
ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

<Ш> Н А Ц И О Н А Л Ь Н Ы Й
С Т А Н Д А Р Т

Р О С С И Й С К О Й
Ф Е Д Е Р А Ц И И

ГОСТ Р м эк
60880—

2010

АТОМНЫЕ ЭЛЕКТРОСТАНЦИИ
Системы контроля и управления, важные

для безопасности. Программное обеспечение
компьютерных систем,

выполняющих функции категории А
IEC 60880:2006

Nuclear power plants —
Instrumentation and control systems important for safety —

Software aspects for computer-based systems performing category A functions
(IDT)

Издание официальное

НИШ
Спвдртинфоры

2011

декорирование одежды

https://meganorm.ru/Data1/55/55798/index.htm

ГОСТ Р МЭК 60880— 2010

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от
27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стан­
дартов Российской Федерации — ГОСТ Р 1.0 — 2004 «Стандартизация в Российской Федерации. Основ­
ные положения»

Сведения о стандарте

1 ПОДГОТОВЛЕН на основе аутентичного перевода на русский язык стандарта, указанного в пунк­
те 4. который выполнен Открытым акционерным обществом «Всероссийский научно-исследовательский
институт атомных электростанций» (ОАО «ВНИИАЭС») и Автономной некоммерческой организацией
«Измерительно-информационные технологии» (АНО «Изинтех»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 322 «Атомная техника»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регули­
рованию и метрологии от 30 ноября 2010 г. N? 739- ст

4 Настоящий стандарт индентичен международному стандарту МЭК 60880:2006 «Атомные электро­
станции. Системы контроля и управления, важные для безопасности. Программное обеспечение компью­
терных систем. выполняющих функции категории А» (IEC 60880:2006 «Nuclear power plants— Instrumentation
and control systems important for safety — Software aspects for computer-based systems performing category
A functions»).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных междуна­
родных стандартов соответствующие им стандарты Российской Федерации, сведения о которых приведе­
ны в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящ ему стандарту публикуется в ежегодно издаваемом ин­
формационном указателе «Национальные стандарты», а т е к с т изменений и поправок < в ежемесячно
издаваемых информационных указателях «Национальные стандарты ». В случае пересмотра (замены)
или отмены настоящ его стандарта соответствую щ ее уведомление будет опубликовано в ежеме­
сячно издаваемом информационном указателе «Национальные стандарты ». С оответствую щ ая ин­
формация. уведомление и те кс ты размещаются такж е в информационной системе общего пользова­
ния (на официальном сайте Федералы<ого агентства по техническому регулированию и метрологии в
сети И нтернет

© Стандартинформ. 2011

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распро­
странен в качестве официального издания без разрешения Федерального агентства по техническому регу­
лированию и метрологии

ГОСТ Р МЭК 60880— 2010

Содержание

1 Область прим енения .. 1
2 Нормативные с с ы л к и .. 1
3 Термины и определения ... 2
4 С окращ ения.. 5
5 Общие требования к проектам программного обеспечения... 5

5.1 Общая инф орм ация.. 5
5.2 Типы П О .. 7
5.3 Подход к разработке программного обеспечения... 8
5.4 Управление проектированием программного обеспечения... 9
5.5 План обеспечения качества программного обеспечения... 10
5.6 Управление конф игурацией.. 11
5.7 Защищенность программного обеспечения... 11

6 Требования к программному обеспечению ... 13
6.1 Спецификация требований к программному обеспечению .. 13
6.2 С ам оконтроль... 13
6.3 Периодические тестирования... 14
6.4 Д окум ентация.. 14

7 Проектирование и реализация .. 14
7.1 Принципы проектирования и реализации ... 14
7.2 Язык и связанные с ним трансляторы и инструментальные сре д ства .. 16
7.3 Подробные реком ендации.. 17
7.4 Д окум ентация .. 18

8 Верификация программного обеспечения... 19
8.1 Процедура верификации программного обеспечения... 19
8.2 Действия по верификации программного обеспечения.. 19

9 Программные аспекты интеграции с и с те м ы ... 22
9.1 Программные аспекты плана интеграции си сте м ы .. 23
9.2 Интеграция с и с те м ы ... 23
9.3 Верификация интегрированной си с те м ы .. 23
9.4 Процедуры устранения д е ф е кто в ... 24
9.5 Программные аспекты отчета о верификации интегрированной си стем ы 24

10 Программные аспекты валидации си сте м ы .. 25
10.1 Программные аспекты плана валидации си сте м ы ... 25
10.2 Валидация с и с те м ы .. 25
10.3 Программные аспекты отчета о валидации си сте м ы .. 25
10.4 Процедуры устранения д е ф е кто в ... 25

11 Модификация программного обеспечения.. 26
11.1 Процедура запроса на м одиф икацию .. 26
11.2 Процедура осуществления модификации программного обеспечения..................................... 27
11.3 Модификация программного обеспечения после п о ста вки .. 28

12 Программные аспекты установки и эксплуатации.. 28
12.1 Установка программного обеспечения на месте эксплуатации.. 28
12.2 Защищенность программного обеспечения на месте эксплуатации... 29
12.3 Адаптация программного обеспечения к условиям эксплуатации.. 29
12.4 Обучение о п ер атор а ... 29

13 Защита от отказов по общей причине, вызываемых программным обеспечением........................... 30
13.1 Общие с в е д е н и я .. 30
13.2 Проектирование программного обеспечения с учетом О О П ... 31
13.3 Источники и последствия ООП из-за программного обеспечения.. 31
13.4 Реализация разнообразия.. 32
13.5 Баланс недостатков и преимуществ, связанных с использованием разнообразия.................. 32

14 Инструментальные программы для разработки программного об е спе чени я 32
14.1 Общие св ед е н и я .. 32

III

ГОСТ Р МЭК 60880— 2010

14.2 Выбор инструментальных пр о гр а м м ..
14.3 Требования к инструментальным програм м ам ...

15 Аттестация ранее разработанного программного обеспечения...
15.1 Общие с в е д е н и я ..
15.2 Общие требования ..
15.3 Процесс проведения о ц е н ки ...
15.4 Требования к интеграции в систему и модификации Р П О ...

Приложение А (обязательное) Жизненный цикл безопасности программного обеспечения и детализа­
ция требований к программному обеспечению ..

Приложение В (обязательное) Детализированные требования и рекомендации по проектированию и
реализации ...

Приложение С (справочное) Примеры технологии прикладного программирования (разработка про­
граммного обеспечения с использованием проблемно-ориентированных языков)

Приложение D (справочное) Язык, транслятор, редактор с в я з е й ...
Приложение Е (справочное) Верификация и тестирование программного обеспечения.....................
Приложение F (справочное) Перечень документации, требующейся в течение жизненного цикла безо­

пасности программного обеспечения...
Приложение G (справочное) Некоторые аспекты отказа по общей причине (ООП) и разнообразия . .
Приложение Н (справочное) Инструментальные программы для создания и проверки спецификации.

проектирования и реализации .. 76
Приложение I (справочное) Требования к ранее разработанному программному обеспечению (РПО) . 78
Приложение J (справочное) Соответствие между МЭК 61513 и настоящим стандартом 79
Приложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов ссы­

лочным национальным стандартам Российской Ф ед ерации ... 83

IV

3
3

8
8

8

&

&
£

8
8
 3

3
8
 8

ГОСТ Р МЭК 60880— 2010

Введение

a) Техническое обоснование, основны е проблемы и организация настоящего стандарта
Проектирование систем контроля и управления, основанных на программном обеспечении и исполь­

зуемых для целей ядерной безопасности, является сложной задачей из-за требований безопасности, кото­
рые должны быть выполнены. Программное обеспечение безопасности, используемое на атомных элект­
ростанциях (АЭС), которое часто требуется только в аварийных ситуациях, должно пройти полную валида­
цию и аттестацию перед его применением в эксплуатации. Для достижения необходимой высокой надежно­
сти систем контроля и управления специальные меры должны приниматься в течение всего жизненного
цикла программного обеспечения, начиная с формулирования базовых требований на различных фазах
проектирования и кончая процедурами верификации и валидации для эксплуатации и обслуживания. Це­
лью настоящего стандарта является освещение соответствующих аспектов безопасности и обеспечение
требований для достижения высокого качества программного обеспечения.

Настоящий стандарт разработан на основе использования и обобщения опыта применения его перво­
го издания, которое было выпущено в 1986 г. с целью интерпретации принципов безопасности, применяв­
шихся ранее к аппаратным системам с жесткими связями, применительно к цифровым системам — много­
процессорным распределенным системам, а также к системам более высокого уровня с центральным
процессором, включенных в системы безопасности атомных электростанций.

Данное издание широко использовалось в атомной промышленности для определения требований и
как руководство в отношении программного обеспечения систем контроля и управления, важных для безо­
пасности атомных электростанций.

Настоящий стандарт предназначен для использования разработчиками систем, подразделениями
АСУТП АЭС. экспертами и лицензирующими организациями.

b) Место настоящего стандарта в структуре серии стандартов подкомитета 45А
Непосредственные ссылки на МЭК 60880 имеются в МЭК 61513. который рассматривает вопросы

системных аспектов и высокоинтегрированного компьютерного контроля и управления, используемого в
системах безопасности атомных станций.

МЭК 60880 является документом второго уровня по классификации ПК 45А и касается аспектов
программного обеспечения систем контроля и управления, выполняющих функции категории А.

Требования к программному обеспечению, связанному с выполнением функций категорий В и С.
описаны в МЭК 62138.

МЭК 60880 и МЭК 62138 в целом охватывают аспекты программного обеспечения компьютерных
систем, используемых на атомных станциях для выполнения функций, важных для безопасности.

Настоящее второе издание МЭК 60880 должно использоваться совместно с МЭК 60987 и МЭК 61226,
а также с серией стандартов ПК 45А по техническому обеспечению и стандартами по классификации.

Более полная информация о структуре серии стандартов ПК 45А приведена в пункте d) настоящего
введения.

c) Рекомендации и ограничения по использованию настоящего стандарта
Важно отметить, что настоящий стандарт не устанавливает дополнительных требований к системам

безопасности.
Специальные требования и рекомендации касаются следующих аспектов:
1) общий подход к разработке программного обеспечения, обеспечивающего его высокую надеж­

ность. включая надежность взаимосвязей между программным и техническим обеспечениями.
2) общий подход к верификации программного обеспечения и валидации программных аспектов ком­

пьютерных систем;
3) метод управления модификацией и конфигурацией профаммного обеспечения;
4) требования к использованию инструментальных программ;
5) методы оценки соответствия ранее разработанного программного обеспечения.
Общепризнанным является тот факт, что технология программного обеспечения продолжает разви­

ваться быстрыми темпами, поэтому невозможно включить в настоящий стандарт все ссылки на современ­
ные методы и технологии проектирования.

Для обеспечения пригодности настоящего стандарта и в будущем основное внимание сосредоточе­
но на принципиальных вопросах, а не на конкретных технологиях программного обеспечения.

При разработке новых технологий будет возможность оценки пригодности этих технологий, применяя
принципы безопасности, содержащиеся в настоящем стандарте.

V

ГОСТ Р МЭК 60880— 2010

d) О писание структуры серии стандартов ПК 45А и их взаимосвязи с другим и документами
МЭК (МАГАТЭ и ИСО)

Документом высшего уровня серии стандартов ПК 45А является МЭК61513. Этот стандарт касается
требований к системам контроля и управления, важных для безопасности атомных станций (АС), и лежит в
основе серии стандартов ПК 45А.

В МЭК 61513 имеются непосредственные ссылки на другие стандарты ПК 45А по общим вопросам,
связанным с категоризацией функций и классификацией систем, оценкой соответствия, разделением сис­
тем. защитой от отказов по общей причине, аспектами программного и технического обеспечений компью­
терных систем и проектированием пунктов управления. Стандарты, на которые имеются непосредственные
ссылки, следует использовать на втором уровне совместно с МЭК 61513 в качестве согласованной под­
борки документов.

К третьему уровню серии стандартов ПК 45А. на которые в МЭК 61513 нет непосредственных ссылок,
относятся стандарты, связанные с конкретным оборудованием, техническими методами или конкретной
деятельностью. Обычно документы, в которых по общим вопросам имеются ссылки на документы второго
уровня, могут использоваться самостоятельно.

Четвертому уровню, продолжающему серию стандартов ПК 45А. соответствуют технические отчеты,
не являющиеся нормативными документами.

Для МЭК 61513 принята форма представления, аналогичная форме представления базовой публи­
кации по безопасности МЭК 61508. с его структурой общего жизненного цикла безопасности и структурой
жизненного цикла системы; в нем приведена интерпретация общих требований МЭК 61508-1. МЭК 61508-2
и МЭК 61508-4 для применения в ядерной области. Согласованность с этим стандартом будет способство­
вать соответствию требованиям МЭК 61508. интерпретированным для ядерной области. В этой структуре
МЭК 60880 и МЭК 62138 соответствуют МЭК 61508-3. применительно к ядерной области.

В МЭК 61513 приведены ссылки на стандарты ИСО, а также на документ МАГАТЭ 50-C-QA по вопро­
сам. связанным с обеспечением качества.

В серии стандартов ПК 45А последовательно реализуются и детализируются принципы и базовые
аспекты безопасности, предусмотренные правилами МАГАТЭ по безопасности атомных электростанций, а
также серией документов МАГАТЭ по безопасности, в частности требованиями NS-R-1 «Безопасность атом­
ных электростанций; Проектирование» и руководством по безопасности NS-G-1.3 «Системы контроля и
управления, важные для безопасности атомных электростанций». Термины и определения, применяемые
в стандартах серии ПК 45А, согласованы с терминами и определениями, применяемыми в МАГАТЭ.

VI

ГОСТ Р МЭК 60880—2010

Н А Ц И О Н А Л Ь Н Ы Й С Т А Н Д А Р Т Р О С С И Й С К О Й Ф Е Д Е Р А Ц И И

АТОМНЫЕ ЭЛЕКТРОСТАНЦИИ

Системы контроля и управления, важные для безопасности.
Программное обеспечение ком пью терны х систем,

вы полняю щ их ф ункции категории А

Nuclear power plants. Instrumentation and control systems important for safety.
Software aspects for computer-based systems performing category A functions

Дата введения — 2012 — 01— 01

1 Область применения

Настоящий стандарт устанавливает требования к компьютерным системам контроля и управления
атомных электростанций, выполняющим функции категории А. определенные в МЭК 61226.

В соответствии с определением, приведенным в МЭК 61513. системы контроля и управления класса
безопасности 1 предназначены, главным образом, для поддержания функций категории А. однако они
могут также поддерживать функции более низких категорий. Тем не менее, требования к системе всегда
определяются выполняемыми функциями наивысших категорий.

Для программного обеспечения систем контроля и управления, выполняющих на АЭС функции толь­
ко категорий В и С. в соответствии с определениями МЭК 61226 применяют требования и рекомендации
МЭК 62138.

Цель требований настоящего стандарта состоит в разработке программного обеспечения высокой
степени надежности. Требования настоящего стандарта относятся к каждому этапу разработки программ­
ного обеспечения и документации, включая спецификацию требований, проектирование, разработку, вери­
фикацию. валидацию и эксплуатацию.

В основу этих требований при разработке положены следующие принципы:
- наилучшая установившаяся практика:
- методы проектирования сверху вниз;
- модульность;
- верификация на каждом этапе;
- четкая документация;
- легко проверяемая документация;
- валидационные тестирования.
Дополнительные указания и информация в обеспечении требований основной части настоящего стан­

дарта приведены в приложениях А - 1.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие международные стан­
дарты:

МЭК 60671 Периодические тестирования и контроль системы защиты ддерных реакторов (IEC 60671,
Periodic tests and monitoring of the protection system of nuclear reactors)

МЭК 61069-2:1993 Измерение и управление промышленным процессом. Определение свойств систе­
мы с целью ее оценки. Часть 2: Методология оценки (IEC 61069-2:1993. Industrial-process measurement and
control — Evaluation of system properties for the purpose of system assessment — Part 2: Assessment
methodology)

Издание официальное

1

ГОСТ Р МЭК 60880— 2010

МЭК 61226 Атомные станции. Системы контроля и управления, важные для безопасности. Классифи­
кация функций контроля и управления (IEC 61226. Nudear power plants — Instrumentation and control systems
important for safety — Classification of instrumentation and control functions)

МЭК 61508-4 Функциональная безопасность электрических/ электронных/ программируемых элект­
ронных систем, связанных с безопасностью. Часть 4: Определения и сокращения (IEC 61508-4. Functional
safety o f electrical/electronic/programmable electronic safety-related systems — Part 4: Definitions and
abbreviations)

МЭК 61513 Атомные станции. Системы контроля и управления, важные для безопасности. Общие
требования к системам (IEC 61513. Nuclear power plants — Instrumentation and control systems important to
safety — General requirements for systems)

ИСО/МЭК 9126 Технология программирования. Качество программного продукта (ISO/IEC 9126,
Software engineering — Product quality)

Руководство МАГАТЭ NS-G-1.2 Оценка и верификация безопасности для атомных электростанций
(IAEA guide NS-G-1.2. Safety assessment and verification for nuclear power plant)

Руководство МАГАТЭ NS-G-1.3 Системы контроля и управления, важные для безопасности на атом­
ных электростанциях (IAEA guide NS-G-1.3. Instrumentation and control systems important to safety in nuclear
power plants)

Для датированных ссылок применяют указанный вариант. Для недатированных ссылок применяют
последнее издание документа (включая все изменения и поправки).

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1 анимация (animation): Процесс, посредством которого указанное в спецификации поведение

демонстрируется с реальными значениями, полученными из задающих поведение выражений и некоторых
входных величин.

3.2 прикладная ф ункция (application function): Функция системы контроля и управления по выпол­
нению задачи, связанной с контролируемым процессом, а не с функционированием самой системы.

(МЭК 61513. пункт 3.1]
3.3 проблемно-ориентированный язы к (application oriented language): Компьютерный язык, специ­

ально разработанный для определенного типа применений и используемый лицами, являющимися специ­
алистами в данном типе применения.

[МЭК 62138, пункт 3.3]

П р и м е ч а н и е 1 — Группы оборудования обычно характеризуются проблемно-ориентированными язы­
ками. обеспечивающими удобное приспособление оборудования к специфичным требованиям.

П р и м е ч а н и е 2 — Проблемно-ориентированные языки могут использоваться для обеспечения функцио­
нальных требований к системе контроля и управления и/или для установления или разработки прикладного про­
граммного обеспечения. Они могут базироваться на текстах, графике или на том и другом.

П р и м е ч а н и е 3 — Например, языки диаграмм блоков функций, языки, определенные МЭК 61131-3.

3.4 прикладное программное обеспечение (application software): Часть программного обеспечения
системы контроля и управления, которая обеспечивает выполнение прикладных функций.

[МЭК 61513, пункт 3.2]
3.5 автоматизированная генерация кода (automated code generation): Функция автоматизирован­

ных инструментов, позволяющая преобразовывать проблемно-ориентированный язык в форму, пригодную
для компиляции или выполнения.

3.6 канал (channel): Совокупность взаимосвязанных компонентов внутри системы, имеющая один
выход. Канал теряет свою идентичность тогда, когда сигналы на единственном выходе сочетаются с сиг­
налами от других каналов, например, от канала контроля или канала активизации защиты.

[Глоссарий МАГАТЭ NS-G-1.3]
3.7 уплотнение кода (программы) (code compaction): Целесообразное уменьшение размеров памя­

ти. необходимой для программы, путем исключения избыточных или посторонних команд.

2

ГОСТ Р МЭК 60880— 2010

3.8 отказ по общей причине (ООП) (common cause failure (CCF)J: Отказ двух или более конструкций,
систем или компонентов вследствие единичного конкретного события или единичной конкретной причины.

[Глоссарий МАГАТЭ NS-G-1.3)
3.9 компью тер (computer): Программируемое функциональное устройство, которое состоит из одно­

го или нескольких процессоров и периферийного оборудования, управляется хранящимися внутри про­
граммами и способно выполнять основные вычисления, включая многочисленные арифметические или
логические операции без вмешательства в этот процесс человека.

[ИСО 2382-1]

П р и м е ч а н и е — Компьютер может быть автономным или состоять из нескольких взаимосвязанных
устройств.

3.10 компью терная программа (computer program): Набор упорядоченных команд и данных, кото­
рые описывают операции в форме, приемлемой для их выполнения компьютером.

3.11 компью теризированная система (computer-based system): Система контроля и управления,
функции которой в большей своей части зависят от использования микропроцессоров, программируемого
электронного оборудования или компьютеров либо полностью определяются таким использованием.

(МЭК 61513. пункт 3.10].

П р и м е ч а н и е — Эквивалентны следующему определению: цифровые системы, системы с программным
обеспечением, программируемые системы.

3.12 данные (data): Представление информации или команд в виде, пригодном для передачи, интер­
претации или обработки с помощью компьютера.

[IEEE 610. модифицировано]

П р и м е ч а н и е — Данные, необходимые для определения параметров и реализации прикладных и
служебных функций в системе, называются «прикладными данными».

3.13 глубокоэшелонированная защита (defence in depth): Применение более одной защитной меры
для достижения определенной цели безопасности так. чтобы цель была достигнута даже при отказе одной
из защитных мер.

[Глоссарий МАГАТЭ по безопасности]
3.14 разнообразие (diversity): Наличие двух или более путей или средств достижения установлен­

ной цели. Разнообразие специально создается как защита от отказа по общей причине. Оно может быть
достигнуто наличием систем, которые физически отличаются одна от другой, или с помощью функцио­
нального разнообразия, если аналогичные системы достигают установленной цели различными путями.

3.15 динамический анализ (dynamic analysis): Процесс оценки системы или компоненты, основан­
ный на их поведении в процессе работы. В противоположность статическому анализу.

[IEEE 610]
3.16 отказ (failure): Отклонение реального функционирования от запланированного.
[МЭК 61513. пункт 3.21. изменено]
3.17 деф ект (fault): Неисправность или ошибка в компоненте технического обеспечения, программ­

ного обеспечения или системы.
[МЭК 61513. пункт 3.22]
3.18 устойчивость к дефектам и ошибкам (fault tolerance): Встроенные возможности системы обес­

печивать непрерывную и правильную работу при наличии ограниченного числа дефектов технического
или программного обеспечения.

3.19 ф ункциональное разнообразие (functional diversity): Применение разнообразия на функцио­
нальном уровне (например, активация останова при достижении предельных значений как давления, так и
температуры).

3.20 универсальны й язы к (general-purpose language): Компьютерный язык, предназначенный для
всех видов применения.

[МЭК 62138. пункт 3.17]

П р и м е ч а н и е 1 — Программное обеспечение операционной системы групп оборудования обычно
реализуется с использованием универсальных языков.

П р и м е ч а н и е 2 — Примеры: Ада. Си. Паскаль.

3

ГОСТ Р МЭК 60880— 2010

3.21 ош ибка человека (human error): Действие человека, приводящее к непреднамеренному ре­
зультату.

3.22 инициализировать (initialize): Установить счетчики, переключатели, адреса или содержимое
устройств памяти на нулевое значение или другие начальные значения в начале или в заданной точке
выполнения компьютерной программы.

3.23 комплексны е тестирования (integration tests): Тестирования, проводимые во время процесса
интеграции технического и программного обеспечения до валидации компьютерной системы с целью про­
верки совместимости программного обеспечения и технического обеспечения компьютера.

3.24 библиотека (library): Набор связанных элементов программного обеспечения (ПО), сгруппиро­
ванных вместе, но индивидуально отбираемых для включения в окончательный продукт ПО.

3.25 N-версионное программное обеспечение (N-version software): Набор различных программ,
называемых версиями, разработанных под общие требования и общие приемо-сдаточные тестирования.
Версии выполняются одновременно и независимо, обычно на резервированных аппаратных средствах.
Используются идентичные входы в тестовых системах или соответствующие входы резервированных си­
стем. В случае противоречия между выходами различных версий используется заранее определенная
стратегия, такая, например, как голосование.

3.26 операционное системное программное обеспечение (operation system software): Программ­
ное обеспечение, выполняемое на целевом процессоре во время работы, такое, например, как драйверы
и сервисы входа/выхода. управление прерываниями, планировщик, драйверы связи, библиотеки приклад­
ных программ, диагностирование во время работы, управление резервированием и смягченной дегра­
дацией.

3.27 исходное постулированное событие (ИПС) (postulated initiating event — PIE): Событие, приво­
дящее к ожидаемым происшествиям или аварийным ситуациям и. как следствие, к явлениям отказов.

(МЭК 61513. пункт 3.41]
3.28 ранее разработанное программное обеспечение (РПО) (predeveloped software — PDS): Часть

программного обеспечения, которая ужо существует, доступна как коммерческий или запатентованный
продукт и предлагается к использованию.

[МЭК 62138. пункт 3.24, модифицировано]
3.29 резервирование (redundancy): Использование альтернативных (одинаковых или неодинаковых)

конструкций, систем или компонентов таким образом, чтобы все они могли выполнять требующуюся функ­
цию независимо от эксплуатационного состояния или выхода из строя любого из них.

[Глоссарий МАГАТЭ NS-G-1.3]
3.30 ролевое управление доступом (role-based access control): Управление доступом на основе

правил, определяющих разрешение доступа пользователей к объекту (функции, данные) не на индивиду­
альном основании, а на основании принадлежности к группам с идентичными задачами.

3.31 ф ункция безопасности (safety function): Специфичная цель, которая должна быть достигнута
для обеспечения безопасности.

[Глоссарий МАГАТЭ NS-R-1]
3.32 система безопасности (safety system): Система, важная для безопасности, обеспечивающая

безопасный останов реактора или отвод остаточного тепла в активной зоне либо ограничивающая послед­
ствия ожидаемых при эксплуатации событий и проектных аварий.

[Глоссарий МАГАТЭ NS-R-1]
3.33 траектория сигнала (signal trajectory): Динамика изменения всех состояний оборудования, внут­

ренних состояний, входных сигналов и действий оператора, определяющих выходы системы.
3.34 программное обеспечение (ПО) (software): Программы (т.е. набор упорядоченных команд),

данные, правила и любая связанная с этим документация, имеющая отношение к работе компьютеризиро­
ванной системы контроля и управления.

[МЭК 62138. пункт 3.27]
3.35 разработка ПО (software development): Стадия жизненного цикла ПО. которая приводит к созда­

нию ПО системы контроля и управления или программного продукта. Она охватывает деятельность, начи­
ная от спецификации требований и до валидации и установки на объекте.

[МЭК 62138. пункт 3.30]

4

ГОСТ Р МЭК 60880— 2010

3.36 модиф икация ПО (software modification): Изменение в уже согласованном документе (или до­
кументах). ведущее к изменению рабочей программы.

П р и м е ч а н и е — Модификации ПО могут происходить в процессе первоначальной разработки ПО
(например, устранение ошибок, обнаруженных на поздних этапах разработки) либо когда ПО уже находится в
эксплуатации.

3.37 ж изненны й цикл безопасности ПО (software safety lifecycle): Необходимая деятельность при
разработке и использовании программного обеспечения СКУ. важной для безопасности, осуществляемая
в течение всего периода времени, начиная с разработки спецификации требований к программному обес­
печению и заканчивая выведением программного обеспечения из эксплуатации.

[МЭК 62138. пункт 3.31]
3.38 версия ПО (software version): Экземпляр программного продукта, полученный путем модифика­

ции или корректировки предыдущего программного продукта.
[IEEE 610. модифицировано]
3.39 спецификация (specification): Документ, определяющий в полной, точной, проверяемой форме

требования, дизайн, поведение или другие свойства системы либо компонента, и. зачастую, процедуры
для определения, выполняются ли эти требования.

[IEEE 610]

П р и м е ч а н и е — Существуют различные типы спецификаций, например, спецификация требований к ПО
или спецификация проекта.

3.40 статический анализ (static analysis): Процесс оценки системы или ее компонентов, основанный
на ее форме, структуре, содержании или документации.

3.41 системное программное обеспечение (system software): Часть ПО системы контроля и управ­
ления. созданная для конкретного компьютера или семейства оборудования с целью облегчения разра­
ботки. эксплуатации и модификации этих объектов и связанных с ними программ.

[МЭК 62138, пункт 3.33]
3.42 валидация системы (system validation): Подтверждение путем проверки и предоставления дру­

гих свидетельств того, что система в целом соответствует спецификации требований (функциональность,
время отклика, устойчивость к дефектам и ошибкам, запас прочности).

3.43 верификация (verification): Подтверждение экспертизой и предоставлением иного объективного
свидетельства того, что результаты функционирования соответствуют целям и требованиям, определен­
ным для такого функционирования.

[МЭК 62138. пункт 3.35]

4 Сокращения

АПСП — автоматизированное проектирование и создание программ:
ООП — отказ по общей причине (см. 3.8):
РПО — ранее разработанное программное обеспечение (см. 3.28):
ИПС — исходные постулированные события (см. 3.27):
ОК — обеспечение качества;
В&В — верификация и валидация;
СКУ — система контроля и управления.

5 Общие требования к проектам программного обеспечения

5.1 Общая инф ормация

Процесс создания систем контроля и управления, применяемых на атомных станциях, установлен в
МЭК 61513, в котором концепция жизненного цикла безопасности системы вводится в качестве средства, с
помощью которого можно управлять процессом. Кроме того, принятие этой концепции должно привести к
получению данных, необходимых для обоснования работы систем безопасности. Описанный в МЭК 61513
жизненный цикл безопасности системы включает в себя и устанавливает (но не навязывает) требования к
мероприятиям проекта, которые должны осуществляться при создании систем (см. рисунок 1).

5

ГОСТ Р МЭК 60880— 2010

Рисунок 1 — Деятельность по жизненному циклу безопасности системы
(как определено в МЭК 61513)

Жизненный цикл безопасности системы для компьютерных (т.е. цифровых) систем расширяется и
включает в себя концепцию жизненного цикла безопасности ПО (см. рисунок 2). В соответствии с этой
концепцией техническое и программное обеспечения разрабатываются параллельно, исходя из общей спе­
цификации. а затем объединяются на этапах жизненного цикла, соответствующих интеграции и установке.

Следующие процессы обеспечивают поэтапный процесс разработки при создании ПО:
- управление проектом ПО (см. 5.4);
- обеспечение качества и контроль качества ПО (см. 5.5);
- управление конфигурацией ПО (см. 5.6);
- защищенность ПО (см. 5.7);
- верификация ПО (см. раздел 8).
Существует также деятельность, включающая в себя выбор языков (см. 7.2. приложение D), выбор

программных инструментов, помогающих разработке (см. раздел 14), предупреждение ООП (см. раздел
13) и изготовление документации (см. 7.4. приложение F).

Итоговая деятельность, связанная с ПО. в жизненном цикле безопасности системы и вспомогатель­
ные процессы показаны на рисунке 2 (блоки, выделенные полужирным шрифтом и со ссылками на соот­
ветствующие подразделы в скобках).

Разработку ПО следует осуществлять на основании традиционной модели «V». поскольку этот под­
ход отражен и распространен в других стандартах, в частности в документе МАГАТЭ NS-G-1.3. при этом
допускается необходимая корректировка, поскольку очевидно, что некоторые этапы разработки могут осу­
ществляться автоматически, а процесс разработки может быть итерационным.

В подразделах 5.2 и 5.3 приведены различные типы ПО. различные подходы к разработке, рассмат­
риваемые в настоящем стандарте.

6

ГОСТ Р МЭК 60880— 2010

Ж Ю нттй
ц и т ПО.

О б в с л м н ю
качи ттм П О

(ш .я.я)

В м ш ф ж вцияП О
(СИ.ДОРЛ4)

Упраюани»
имф мутиаАП О

(«.5.В)

Выбор
ниаю ы ом ниа

пролюмнш
WCTPS1HWTT*

(СМ. РМДЙГ 14)

Вь4ор<4ьвра
(ш.7.2)

ВШЩЦМ«1СС1Ъ ПО
<«.В .7)

П р и м е ч а н и е — Блоки, заключенные в тонкие пунктирные линии, представляют деятельность в отноше­
нии системы, не освещаемую в настоящем стандарте.

Рисунок 2 — Деятельность по жизненному циклу безопасности системы, связанная с ПО

5.2 Типы ПО

Компоненты ПО системы часто определяют как принадлежащие к ПО операционной системы (обмен
информацией, управление входами/выходами. стандартные функции, самопроверка и т.п.) либо к при­
кладному ПО (логика блокировок, контуры регулирования, формат отображения, аварийная логика и т.п.).

Прикладное ПО обычно использует средства, предоставляемые ПО операционной системы, умень­
шая таким образом необходимость дублирования программ внутри модулей, что снижает общий объем
ПО.

Прикладное ПО обычно является специфичным для данного проекта.
ПО операционной системы может использоваться в различных проектах.
Многие проекты систем широко применяют конфигурационные данные. Конфигурационные данные

могут относиться к ПО операционной системы либо к прикладному ПО. Конфигурационные данные, связан­
ные с прикладным ПО. состоят, главным образом, из технических данных станции, вытекающих из проекта

7

ГОСТ Р МЭК 60880— 2010

станции, и часто подготавливаются проектантами станции, которые не обязательно должны обладать навы­
ками в области программирования.

