая шина питания (с присоединенной горизон­
тальной связью) I

+ -----
I

2 Правая шина питания (с присоединенной гори­
зонтальной связью) I

I

3 Горизонтальный канал

4 Вертикальный канал (с присоединенными гори­
зонтальными связями)

I
1

1
1

1
1

1
1

+

—

+

+

—

1
1

1
1

1
1

1
1

8 .2.4 К он та кты
Контакт — это элемент, который передает состояние на горизонтальную связь справа, что экви­

валентно логическому AND состояния горизонтальной связи слева с соответствующей функцией свя­
занного логического входа, выхода или переменной памяти. Контакт не изменяет значение связанной
логической переменной. Стандартные символы контактов приведены в таблице 75.

209

ГОСТ Р МЭК 61131-3—2016

Таблица 75 — Контакты

Номер Описание Объяснение символ

Статические контакты

1 Нормально разомкнутый контакт * * *

— () “
Состояние левой связи копируется в правую связь, если со­
стояние связанной логической переменной (отмеченной
«•**») равно ON. В противном случае состояние правой связи
равно OFF

2 Нормально замкнутый контакт * * *
- - < /) -

Состояние левой связи копируется на правую связь, если со­
стояние связанной логической переменной равно OFF. В про­
тивном случае состояние правой связи равно OFF

Контакты, чувствительные к переходу

3 Контакт, чувствительный к положитель­
ному переходу

* * *
_ _ (?) _

Состояние правой связи — это от одной оценки этого эле­
мента до следующей, когда переход связанной переменной
от OFF к ON распознает в то же время, что состояние левой
связи равно ON. Состояние правой связи равно OFF во все
другие моменты времени

4 Контакт, чувствительный к отрицатель­
ному переходу

* * *

“ “ (N) —

Состояние правой связи равно ON от одного вычисления это­
го элемента до следующего, когда переход связанной пере­
менной из OFF в ON распознает в то же время, что состо­
яние левой связи равно ON. Состояние правей связи равно
OFF во все другие моменты времени

5а Контакт сравнения (типизированный) <operand 1>
______ |< с т р > |______

----- \ ш I-----
<operand 2>

Состояние правой связи равно ON от одного вычисления
этого элемента до другого, когда левая связь равна ON, а
результат <стр> операндов 1 и 2 — это истинно
Состояние правой связи должно быть OFF в противном слу­
чае
<сшр> может быть заменено одной из функций сравнения,
которая действительна для заданного типа данных
DT — это тип данных обоих заданных операндов

210

ГОСТ Р МЭК 61131-3—2016

Окончание таблицы 75

Номер Описание Объяснение, символ

Пример —

in t v a lu e l

1 lnt 1
in tv a lu e 2

Если левая связь равна ON и (intvaluel > intvalue2), правая
связь переключается в ON. Как intvaluel. так и intvalue2 от­
носятся к типу данных INT

5Ь Контакт сравнения (перегруженный)
<operand 1>

|< с т р > |

<operand 2>

Состояние правой связи равно ON от одного вычисления это­
го элемента к следующего, когда левая связь равна ON. а ре­
зультат <стр> операндов 1 и 2 равен TRUE
Состояние правой связи должно быть OFF в противном слу­
чав <стр> гложет быть заменено одной из функций срав­
нения. которая действительна для типа данных операндов.
Применяются правила, определенные в подразделе 6.6.1.7

Пример -

valuel

------1"1-------
value2

Если левая связь ON и (valuel <> value2). то правая связь
переключается ON

8.2.5 Катушки
Катушка копирует состояние связи слева от нее на связь справа от нее без измененеия. и сохра­

няет соответствующую функцию состояния или перехода левой связи в соответствующей логической
переменной. Стандартные символы катушек приведены в таблице 76.

Пример — В цепи, приведенной ниже, значение логического выхода всегда TRUE, в то время как
значение выходов c .d u e при завершении вычисления цепи равно значению входа Ь.

I а Ь с d |
+— <) — I I —+— (I — < >—+
I | е I
I + ----------() ----------+

211

ГОСТ Р МЭК 61131-3—2016

Таблица 76 — Катушки

Номер Описание Объяснение, символ

Катушки без фиксации

1 Катушка * * *

- - <) -
Состояние левой связи копируется в связанную логическую
переменную и на правую связь

2 Обратная обмотка * * *
- - (/) -

Состояние левой связи копируется на правую связь. Обрат­
ная величина состояния левой связи копируется в связанную
логическую переменную, то есть, если состояние левой связи
равно OFF. то состояние связанной переменной равно ON, и
наоборот

Катушки с фиксацией

3 Устанавливающая катушка (с фик­
сацией включения)

* * *

- Н е ­
связанная логическая переменная устанавливается в состоя­
ние ON. когда левая связь находится в состоянии ON. и оста­
ется установленной до сброса катушкой RESET

4 Сбрасывающая катушка (с фикса­
цией выключения)

* * *

— (R) —
Связанная логическая переменная сбрасывается в состояние
OFF, когда левая связь находится в состоянии ON и остается
сброшенной до установки за счет катушкой SET

Катушки, чувствительные к переходу

8 Катушка, чувствительная к положи­
тельному переходу

* * *

- “ (Р) -
Состояние связанной логической переменной равно ON от од­
ного вычисления этого элемента до другого, когда распознает­
ся переход левой связи из OFF в ON. Состояние левой связи
всегда копируется в правую связь

9 Катушка, чувствительная к отрица­
тельному переходу

* * *
— (N) —

Состояние связанной логической переменной равно ON от од­
ного вычисления этого элемента до другого, когда распознает­
ся переход левой связи из ON в OFF. Состояние левой связи
всегда копируется в правую связь

8.2.6 Функции и функциональны© блоки
Представление функций, методов и функциональных блоков в языке LD осуществляется со сле­

дующими исключениями:
a) фактические соединения переменной могут альтернативно показываться записью соответству­

ющих данных или переменной вне блока рядом с формальным именем переменной внутри;
b) по крайней мере, один логический вход и один логический выход показывается на каждом бло­

ке. чтобы разрешить поток энергии через блок.

212

ГОСТ Р МЭК 61131-3—2016

8.2.7 Порядок оценки сети
Внутри программного компонента, записанного на LD. сети должны быть оценены в порядке

сверху вниз по мере их появления в релейно-контактных схемах, исключая случай, когда этот порядок
модифицируется элементами управления выполнением.

8.3 Функциональные блоковые диаграммы (FBD)

8.3.1 Общие положения
В подразделе 8.3 определяется графический язык FBD программируемых контроллеров, который

соответствует, насколько это возможно. МЭК 60617-12. В случае, если существует конфликт между
настоящим стандартом и МЭК 60617-12. положения настоящего стандарта будут применяться для про­
граммирования программируемых контроллеров в языке FBD.

8.3.2 Соединение элементов
Элементы языка FBD связаны линиями прохождения сигнала, в соответствии с соглашениями

8.1.4.
Выходы функциональных блоков не соединяются вместе. В частности, конструкция «монтажного

ИЛИ» языка не разрешена в языке FBD: вместо этого требуется заданный в явном виде блок логическо­
го «ИЛИ», как показано в примере, приведенном ниже.

Пример — Логическое ИЛИ/

I а с I
+— I I — + — () - - +
I Ь I I
+ — I I — + I
I I

а) «Монтажное ИЛИ» в языке LD

+------+
а--1 > « 1 |---с
Ь----- 1 I

+ ---------- +

Ь) Функция в языке FBD

8.3.3 Порядок оценки сети
Когда программный компонент, записанный на языке FBD. содержит более одной сети, разра­

ботчик должен предоставить средства, с помощью которых пользователь может определить порядок
вычисления сетей.

213

ГОСТ Р МЭК 61131-3—2016

Приложение А
(обязательное)

Формальная спецификация элементов языка

Синтаксис текстовых языков определен в варианте «расширенной БНФ» (Бэкус-Науровой формы).
Синтаксис этого варианта РБНФ следующий:
Для целей настоящего приложения А, терминальные текстовые символы состоят из соответствующей строки

символов, заключенной в парные одиночные кавычки. Например, терминальный символ, представляемый строкой
символов АВС. представлен посредством АВС'.

Нетерминальные текстовые символы должны быть представлены строками букв нижнего регистра, числами
и символом подчеркивания «_», начиная с буквы верхнего регистра.

Продукционные правила
Правила вывода для текстовых языков имеют форму
non_terminal_symbol: extended_structure;
Данное правило можно прочитать как: «non_terminal_symbol может включать extended slructure».
Расиширенные структуры можно конструировать в соответствии со следующими правилами:
любой терминальный символ — расширенная структура;
любой нетерминальный символ — расширенная структура.

Если S — расширенная структура, то следующие выражения также являются расширенными структурами:
(S) — означает собственно S:
(S)‘ — замыкание, означающее нуль или большее число конкатенаций S:
(S)+ — замыкание, означающее одно или большее число сцеплений S;
(S)? — вариант, означающий нуль или одно появление S.

Если S1 и S2 — это расширенные структуры, тогда следующие выражения являются расширенными
структурами:

S1 | S2 — изменение, означающее выбор S1 или S2:
S1 S2 — сцепление, означающее S1. за которым следует S2;
Сцепление предшествует изменению, то есть
S1 | S2 S3 — эквивалентно S1 | (S2 S3). S1 S2 | S3 — эквивалентно { S1 S2) | S3.
Если S — это расширенная структура, которая обозначает одиночный символ или изменение одиночных

символов, тогда следующее также является расширенной структурой:
~(S) — отрицание, означающее любой одиночный символ, который не находится в S. Отрицание предше­

ствует замыканию или опции, то есть
-(S)* — эквивалентно (-(S))*.

Следующие символы используются для обозначения определенных символов или классов символов:
. — любой одиночный символ;
V — символ одиночной кавычки;
\п — новая строка:
\г — возврат каретки;
\t — табулятор.

Комментарии в грамматике начинаются двойной косой чертой и заканчиваются в конце строки:
У/ Это комментарий

//Таблица 1 — Наборы символов
// Таблица 2 — Идентификаторы

А'..-Z' |
•0\.'9';
1Г..Т;

214

Буква
Цифра
Бит

ГОСТ Р МЭК 61131-3—2016

Odal_Digit : О '.Т;
HexJDigit : 0'..'9'1 'A'..'F;
Идентификатор : Буква (Буква ! Цифра)*;

// Таблица 3 — Комментарии
Комментарий . Ч Г ~ ('W | V)* V ? Лп' {$channel=HIDDEN:}

| '{*' (options{greedy=false;}:.)* '*)' {Schannel=HIDDEN;}
| V (opt»ons{greedy=false;}:.)* 'V {$channel=HIDDEN;};

WS : (' ' | V | V | An’) {Schannel=HIDDEN:}; I I пробел

EOL : Лп';

// Таблица 4 — Прагма

Прагма ; ‘f (options{greedy=false;}:.)*'}' {$channel=HIDDEN;};

// Таблица 5 — Числовые литералы

Константа
Numefic_Litera!
IntJJteral
Unsignedjnt

Numeric_Literal | Char_Literal | Time_Literal | Bit_Str_Literal 1 Bool_Literal;
lnt_Literal | Real_Literal;
< lnl_Type_Name ‘I f)? (Signedjnt | Binary Jnt | Oclal_lnt | Hex_lnt);
Digit (? Digit)*;

Signedjnt
BinaryJnt

(|)? Unsignedjnt;
■2tf < ? B it)+;

Octal Jnt '8#' (? Octal_Digit)+;
Hexjnt
Real_Literal
Brt_Str_Literal
Bool_Literal

•16#' (? Hex_Digit)+;
(Real_Type_Name)? S ignedjntUnsignedjnt (E' Signedjnt)?;
(Multibits_Type_Name ’#')? (Unsignedjnt | Binary lnt | OctaIJnt | H ex jn t);
(Bool_Type_Name)? ('O' | T | 'FALSE' | TRUE');

//Таблица 6 — Символьно-строковые литералы
//Таблица 7 — Двухсимвольные комбинации в символьных строках

Char_Literal
Char_Str
S_Byte_Char_Str
D_Byte_Char_Str
S_Byte_Char_Value
D_Byte_Char_Value
Common Char Valu