Конфигурационные данные могут быть разделены на:
- элементы данных, которые не должны изменяться в режиме «онлайн» операторами станции и к

которым предъявляются такие же требования, как и к остальной части ПО;
- параметры, т.е. элементы данных, которые могут быть изменены операторами во время работы

станции (например, уровни аварийной сигнализации, уставки, данные по калибровке измерительной аппа­
ратуры) и для которых необходимы специфичные требования.

Многие современные платформы оборудования для контроля и управления обеспечены обширным
набором инструментальных программ, позволяющим инженерам системотехникам проектировать и реали­
зовывать рабочие программы.

Например, типичная СКУ. разработанная с использованием компонентов комплекса оборудования,
включает в себя:

- компоненты ранее разработанного программного обеспечения, такие как ядро операционного сис­
темного программного обеспечения и библиотека прикладных функций. Обычно эти компоненты разработа­
ны с применением универсальных языков;

- данные конфигурации, необходимые для адаптации ядра операционного системного программного
обеспечения к средствам ввода-вывода и сервисам, требующимся в данном применении;

- прикладное программное обеспечение, разработанное с использованием проблемно-ориентирован­
ных языков.

5.3 Подход к разработке программного обеспечения

Обычно программное обеспечение вносит существенный вклад в функции, выполняемые СКУ. Оно
может также поддерживать дополнительные функции, предусмотренные в проекте системы (например,
инициализацию и контроль за техническим обеспечением, связь и синхронизацию между подсистемами).
Таким образом, в большинстве случаев жизненный цикл программного обеспечения тесно связан с жиз­
ненным циклом безопасности системы. В частности, спецификация требований к программному обеспече­
нию является частью спецификации требований к системе и частью проекта системы либо непосредствен­
но вытекает из них.

Несмотря на то. что верификация новых компонентов программного обеспечения определенно явля­
ется частью жизненного цикла безопасности программного обеспечения, часто не существует разделения
и четкой границы между интеграцией программного обеспечения с системой. Поэтому в настоящем стан­
дарте интеграция программного обеспечения рассматривается как часть интеграции системы. Валидация
программного обеспечения также не является деятельностью, связанной только с программным обеспече­
нием: в настоящем стандарте она рассматривается как часть интеграции и/или валидации системы.

В настоящем стандарте предполагается, что жизненный цикл программного обеспечения, первона­
чально предназначенный для разработки программного обеспечения с помощью универсальных языков,
распространяется также на проблемно-ориентированные языки и конфигурацию ранее разработанного про­
граммного обеспечения.

Тем не менее, в нем признаются следующие различия в процессе разработки за счет введения спе­
циализированных процедур для каждого вида программного обеспечения на уровне реализации:

- реализация с использованием универсальных языков;
- реализация с использованием проблемно-ориентированных языков вместе с генераторами кода;
- отбор, использование и конфигурация ранее разработанного программного обеспечения.
Поскольку блоки «Разработка/генерация прикладного ПО» и «Разработка нового ПО операционной

системы» на рисунке 2 представляют большую и существенную часть жизненного цикла безопасности
программного обеспечения, на рисунке 3 приведена ее «расшифровка», в которой более детально пред­
ставлена деятельность между определением спецификации требований к программному обеспечению и
его валидацией, с четким обозначением трех различных путей реализации. На рисунке 3 в скобках указаны
соответствующие разделы и пункты настоящего стандарта.

Дополнительные требования к программному обеспечению приведены в приложении В.
Принципы, отраженные в требованиях настоящего стандарта, касаются качества конечной програм­

мы. и они применимы независимо от того, разработана ли программа с использованием универсальных
языков, проблемно-ориентированных языков с автоматической генерацией рабочей программы, а также
независимо от конфигурации.

8

ГОСТ Р МЭК 60880— 2010

Рисунок 3 — Деятельность по разработке в рамках жизненного цикла
безопасности программного обеспечения по МЭК 60880

5.4 Управление проектированием программного обеспечения

5.4.1 Любое проектирование программного обеспечения должно быть разбито на несколько этапов.
Каждый этап проектирования является до некоторой степени самостоятельным, но будет влиять на

другие этапы и, в свою очередь, зависеть от них. Эти этапы отличаются друг от друга видом выполняемой
деятельности.

Этапы и связанная с ними деятельность при проектировании программного обеспечения составляют
процесс, называемый в настоящем стандарте «разработкой программного обеспечения». Подразумевает­
ся, что этот процесс может быть итеративным при условии выполнения требований последнего абзаца
введения к разделу 6 МЭК 61513.

Деятельность и ее этапы при реализации проекта программного обеспечения определяются следую­
щими общими факторами:

5.4.2 Осуществляемая на этапах процесса разработки деятельность должна быть определена в соот­
ветствии с выбранным для проекта подходом к разработке программного обеспечения (см. 5.2 и 5.3).

5.4.3 Деятельность по разработке программного обеспечения должна соотноситься с полным жиз­
ненным циклом безопасности программного обеспечения.

9

ГОСТ Р МЭК 60880— 2010

5.4.4 Каждый этап разработки программного обеспечения, указанный в 5.4.1. должен быть разделен
на четко определенные виды деятельности.

5.4.5 Этапы разработки программного обеспечения должны быть официально приняты и ни один из
них не должен быть пропущен.

5.4.6 Если деятельность по разработке программного обеспечения автоматизируется с использова­
нием инструментальных программ, эта автоматизированная деятельность должна быть документально
оформлена, включая документацию по входным и выходным данным, относящимся к конкретному этапу.

5.4.7 Входные и выходные данные на каждом этапе должны быть определены и документально
оформлены.

5.4.8 Все выходные данные каждого этапа должны систематически проверяться (см. приложение В.
пункт В.1, перечисление с) и пункт В.4. перечисление д)].

5.4.9 Каждый этап должен включать в себя создание соответствующих документов (см. приложе­
ние F).

5.4.10 Каждый этап должен завершаться систематическим анализом, включающим в себя проверку
соответствующих документов.

5.4.11 Перечень документации, требующейся в течение жизненного цикла безопасности программно­
го обеспечения, должен быть установлен во время разработки программного обеспечения. Пример типово­
го перечня приведен в приложении F.

5.5 План обеспечения качества программного обеспечения

5.5.1 На ранней стадии жизненного цикла безопасности программного обеспечения должен суще­
ствовать или быть установлен план обеспечения качества.

Специальные планы обеспечения качества могут быть приняты для отдельных этапов изделия или
отдельных компонентов программного обеспечения в соответствии с национальными стандартами или стан­
дартами организаций при условии соблюдения принципов, определенных в настоящем стандарте.

5.5.2 Любые отклонения от требований настоящего стандарта или его нормативных приложений дол­
жны быть установлены и обоснованы.

5.5.3 При осуществлении действий, отличных от изложенных в нормативных приложениях, они дол­
жны быть оформлены документально и быть доступны для проверки в соответствии с требованиями основ­
ных разделов настоящего стандарта.

5.5.4 В частности, должно быть рассмотрено влияние данных действий на СКУ и на программное
обеспечение.

5.5.5 Все необходимые технические процедуры, проводимые при выполнении каждого этапа жизнен­
ного цикла безопасности программного обеспечения, должны быть указаны в плане обеспечения качества.

5.5.6 В плане обеспечения качества должно содержаться требование о том. чтобы реализация этапов
была поручена компетентным лицам с предоставлением им необходимых ресурсов.

5.5.7 В плане обеспечения качества должно содержаться требование о том. чтобы модификации уже
утвержденных документов осуществлялись на основе четкого определения конкретных изменений, их ана­
лиза и последующего утверждения уполномоченными лицами.

5.5.8 В плане обеспечения качества должно содержаться требование о том. чтобы используемые
методы, языки, инструментальные программы, правила и стандарты были определены и оформлены доку­
ментально. а также были известны соответствующим лицам и ими освоены.

5.5.9 В плане обеспечения качества должно содержаться требование о том. чтобы при использова­
нии нескольких методов, языков, инструментальных программ, правил и/или стандартов было ясно, какой
именно из них используется для каждого вида деятельности.

5.5.10 В плане обеспечения качества должно содержаться требование, чтобы специфичные для про­
екта термины, выражения, сокращения и условные обозначения были четко определены.

5.5.11 В плане обеспечения качества должно содержаться требование о том. чтобы любые возник­
шие в связи с качеством проблемы были отслежены и разрешены.

5.5.12 В плане обеспечения качества должно содержаться требование о том. чтобы результаты его
реализации были документально оформлены.

5.5.13 Каждый шаг верификации или анализа должен заканчиваться отчетом о проведенном анали­
зе. сделанных выводах и принятых согласованных решениях. Отчет должен быть включен в документа­
цию.

5.5.14 Любые отклонения от плана обеспечения качества должны быть оформлены документально и
обоснованы.
10

ГОСТ Р МЭК 60880— 2010

5.6 Управление конфигурацией

В 6.2.1.2 МЭК 61513 (план управления конфигурацией системы) приведены требования управления
конфигурацией на уровне СКУ.

В данном подпункте приведены дополнительные требования, специфичные для программного обес­
печения или имеющие для него особое значение.

5.6.1 Управление конфигурацией программного обеспечения должно осуществляться в соответствии
с положениями плана управления конфигурацией или плана обеспечения качества.

5.6.2 Эти положения плана должны быть согласованы с соответствующими положениями на уровне
управления конфигурацией системы.

5.6.3 Документально оформленные процедуры управления конфигурацией программного обеспече­
ния должны быть установлены на ранней стадии проекта программного обеспечения при соблюдении сле­
дующих требований:

5.6.4 Каждая создаваемая версия любого программного продукта должна иметь уникальную иденти­
фикацию.

5.6.5 Должна быть возможность идентификации соответствующих версий всей документации, свя­
занной с каждым программным продуктом.

5.6.6 Программное обеспечение, находящееся в разработке, должно быть отделено от программного
обеспечения, достигшего разрешенного или верифицированного статуса.

5.6.7 Должна быть возможность идентификации версий всех программных продуктов, которые со­
вместно образуют полную версию конечного программного продукта.

5.6.8 Должна быть возможность верификации полноты программных продуктов.
5.6.9 Должна быть возможность идентификации версии программного обеспечения целевой системы.
5.6.10 Должна быть возможность ретроспективной идентификации всех программных продуктов, на

которые влияет реализация модификаций.
5.6.11 Доступ ко всем программным продуктам, введенным под управление конфигурацией, должен

быть объектом соответствующего управления для обеспечения того, чтобы программное обеспечение не
модифицировалось не уполномоченными на это лицами и сохранялась защищенность программного обес­
печения.

5.6.12 Должна быть возможность идентификации всех трансляторов и всех версий инструменталь­
ных программ, используемых для получения каждой выполняемой программы (см. 14.3.3).

5.7 Защ ищ енность програм много обеспечения

Цель защищенности программного обеспечения и данных состоит в том. чтобы неуполномоченные
лица и не предназначенные для этой цели системы не могли их считывать или изменять, и, в то же время,
был обеспечен необходимый доступ для уполномоченных лиц и предназначенных для этой цели систем.

В 5.4.2 (общий план защищенности) и 6.2.2 (план защищенности системы) МЭК 61513 представлены
требования по защищенности на уровне архитектуры К&У и конкретной СКУ.

Хотя использование программного обеспечения действительно представляет определенную потен­
циальную угрозу защищенности, основные контрмеры обычно осуществляются на уровне системы, напри­
мер меры физической защиты, подсоединение блокирующих устройств. Основные требования к защищен­
ности. налагаемые на программное обеспечение, могут дополнять защитные меры на системном уровне и
способны свести к минимуму уязвимость.

В настоящем подразделе представлены требования к защищенности, специфичные или особенно
важные для программного обеспечения.

5.7.1 Анализ защищенности
5.7.1.1 Должен быть проведен анализ потенциальных угроз защищенности в отношении программно­

го обеспечения. В анализе должны быть учтены соответствующие этапы жизненного цикла безопасности
системы и программного обеспечения. В нем также должны быть определены требования к защите и дос­
тупности данных и программного обеспечения, основанные на требованиях настоящего пункта.

5.7.1.2 В плане обеспечения качества программного обеспечения или системы либо в плане защи­
щенности программного обеспечения или системы должен быть учтен анализ защищенности программно­
го обеспечения.

5.7.1.3 Если анализ показывает, что контрмеры на системном уровне недостаточны, то в нем должны
быть определены требования к контрмерам при проектировании программного обеспечения.

11

ГОСТ Р МЭК 60880— 2010

5.7.2 Проект защищенности
5.7.2.1 Требования к контрмерам при проектировании конкретного программного обеспечения, полу­

ченные при анализе защищенности, должны быть включены в требования к проектированию программного
обеспечения.

5.7.2.2 Любое новое программное обеспечение должно проектироваться так, чтобы минимизировать
уязвимость системы.

5.7.2.3 Любому ранее разработанному программному обеспечению нужно придать такие конфигура­
цию и параметры, чтобы минимизировать уязвимость системы, например, путем минимизации функций до
необходимого предела или с помощью существующих функций защищенности программного обеспече­
ния.

5.7.2.4 Должна быть исключена возможность изменения хранящихся программ оператором.
5.7.2 5 Если для выполнения функций К&У оператору необходим доступ к изменению данных,

то устройства человеко-машинного интерфейса должны ограничивать этот доступ необходимыми преде­
лами.

57.2.6 Там. где необходимо противостоять возможным угрозам защищенности, должны быть вклю­
чены в проект, конфигурацию и/или процедуру присвоения параметров программного обеспечения эффек­
тивные защитные меры, касающиеся:

- управления выборочного доступа пользователя к функциям программного обеспечения:
- связи данных с системами, имеющими меньшую важность для безопасности;
- прослеживаемости модификаций программного обеспечения или параметров.
5 .7 .27 В проектной документации должны быть определены и описаны функции, критические для

защищенности, и элементы защищенности, примененные в программном обеспечении.
57.2.8 Во время верификации программного обеспечения должна быть подтверждена защищенность

функций.
57.2.9 Во время валидации СКУ с помощью подходящих тестов должна быть продемонстрирована

эффективность функций защищенности.
5.7.3 Д оступ пользователя
57.3.1 Там. где необходимо, программное обеспечение должно поддерживать технические меры по

эффективной процедуре аутентификации, прежде чем пользователю будет разрешен доступ.
57.3.2 Там. где доступ пользователя является элементом, критическим для защищенности, в про­

граммном обеспечении следует применять процедуру аутентификации, осуществляемую техническими
средствами на основе получения комбинации информации о знании (например, пароль), личной собствен­
ности (например, ключ, карта с встроенным микропроцессором) и/или персональных характеристиках (на­
пример. отпечаток пальца), а не полагаться исключительно на пароль.

57.3.3 Программному обеспечению и основанному на ролевом имени управлению доступом долж­
ны быть сообщены такие конфигурация и параметры, которые ограничивают разрешенный доступ пользо­
вателя к функциям и данным необходимыми пределами.

57.3.4 Права доступа пользователя должны быть ограничены до определенной степени с учетом
возможностей и последствий потенциальных угроз защищенности.

Одним из возможных путей правильной реализации этого требования является криптографический
метод (шифрование данных).

57.3.5 Удаленные доступы из любых мест, находящихся вне технической среды станции (например,
из административных зданий или из мест, находящихся вне станции), способных повлиять на функции
программного обеспечения или данные, не допускаются.

5.7.4 Защ ищ енность во время разработки
57.4.1 Жизненный цикл безопасности разработки программного обеспечения должен учитывать по­

тенциальные угрозы защищенности во время деятельности по разработке и обслуживанию.
57.4.2 Должны быть предусмотрены меры против скрытых функций в прикладном программном обес­

печении или системном программном обеспечении (например, верификация кода), т.к. они могут поддер­
живать потенциальный несанкционированный доступ.

57.4.3 Если меры против скрытых функций не могут быть реализованы в отношении ранее разрабо­
танного программного обеспечения, применение такого программного обеспечения может быть обосновано
с учетом потенциальной угрозы обеспечения безопасности, важности безопасности функций контроля и
управления (1&С). характеристик системы и программного обеспечения.

12

ГОСТ Р МЭК 60880—2010

57.4.4 Должна быть подтверждена выявляемость во время деятельности по верификации потенци­
альных средств преднамеренной модификации программного обеспечения, способных приводить к оши­
бочному режиму работы с задержкой по времени или изменению параметров режима работы.

6 Требования к программному обеспечению

6.1 Специф икация требований к программному обеспечению

6.1.1 Требования к программному обеспечению должны извлекаться из требований к системам безо­
пасности. такие требования к программному обеспечению являются частью спецификации компьютерной
системы.

6.1.2 Требоеания к программному обеспечению должны описывать то. что должно делать программ­
ное обеспечение, а не то. кйк оно должно это делать.

6.1.3 В требованиях к программному обеспечению должны указываться.
- прикладные функции, заложенные в программное обеспечение;
- различные типы поведения программного обеспечения и соответствующие условия перехода;
- интерфейсы и взаимодействия программного обеспечения со средой [например, с операторами,

остальными элементами СКУ, другими системами (если они существуют), с которыми оно взаимодейству­
ет или разделяет ресурсы], включая роли. типы, форматы, диапазоны и ограничения на вводы и выводы
данных;

- параметры программного обеспечения, которые могут быть модифицированы вручную во время
операции (если существуют), их роли. типы, форматы, диапазоны и ограничения, а также проверки, кото­
рые должно осуществлять программное обеспечение, если эти параметры изменяются;

- требования к параметрам программного обеспечения, в частности требования ко времени отклика;
- то. что программное обеспечение не должно делать или чего должно избегать (если это приме­

нимо);
- требования к среде программного обеспечения или допущения, принятые относительно этой среды;
- требования к пакетам стандартных программ (при их наличии).
6.1.4 Вследствие важности данного этапа разработки программного обеспечения процесс установле­

ния требований должен быть строгим.
6.1.5 Спецификация требований к программному обеспечению должна быть такой, чтобы она могла

продемонстрировать согласованность с требованиями МЭК 61513.
Детализация требований, дополняющих спецификацию требований к программному обеспечению,

приведена в приложении А.
6.1.6 Должны быть описаны ограничения, связанные со взаимодействием между программным и

техническим обеспечением (см. А.2.1 приложения А).
6.1.7 В спецификации требований программного обеспечения должна быть ссылка на спецификацию

требований технического обеспечения для каждого влияющего элемента проекта технического обеспече­
ния.

6.1.8 Специальные условия работы, такие как ввод станции в эксплуатацию, перегрузка топлива,
должны быть описаны вплоть до уровня программного обеспечения подверженной влиянию функции.

6.2 Самоконтроль

6.2.1 Программное обеспечение компьютерных систем должно контролировать техническое обеспе­
чение во время работы в определенные промежутки времени, а также свое собственное поведение
(см. А.2.2 приложения А).

Программное обеспечение рассматривается в качестве фактора первостепенной важности для дос­
тижения высокой надежности всей системы.

6.2.2 Те части памяти, которые содержат коды или постоянные данные, должны контролироваться
для обнаружения непредусмотренных изменений.

6.2.3 Самоконтроль программного обеспечения должен быть способней в практически выполнимых
пределах обнаруживать:

- случайные отказы компонентов технического обеспечения:
- ошибочное поведение программного обеспечения (например, отклонения от установленной работы

программы или установленных условий эксплуатации либо искажение данных);
- ошибочную передачу данных между различными обрабатывающими устройствами.

13

ГОСТ Р МЭК 60880— 2010

6.2.4 Если во время эксплуатации станции обнаружен отказ, то программное обеспечение должно
вовремя и соответствующим образом на него отреагировать. Это реагирование должно реализовываться в
соответствии с требуемыми в спецификации реакциями системы, а также в соответствии с правилами,
установленными МЭК 61513 для проекта системы.

С целью исключения ложных срабатываний может потребоваться соответствующий анализ.
6.2.5 Самоконтроль не должен негативно влиять на выполнение системой непредусмотренных функ­

ций.
6.2.6 Следует предусмотреть возможность автоматического сбора полезной диагностической инфор­

мации. получаемой в результате самоконтроля программного обеспечения.

6.3 Периодические тестирования

6.3.1 Для компьютерных систем безопасности следует применять основные принципы МЭК 60671
для тех компонентов, которые должным образом не охватываются самоконтролем.

6.3.2 Программное обеспечение должно быть спроектировано так. чтобы соответствовало следую­
щим требованиям периодических тестирований, проводимых в пределах установленных максимальных
интервалов (например, в периоды останова):

1) каждая функция безопасности должна охватываться периодическими тестированиями;
2) любой отказ при выполнении функции безопасности должен быть обнаружен.

6.3.3 Следует предусмотреть возможность автоматического сбора полезной диагностической инфор­
мации. получаемой в результате периодических тестирований программного обеспечения.

6.3.4 Рекомендуется, чтобы качество программного обеспечения вспомогательных устройств, пред­
назначенных для тестирований, соответствовало качеству оборудования, используемого для валидации,
как указано в 10.2.

Нет необходимости в том. чтобы программное обеспечение вспомогательных устройств, предназна­
ченных для тестирований систем класса 1. соответствовало всем требованиям настоящего стандарта.

6.4 Документация

6.4.1 Основная цель документации по спецификации требований к программному обеспечению состо­
ит в формировании основы для разработки программного обеспечения. Однако не следует пренебрегать
аспектами лицензирования, поскольку данная документация может быть представлена регулирующим орга­
нам. Поэтому она может содержать аспекты, не являющиеся важными для разработки программного обес­
печения. но являющиеся основой для лицензирования.

Такими важными для лицензирования аспектами могут быть:
- рассмотрение рисков;
- рекомендации для функций или конструкционных элементов безопасности;
-другие элементы, обеспечивающие основу для специфичных требований;
- специальные требования регулирующих органов к структуре программного обеспечения, анализу

кода. В&В и т.п.
6.4.2 Спецификация требований к программному обеспечению должна быть представлена в стандар­

тизованном формате, который не должен влиять на понятность документа (см. пункт А.2.3 приложения А).
6.4.3 Спецификация требований к программному обеспечению должна быть однозначной, тестируе­

мой или верифицируемой, а также достижимой.
Для улучшения согласованности и полноты аспектов спецификации требований к программному обес­

печению может применяться формализованный язык или проблемно-ориентированный язык.
Для этой цели могут использоваться автоматизированные программные инструменты.
6.4.4 Спецификация требований к программному обеспечению должна быть представлена ведущим

участникам процесса проектирования.

7 Проектирование и реализация

7.1 П ринципы проектирования и реализации

7.1.1 Общие сведения
7.1.1.1 Проект программного обеспечения должен включать самоконтроль (см. А.2.2 приложения А).
7.1.1.2 При обнаружении отказа должны быть предприняты надлежащие действия в соответствии

с 6.2.

14

ГОСТ Р МЭК 60880— 2010

7.1.1.3 Структура программного обеспечения должна основываться на модульном принципе.
7.1.1.4 Структура программного обеспечения должна быть простой и понятной как в целом, так и в

деталях.
7.1.1.5 Следует избегать изощренных приемов, рекурсивной структуры и сжатия кода.
7.1.1.6 Исходная программа должна быть понятной для квалифицированных специалистов, не уча­

ствующих в процессе разработки.
7.1.1.7 Исходная программа должна соответствовать документально оформленным правилам, пред­

назначенным для улучшения ясности модифицируемости и тестируемости.
7.1.1.8 Следует обосновывать любые несоответствия правилам проектирования программного обес­

печения.
7.1.1.9 Должна быть представлена полная и четко написанная документация к программному обеспе­

чению.
7.1.1.10 Линии связи должны быть спроектированы в соответствии с требованиями к передаче дан­

ных. приведенными в 5.3.1.3 МЭК 61513.
7.1.1.11 Линии связи, используемые в одном резервном устройстве последовательных элементов,

должны быть детерминистскими.
7.1.1.12 Из этих положений вытекают следующие рекомендации:
1) меры по реализации требований безопасности программного обеспечения, включая самоконтроль,

следует выбирать в начале проектирования (см. раздел В.З приложения В);
2) подход к проектированию программного обеспечения «сверху — вниз» предпочтительнее подхода

«снизу — вверх» (см. раздел В.1 приложения В);
3) в начале проектирования каждого программного обеспечения следует устанавливать концептуаль­

ную модель его архитектуры (см. раздел В.2 приложения В);
4) написание программы следует осуществлять таким образом, чтобы это обеспечивало простоту

проведения верификации (см. разделы В.4 и В.5 приложения В);
5) там, где используется стандартное программное обеспечение от производителя или поставщика, в

дополнение к перечислению с) раздела В.2 приложения В применяются требования раздела 15;
6) использование проблемно-ориентированных языков предпочтительнее использования машинно-

ориентированных языков (см. примечание раздела В.5 приложения В).
7.1.2 Реализация нового программного обеспечения на универсальны х язы ках
В настоящем пункте рассматривается ситуация, когда часть или все функции безопасности катего­

рии А обеспечиваются разработкой компонентов программного обеспечения, использующих универсаль­
ные языки.

Универсальные языки являются обычно языками высокого уровня, такими как Ада. Си, Паскаль,
либо языками ассемблера, предназначенными для используемой аппаратной платформы. Языки могут
применяться для реализации функции любого рода при условии соблюдения соответствующих правил
проектирования и кодирования.

7.1.2.1 На этапе проектирования программного обеспечения должны быть определены его компонен­
ты. которые нужно разработать с помощью универсальных языков.

7.1.2.2 Для этих компонентов в процессе разработки следует определить этапы детального проекти­
рования и кодирования.

7.1.2.3 Деятельность на этапе детального проектирования состоит в уточнении выходных данных
этапа проектирования с тем. чтобы можно было на систематической основе проводить кодирование на
выбранном языке (например, путем определения необходимых алгоритмов, структур данных, функцио­
нальных интерфейсов, ограничений и т.п.).

7.1.2.4 Уровень детализации информации на этапе детального проектирования зависит от используе­
мого универсального языка. Если используется язык Ассемблера, то проект должен обеспечить подробно
структурированные алгоритмы и представление данных.

7.1.2.5 На этапе кодирования детальный проект должен быть транслирован в исходный код в соот­
ветствии с заранее определенными правилами программирования, основанными на требованиях приложе­
ния В.

7.1.3 Реализация нового программного обеспечения на проблемно-ориентированных языках
В настоящем пункте рассматривается ситуация, когда часть функции безопасности категории А или

все такие функции обеспечиваются путем разработки новых компонентов программного обеспечения с
использованием проблемно-ориентированных языков.

15

ГОСТ Р МЭК 60880— 2010

Проблемно-ориентированные языки опираются на методы формализации (такие как логические диаг­
раммы или диаграммы функциональных блоков и т.п.). которые могут применяться для выражения всей
или части спецификации требований к программному обеспечению. Эти части могут использоваться в ка­
честве входной информации для генерации исполняемого кода с помощью автоматизированных средств.

7.1.3.1 Рекомендуется, чтобы методы формализации обладали следующими свойствами: невысокая
сложность, ясность и стандартность расположения и представления, модульность, наличие соответствую­
щих комментариев, отсутствие небезопасных элементов. Эти свойства, как правило, упрощают понима­
ние. верификацию, тестирование и последующую модификацию.

7.1.3.2 В проблемно-ориентированных языках следует использовать формат, понятный для специа­
листов. ответственных за анализ спецификации программного обеспечения, например, для технологов и
специалистов по контролю и управлению, имеющих дело с системами, для которых установлены функции
контроля и управления.

7.1.3.3 Рекомендуется, чтобы проблемно-ориентированные языки поддерживали простую структуру
программного обеспечения, например, линейные программы.

7.1.3.4 Рекомендуется, чтобы проблемно-ориентированные языки позволяли разработчикам учиты­
вать спецификацию проекта архитектуры СКУ, например, давали возможность назначать функции компо­
нентам системы и под держивали способность проекта сохранять устойчивость к дефектам элементов тех­
нического обеспечения.

7.1.4 Конф игурация ранее разработанного программного обеспечения
В данном пункте рассматривается ситуация, когда функции безопасности категории А обеспечивают­

ся программным обеспечением с использованием данных конфигурации, т.е. данных, специфичных для
конкретного применения.

Ранее разработанное программное обеспечение может быть связано с комплексом оборудования
либо оно может быть отдельной программой, которая затем интегрируется с выбранной платформой техни­
ческого обеспечения.

7.1.4.1 При использовании ранее разработанного программного обеспечения должна быть проведена
оценка его возможностей (см. 15.3) для обеспечения пригодности для предназначенной роли.

Требования к анализу пригодности приведены в 15.3.1.2. При существовании ограничения на исполь­
зование программного обеспечения его пригодность может быть достигнута с помощью программного обес­
печения. являющегося внешним по отношению к ранее разработанному программному обеспечению.

Для конфигурирования программного обеспечения предпочтителен подход, основанный на инстру­
ментальных программах, который сужает область возможных ошибок человека.

7.1.4.2 Все ограничения, связанные с данными, должны быть оформлены документально с указани­
ем, например, допустимых форматов данных, диапазонов, правил вычислений.

7.1.4.3 Данные конфигурации должны быть оформлены документально.
7.1.4.4 Надлежащим образом должны быть обоснованы значения величин, используемых в сочета­

нии с исходными проектными данными.
7.1.4.5 Прослеживаемость: рекомендуется, чтобы была возможность определить, когда и кем были

проведены изменения данных конфигурации.
7.1.4.6 Удобство сопровождения: процесс разработки должен обеспечивать с помощью структуриро­

ванного подхода и использования комментариев к данным и/или сопроводительной документацией понят­
ность и сопровождаемость структуры данных в течение назначенного срока службы системы, к которой эта
структура принадлежит.

Для дальнейшего руководства по использованию инструментов прикладных данных см. 14.3.5.

7.2 Язы к и связанные с ним трансляторы и инструментальны е средства

7.2.1 Общие требования
При проектировании и реализации программного обеспечения систем класса 1 нельзя требовать ис­

пользования специальных языков, однако следующие положения могут рассматриваться в качестве об­
щих основных правил для языков, используемых в этих целях:

7.2.1.1 Используемые языки должны соответствовать строгим (или строго очерченным) правилам
семантики и синтаксиса.

7.2.1.2 Синтаксис языка должен быть полностью и четко определен и оформлен документально.
7.2.1.3 В необходимых случаях использование языка должно быть ограничено «безопасным» сокра­

щенным вариантом, например, примитивами, которые пригодны для определения необходимых функций.

16

ГОСТ Р МЭК 60880— 2010

7.2.1.4 Должны использоваться языки с тщательно проворенным транслятором.
7.2.1.5 Если применяется транслятор, не прошедший тщательной проверки, то дополнительная вери­

фикация должна предоставить свидетельство того, что результаты трансляции будут верными.
7.2.1.6 Следует иметь в распоряжении инструментальные программы для автоматизированной про­

верки.
Рекомендуется использование автоматизированных инструментальных программ. При этом приме­

няются требования раздела 14.
7.2.2 Универсальные язы ки
Универсальные языки для систем класса 1 и их трансляторы не должны препятствовать использова­

нию следующих схем, ограничивающих возможные ошибки:
- проверка типа переменных модуля трансляции, проверка параметров подпрограммы;
- проверка границ массива рабочего модуля.
Руководство по выбору языка, транслятора иредактора связи, приведено в приложении D.
7.2.3 П роблемно-ориентированные язы ки и соответствую щ ая автоматизированная генера­

ция кода
7.2.3.1 Проблемно-ориентированные языки следует преобразовывать в универсальный язык с помо­

щью автоматизированных инструментальных программ (например, генератора кода) до трансляции про­
граммы в выполняемую форму.

7.2.3.2 Должна быть проведена оценка соответствия генерируемого кода требованиям настоящего
стандарта к проектированию и кодированию программного обеспечения, а несоответствия должны быть
обоснованы.

7.2.3.3 Структура генерируемой программы должна быть определена в общем виде, например,
должно быть определено расположение описаний по отношению к кодовым операторам.

7.2.3.4 Генерируемый код не должен изменяться в результате непосредственных действий с кодом.
7.2.3.5 При модификации спецификации входных данных код должен быть генерирован повторно,

например, в результате деятельности по В&В.
Дополнительные рекомендации по автоматизированной генерации кода приведены в перечислении f)

раздела В.5 приложения В.

7.3 Подробные рекомендации

7.3.1 Общие положения
В приложении В приведены рекомендации, в которых детализированы аспекты, указанные в 7.1.
К двум основным этапам разработки программного обеспечения применимы рубрики индивидуаль­

ных рекомендаций приложения В. как показано в таблице 1.