: ('STRING#')? Char_Str;
: S_Byte_Char_Str | D_Byte_Char_Str;
: V S_Byte_Char_Value + V;
: D_Byte_Char_Value +
: Common_Char_Value | '$\“ | V | ■$' Hex_Digit Hex_Digit;
: Common J3harJ/alue | Л" | '$»' | ■$' Hex Digit Hex_Digit Hex_D»git Hex_Digit;

: • Т Г | •#' | •%* | &' | 'С..'/' | '0'..'9‘ | | А \ .Т | f - * " I V - * I T > ‘
| •$$' | $L‘ | SN' | SP' | $R' | $T';

//любой печатаемый символ, за исключением S. 'and'

II Таблица 8 — Литералы длительности
// Таблица 9 — Литералы даты и времени суток

TimeJJteral : Duration | Time_Of_Day | Date | Date_And_Time;
Длительность ; (Time_Type_Name | Т | 'LT') '#' ('+ ' |)? Интервал;
Fix_Point : Unsignedjnt (V Unsignedjnt)?;
Интервал : Сутки | Часы | Минуты | Секунды | Миллисекунды | Микросекунды

| Наносекунды;
Сутки : (Fix_Point *сГ > | (Unsigned_lnt'd' ?)? Часы?;

215

ГОСТ Р МЭК 61131-3—2016

Часы
Минуты
Секунды
Миллисекунды
Микросекунды
Наносекунды
Time_Of_Day
Daytime
Day_Hour
Day_Mmute
Day_Second
Дата
DateJJteral
Год
Месяц
День
Date_And_Time

: (Fix_Point 'h ') | (Unsignedjnt h ' ?)? Минуты?;
: (Fix_Point'm') | (Unsignedjnt m' ?)? Секунды ?;
: (Fix_Point s ') | < Unsignedjnt 's' *_* ?)? Миллисекунды?;
: (Fix_Point 'ms') | (Unsigned_lnt 'ms''_' ?)? Микросекунды?;
: (Fix_Point 'us') | (Unsigned_lnt us' *_' ?)? Наносекунды?;
: Fix_Point 'ns';
: (Tod_Type_Name | 'LTIME_OF_DAY') Daytime:
: Day_HourDay_Minute Day_Second;
: Unsigned_lnt;
: Unsignedjnt;
: Fix_Point;
: (Date_Type_Name | 'O' | LD') '#' Date_Literal;
; ГодМесяц День:
: Unsignedjnt;
: Unsignedjnt;
: Unsignedjnt;
: (DT_Type_Name | LDATE_AND_TIME') 'ft' DateJJteral Daytime;

// Таблица 10 — Элементарные типы данных

Data_Type_Access
Elem_Type_Name

Numeric_TypeJ\lame
lnt_Type_Name
Sign_lnt_Type_Name
Uns»gn_lnt_Type_Name
Real_TypeJMame
String_Type_Name
Time_T ype_Name
Date_Type_Name
Tod_Ty pe_Na me
DT_Type_Name
Brt_Str_Type_Name
Bool_Type_Name
Multibits_Type_Name

: Elem_Type_Name | Derived_Type_Access;
; Numeric_Type_Name | Bit_Str_Type_Name
| String_Type_Name | Date_Type_Name | Time_Type_Name;

lnt_Type_Name | Real_Type_Name;
SignJnt_Type_Name | Uns*gn_lnt_Type_Name:
SINT | INT | 'DINT | 'LINT;
USINT' | UINT' | UDINT' | 'ULINT';
REAL' | LREAL';
STRING' (T Unsigned_lnt']')? | WSTRING' ('[' Unsignedjnt']')? | 'CHAR' | WCHAR';
TIME' | 'LTIME';
DATE- 1 LDATE';
TIME_OF_DAY' | 'TOD' | LTOO';
DATE_AND_TIME' | DT | LDT;
Bool_Type_Name | Mullibits_Type_Name:
'BOOL':
'BYTE' | WORD' | DWORD' | 'LWORD':

//Таблица 11 — Объявление определяемых пользователем типов данных и инициализации

Derived_Type_Access : Singte_Elem_Type_Access | A^ay_Type_Access | Stnjct_Type_Access
| String_Type_Access | Class_Type_Access | Ref_Type_Access
| lnterface_Type_Access;

String_Type_Access ; (Namespace_Name)* String_Type_Name;
Single_Elem_Type_Access : Simple_Type_Access | Subrange_Type_Access

| Enum_Type_Access;
Simple_Type_Access : { Namespace J4ame)* Simple_Type_Name;
Subrange_Type_Aocess : (Namespace Name)* Subrange_Type_Name;
Enum_Type_Access : { Namespace Name '.')* Enum_Type_Name;

216

ГОСТ Р МЭК 61131-3—2016

Array_Type_Access
Struct_Type_Access
Simple_Type_Name
Subra nge_Type_Na me
Enum_Type_Name
Array_Type_Name
Struct_Type_Name
Data_Type_Decl
Type_Decl

Simp!e_Type_Decl
Simple_SpecJnit
SimpieSpec
Subrange_Type_Decl
Subrange_Spec_lnit
Subrange_Spec
Subrange
Enum_Type_Decl

Named_Spec_lnit

Enum_Spec_lnit

Enum_Value_Spec
EnumJ/alue
Array_Type_Decl
Array_Spec_lnit
Array_Spec

ArrayJnit
Array_Elem_lnit
Array_Elem_lnit_Value
Struct_Type_Ded
Struct_Spec
Struct_SpecJnit
Struct_Decl
Struct_Elem_Ded

Struct_Elem_Name
Structjnit
Struct_ElemJnit

Str_Type_Decl

: { Namespace_Name 7)* Array_Type_Name;
: { Namespace_Name 7)* Struct_Type_Name;
: Идентификатор:
: Идентификатор:
: Идентификатор:
: Идентификатор:
: Идентификатор:
: TYPE' (Type_Ded >* 'END_TYPE';
: Simple_Type_Decl | Subrange_Type_Decl | Enum_Type_Decl
I Array_Type_Ded | Struct_Type_Ded
| Str_Type_Decl | Ref_Type_Ded;
: Simple_Type_Name Simple_Spec_lnit;
: Simple_Spec (':=' Constant_Expr)?;
: Elem_Type_Name | Simple_Type_Access;
: Subrange_Type_Name V Subrange_Spec_lnrt;
: Subrange_Spec'(' ':=' SignedJnt)?;
: lnl_Type_Name ’(' Subrange ')' | Subrange_Type_Access:
: Constant_ExprConstant_Expr.
; Enum_Type_Name ((Elem_Type_Name ? Named_Spec_lnit)
| Enum_Spec_lnit);
: ■(' Enum_Value_Spec (Enum_Value_Spec)* ■)'
(':=' Enum_Value)?;
: { (’(' Identifier (*.* Identifier)* ') ') | Enum_Type_Access)
(•;=' Enum_Value)?;
: Identifier ((lnt_Literal | Constant_Expr))?;
: { Enum_Type_Name)? Identifier;
: Array_Type_NameArray SpecJmt:
: Array_Spec (Array J n it)?;
: Array_Type_Access | ARRAY' f Subrange (7 Subrange)*']' 'OF' Data_Type.
Access;
: T Array_Elem_lnit (7 Array_Elem_lnit)• 'J‘;
: Array_Elem _lnit_Value j Unsigned J n t '(' Array_Elem_lnit_Value ?
: Constant_Expr | Enum_Value | Structjnit | Array_lnit:
: Struct_Type_Name 7 Struct_Spec:
: Struct_Decl | Struct_Spec_lnit;
: Stnjct_Type_Access (’:=* StrudJnit)?;
: STRUCT OVERLAP' ?(Strucl_Elem_Ded >+ END_STRUCT;
: StructJElemJtame (Located_At Multibit_Part_Access ?)? *:'
(Simple_Spec_lnit | Subrange_Spec_lnit | Enum_Spec_lnit
| Array_Spec_lnit | Struct_SpecJnit);
: Identifier;
: •(* Struct_ElemJnit ('.' Struct_ElemJnit)*
: Struct_Elem_Name ':=' (Constant_Expr | Enum_Value | An-ay_lnit
| Structjnit | Ref_Value);
: String_Type_Name Stnng_Type_Name (':=' Char_Str)?;

217

ГОСТ Р МЭК 61131-3—2016

// Таблица 16 — Прямо представленные переменные

Direct_Variable : •%' (Т | ‘Q-1 М ') (X | В-1 W | О* | г ’)? Unsigned_lnt { V Unsigned Jnt)*;

// Таблица 12 — Операции со ссылками

Ref_Type_Decl
Ref_Spec_lnit
Ref_Spec
Ref_Type_Name
Ref_Type_Access
Ref_Name
Ref_Value
Ref_Addr

Ref_Name'
Ref Deref

Ref_Type_Name Ref_Spec_lnit;
Ref_Spec (= ' Ref_ Value)?:
REF_TO' + Data_Type_Access;
Идентификатор;
< Namespace_Name 7)‘ Ref_Type_Name.
Идентификатор;
Ref_Addr | NULL1;
■REF''(' (Symbo!ic_Vanable | FB_lnstance_Name

| ClassJnstance_Name) •)'; Ref_Assign
: =' (Ref_Name | Ref_Deref | Ref_Value);
; Ref_Name ,A' +;

//Таблица 13 — Объявление переменных/Таблица 14 — Инициализация переменных

Переменная
Symbo!ic_Variable
Var_Access
Variable_Name
Multi_Elem_Var
SubscriptJJst
Индекс
Strucl_Va riable
Struct_Elem_Select
lnput_Deds
lnput_Ded
Edge_Ded
Var_Decl_lnit

: Direct_Vanable | Symbolic_Variable;
: ((‘THIS' V) | (Namespace_Name 7)+)? { Var_Access | Multi_Elem_Var):
: Variable_Name | Ref_Deref;
: Идентификатор;
: Var_Access (Subscript_List | Strucl_Variab!e)+:
: *f Subscript (7 Subscript)* ■]';
. Выражение;
: 7 Struct_Elem_Seied:
: Var_Access;
: VARJNPUr (RETAIN' | NON_RETAIN')? { lnput_Ded 7) ' END_VAR';
: VarJDecI Jnit | Edge_Decl | Array_Conform_Decl:
; Variable_ListBOOL' ('R_EDGE‘ | F_EDGE');
: Vanable_List7 (Simple_Spec_lnit | Str_Var_Decl | Ref_Spec_lnit)
| Array_Var_DedJnit | Struct_Var_Ded_lnit
| FB_Ded_lnit | lnterface_Spec_lnit;

Ref_Var_Decl : Variable_List Ref_Spec;
lnterface_Var_Decl : VariableJJst 7 lnterface_Type_Access;
Variable_List : Variable_Name (7 Variab)e_Name)*;
Array_Var_Ded _l nit ; VariableJJst ,:’ Array_Spec_lnit;
Array_Conformand : ARRAY- T - (7 “ *:)' T OF Data_Type_Access;
Array_Conform_Decl : Variable_List 7 Array_Conformand:
Struct_Var_Ded_lnit : Variable_List 7 Struct_Spec_lnit;
FB_Decl_No_lni : FB_Name (FB_Name)* 7 FB_Type_Access:
FB_Decl_lnit : FB_Decl_No_lnit (*;=' Strvct_lnit)?;
FB_Name ; Идентификатор;
FB_lnstance_Name : (Namespace_Name)* FB_Name-л' *;
Output_Decls : VAR_OUTPUr ('RETAIN' | NON_RETAIN')? { Output_Decl V)* END_VAR';
Output_Decl : Var_Decl_lnit | Anay_Conform_Ded;
ln_Out_Decls : VAR_IN_OUT' (ln_Out_Var_Ded 7)* END_VAR';

218

ГОСТ Р МЭК 61131-3—2016

ln_Out_Var_Dec!
VarJDecI
Array_Var_Ded
Struct_Var_Ded
Var_Decls
Retain_Var_Dec!s
Loc_Var_Deds

Loc_Var_Ded
Temp_Var_Decls
External J/arJDecIs
External_Decl

Gtobal_Var_Name
Gk>bal_Var_Deds
Gtobal_Var_Dad
Globa l_Var_S pec
Loc_Var_SpecJnit

Located_At
Str_Var_Ded
S_Byte_Str_Var_Decl
S_Byte_Str_Spec
D_Byte_Str_Var_Ded
D_Byte_Str_Spec
Loc_Partly_Var_Decl
Loc_Partly_Var
Var_Spec