Т а б л и ц а 1 — Процедурные и программные аспекты проектирования и реализации

Этап разработки
программною
обеспечения

Процедурные
аспекты Приложение В Программные

аспекты
Приложение В

Проектирование Модифицируемость В.1а Структуры управления
Подход сверху вниз В.1Ь и доступа В.2а
Верификация промежу- Модули В.2Ь
точных программ при Операционное системное
проектировании В.1с программное обеспечение В.2с
Управление модифика- Время выполнения В.2d
цией в процессе разра- Прерывания В.2е
ботки B.1d Арифме г ические

выражения В.2(
Проверки достоверности В.За
Безопасный вывод данных В.ЗЬ
Ветвления и циклы В.4а
Подпрограммы В.4Ь
Иерархические структуры В.4с
Структуры данных В.4е
Проблемно-ориентированные
языки В5е

17

ГОСТ Р МЭК 60880— 2010

Окончание таблицы 1

Этап разработки
программного

Процедурные
аспекты Приложение В Программные

аспекты
Приложение В

Реализация Верификация промажу- Модули В.2Ь
точных программ при Время выполнения В.2d
проектировании В.1с Прерывания В.2е
Управление модифика- Арифметические выражения B.2f
цией в процессе разра- Проверки достоверности В.За
ботки B.1d Безопасный вывод данных В.ЗЬ
Тестирования устрой- Содержание памяти В.Зс
ства и интеграционные Проверка на наличие ошибок В.3d
тестирования B.4g Ветвления и циклы В.4а
Правила кодирования B.5d Подпрограммы В.4Ь

Иерархические структуры В.4с
Адресация и массивы B.4d
Структуры данных В.4е
Динамические изменения B.4f
Последовательность и упорядо-
ченность В.5а
Комментарии В.5Ь
Ассемблер В.5с
Автоматизированная
генерация кода В.5Г

7.3.2 Применение требований и рекомендаций
7.3.2.1 В процессе разработки программного обеспечения должны быть выполнены требования и

рекомендации, приведенные в приложении В. а их невыполнение должно быть обосновано и оформлено
документально.

7.3.2.2 Обоснование следует выполнять в начале процесса проектирования.

7.4 Документация

7.4.1 Во время разработки программного обеспечения этап проектирования должен заканчиваться
составлением спецификации проекта программного обеспечения.

Этот документ служит основой для официального рассмотрения проекта и последующей реализации
программы.

7.4.2 Детализация должна быть достаточной для того, чтобы реализация программы могла быть осу­
ществлена без дальнейшего разъяснения проекта.

7.4.3 Документ должен быть структурирован в соответствии с уровнями процесса проектирования
программного обеспечения.

Спецификация проекта программного обеспечения может быть представлена в виде одного докумен­
та или полного набора отдельных документов.

7.4.4 В этом случае каждый документ должен иметь определенную связь с другими документами и
быть четко ограниченным по теме.

7.4.5 Форматы документов следует выбирать в соответствии с конкретной целью, включая:
- словесное описание;
- арифметические выражения;
- графическое представление.
7.4.6 В документах следует приводить необходимые диаграммы и чертежи. Как правило, предпочти­

тельней выбирать графическое представление.
7.4.7 При необходимости документацию следует согласовывать с национальными стандартами.

18

ГОСТ Р МЭК 60880—2010

8 Верификация программного обеспечения

8.1 Процедура вериф икации программного обеспечения

Деятельность по верификации, предпринимаемая как часть разработки программного обеспечения,
обычно лежит на ответственности поставщика и осуществляется персоналом, не зависимым от лиц. созда­
ющих программное обеспечение: лучший путь — это привлечение верификационной группы.

Допускается проведение третьей стороной дополнительной верификации как части оценки третьей
стороной программного обеспечения и процесса его разработки с тем. чтобы обеспечить уверенность в
соответствии программного обеспечения намеченным показателям качества. Существует много путей обес­
печения независимой верификации ресурсами и ее реализации: выбор пути зависит от предпочтений наци­
ональных регулирующих органов.

8.1.1 Верификационная группа должна состоять из лиц. не принимавших участия в создании про­
граммы и обладающих необходимыми компетенцией и знаниями.

Четко определяют требуемый уровень независимости:
8.1.2 Руководство верификационной группы должно быть отдельным и не зависимым от руководства

разрабатывающей группы.
8.1.3 Общение между верификационной группой и разрабатывающей группой — будь то уточнения

или отчет о дефектах— должно осуществляться формализованным образом в письменном виде с уров­
нем детализации, допускающим проверку.

8.1.4 При взаимодействии между двумя сторонами следует стремиться к сохранению независимости
суждений верификационной группы.

8.1.5 Верификационная группа должна быть обеспечена соответствующими ресурсами и средства­
ми. Ей должно быть предоставлено время, необходимое для осуществления деятельности по верифи­
кации.

8.1.6 Верификационная группа должна иметь четко определенные ответственность и обязательства.
8.1.7 Верификационная группа должна иметь необходимые основания для формулирования своих

выводов.
8.1.8 Выходные данные каждого этапа разработки программного обеспечения (см. рисунок 3) долж­

ны быть верифицированы.
8.1.9 Деятельность по верификации программного обеспечения должна подтверждать соответствие

спецификации требований к программному обеспечению требованиям, предъявляемым к программному
обеспечению в спецификации требований к системе.

8.1.10 Деятельность по верификации программного обеспечения должна подтверждать соответствие
спецификации проекта программного обеспечения требованиям к программному обеспечению.

8.1.11 Деятельность по верификации программного обеспечения должна подтверждать соответствие
кода и спецификации проекта программного обеспечения, полученной на этапе проектирования. Специаль­
ные требования приведены в 8.2.3.2 для случая использования инструментальной программы АПСП
с такими элементами, как автоматизированная генерация кода.

8.1.12 Любую производственную деятельность следует начинать на основе верифицированных вход­
ных данных или документов.

8.1.13 Верификацию результатов этапа как части разработки программного обеспечения рекоменду­
ется проводить до начала следующего этапа, и она должна быть завершена до завершения (т.е. до вери­
фикации) следующего этапа.

Возможные подготовительные работы для последующего этапа могут быть выполнены до верифика­
ции и утверждения предыдущего этапа.

8.1.14 Если исходная информация или документы, необходимые для выполнения определенных
действий, были изменены, то эти действия, а также последующие действия должны быть проведены по­
вторно в необходимом объеме, учитывая потенциальное влияние произведенных изменений.

8.1.15 Верификация всего программного обеспечения должна быть завершена до введения системы
в эксплуатацию.

8.2 Действия по вериф икации программного обеспечения

При верификации необходимо выполнить следующие действия.
8.2.1 План вериф икации
8.2.1.1 До начала выполнения действий по верификации должен быть составлен план верификации

программного обеспечения.

19

ГОСТ Р МЭК 60880— 2010

8.2.1.2 В плане должны быть документально оформлены все критерии, методы и инструменты, ис­
пользуемые в процессе верификации.

8.2.1.3 В плане должны быть описаны действия, выполняемые для оценки каждого объекта про­
граммного обеспечения, каждой инструментальной программы, используемой в процессе разработки про­
граммного обеспечения, и каждого этапа с тем. чтобы выяснить соответствие этих объектов спецификации
требованиям к программному обеспечению.

8.2.1.4 Степень детализации должна быть такой, чтобы верификационная группа могла реализовать
план верификации и вынести объективное суждение о соответствии программного обеспечения предъяв­
ляемым к нему требованиям.

8.2.1.5 План верификации должен быть составлен верификационной группой и включать в себя:
1) выбор стратегии верификации, систематической или выборочной, либо комбинирующей то и дру­

гое. с выбором контрольного тестирования в соответствии с требуемыми функциями, особенностями струк­
туры программы либо с учетом того и другого (см. приложение Е);

2) выбор и использование инструментальных программ для верификации программного обес­
печения;

3) проведение верификации.
4) документальное оформление действий по верификации;
5) оценку результатов верификации, полученных непосредственно от испытательного оборудования,

а также из проведенных тестирований оценку выполнения требований по безопасности.
8.2.1.6 Проводимые тестирования должны обеспечить обширную проверку программного обеспече­

ния. Среди критериев, которые необходимо включить в план, важнейшими следует считать критерии тесто­
вого покрытия.

8.2.1.7 В плане верификации должны быть определены любые объективные свидетельства, требую­
щиеся для подтверждения обширности тестирований. С этой целью критерии тестового охвата, выбранные
в соответствии с проектом (см. приложение Е). должны быть обоснованы и документально оформлены.

8.2.1.8 Должны быть предусмотрены адекватные меры по разрешению всех проблем безопасности,
возникших во время действий по верификации, проводимых поставщиком в процессе разработки программ­
ного обеспечения либо третьей стороной в процессе оценки.

8.2.1.9 Все проблемы безопасности должны быть решены с помощью соответствующих корректиро­
вок или смягчающих мероприятий.

8.2.2 Вериф икация проекта
8.2.2.1 Верификация проекта должна касаться:
1) достаточности спецификации проекта программного обеспечения в отношении требований, касаю­

щихся их взаимного соответствия и полноты, вплоть до модульного уровня включительно;
2) разбиения проекта на функциональные модули и способа такого разбиения с учетом:
- возможности технической реализации проекта.
- контролепригодности для последующей верификации.
- понятности для разрабатывающей и верификационной групп,
- модифицируемости для возможности последующей модификации;
3) правильной реализации требований безопасности.
8 2.2.2 Результат верификации проекта должен быть оформлен документально.
8.2.2.3 В документацию должны быть включены выводы и четко обозначены следующие проблемы,

требующие действий:
- пункты, по которым нет соответствия требованиям к программному обеспечению:
- пункты, по которым нет соответствия стандартам на проектирование:
- модули, данные, структуры и алгоритмы, плохо адаптированные к задаче.
8.2.3 Вериф икация реализации
Независимо от того, как была разработана рабочая программа, методы тестирований, используемые

для верификации результатов этапа реализации, следует отбирать в соответствии с подразделом Е.4.2
приложения Е.

8.2.3.1 Вериф икация реализации на универсальны х язы ках
8.2.3.1.1 Верификация кода
8.2.3.1.1.1 Верификация реализации должна включать в себя действия, основанные на анализе и

тестированиях исходного кода. Анализ исходного кода может проводиться с использованием таких мето­
дов верификации, как проверка кода, возможно, с помощью автоматизированных инструментальных про­
грамм.

20

ГОСТ Р МЭК 60880— 2010

8.2.3.1.1.2 Верификацию кода следует начинать с анализа исходного кода модуля, за которым сле­
дуют тестирования модуля.

8.2.3.1.1.3 Верификация модуля должна подтвердить, что каждый модуль выполняет предназначен­
ную ему функцию и не выполняет непредназначенных функций.

8.2.3.1.1.4 Интеграционные тестирования модуля должны проводиться с целью демонстрации на ран­
нем этапе разработки того, что все модули правильно взаимодействуют и выполняют предназначенные им
функции. При использовании инструментария АПСП он также должен соответствовать требованиям разде­
ла 14.

8.2.3.1.1.5 Результаты верификации кода должны быть оформлены документально.
8.2.3.1.2 Спецификация тестирований программного обеспечения
Спецификация тестирований программного обеспечения является одним из принципиальных доку­

ментов. с которыми должен быть согласован план верификации.
8.2.3.1.2.1 Спецификация тестирований программного обеспечения должна основываться на специ­

фикации проекта программного обеспечения и детальной проверке требований к программному обеспече­
нию.

8.2.3.1.2.2 В спецификации должна быть проведена детальная информация о тестированиях, которые
нужно провести в отношении каждого компонента программного обеспечения (модулей и их составляю­
щих).

8.2.3.1.2.3 Спецификация тестирований программного обеспечения должна включать в себя:
1) среду, в которой проводятся тестирования;
2) процедуры тестирований;
3) критерии приемки, т.е. детальное определение критериев, которые должны быть соблюдены, для

того чтобы принять модули и основные компоненты на уровнях подсистемы и системы;
4) процедуры обнаружения дефектов;
5) перечень документов, которые должны быть оформлены.
8.2.3.1.3 Отчет о тестированиях программного обеспечения
8.2.3.1.3.1 В отчете о тестированиях программного обеспечения должны быть представлены резуль­

таты верификации, описанные в спецификации тестирований программного обеспечения и устанавливаю­
щие. работает ли программное обеспечение в соответствии со спецификацией проекта программного обес­
печения.

8.2.3.1.3.2 В отчете должны быть отмечены расхождения между проектом и реализацией, обнаружен­
ные в процессе тестирований.

8.2.3.1.3.3 Отчет о тестированиях программного обеспечения должен включать в себя следующие
пункты как на уровне модуля, так и на уровне основного проекта:

1) конфигурация технических средств, используемых для тестирований, определение и обоснование
использования любых технических приспособлений и программного обеспечения;

2) используемые носители информации и требования к доступу испытуемого конечного кода;
3) входные значения, связанные с тестированиями;
4) ожидаемые и получаемые выходные значения;
5) дополнительные данные, касающиеся синхронности, последовательности событий и т.п.;
6) соответствие критериям приемки, указанным в спецификации тестирований;
7) регистрация возникающих дефектов с описанием характеристик каждого дефекта.
8.2.3.2 Вериф икация реализации на проблем но-ориентированны х языках
Использование проблемно-ориентированных языков обычно рассматривается в целях улучшения

качества (т.е. для снижения уровня дефектов проекта и реализации, вносимых в технологическом процес­
се) и эксплуатационной надежности программного обеспечения.

8.2.3.2.1 Рекомендуется, чтобы прикладное программное обеспечение, которое автоматически гене­
рируется из спецификации, использующей проблемно-ориентированный язык, имело систематизирован­
ную структуру с целью поддержания эффективной верификации.

8.2.3.2.2 Программное обеспечение, написанное на проблемно-ориентированных языках, должно
верифицироваться на правильность и согласованность с помощью, например, визуальной проверки или с
использованием автоматических инструментальных программ, которые позволяют моделировать работу
программного обеспечения в режиме отладки.

8.2.3.2.3 Процесс верификации должен подтверждать, что:
- все элементы проекта правильно реализованы;

21

ГОСТ Р МЭК 60880— 2010

- функциональность программного обеспечения согласуется с целями, определенными в специфика­
ции требований к программному обеспечению;

- проект программного обеспечения соответствует требованиям стандартов, указанных в плане обес­
печения качества.

8.2.3.2.4 Соответствующий и обоснованный выбор методик, таких как анимация, тестирование, обзор,
сквозной контроль, формализованный анализ и подтверждение, должен быть применен для улучшения
понимания спецификаций и верификации их функциональной корректности и согласованности.

8.2.3.2.5 Инструментальные программы, используемые для верификации или валидации, должны
быть аттестованы, как это требуется в разделе 14.

8.2.3.3 Вериф икация конф игурации ранее разработанного программного обеспечения
В настоящем подразделе рассматривается ситуация, когда функция безопасности категории А обес­

печивается ранее разработанным программным обеспечением, конфигурированным с помощью данных
конфигурации, т.е. данных, специфичных для конкретного применения. Программное обеспечение может
быть связанным с семейством оборудования или быть самостоятельной программой, которая затем интег­
рируется с выбранными базовыми техническими средствами.

Необходимое условие применения требований данного подраздела состоит в том. что ранее разрабо­
танное программное обеспечение уже аттестовано для данного применения (см. раздел 15).

8.2.3.3.1 Верификация данных должна проводиться с использованием комбинации проверки/анализа
и/или тестирований. Соответствующие средства тестирований влияния данных конфигурации должны быть
проанализированы и оформлены документально (при рассмотрении роли моделирования, эмуляции, ис­
пытательных стендов и прототипов).

8.2.3.3.2 Структура документации, одобренная для любой конфигурации ранее разработанного про­
граммного обеспечения, должна позволять, при необходимости, создание промежуточных документов для
того, чтобы процесс проектирования был полностью отражен в документации, например, чтобы установить,
как требование ко времени отклика учитывается при конфигурировании частоты сканирования и частоты
передачи буфера сообщений.

8.2.3.3.3 Процесс верификации должен подтвердить, что данные конфигурации согласуются с про­
ектной документацией и со всеми установленными ограничениями и правилами.

Верификация может осуществляться путем визуальной проверки либо с применением инструмен­
тальных программ, либо путем комбинирования обеих методик.

8.2.3.3.4 Если данные получают с использованием инструментальных программ и если этап верифи­
кации данных предполагается пропустить с непосредственным переходом к интеграции системы, то долж­
но быть представлено обоснование достаточной уверенности в корректности инструментальных программ.

Дальнейшее руководство по верификации данных, получаемых с использованием прикладных инст­
рументальных программ. приведено в 14.3.5.

9 Программные аспекты интеграции системы

Процесс интеграции системы состоит в объединении верифицированных модулей технического обес­
печения и программного обеспечения в подсистемы (компьютерные узлы) и. в конечном счете, в завер­
шенную систему.

Этот процесс состоит из четырех частей;
a) сборка и взаимное соединение модулей технического обеспечения в соответствии с проектной

документацией;
b) построение законченного программного обеспечения из программных модулей;
c) загрузка законченного программного обеспечения технических средств, для которых оно разраба­

тывалось:
d) верификация того, что;
- программное обеспечение соответствует спецификации проекта;
- требования к интерфейсу между техническим и программным обеспечениями удовлетворены;
- программное обеспечение работает в конкретном техническом обеспечении.
К программным аспектам интеграции системы относятся действия, по перечислениям Ь), с) и d).
В настоящем разделе приведены дополнительные требования к плану интеграции системы, а также

требования, касающиеся программных аспектов интеграции системы, в дополнение к 6.1.4 МЭК 61513.

22

ГОСТ Р МЭК 60880— 2010

9.1 Программные аспекты плана интеграции системы

9.1.1 Данный план должен быть подготовлен и документально оформлен на этапе проектирования и
верифицирован по классу 1 требований к системе.

9.1.2 План должен быть подготовлен на достаточно ранней стадии процесса разработки для того,
чтобы требования по интеграции системы могли быть включены в проект системы и ее техническое и про­
граммное обеспечения.

9.1.3 В плане должны быть установлены стандарты и процедуры, которым нужно следовать при
интеграции системы.

9.1.4 В данный план должны быть включены те положения плана обеспечения качества системы,
которые относятся к интеграции системы.

9.1.5 В плане интеграции системы должны быть учтены ограничения в рамках любых модулей техни­
ческого и/или программного обеспечения, указанные в проекте системы технического обеспечения и про­
граммного обеспечения. В план должны быть также включены требования к процедурам и методам управ­
ления. охватывающие:

- управление конфигурацией системы (см. 5.6);
- интеграцию системы;
- верификацию интегрированной системы;
- устранение дефектов.
9.1.6 В плане интеграции системы должны быть определены оба аспекта управления конфигурацией

(идентификация и контроль) в соответствии с требованиями 6.2.1.2 МЭК 61513.
9.1.7 В процессе верификации отдельных модулей технического и программного обеспечения неко­

торые аспекты проекта этих модулей могут верифицироваться на уровне подсистем (компьютерных узлов)
или на уровне завершенной системы (если это более целесообразно). Когда верификация с помощью
тестирований на этих уровнях невозможна, все требования к проекту отдельного модуля должны верифи­
цироваться другими средствами.

9.1.8 Все взаимосвязи между верификацией отдельных модулей и верификацией интегрированной
системы должны быть оформлены документально в плане интеграции системы.

9.2 Интеграция системы

Конкретные процедуры интеграции системы зависят от характера проекта системы (см. перечисле­
ния а) — с), раздел 9).

9.2.1 Такие процедуры должны быть установлены в плане интеграции системы и должны включать в
себя следующие действия:

- получение модулей, соответствующих плану управления конфигурацией (см. 6.2.1.2 МЭК 61513);
- интегрирование модулей технического обеспечения в систему (например, расположение модуля,

адрес ячейки памяти, выбор, разводка соединений);
- объединение программных модулей и загрузку законченного программного обеспечения в соответ­

ствующее техническое обеспечение.
- предварительные функциональные тестирования функций интегрированной системы (см. приведен­

ные ниже требования);
- документальное оформление процесса интефации и конфигурации системы, которые будут подвер­

гаться тестированиям.
- надлежаще оформленное предоставление систомы для тестирований.
9.2.2 Если устранение дефектов требует модификации какого-либо верифицированного программно­

го обеспечения или какого-либо проектного документа, то этот дефект должен быть отражен в отчете в
соответствии с процедурой, установленной в 9.4.

Любые дефекты, обнаруженные во время интеграции системы, которые являются исключительно
ошибками самого процесса интефации и не влияют на проектную документацию, могут быть устранены без
оформления отчета о дефектах.

9.3 Верификация интегрированной системы

Верификация системы определяет, должным ли образом интегрированы в систему модули и подси­
стемы технического и программного обеспечения, совместимы ли и работают ли так, как им пред­
назначено.

23

ГОСТ Р МЭК 60880— 2010

9.3.1 Система тестирования должна быть настолько законченной, насколько это практически целесо­
образно для данных тестирований.

9.3.2 Контрольные тестирования, выбранные для верификации системы, должны проверять взаимо­
связь модулей, а также основную работу самих модулей.

9.3.3 В плане интеграции системы должно быть показано, что моделирование любой части системы
является существенным и эквивалентным реальной части.

9.3.4 В плане интеграции системы должны быть определены тестирования для каждого требования к
интерфейсу каждого компьютерного узла.

9.3.5 Тестирования интегрированной системы должны анализироваться, а результаты тестирований
оцениваться верификационной группой, обладающей хорошим знанием спецификации системы.

9.3.6 Оборудование, используемое для верификации системы, должно быть должным образом отка­
либровано.

9.3.7 Для инструментальных программ, используемых при верификации, должны быть установлены
меры по обеспечению качества, соответствующие важности этих инструментальных программ верифика­
ции.

9.3.8 Верификация интегрированной системы должна подтвердить, что все компоненты системы об­
ладают должными эксплуатационными характеристиками (например, устройства обработки и устройства
связи).

9.4 Процедуры устранения дефектов

9.4.1 Процедуры, связанные с отчетом о дефектах, обнаруженных во время верификации интеграции
системы, и с их устранением, должны быть установлены до начала верификации интегрированной
системы.

9.4.2 Эти процедуры должны применяться ко всем дефектам, обнаруженным во время верификации
системы, а также к дефектам, обнаруженным во время интеграционных функциональных тестирований и
требующим модификации верифицированной системы или проектной документации на систему.

9.4.3 Данные процедуры должны обеспечивать проведение любой необходимой повторной верифи­
кации проекта системы, модулей технического или программного обеспечения в соответствии с планом
управления конфигурацией системы.

9.4.4 Данные процедуры должны обеспечивать проведение любой необходимой модификации проек­
та системы, технического или программного обеспечения в соответствии с процедурой модификации в
соответствии с разделом 11 и планом управления конфигурацией системы.

9.4.5 Должна быть проведена оценка каждого дефекта, указанного в отчете, с целью определения
возможных систематических упущений, а также возможность выявления обнаруженных дефектов на бо­
лее раннем этапе верификации.

9.4.6 Если установлено, что это так (т.е. дефекты должны быть обнаружены на более раннем этапе),
то должно быть проведено исследование более раннего этапа верификации для определения возможных
систематических упущений существующей верификации.

9.4.7 Если оценка дефектов показала, что существуют упущения в верификации, ставшие причиной
того факта, что дефекты модулей программного обеспечения остались необнаруженными, то эти упуще­
ния должны быть определены, исправлены или обоснованы.

9.5 Программные аспекты отчета о вериф икации интегрированной системы

9.5.1 Результаты верификации интегрированной системы должны быть документально оформлены в
отчете (см. приложение F).

9.5.2 В данном отчете должны быть указаны используемое техническое и программное обеспечение,
используемое испытательное оборудование, параметры его калибровки и параметры установки программ­
ного и технического обеспечения, моделирование компонентов системы или интерфейса, а также любые
обнаруженные по результатам тестирований расхождения вместе с корректирующими действиями в соот­
ветствии с 9.4.

9.5.3 Результаты тестирований должны сохраняться в форме, доступной для проверки лицами, не­
посредственно не задействованными в плане верификации.

9.5.4 Разрешение вопросов, связанных с устранением всех отмеченных в отчете дефектов, и резуль­
таты последующей оценки должны быть в достаточных деталях документально оформлены так. чтобы
лица, непосредственно не задействованные в разработке системы и плане верификации, могли осуществ­
лять их проверку.
24

ГОСТ Р МЭК 60880—2010

10 Программные аспекты валидации системы

a) Для валидации системы и ее программного обеспечения по классу 1 требований к интегрирован­
ной системе должны быть проведены тестирования.

b) Валидация должна включать в себя тестирования, проводимые с системой в ее конечной конфигу­
рации, включая конечную версию программного обеспечения.

10.1 Программные аспекты плана валидации системы

10.1.1 Валидация системы должна проводиться в соответствии с планом валидации системы.
10.1.2 В плане должны быть определены статические и динамические контрольные тестирования.
10.1.3 План валидации компьютерной системы должен разрабатываться, а результаты валидации

должны оцениваться лицами, не участвовавшими в проектировании и реализации.

10.2 Валидация системы

10.2.1 Система должна проверяться с помощью статического и динамического моделирования вход­
ных сигналов, существующих при нормальной эксплуатации, при ожидаемых эксплуатационных событиях
и при аварийной ситуации, требующей реакции испытываемой компьютерной системы.

10.2.2 Каждая связанная с реактором функция категории А системы должна быть подтверждена с
помощью репрезентативных тестирований для каждого параметра останова или защиты как в отдельности,
так и в соответствующих комбинациях.

10.2.3 Тестирования должны:
- охватывать полностью репрезентативным образом все диапазоны сигналов и расчетных пара­

метров;
- исчерпывающим образом охватывать голосование, а также другую логику и логические ком­

бинации;
- проводиться для всех сигналов останова или защиты в окончательной конфигурации установки;
- обеспечивать подтверждение точности и времени отклика, а также то, что при любом отказе или

комбинации отказов осуществляются правильные действия;
- проводиться для всех других функций, которые непосредственно влияют на безопасность реактора

(например, запреты, блокировки).
10.2.4 Кроме того, в плане валидации системы должны быть указаны необходимые входные сигналы

и их значения, ожидаемые выходные сигналы и критерии приемки.
10.2.5 Используемое при валидации оборудование должно быть соответствующим образом откалиб­

ровано и конфигурировано (параметры технического и программного обеспечения).
10.2.6 Следует показать, что используемое при валидации оборудование соответствует цели валида­

ции системы.

10.3 Программные аспекты отчета о валидации системы

10.3.1 В отчете о валидации системы должны быть отражены результаты программных аспектов ва­
лидации системы.

10.3.2 В отчете должны быть указаны техническое обеспечение, программное обеспечение и конфи­
гурация использованной системы, а также использованное оборудование и его калибровка и использован­
ные модели при моделировании.

10.3.3 В данном отчете также должны быть указаны любые отклонения.
10.3.4 В данном отчете должны быть обобщены результаты валидации системы.
10.3.5 В данном отчете должна быть дана оценка соответствия системы всем требованиям.
10.3.6 Результаты должны сохраняться в виде, позволяющем осуществление проверки лицами, не­

посредственно не участвовавшими в валидации.
10.3.7 Использованные в процессе валидации инструментальные программы должны быть указаны в

отдельном пункте отчета.
10.3.8 Должно быть документально оформлено использование моделирования станции и ее систем.

10.4 П роцедуры устранения деф ектов

10.4.1 В плане валидации системы должны быть установлены процедуры отчета о дефектах и устра­
нения дефектов, выявленных во время валидации.

25

ГОСТ Р МЭК 60880— 2010

10.4.2 Эти процедуры отчета о дефектах и устранения дефектов должны применяться ко всем дефек­
там. обнаруженным во время валидации системы и требующим модификации проекта системы или про­
граммного обеспечения.

10.4.3 В этих процедурах должно быть предусмотрено проведение повторной верификации проекта
системы, технического и программного обеспечений в соответствии с планом управления конфигурацией
системы.

10.4.4 Эти процедуры должны обеспечивать проведение модификации проекта системы и программ­
ного обеспечения в соответствии с процедурой модификации раздела 11 и планом управления конфигура­
цией системы.

10.4.5 Должна проводиться оценка каждого указанного в отчете дефекта с целью определения, не
был ли характер дефекта таким, чтобы он мог быть обнаружен на более раннем этапе.

10.4.6 Если установлено, что дефект мог быть обнаружен на более раннем этапе, то должен быть
проведен анализ этого более раннего этапа с целью обнаружения возможного систематического дефекта.

11 Модификация программного обеспечения

Модификацией программного обеспечения считается внесенное в программное обеспечение измене­
ние, которое обычно влияет как на рабочую программу, так и на документацию.

Модификация программного обеспечения может потребоваться по следующим причинам:
- изменения функциональных требований;
- изменения в программных средствах;
- изменения в техническом обеспечении;
- отклонения, обнаруженные во время тестирований или эксплуатации.
Модификация программного обеспечения может потребоваться на этапе разработки или после по­

ставки:
a) До реализации любой модификации программного обеспечения должна быть установлена и доку­

ментально оформлена формализованная процедура управления модификацией, которая должна вклю­
чать в себя требования по верификации и валидации.

b) В этой процедуре должно быть установлено, каким образом учитывать требования данного пункта.

11.1 Процедура запроса на модиф икацию

11.1.1 При рассмотрении вопроса модификации должны быть предприняты следующие шаги:
- составление запроса на модификацию;
- оценка запроса;
- решение.
11.1.2 В составленном запросе на модификацию должны быть однозначно определены:
- причины запроса;
- цель;
- функциональная область применения;
- инициатор;
- дата возникновения.
11.1.3 Запрос на модификацию должен быть включен в документацию по модификации программно­

го обеспечения в качестве ее составной части. Если программное обеспечение модифицируется в рамках
модификации проекта системы, то документация по модификации программного обеспечения должна вхо­
дить в документацию по модификации проекта системы в качестве ее составной части.

11.1.4 Должна быть проведена независимая оценка запроса на модификацию.
11.1.5 В оценке запроса на модификацию должна быть проверена ее целесообразность с целью

обеспечения того, чтобы:
- предлагаемые изменения были четко и однозначно определены;
- предлагаемые изменения исправляли причины отклонений, если изменение вытекает из отчета об

отклонениях;
- предлагаемые изменения не ухудшали способность программного обеспечения обеспечивать тре­

буемые функции категории А;
- преимущества от реализации любых изменений не превышались нарушениями, которые может вне­

сти их реализация (неправильно спроектированные и реализованные изменения могут вызвать отказы сис­
темы).

26

ГОСТ Р МЭК 60880— 2010

11.1.6 В запросе на модификацию должны также проверяться:
- техническая достижимость:
- влияние на другую часть системы (например, расширение памяти) или другое оборудование (на­

пример, испытательные системы); в этом случае должен оформляться запрос на модификацию, касаю­
щийся этих областей влияния;

- влияние на возможные изменения в методах, инструментальных программах или стандартах, кото­
рые должны использоваться при выполнении модификации (по сравнению с теми методами, инструмен­
тальными программами и стандартами, которые применялись при разработке версии программного обес­
печения, подлежащей модификации);

- влияние на само программное обеспечение, включая перечень подверженных влиянию модулей.
- влияние на эксплуатационные характеристики (быстродействие, точность и т.п.);
- стратегия и усилия, необходимые для верификации и валидации с целью удостоверения в сохране­

нии корректности существующего программного обеспечения: анализ необходимости проведения повтор­
ной верификации должен быть оформлен документально в поддающейся проверке форме:

- набор рассмотренных документов.
Процесс оценки может состоять из нескольких этапов.
Исходный запрос может быть рассмотрен на предмет целесообразности и достижимости до того как

будет проводиться какая-либо детальная оценка влияния.
После проведения общей оценки влияния может быть проведена повторная более подробная оценка.
Запрос на проведение модификации находится на рассмотрении до принятия решения, которое

может:
- отклонить запрос; в этом случае он отсылается обратно с обоснованием отказа;
- потребовать проведения детального анализа, результатом которого будет отчет об анализе моди­

фикации программного обеспечения;
- одобрить запрос и начать процесс модификации.
11.1.7В случае, если затребован отчет об анализе модификации программного обеспечения, этот

отчет должен составляться персоналом, хорошо осведомленным о программном обеспечении системы.

11.2 Процедура осущ ествления модиф икации программного обеспечения

11.2.1 Для модификаций, реализуемых на работающем оборудовании, когда невозможно провести
необходимые тестирования из эксплуатационных соображений, поставщик программного обеспечения дол­
жен иметь доступ к испытательной конфигурации, идентичной реальной системе во всех значимых аспек­
тах (включая установленную ЭВМ. транслятор, испытательные инструменты, имитатор станции и т.п.), для
получения подтверждения обоснованности модификаций.

11.2.2 Процедура модификации, соответствующая какому-либо конкретному изменению, будет зави­
сеть от этапов процесса разработки, подверженных влиянию этих изменений:

- при изменении в спецификации требований к программному обеспечению весь процесс разработки
программного обеспечения для любой части системы СКУ. подверженной влиянию этого изменения, дол­
жен быть подвергнут повторной проверке;

- изменение в процессе разработки должно быть проанализировано на предмет его потенциального
влияния на соответствующие нижние уровни:

- модификация должна проводиться в соответствии с правилами, приведенными в разделе 7.
11.2.3 После проведения модификации весь процесс или часть процесса верификации и валидации,

описанные в 8.1 и разделе 10. должны быть вновь проведены в соответствии с анализом влияния модифи­
кации программного обеспечения (см. 11.3).

11.2.4 Все документы, подверженные влиянию модификации, должны быть откорректированы, и в
них должна быть дана ссылка на запрос на модификацию программного обеспечения.

11.2.5 В отчете о модификации программного обеспечения должны быть обобщены все действия,
предпринятые с целью модификации.

11.2.6 Все эти документы должны иметь дату, номер и быть зарегистрированы в архиве по управле­
нию модификациями проекта.

11.2.7 Стратегия разработки модифицированного программного обеспечения на работающей станции
должна быть оценена на предмет ее влияния на стратегию голосования, технического обслуживания и
передачи данных. В зависимости от результатов этой оценки модификации программное обеспечение мо­
жет вводиться постепенно, позволяя по очереди проводить тестирования нового программного обеспече­
ния на каждой резервной линии, с параллельной работой немодифицированных линий.

27

ГОСТ Р МЭК 60880— 2010

11.3 М одиф икация програм много обеспечения после поставки

Причинами такой модификации могут быть:
- отчет об аномалии;
- изменение функциональных требований после поставки;
- технологические изменения;
- изменение условий эксплуатации.
11.3.1 В случае аномалии программного обеспечения должен быть составлен отчет об аномалии, в

котором должны быть приведены признаки, внешние условия для системы и состояние системы на момент
обнаружения аномалии, а также указаны ее предполагаемые причины.

11.3.2 В случае возникновения после запуска неожидаемого. очевидно, неправильного необъясни­
мого поведения программного обеспечения обслуживающий персонал должен составить отчет об анома­
лии. в котором должны быть указаны подробности поведения, конфигурации технического и программного
обеспечений и действия, предпринятые в это время.

11.3.3 В отчете должны быть приведены данные о составителе отчета, месте, дате, обстоятельствах
и регистрационном номере. Отчеты должны рассматриваться разрабатывающей группой, назначаемой в
соответствии с категориями важности и распускаемой после ответа обслуживающему персоналу.

Предпочтительно, чтобы отчет об аномалии и процедура урегулирования разрабатывались на осно­
вании аналогичного процесса, утвержденного при верификации и валидации.

11.3.4 Для устранения дефектов необходимо составление запроса на модификацию программного
обеспечения, реализация которого должна проводиться с помощью процедуры, описанной в 11.1.

11.3.5 В случае изменения в спецификации требований к программному обеспечению должна быть
проведена повторная проверка всего процесса разработки программного обеспечения для той части систе­
мы. которая подвержена влиянию изменения.

11.3.6 Любые новые требования к техническому обеспечению и возможности технического обеспече­
ния должны быть проверены в отношении их возможного влияния на программное обеспечение.

11.3.7 Эта проверка должна включать в себя все суждения, касающиеся технического обеспечения
и рассмотренные при проектировании первоначального программного обеспечения.

Если можно показать, что модифицированная система не влияет на спецификацию требований к
программному обеспечению, то может быть применена упрощенная процедура осуществления модифика­
ции на этапах проектирования или кодирования.

В перечислении Ь) подпункта 6.3.6.1 МЭК 61513 рекомендуется, чтобы после завершения модифика­
ции такая модификация отражалась в комплекте документов на внесение изменений. В нем также требует­
ся. чтобы в документах этого комплекта были описаны средства реализации модификации на работающем
оборудовании либо была дана ссылка на утвержденную существующую процедуру.

11.3.8 Во всех случаях после осуществления модификации на работающем оборудовании должен
быть составлен документ, в котором указывают дату осуществления модификации и результаты любых
конкретных тестирований или наблюдений, необходимых в соответствии с процедурой реализации.

11.3.9 Этот документ должен быть помещен в архив управления модификацией программного обес­
печения проекта.

12 Программные аспекты установки и эксплуатации

В настоящем разделе представлены требования к взаимодействию между операторами и компью­
терными системами класса 1 в процессе установки и эксплуатации. Эти требования касаются:

- установки программного обеспечения на месте эксплуатации;
- защищенности программного обеспечения на месте эксплуатации;
- адаптации программного обеспечения к условиям на месте эксплуатации;
- обучения.

12.1 Установка программного обеспечения на место эксплуатации

Должна быть предусмотрена процедура тестирований для проверки работоспособности программно­
го обеспечения, касающейся отклика, калибровки, функциональной работы и взаимодействия с другими
системами.

28

ГОСТ Р МЭК 60880— 2010

12.2 Защ ищ енность программного обеспечения на месте эксплуатации

12.2.1 Должна быть проведена оценка конфигурации на месте эксплуатации и присвоение парамет­
ров с целью проверки того, что соответствующие контрмеры предприняты в отношении потенциальных
угроз защищенности.

12.2.2 Если это целесообразно, то программное обеспечение должно быть конфигурировано и пара­
метризовано так. чтобы собирать важную информацию для периодической проверки защищенности и со­
ставления отчета о СКУ.

12.2.3 Действия по модификации программного обеспечения должны систематически подготавли­
ваться с учетом потенциальных угроз защищенности.

12.2.4 Исходя из концепции защищенности работы станции на нормальной мощности, должны быть
определены особые режимы, осуществляемые при вводе в эксплуатацию и модификации программного
обеспечения.

Эти режимы могут включать в себя специальные возможности программного обеспечения, которые
блокируются во время работы на мощности, функции включения аварийной сигнализации, которые блоки­
руются во время модификации, использование интерфейсов, которые блокируются или выключаются во
время работы на мощности, использование станций обслуживания и инструментальных программ, а также
необходимость проведения операции оператором из установленного места.

12.2.5 Любые аномалии должны быть компенсированы дополнительными мерами по обеспечению
качества, такими как дополнительные административные и аналитические меры во время и/или после
осуществления действий по модификации, осуществляемые с целью обеспечения работоспособности про­
граммного обеспечения.

12.2.6 Инструментальные программы и оборудование, используемое при модификации программно­
го обеспечения на месте эксплуатации, должны выбираться в зависимости от уровня их потенциальной
угрозы защищенности системы.

12.2.7 Новые массивы данных или новые версии программного обеспечения, осуществляющие свя­
занные с защищенностью изменения, должны быть верифицированы для подтверждения того, что требо­
вания к защищенности учтены должным образом.

12.2.8 Процедура инсталляции программного обеспечения или данных на месте эксплуатации долж­
на включать в себя и устанавливать проверки работоспособности программного обеспечения, которые
проводятся до полномасштабного введения СКУ в эксплуатацию.

12.3 Адаптация программного обеспечения к условиям эксплуатации

Для предотвращения неосторожного или неправильного изменения параметров оператором, способ­
ного повлиять на уставки или другие изменяемые данные системы класса 1. должна быть предусмотрена
соответствующая процедура и/или блокирующее устройство.

12.4 Обучение оператора

12.4.1 Программа обучения
Для достижения безопасной работы станции действия оператора так же важны, как и надежность

оборудования.
12.4.1.1 Поэтому должна быть предусмотрена программа обучения оператора для применения сис­

тем безопасности и его программного обеспечения, предназначенная как для операторов станции, так и
специалистов по контролю и управлению; при этом программа должна соответствовать сложности систе­
мы и реализуемым защитным функциям.

12.4.1.2 Программа обучения должна касаться действий при нормальных и аномальных условиях
эксплуатации станции.

12.4.1.3 Программа обучения должна касаться всех важных устройств связи оператора с компьютер­
ной системой.

12.4.1.4 В программу следует включать специальное обучение по распознаванию аномалий в работе
технического и программного обеспечения.

12.4.2 План обучения
12.4.2.1 Должен быть составлен учебный план, согласующийся с принципами программы обучения.
12.4 2.2 Должно быть разработано руководство пользователя СКУ по эксплуатации и обслуживанию

для применения персоналом.

29

ГОСТ Р МЭК 60880— 2010

12.4.2.3 В руководстве пользователя следует определить каждое устройство связи оператора. Каж­
дая функция каждого устройства должна быть объяснена и проиллюстрирована в соответствии с ео слож­
ностью.

12.4.3 Обучающая система
12.4.3.1 Обучение оператора должно проводиться на обучающей системе, эквивалентной реальной

системе технического и программного обеспечения.
12.4.3.2 Должны быть обеспечены задающие сигналы станции с помощью испытательной системы,

способной моделировать нормальные и аномальные состояния реактора.

13 Защита от отказов по общей причине, вызываемых
программным обеспечением

В настоящем разделе приведены требования к защите от дефектов программного обеспечения и
кодирования, способных привести к отказам по общей причине (ООП) функций, классифицированных по
категории А в соответствии с МЭК 61226.

13.1 Общие сведения

ООП могут произойти в системах контроля и управления и в оборудовании, реализующих различные
схемы защиты от тех же ИПС (см. пункт 5.3.1 МЭК 61513). Само по себе программное обеспечение не
вызывает ООП. ООП относятся к отказам системы, возникающим в результате дефектов в функциональ­
ных требованиях, проектах системы или программного обеспечения.

МАГАТЭ требует применения «защиты в глубину» (см. 2.9 Требований МАГАТЭ NS-R-1) при всех
действиях, будь то организационные, поведенческие или проектирующие действия с целью обеспечения
перекрывающих друг друга защит, так чтобы в случае возникновения отказа в подсистеме он компенсиро­
вался или корректировался в интегральной системе.

В соответствии с критерием единичного отказа (см. 5.34 — 5.39 Требований МАГАТЭ NS-R-1) требует­
ся. чтобы комплекс систем безопасности был способен соответствовать своему назначению, несмотря на
единичный случайный отказ, произошедший в любой части комплекса.

13.1.1 Дефекты программного обеспечения являются систематическими, а не случайными, поэтому
критерий единичного отказа не может быть применен к программному обеспечению системы так же. как он
применяется к техническому обеспечению. При применении концепции защиты в глубину следует рассмат­
ривать возможные последствия ООП. вызванные программным обеспечением внутри каждого уровня за­
щиты и между резервными уровнями защиты, и следует принимать соответствующие контрмеры во время
проведения разработки и оценок (если ООП программного обеспечения является потенциальной причиной
отказа), например:

1) при проектировании и реализации, верификации каждого отдельного слоя защиты и
2) при оценке независимости и разнообразия резервных защитных слоев.
Средством улучшения надежности некоторых систем и снижения вероятности определенных ООП

является разнообразие (см. 4.23 — 4.31 Руководства по безопасности МАГАТЭ NS-G-1.3).
Обоснованием необходимости защиты от дефектов программного обеспечения является тот факт,

что любой дефект программного обеспечения остается незамеченным в соответствующей системе или
соответствующем канале до тех пор. пока не будет зарегистрирован и устранен, и он может вызвать отказ
в случае, если осуществляются обращения к нему при определенной сигнальной траектории. Если две
или более системы либо два или более канала, реализующие различные уровни защиты для одного и того
же ИПС (см. пункт 5.3.1 МЭК 61513), имеют дефект и оказываются под воздействием определенной сиг­
нальной траектории в период времени, когда они чувствительны к такому воздействию, то отказ способен
произойти в обеих (или всех) системах и в обоих (или всех) каналах, и это называется ООП. Более подроб­
ное описание этих условий приведено в разделе G.1 приложения G.

13.1.2 Возможность возникновения ООП из-за программного обеспечения должна поэтому рассмат­
риваться уже при проектировании. Если постулированные условия возникновения ООП могут быть спрог­
нозированы. то для защиты от ООП из-за программного обеспечения может потребоваться изменение про­
екта и применение специальных средств защиты, включая разнообразие программного обеспечения.

Степень повышения защиты от ООП, а также степень повышения надежности, которые могут быть
достигнуты, не могут быть определены количественно. Решение должно приниматься на основании каче­
ственной оценки надежности, достижимой для программного обеспечения.

30

ГОСТ Р МЭК 60880— 2010

Если ошибки совершаются до начала проектирования программного обеспечения, то они могут при­
вести к дефектам требований и возможным отказам системы, защита от которых не может быть обеспечена
лишь средствами программотехники. Защита от таких ООП рассматривается в подпункте 5.3.1.5 МЭК61513.

Если ошибки совершаются человеком во время процесса разработки программного обеспечения, то
они могут привести к дефектам программного обеспечения и потенциальным отказам системы. Там. где
такие дефекты приводят к отказам более одного уровня защиты, отказы рассматриваются как ООП из-за
программного обеспечения.

13.2 Проектирование программного обеспечения с учетом ООП

Основной и наиболее важной защитой от ООП из-за программного обеспечения является создание
программного обеспечения высочайшего качества, т.е. насколько это возможно свободного от ошибок.
Другим важным фактором, ограничивающим возможность возникновения ООП из-за программного обес­
печения. является расширение самоконтроля с помощью таких действий, как проверка диапазонов пара­
метров и подсчет времени циклов с целью проверки достоверности данных и т.п.. как это указано в 6.2.7.1
и А.2.2 приложения А.

Использование для разработки и верификации программного обеспечения развитых методов про­
граммирования при поддержке инструментальных программ помогает уменьшить число принимаемых
человеком решений и. таким образом, уменьшить число дефектов в разработанном программном обеспе­
чении.

13.3 Источники и последствия ООП из-за программного обеспечения

13.3.1 Анализ возможности возникновения ООП из-за программного обеспечения должен быть про­
веден и документально оформлен на системном уровне и/или на уровне общей архитектуры контроля и
управления СКУ. важных для безопасности АЭС.

П р и м е ч а н и е 1 — Требования к архитектуре контроля и управления приведены в 5.3.1 МЭК 61513.
П р и м е ч а н и е 2 — Т ребоеания к архитектуре отдельных систем контроля и управления приведены в 6.1.2

МЭК 61513.

13.3.2 Анализ должен включать в себя следующие шаги:
1) идентификация компонентов программного обеспечения, используемых в системе или в архитек­

туре контроля и управления;
2) анализ возможности возникновения ООП из-за этих компонентов в системе или архитектуре конт­

роля и управления:
3) анализ возможных последствий этих ООП.

П р и м е ч а н и е — Проведение анализа возможных последствий дефектов не избавляет от необходимо­
сти проведения верификации и валидации в соответствии с требованиями раздела 8 настоящего стандарта. Цель
такого анализа состоит в обнаружении слабых мест в проекте и (затем) во внесении изменений в него и/или в
повышении доверия к проекту программного обеспечения.

13.3.3 Если общие модули используются более чем в одной системе, то эти модули должны быть
идентифицированы и должна быть проведена оценка обеспечения надежности таких общих модулей. Ме­
тоды подтверждения правильности приведены в разделе G.4 приложения G.

13.3.4 Данные, передаваемые внутри компьютерной системы или между компьютерными системами,
должны быть идентифицированы. Для определения того, могут ли дефектные данные привести к ООП
в принимающих компьютерах или системах, должен быть проведен анализ.

13.3.5 Должна быть учтена возможность возникновения таких условий на станции, когда одно и то же
программное обеспечение, функционирующее в различных технических средствах, будет подвержено
воздействию идентичных или одновременных сигнальных траекторий и. следовательно, обнаружится один
и тот же дефект в нескольких каналах или функциональных частях.

П р и м е ч а н и е — Отказы могут быть вызваны сигнальными траекториями, которые не рассматривались
во время проектирования, верификации и валидации программного обеспечения отдельных каналов или систем.

13.3.6 Деятельность по модификации программного обеспечения (см. раздел 11) может стать причи­
ной ООП. поэтому процессы, используемые для оценки изменения программного обеспечения или дан­
ных. должны обеспечивать уверенность в отсутствии вносимых дефектов.

31

ГОСТ Р МЭК 60880— 2010

13.3.7 Анализ возможности возникновения ООП из-за программного обеспечения должен быть про­
веден и документально оформлен как часть оценки защиты от ООП проекта архитектуры контроля и управ­
ления (см. 5.3.3 МЭК 61513).

13.3.8 В случае, если в результате анализа обнаружена неприемлемая угроза ООП, возникающая
из-за программного обеспечения, проект программного обеспечения или архитектура контроля и управле­
ния должны быть исправлены. Методы реализации защиты от ООП приведены в разделе G.3 приложе­
ния G, а методы реализации элементов разнообразия — в разделе G.5 приложения G.

13.4 Реализация разнообразия

13.4.1 При реализации разнообразия следует использовать независимые системы с функциональ­
ным разнообразием. Если функциональное разнообразие неуместно или невозможно, то следует рассмот­
реть системное разнообразие, разнообразие элементов программного обеспечения и разнообразие подхо­
дов к проектированию. Признаки важности разнообразия приведены в разделе G.5 приложения G. Методы,
выбранные для защиты от ООП. должны быть оформлены документально и обоснованы с помощью соот­
ветствующего анализа.

13.4.2 На уровне программного обеспечения защиту от ООП следует основывать на выборе соответ­
ствующих методов, таких как:

1) обеспечение различных условий работы программного обеспечения;
2) защита от ошибки и распространения отказа;
3) снижение отрицательного воздействия ООП;
4) использование программного обеспечения, имеющего различные спецификации для различных

реализаций одних и тех же функциональных требований.

П р и м е ч а н и е 1 — Различия в методах проектирования и реализации следует рассмотреть, но это не
является обязательным требованием.

П р и м е ч а н и е 2 — N-версионное программирование не рекомендуется.

13.5 Баланс недостатков и преимущ еств, связанны х с использованием разнообразия

Если в программном обеспечении используется разнообразие, то следует обосновать и задокумен­
тировать недостатки и преимущества, касающиеся общей надежности программного обеспечения, на ос­
нове вышеуказанного анализа (см. 4.27 Руководства по безопасности МАГАТЭ NS-G-1.3 и 3.81 — 3.85
Руководства по безопасности МАГАТЭ NS-G-1.2). Аспекты потенциальных преимуществ, недостатков, а
также аспекты обоснований приведены в разделе G.6 приложения G.

14 Инструментальные программы для разработки
программного обеспечения

14.1 Общие сведения

В настоящем подразделе существующие требования настоящего стандарта представлены в расши­
ренном виде с тем. чтобы охватить инструментальные программы, используемые при разработке программ­
ного обеспечения компьютеров в системах безопасности атомных электростанций.

Использование соответствующих инструментальных программ уменьшает число ошибок в процессе
разработки и. следовательно, повышает надежность программного продукта путем снижения риска внесе­
ния дефектов во время этого процесса. Использование инструментальных программ может также иметь
экономические выгоды, поскольку уменьшает время и усилия, необходимые для получения программно­
го обеспечения. Инструментальные программы могут применяться для автоматической проверки соблю­
дения правил структурирования и требований стандарта, формирования соответствующих записей и со­
гласованной документации в стандартных форматах, а также для поддержания управления изменениями.
Инструментальные программы могут также уменьшить усилия, необходимые для тестирований, а также
выполнения автоматизированных записей. Необходимость в инструментальных программах может возник­
нуть при специфичной методологии разработки, требующей их применения.

14.1.1 Инструментальные программы особенно эффективны в тех случаях, когда они работают со­
вместно. Следует соблюдать осторожность и не возлагать на инструментальные программы выполнение
задач, находящихся за пределами их возможностей, например, они не могут заменить человека при при­
нятии решений. В некоторых случаях использование инструментальных программ дает больше, чем пол­
ная автоматизация процесса. При использовании инструментальных программ должен быть найден баланс

32

ГОСТ Р МЭК 60880— 2010

между выгодами и рисками, связанными с их применением, а также баланс между выгодами и рисками,
связанными с отказом от их применения. Важный принцип состоит в том. чтобы при выборе инструменталь­
ной программы ограничивалась вероятность совершения ошибки и внесения дефекта, а также обеспечи­
валась максимальная вероятность регистрации дефектов.

В число инструментальных программ, рассматриваемых в настоящем стандарте, включены те из
них. которые используются для фиксирования требований, а также те. что применяются для реализации
требований в коде и данных конечной системы (могут существовать промежуточные шаги). В настоящем
стандарте рассматриваются также инструментальные программы, непосредственно используемые при
проведении верификации, валидации и тестирований, инструментальные программы для подготовки при­
кладных данных и управления ими (см. 14.3.5), а также инструментальные программы для контроля и
управления процессами и продукцией, используемыми при разработке программного обеспечения.

Автономные инструментальные программы, используемые для расчета важных переменных, приме­
няемых при проектировании и проведении анализа оборудования, важного для безопасности, не входят в
область применения настоящего стандарта. В область применения настоящего стандарта также не входят
текстовые процессоры, инструментальные программы для контроля проектирования и другие офисные
программы, косвенно связанные с разработкой программного обеспечения.

14.2 В ы бор инструментальны х программ

14.2.1 Инструментальные программы для разработки программного обеспечения систем класса 1
должны выбираться так. чтобы обеспечить процесс их программирования. Критерии и процесс выбора
описаны в 14.3.1. Должна быть определена и документально оформлена область применимости всех инст­
рументальных программ. Инструментальные программы и их выходные данные не должны использовать­
ся без предварительного обоснования, вне заявленной области их применения.

14.2.2 Инструментальные программы, используемые при разработке программного обеспечения сис­
тем класса 1. должны быть верифицированы и оценены в той степени, которая соответствует требованиям
к надежности инструментальных программ, их типу (см. 14.2.3. перечисления 1) — 5)] и вероятности внесе­
ния дефектов.

14.2.3 Инструментальные программы должны иметь достаточную надежность для того, чтобы не
ухудшать надежность конечной программы. Например, инструментальная программа может отрицательно
влиять на разработку программного обеспечения путем внесения ошибок, выработки искаженных выход­
ных данных, неспособностью зарегистрировать уже существующий дефект.

Для снижения требований к надежности отдельных инструментальных программ при их выборе могут
быть рассмотрены принципы «защиты в глубину» и разнообразие, принятые для архитектуры контроля и
управления.

Степень требуемых верификации и оценки также зависит от типа инструментальной программы и от
того, возможна ли полная верификация и валидация выходных данных инструментальной программы.
Существуют следующие типы инструментальных программ:

1) преобразующие инструментальные программы, такие, например, как генераторы кода, компилято­
ры программы, преобразующие текст или диаграмму из одного уровня абстракции в другой, обычно более
низкий.

2) инструментальные программы для верификации и валидации, такие, например, как статические
анализаторы кода, мониторы тестового покрытия, вспомогательные средства для доказательства теорем и
имитаторы;

3) диагностические инструментальные программы, используемые для поддержания и контроля на­
хождения программного обеспечения в рабочих условиях;

4) инструментальные программы инфраструктуры, такие, например, как системы поддержки разра­
ботки;

5) инструментальные программы управления конфигурацией, такие, например, как инструменталь­
ные программы управления версией.

14.3 Требования к инструментальны м программам

Требования к инструментальным программам представлены по следующим темам.
a) средства разработки программ;
b) аттестация инструментальной программы;
c) управление конфигурацией инструментальных программ;
d) трансляторы/компиляторы.

33

ГОСТ Р МЭК 60880— 2010

е) инструментальные программы для прикладных данных;
О автоматизация тестирований.
14.3.1 Средства разработки программ
14.3.1.1 Инструментальные программы следует использовать для поддержания всех аспектов жиз­

ненного цикла программного обеспечения, если существует выгода от их использования и если инстру­
ментальные программы имеются в наличии. Должен быть проведен анализ средств разработки программ
и процесса разработки программного обеспечения для определения стратегии обеспечения инструмен­
тальной поддержкой. Результаты анализа должны быть оформлены документально. При отсутствии инст­
рументальных программ может возникнуть потребность в рассмотрении возможности разработки новых
инструментальных программ.

Ниже приведены примеры процессов и операций, для которых может оказаться выгодным примене­
ние инструментальных программ:

1) создание и проверка спецификации, проектирования и реализации (см. приложение Н);
2) инструментальные программы, работающие на языке или его сокращенном варианте (см. 14.3.4);
3) подготовка, верификация и валидация прикладных данных, а также управление ими (см. 14.3.5);
4) автоматизация тестирований (см. 14.3.6).
14.3.1.2 Следует разработать критерии и приоритеты для выбора и оценки инструментальных про­

грамм для разработки программного обеспечения с тем. чтобы обеспечить возможность их альтернативно­
го выбора. Критерии следует структурировать по характеристикам качества программного обеспечения,
как это определено в ИСО/МЭК 9126: функциональность, надежность, удобство использования, эффек­
тивность. модифицируемость и компактность. Критерии могут включать в себя другие характеристики, та­
кие как затраты на лицензирование и ресурсы, необходимые для использования инструментальной про­
граммы. строгость плана обеспечения качества, по которому разрабатывалась инструментальная програм­
ма. информация об инструментальной программе от поставщика и альтернатива применению инструмен­
тальной программы.

14.3.1.3 Поддержка средств разработки программ с помощью инструментальных программ должна
быть проанализирована и документально оформлена с выяснением следующих аспектов:

1) каким образом каждый процесс поддерживается или не поддерживается инструментальными про­
граммами;

2) точная идентификация инструментальных программ (например, название, номер версии) и. по воз­
можности. их конфигурации;

3) как каждая инструментальная программа будет использоваться в проекте;
4) каким образом выходные данные каждой инструментальной программы будут проходить верифи­

кацию и/или валидацию по отношению к входным данным;
5) каким образом другие инструментальные программы или процессы смягчают последствия дефек­

та в инструментальной программе, включая смягчение вероятных ошибок при формировании и подготовке
данных для применения в режиме «онлайн»;

6) как данные инструментальные программы связаны с другими инструментальными программами,
т.к. для них может потребоваться применение, обработка и передача информации, используемой другими
инструментальными программами или частью архива данных;

7) каким образом инструментальная программа осуществляет согласованный интерфейс с пользова­
телем и остальными средствами разработки программ;

8) насколько инструментальные программы соответствуют выбранным методам разработки программ­
ного обеспечения;

9) способность инструментальной программы регистрировать ошибки и реагировать на особые ситу­
ации;

10) насколько инструментальные программы соответствуют конкретным условиям использования,
включая пользователей, оборудование, среду и задачи пользователя для достижения максимальной
эффективности и минимального влияния ошибок пользователя;

11) каким образом инструментальные программы препятствуют несанкционированному или непра­
вильному использованию и изменениям.

14.3.1.4 Стратегия модификации, обновления или замещения инструментальных программ должна
быть документально оформлена и обоснована. Эта стратегия является частью стратегии модификации
операционного программного обеспечения, которая должна обеспечивать возможность адаптации или кор­
ректировки операционного программного обеспечения в течение всего периода его применения на АЭС.

34

ГОСТ Р МЭК 60880— 2010

Эта стратегия должна также обеспечивать обоснованность перехода к новой версии инструментальной
программы, а также соответствующую аттестацию, т.е. оценку в соответствии с требованиями настоящего
стандарта.

14.3.1.5 Для инструментальных программ, используемых для обеспечения разнообразия, т.е. для
компиляторов, применяемых для разработки многоверсионных разнородных систем программного обеспе­
чения. следует подтвердить их разнородность. Этого можно достичь путем подтверждения того, что:

1) все инструментальные программы были получены от различных поставщиков (например, одна
программа может быть разработана, а другая — приобретена в готовом виде) или

2) инструментальные программы имеют различные языки на входе и/или на выходе или
3) инструментальные программы имеют различные требования и процессы проектирования.
14.3.2 Аттестация инструментальны х программ
14.3.2.1 Должна быть составлена стратегия аттестации инструментальных программ, и аттестация

этих программ должна проводиться в соответствии сданной стратегией. В стратегии должны быть учтены
требования к надежности инструментальных программ и тип инструментальных программ.

14.3.2.2 Должны быть определены качественные требования по надежности с учетом:
1) последствий дефекта в инструментальной программе;
2) вероятность того, что инструментальная программа вызовет или активизирует дефекты в программ­

ном обеспечении, реализующем функцию безопасности;
3) какие другие инструментальные программы или процессы смягчают последствия дефектов в дан­

ной инструментальной программе.

П р и м е ч а н и е — Принципы «защиты в глубину» и разнообразив могут способствовать снижению
требований к надежности.

14.3.2.3 В стратегии аттестации инструментальных программ должны быть учтены:
1) анализ процесса разработки инструментальной программы и информация о ней от поставщика,
2) адекватность документации по инструментальной программе, позволяющая проведение верифи­

кации ее выходных данных и обеспечивающая простоту изучения:
3) тестирования и валидация инструментальной программы;
4) оценка инструментальной программы за период ее применения;
5) информация по опыту применения инструментальной программы.

П р и м е ч а н и е — Раздел 15 содержит требования к применению ранее разработанного программного
обеспечения, что также следует учитывать в стратегии аттестации инструментальных программ.

14.3.2.4 Выходные данные инструментальной программы должны систематически подвергаться ве­
рификации (например, посредством тестирований, анализа или сравнения с выходными данными функци­
онально аналогичных инструментальных программ), если эти выходные данные включаются в конечное
программное обеспечение.

14.3.2.5 Инструментальные программы должны быть объектом оценки в соответствии с тем. как это
описано в разделе 15, либо они должны разрабатываться в соответствии с требованиями к обеспечению
качества в соответствии с разделами с 1 — 12. за исключением случаев, когда:

- инструментальная программа не может внести дефекты в программное обеспечение (например,
текстовый редактор для документации) либо

- имеются средства смягчения всех возможных дефектов инструментальных программ (например,
путем разнообразия процессов или проектирования системы [см. перечисление 5) пункта 14.3.1.3]. либо

- выходные данные инструментальной программы подвергаются систематической верификации
[см. перечисление 4) пункта 14.3.1.3]. В процессе аттестации может быть учтен опыт предшествующего
использования инструментальной программы, где была подтверждена ее адекватность применению, важ­
ному для безопасности.

14.3.3 Управление конф игурацией инструментальной программы
14.3.3.1 Все инструментальные программы должны находиться под управлением конфигурацией для

обеспечения полной идентификации выбранных инструментальных программ (включая название, версию,
вариант и, возможно, конфигурацию) и параметры инструментальной программы, используемой для фор­
мирования основного программного обеспечения (см. 5.6).

П р и м е ч а н и е — Это полезно не только для согласованности конечного программного обеспечения, но
также помогает оценивать источник возникновения дефекта, который может находиться в исходном коде, инстру­
ментальной программе или параметрах инструментальной программы. Это может также оказаться необходи­
мым при оценке вероятности возникновения ООП из-за инструментальных программ.

35

ГОСТ Р МЭК 60880— 2010

14.3.3.2 Записи, в которых документально оформляются произошедшие ошибки и ограничения на
инструментальные программы, должны сохраняться в течение всего срока службы инструментальной про­
граммы. чьи выходные данные способны внести дефект в конечное программное обеспечение.

14.3.3.3 Любые изменения в инструментальной программе должны быть верифицированы и оценены.
14.3.4 Т рансляторы /ком пиляторы
В данном пункте представлены требования, относящиеся к трансляторам/компиляторам. Размеры и

сложность многих компиляторов таковы, что трудно бывает продемонстрировать правильность его работы.
Однако обширный опыт использования может повысить степень доверия к тому, что компилятор работает
правильно.

14.3.4.1 Трансляторы и компиляторы следует выбирать, руководствуясь существенными для траис-
ляторов/компиляторов критериями данного пункта (которые дополняют рекомендации приложения D).

14.3.4.2 Трансляторы/компиляторы не должны без предупреждения удалять защитные программы
или функции проверки ошибок, вводимые программистом.

14.3.4.3 Следует избегать использования оптимизации компилятора. Она не должна использоваться,
если в результате получается объектный код. чрезмерно сложный для понимания, отладки, тестирования
и валидации.

П р и м е ч а н и е — Оптимизация кода может использоваться для удовлетворения требований к эксплуата­
ционным характеристикам, возникающим в результате ограничений быстродействия технических средств и пре­
делов памяти. В исключительных случаях альтернативное использование ассемблерного кода может рассматри­
ваться в дополнение к изменению платформы технических средств.

14.3.4.4 Если была применена оптимизация, то для оптимизированного кода должны быть проведены
тестирования, верификация и/или валидация.

14.3.4.5 Библиотеки, которые используются в конечной системе, должны рассматриваться как набо­
ры ранее разработанных компонентов программного обеспечения. Используемые компоненты библиотеки
должны быть оценены, аттестованы и использоваться в соответствии с требованиями раздела 15. касаю­
щимися аттестации ранее разработанного программного обеспечения.

14.3.4.6 Для обеспечения правильности любого дополнительного кода (команд ассемблера), вводи­
мого транслятором, который непосредственно не отслеживается до оператора исходной строки (например,
код проверки ошибок, код обработки ошибок и исключительных ситуаций), должны быть проведены вери­
фикация и/или валидация.

14.3.5 Инструментальные программы прикладны х данны х
Для компьютерных систем безопасности обычно требуются прикладные данные для определения

сигналов, адресов и функциональных параметров прикладных функций и функций обслуживания. Данные
могут быть обширными и обычно содержат следующую информацию:

- указатели признаков сигналов, описания сигналов, положение источников и нумерация кабелей,
типы измерений, электрические диапазоны или состояния, технические устройства, определения состоя­
ний, вызывающих сигнал тревоги, аварийные уровни и уровни блокировки:

- места подключения внешнего сигнала, адреса и указатели баз данных, адреса и указатели инфор­
мации, адреса и характеристики технических средств, расположение приборов в системе отображения
информации, информация о символах на экране дисплея, информация о цветовых параметрах на экране
дисплея, информация о содержании сигнала на экране дисплея, форматы записей и внутренних блоков
передаваемой информации, а также детали ее содержания;

- коды защитных действий, приоритеты или логика аварийной сигнализации, выходные данные для
действий, идентификация логических операций и таймеры, состояния на выходах, которые должны возни­
кать при отказе.