: Var_Decl | Array_Conform_Decl | FB_Ded_NoJnit:
: VariableJJst':' (SimpleJSpec | Str_Var_Decl | Array_Var_Decl | Strud_Var_Ded };
: VariableJ-ist':'Array_Spec;
: Variable J_ist Struct_Type_Access;
: VAR' CONSTANT' ? Access_Spec ? (Var_D eclJn it)* 'END_VAR';
: VAR' RETAIN'Access_Spec ? < Var_DedJnit *;')* 'END_VAR‘;
: 'VAR' (CONSTANT' | 'RETAIN' | 'NON.RETAIN')?
(Loc_VarJ3ecl)* END_VAR';
: Variable_Name ? Located_At *:* Loc_Var_SpecJnit;
: -VAR_TEMP' ((Var_Decl | Ref_Var_Ded | lnterface_Var_Decl)) * END_VAR':
: VAR_EXTERNAL' CONSTANT' ? (Extemal_Decl Г)* ‘END_VAR‘;
: Global_Var_Name
(Simple_Spec | Array_Spec | Strucl_Type_Access | FB_Type_Access | Ref_Type_
Access);
: Идентификатор;
: VAR_GLOBAL' (CONSTANT'] RETAIN')? (Global_Var_Decl';')* END_VAR';
; Global_Var_Spec (Loc_Var_Spec_lral | FB_Type_Access);
: (Gtobai_Var_Name (Gtobal_Var_Name)*) | (Gtobal_Var_Name Located_At):
; Simple_SpecJnit | Array_Spec_lnit | Struct_Spec_lnit
| S_Byle_Str_Spec | D_Byte_Str_Spec:
; AT' Direct_Variable:
; S_Byte_Str_Var_Decl | D_Byte_Slr_Var_Decl;
; Varable_List';' S_Byte_Str_Spec;
: STRING' (t UnsignedJnt'}')? (': =' S_Byte_Chaf_Str)?;
: Vanable_List D_Byte_Str_Spec;
; -WSTRING' (Unsigned J n t ']')? {':=' D_Byte_Char_Str)?;
: VAR' < 'RETAIN' | NON_RETAIN')? Loc_Partly_Var * 'END_VAR';
; Var«ab!e_Name 'AT' (T | 'O' | M ') V Var_Spec •;*:
; Simple_Spec] Anay_Spec | Stmd_Type_Access
| (STRING | WSTRING') ('[' Unsigned J n t ']')?;

II Таблица 19 — Объявление функции

Func_Nan>e : Std_Func_Name | Derived_Func_Name;
Func_Access : (Namespace_Name)* Func_Name;
Std_Func_Name : TRUNC' | ABS | SORT | 'LN' | 'LOG' | EXP'

| 'SIN' | COS' | TAN' | 'ASIN' | 'ACOS' | ATAN' | 'ATAN2
| ADD' | SUB' | MUL' | DIV' | MOD' | ЕХРГ | MOVE'
| SHL' | 'SHR' | ROL' | ROR'
| AND' | 'OR' | 'XOR' | 'NOT'
| 'SEL' | MAX' | 'MIN' | 'LIMIT' | 'MUX'
| GT' | 'GE' | EQ' | -LE' | LT' | NE'
| 'LEN' | LEFT | 'RIGHT' | MID' | CONCAT' | INSERT
| DELETE' | 'REPLACE' | 'FIND';

// неполный перечень
Derived_Func_Name ; Идентификатор;

219

ГОСТ Р МЭК 61131-3—2016

Func_Ded

IO_Var_Decls
Func_Var_Decls
Func_Body

: 'FUNCTION' Derived_Func_Name { Data_Type_Access)? Using Directive *
(lO_Var_Dac!s | Func_Var_Decls | Temp_Var_Deds)* Func_Body END_FUNCTION';
: lnput_Deds | Output DecIs | ln_Out_Decls:
: Exlernal_Var_Decls | Var_Deds;
: Laddar_Diagram | FB_Diagram | lnstruction_List | Stmt_List
| Other_Languages;

//Таблица 40 — Объявление типа функционального блока
//Таблица 41 — Объявление экземпляра функционального блока

FB_Type_Name : Std_FB_Name | Derived_FB_Name;
FB_Type_Access : (NamespaceName 7) ' FB_Type_Name:
Std_FB_Name : SR' | 'RS' | 'R_TRIG' | 'F_TRIG' | 'CTU'| 'CTD' | 'CTUD' | 'TP' | TON' | TOF';

II неполный перечень
Derived_FB_Name : Идентификатор;
FB_Decl ; 'FUNCTION_BLOCK' ('FINAL' | ABSTRACT)?

Derived FB Name Using DirecJive *
(EXTENDS' (FB_Type_Access | Class_Type_Access))?
(IMPLEMENTS' lnterface_Name_List)?
(FB_IO_Var_Decls | Func_Var_Deds | Temp_Var_Decls | Other_Var_Decls)*
(Method_Decl)* FB_Body ? END_FUNCTION_BLOCK';

FBJO_Var_Deds
FB_lnpul_Decls
FBJnput_Decl
FB_Outpul_Deds
FB_Oulput_Ded
OtherVarDeds
No_Retam_Var_Decls
FB_Body

FB_lnput_Decls | FB_Output_Decls | ln_Ou(_Deds;
VAR_INPUT ('RETAIN' | NON_RETAIN')? (FB_lnput_Ded ;')* 'END_VAR';
Var_Decl_lnit | Edge_Decl | Anay_Conform_Decl;
VAR_OUTPUT ('RETAIN' | NON_RETAIN')? { FB_Outpot_Ded)* END_VAR';
Var_Decl_lnit | Array_Conform_Decl:
Relain_Var_Deds | No_Retain_Var_Decls | Loc_Par1ly_Var_Decl;
VAR' NON_RETAIN' Access_Spec ? (Var_Ded J n i t)* END_VAR';
SFC) Ladder_Diagram | FB_Diagram | lnslmction_Lisl | Stmt_Lisl | CKher_Languages;

l.tethod Ded METHOD' Access_Spec (FINAL' | ABSTRACT)? 'OVERRIDE' ?
Method_Name (Data_Type_Access)?
(IO_Var_Deds | Func_Var_Decls | Temp_Var_Deds)’ Func_Body END_METHOD';

Method_Name : Идентификатор;

//Таблица 48 — Класс
//Таблица 50 — Текстовый вызов методов — Формальный и неформальный перечень параметров