Данные могут быть взяты из проектных чертежей, перечней и спецификаций операций и техиолотчес-
кой контрольно-измерительной аппаратуры на станции. Данные будут транслированы для загрузки в специ­
ализированный процессор системы, а затем использованы для управления работой программного обеспе­
чения в режиме «онлайн».

Требования, относящиеся к подготовке, верификации и валидации и управлению данными для их
использования в режиме «онлайн», приведены ниже:

14.3.5.1 Проект прикладных данных пакета программ и метод их получения из прикладных данных
станции должны быть определены и документально оформлены.

36

ГОСТ Р МЭК 60880— 2010

14.3.5.2 Прикладные параметры, которые могут быть изменены во время действий оператора, долж­
ны быть идентифицированы вместе с методами, используемыми для управления изменениями таких пара­
метров.

14.3.5.3 Изменения, внесенные в модифицируемые данные, не должны искажать другие данные и
код в исполняющей системе.

14.3.5.4 Формальная сторона процедур верификации данных должна быть аналогичной формальной
стороне процедур верификации и валидации программного обеспечения, включая идентификацию и выяв­
ление ошибок. Должны быть проведены сквозные верификационные проверки, и эти проверки должны
включать в себя все этапы преобразования данных, начиная с извлечения данных из информации о проек­
те станции и до включения структур данных в программное обеспечение, работающее в режиме «онлайн»,
в том числе использование средств передачи.

14.3.5.5 Данные, загружаемые в программное обеспечение, работающее в режиме «онлайн», следу­
ет представлять в форме, которая позволяет провести их распечатку и верификацию, либо должна исполь­
зоваться инструментальная программа, которая воспринимает данные и хранит их в форме, допускающей
их верификацию.

14.3.5.6 Должно быть обеспечено наличие оборудования, позволяющего провести верификацию всех
загруженных данных конфигурации на месте применения.

14.3.5.7 Если данные определяют интерфейс между двумя системами, рекомендуется, чтобы предо­
ставляемые данные генерировались из одной и той же базы данных {см. 5.3.1.4 МЭК 61513).

14.3.5.8 В некоторых случаях, когда работа программного обеспечения, включая процессы, поток
данных и входные и выходные соединения, управляется или модифицируется данными конфигурации,
специальное, документально оформленное обоснование должно подтверждать соответствующий уровень
оценки, после чего к данным должны быть применены тестирования. После изменения таких данных могут
потребоваться обширные повторные тестирования системы.

14.3.6 Автоматизация тестирований
Автоматизация увеличивает число тестирований, которые могут быть проведены за данный период

времени. Этого можно достичь, выполняя следующие требования:
14.3.6.1 Рекомендуется, чтобы инструментальные программы автоматизированной валидации, кото­

рые вырабатывают испытательные данные, передают или преобразуют эти данные и результаты тестиро­
ваний, а также оценивают результаты тестирований, осуществляли полное составление протокола. Это
применимо как к тестированиям модулей, так и к моделированиям станции.

14.3.6.2 Соответствующие инструментальные программы следует использовать при тестировании
и/или моделированиях поведения рабочей программы, загружаемой в целевую систему.

14.3.6.3 Соответствующие инструментальные программы должны использоваться для обеспечения
или верификации того, что нужная рабочая программа правильно загружается в конечную систему.

14.3.6.4 Следует рассмотреть применение следующих дополнительных инструментальных программ:
1) тестовые генераторы, анализаторы тестового покрытия и тестовые драйверы;
2) диагностические программы, работающие в режиме «онлайн», с проверкой состояния памяти и

оборудованием для трассировки:
3) отладочные программы с отладочным оборудованием на уровне исходного кода;
4) автоматизированные тестовые наборы для упрощения регрессивного тестирования.

15 Аттестация ранее разработанного программного обеспечения

15.1 Общие сведения

В настоящем подразделе представлены требования к использованию ранее разработанного про­
граммного обеспечения (РПО) в компьютерных СКУ. Эти требования установлены как часть требований к
аттестации систем, в которые интегрировано РПО (см. 6.4 МЭК 61513).

РПО для СКУ может быть представлено от небольших компонентов программного обеспечения (на­
пример. библиотечные модули прикладных функций) до больших и сложных программных продуктов (на­
пример, части операционных систем или драйверов коммуникаций). По отношению к техническим сред­
ствам РПО можно разделить на два типа:

37

ГОСТ Р МЭК 60880— 2010

a) универсальное РПО, которое не разрабатывалось специально для конкретных технических
средств, и

b) РПО. интегрированное в технические средства, которое должно использоваться совместно с эти­
ми техническими средствами.

Компоненты РПО называются «компонентами многократного использования», если они могут быть
использованы в различных компьютерных программах или системах, например, как часть комплекса обо­
рудования (платформы оборудования). Компоненты, не зависящие от деталей конкретного применения на
станции, могут рассматриваться как аттестованные для применения в системе, выполняющей функции
категории А.

В спецификациях новых систем безопасности часто ссылаются на использование ранее разработан­
ного оборудования, включая РПО, для построения части или всей «новой системы» (см. 6.1.2.1
МЭК 61513). Использование ранее разработанного оборудования может оказаться выгодным с точки зре­
ния продуктивности и надежности систем, если эти элементы имеют соответствующее качество и вводятся
должным образом. Если элементы РПО использовались во многих приложениях, аналогичных тому, для
которого они предназначены, то этот опыт работы может быть заявлен при их оценке. В частности, повтор­
ное использование РПО. прошедшего валидацию, способно повысить уверенность в надежности системы.

15.2 Общие требования

15.2.1 РПО. предполагаемое к использованию, как и любой другой компонент программного обеспе­
чения. как часть системы, выполняющей функции категории А. должны соответствовать всем требованиям
настоящего стандарта.

15.2.2 При оценке РПО следует:
1) определить соответствие РПО требованиям по функциональности, эксплуатационным характерис­

тикам и архитектуре. входящим в спецификацию требований к системе (см. 6.1.1 МЭК 61513), и определить
ее конечную пригодность;

2) определить любые модификации, необходимые для корректировки или адаптации РПО;
3) оценить качество РПО и
4) оценить опыт эксплуатации РПО. если это необходимо для указанных выше оценок.
15.2.3 Выводы по оценке должны быть оформлены документально.

П р и м е ч а н и е — В соответствии с требованиями настоящего стандарта применяют оценку для опреде­
ления действий, проводимых организацией, ответственной за разработку компьютерной системы (или осуществ­
ляемых от имени этой организации): ни в коем случае не подразумевается и не требуется, чтобы оценка проводи­
лась разрешительными органами, хотя они и имеют право ее проводить.

15.3 Процесс проведения оценки
Процесс проведения оценки должен включать в себя:
a) оценку функциональных и эксплуатационных особенностей РПО и существующей аттестационной

документации (см. 15.3.1).

П р и м е ч а н и е — Для РПО. интегрированной в программу, эти особенности могут быть выражены как
свойства программы в соответствии с МЭК 61069-2:

b) оценку качества процесса разработки программного обеспечения (см. 15.3.2).

П р и м е ч а н и е — Для ранее разработанного программного обеспечения многоразового использования
необходимо проводить лишь оценку пригодности: подразумевается, что оценка качества осуществляется при ва­
лидации;

c) оценку опыта эксплуатации, если необходимо компенсировать слабости результатов по перечис-
ленииям а) и Ь) (см. 15.3.3) и

d) комплексную итоговую документально оформленную оценку выводов из вышеуказанных оценок и
связанную с этим дополнительную работу, которая дает возможность принять РПО для использования в
системе.

Взаимосвязи между различными этапами процесса оценки РПО показаны на рисунке 4.
Взаимосвязи между процессом оценки РПО и аттестацией системы показаны на рисунке 5.

П р и м е ч а н и е — Процесс, описанный в настоящем подразделе, является упрощенным и не отражает
всех повторений или пересечений между действиями по оценке и действиями по разработке компьютерной
системы.

38

ГОСТ Р МЭК 60880— 2010

1 Оценка пригодности (си. 15.3.1)

Нвобходиню входная документация (ш . 15.3.1.1)
Дмуианжцяпр и щ ф о ш и снегах__________________ Спы яфишции РПО и докун—тщия попьжяшии

Требования по оценю [ал. 15.3.12)
Г1ишш иааж д ф аш И 1ш рщ *ы м Р П 0_______________ И д и д Д и ш и д мгуцф— т й н д и щ д и м с д н и

Выводы
РПО|фигодш Hbi illii |»ви допотежтшшти работе Дсдоно Сыть отвергнуто

2 О ц е т качестве (см. 15.3.2)
Необходимая входная документация [ал. 15.3.2.1)

ПаоЫ ткаидОкт-виЩ »» ДОЦывнтвтрм п > я м в н »«О ч гц я ту Гаж »«'ь»ф Ж п п у а лм и с ж ^ ДС«уш »лы)

Требования к оценю (cat. 15.322)
А н и д цю чт»_____________ Анапы о б и п а ч тя с тд о тм _____________ Идигтиф—ш ув тт»пуш ню (пушгоа

В ы в о д и
К»4Сп«км»«м<ш01|Ш 1* дОпО«игг©тЮ*теСтмрОеф** РПО дйлш*> Сьггъ 1Ха«(Х>чглО
РПОцжнимжиыДа мд(Ж)1аашаии11МСо-|ра0^апмд(м«)пмигаль«я
нвовж*р*> 0 модификации оц«*а отели зксплунту*
■ьпвлмшы

3 Оценка опыта эксплуетацм! (см. 15.3.3)

Необходимая входам документами! (см. 153.3.1)
ЬМЕорданнш I Вран «еагпухлщим | Арманы* дшны» о дафтестех

Трябоважя по оценю (см. 16.3.3.2)

В ы в о д и
Доспггснтый СГИТЭ1ЕПЛуштИИ Опыт акллуатцм еще

н* деатхтанн
РПОдотте? быть отвергнуто

4 Комплексная итоговая оценка (см. 15.3.4)

К б М С г в й РПО п(ИНтвмР НИбиОДмый ий р ф и О Д м прйвйдйны

5 Интеграция в систему и обслуживание (см. 15.4)

Рисунок А — Схема процесса аттестации ранее разработанного
программного обеспечения

39

ГОСТ Р МЭК 60880— 2010

Вопросы, которые необходимо рассматривать при аттестации системы

Вогфосы, о ш и м с прораааеоА Вопросы, специфичные для стану*

1 2
Обвесимся ям ствв а плене «ттвотжщи

систем

8
Агтаста^д «ошкх^ттая программ i и м

К»ф «урЩ И11Ш Ш НМ
фунпвкхшъности и окруммия.

Фусаципияльноап» к аеслпуатациошыв
лцжтаристшм РПО, лггасрн ровен него
в программу (СиТгйшО* протриIWO*

обвслвмнив), наян ьы обрезом
протоещ»за»ы

4
Допалниталыоя аттестат* в отно ими ни

фуницманалыкзсгм и оцзуженмс (вам
ераггааггурв амстеиы ил юнеет юные

юапонанты, новые пнфаурецин,
ив смаяна н ныв а пвре>мсп№ ам 8).

^нааинешностъ и амошуатациммые
ярвегврмспш РПО неявны и обреки

протестированы

5
Оценю юмвегве РПО, интегрированного
в rporpeiauy, и оценка инстррмнпальньвс

ГрОфОШ!

8
Дополнительней оцана вчвстваРЛО

(новью кСылОнф+тты, нОвыФиОнфигДОлрм)

т
Оцана к н о ш :

В)григп<у*нопз прекрасного
b) специальных вновь разработанных
профвминых и таомчеомх средств;
c) утмверсальюго РПО (пои ш т и)

8
Валидации штегрцюважсй системы
(поела мтиршри всего программного

абватммш)

Д опапалтм м аттестации на уровне
a ааерзстгоан ных снегам

10
Ооумаоплант аттестации во враамаои^ктаом станции, ofiany waaaw.oiaoao модафшжае rpoama

таемчесхого и фофаааиого aOecnmmm атом ы

Рисунок 5 — Связь оценки РПО с планом аттестации системы, в которую оно интегрировано

15.3.1 Оценка пригодности
Цель этого процесса заключается в подтверждении того, что спецификация РПО по функционально­

сти. эксплуатационным характеристикам и архитектуре соответствует спецификации требований. В этом
процессе определяются компоненты, непосредственно пригодные для использования в системе станции, а
также компоненты, требующие модификации.

П р и м е ч а н и е — Оценка основана на анализе спецификаций и рабочей документации.

Проведение оценки пригодности следует начинать на раннем этапе системной спецификации (см. 6.2
МЭК 61513). чтобы:

40

ГОСТ Р МЭК 60880— 2010

- помочь проектантам при архитектурном проектировании системы;
- получить проверяемое свидетельство того, что функциональность и эксплуатационные характерис­

тики РПО соответствуют требованиям системы.
15.3.1.1 Необходимая входная документация
15.3.1.1.1 Должны быть доступны;
- документация по системной спецификации, определяющая требования к функциональности, интер­

фейсу и эксплуатационным характеристикам, которым должна соответствовать РПО в рамках системной
архитектуры (см. 6.1.1 и6.1.2М ЭК61513);

- описание РПО и документация пользователя. В этих документах должны быть в явном виде опреде­
лены характеристики, важные для соответствия спецификациям системы по функциональности и эксплуа­
тационным характеристикам. Если характеристики в явном виде не определены, то должны быть проведе­
ны анализ или тестирование.

15.3.1.1.2 РПО должна находиться под управлением конфигурации; должны быть точно известны
версия и конфигурация РПО.

15.3.1.2 Требования к оценке пригодности
15.3.1.2.1 Спецификации РПО должны быть оценены в отношении спецификации требований системы

(см. 6.1.1 МЭК 61513). В случае расхождений РПО должна быть отвергнута либо модифицирована, либо
спецификация требований должна быть адаптирована так, чтобы разрешить возникшие расхождения при
условии сохранения функций, важных для безопасности.

15.3.1.2.2 При необходимости модификации РПО должна быть проведена оценка, основанная на
проектной документации РПО. с целью определения возможности проведения изменений способом, согла­
сующимся с требованиями настоящего стандарта. Если изменения не могут быть внесены, то использова­
ние РПО должно быть отвергнуто.

П р и м е ч а н и е — Оценка качества РПО показывает выполнимость этих модификаций (см. 15.3.2.2).
Соответствующую реализацию проводят в рамках жизненного цикла системы (см. раздел 6 МЭК 61513).

15.3.1.2.3 Для РПО. содержащего библиотеку, за исключением случаев, когда оценке подлежит вся
библиотека, должна иметься возможность перестройки библиотеки с образованием ограниченной библио­
теки. удовлетворяющей потребностям программного обеспечения, и возможность соединения программы
с этой ограниченной библиотекой, которая должна состоять из компонентов, прошедших оценку.

15.3.1.2.4 При оценке пригодности должны быть определены функции, которые включены в РПО. не
предназначенные для системы и не востребованные ею, и меры, обеспечивающие беспрепятственное
выполнение этих функций безопасности.

15.3.1.2.5 По завершении оценки должен быть составлен документ, в котором записывают:
1) согласуются ли спецификации РПО по функциональности и эксплуатационным характеристикам со

спецификацией требований системы и
2) если РПО непригодна — основания для ее отклонения.
15.3.2 Оценка качества
Цель данной оценки состоит в получении свидетельства того, что элементы проекта РПО соответ­

ствуют системе, выполняющей функции категории А. и что должное обеспечение качества осуществляет­
ся в течение жизненного цикла РПО. Эта оценка основана на документации по проекту и плану качества
для РПО. но для нее может также потребоваться анализ архива по эксплуатации.

15.3.2.1 Входная документация
15.3.2.1.1 Должна быть доступна в допол нение к перечисленной в 15.3.1.1;
-документация по спецификации системы, в которой определена важность для безопасности функ­

ций, реализуемых с помощью РПО в архитектурном проекте систомы (см. 6.1.2 и приложение А
МЭК 61513);

П р и м е ч а н и е — Необходимый для достижения с гюмощью оценки качества доверительный уровень того,
что РПО будет работать, как предписано, будет различным для трех категорий, при этом для категории А требуется
более высокий доверительный уровень (см. 8.2.1 МЭК 61226).

- аттестационная документация РПО, включая документацию по предыдущим сертификациям или
независимым оценкам РПО. если она должна использоваться при оценке.

41

ГОСТ Р МЭК 60880— 2010

15.3.2.1.2 Должна быть представлена относящаяся к РПО либо обоснованно использована следую­
щая информация:

- план качества программного обеспечения (разделение на простые задачи и соответствующие дей­
ствия). используемый в жизненном цикле РПО (см. раздел 5), и соответствующие записи для задач и
процедур по обеспечению качества (в особенности, планирование верификации);

- документы по спецификации, проекту, реализации и модификации и соответствующие верификаци­
онные документы;

- план интеграции технического и программного обеспечений и соответствующая верификация;
- план валидации и тестирования, осуществляемые над программой поставщиком или заказчиком.

П р и м е ч а н и е — Для последних двух пунктов перечисления эта документация плана необходима только
в случае, если РПО интегрировано в компоненты технического обеспечения.

15.3.2.1.3 Документация по опыту эксплуатации РПО должна быть доступна в случаях компенсации
недостатка указанной документации или обоснования использования опыта, отличающегося от указанного
в настоящем стандарте.

15.3.2.1.4 Рекомендуется, чтобы в документации была представлена информация о производствен­
ных факторах, таких, например, как распространение РПО и поддержка поставщиком РПО.

15.3.2.2 Требования к оценке качества
15.3.2.2.1 Требования плана качества программного обеспечения для РПО и соответствующие вери­

фикация и документация должны быть оценены на соответствие требованиям настоящего стандарта. Этот
анализ соответствия требует интерпретации с целью определения требований, применимых в контексте
использования РПО в системе.

15.3.2.2.2 Проект РПО должен быть согласован с ограничениями по архитектуре и детерминирован­
ному внутреннему режиму работы системы.

15.3.2.2.3 Если при разработке РПО используются методы, отличные от приведенных в приложениях
к настоящему стандарту, то их пригодность должна быть проанализирована и обоснована в соответствии с
5.5. Их важность для обеспечения качественных характеристик программного обеспечения должна быть
оценена во взаимосвязи с требованиями системы. Результаты оценки и анализа должны быть зафиксиро­
ваны для независимого рассмотрения.

15.3.2.2.4 При расхождении с требованиями настоящего стандарта свойства, которые не могут быть
верифицированы, слабости или пропущенные шаги в процессе верификации или оформления документа­
ции должны быть выявлены. Каждому выявленному элементу должен быть присвоен ранг, соответствую­
щий его важности в обеспечении качественных характеристик программного обеспечения, а также важно­
сти для безопасности функций, реализованных в системе. Руководство по ранжированию несоответствий
приведено в пункте 1.1 приложения I.

15.3.2.2.5 Если системы, выполняющие функции категории А. включают в себя функции более низ­
кой категории, которые должны выполняться РПО, а архитектурный проект системы таков, что РПО может
потенциально подвергнуть опасности функции категории А (см. 6.2 МЭК 61513), то к этому РПО должны
быть применены критерии оценки, применимые к РПО. выполняющему функции категории А.

15.3.2.2.6 В документации по аттестации должны быть представлены свидетельства того, что РПО.
интегрированная в компоненты технических средств, прошла валцдацию с целью подтверждения ее соот­
ветствия функциональным и эксплуатационным спецификациям.

П р и м е ч а н и е — Функциональное и эксплуатационное поведение компонентов РПО может быть в
неявном виде аттестовано с помощью функциональной аттестации отдельного оборудования, в которое эти ком­
поненты интегрированы (см. 2 на рисунке 5). Однако существуют свойства, которые могут быть аттестованы только
с использованием конфигурирования оборудования.

15.3.2.2.7 Когда компоненты РПО содержат элементы, которые не могут быть подвергнуты валидации
вне окончательной конфигурации системы, валидация этих элементов должна осуществляться в оконча­
тельной конфигурации системы.

15.3.2.2.8 Качество и степень тестового покрытия при валидации, осуществляемой для РПО. должны
быть оценены с учетом требований разделов 9 и 10 и. при необходимости, должны быть проведены допол­
нительные валидационные тестирования.

42

ГОСТ Р МЭК 60880— 2010

15.3.2.2.9 Когда оценка проекта и жизненного цикла завершена, должен быть подготовлен документ,
в котором была бы зафиксирована верность одного из следующих утверждений:

1) качество РПО подтверждено и никаких дополнительных тестирований или анализа опыта эксплу­
атации не требуется;

2) при наличии оценки для данной конфигурации системы должна быть проведена дополнительная
аттестация;

3) во время оценки был зафиксирован недостаток информации, но он может быть компенсирован
проведением дополнительной верификации и валидации, тестированием или анализом кода и документа­
цией;

4) во время оценки был зафиксирован недостаток информации, который может быть компенсирован
использованием опыта эксплуатации;

5) РПО {или часть РПО) требует модификации для данного использования в системе (см. 5.3.3). и
поскольку оно имеет соответствующий уровень качества, то желательно, но не обязательно, чтобы моди­
фикации проводились в соответствии с требованиями настоящего стандарта.

П р и м е ч а н и е — После проведения установленных модификаций необходима дополнительная оценка
в рамках аттестации системы (см. 5 на рисунке 5);

6) могут возникнуть серьезные проблемы при перенесении РПО на новые технические средства;
7) качество РПО не соответствует необходимому уровню и РПО должно быть отвергнуто на основа­

нии того, что имеющиеся недочеты слишком велики или имеющаяся информация недостаточна для эф­
фективной их компенсации, и

8) установлена/неустановлена независимость аттестованных функций/свойств РПО от тех функций'
свойств, которые не были аттестованы.

15.3.3 Оценка опы та эксплуатации
Цель данной оценки состоит в получении свидетельства того, что соответствующий опыт эксплуата­

ции РПО может повысить доверие к РПО в случае наличия недостатков, зафиксированных во время оцен­
ки качества.

Должны быть определены функции/свойстеа РПО, которые подлежат оценке на основании опыта
эксплуатаций, и:

1) методы сбора данных об опыте эксплуатации;
2) методы регистрации времени эксплуатации версии РПО и формирования эксплуатационного

архива:
3) эксплуатационный архив отчетов о полученных данных, дефектах и ошибках и
4) эксплуатационный архив о модификациях, выполненных из-за дефектов или по другим причинам.
15.3.3.1 Валидация входных данных и методы получения эксплуатационного архива
15.3.3.1.1 Оценка опыта эксплуатации РПО основывается на данных, полученных от поставщика, и,

если возможно, от пользователей систем, в которых работает данная РПО. Для того, чтобы опыт эксплуа­
тации был признан пригодным для оценки РПО, должны быть оценены методы сбора данных и формирова­
ния эксплуатационного архива.

15.3.3.1.2 Должна использоваться только информация, полученная с помощью хорошо определен­
ного и управляемого процесса сбора данных.

15.3.3.1.3 Процедура сбора должна быть оценена с целью валидации данных на их полноту и досто­
верность. Руководство по сбору и валидации данных приведено в разделе 1.2 приложения I.

15.3.3.1.4 Опыт эксплуатации должен считаться пригодным только в случае, если он отслеживался
при условиях, аналогичных тем. которые будут существовать при планируемой эксплуатации.

15.3.3.1.5 Должно быть установлено суммарное время работы оцениваемого РПО. Оно может быть
рассчитано сложением значений времени работы на каждой из установок, для которых собран опыт эксп­
луатации и проведена его валидация. Значение времени, в течение которого РПО не работало в типовом
режиме, не учитывают.

15.3.3.1.6 Время работы берут для той версии РПО. которая будет использоваться. Если в расчет
включают время работы других версий, проводят анализ различий и архива для этих версий. Анализ с
целью подтверждения пригодности архива должен определить отличающиеся части и функции РПО, а
также части и функции, на которые не влияют модификации.

43

ГОСТ Р МЭК 60880— 2010

15.3.3.1.7 Проблемы, отказы и их устранение в различных версиях РПО должны быть проанализиро­
ваны и классифицированы в соответствии с их значимостью. Должно быть оценено их влияние на выполня­
емые функции.

15.3.3.1.8 На аттестованные функции не должны влиять ошибки или модификации, обнаруженные
или сделанные для других функций той же РПО.

15.3.3.1.9 При оценке коммуникационных функций следует учитывать опыт эксплуатации. Следует
определить рабочие пределы в сравнении с прогнозами для нормальных условий, условий с пиковой
нагрузкой и условий отказа оборудования.

15.3.3.1.10 Опыт эксплуатации следует считать пригодным, если удовлетворяются следующие кри­
терии:

1) для РПО накоплено достаточное время работы (см. приложение I).

П р и м е ч а н и е — Достаточное время работы следует определять для каждого случая отдельно на основе
инженерной оценки. В этой оценке следует учитывать, главным образом, ожидаемый уровень надежности, требу­
ющийся на уровне системы для функций, в которых используется РПО;

2) не было осуществлено никаких существенных модификаций и не было зафиксировано никаких
ошибок в течение значительного времени работы в нескольких местах применения и

3) предпочтительно, чтобы РПО работало на нескольких установках.
15.3.3.1.11 После завершения оценки опыта эксплуатации должен быть оформлен документ, в кото­

ром фиксируется, что:
1) либо опыт эксплуатации пригоден для установленных функций/свойств РПО с обоснованием того,

почему этот опыт эксплуатации может быть использован для оценки качества.
2) либо опыт эксплуатации непригоден или недостаточно обоснован.
15.3.3.2 Критерии приемки, применяемые при использовании опыта эксплуатации в качестве компен­

сирующего фактора
Соответствующий опыт эксплуатации может быть использован в качестве компенсирующего фактора

для приемки РПО, если удовлетворяются следующие критерии:
15.3.3.2.1 Оценка данных по опыту эксплуатации не должна полностью заменять саму оценку проекта

программы и связанной с ним документации (см. 15.3.2.2).
15.3.3.2.2 Пригодный опыт эксплуатации должен быть принят как часть обоснования, если он исполь­

зуется только для компенсации слабых мест в оценке РПО в отношении рекомендаций перечисления с)
раздела В.2 приложения В. касающихся операционных систем и стандартных программ.

15.3.3.2.3 Строгость анализа данных опыта эксплуатации должна соответствовать категории безопас­
ности функций системы, а свидетельства технической правильности, получаемые из этого анализа, долж­
ны согласовываться со свидетельствами, получаемыми при применении разделов 1 — 12.

15.3.3.2.4 Строгость анализа данных опыта эксплуатации должна соответствовать категории безопас­
ности функций системы, а свидетельства технической правильности, получаемые из этого анализа, долж­
ны согласовываться со свидетельствами, получаемыми при применении разделов 1 — 12.

15.3.3.2.5 По результатам проведенной оценки должен быть оформлен документ, в котором фик­
сируют:

1) насколько удовлетворительно данные опыта эксплуатации компенсируют любые слабые места,
определенные в оценке проекта и жизненного цикла РПО. или

2) использование РПО отклоняется, т.к. результаты оценки отрицательные или опыт эксплуатации
недостаточен для компенсации слабых мест, определенных в разработке.

15.3.4 Комплексная оценка
15.3.4.1 Когда оценки и вся необходимая дополнительная работа (модификации РПО, дополнитель­

ные тестирования, дополнительная документация) завершены, должен быть подготовлен документ по ком­
плексному обоснованию использования РПО для реализации в системе.

15.3.4.2 В этом документе, основанном на выводах из оценок, указанных в 15.3.1,15.3.2 и 15.3.3,
должна быть зафиксирована оценка, которая подтверждает факт, что РПО (или часть РПО) пригодна и
имеет уровень качества, соответствующий предполагаемому ее использованию в системе, и что никаких
дальнейших модификаций не требуется.

44

ГОСТ Р МЭК 60880— 2010

15.4 Требования к интеграции в систему и модиф икации РПО

15.4.1 После комплексной оценки должно быть принято официальное решение об использовании
РПО. которое должно быть документально оформлено в рамках программы, следующей за формализо­
ванным рассмотрением проекта.

15.4.2 Процедуры интеграции РПО должны быть описаны в планах обеспечения качества системы и
интеграции системы (см. 6.2.1 и 6.2.3 МЭК 61513).

15.4.3 После приемки РПО должна быть введена под управление конфигурацией системы (см. 6.2.1.2
МЭК 61513) и должен использоваться только вариант, подвергшийся указанной аттестации и некоторым
необходимым модификациям, определенным в процессе приемки.

15.4.4 В плане качества системы должны быть предусмотрены процедуры обновления РПО. когда
необходимым становится использование нового варианта.

15.4.5 Информацию об ошибках и отказах из-за РПО на других установках и в других применениях, а
также информацию о соответствующих модификациях РПО следует оценить и проанализировать в течение
последующей эксплуатации.

45

ГОСТ Р МЭК 60880— 2010

Приложение А
(обязательное)

Ж изненный цикл безопасности программного обеспечения
и детализация требований к программному обеспечению

А.1 Ж изненный цикл программного обеспечения
Процесс разработки программного обеспечения представлен на рисунке 3. на котором показаны деятель­

ность по жизненному циклу, начиная со спецификации, включая проектирование и реализацию и заканчивая
верификацией и валидацией.

Детализация требований к программному обеспечению описана в разделе А.2.
А.2 Детализация требований к программному обеспечению
А.2.1 Описание взаимных ограничений между техническим и программным обеспечениями
А.2.1.1 Должны быть описаны следующие аспекты:
- общие рабочие характеристики (разрядность, типы обмена, быстродействие и т.п.); во многих случаях

достаточно бывает ссылки на справочники производителя оборудования;
- рабочие характеристики специального оборудования (конкретные драйверы, оборудование для передачи

данных и т.п.);
- числовые ограничения;
- требования к коглплектам стандартных программ;
- требования к саглоконтролю технических средств;
- должна быть дана, по крайней мере, ссылка на докуглент с требованиями к техническим средствагл.
А.2.1.2 Должны быть определены взаиглные требования к техническим и программныгл обеслечениягл с

учетом регистрации отказа и реакции на выявление отказа.
Критерии, установленные в Руководстве МАГАТЭ NS-G-1.3. не допускают никакого дополнительного расши­

рения, касающегося технического обеспечения ко»лпьютерных систегл. Однако необходи»ла докуглентация ко всем
трвбованиягл к техническоглу обеспечению, влияющим на програмглное обеспечение, для того чтобы обеспечить
основу интеграции технического и программного обеспечений и валидацию компьютерной систеглы.

А.2.1.3 Должно быть описано взаимодействие между функциями, принадлежащими к разным уровням
безопасности (например, функциями категории А и функциями других категорий), и выполняемым програмглным
обеспечением.

А.2.2 Самоконтроль
А.2.2.1 Рекоглендуется. чтобы при отказах програ»лмного обеспечения автоматически предпринимались

соответствующие действия с учетом следующих факторов:
- отказы должны быть определены с разуглной степенью детализации;
- должен быть гарантирован максиглально возможный отказоустойчивый выход;
- если такой гарантии нельзя предоставить, то несоответствие выхода системы должно касаться только

менее существенных для безопасности требований:
- последствия отказов должны быть минимизированы;
- должны быть рассмотрены возможности включения корректирующих программ, таких, например, как воз­

вращение в предыдущее состояние, восстановление системы;
- обслуживающему персоналу должна быть представлена достаточно подробная информация об отказах.
А.2.2.2 Систегла должна быть спроектирована так. чтобы был возгложен соответствующий самоконтроль.

Принципы проектирования. ислользуе»лые для осуществления этой возможности, включают в себя:
- разбиение на модули;
- проглежуточные проверки достоверности;
- использование резервирования и разнообразия; разнообразив может быть реализовано в качестве фун­

кционального разнообразия или разнообразия програ»л»лного обеспечения;
- обеспечение достаточного вре»лени исполнения и обьегла пагляти для целей самопроверки;
- для подтверждения адекватности элементов самоконтроля может быть использовано моделирование

отказов.
А.2.2.3 В любых обстоятельствах самоконтроль не должен препятствовать своевременному реагированию

систеглы.
А.2.3 Представление спецификаций программного обеспечения
А.2.3.1 Спецификации программного обеспечения должны быть легко понимаемыми всеми группагли пользо­

вателей.
А.2.3.2 Представление должно быть достаточно подробным, свободным от противоречий и. по возможнос­

ти. не содержать повторений.

46

ГОСТ Р МЭК 60880— 2010

А.2.3.3 Документ должен быть свободен от деталей по реализации, быть полным, последовательным и
современным.

А.2.3.4 В документе по спецификации программного обеспечения должны четко различаться существенные
требования и менее обязательные цели.

Документ по спецификации программного обеспечения предназначен для использования:
- его авторами;
- заказчиком, клиентом и конечным пользователем;
- группой по разработке программного обеспечения;
- группой по верификации программного обеспечения;
- персоналом по оценке и лицензированию.

47

ГОСТ Р МЭК 60880— 2010

Приложение В
(обязательное)

Детализированные требования и рекомендации
по проектированию и реализации

В настоящем приложении приведены таблицы, каждая из которых начинается с основного требования
{должно быть), такого как в таблице В.1а. за которым помещен перечень связанных с ним рекомендаций (следу­
ет). таких как в таблице В.1а (пункт В.1аа).

Для каждого требования в проектах следует отобрать рекомендации, которым будут следовать при проекти­
ровании и реализации. Следует обосновать отклонение оставшихся рекомендаций (например, «не применимо»
или «охвачено другими мерами» и т.п.).

Требования и рекомендации перечислены в таблицах В. 1а — B.5f.

В.1 Процесс проектирования

Т а б л и ц а В. 1а — Модифицируемость

Пункт Рекомендация Позволяет избежать,'позволяет добиться

В.1а Процесс проектирования должен сделать ПО легко
модифицируемым

Риска внесения дефектов при реали­
зации изменений /

В.1аа Характеристики разрабатываемого ПО и его функци­
ональные требования, которые, вероятно, будут из­
меняться в течение жизненного цикла, следует оп­
ределить на раннем этапе проекта

/ достижения безопасности и экономи­
чески эффективной гибкости

В. 1аЬ Модули следует выбирать так. чтобы воздействие
ожидаемых изменений на ПО было ограничено на
последующих этапах проектирования

/ минимизации риска возникновения
дефектов из-за изменений

В.1ас Модифицируемость следует тщательно уравновесить
с ев сложностью, временем выполнения и объемом
памяти

Получения слишком сложной системы/

Т а б л и ц а В.1Ь — Подход «сверху вниз»

Пункт Рекомендация Позволяет избежать/позволяет добиться

В.1Ь При проектировании необходимо использовать под­
ход сверху вниз

Ошибок проекта / полноты проекта

В.1Ьа Общие вопросы предшествуют специальным Риска несогласованности/ логически
последовательной работы разработчи­
ков от предъявления требований до
окончания проекта

В.1ЬЬ На каждом этапе проектирования всю систему сле­
дует полностью описать и подвергнуть верификации

/ согласованности и полноты проекта;
наиболее раннего обнаружения участ­
ков. создающих проблемы

В.1 be На возможно более раннем этапе проектирования
следует определить все проблемные участки

/ включения проблемных участков в ка­
честве входной информации для при­
нятия решений по проектированию

B.1bd Принципиальные решения следует обсуждать и до­
кументально оформлять как можно раньше

/ наиболее ранней оценки достижимо­
сти проекта. Снижения вероятности из­
менений на более поздних этапах раз­
работки ПО

В.1 be После принятия любого крупного решения, влияю­
щего на другие части системы, следует рассмотреть
альтернативы и документировать их факторы риска

Дублирования работ / тщательного про­
ектирования

48

ГОСТ Р МЭК 60880— 2010

Окончание таблицы В. 1Ь

Пункт Рекомендация Позволяет избсжать/позволяет добиться

В.1Ы Следует определить последствия, оказываемые от­
дельными решениями на другие части системы

Дублирования работ / тщательного про­
ектирования

B.1bg Разрыв между уровнями проектирования ПО должен
быть таким, чтобы те. кто проводит анализ, могли
понять каждый уровень проектирования в его взаи­
мосвязи с предыдущим уровнем

Проектов, трудных для понимания / яс­
ности проекта ПО и согласованности
проекта, подлежащего верификации

B.1bh Следует проводить проектирование и разработку ПО.
используя одно или несколько формализованных
описаний высокого уровня (там. где это целесооб­
разно и эффективно), подобно тому, как это делает­
ся в математической логике, теории множеств, а так­
же использовать псевдокод, таблицы решений, ло­
гические схемы, другие графические средства или
проблемно-ориентированные языки

Неправильной интерпретации или не­
точности /

В. 1 bi Следует использовать автоматические средства раз­
работки

/ сокращения области ошибок человека

B.1bj Документацию следует составлять так. чтобы автор
спецификации был в состоянии понять и проверить
реализацию функций в проекте

/ модификаций и соответствия специ­
фикациям

Т а б л и ц а В. 1с — Верификация промежуточных результатов проекта

П у н к т Р е к о м е н д а ц и я П о з в о л я е т и з б е ж а т ь , 'п о з в о л я е т д о б и т ь с я

В.1с Промежуточные результаты проекта должны вери­
фицироваться

/ наиболее быстрого обнаружения оши­
бок. полноты проекта

В.1са Следует показать полноту и самосогласованность
каждого уровня проекта

Необходимости последующих измене­
ний/

В.1сЬ Следует показать, что каждый уровень проекта
согласуется с предыдущим уровнем и со специфика­
цией требований к ПО. существенных для данного
уровня

Пропущенных аспектов / отсутствия про­
пущенных требований

В.1СС Проверки согласованности следует проводить пер­
соналу. не вовлеченному в процесс разработки

—

B.1cd Этому персоналу следует только отмечать недостат­
ки. но не давать никаких рекомендаций

Привязки конкретных лиц к программе
/ сохранения критического отношения

В.1се Где необходимо, им следует давать четкие поясне­
ния. чтобы помочь разработчикам правильно понять
обнаруженные недочеты

/ повысить интерес к деятельности по
верификации и общую эффективность
работы группы

Т а б л и ц а B.1d — Управление модификаций в процессе разработки

П у н к т Р е к о м е н д а ц и я П о з в о л я е т и з б е ж а т ь . 'п о з в о л я е т д о б и т ь с я

B.1d Внесение необходимых изменений в процессе раз­
работки программы должно начинаться на самом
раннем этапе проектирования, на котором еще мож­
но вносить изменения

Внесения новых дефектов в результа­
те изменений/ отсутствия скрытых, име­
ющих отдаленные последствия дефек­
тов

B.1db Если какой-либо модуль изменяется, то для него сле­
дует провести повторное тестирование в соответствии
с описанными ранее принципами (см. 11.2) до его
повторной интеграции в системе

Скрытых дефектов в модуле, вызван­
ных изменением/

49

ГОСТ Р МЭК 60880— 2010

Окончание таблицы B.1d

Пункт Рекомендация Позволяет избежать/позволяет добиться

B.1dc Кроме того, связанные с данным модулем другие
модули, которые к нему обращаются и к которым он
обращается, следует подвергнуть повторному тести­
рованию. поскольку на них также влияет изменение

Скрытых дефектов в связанных моду­
лях. вызванных изменением/

B.1dd В документацию по существенным изменениям сле­
дует включать требования, части программы, облас­
ти данных. характеристики управляющей логики, вре­
менные аспекты, подверженные влиянию

/отслеживаемости результатов измене­
ния

B.1de Изменения, влияющие на уже протестированные
части или на работу других людей, должны быть оце­
нены и проанализированы до их внесения

/ скрытых, имеющих отдаленные по­
следствия эффектов

B.ldef П р и м е ч а н и е — Эта процедура применима для изме­
нений. влияющих на работу только одного человека, и для
модификаций, влияющих на всю систему. В последнем
случае дополнительно применяются рекомендации раз­
дела 11.

В.2 Структура программного обеспечения

Т а б л и ц а В.2а — Структуры управления и оценки

Пункт Рекомендация Позволяет избожагь/позволяет добиться

В.2а Программы и их части должны систематически груп­
пироваться

/ облегчения проведения оценки и мо­
дификации

В.2аа Рекомендуется, чтобы специальные операции сис­
темы выполнялись специальными частями

/ тестируемости

В.2аЬ ПО следует разбивать на части так. чтобы аспекты,
связанные с такими функциями, как:
- внешние интерфейсы компьютера (например, уп­
равление устройствами, обработка прерываний);
- сигналы реального времени (например, часы):
- параллельная обработка (например, блок опера­
тивного управления);
- размещение памяти;
- специальные функции (например, утилиты);
- размещение стандартных функций на технических
средствах конкретного компьютера, были отделены
от прикладных программ с хорошо определенными
интерфейсами между ними

/ улучшения тестируемости, ясности
проекта

В.2ас Рекомендуется, чтобы структура программы позво­
ляла реализовывать ожидаемые изменения при
минимуме усилий (см. также таблицу В. 1а)

/ адаптируемости системы

B.2ad Следует четко формулировать используемые мето­
ды структурирования

/ понятности

В2ае Насколько возможно, последовательность выполне­
ния программы на одном процессоре

Путаницы из-за временных проблем
или различных последовательностей
прерывания /

B.2af Однозначная и четкая модульная структура компью­
терной программы

/ понятности, тестируемости

50

ГОСТ Р МЭК 60880— 2010

Т а б л и ц а В.2Ь — Модули

Пункт Рекомендация Позволяет иэбсжать/лозволяет добиться

В.2Ь Модули должны быть ясными и понятными / понятности

В.2Ьа Каждый модуль должен соответствовать определен­
ной функции

/ тестируемости

В.2ЬЬ Модуль должен иметь только один вход. Хотя иногда
могут потребоваться множественные выходы, тем не
менее рекомендуется использовать один выход

/ простоты верификации

В.2Ьс Размер модулей не должен превышать предела для
выполняемых операторов. Этот предел устанавли­
вается для конкретной системы и только в специаль­
ных случаях допускаются более длинные модули

Громоздких модулей /

B.2bd Интерфейсы между модулями следует делать на­
сколько возможно простыми, единообразными по
всей системе и полностью документально оформлен-
ными

Ошибок в интерфейсах /

B.2be Следует свести к минимуму число параметров интер­
фейсов модулей

Ошибок в интерфейсах/

В.2Ы Статус параметров интерфейсов модулей (т.е. вход,
выход или вход'выход) следует четко устанавливать

Ошибок в интерфейсах /

Т а б л и ц а В-2с — Операционное системное программное обеспечение

Пункт Рекомендация Позволяет избсжать/позволяет добиться

В.2с Обращение к операционной системе должно быть
ограничено

Отказов из-за ошибок в операционной
системе / упрощения верификации си­
стемы

В.2са Следует использовать только тщательно проверен­
ные операционные системы, снабженные соответ­
ствующей документацией о верификации; если опе­
рационная система является РПО. то см. раздел 15

Скрытых ошибок.1

В.2сЬ Следует избегать использования универсального
системного программного обеспечения (операцион­
ных систем)

Использования чрезмерно сложных
программных продуктов/

В.2сс Если универсальная операционная система необхо­
дима, то ее применение следует ограничить неболь­
шим числом простых функций

/ обоснованного использования тща­
тельно проверенной операционной си­
стемы

B.2cd Операционная система должна содержать только
необходимые функции

«Мертвых» программ/

В.2се Функции операционной системы должны всегда на­
зываться одинаково

/ простоты верификации

B.2cf Функции, используемые для управления технически­
ми средствами, следует брать из операционной сис­
темы или разрабатывать и верифицировать внутри
этой системы

Дополнительных усилий по программи­
рованию и тестированию/

B.2cg Функции операционной системы должны быть стро­
го определены и иметь хорошо определенные ин­
терфейсы

Ошибок при использовании функций/

B.2ch Условия использования и взаимосвязи функций опе­
рационной системы должны быть известными и про­
веренными

Ошибок при использовании функций/

B.2ci Необходимо следовать указаниям настоящего стан­
дарта в целом, если операционная система или ее
часть разработана для специального применения в
целях безопасности

/ простоты верификации

51

ГОСТ Р МЭК 60880— 2010

Т а б л и ц а B.2d — Время выполнения

П у н к т Р е к о м е н д а ц и я П о з в о л я е т и з б е ж а т ь /п о з в о л я е т д о б и т ь с я

В.2d Влияние характера физического процесса на время
выполнения следует удерживать на низком уровне

Труднообьяснимых временных
проблем/

B.2da Время выполнения любой системы или части систе­
мы в условиях пиковой нагрузки должно быть неболь­
шим по сравнению с временем выполнения, после
которого нарушаются требования безопасности сис­
темы

Необходимости изменений на поздних
стадиях/

B.2db Результаты, связанные с последовательной програм­
мой, не должны зависеть:
- от времени, необходимого для выполнения про­
граммы. а также
- от времени (отнесенного к независимым «часам»),
когда начинается выполнение программы

Труднообъяснимых временных про­
блем/ определенности

B.2dc Компьютерные программы следует проектировать
так. чтобы операции выполнялись в правильной пос­
ледовательности, не зависимой от быстроты выпол­
нения

Проблем синхронизации и проблем
времени прогона / облегчения анализа

B.2dd Время прогона не должно существенно изменяться
в результате изменений входных данных

/ упрощения оценки времени прогона и
верификации времени прогона

B.2de Значение изменения времени прогона, которое мо­
жет быть вызвано входными данными, должно быть
документально оформлено

/ упрощения оценки времени прогона и
верификации времени прогона

B.2df Части кода, время выполнения которых зависит от
входных данных, должны быть короткими

/ достижения цели B.2de

B.2dg Обьем данных, считываемых в течение одного вы­
числительного цикла, должен быть постоянным

1 поддержания небольшой разницы во
времени прогона

B.2dh Время выполнения программы не должно быть свя­
зано с поступлением данных

Проблем синхронизации и проблем
времени прогона / облегчения анализа

Т а б л и ц а В.2е — Прерывания

П у н к т Р е к о м е н д а ц и я П о з в о л я е т и з б е ж а т ь , 'п о з в о л я е т д о б и т ь с я

В.2е Необходимо ограничивать применение прерываний Проблем синхронизации и проблем
времени прогона / облегчения анализа

В.2еа Прерывания могут использоваться, если они упро­
щают проект ПО и не делают верификацию чрезмер­
но сложной

1 упрощения понимания специальных
конфигураций

В.2еЬ Критические части ПО (например, критических во вре­
мени, критических в отношении изменения данных)
следует определить и защитить

Проблем синхронизации и проблем
времени прогона / облегчения анализа

В.2ес ПО может запрещать обработку прерываний во вре­
мя прохода критических частей. Такие запреты сле­
дует обосновывать

Проблем синхронизации и проблем
времени прогона / облегчения анализа

B.2ed Если прерывания используются, то для непрерыва­
емых частей необходимо иметь оценки максималь­
ного времени вычислений, чтобы можно было рас­
считать максимальное время, в течение которого
прерывание запрещено

Проблем со временем прогона/

В.2ее Применение или блокирование прерываний долж­
но быть тщательно оформлено документально

/ валидации системы

52

ГОСТ Р МЭК 60880— 2010

Т а 6 я и ц a B.2f — Арифметические выражения

Пункт Рекомендация Позволяет избежать/позволяет добиться

B.2f По возможности, вместо сложных арифметических
выражений необходимо использовать простые

Побочных эффектов / простоты тести­
рования

B.2fa Решения не должны зависеть от громоздких ариф­
метических расчете»

1 нахождения реверсивных формул рас­
чета функций

B.2fb Следует использовать по возможности упрощенные,
ранее верифицированные арифметические выраже­
ния

/упрощения демонстрации соответ­
ствия между реализуемой функцией и
ее кодом

B.2fc Если используются громоздкие арифметические
выражения, то их следует кодировать таким образом,
чтобы по коду можно было легко показать их соответ­
ствие определенному арифметическому выражению

/ облегчения анализа программы

В.З Самоконтроль

Т а б л и ц а В.За — Проверки достоверности

Пункт Рекомендация Позволяет избежать/позволяет добиться

В.За Необходимо проводить проверки достоверности
(страхующее программирование)

Возможных оставшихся дефектов/

В.Заа Правильность или достоверность промежуточных ре­
зультатов следует периодически проверять

Возможных оставшихся дефектов/

В.ЗаЬ Следует проверять области изменения:
- входных переменных;
- выходных переменных:
- промежуточных параметров, включая проверку гра­
ницы массива

Возможных оставшихся дефектов/

В.Зас Отрицательные результаты проверки достоверности
должны фиксироваться

/ диагностики возможных оставшихся
дефектов

Т а б л и ц а В.ЗЬ — Безопасная выходная информация

Пункт Рекомендация Позволяет избежать/позволяет добиться

В.ЗЬ Если обнаружена неисправность, то система долж­
на выдавать четко определенную выходную инфор­
мацию

Распространения дефектов / безотказ­
ной работы

В.ЗЬа Если можно, то следует использовать методы пол­
ного и корректного устранения ошибок

Поломки системы из-за мелких
отказов /

В.ЗЬЬ Если используются методы устранения ошибок, то не­
обходимо фиксировать появление любой ошибки

Накопления ошибох / раннего устране­
ния ошибок

В.ЗЬс Необходимо регистрировать появление постоянных
ошибок, влияющих на функционирование системы

Накопления ошибох / раннего устране­
ния ошибок

53

ГОСТ Р МЭК 60880— 2010

Т а б л и ц а В.Зс — Содержимое памяти

Пункт Рекомендация Позволяет избсжать/поэеоляст добиться

В.Зс Содержимое памяти должно быть защищено или
контролироваться.

П р и м е ч а н и е — Защита может иметь целью предо!-
вращение (предотвратить осуществление несвоевремен­
ной модификации) или регистрацию (зарегистрировать
ненормальное состояние — искажение памяти) с соот­
ветствующей быстрой реакцией (ограничение или коррек­
ция ошибки). Регистрация предполагает мониторинг (или
его синоним — контроль)

Несанкционированных изменений, воз­
можных оставшихся дефектов !

В.Зса Память, отведенная для констант и команд, должна
быть защищена или должен осуществляться контроль
изменений

Распространения ошибок адресации
или отказов аппаратных средств, вклю­
чая перемежающиеся отказы /

В.ЗсЬ Не следует допускать неправомочных считываний и
записей

В.Зсс Систему следует страховать от изменений кода или
данных оператором станции

/ сохранения целостности разрешенной
системы

Т а б л и ц а B.3d — Проверка ошибок

Пункт Рекомендация Позволяет избежать/позволяет добиться

B.3d Проверку ошибок необходимо проводить на уровне
кодирования

Распространения отказа /

B.3da Счетчики и ловушки отклонений от допустимости
должны гарантировать правильный прогон програм­
мы

Специфических дефектов логики управ­
ления. повторяющихся дефектов техни­
ческих средств/

B.3db Следует проверять правильность передачи любого
параметра, включая проверку типа параметров

Дефектов в проектировании интерфей­
са и потока данных 1

B.3dc При адресации массива следует проверять его гра­
ницы

Ошибок в потоке данных, слишком боль­
шого числа повторений в цикле /

B.3dd Следует контролировать время прогона критических
частей (например, с помощью таймера)

Дефектов проектирования управления,
а также слишком большого числа повто­
ров в цикле/

B.3de Следует использовать логические утверждения (на­
пример, в треугольнике, если НЕ (а+Ь>с), то Ошибка)

/ достоверности промежуточных резуль­
татов

В.4 Детальное проектирование и кодирование

Т а б л и ц а В.4а — Ветвления и циклы

Пункт Рекомендация Позволяет избежать/позволяет добиться

В.4а С ветвлениями и циклами следует обращаться осто­
рожно

/ понятного и верифицируемого алго­
ритма управления

В.4аа Следует избегать использования переходе» назад,
вместо этого следует использовать операторы цикла
(только для языков высокого уровня)

Трудностей анализа алгоритма управ­
ления 1 удобочитаемости

В.4аЬ Следует исключить переходы в циклы, модули или
подпрограммы

Трудностей анализа алгоритма управ­
ления / удобочитаемости

В.4ас Следует избегать переходов из циклов, если они не
ведут к полному окончанию цикла. Исключение — вы­
ход по отказу

Трудностей анализа алгоритма управ­
ления ! удобочитаемости

54

ГОСТ Р МЭК 60880— 2010

Окончание таблицы В. 4а

Пункт Рекомендация Позволяет избежит [■.'позволяет добиться

B.4ad В модулях со сложной структурой для более четкого
выделения структуры следует использовать макро­
команды. процедуры или подпрограммы

Трудностей анализа алгоритма управ­
ления / удобочитаемости

В.4ае В качестве особой меры обеспечения доказатель­
ства правильности и верификации программы сле­
дует избегать вычисляемых операторов GOTO, а так­
же переменных типа «метка»

B.4af В тех случаях, когда используется список альтерна­
тивных ветвлений или операторов, управляемых ва­
риантами. список условий ветвления или вариантов
должен быть исчерпывающим. Концепция «вариант
по умолчанию* должна быть зарезервирована для
обработки сбоя

/ внесения ясности, исключающей «или*

B.4ag Следует использовать циклы только с постоянными
максимальными областями значений переменной
цикла

Проблем с временем прогона, наруше­
ниями границ массива / обозримости
числа проходов

Т а б л и ц а В.4Ь — Подпрограммы

Пункт Рекомендация Позволяет избежать.'позволяег добиться

В.4Ь Подпрограммы следует организовывать как можно
проще

Ненужной сложности /

В.4Ьа Они должны иметь только заранее определенное
максимальное число параметров

/ поддержания программ и интерфей­
сов простыми и короткими

В.4ЬЬ Они должны связываться с окружением исключитель­
но через свои параметры

/ простоты понимания потока данных,
анализа потока данных

В.4Ьс Подпрограммы должны иметь только одну точку
входа

/ простоты понимания алгоритма управ­
ления, анализа алгоритма управления

B.4bd Подпрограммы должны для каждого вызова подпрог­
раммы возвращаться только к одной точке. Исключе­
ние — выход по умолчанию

/ простоты понимания алгоритма управ­
ления, анализа алгоритма управления

B.4be Точка возврата должна следовать непосредственно
за точкой вызова

/ простоты понимания алгоритма управ­
ления, анализа алгоритма управления

Т а б л и ц а В.4с — Вложенные структуры

Пункт Рекомендация Позволяет избежать.'позволяет добиться

В.4с С вложенными структурами следует обращаться
осторожно

/ ПОНЯТНОСТИ

В.4са Следует избегать вложенных макрокоманд Получения чрезмерно сложного кода /

В.4сЬ Следует избегать объединения различных вариан­
тов действия программы посредством оператора
вложенного цикла или вложенных процедур, если они
скрывают взаимосвязь между структурой задачи и
структурой программы

/ получения подходящих структур сле­
дования

В.4сс Следует использовать иерархии процедур и циклов,
если они проясняют структуру системы

/ показа различных уровней абстракции
при нисходящей (сверху вниз) разра­
ботке

55

ГОСТ Р МЭК 60880— 2010

Т а б л и ц а B.4d — Адресация и массивы

Пункт Рекомендация Позволяет избежать/позволяет добиться

B.4d Следует использовать простые методы адресации / упрощения анализа потока данных

B.4da Следует использовать только один метод адресации
для каждого типа данных

/ единообразия интерфейса с базой
данных

B.4db Следует избегать громоздких вычислений индексов / лучшего понимания потока данных

B.4dc Массивы должны иметь фиксированную, определен­
ную заранее длину

Трудностей, связанных с временем
прогона, усложнения алгоритма управ­
ления / упрощения анализа потока дан­
ных

B.4dd Размерность в каждой ссыпке на массив должна быть
равна размерности в соответствующей декларации
этого массива

/ понимания процесса адресации

Т а б л и ц а B.4e — Структуры данных

Пункт Рекомендация Позволяет избсжатьМозволяет добиться

В.4е Структуры данных и соглашения о наименовании
данных должны использоваться в единообразной
форме по всей системе

/ анализа потока данных и интуитивно­
го понимания значения элементов дан­
ных

В.4еа Переменные, массивы и ячейки памяти должны
иметь единственное назначение и структуру. Следу­
ет избегать использования эквивалентности

Ошибок в использовании данных, искус­
ственных проблем синхронизации / от­
слеживаемости потока данных

В.4еЬ Название каждой переменной должно отражать ее
применение

/ интуитивного понимания элемента
данных

В.4ес Константы и переменные величины следует распо­
лагать в различных частях памяти

Порчи данных и кода ! самоконтроля
аппаратных средств

B.4ed Когда в качестве глобальной структуры используется
«база данных» с возможностью универсального до­
ступа или аналогичные ресурсы, то доступ к ним дол­
жен обеспечиваться через стандартные процедуры
обработки ресурсов или связь со стандартными за­
дачами манипулирования ресурсах<и

В.4ее Программы, которые получают данные из других про­
грамм или передают данные в другие программы,
должны обмениваться согласованными наборами
данных

Несогласованности данных /

Т а б л и ц а B.4f — Динамические изменения

Пункт Рекомендация Позволяет избежать/позволяет добиться

B.4f Следует избегать изменений исполняемого кода / анализа алгоритма управления

Т а б л и ц а В.4д — Тестирования устройств и комплексные тестирования

Пункт Рекомендация Позволяет избсжать.'позволяет добиться

В.4д Тестирования устройств и комплексные тестирова­
ния должны проводиться во время разработки про­
граммы

! максимально быстрого обнаружения
дефектов

56

ГОСТ Р МЭК 60880— 2010

Окончание таблицы В.4д

П у н к т Р е к о м е н д а ц и я П о з в о л я е т и з б е ж а т Ы п о з в о л я е т д о б и т ь с я

В.4да Подход к тестированиям должен соответствовать
подходу к проектированию (например, при проекти­
ровании сверху — вниз тестирования следует прово­
дить с использованием моделирования еще не су­
ществующих частей системы — фиктивных модулей;
после завершения разработки системы должны сле­
довать интеграционные тестирования снизу — вверх)

/ максимально быстрого обнаружения
дефектов

В.4дЬ Следует тщательно тестировать каяадый модуль до
включения его в систему и документально оформ­
лять результаты испытаний

Трудностей после интеграции / управ­
ления изменениями

В.4дс Следует составлять формализованное описание
входных тестовых данных и результатов (протокол
тестирования)

Дублирования работы / ускорения по­
лучения лицензии на ПО

B.4gd Следует регистрировать и анализировать дефекты,
обнаруженные во время тестирования программы

У обнаружения отдельных ошибок про­
ектирования

В.4де Следует фиксировать незавершенные испытания У ясности

B.4gf Для облегчения использования результатов тестиро­
вания устройств и комплексного тестирования во вре­
мя окончательной валидации следует фиксировать
ту степень, которая была достигнута при прошлых
тестированиях (например, все маршруты через ис­
пытуемый модуль)

Дублирования работ У

5 Рекомендации, зависящие от языка

Т а б л и ц а В.5а — Последовательности и оформление

П у н к т Р е к о м е н д а ц и я П о з в о л я е т и з б с ж а т ь /п о з в о л я е т д о б и т ь с я

В.5а Необходимо разработать подробные правила офор­
мления различных языковых конструкций

/ получения программных листингов
единообразной понятной формы

В.5аа В рекомендации следует включать последователь­
ность деклараций, в тоги числе типы параметров

—

В.5аЬ Последовательность инициализаций —

В.5ас Последовательность неисполняемого кода / испол­
няемого кода

—

B.5ad Последовательность описания форматов (например,
для таких языков, как ФОРТРАН)

Т а б л и ц а В.5Ь — Комментарии

П у н к т Р е к о м е н д а ц и я П о з в о л я е т и з б е ж а т ь /п о з в о л я е т д о б и т ь с я

В.5Ь Взаимосвязи между комментариями и кодом долж­
ны быть зафиксированы в подробных правилах

Трудностей как с написанием, так и с
пониманием комментариев У получения
осмысленных комментариев

В.5Ьа Должен быть ясен предмет комментирования —

В.5ЬЬ Расположение комментариев должно быть одина­
ковым

—

В.5Ьс Форма и стиль комментариев должны быть едино­
образными

—

57

ГОСТ Р МЭК 60880— 2010

Т а б л и ц а В.5с — Ассемблер

Пункт Рекомендация Позволяет избсжать^позволяет добиться

В.5с Если используется язык ассемблера, то необходимо
следовать расширенным и документально оформ­
ленным правилам программирования

Трудностей программирования на ас­
семблере. применения трюков / просто­
ты и понятности

В.5са Нельзя использовать команды ветвления с подста­
новкой адреса. Содержание таблицы ветвления дол­
жно быть постоянным

Ветвлений, цель которых нельзя иден­
тифицировать по коду в точке ветвле­
ния/

В.5сЬ Вся косвенная адресация должна следовать одной
и той же схеме

/ ясного понимания положения ячеек
памяти, адресуемых разными способа­
ми

В.5сс Следует избегать косвенных смещений / обеспечения возможности сразу ви­
деть. насколько происходит смещение

B.5cd Следует избегать множественных подстановок или
множественного индексирования в пределах одной
машинной команды

1 легкого нахождения ячеек памяти

В.5се Одни и те же макрокоманды всегда должны вызы­
ваться с одним и тем же числом параметров

1 понимания функций макрокоманд

B.5cf Метки (именованные ячейки) следует использовать
для осуществления ссылок внутри программы. Сле­
дует избегать численных значений (абсолютных ад­
ресов или относительных сдвигов)

1 обеспечения ассоциации с целью
ветвления

B.5cg Соглашения о вызове подпрограммы должны быть
единообразными в пределах всей системы и огова­
риваться правилами

Произвольных типов параметров и ад­
ресов ячеек'

Т а б л и ц а B.5d — Правила кодирования

Пункт Рекомендация Позволяет избежать/позволяет добиться

B.5d Необходимо выпустить подробные правила кодиро­
вания

1 улучшения ясности и согласованности
кода

B.5da Должно быть понятным предназначение строк кода
и как это предназначение реализуется

1 идентификации блоков

B.5db Компоновка модулей должна быть единообразной / понимания структуры модулей

B.5dc Дальнейшие детали следует регулировать в соответ­
ствии с потребностями

—

Т а б л и ц а В.5е — Проблемно-ориентированные языки

Пункт Рекомендация Позволяет избежать^позволяет добиться

В.5е Использование проблемно-ориентированных язы­
ков предпочтительней использования машинно-ори­
ентированных языков

/ понятности, простоты

В.5еа Функции или часть функций, не осуществимых с по­
мощью проблемно-ориентированных языков, следу­
ет разрабатывать в виде независимых модулей

В.5еЬ Проблемно-ориентированные языки с графическим
синтаксисом должны предлагать сопряженный ли­
терный язык

1 использования автоматического ана­
лиза кода

В.5ес Любые элементы проблемно-ориентированных язы­
ков. не пригодные для разработки системы класса 1.
должны быть определены и. в конечном счете, их
следует избегать

58

ГОСТ Р МЭК 60880— 2010

Т а б л и ц а B.5f — Автоматическая генерация кода

Пункт Р е к о м е н д а ц и я П о з в о л я е т и з б с ж а т ь ^ п о з а о л я е т д о б и т ь с я

B.5fa Выходные данные генератора кода должны быть от­
слеживаемыми до его входа

/ возможности верификации выходных
данных генератора кода во время атте­
стации или использования

B.5fb Генерируемый код должен быть читаемым / обнаружения дефектов из-за генера­
тора кода

B.5fc Не должно быть никаких изменений на уровне гене­
рированного кода. Если изменения необходимы, то
они должны быть внесены и документально оформ­
лены на уровне входа

/ сохранение согласованности выхода
со входом
/ обеспечение качества программного
обеспечения, к которому относится ге­
нерированный код

B.5fd Там. где это применимо, язык, используемый для
генерированного кода, должен соответствовать ре­
комендациям приложения D

/ применимости инструментальных про­
грамм для компиляции, а также вери­
фикации и валидации; удобочитаемо­
сти

59

ГОСТ Р МЭК 60880— 2010

Приложение С
(справочное)

Примеры технологии прикладного программирования
(разработка программного обеспечения

с использованием проблемно-ориентированных язы ков)

С момента публикации первого издания МЭК 61880 в 1986 г. произошло быстрое развитие технологии
прикладного программирования.

Комплексы оборудования (платформы систем), предназначенные для задач автоматизации, сейчас широ­
ко представлены на рынке.

Неотъемлемой частью этих платформ являются мощные инструментальные программы, разрабатывае­
мые как по экономическим причинам, так и с целью обеспечения качества.

Типичным аспектом прикладного программного обеспечения является то, что наиболее ответственные
элементы традиционного процесса разработки программного обеспечения осуществляются автоматически.

В настоящем приложении приведен пример того, как требования настоящего стандарта могут быть приме­
нены в контексте типичной разработки программного обеспечения с помощью проблемно-ориентированного
языка.

С.1 Принципы применения требований
Качество программного обеспечения является существенной частью достижения общего качества и безо­

пасности компьютерных систем контроля и управления, важных для безопасности.
Основные факторы обеспечения соответствия требованиям настоящего стандарта состоят в:
a) структурированном по этапам процессе разработки программного обеспечения с четким определением

входной и выходной информации (см. 5.4):
b) понятной структуре программного обеспечения, разрабатываемой на этапе проектирования програм­

много обеспечения, которая формирует основу для кодирования, а также для оценки программного обеспече­
ния (см. 7.1);

c) правилах кодирования и технологии, соответствующих требованиям и рекомендациям, приведенным в
приложении В (см. 7.3.2);

d) отслеживаемости исходных требований вплоть до конечного кода программного обеспечения (см. 7.4).
В приведенном примере процесс разработки программного обеспечения строго определяется инстру­

ментальными программами. Тем не менее, процесс структурирован по этапам с четким определением входной
и выходной информации.

Генератор кода спроектирован так. чтобы соответствовать техническим требованиям, относящимся к про­
ектированию программного обеспечения. Как следствие, генерируемый код обеспечивает четкую принадлеж­
ность кода конкретным функциям.

Аналогично правила кодирования в генераторе кода были реализованы так, чтобы удовлетворялись требо­
вания и рекомендации, приведенные в приложении В.

Примененный набор инструментальных программ поддерживает отслеживаемость исходных требований
во время всех этапов процесса разработки вплоть до исполняемого кода, интегрированного в целевую систему.