Class_Decl

Class_Type_Name
Class_Type_Access
Class_Name
Class_lnstance_Name
lnterface_Decl

: CLASS' < 'FINAL' | 'ABSTRACT')? Class_Type_Name Using_Directive *
(EXTENDS' Class_Type_Access)? ('IMPLEMENTS' lnterface_Name_List)?
(Func_Var_Decls | Other_Var_Deds)* (Method_Decl)* END_CLASS';
; Идентификатор;
: (Namespace Name)* Class_Type_Name;
; Идентификатор;
: (Namespace_Name)* Class_Name A’ *:
: 'INTERFACE' lnterface_Type_Name Using_Directive *
(EXTENDS' lnlerface_Name_List)? Method_Prototype * ENDJNTERFACE';

Method.Prototype : METHOD' Melhod_Name (Dala_Type_Access)? IO_Var_Decls * END_METHOD';
lnterface_Spec_lnit : Variable_List (’:=' lnterface_Value >?;
lnterface_Value : Symbolic_Variable | FB_lnstance_Name | ClassJnstance_Name | NULL';

220

ГОСТ Р МЭК 61131-3—2016

lnterface_Name_List
lnterface_Type_Name
lnterface_Type_

Access

: lnterface_Type_Access (7 lnterface_Type_Access)*;
: Идентификатор;
: (Namespace Name 7)* lntefface_Type_Name;

lnterface_Name
Access_Spec

: Идентификатор;
: PUBLIC' | PROTECTED' | PRIVATE' | 'INTERNAL';

// Таблица 47 — Объявление программы

Prog_Decl . PROGRAM' Prog_Type_Name
(IO_Var_Decls | Func_Var_Decls | Temp_Var_Decls | OtherVarDecIs
| Loc_Var_Deds | Prog_Access_Decls)• FB_Body END_PROGRAM';

Prog_Ty pe_Na me : Идентификатор;
Prog_Type_Access
ProgAccessDecIs
Prog_Access_Decl

: (Namespace_Name 7)* Prog_Type_Name;
: VAR_ACCESS' (Prog_Access_Ded 7)* END.VAR';
: Access_Name 7 Symbolic_Variade Multibit_Part_Access ?
7 Data_Type_Access Access_Diredion ?;

//Таблица 54—61 Последовательная функциональная схема (SFC)

SFC : Sfc_Network +.
Sfc_Network lnitial_Step (Step | Transition | Action)*;
lnitial_Step
Step
Step_Name
Action_Qualifier
Action_Time

INITIAL_STEP' Step_Name r1 (Action_Association 7)* END_STEP;
STEP' Step_Name 7 (Adion_Association *;*)* END_STEP';
Идентификатор;
N' | R' | 'S' | 'P' | (('L' | 'D' | SO' | 'DS' | 'SL')'.' Action_Time);
Duration | Vanable_Name;

lndicator_Name Variable_Name:
Переход : TRANSITION' Transition_Name ? (f PRIORITY' Unsigned Jn t ')•)?

FROM' Steps TO' Steps 7 Transition_Cond 'END_TRANSITION';
Transition_Name : Идентификатор;
Шаги Step_Name | '(’ Step_Name (Step_Name)+
Transition_Cond ':=' Expression *;* 17 < FBD_Net«ork | LD_Rung) | *:=' IL_Simple_lnst;
Action ACTION'Action_Name 7 FB_Body END_ACTION’;

// Таблица 62 — Конфигурация и определение ресурса

Config_Name : Идентификатор;
Resource_Type_Name : Идентификатор;
Config_Decl : CONFIGURATION' Config_Name Gtobal_\fer_Deds ?

Resource_Decl

(Single_Resource_Decl | Resource_Ded +) Access_Decls ? Config_lnit ?
; END_CONFIGURATION';
; RESOURCE' Resource_Name ON' Resource_Type_Name
Global_Var_Decls ? Single_Resource_Decl
'END_RESOURCE':

Single_Resource_Ded : (Task_Config 7)* (Prog_Config)+;
Resource_Name : Идентификатор;
Acoess_Decls
Aocess_Ded

; 'VAR_ACCESS‘ (Access_Ded 7)* END_VAR';
: Access_Name 7 Access_Path Data_Type_Access Access_Direction ?;

221

ГОСТ Р МЭК 61131-3—2016

Access_Path

Gk>bal_Var_Access
AccessName
Prog_Output_ Access
Prog_Name
Aocess_Direction
Task_Config
TaskName
Task Inil

Data_Source
Prog_Conf»g

Prog_Conf_Elems
ProgConfElem
FB_Task
Prog_Cnxn
ProgDataSource
Data_Sink
Configjnit
Conng_lrvst_lnit

: { Resource_Name)? Direct_Variable
| (Resource_Name 7)? (Prog_Name 7)?
((FB_lnstance_Name | Class_lnslance_Name) 7 >* Symbol*c_Variable;
: (ResourceName)? Global_Var_Name (Struct_Elem_Name)?;
: Identifier;
: Prog_Name Symbolic_Variable;
; Identifier;
; READ_WRITE' | READ_ONLY‘;
; TASK' Task_Name Task_lnit;
; Identifier;
: ‘C (’SINGLE' ';=' Data_Source V)?
(INTERVAL';-’ Data_Source V)?
PRIORITY- •;=' Unsignedjnt •)';
; Constant | Global_Var_Access | Prog_Output_Access | Direct_Vanable;
: PROGRAM' (RETAIN-1 NON RETAIN')? Prog_Name (WITH' Task_Name)?
Prog_Type_Access (■(" Prog_Conl_Elems)')?:
: Prog_Conf_Elem (Prog_Conl_Elem)*;
: FB_Task | Prog_Cnxn;
; FBJnstance_Name WITH" Task_Name;
; Symbolic_Variable Prog_Data_Source | Symbolic_Variable '=>' Data_Sink;
; Constant | Enum_Value | Gk)bal_Var_Access | Direct_Variable;
; Global_Var_Access | Direct_Variable;
: VAR_CONFIG' (Configjnstjnit 7)* END_VAR';
; Resource_Name V Prog_Name V (< FB_lnstance_Name
| Class_lnstance_Name) V)*
(Variabte_Name Located_At ? Loc_Var_Spec_lnit
I ((FB_lrvstance_Name FB_Type_Access)
J (Class_lnstance_Name 7 Class_Type_Access)) ";=' StructJnit);