С.2 Применение требований к жизненному циклу программного обеспечения
Использование проблемно-ориентированных языков, поддерживаемое инструментальными программа­

ми для автоматической генерации кода, существенно влияет на жизненный цикл программного обеспечения.
Примеры жизненного цикла для технологии разработки прикладного программного обеспечения показа­

ны на рисунке С.1. В отличие от классического жизненного цикла программного обеспечения этапы детального
проектирования, кодирования, интеграции модулей и тестирования интегрированы в автоматизированный про­
цесс.

При выполнении проектирования деятельность, связанная со спецификацией, и. частично, с валидацией
системы, обычно осуществляется технологами производственного процесса, тогда как деятельность по проекти­
рованию системы контроля и управления, функциональной спецификации и тестированию системы — разработ­
чиками контроля и управления.

Прикладное программное обеспечение может быть создано непосредственно после составления специ­
фикации системы контроля и управления и настройки относящихся к ней функций.

Следовательно, имеется возможность оценки установленных функций посредством генерированного кода
с использованием модели или конкретных траекторий входных данных.

Эта функциональная оценка, которая может быть проведена даже до изготовления технического обеспе­
чения целевой системы, может улучшить качество проекта путем раннего выявления в нем дефектов.

60

ГОСТ Р МЭК 60880—2010

Варифмаимя

Рисунок С.1 — Жизненный цикл технологии прикладного программирования

Набор инструментальных программ поддерживает весь жизненный цикл программного обеспечения, т.е.
спецификацию, проектирование, включая верификацию и валидацию, эксплуатацию системы и ее модификации
в случае внесения в последующем изменений в начальные требования.

Форматы для документального оформления спецификации проекта системы и связанные с этим функции
поддерживают эффективную верификацию. Этот элемент технологии прикладного программирования согласу­
ется с требованиями разделов 8 — 10.

С.З Применение требований к автоматической генерации кода
Автоматическая генерация кода является типичным элементом современных комплексов оборудования

{платформ системы), обеспечивающих эффективное проектирование систем контроля и управления, а также
получение программных продуктов высочайшего уровня качества.

Такие комплексы оборудования включают в себя набор инструментальных программ для поддержки про­
цесса программирования.

При соблюдении требований настоящего стандарта методология автоматической генерации кода обеспе­
чивает получение программного обеспечения высокого качества и снижает вероятность внесения ошибок челове­
ком.

С.3.1 Инструментальные программы для управления проектированием и разработкой
В указанном выше примере инструментальные программы генерируют прикладной исходный код. исходя

из формализованной спецификации (например, графической спецификации) на тщательно подобранном язы­
ке:

a) использование характерных для конкретного применения обозначений в спецификации архитектуры
систем контроля и управления и связанных с ней функций помогает решению проблем взаимосвязи между
разработчиками системы и разработчиками контроля и управления;

b) входные обозначения основаны на графическом представлении, определенном для предназначенных
функций контроля и управления и сравнимом с классическими проверенными диаграммами функций, что позво­
ляет проводить комплексную проверку установленных функций;

c) разработанная документация позволяет добиться строгой взаимосвязи с результатами разработки.
Набор инструментальных программ оказывает помощь в осуществлении следующей деятельности в облас­

ти программирования:
- возможность устанавливать архитектуру технического обеспечения в соответствии с требуемой отказоус­

тойчивостью. что приводит к необходимости создания резервной структуры;

61

ГОСТ Р МЭК 60880— 2010

- демонстрации правильности синтаксиса для спецификации программного обеспечения с помощью интег­
рированных проверочных инструментальных программ:

- создание эффективного управления конфигурацией путем безошибочной идентификации всех компонен­
тов программного обеспечения [например, с использованием контрольных сумм CRC (cyclical redundancy check -
циклический избыточный код)];

- верификация для обеспечения правильной технологии на каждом этапе проектирования;
- верификация проекта посредством моделирования;
-диагностика и проверка программного обеспечения, работающего в целевой системе, посредством обслу­

живающих инструментальных программ:
- проектирование СКУ посредством инструментальных программ по оценке работы процессора и шины при

наибольших нагрузках:
- управление проектными данными посредством базы данных для всех существенных проектных данных.
С.3.2 Инструментальные программы автоматической генерации
В приведенном выше примере инструментальные программы для автоматической генерации кода облада­

ют следующими характеристиками:
a) автоматическая генерация кода охватывает всю область прикладных функций, прикладных данных и

коммуникации между всеми устройствами обработки системы класса 1;
b) установлены входные обозначения для автоматической генерации кода (синтаксис и семантика):
c) прикладные функции установлены с помощью функциональных диаграмм;
d) инструментальные программы позволяют осуществлять назначение проектируемых функций соответ­

ствующим устройствам обработки;
e) использованы испытанные правила проектирования программного обеспечения, интегрированные в

инструментальную программу, которые обеспечивают:
- ясную структуру генерируемого исходного кода, соответствующего основным требованиям настоящего стан­

дарта.
- алгоритм управления программы не зависит от последовательности обращений к графической специфи­

кации.
- алгебраические проверки для избежания исключительных ситуаций.
- использование статического распределения ресурсов:
f) код генерируется на языке высокого уровня, который позволяет использовать стандартные компиляторы

при получении исполняемого объектного кода для целевой системы. Код генерируется отслеживаемым путем,
непосредственно связанным с кодами моделирования станции для анализа переходных процессов и возмуще­
ний.

62

ГОСТ Р МЭК 60880— 2010

Приложение D
(справочное)

Язык, транслятор, редактор связей

Приведенные в таблицах D.1 — D.4 подробные рекомендации для безопасного применения языка, его
транслятора и редактора связей дополняют рекомендации основной части настоящего стандарта. Эти рекомен­
дации также применимы к любым другим вспомогательным программам системы. Рекомендации для транслято­
ров применимы также к интерпретаторам, кросскомпиляторам и эмуляторам. Аналогичным образом аспекты,
применимые к трансляторам и редакторам связей, следует учитывать при выборе и разработке формализован­
ной спецификации на средства проектирования и их использование. Для проекта следует отбирать рекомендо­
ванные критерии в соответствии с указанными приоритетами.

Т а б л и ц а D.1 — Общая информация

Пункт Рекомендации Приоритет

а Транслятор, редактор связей и загрузчик должны быть тщательно протестированы
перед использованием; эта операция рассматривается как очень важная 1

Ь Рекомендуется иметь достаточно качественные и надежные данные о трансляторе,
редакторе связей и загрузчике 2

с В тех случаях, если используются вспомогательные системные программы, такие как
вспомогательные средства, системы документации и подобные программы, до ис­
пользования их следует должным образом протестировать 1

d Синтаксис языка должен быть полностью и однозначно определен 2

е Следует установить полную и понятную семантику языка 1

f Использование языков высокого уровня предпочтительнее использования машин­
но-ориентированных языков 2

9 Распространенность языка и его адекватность проблеме считаются важными аспек-
тами 2

h Насколько это возможно, следует выполнять рекомендации, приведенные в прило­
жении В 1

* Читаемость полученного кода более существенна, чем удобство записи во время
программирования 2

j Синтаксическая нотация должна быть единообразна; допускается не более одной
нотации для одного и того же понятия 2

k В языке следует избегать элементов, которые могут вызвать ошибки 2

1 Получаемые программы должны быть легко модифицируемыми 2

m Входные, выходные и изменяемые параметры должны быть синтаксически разли-
чимы 2

n На всех этапах процесса трансляции следует обеспечить дополнительный выход
для анализа 3

Т а б л и ц а D.2 — Обработка ошибок

Пункт Рекомендации Приоритет

a Транслятор языка и редактор связей должны обеспечивать регистрацию такого чис­
ла ошибок программирования, какое возможно во время трансляции или исполне­
ния в режиме онлайн 2

b Во время исполнения в режиме онлайн должна существовать возможность обработ­
ки исключительных ситуаций 2

63

ГОСТ Р МЭК 60880— 2010

Окончание таблицы D.2

П у н к т Р е к о м е н д а ц и и П р и о р и т е т

С Язык должен обеспечивать обработку утверждений 3

d Ошибки, способные вызвать исключительные ситуации во время исполнения, вклю­
чают в себя:
- превышение границ массива 1
- превышение диапазона величин 1
- обращение к неинициализированным переменным 3
- невозможность удовлетворить утверждение 2

- отбрасывание значащих разрядов числовых величин 2

- пропуск параметров неправильного типа 1

е Если при трансляции или редактировании связей обнаружена ошибка, то о ней сле­
дует сообщить, не делая попыток исправить 2

f Если кет ясности в том. что нарушились какие-то правила, то должно быть выдано
предупреждение 3

9 Во время трансляции должны проверяться типы параметров 3

Т а б л и ц а D.3 — Обработка данных и переменных

П у н к т Р е к о м е н д а ц и и П р и о р и т е т

а Диапазон каждой переменной должен определяться при трансляции 1

Ь Точность каждой переменной с плавающей запятой должна определяться во время
трансляции 2

с Не должно быть неявных преобразований типов 2

d Тип каждой переменной, массива, элемента записи, выражения, функции и пара­
метра должен определяться во время трансляции 2

е Переменные массивы, параметры и тщ. должны быть явно декларированы, включая
их типы 1

f Следует различать типы переменных, соответствующие входам, выходам, парамет­
рам процедур и подпрограмм 2

9 Должны быть разрешены имена переменных произвольной длины 2

h Насколько возможно, проверку типов предпочтительнее проводить на этапе транс­
ляции. чем на этапе исполнения 3

' Во время трансляции должно проверяться, разрешено ли присвоение для любого
частного элемента данных 2

Т а б л и ц а D.4 — Аспекты режима онлайн

П у н к т Р е к о м е н д а ц и и П р и о р и т е т

а Во время оценки выражения не должно допускаться внешнее присваивание для
любой переменной, которая доступна в этом выражении 1

b Время, расходуемое на вычисления, должно быть доступно проверке в режиме
«онлайн» 3

с В режиме «онлайн» должно обеспечиваться фиксирование ошибок (см. таблицу D.2.d) 1

64

ГОСТ Р МЭК 60880— 2010

Приложение Е
(справочное)

Верификация и тестирование программного обеспечения

Е.1 Деятельность по верификации и тестированию программного обеспечения
Настоящий раздел содержит руководство по верификации и тестированию программного обеспечения. В

зависимости от тестируемой программы используемые для этой цели различные методы являются более или
менее эффективными в обнаружении дефектов программы. Следующие основные методы верификации и тести­
рования программного обеспечения взаимно дополняют друг друга: основанный на инструментальных програм­
мах статический анализ кода (например, сравнение модификаций), проверка рабочей программы (визуальный
анализ) и динамическое выполнение (например, имитация реальной работы программного обеспечения). Боль­
шинство из этих методов представляет собой рекомендуемые систематические подходы. Может применяться
ряд дополнительных подходов к тестированию, включая статистическое тестирование, которое может использо­
ваться для поиска случаев, не охваченных систематическим подходом.

Обзор возможных методов приведен в таблице Е.4.1. В случав необходимости для различных частей про­
граммы следует выбрать различные методы и различные критерии для подбора данных тестирования с тем.
чтобы определить, является ли рассматриваемая часть программы свободной от ошибок, или определить дове­
рительный уровень. Выбор зависит от внутренней структуры части программы, требуемого уровня надежности,
запросов, поступающих на нее при эксплуатации станции, и имеющихся средств тестирования.

При тестировании программного обеспечения следует рассматривать различные уровни проекта программ­
ного обеспечения (например, уровни модуля, подсистемы и системы).

Е.2 Системный подход
Каждый модуль следует систематически верифицировать и тестировать на основе системного подхода в

соответствии с их предназначением и связанными с ними критериями охвата. В дополнение к неавтоматизиро­
ванным верификации и тестированию следует как можно шире применять автоматизированные средства вери­
фикации и тестирования. Результаты следует сверять с ожидаемыми результатами, полученными из специфика­
ции на программный модуль. С входными и выходными данными следует обращаться также как и в системе
безопасности.

Таблица Е.4.2 является контрольным списком, который может интерпретироваться согласно требованиям
для каждого отдельного случая. Из-за большого разнообразия случаев, встречающихся на практике, невозможно
рекомендовать какую-либо комбинацию тестов в качестве нормативной для определенного класса применений.
Однако в таблице отмечено, какие тесты следует проводить в любых условиях. С другой стороны, очевидно, что для
конкретного приложения не могут быть выполнены все комбинации всех тестов, также как и все тесты в отдель­
ности.

На уровне подсистемы программное обеспечение частично интегрируется в систему. Тестирования на уровне
подсистемы подтверждают должную интеграцию программных модулей. Необходимо разграничивать случаи,
когда существует зависимость по потоку данных между модулями программного обеспечения, а также случай,
когда такой зависимости не существует. Для достижения уверенности в правильности следования всем независи­
мым ветвлениям в подсистеме необходимо провести тестирование. Следует также использовать контрольные
тесты на границах входных областей и на пределах рабочей области модуля.

Следует использовать тот же набор тестовых данных, что и на уровне модулей. Результаты следует сверять
с предварительно рассчитанными значениями. Параметры должны быть входными и выходными по отношению
к подсистеме точно так же. как и в системе безопасности. В тех случаях, когда это практически возможно, испыта­
ние на уровне подсистемы следует проводить с использованием конфигурации технического обеспечения, иден­
тичного целевому техническому обеспечению.

На уровне системы программное обеспечение полностью интегрируется аппаратными средствами. Тест на
уровне системы подтверждает должную интеграцию подсистем. Тестирование следует проводить прогоном про­
грамм с использованием реалистической модели или реалистической версии системы, контролируемой или уп­
равляемой системами класса 1.

Настоящее тестирование всей системы необходимо проводить в соответствии с положениями об эксплуа­
тационных характеристиках, приведенных в спецификации требований к программному обеспечению. Помимо
описанной выше деятельности по тестированию следует проводить системный временнйй анализ и проверку.

Е.З Статистические методы
Статистические методы могут применяться в дополнение к системным методам.

65

ГОСТ Р МЭК 60880— 2010

Статистические методы имеют следующие характеристики:
- тесты отбирают с помощью независимой выборки из представляющей работу системы в режиме эксплуа­

тации распределения вероятностей;
- последовательность и число тестов не влияет на отдельный тестовый прогон:
- каждый произошедший отказ фиксируется:
- число тестов — большое (см. приведенные ниже примеры);
- отказы происходят редко.
Обычно статистическое тестирование проводится для укрепления уверенности в правильности работы сис­

тем класса 1, достигнутой с помощью обширной программы функциональных типовых тестов.
Формулы, выведенные для вероятностной верификации программного обеспечения, могут использоваться

для оценки вероятности отказа системы при запросе и верифицируемых допущениях. Формулы дают следующую
оценку верхней границы для вероятности отказа при запросе:

допустим, что проводят л статистических тестов и зафиксировано 0 отказов. Тогда для вероятности регист­
рации отказа p f d . которое должно быть меньше или равно некоторой заданной величине p f d с вероятностью а,
необходимо выполнение следующего условия:

г , ы < М1.л)

2 99Таким образом, для и = 0.95. после п безотказных тестов мы получаем приближение p f d •: с вероятно­

стью 0.95.
Например, чтобы получить для p f d значение 10“ * при вероятности 95 %. должно быть без отказа проведено

29 900 тестов.

4 6Для а = 0.99 мы получим приближение p f d < ~ с вероятностью 0.99.

Например, чтобы получить для p f d значение 10~* при вероятности 99 %, должно быть без отказа проведено
46 900 тестов.

Пригодность рассчитанных значений p f d зависит от аналогичности профиля входных данных теста и про­
филя реальных входных данных, существующего во время работы системы. Если приведенное выше уравнение
используется для нереального профиля работы, оно даст оценку p f d для воображаемого профиля применения,
т.е. оценка p f d может сильно отличаться от реальной надежности системы при ее активной работе. Это является
главным недостатком статистического подхода к тестированию, поскольку обычно бывает очень трудно точно
определить профиль, существующий при реальной работе системы, особенно для систем с большим количеством
входных данных.

66

ГОСТ Р МЭК 60880— 2010

кX
5а
о
ах
6 » ►
X
X X
гжX
вXа«0

1
о ь
41
5
■*ш

1
• з
3Xf
%В
2
Ъ*•0
5
в
2
$
aю
2
со
1V

яг
Ш

I»
3
х
с
СО
<0

3Г
§
о

0 « о С J «в
1 8 О
* 4 г
I £ ° X
> 5 * 5
к 2 с X

' о { 5 ! iI ; ^ о * г,
* я о * “* • * 4 0 0

S l j e l »>• а * « » >*
о о S о 5 * 2 cl о ■& п х с 2 В

оз
м

ож
но

ед

и
н

ст
ве

н
н

о

ц
ел

ес
о

о
б

р
аз

­
ны

й
п

ут
ь

дл
я

об
щ

их
 ц

ик
ло

в
П

О
КА

 {
W

H
IL

E}

• ■ 3
А | §
S э !

1 1 1 ,

g I г |
I I I *

. i f

I n

5 Ф со 4 4
н 5 2 ? ? о _ <0 С с
« 2 О Ф S
§ о ^ 5 8 S3
§ 8 5 2 5 5
® ф о ф S аS X и- »- Ф “

*•ям

гг©а

а g 2

s i l l
г £ $?

H s e
§ s £ s

: U « a
ш о s r

6. i * * -ь а 6 ® х

I ! 1 ° I I § 1 1 • §

В * j j | » S ц * ! • в

i f l ' l l i 1 1 1 f сO i О ц J П a. t> О ® X
о г о о “ ® ® :т ft. х S о со о S: а о К со о с »- х со

a g s
, с х со

1 * 1 1

! * t i .
5 f S 1 С
1 1 1 s s

с ? S 5 1

; ! з | г
о ® S о о £ а -J о о
s ! j s ;
2 § « 2 ®
и > 8 °

41
2
§s

5 © >> 2 A J »
| “ 1 ! ! H i
£ « * f * ; : i

§ | 5 » 2 U i
c * P о 1 £ с
* W с О 5 ’* ° л ®
c l o n S f x O S *

I I
® X
* 1 ф

I I IСО m о к- г >о

5 S
6 I • 5
j S ? 5з о ® *-® * о » с л г 2 о с i чО о 0 Ф
c i 1

H k i z
? 2 " l i f
S 8 2 1 * ■ « !
i i У M o J
1 1 2 5 i 5 :
?. 5 2 с C C fi

t i * ! * | г

6 6 • 2 ' * 8 * 4 6 | 6 i ' S
g ; 5 s г ? г 5 : i g s f
* § 5 г ® 8 5 * | S £ • 2

* p a • 2 g 5 8 p a « J w g

| g 5 5 ? В * 3 1 * 5 -8 1 1 1
8 l & g 2 S ? f f 8 s s g ? 2 l

О (X ' со В) ft
S i m s e s
с * g » 5 |
н * J >* а | a
о с 5 . J « о 2

t f i i l® ® «О ф q X О X •& О <0 X & V

па
2 §* § в 3 о >.
5 1О о а с

о ? i 4 ■* j ct 3 О. ч i £
_ * c « « ®® л — o r ®® c 3. ** « •
з ® с X S. * 5

1 1 | I M i l
x g i s

4 ' | i
; I |
8 * |

•* с о x
| t ® iX И О h

* X 4 а и с
S О 5и Ц со

8 ° "
8 5 | га х J В *- ф х о
о ч ш

л
§
ZJ

И Н
« К c >*
« * « K
5 £ 4 2
| ? S 5
Z « о c
1 S , I .x
В 9 8 1 5

S S i S I
• s ; »

IjMf
§ i * о S 5
C 7 О О £ X

4 i
Н |

i 1 8 1

§ | i 1
о Ш

по*•о
5

я * I
HI; о о о а ф
х с Р

, 4 л x

• | | e

? g e ^ о

<5 § f 5 5 1

i 5 a
a з |a * ?

p g j

П
ор

яд
­

ко
вы

й
но

ме
р

*• - 2 2 CO

67

О
ко

н
ч

а
н

и
е

 т
а

б
л

и
ц

ы

Е
.4

.1
ГОСТ Р МЭК 60880— 2010

1
X
%

о

° ° Ё 8

* t 8 2 я s - 8 | S 5

s i i i e s s s - l |
5 2 i S 5 | « S s c |

с о 2 ® з с 0 о * ® *
О с о 5 z О с ш З с *

С
в

я
зь

 с

д
р

уг
и

м
и

м

е
то

д
а

м
и

X
О * U

! S § S 5 I
f & 2 S s |

i t i f s Sо ® d f t а а
S х х « е с

кa
Z
Ъ
в
а

ф К •
« ° * к

о * ? £

5 5 g « з

i ; s s !

s i f i l

& f s I f
с 5 о x • &

* f e e ,
£ t в £ -
о 2 s о о0 “ I о н

1 s 1 1 a
2 § | 2 £

о £ 8 °

2 А х

* S М S • 1 ®
2 f a ® ; ° i s * *

§ о 5 | 2 5 l " 0 g |

s u i § ы ! ш
Д и в т к Ф н ®

Z и a O x « m u » - o a .

X S
А х X
С X « *
I 2 1 5
© 8 § о

ё | 5 §О о о Ф

* 1 1

l l ‘ К Д X b « ‘ X Ш
D a c 2 2 2 0 ■ S x _
X ® Я B) X > . X ^ ® a “ 2 S
о О ч х > о л 2 й 5 г * х
* Х з о ® ® e £ a * - d j
© a x £ s p “ ? ® o ® c £ *
2 с К О * V 2 x 3 3 3 * - ®
й . ° * o ! I x S x a *■ ® a
s * 5 s i * g I U с ? ? г ' s &
O J С О а 2 * Д О - О л * Ч Ф
* i - в с э с ^ ф с х » £ х ф »-

Z а 2 (ф О м Ш 2 о Q й ! о х о S

ф
0 С

I !
О >»

5 1
О ф

а
с

х “ о . S А 4 i А *■

э «*г j 1 0 ; j £ s | & S * " 1 5 5 I I I i s
S * 2 I f f ? | . | ®

j l c i i l i l § | ? 1 1 |
® » О т П С С х « С ! n o 8
« Ф С Х л О о О л Х О ф Х Л Ф ф
5 й с : в : q Ir Q I - у а а 0 . у

1
=г

s i г I i 1 1 2 i s
1 « ? ? l 5 а § | |

у ч 0 S * ° о | 5

X S S | *
1 I S X ° * “ O X ® ®
? о X С о S Ф Х Ф Ф Х
О О у х t> J лг S У i Сх

М
е

то
д

к 2

2 f § А

5 & " *

| £ ® 1 8 ? I
» о 5 х £ 4 т
X О. © S ® Я) X

< с I в < в ч

й *х а
? a ;а о 5
о о оС S х

* * !
*Т *У

68

ГОСТ Р МЭК 60880— 2010

Е.4.2 Методы тестирования

Т а б л и ц а Е.4.2.1 — Общие сведения

Поряд­
ковый
номер

Вид теста Тип детектируемых
ошибок

Следует
выполнять Примечание

1 Варианты, типичные
для поведения про
граммы в целом, ее
арифметика, времен­
ные аспекты

Все. но без гарантии
полноты

Всегда Предполагается, что си­
стема работает правиль­
но. если все варианты
выполняются правильно

2 Все отдельные и явно
определенные требо­
вания

Полностью регистриру­
ются неиспользуемые
функции

Всегда в первую оче­
редь, если требуемые
функции детально оп­
ределены

Тест может быть исчер­
пывающим. если функ­
ции разделены. Мало
информации о пробле­
мах согласованности
действия

3 Все входные перемен­
ные для экстремаль­
ных случаев (тест на
аварийный отказ)

Ошибки синхронизации,
но без гарантии. Пере­
полнение. потеря зна­
чащих разрядов

Всегда

—

4 Работа всех внешних
устройств

Ошибки проектирования
интерф ейса аппарат­
ных средств и ПО

Всегда
—

5 Статические ситуации и
варианты динамичес­
кого поведения, пред­
ставительные для про­
текания техноложчес-
кого процесса

Все. но без гарантии Всегда Особенно ценно, когда
имеется модель техно­
логического процесса

6 Правильная работа,
демонстрируемая при
включении и выключе­
нии каждой резервной
подсиствм ы /каждого
внешнего устройства
(некоторые комбина­
ции также следует тес­
тировать.
где это существенно)

Ошибки при работе с ин­
терфейсом техническо­
го обеспечения

Если поведение тех­
нологического процес­
са хорошо известно и
не очень разнообраз­
но

О беспечивает запас
прочности системы

Т а б л и ц а Е.4.2.2 — Тестирование ветвей

Поряд­
ковый
номер

Вид теста Тип детектируемых
ошибок

Следует
выполнять Примечание

7 Проверка каждого ис­
полняемого хотя бы
один раз оператора

Недоступный код Всегда
—

8 Проверка каждого ре­
зультата каждой ветви,
исполняемой хотя бы
один раз

Ошибки в логике управ­
ления без гарантии пол­
ноты

Всегда Содержит тест 5: может
быть исчерпывающим,
если отсутствуют циклы и
нет проблем синхрони­
зации.
Чисто комбинаторная
проблема, отражаемая
в структуре программы

69

ГОСТ Р МЭК 60880— 2010

О к о н ч а н и е т а б л и ц ы Е . 4 . 2 . 2

Поряд­
ковый
номер

Вид tecta
Тип детектируемых

ошибок
Следует

выполнять Примечание

9 Проверка каждого пре­
дикатнотомлена. посту­
пающ его на каждую
ветвь

Ошибки в логике управ­
ления и потоке данных

Если неприменима
комбинация тестов 8 и
12

Содержит тест 8; вклю­
чен в комбинацию тестов
9 и 14

10 Проверка каждого цик­
ла с использованием
минимального, макси­
мального и. по крайней
мере, одного промежу­
точного числа повторе­
ний

Ошибки в управлении
циклом и обработке
массива данных

всегда, если програм­
ма содержит циклы

Не применимо к конст­
рукции «бесконечных
циклов»

11 Проверка каждой вет­
ви. исполняемой хотя
бы один раз

Все ошибки логики уп­
равления

Для валидации того,
что выбранные проект
и кодирование не де­
лают вериф икацию
слишком сложной

Выполняется только для
модулей. Содержит
тест 8; следует отметить,
что каждое новое повто­
рение цикла ведет к но­
вой ветви

Т а б л и ц а Е.4.2.3 — Тестирование перемещения данных

Поряд­
ковый
номер

Вид tecta Тип детектируемых
ошибок

Следует
выполнять Примечание

12 Проверка каждого
объявления каждой
области памяти, осуще­
ствляем ого хотя бы
один раз

Ошибка в потоке дан­
ных. но без гарантии

Используемые
массивы

13 Проверка каждой ссыл­
ки на каждую область
памяти, осуществляе­
мой хотя бы один раз

Ошибки в потоке дан­
ных. в особых случаях -
все ошибки потока дан­
ных

Используемые
массивы

В большинстве случаев
содержит тест 12. Целе­
сообразно только в свя­
зи с тестом 12

14 Проверка всех преоб­
разований данных от
входа до выхода, осу­
ществляемых хотя бы
один раз

Все ошибки потока дан­
ных

Всегда для отдельных
сегментов

Осуществимо только для
модулей. Возможно, по­
крывается тестами 7. 8
или 11

Т а б л и ц а Е.4.2.4 — Тестирование временных характеристик

Поряд
копий
номер

Вид теста Тип детектируемых
ошибок

Следует
выполнять Примечание

15 Проверка всех времен­
ных ограничений

Ошибки временных ха­
рактеристик. слишком
долгое время вычисле­
ний

Всегда —

16 Проверка максимально
возможного числа ком­
бинаций последова­
тельностей прерываний

Организационные
ошибки

Если число комбина­
ций не слишком боль­
шое

17 Проверка всех значи­
тельны х комбинаций
последовательностей
прерываний

Организационные
ошибки

Всегда

70

ГОСТ Р МЭК 60880— 2010

Т а б л и ц а Е.4.2.5 — Разное

Поряд­
ковый
номер

Вид теста
Тип детектируемых

ошибок
Следует

выполнять Примечание

18 Проверка правильного
положения всех гра­
ниц области входных
данных

Ошибочное деление об­
ласти входных данных

Если используются
аналоговые входные
данные

Количество и вид под­
областей входных дан­
ных устанавливается
анализом

19 Проверка точности
арифметических рас­
четов во всех критичес­
ких точках

Численны е ошибки,
ошибки в алгоритмах,
ошибки округления

Если используется ком­
пьютер с короткой дли­
ной слова: если ис­
пользуется сложная
арифметика

20 Только для программ:
проверка взаимосвязи
и взаимодействия мо­
дулей

Неправильный перенос
данных между модулями

Всегда Желательно использова­
ние вспомогательны х
средств тестирования

21 Проверка каждого мо­
дуля, к которому проис­
ходит хотя бы одно об­
ращение

Неправильная логика уп­
равления и неправиль­
ный поток данных меж­
ду модулями, без гаран­
тии

Всегда

22 Проверка каждого об­
ращения к другому мо­
дулю. происходящего
хотя бы один раз

Всегда

23 Проверка работы при
большой нагрузке

Ошибки синхронизации
и срабатывания

Всегда О беспечивает запас
прочности системы

71

ГОСТ Р МЭК 60880— 2010

Приложение F
(справочное)

Перечень документации, требующейся
в течение жизненного цикла безопасности программного обеспечения

Т а б л и ц а F.1

Ссылки на пункты настоящего стандарта Основная ссыпка Другие ссылки

Документы, связанные с разработкой программною обес­
печения

— —

Спецификация требований к системе 15.2 15.3

Спецификация системы 5.3 6.1.8.1. 9.3, 15.3

Спецификация требований к программному обеспече­
нию

6.1 3.33 (3.35 и 3.37). 5.3.
6.4. 7. 7.1.3, 8.1. 8.2.
8.2.3.2. 11.3, 15.3.1.2

План обеспечения качества программного обеспечения 5.5 —

Подробные рекомендации (разработка программы) 7.3 Приложение D

План верификации программного обеспечения 8.2.1 —

Программные аспекты плана интеграции системы 9.1 9.3

Спецификация проекта программного обеспечения 7.4 7.1.3.8.1.8.2.2. 8.2.3

Отчет о верификации программного обеспечения 8.2.2 7

Спецификация тестирования программного обеспече­
ния

8.2.3.1.2 8.2.3.1.3

Отчет о верификации кода программного обеспечения 8.2.3.1.1 —

Отчет о тестировании программного обеспечения 8.2.3.1.3 —

Программные аспекты отчета о верификации интегри­
рованной системы

9.5 9.1. 9.2. 9.3.9.4

Программные аспекты плана валидации системы 10.1 10.2. 10.4

Программные аспекты отчета о валидации системы 10.3 —

Руководство пользователя программного обеспечения 12.4.2 —

Программные аспекты плана тестирования при вводе в
эксплуатацию

— —

Программные аспекты отчета о тестировании при вводе
в эксплуатацию

— —

Документы, связанные с модификациями программно­
го обеспечения

— —

Отчет об аномалиях 11.1 11.3

Запрос на модификацию программного обеспечения 11.1 11.2. 11.3

Отчет о модификации программного обеспечения 11.2 —

Архив управления модификациями программного обес­
печения

11.2 11.3

72

ГОСТ Р МЭК 60880— 2010

Приложение G
(справочное)

Некоторые аспекты отказа
по общей причине (ООП) и разнообразия

ООП может произойти, например:
- если скрытый дефект был введен в два или более компонента или в две или более системы, и все эти

компоненты или системы работают в одинаковых или схожих условиях, так что отказ может быть спровоцирован
коррелированным во времени способом либо

- если условия для отказа распространяются через обмен данными.
G.1 ООП, вызванные программным обеспечением
Для того, чтобы программное обеспечение вызвало ООП. траектория сигнала должна инициировать де­

фектный элемент программного обеспечения, который вызывает отказ, воздействующий на две или более систе­
мы или на два или более канала (например, два канала защиты, два контроллера замкнутых контуров или две
логических подсистемы управления). Снижение вероятности ООП в различных системах из-за программного
обеспечения может быть достигнуто снижением вероятности того, что программное обеспечение этих систем
содержит общие дефекты, и/или с помощью обеспечения работы этих систем по различным сигнальным траекто­
риям. Дефекты программного обеспечения могут возникнуть из спецификации требований на СКУ или могут быть
внесены при разработке программного обеспечения.

Для того, чтобы ООП создали угрозу безопасности, они должны препятствовать выполнению функции безо­
пасности и происходить в тот период времени, когда может возникнуть угроза безопасности, либо сам этот отказ
должен представлять угрозу безопасности, связанную, например, с потерей защиты или управления.

При использовании одного и того же или аналогичного программного обеспечения, методов реализации
или алгоритмов в резервных или различных системах существует значительный общий элемент.

В настоящее время не существует признанного метода оценки вероятности или частоты отказов, возникаю­
щих из-за недостатков программного обеспечения.

G.2 Возможные причины и следствия ООП
G.2.1 Возможность ООП
При использовании общего программного обеспечения или общих модулей существует возможность ООП,

вызванного программным обеспечением. Потенциальными источниками скрытых дефектов являются ошибки
проектирования, происходящие из спецификации требований к СКУ. архитектуры, алгоритмов, методов разра­
ботки. инструментальных программ, методов реализации или обслуживания.