II Таблица 64 — Пространство имен

Namespace_Decl : NAMESPACE" INTERNAL' ? Namespace_H_Name Usir>g_Directive *
Namespace_Elements
•END_NAMESPACE';

Namespace_Elements

Namespace_H_Name
Namespace_Name
UsingDirective
POU_Decl

; (Data_Type_Decl | Func_Decl | FB_Decl
| Class_Decl | lnterface_Decl | Namespace_DecJ)+;
. Namespace_Name (7 Namespace_Name)*;
:Иденгификагор;
. USING' Namespace_H_Name (Namespace_H_Name)*
. Using_Directive *
(G!obal_Var_Decls | Data_Type_Decl | Access_Decls
| Func_Decl | FB_Decl | Class_Ded | lnterface_Decl
| Namespace_Decl)+;

222

ГОСТ Р МЭК 61131-3—2016

// Таблица 67—70 Перечень инструкций (IL)

lnstruction_List : ^ Ins truc tion +;

ILJnstruction : (IL_Label *:')? { IL_Simple_Operation | IL_Expr | IL_Jump_Operation
| ILJnvocation | IL_Formal_Func_Call
| IL_Return_Operator)? EOL +;

IL_SimpteJnst
IL_Label
IL_Simple_Operation
IL_Expr
IL_Jump_Operation
ILJnvocation

IL_Simple_Operation | IL_Expr | IL_Formal_Func_Call;
; Идентификатор;
; IL_Simp)e_Operator IL_Operand ? | Func_Access IL_Operand_List ?;
: IL_Expr_Operator ‘(‘ IL_Operand ? EOL + IL_SimpleJnst_Ust ? ')';
; IL_Jump_Operator IL_Label;
; IL_Call_Operator (((FB_lnstance_Name | Func_Name
| Method_Name | THIS1
| ((‘THIS’ V ((FB_lnstance_Name | Class_lnstance_Name))*) Method_Name))
(•('((EOL + IL_Param_List ?) | IL_Operand_List ?)*)*)?) | SUPER1 *f 7);

IL_Formal_Func_Call ; Func_Access '(' EOL + IL_Param_List ?
IL_Operand
IL_Operand_List
IL_Simpte_lnst_List
I L_Simpte _l nstruction
IL_Param_List

: Constant | Enum_Value | Variable_Access;
: IL_Operand (IL_Operand)*;
: IL_Simpte_lnstruction +;
; (IL_Simple_Operation | IL_Expr | IL_Formal_Func_Call) EOL +;
: IL_ParamJnst * IL_Param_LastJnst;

IL_Param_lnst
IL_Param_Last_lnst

: (IL_Param_Assign | IL_Param_Out_Assign) ' / EOL +;
: (IL_Param_Assign | IL_Param_Out_Assign) EOL +;

IL_Param_Assign : IL_Assignment (ILJDperand | (*(' EOL + IL_Simple_lnst_Ust') ')) ;

IL_Param_Out_Assign : IL_Assign_Out_Operator Variable_Access;

IL_Simpte_Operator : 'LD' | ‘LDN1 | ’ST' | STN' | 'ST?' | NOT | 'S' | R1

IL_Expr_Operator

| 'S I ' | ‘R111 'CLK11 CU11 "CD11 ‘PV
| ’ IN11 PT11 IL_Expr_Operator;

; "AND11 •&' | ‘OR11 "XOR" | 'ANDN' | '&N11 ORN1
| 'XORN' | AD D 11 ‘SUB’ | ‘MUL11 DIV'
| MOD11 G T | -GE11 ‘EQ11 LT11 'LE11 "NE";

IL_Assignment

IL_Assign_Out_
Operator

IL_CaD_Operator

IL_Retum_Operator

IL_Jump_Operator

; Variable_Name

; ‘NOT1 ? Variable_Name

: CAL11 'CALC' | "CALCN1;

; RT11 RETC11 RETCN";

; ‘JMP11 *JMPC* | ‘JMPCN1;

//Таблица 71—72 Язык структурированного текста

Expression : Xor_Expr ("OR1 Xor_Expr)*;

ConstantJExpr : Выражение;

//константное выражение за время компиляции должно оценивать до постоянного
значения

Xor_Expr ; And_Expr (XOR'And_Expr)*;

And_Expr

Compare_Expr

Equ_Expr

Add_Expr

; Compare_Expr { (&' | AND1) Conipare_Expr)*;

: (Equ_Expr ((•= ' | •<>’) Equ_Expr)*);

: Add_Expr ((•< • | *>' | •<=' | •>=•) Add_Expr)*;

: Term ((V |) Term)*;

223

ГОСТ Р МЭК 61131-3—2016

Term
Power_Expr
Unary_Expr
Primary_Expr
Variable_Access

: Power_Expr (- | T | MOD' Pov,er_Expr)*;
: Unary_Expr ('**' Unary_Expr)*;
; | '+' | 'NOT ? Primary_Expr;
: Constant | Enum_Value | Variabte_Access | Func_Call | Ref_Value| '(' Expression ')':
: Variable Multibit_Part_Access ?;

Muitibit_Part_Access : V (Unsigned_lnt | '%' < 'X' | В' | 'W' | D' | Г) ? U n s ig n e d jn t}:

Func_Call : Func_Access'(’ (Param_Assign { Param_Assign)*)? •)';
Stmt_List
Stmt

: (Stmt ? 4)*:
: Assign Stmt | Subprog_Ctrl_Stmt | Selection_Stmt | lteration_Stmt;

AssignStmt
Assignment_Attempt
Invocation

: (Variable Expression) | Ref_Assign | Assignment_Attempt;
; (Ref_Name | Ref_Deref) ?=' (Ref.Name | Ref_Deref | Ref_Value);
: (FB_lnstance_Name | Method_Name | 'THIS'
| ((THIS' 7)? (((FB_lnstance_Name | Class_lnstance_Name)) ♦) Method_Name))

(Param_Assign (Param_Assign)*)?
Subprog_Ctrt_Stmt
Param_Assign

; Func_Call | Invocation | SUPER' ('')' | RETURN';
: ((Variable_Name ':=')? Expression) | Ref_Assign
| (NOT ? Variable_Name '=>' Variable);

Selection_Stmt : IF_Stmt | Case_Stmt;
IF_Stmt : 'IF' Expression THEN' StmtJJst (ELSIF' Expression 'THEN'

Stmt_Ust)* (ELSE' Stmt_List)?
ENDJF;

Case_Stmt ; CASE' Expression OF' Case_Selection + ('ELSE' S tm tJjst)? END_CASE';
Case_Selection
Case_List

: Case_List 7 Stmt_List;
;Case_List_Elem (Case_List_Elem)*;

Case_List_Etem : Subrange | Constant_Expr.
lteration_Stmt ; For_Stmt | While_Stmt | Repeat_Stmt | EXIT' | CONTINUE';
For_Stmt
Control_Variable

: FOR' ControLVariable For_List DO' Stmt_List END_FOR';
: Идентификатор:

For_List ; Expression TO' Expression ('BY' Expression)?;
While_Stmt ; WHILE' Expression DO' StmtJjst END_WHILE';
Repeat_Stmt ; REPEAT' Stmt_List UNTIL' Expression END_REPEAT;

//Таблица 73—76 Элементы графических языков

LadderDiagram : LD_Rung
LD_Rung
FB_Diagram
FBD_NeUvork

: «синтаксис для графических языков здесь не показан»;
: FBD_Network *;
: «синтаксис для графических языков здесь не показан»;

// Здесь не рассматривается
Other_Languages : «синтаксис для других языков здесь не показан»;

224

ГОСТ Р МЭК 61131-3—2016

Приложение В
(справочное)

Перечень основных изменений и расширений третьего издания

Настоящий стандарт полностью совместим с МЭК 61131-3. Следующий перечень показывает основные из­
менения и расширения:

Редакционные исправления: Структура, нумерация, порядок, формулировки, таблицы свойств, термины и
определения, такие как класс, метод, ссылка, сигнатура.

Формат таблицы соответствия.
Новые основные свойства:
- типы данных с явно выраженным типом размещения с именованными значениями.
- элементарные типы данных:
- ссылка, функции и операции со ссылкой:
- проверка ограниченного доступа к ANY_BIT;
- ARRAY переменной длины:
- присваивание начального значения;
- правила преобразования типа: неявная — явная функция — правила вызова, без значения, возвращаемо­

го функцией:
- функции преобразования типов численных данных, поразрядных данных и т. д.;
- функции, чтобы связать и разделить время и дату:
- класс, включая метод, интерфейс и т. д.;
- обьектно-ориентированный FB. включая метод, интерфейс и т. д.;
- пространства имен;
- структурированный текст CONTINUE и т. д.;
- релейно-контактные схемы. Контакты для сравнения (типизированные и перегруженные):
приложение А — Формальная спецификация для элементов языка.
Удаления (информативных частей):
- приложение — Примеры:
- приложение — Совместимость с МЭК 61499.
Депрекации:
- восьмеричный литерал;
- использование прямо представленных переменных в теле программных компонентов и методов;
- перегруженное усечение TRUNC;
- перечень инструкций (IL);
- «индикаторная» переменная блока действий.

225

ГОСТ Р МЭК 61131-3—2016

Приложение ДА
(справочное)

Сведения о соответствии ссылочных международных стандартов
национальным стандартам Российской Федерации

Таблица ДА.1

Обозначение ссылочного
международного стандарта

Степень
соответствия

Обозначение и наименование соответствующего
национального стандарта

МЭК 61131-1 ю т ГОСТ Р МЭК 61131-1—2016 «Контроллеры программируе­
мые. Часть 1. Общая информация»

МЭК 61131-5 — *

ИСО/МЭК 10646:2012 — *

ИСО/МЭК/1ЕЕЕ 60559 — •

‘Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать
перевод на русский язык данного международного стандарта. Перевод данного международного стандарта на­
ходится в Федеральном информационном фонде технических регламентов и стандартов.

Примечание — В настоящей таблице использовано следующее условное обозначение степени
соответствия стандартов:

- ЮТ — идентичные стандарты.

226

Библиография
ГОСТ Р МЭК 61131-3—2016

IEC 60050 (все части). International Electrotechnical Vocabulary (доступен на сайте http:/Mww.electropedia.org)

IEC 60848. GRAFCET specification language for sequential function charts

IEC 60617. Graphical symbols for diagrams (доступен на сайте http://std.iec.ch/iec60617)

IEC 61499 (все части). Function blocks

ISO/IEC 14977:1996. Information technology — Syntactic Metalanguage — Extended BNF

ISO/AFNOR:1989. Dictionary of computer science

УДК 681.58:681.3:006.354 OKC 25.040.40 IDT
35.240.50

Ключевые слова: контроллеры программируемые, языки программирования, структурные модели, пе­
чатные символы, прагма, программные компоненты, текстовые языки, графические языки

Редактор Л.А. Кудрявцева
Технический редактор В.Ю. Фотовва

Корректор М.В. Бучная
Компьютерная верстка Е.А. Кондрашовой

С д а н о в н а б о р 1 7 .0 5 .2 0 1 6 . П о д п и с а н о в п е ч а т ь 1 0 .0 6 .2 0 1 6 Ф о р м а т 6 0 * 6 4 %
Г а р н и т у р а А р и а л . У ел . п е ч я . 2 6 .5 0 . У ч .-и э д . л . 2 4 .4 0 .

П о д го т о в л е н о н а о с н о в е э л е к т р о н н о й в е р с и и , п р е д о с т а в л е н н о й р а з р а б о т ч и к о м с та н д а р та

И з д а н о в о Ф Г У П « С Т А М Д А Р Т И Н Ф О Р М » . 1 2 3 9 0 5 М о с кв а . Г р а н а т н ы й п е р .. 4 .
• v w w .g o s tn fo .ru m 'o @ g o s tm (o ги

ГОСТ Р МЭК 61131-3-2016

https://meganorm.ru/mega_doc/norm/popravka_popravki/3/popravka_k_gost_31385-2016_rezervuary_vertikalnye_880.html
https://meganorm.ru/mega_doc/dop_fire/postanovlenie_sedmogo_arbitrazhnogo_apellyatsionnogo_suda_ot_994/0/postanovlenie_fas_zapadno-sibirskogo_okruga_ot_25_02_2010_po.html