Неправильное понимание требований и неправильное их преобразование могут привести к дефектам в
спецификации программного обеспечения и к рискам возникновения ООП из-за проявления этих дефектов в
конечном программном обеспечении. Недостатки программного обеспечения могут быть следствием неправиль­
ных, неполных, неточных, неправильно понятых требований и спецификаций к программному обеспечению.
Ошибки проекта, приводящие к дефектам программного обеспечения, могут быть внесены в разные программы
из-за таких общих человеческих факторов, как уровень подготовки, организация, ход мысли и подходы к проекти­
рованию.

Другая возможность возникновения ООП кроется в соединении одних систем с другими системами, имею­
щими более низкое качество программного обеспечения.

G.2.2 Инициирование ООП
Отдельные помехи или входные сигналы могут спровоцировать ООП, если они воздействуют:
- на два или более резервных канала системы, использующих общее программное обеспечение;
- на две системы, функции которых различны, но которые используют общие программные модули.
G.2.3 Аномальные условия и события
Необычные отказы технического обеспечения, условия на станции и события могут вызвать непредсказуе­

мые сигнальные траектории, неожиданные состояния программного обеспечения, переходные процессы или
условия перегрузки, которые не были учтены первоначальными требованиями или при проектировании про­
граммного обеспечения.

Возможные события, которые могут вызвать ООП. включают в себя:
- деятельность по обслуживанию;
- сбой общего синхронизирующего сигнала, вызывающий потерю синхронности действий;
- переходные процессы в питающей сети, вызывающие остановку в работе программного обеспечения или

его перезапуск;
- аварийные остановы на станции, вызывающие перегрузку коммуникационных каналов:
- превышение предела возможностей оператора, вызывающее неверное действие;

73

ГОСТ Р МЭК 60880— 2010

- запросы оператора, вызывающие превышение предела возможности системы во время аварийных оста­
новов и при переходных режимах работы;

- состояние, когда задействованы и находятся в работе все функции автоматических контроллеров, и
- анормальные условия во время аварий и пусконаладочных работ.
G.3 Защита от ООП
Возможные меры защиты включают в себя:
- методы, используемые в течение жизненного цикла, цель которых состоит в получении свободного от

ошибок программного обеспечения (см. 13.1);
- обоснование и улучшение качества общего программного обеспечения (см. 13.2);
- использование общего программного обеспечения в очень узких и гарантированных условиях;
- ограничение последствий отказов программного обеспечения (см. 13.3):
- проектирование каналов или систем так, чтобы совпадение отказов двух каналов или систем было очень

маловероятным из-за того, что имеется очевидное различие сигнальных траекторий для этих систем;
- проектирование каналов или систем с использованием асинхронности их работы: это может быть исполь­

зовано как защита по отношению к одинаковым процессорам в различных каналах, на которые влияют одни и те
же траектории в одно и то же время, и

- разнообразив деталей для некоторых или всех функций и углубление концепции независимости во время
всего жизненного цикла (см. 13.4).

G.4 Доказательство корректности
Методы доказательства корректности включают в себя:
- использование проверенных стандартных модулей программного обеспечения с четким и проверенным

интерфейсом (см. раздел 15); типичные функции включают в себя, например, управление устройствами, монито­
ринг процесса и сбор входных данных, основные алгоритмы управления (такие как пропорционально-интеграль-
но-дифференциальный алгоритм, нечувствительная область, гистерезис):

- использование для декодирования загруженной в память программы инструментальных программ и про­
цедур. независимых от процессов проектирования, и демонстрация соответствия спецификации загруженной в
память программы:

- использование динамического анализа для тестирования правильного поведения программного обеспе­
чения в моделируемой среде, представляющей основные части станции (см. 8.2.3.2.3):

- использование статического анализа программы для определения управляющей логики и потока данных,
а также демонстрации правильности процессов принятия решения и логических процессов:

- использование двух версий программного обеспечения, испытанных поочередно, с применением случай­
ных сигнальных траекторий. Этот метод может использоваться как дополнение к систематическим испытаниям
для регистрации дефектов при проектировании и кодировании;

- реализация полной программы испытаний снизу — вверх, когда правильная работа каждой компоненты
системы всесторонне проверяется до ее интегрирования в систему.

G.5 Виды разнообразия
a) Разнообразие ПО включает в себя (в порядке важности) следующие аспекты:
- функциональное разнообразив.
- различные спецификации проекта при одних и тех же функциональных требованиях;
b) разнообразив на уровне системы может включать в себя:
- использование независимых систем для различных критериев запуска.
- использование различных базовых технологий, таких как компьютерные технологии и системы с «жест­

кой» логикой,
- использование различных типов компьютеров, модулей технического обеспечения и основных концепций

проектирования,
- использование различных классов компьютерной техники, таких как PLC (контроллеры с программируе­

мой логикой), микропроцессоры или миникомпьютвры;
c) особенности подхода к проектированию и решению проблем, улучшающие разнообразие, включают в

себя следующие различия:
- алгоритмы обработки.
- данные для конфигурации, калибровки и выполняемых функций.
- техническое обеспечение для входных сигналов,
- интерфейсы и коммуникации технического обеспечения.
- процессы дискретизации входов.
- временная последовательность операций.
- процессы синхронизации.
- использование архивной информации, регистров-защелок и скоростей изменения;
d) различия в проектировании и методах реализации включают в себя:
- языки.
- системы компиляции.
- библиотеки поддержки.

74

ГОСТ Р МЭК 60880— 2010

- инструментальные программы.
- методы программирования.
- системное и прикладное программное обеспечение,
- структуры программного обеспечения.
- различное использование одних и тех же модулей.
- данные и структуры данных:
e) разнообразие во время тестирований (тестирование со взаимной нагрузкой):
f) разнообразные аспекты подхода к управлению включают в себя:
- сознательное следование при проектировании двум различным методам разработки (принудительно).
- разделение групп проектантов,
- ограничение общения между группами,
- формализованное общение при разрешении неясностей в требованиях и спецификациях.
- использование различных процессов определения логики.
- различные методы документирования.
- использование различного персонала.
G.6 Недостатки, преимущества и обоснование разнообразия
G.6.1 Недостатки
Вызванные разнообразием недостатки могут включать в себя:
- большую общую сложность.
- возрастание риска случайного срабатывания.
- более сложные спецификации и проект.
- контроль двух поставщиков.
- проблемы, связанные с модификацией, например, обеспечение сохранения разнообразия при модифи­

кации.
- увеличение объема документации.
- увеличение пространственного объема, занимаемого системой, дополнительных ресурсов, потребляе­

мых системой, ужесточения требований к контролю окружающей среды.
- стоимость нескольких версий программного обеспечения; может ухудшить экономические показатели, за

исключением методов испытаний.
- каждая из произведенных версий может оказаться худшего качества.
G.6.2 Преимущества
Использование функционального или программного разнообразия улучшает защиту от ООП. вызываемых

программным обеспечением.
G.6.3 Обоснование
В качестве обоснования может рассматриваться увеличение надежности функций безопасности, достигае­

мых за счет разнообразия.

75

ГОСТ Р МЭК 60880— 2010

Приложение Н
(справочное)

Инструментальные программы
для создания и проверки специф икации,

проектирования и реализации

Инструментальные программы образуют в настоящее время существенную часть среды разработки про­
граммного обеспечения, выполняющего функции безопасности. Неавтоматизированные методы связаны с боль­
шим риском совершения ошибок и требуют привлечения высококвалифицированного персонала. Поэтому эти
методы нуждаются в инструментальной поддержке с использованием математических методов, раскрывающих
структурные и внутренние функциональные взаимосвязи программного обеспечения и проверяющих внутрен­
нюю совместимость, совместимость с некоторой априорной моделью, желательные/нежелательные свойства
ит.п.

Конечное подтверждение соответствия программы своей спецификации гложет осуществляться с помощью
анализатора соответствия. Если проверенный генератор кода обеспечивает полное соответствие исполняемой
программы описанию ев проекта, то статистический и динамический анализы обеспечивают разнообразие про­
верки правильности этого описания.

Инструментальные программы для формализированных методов спецификации и проектирования могут
быть классифицированы в качестве конструктивных или аналитических инструментов.

Н.1 Конструктивные инструменты
Конструктивные инструменты используются для поддержки разработки спецификации, проектирования,

кодирования. Они могут включать в себя:
Н.1.1 Текстовый редактор
Поскольку формализованные методы, основанные на теории множеств, на исчислении предикатов и ис­

числении высказываний требуют специальных математических символов, то важно иметь соответствующий тек­
стовый редактор, способный отображать эти символы на экране с высоким разрешением и четко их распечаты­
вать.

Н.1.2 Графический интерфейс
Там. где формализованные методы используют графику, требуются соответствующие графические возмож­

ности.
Н.1.3 Автоматический генератор кода
После утверждения формализованной спецификации целостность процесса проектирования гложет быть

существенно улучшена путем применения прошедшего валидацию автоматического генератора кода. Такой гене­
ратор кода преобразует спецификацию в исполняемый код. снижая таким образом вероятность внесения оши­
бок. Кроме того, посредством выбора генератора кода может быть реализована безопасная сокращенная версия
языка.

Для стандартных функций рекомендуется использовать сертифицированные модули программного обес­
печения.

Автоматически генерируемый код должен быть читаемым. Комментарии должны способствовать распозна­
ванию соответствующих частей спецификации. Структура автоматически генерируемого кода должна способство­
вать автоматической верификации.

Н.1.4 Генератор доказательства правильности
Формализованные методы, основанные на логических умозаключениях, требуют использования генерато­

ра доказательства правильности, который автоматически регистрирует доказательства правильности, возникаю­
щие на этапах проектирования.

Н.2 Аналитические инструменты
Аналитические инструменты позволяют проводить проверку спецификации, проектирования и реализации.

Аналитические инструменты могут включать в себя следующие программы:
Н.2.1 Программа проверки синтаксиса
Программа проверки синтаксиса представляет информацию о структуре программы, по использованию

данных программы, зависимости выходных переменных от входных переменных и управляющей логике про­
граммы, что позволяет проводить:

a) определение дефектов структуры, таких как множественный запуск, множественное завершение, недо­
стижимый код. избыточный код. отсутствие использования результатов функции;

b) определение иерархии модулей/подпрограмм;
c) определение нарушений стандартов и соглашений по программированию, включая проверку на наличие

безусловных переходов в циклах;

76

ГОСТ Р МЭК 60880— 2010

d) определение данных, которые считываются до их записи, данных, которые записываются до их чтения,
данных, записанных дважды без их промежуточного чтения:

e) проверку информационного потока по спецификации:
f) оказание помощи в проектировании плана динамических испытаний;
д) управление тестовыми данными и, возможно, генерацию тестовых данных.
Н.2.2 Программа семантической проверки
Программа семантической проверки описывает математические соотношения между выходными и вход­

ными переменными для каждого семантически достижимого пути в свободных от ветвлений частях программы.
Это позволяет проводить проверку того, что программа будет делать при всех обстоятельствах, а также регистри­
ровать дефекты, такие, например, как неожидаемые выходные величины, на которые влияют входные величины,
неправильный отклик на неожидаемые входные величины, неправильная последовательность функций и опера­
торов и т.п.

Н.2.3 Генератор формализованных проверок
Формализованные проверки проекта требуют использования интерактивной программы, которая проводит

необходимую работу с символами под управлением оператора, для того чтобы выполнить доказательство пра­
вильности. Такая программа известна как «помощник в доказательстве теорем» (ПДТ). Это обычно означает
применение программы проверки доказательств, вход по такой программе является выходом ПДТ. ПДТ пред­
ставляют собой большие программы, отсутствие дефектов для которых нельзя доказать. Поэтому необходимо
проведение разносторонней верификации. Программа проверки доказательств должна быть основана на фор­
мализованной теории доказательств, и эта программа должна верифицироваться по отношению к этой теории.

Н.2.4 Аниматор
По возможности, спецификации рекомендуется анимировать с тем. чтобы конечный пользователь системы

мог проверить различные аспекты спецификации или проекта с целью подтверждения соответствия (насколько
это возможно) требований спецификации и предлагаемого проекта. Анимация должна с максимальной возмож­
ностью представлять проект и может потребовать использования макетов для демонстрации нефункциональных
аспектов. Эта оценка проводится на соответствие критериям пользователя, и требования к системе могут быть
модифицированы в свете этой оценки.

Н.2.5 Анализатор соответствия
Анализатор соответствия может показать, что программа правильно реализует спецификацию. При этой

демонстрации анализатор соответствия использует входные и выходные условия плюс инвариант цикла. Анали­
затор соответствия систематически подтверждает выполнение в программе каждого условия.

77

ГОСТ Р МЭК 60880— 2010

Приложение I
(справочное)

Требования к ранее разработанному
программному обеспечению (РПО)

1.1 Руководство для учета несоответствий и компенсирующих факторов
Слабости и несоответствия требованиям МЭК 60880 могут быть различных типов, например:
- требования относительно понятности и полноты документации по программному обеспечению;
- требования по читаемости программ:
- требования, относящиеся к проектированию программного обеспечения, которые улучшают детерминиро­

ванное поведение при функционировании в реальном времени:
- требования, относящиеся к программному обеспечению, которые обеспечивают самоконтроль компью­

терного технического обеспечения, или
- требования, относящиеся к полноте документированных отчетов по валидации.
Слабости и несоответствия редко бывают «черно-белыми», и их рекомендуется учитывать, рассматривая

степень их выполнения, и в соответствии с влиянием на качество компьютерной системы, например:
требования МЭК 60880. касающиеся понятности, являются критическими при разработке и модификациях

и менее существенны для стабильного и проверенного продукта.
О возможности доверия к опыту эксплуатации или дополнительным испытаниям в качестве компенсирую­

щих факторов следует судить в зависимости от типа РПО и его роли в компьютерной системе, например:
- программное обеспечение операционной системы, обычно доступное как микрокод или двоичный код.

может оказаться трудным для анализа, и может быть ограничен доступ к документации процесса его разработки.
В некоторых случаях большой опыт эксплуатации может служить важным фактором приемки, особенно для про­
граммного обеспечения, выполняющего определенные повторяющиеся функции, например, драйверы коммуни­
кации или части операционных систем. В других случаях, например, для программного обеспечения, выполняю­
щего функции контроля и восстановления компьютерных систем, может отсутствовать большой опыт эксплуата­
ции, поскольку эти функции редко приводятся в действие во время работы компьютерных систем:

- по библиотекам прикладных программ может быть составлена подробная документация на основе дос­
тупной информации по проекту данного модуля, процессу разработки и вапидационным испытаниям. Данные по
опыту эксплуатации на аналогичных станциях или дополнительным испытаниям также могут быть использованы
для поддержки оценки соответствия, так что может быть достигнута достаточная степень уверенности в правиль­
ности работы данного типа программного обеспечения.

1.2 Сбор и проверка данных по опыту эксплуатации
1.2.1 Сбор данных
Рекомендуется собирать следующие данные:
- информацию с объектов, включая конфигурацию и условия эксплуатации РЛО в компьютерных системах,

используемые функции, число прогонов РПО:
- время работы на обьекте. включая общее время с момента первого запуска, общее время эксплуатации

последней версии РПО, общее время с момента последней серьезной ошибки (при наличии), общее время с
момента последнего отчета об ошибке (при наличии);

- отчет об ошибках, включая дату ошибки, ее серьезность, устранение и
- историю версии, включая дату и идентификацию версий, а также соответствующие им конфигурацию, ис­

правленные ошибки, функциональные модификации или расширения, неразрешенные проблемы.
1.2.2 Проверка данных
При верификации статистической значимости собранных данных рекомендуется иметь в виду различные

факторы:
- данные по времени эксплуатации приемлемы, только если с момента ввода РПО прошло заранее установ­

ленное минимальное время:
- время работы РПО гложет быть принято во внимание, только если оно относится к тем возможностям РПО,

которые действительно использовались при работе компьютерной системы, где РПО было инсталлировано.

П р и м е ч а н и е — Например, некоторые модули прикладных библиотек, относящиеся, в частности, к
дополнительным функциям системы, могут быть установлены в эту систему, но никогда не использоваться на
конкретном объекте или использоваться редко:

- полноту данных по опыту эксплуатации (например, действительно ли все сбои корректно документирова­
ны) рекомендуется оценивать в зависимости от организации сопровождения на объекте:

- приемлемыми являются лишь данные из реальных, объективных источников информации.

78

ГОСТ Р МЭК 60880—2010

Приложение J
(справочное)

Соответствие между МЭК 61513 и настоящ им стандартом

J.1 Общие сведения
МЭК 60880 (1986 г.) был разработан за несколько лет до МЭК 61513 и включал в себя положения, относящи­

еся к уровню системы в дополнение к положениям уровня программного обеспечения.
В процессе пересмотра положения системного уровня, которые сейчас должным образом отражены в МЭК

61513. и из пересмотренного текста были изъяты. Положения, на которые в МЭК 61513 имеются явные ссылки
или которые должным образом там не освещены, сохранены в пересмотренном тексте и представлены в насто­
ящем приложении с указанием номеров пунктов МЭК 60880 (1986 г.) и настоящего МЭК 60880.

J.2 Пункты МЭК 60880 (1986 г.), на которые есть ссы лки в МЭК 61513
МЭК 61513 является документом системного уровня, охватывающим все категории функций безопасности

СКУ.
Во введении к МЭК 61513 сказано: «При рассмотрении компьютерных систем класса 1 данный стандарт

следует применять совместно с МЭК 60880 и МЭК 60987 с тем. чтобы полностью удовлетворить требования
к техническому и программному обеспечениям».

Соответствующие положения сохранены в настоящем издании МЭК 60880 и. где необходимо, пере­
смотрены.

В таблице J.1 приведено соответствие между пунктами МЭК 60880 (1986 г.), обозначенного как «Доп.», на
которые есть ссылки в МЭК 61513. и пересмотренными пунктами настоящего стандарта.

Т а б л и ц а J.1 — Соответствие пункте» МЭК 61513 и пунктов настоящего стандарта

П у н к т ы М Э К 6 1 5 1 3 . а к о т о р ы х е с т ь с с ы л ки на

П у н к т ы
М Э К 6 0 8 8 0

<1986 г.У Д о п .

П у н к т ы
н а с т о я щ е г о
с т а н д а р т а

5.3.1.5.4 Защита от ООП. вызванных систематическими дефектами. 4.1 13

П р и м е ч а н и е 2 — Цель данного подраздела — дать общие сведе­
ния. Детальные требования к защите от отказов по общей причине вслед­
ствие ошибок в программном обеспечении для функций категории А при­
ведены в 4.1 МЭК 60880-2*.

Доп.

5.3.3.1 Оценка надежности и защита от ООП. 4.1.3 13.3
П р и м е ч а н и е 2 — Т ребования к анализу отказов по общей причине

вследствие ошибок в программном обеспечении приведены в 4.1.3 МЭК
60880-2*.

Доп.

5.5.1 Документация по проекту архитектуры 4.2 Доп. 14

П р и м е ч а н и е — Т ребования к инжиниринговым методам и инстру­
ментальным средствам создания программного обеспечения для систем
класса 1 приведены в 4.2 и 4.3 МЭК 60880-2*.

4.3 Доп. 15

6 Жизненный цикл безопасности системы 6.1 8.1

П р и м е ч а н и е 1 — Это требование отличается от требования
подраздела 6.1 МЭК 60880. Для программного обеспечения оно жела­
тельно. но не рассматривается в качестве необходимого требования за­
вершать каждую фазу разработки до начала следующей фазы, выполняе­
мой в соответствии с указанными выше требованиями.

П р и м е ч а н и е 2 — Для систем класса 1 требования к программному
обеспечению на данной стадии определены в МЭК 60880.

Нет

П р и м е ч а н и е 3 — Для систем класса 1 требования к существую­
щему программному обеспечению на данной стадии определены в МЭК
60880-2*.

Нет

79

ГОСТ Р МЭК 60880— 2010

П р о д о л ж е н и е т а б л и ц ы J . 1

П у н к т ы М Э К 6 1 5 1 3 . и к о т о р ы х е с т ь с с ы л ки на

П у н к т ы
М Э К 6 0 8 8 0

(1 9 8 6 г .у Д о п .

П у н к т ы
н а с т о я щ е г о
с т а н д а р т а

6.1.1.1.1 Прикладная функция
...Количественная оценка надежности прикладных функций может потре­
боваться при верификации проекта системы и общего проекта энергоблока
(см. подраздел А.2.2 приложения А. МЭК 60880). Эту оценку обычно прово­
дят при проектировании оборудования системы, т.к. здесь уже имеется на­
копленный опыт, однако не существует метода, пригодного для количествен­
ной оценки надежности программного обеспечения (см. 6.1.3.1.2)....

А.2.2 Нет

6.1.1.2.1 Архитектура системы 4.1.1 13.1

П р и м е ч а н и е — Отказы из-за программного обеспечения являются
систематическими, а не случайными. Поэтому критерий единичного отказа
не может применяться при разработке программного обеспечения систе­
мы в том виде, в каком это делается при проектировании оборудования. На
уровне каждой системы и архитектуры контроля и управления следует рас­
сматривать возможные воздействия отказа по общей причине из-за про­
граммного обеспечения на каждом уровне защиты или между резервиро­
ванными уровнями (см. 4.1.1 МЭК 60880-2”).

Доп.

6.1.1.2.2 Внутреннее поведение системы
с) (Специальное требование) Для того, чтобы обеспечить высокую степень
гарантии в детерминированном поведении, системы класса 1 должны раз­
рабатываться с использованием технологий, подобных тем. которые при­
ведены в приложении В МЭК 60880 (особенно B2.d относительно времени
реакции и В2.е относительно прерываний). ...

В.2d.
В.2е

B.2d.
В.2е

П р и м е ч а н и е 3 — См. раздел 1 МЭК 60880 относительно роли
приложений к стандарту, и что требуется, если практика отличается от того,
что приведено в приложении. 1 5.5.3

6.1.1.2.3 Самоконтроль и устойчивость к отказам
а) Системы должны проектироваться так. чтобы ошибки и отказы регистри­
ровались как можно раньше с целью поддержания требуемой работоспо­
собности системы. Выявление отказов с помощью устройств самодиагнос­
тики не должно осуществляться за счет применения слишком сложных уст­
ройств. Насколько возможно для каждого класса системы следует соблю­
дать требования 4.8 и подраздела А.2.8 приложения А МЭК 60880 к самоди­
агностике

4.8.
А.2.8

6.2.
А.2.2

6.1.2 Спецификация системы
В соответствии с разделом А.1 приложения А МЭК 60880 на этой фазе оп­
ределяются требования к программному обеспечению, техническому обес­
печению и требования по интеграции системы.

А.1 5.3

6.1.2.1 Выбор ранее существующих компонентов 4.3 15

П р и м е ч а н и е 2 — В подразделе 4.3 МЭК 60880-2” указаны критерии
принятия повторно используемого разработанного программного обеспе­
чения для функции категории А.

6.1.2.2.3 Защита от развития отказов и их побочных эффектов. Нет Нет

П р и м е ч а н и е — Детальные требования, позволяющие избежать
склонности программных комплексов к ошибкам, и требования к верифика­
ции и тестированию программных модулей приведены в МЭК 60880 и МЭК
60880-2”.

80

ГОСТ Р МЭК 60880— 2010

П р о д в и ж е н и е т а б л и ц ы J . 1

П у н к т ы М Э К 6 1 5 1 3 . и к о т о р ы х е с т ь с с ы л ки на

Пункты
МЭК 60880

(1986 г.уДоп.

П у н к т ы
н а с т о я щ е г о
с т а н д а р т а

6.1.2.3 Спецификация программного обеспечения Нет Нет

П р и м е ч а н и е 1 — Архитектура программного обеспечения опреде­
ляет его основные компоненты и субсистемы, их взаимодействие между
собой и пути достижения требуемых характеристик. Требования к архитек­
туре программного обеспечения не входят в настоящий стандарт (для сис­
тем класса А см. МЭК 60880 и МЭК 60880-2').

а) Для упрощения спецификации, верификации и валидации прикладных
функций, архитектура программного обеспечения должна обеспечить чет­
кое разделение между прикладным программным обеспечением и сис­
темным программным обеспечением.(см. В.2а МЭК 60880). В таких случа­
ях верификация и валидация прикладного программного обеспечения
могут осуществляться отдельно В.2а В.2а

6.1.3 Детальное проектирование системы и его реализация
Для систем класса 1 требования на разработку программного обеспече­
ния приведены в МЭК 60880 и МЭК 60880-2*. а на оборудование — в МЭК
60987

Нет Нет

6.1.4 Интеграция системы
Целью данного этапа является сборка оборудования и модулей программ­
ного обеспечения и проверка совместимости программного обеспечения,
установленного на оборудовании (см. раздел 7 МЭК 60880)

7 9

6.1.5 Валидация системы
Целью данного этапа является тестирование интегрированной системы
для обеспечения соответствия с функциональными, операционными спе­
цификациями и спецификациями интерфейса (см. раздел 8 МЭК 60880).
Ь) (специальное требование) Требования раздела 8 МЭК 60880 должны
применяться к валидации функции категории А.0

8 10

6.1.7 Модификация проекта системы
е) (специальное требование) Для систем класса 1 процесс модификации
программного обеспечения должен осуществляться в соответствии с раз­
делом 9 МЭК 60880. а процесс модификации оборудования — в соответ­
ствии с разделом 11 МЭК 60987

9 11

6.2.1 План обеспечения качества системы 3 5.5

П р и м е ч а н и е — Требования к плану обеспечения качества про­
граммного обеспечения систем безопасности указаны в разделе 3 МЭК
60880.

е) План обеспечения качества должен быть сформирован на ранней ста­
дии жизненного цикла системы и сформирован, исходя из общего плана
других мероприятий жизненного цикла безопасности I&C. План может вхо­
дить либо в спецификацию систем, либо выпускаться в качестве отдельно­
го документа (см. подраздел 3.2 МЭК 60880) 3.2 5.5

6.2.1.1 План верификации системы
h) (специальное требование) Для систем класса 1 план верификации сис­
темы должен выполняться лицами, не занятыми в ее проектировании (в
соответствии с 6.2.1 МЭК 60880)

6.2.1 8.2.1

6.2.3 План интеграции системы
Система интеграции включает в себя работу по интеграции субсистем в
систему и интеграции программного обеспечения для СВ систем. В значи­
тельной степени, система интеграции охватывает работу, описанную в под­
разделе 7.4 МЭК 60880

7.4 9.1

81

ГОСТ Р МЭК 60880— 2010

О к о н ч а н и е т а б л и ц ы J . 1

П у н к т ы М Э К 6 1 5 1 3 , и к о т о р ы х е с т ь с с ы л ки на

П у н к 1 ы
М Э К 6 0 8 8 0

(1 9 8 6 г.Х Д о п .

П у н к т ы
н а с т о я щ е г о
с т а н д а р т а

6.2.4 План валидации системы
Ь) (специальное требование) Для функций категории А должен быть разра­
ботан план валидации системы, при этом мероприятия по осуществлению
валдации должны выполняться группами лиц, не занятых в проектирова­
нии. реализации и/или модификации системы (см. раздел 8 МЭК 60880)

8 10

6.2.5 План инсталляции системы
Ь) (специальное требование) Для систем класса 1 план инсталляции систе­
мы должен выполняться в соответствии с разделом 8 МЭК 60987 и 10.1.1
МЭК 60880)

10.1.1 Нет

6.3.1.2 Характеристики

П р и м е ч а н и е 3 — Подробные требования в отношении програм­
мных средств для систем класса 1 изложены в подразделе 4.2 МЭК
60880-2*.

4.2

Приложение

14

6.3.3 Детальная проектная документация системы

П р и м е ч а н и е — Для систем класса 1. требования к оформлению
документации на программное обеспечение изложены в МЭК 60880 и МЭК
60880-2*. а на оборудование — в МЭК 60987

Нет Нет

6.3.4.2 Характеристики
Ь) (специальное требование) Для систем класса 1 применяются требова­
ния подраздела 7.7 МЭК 60880

7.7 9.5

6.3.5.2 Характеристики
(специальное требование) Для систем класса 1 применяются требования
подраздела 8.7 МЭК 60880

8.1 10.3

6.4.1.2 Анализ и оценка программного обеспечения
b) (специальное требование) Для систем класса 1 вновь разработанное
программное обеспечение должно быть подвергнуто оценке в соответствии
с требованиями МЭК 68880.
c) (специальное требование) Ранее существующее оборудование, выбран­
ное для систем класса 1, должно быть разработано в соответствии с обще­
признанными руководствами и стандартами, обеспечивающими высокий
уровень качества, требуемый для функций класса А (см. 8.1.2 МЭК 61226).
В частности, должны быть соблюдены требования МЭК 60880-2 на ранее
разработанное программное обеспечение и программные средства, а так­
же требования МЭК 60987

Нет

Нет
Приложение

Таблица 5 — Требования к спецификации и реализации FSE
Валидация: см. МЭК 60880 (6.2.4)

Пункт
не определен

* Заменен. Действует МЭК 6088 (2006).

J.3 Пункты МЭК 60880 (1986 г.), не отраженные в МЭК 61513
Эти пункты содержатся в настоящем стандарте и были изменены там, где это необходимо. Они должны

быть рассмотрены при разработке следующей редакции стандарта.

Т а б л и ц а J.2 — Пункты МЭК 60880. которые должны быть рас­
смотрены при следующем пересмотре МЭК 61513

6.3 Периодические испытания_______________________________
9.2 Интеграция системы
10.2 Валидация системы
12.4 Обучение операторов

82

ГОСТ Р МЭК 60880—2010

Приложение ДА
(справочное)

Сведения о соответствии ссы лочны х международных стандартов ссы лочны м
национальным стандартам Российской Федерации

Т а б л и ц а ДА.1

О б о з н а ч е н и е с с ы л о ч н о г о
м е ж д у н а р о д н о г о с т а н д а р т а

С т е п е н ь
с о о т в е т с т в и я

О б о з н а ч е н и е и н а и м е н о в а н и е с о о т в е т с т в у ю щ е го
н а ц и о н а л ь н о г о с т а н д а р т а

МЭК 60671 •

МЭК 61069-2:1993 •

МЭК 61226 ЮТ ГОСТ Р МЭК 61226—2011 «Атомные станции. Сис­
темы контроля и управления, важные для безопас­
ности. Классификация функций контроля и управле­
ния»

МЭК 61508-4 ю т ГОСТ Р МЭК 61504-4— 2007 «Функциональная безо­
пасность систем электрических, электронных, про­
граммируемых электронных, связанных с безопас­
ностью. Часть 3. Требования к программному обес­
печению»

МЭК 61513 ю т ГОСТ Р МЭК 61513— 2011 «Атомные станции. Сис­
темы контроля и управления, важные для безопас­
ности. Общие требования к системам»

ИСО/МЭК 9126 ю т ГОСТ Р ИСО/МЭК 9126— 93 «Информационная тех­
нология. Оценка программной продукции. Характе­
ристики качества и руководства по их применению»

Руководство МАГАТЭ NS-G-1.2 — -

Руководство МАГАТЭ NS-G-1.3 — •

* Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется испольэо-
вать перевод на русский язык данного международного стандарта. Перевод данного международного стандар-
та находится в Федеральном информационном фонде технических регламентов и стандартов.

П р и м е ч а н и е — В настоящей таблице использовано следующее условное обозначение степени
соответствия стандартов:

- ЮТ — идентичные стандарты.

83

ГОСТ Р М ЭК 60880— 2010

УДК 004.384.044.4.4:621.311.25:621.039:006.354 ОКС 27.120.20

Ключевые слова: атомная электростанция; архитектура контроля и управления: системы контроля и управ­
ления. важные для безопасности; жизненный цикл безопасности; функция контроля и управления катего­
рии А; разработка программного обеспечения; инсталляция; функциональная валидация

Редактор В . Н . К о п ы с о в
Технический редактор В . Н . П р у с а к о в а

Корректор Е . Ю . М и т р о ф а н о в а
Компьютерная верстка 3 . И . М а р т ы н о в о й

С д а н о в н а б о р 1 9 .1 0 .2 0 1 1 . П о д п и с а н о а п е ч а т ь 1 2 .1 2 2 0 1 1 Ф о р м а т в 0 х 8 4 ’ /д. Б у м а га о ф с е тн а я . Г а р н и ту р а А р и а л .
П е ч а т ь о ф с е т н а я У е л . п е ч . л . 1 0 ,2 3 . У ч .-и з д п . 1 0 .0 5 . Т и р а ж 8 4 э кз . З а к . 1 2 8 5

Ф Г У П « С Т А Н Д А Р Т И Н Ф О Р М » . 1 2 3 9 9 5 М о с к в а . Г р а н а т н ы й пе р ., 4.
w w v v .g o s tin fo .ru in fo @ g o s lin fo .ru

Н а б р а н о и о т п е ч а т а н о в К а л у ж с к о й т и п о гр а ф и и с т а н д а р т о в . 2 4 8 0 2 1 К а л у га , ул . М о с к о в с к а я . 2 56

ГОСТ Р МЭК 60880-2010

https://meganorm.ru/Data2/1/4294851/4294851367.htm
https://meganorm.ru/Data1/47/47989/index.htm

